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Abstract 
 
 

 
 
 
 

For the last three decades, the field of MEMS (Micro-Electro-Mechanical Systems) has 
emerged to a technology with significant potential. Re-entrant sharp corners or notches have 
increasingly appeared in MEMS fabrication and packaging. Due to the stress concentration and/or 
elastic mismatch at re-entrant corner, the initiation of failure at sharp corner or at free edges in 
multi-material systems often occurs. Hence, how to characterize the singular stress fields and the 
interface strength at these failure sites becomes very important. 

This dissertation consists of six chapters and three papers. The background of this problem is 
presented in Chapter 1. In Chapter 2, MEMS technology and useful online resources are provided. 
Anisotropic elasticity theory including Stroh formalism is briefly addressed in Chapter 3. The 
focus of Chapter 4 is on distinction of notch mechanics from classical fracture mechanics. Chapter 
5 gives an overview of the three appended papers. Conclusions of this study are summarized in 
Chapter 6 along with recommendations for future work. 

Finally, three papers are appended investigating various aspects of multi-layered notched 
problem. The specific structures we have studied are popular in MEMS. The H-integral approach, 
as a tool to derive stress intensity factors for notches and cracks, has been performed in all the 
papers. This path independent contour integral method is based on a combination of Betti's law, 
Stroh’s formalism, finite element results and asymptotic analysis with a complementary field. 
Plane strain conditions are assumed in all modeling. Linear elastic finite element analyses are 
performed with ABAQUS (Finite element code). A good agreement between numerical 
predictions obtained from the H-integral method and the detailed FE results has been achieved, 
showing the applicability of this approach. 

Paper I focuses on the fracture behavior of two types of triple stacks specimens with a sharp 
corner. Standardized numerical formulae of the dimensionless stress intensity factor are proposed 
for two typical specimens, and the dependence of geometry is analyzed. The effect of glass 
thickness on stress intensity is explored for anodic-bonded Si-Glass-Si triple stacks. Distinct 
failure criteria for sharp notches have been qualified and three different approaches have been 
compared and quantified. The influencing factors and uncertainties for their applicability of critical 
stress intensity factors have also been discussed. Furthermore, the deviation between a fine mesh 
and a coarse mesh has been quantified.  

Paper II investigates the weak singularity problem at free edges in multi-layered structural 
components. In Paper II, the effects of elastic constants of various material combinations on the 
weak singularity at free edges are analyzed. Using the H-integral approach, the effects of elastic 
mismatch parameters, the bond area and the thickness of the thin metal layer on the stress intensity 



iv 

factor are quantified. The relationship between the valid range of the K -dominated field and the 
thin-film thickness is then demonstrated. Besides, the competition of crack initiation between the 
free edge interface (180º opening angle) and a 90º notch interface in a generic specimen is 
investigated, in order to find out which is the prevailing failure mode. Comparison between 
isotropic Si and anisotropic Si substrate is also illustrated.  

Paper III concentrates on a general notch problem and presents the computational procedure 
for obtaining the stress intensity factor in a flow chart. Three critical issues are addressed to clear 
up some confusion in the notch mechanics: the interpretation of the eigenvalue equation, the 
definition of stress intensity factors, and the effect of the outer contour location on H-integral 
evaluations. 
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CHAPTER 1  
 
 

Introduction 
 
 
 
 
 
 

1.1 Motivations 

 
The strong growth of MEMS (Micro-Electro-Mechanical Systems) market, particularly over the 

past 10 years, has brought out many excitements and challenges to the technology development. 
Sharp corners or notches have inevitably emerged in microsystem fabrication and packaging. The 
failure often occurs at sharp corners or at free edges in multi-material systems (Fig. 1) as a result 
of the stress concentration and/or the elastic mismatch. Therefore, it is essential to characterize the 
singular stress fields around the notch tip and to ensure the capacity and stability of structural 
components.  

      
 

Fig. 1 Schematic plot of a sharp corner and an free edge in a bi-material system. 

 
In terms of strength, the interfaces in the multi-layered component are usually the weakest. The 

interface failure in the processing and in service sometimes results in critical malfunction of the 
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devices. Accordingly, it is necessary to evaluate the interface strength between different materials. 
It is well known that the interface stress fields around the notch tip are of the form 

 1 1, 2,mn
mK r m N     where N  is the number of eigenvalues available from the characteristic 

equation. Superscript n  indicates the notch for the sake of distinction from the stress intensity 
factor mK  in classical fracture mechanics, r  is the radial distance from the notch corner and 1m   

is the order of the stress singularity. The stress field is singular for 0 Re( ) 1m   where Re( )m  is 

the real part of m , depending on the material elastic properties and notch geometries. The 

intensity of the singular stress state near an interface corner is characterized by the magnitude of 
n
mK  which depends on the edge geometry, the elastic constants and the remote loading modes. 

Therefore, the knowledge of both n
mK  and m  are needed to fully describe the stresses and 

displacements in the vicinity of the notch tip. The near-tip fields are presented and developed for a 
general corner (e.g., Barnett and Kirchner, 1997; Carpenter, 1984a; 1984b; Labossiere and Dunn, 
1999; Walsh, 1976; Sinclair et al., 1984; Munz and Yang, 1993; Munz et al., 1993; Yang and Chao, 
1992; Reedy, 1993) and for an edge interface (e.g., Akisanya, 1997; Akisanya and Fleck, 1997; 
Banks-Sills, 1997; Fett, 1994; Qian and Akisanya, 1999a). The stresses at the edge interface 
including singular and constant terms under thermal loading are examined in the literature (e.g., 
Munz et al., 1993; Qian and Akisanya, 1998; Munz and Yang, 1992). The order of the stress 
singularity, 1m  , near the interface corner has been extensively studied for isotropic materials 

(e.g., Bogy and Wang, 1971; Carpenter, 1984a; 1984b; Dempsey and Sinclair, 1979; 1981; Hein 
and Erdogan, 1971; Williams, 1952; Yang and Munz, 1997; Hutchinson and Suo, 1992; England, 
1971; Theocaris, 1974; Kelly et al., 1992; Paggi and Carpinteri, 2008) and anisotropic materials 
(e.g., Barroso et al., 2003; Kuo and Bogy, 1974; Yosibash and Szabo, 1995; Szabo and Yosibash, 
1996; Ting, 1996; 1997; Labossiere and Dunn, 1999; Chen and Nisitani, 1993). 

In particular, the magnitude of the stress intensity factor is generally determined by either an 
extrapolation method or a path-independent integral approach. The former method involves the 
matching of the asymptotic displacements along the notch flanks (e.g., Reedy, 1993; Su et al., 
2003) or the stresses (e.g., Munz et al., 1993; Munz and Yang, 1992; Su et al., 2003) along the 
interface to the corresponding finite element results. Relatively fine meshes close to the notch tip 
are required to capture the effects of the singularity. In the latter approach, the H-integral 
combined with finite element solutions is used to calculate the stress intensity factor for a general 
corner. The H-integral approach for cracked isotropic solids, pioneered by Stern et al. (e.g., Hong 
and Stern, 1978; Stern et al., 1976; Stern and Soni, 1975; Stern and Soni, 1976a; 1976b; Stern, 
1979) and Snyder and Cruse (1975), was extended by Carpenter (1984a), Sinclair et al. (1984; 
1985) and Babuska and Miller (1984) to notched solids in isotropic media where both mode I and 
mode II loading were taken into account. This was further extended to an isotropic bimaterial 
notched body by Carpenter and Byers (1987) and Banks-Sills (1997), and applied by Labossiere 
and Dunn (1999) to a general sharp notch with anisotropic materials. The effect of higher order 
terms ( 1)m   on the stress state near the interface corner of a bi-material joint is demonstrated by 

Qian and Akisanya (1999b). The accuracy of the extrapolation method is subject to numerical 
error introduced to the nodal displacements or stresses close to the interface corner. By contrast, 
the path-independent integral method utilizes the stresses and displacements away from the notch 
tip, and therefore the accuracy doesn’t depend critically on the mesh density near the interface 
corner. Qian and Akisanya (1998) found that the values of K  for a sandwiched scarf joint using 
the extrapolation method are lower by about 15-25% than those obtained by the path-independent 
integral method. However, few researchers addressed weak singularity problems at free edges. 
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Kitamura et al. (2002; 2003; 2007) explored the free edge effect on singular stress fields and 
evaluated the fracture strength at the interface edge through delamination tests. Xu et al. (2004) 
conducted an integrated experimental and numerical investigation for removing or reducing the 
free-edge stress singularities in dissimilar material joints by alternatively using a convex joint 
design. 

Due to its significant electrical, mechanical, optical and thermal properties, single crystal 
silicon is of interest to electronics industry and has important industrial applications in the 
fabrication of semiconductors. As we know, single crystal silicon is a slightly anisotropic material. 
Owing to its anisotropy, an issue is arisen whether it is necessary to conduct anisotropic stress 
analysis or isotropic stress analysis. Chen et al. (2000) performed 2D (two-dimensional) 
axisymmetric and 3D (three-dimensional) FEA simulations for SCS (Shear-compression specimen) 
biaxial flexure specimen. Results indicated that they could justify using 2D isotropic analysis with 
Young’s modulus E = 170 GPa and Possion’s ratio ν = 0.1 for SCS to model the stress state in the 
biaxial flexure specimens. 

Fracture resistance of structural components with stress concentration at sharp notches or at free 
edges can be evaluated by different failure criteria. Note that a traditional yield criterion is not 
applicable to correlate with failure because typically the failure load measured from tests depends 
on specimen geometry, size and type of remote loading. It is interesting to investigate the failure 
criterion. The failure initiation criterion at interface corners has been discussed in many studies 
(e.g., Stern et al., 1976; Sinclair, 1985; Carpenter and Byers, 1987; Munz and Yang, 1993; Yang 
and Munz, 1997; Carpenter, 1995; Labossiere and Dunn, 1998; Dunn et al., 2000; Reedy and 
Guess, 2002; Qian, 2001; Wang et al., 2002). Mainly two different failure criteria have been 
proposed to predict the failure initiation at sharp notches (Fig. 13) or wedge corners (e.g., Luo and 
Subbarayan, 2007). One is based on the assumption of “small scale yielding” near the corner. The 
failure occurs when the dominating stress intensity factor reaches a critical value (e.g., Hutchinson, 
1990; Yin, 1999; Reedy and Guess, 1993). Alternatively, failure occurs when the function of 
comparable stress intensity factors, for example in the I IIK K  space in case of mixed-mode 

deformation, reaches a critical value (e.g., Labossiere et al., 2002). In the other approach, failure 
starts at the notch corner when the strain energy density at a point ahead of the notch reaches a 
critical value (e.g., Sih and Ho, 1991). Although the units of the strain energy density is 
independent of the wedge angle, the evaluation of the strain energy requires knowledge of both the 
order of the stress singularity and the stress intensity factor, since the stresses as well as the strains 
rely on these two parameters. Hence, a single parameter to correlate fracture initiation at sharp 
notches is promising, similar to the concept of yield stress. Additionally, key factors affecting the 
magnitude of critical stress intensity have also been discussed by some others (e.g., Beadle et al., 
1985; Henning et al., 2004; Shang et al., 2008). 

 
 

1.2 Objectives and scope 

The objective of this work is to investigate a re-entrant corner/notch or free edge in multi-
layered structures and evaluate the corresponding fracture parameters. 

Over the last 20 years, notch mechanics and analysis of an interface between two elastically 
dissimilar materials has been an active research field. For multimaterial media, the situation 
becomes complicated as the mixed-mode deformation generally occurs. With this, the asymptotic 
elastic fields depend on the radial position, the elastic mismatch and the interface corner geometry. 
Due to the high stresses at sharp notch corners, the crack often starts at the interfaces in the multi-

http://www.engineeringvillage2.org/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bKitamura%2C+Takayuki%7d&section1=AU&database=1&yearselect=yearrange&sort=yr�
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layered component and then results in malfunction of the MEMS devices. Similar to the concept of 
yield stress, we strive to propose a fracture initiation criterion used for the notch components. Our 
goal is to develop a method for crack initiation analysis at interface corners or at free edges. A 
convenient computational procedure to obtain the stress intensity factor for a general notch 
problem is necessary. Key factors influencing the fracture parameter along with the feasibility and 
limitations of the methods derived are then discussed. 

Because of the complexity of MEMS structures, two different interface corners may exist 
simultaneously in one multi-layered structure. The question of prevailing failure mode in multi-
layered structural components is addressed. 

To facilitate engineering application, standardized numerical formulae for varying material 
combinations in a notched body are proposed.  

Furthermore, on account of its excellent performance, single crystal silicon is at the heart of the 
electronics industry. Single crystal silicon is, however, a slightly anisotropic material. The 
importance of material anisotropy to evaluate the fracture parameter when combined with diverse 
materials is investigated.  

 
 

1.3 Outline  

The framework of this dissertation is outlined herein. As stated above, the motivation, objective 
and scope of the study have been introduced. Chapter 2 is intended for a review of MEMS 
technology. It contains the definition of MEMS or Microsystems, a presentation of silicon 
properties, brief descriptions of processes in micromachining, a prospect of future potential 
markets and a list of useful online resources. In Chapter 3, an overview of anisotropic elasticity 
theory is given. The stiffness transformation between one crystallographic system and global 
coordinate system is briefly presented. The development and the advantages of Stroh’s formalism 
compared with Lekhnitskii’s formalism are addressed. Two eigenvalue problems are also 
highlighted. We dedicate Chapter 4 to present why notch mechanics is used for solving the crack 
initiation problem for an interface corner, instead of strength theories, classical fracture mechanics 
and interface fracture mechanics. Furthermore, two important parameters,   and K  are discussed, 
describing the singular stress field around a notch tip. The concept of H-integral is introduced and 
the method for obtaining the stress intensity factor has been provided. Chapter 5 is a summary of 
three appended papers. Paper I and Paper II address the different notch angle problems. 54.74°
notch is the focus of Paper I, the main concern of Paper II is then the free edge (180º opening 
angle) and a 90°notch. Parameters influencing the stress intensity factors have been extensively 
studied in both papers. Dimensionless stress intensity factors in different deformation modes are 
analyzed. Three different approaches to obtain the stress intensity factors are compared. Analysis 
of the competition of crack initiation between a free edge interface and a 90°notch interface has 
been explored. Related mechanical aspects, such as anisotropy of the silicon material, mesh 
refinement, load misalignment, plastic deformations in the ductile material, the extent of K -
dominated field, varying failure criteria have been discussed. The appendix is a supplement to 
Paper II. It is shown that the material dependence of the dimensionless stress intensity factor can 
be normalized. Paper III addresses three puzzling issues emerging often in the notch mechanics: 
mathematical interpretation of the eigen-equation, definitions of stress intensity factors and the 
effect of the contour selection. Chapter 6 presents concluding remarks and recommendations for 
future work.  
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CHAPTER 2  
 
 

Microsystems and MEMS 
 
 

 
 
 
 

This Chapter is a summary of Microsystems and MEMS. More detailed information on this 
topic can be found in textbooks (e.g., Senturia, 2003; Maluf and Williams, 2004; Madou, 1997; 
Mohamed, 2002; Trimmer, 1997) and literature (e.g., Enikov, 2006; Mounier and Eloy, 2007; 
Mehregany, 1993; Liu, 2001; Yole Development, 2006; Starman, 2006). 
 

2.1 What are Microsystems and MEMS? 

Microsystems or Microsystems technology (MST) used in Europe, Micro-electro-mechanical 
Systems (MEMS acronym) used in the United States and elsewhere is an equivalent term 
describing the technology, for example, see Fig. 2. MEMS is simultaneously a toolbox/portfolio of 
techniques and processes to design and create miniature systems, a physical product often 
specialized and unique to a final application, and a methodology of making sensors, actuators with 
computation and communication to locally control physical parameters at the microscale, yet 
causing effects at much larger scales. Enikov (2006) also stated that MEMS was coined to describe 
a sub-millimeter integrated electro-mechanical system that contains both electrical and mechanical 
components with sizes in the range of 1 μm  to 1 mm and is fabricated in a massively parallel 
manner through photolithography. With the advance of exposure systems, the lowest size limit is 
constantly being broken until 30-100nm range nowadays. Fig. 3 illustrates the size definition of 
MEMS in comparison with other commonly known structures and technologies. Compared with 
macroscopic products, the success of MEMS is not simply reducing the size scale, but 
implementing its functions at low cost, low power, and with high performance, and great 
integration. It is making possible the realization of complete systems-on-a-chip. 

Although the term MEMS was proposed until the early 1980s, MEMS elements were present 
even in the early days of the IC (Integrated Circuit) industry. The first devices composing of both 
electronic elements and mechanical component were a resonant gate (RGT) field effect transistor 
invented by Nathanson and Wickstrom (1965) of Westinghouse Research Laboratories and a 
pressure sensor based on the piezoresitive effect of Si in 1960s but demonstrated by Kurtz and 
Goodman (1974) later. 
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Fig. 2 An example for MEMS applications  

(Starman, 2006; Liu, 2001; coutesy of Dr. Thomas Perkin-Elmer) 

 

 
Fig. 3 The scale of Micro devices (Liu, 2001) 
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2.2 Silicon and its crystallographic structure 

Due to its economical manufacturing processes and its significant electrical and mechanical 
advantages, silicon, which is a Group IV element, is the most popular substrate material for the 
electronic integrated circuit industry and micro-electro-mechanical systems. Visualization of 
crystallographic planes is a key to understand the dependence of material properties on crystal 
orientation and the effects of plane-selective etch solutions, see Fig. 4. Silicon has a diamond-
cubic crystal structure. The illustration on the left in Fig. 4 shows an interior atom bound to one 
corner atom and three face-center atoms. For clarity, atoms at the corner of the cubic unit cell are 
shaded, those in the center of the faces are white, and those interior atoms that are displaced by ¼ 
of the body diagonal from either a face or corner atom are shaded back. Since every atom is 
identical, they have the exact same bonding structure and local environment. The principal axes 
are defined as the three major coordinate axes of the cube. By using Miller indices (Ashcroft and 
Merimin, 1976), specific planes and directions within the crystal are designated with respect to the 
principal axes. Miller indices (Fig. 5) are a special notation for cubic crystals in materials science. 
That is, three integers are encompassed with various punctuation marks. Brackets specify the 
directions, for instance [100] which is a vector in the +x direction. Carets indicate groups of 
directions with equivalent properties, e.g., <100>, which covers the [100] x  , [100] x  , 

[010] y  , [010] y  , [001] z  , [001] z   directions. Parentheses specify a plane that is 
perpendicular to a direction with the same numbers, for example, (110) is a plane perpendicular to 
the [110] vector. All equivalent crystallographic planes are specified by braces; e.g., Ashcroft and 
Merimin (1976) represents the four equivalent crystallographic planes (111) (111) , 

(111) (111) , (111) (111) , and (111) (111) . For a simple cubic crystal, the +x, -x, +y, -y, 
+z, and –z directions are all equivalent.  

 
Fig. 4 Crystal structure in single crystal silicon (Senturia, 2003). 

 . 
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Fig. 5 Illustration of crystallographic planes and their Miller indices for a simple cubic crystal.  

(Senturia, 2003) 
 

The fact that silicon can be anisotropically etched by certain etchants is partly attributed to the 
detailed bond structure of the atoms that are revealed in different surface planes. Note that a (111) 
oriented surface has the highest density of atoms per unit area. Vector algebra illustrates that the 
angles between {100} and {111} plane are 54.7° or 125.3°, and the angles between {100} and 
{110} planes are 45° or 90°. Similarly, {111} and {110} planes can intersect with each other at 
35.3°, 90°, or 144.7°.  

Wafers are also characterized by their doping level, p-type or n-type. Doping refers to the 
process by which impurities are intentionally added to modify the electrical conductivity and 
conductivity type. Note that introduction of Group III atoms (e.g., boron) produces p-type material, 
while introduction of Group V atoms (e.g. phosphorus and arsenic) produce n-type material.  

Furthermore, crystalline silicon is a hard and brittle material deforming elastically until it 
reaches its yield strength, at which point it breaks. Its tensile yield strength is 7GPa. Its Young’s 
modulus is dependent on crystal orientation, being 130.2 GPa in <111> directions and 168.9 GPa 
in <110> directions which near that of steel (Mason, 1958; Wortman and Evans, 1965).  

The surface of silicon oxidizes immediately upon exposure to the oxygen in air (referred to as 
native oxide). The oxide thickness self-limits at a few nanometers at room temperature. As silicon 
dioxide is very inert, it acts as a protective layer that prevents chemical reactions with the 
underlying silicon. 
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2.3 MEMS micromachining technology (Microfabrication) 

Micromachining is a key fabrication technology for solid state sensors and actuators, as well as 
microelectromechanical systems (MEMS). The reasons for employing micromachining are that 
this technology can minimize energy and materials use in manufacturing, improve reproducibility 
(batch fabrication), integrate with electronics, improve accuracy and reliability, and display cost 
and performance advantages. The birth of the first micromachined components dates back many 
decades, but many MEMS fabrication borrowed from the Integrated Circuit (IC) industry, such as 
lithographic tools, in addition to a few specialized processes developed specifically for silicon 
micromachining, e.g., wafer bonding, anisotropic chemical wet etching, deep reactive ion etching, 
sacrificial etching, and critical-point drying. Note that the distinct differences of micromachining 
from conventional machining are due to its batch process and its miniature dimension on the order 
of micrometers. Systematic descriptions for MEMS micromachining technology are addressed in 
other references (Senturia, 2003; Maluf and Williams, 2004).  

Micromachining can be classified as bulk and surface micromachining, see Fig. 6. Both are 
based on silicon IC technology. Surface micromachining refers to a fabrication process that 
removes sacrificial layers from beneath thin-film structures, leaving free-standing mechanical 
structures. This process generates mechanical structures on the surface of the substrate. By 
comparison, bulk micromachining was developed between 1970 and 1980 for fabrication of three 
dimensional structures. As opposed to surface structure formation, it refers to a process of forming 
structures in the bulk of the substrate. Bulk micromachining of silicon uses wet and dry etching 
techniques in conjunction with etch masks and etch stops to sculpt micromechanical devices from 
the silicon substrate.  

In terms of the fabrication processes, silicon micromachining can be also classified as material 
deposition, pattering, and etching techniques. Among those, lithography plays a significant role in 
the delineation of precise patterns. Fig. 7 illustrates the basic process flow in micromachining: 
layers are deposited; photoresist is lithographically patterned and then used as a mask to etch the 
underlying materials. The process is repeated until completion of the microstructure. 

Although silicon remains the popular material for micro-electro-mechanical systems, a vast 
range of materials has been used for microsystems such as glass, ceramics, polymers and group III 
and V elements, as well as a variety of metals including titanium and tungsten. 
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Fig. 6 Bulk micromachining and surface micromachining (Liu, 2001) 

 

 

Fig. 7 Illustration of the basic process flow in micromachining (Maluf and Williams, 2004).   

2.3.1 Deposition 

Epitaxy, oxidation, sputtering, evaporation, chemical vapor deposition, and spin-on method are 
common techniques used to deposit uniform layers of semiconductors, metals, insulators, and 
polymers (Maluf and Williams, 2004). Specially, only wafer bonding is addressed here. Wafer 
bonding is a method for firmly joining two wafers to create a stacked wafer layer. Wafer bonding 
is used both in MEMS devices fabrication and in device packaging. Three main types of wafer 
bonding processes, direct wafer bonding, anodic bonding, and bonding with an intermediate layer, 
are presented below. 
 
Direct wafer bonding 
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Direct wafer bonding, also known as silicon fusion bonding, is a process capable of securely 
joining two silicon substrates at high temperature, on the order of 1000°C. Silicon direct bonding 
can be performed between two bare single-crystal silicon surfaces or polished polysilicon. One or 
both surfaces may have thermal or other smooth silicon dioxide or silicon nitride on them. Starting 
with the cleaning and hydration of the surfaces, the bond surfaces are then carefully brought into 
contact and held together by Van Der Waals forces (Tong and Gosele, 1999). An anneal at 800°C 
to 1100°C for a few hours promotes and strengthens the bond with respect to the reaction 
 2Si-O-H H-O-Si Si-O-Si+H O  (1) 

 
Anodic bonding 

Anodic bonding (Fig. 8), also known as field-assisted bonding or Mallory® bonding, is a 
simple method of bonding a sodium-containing glass substrate (e.g., Corning Pyrex 7740® an 7070, 
Schott 8330 and 8329) to conductors such as silicon or metal. This bonding method is first 
introduced by Wallis and Pomerantz (1969) and has been commonly used in the manufacturing of 
a variety of sensors as it provides a rigid support to the silicon that mechanically isolates it from 
packaging stress. 

The dominant mechanism of formation of anodic bonds between glasses and metals is 
electrochemical, i.e., the mobility of sodium ions in the glass makes oxidization of the silicon 
surface into the glass network to form permanent Si-O bonds. 

The bonding is performed at an elevated temperature between 200°C -500°C either in vacuum, 
air, or in an inert gas environment. An electrical field, 500 to 1500V, is applied with the anode on 
the conductor and the cathode on the glass. The mobile positive ions (mostly Na+) in the glass 
causes to migrate away from the silicon glass interface toward the cathode, leaving behind the 
negatively charged oxygen ions in the glass close to the glass/conductor interface. The electrostatic 
attraction pulls the glass and conductor together with a pressure high enough to initiate a surface 
reaction and eventually form a chemical bond.  

The surfaces need to be sufficiently smooth and the thermal expansion coefficients of the two 
materials should be matched within 2ppm (parts per million) /°C, since a larger mismatch will lead 
to bond failure upon cooling of the stack (Enikov, 2006). Hence, one of the important successful 
characters in bonding silicon to glass is their similar thermal property, for instance, Corning 
Pyrex® 7740 has a coefficient of thermal expansion of 3.2 × 10-6/°C; silicon’s coefficient is 2.6 × 
10-6/°C at room temperature but rising to 3.8 × 10-6/°C at 300°C. Note that silicon dioxide on the 
silicon surface should be removed before bonding, as a thin 100nm layer is sufficient to disturb the 
current flow and the bond. Usually, several nanometers up to 20nm of natural silicon oxide will be 
grown on the silicon to form a good bond to glass.  

 

Fig. 8 Illustration of anodic bonding between glass and silicon (Maluf and Williams, 2004).  
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Bonding with an intermediate layer 

As we know, adhesives or solders are often used to bond and laminate bulk structural elements 
together. In particular, detailed techniques about thin-film anodic bonding are presented in Ref. 
(e.g., Shang et al., 2008; Visser, 2002). Note that thin-film anodic bonding, was invented by 
Brooks and Donovan (1972) as a promising sealing technique for highly structured wafers 
combining the advantages of direct wafer bonding and anodic bonding. The relatively low process 
temerature, typically ranging from 250 to 450 ºC, and the relaxed requirements for surface 
roughness, are achieved by introducing a thin-sodium borosilicate glass film. The advantages of 
direct wafer bonding of two silicon wafers, the perfect match of thermal expansion coefficients 
and modulus of elasticity, are approached by choosing a thin glass film.  

An alternative “adhesive” method is thermocompression bonding. This method has been 
developed to bond 3 inch borosilicate sputter coated silicon wafers to silicon wafers coated either 
with aluminium, silicon dioxide, polysilicon or silicon nitride. The bondings were performed with 
applying moderate pressure to the two wafers at a temperature between 300 and 400 ºC. The bond 
strengths of the different samples bonded with these methods are all in the region 5-25 MPa (Nese 
and Hanneborg, 1993).  
 

2.3.2 Pattern 

MEMS devices and integrated circuits are formed by defining patterns in the various layers 
created by wafer-level process steps. The desired pattern is photographically transferred from an 
optical plate to a photosensitive film coating the wafer. Most MEMS devices and systems are 
made by using lithography-based microfabrication in combination with micromachining 
techniques.  

Lithography (Fig. 9) is the technique of transferring the pattern on the mask to a layer of 
radiation sensitive material (photoresist) which is subsequently used as a protective mask against 
etching. The key feature of LIGA is its ability to produce high-aspect-ratio structures. The 
radiation used may be optical, X-ray, electron beam (e-beam), or ion beam.  

Three sequential steps for lithography are:  

 Fabrication of masks (or pattern generation) 
 Optical exposure to print an image of the mask onto the photoresist. 
 Immersion in an aqueous developer solution to dissolve the exposed photoresist and 

render visible the latent image. 

 

Fig. 9 Illustration of contact or proximity photolithography (Senturia, 2003).  
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2.3.3 Etching 

Etching is used for delineating patterns, removing surface damage, cleaning the surface to 
remove contamination, and fabricating three-dimensional structures. Both wet chemical etching 
and dry etching are utilized to selectively remove material. The commonly used etching methods 
are isotropic wet (chemical) etching, anisotropic wet etching, vapor etching, plasma etching or 
plasma-assisted etching, deep reactive ion etching (DRIE). Note that deep etching of silicon lies at 
the core of bulk micromachining. Bulk micromachining of silicon by anisotropic etching has been 
extensively reviewed (Petersen, 1982). 

The selectivity of the etchant for the desired material is important, e.g., HF etches silicon 
dioxide, but etches silicon nitride slowly. When etching a single crystal, certain etchants exhibit 
orientation-dependent etch rates. That is, atoms in {111} planes are “more tightly bound” to the 
rest of the crystal. It has observed experimentally is that the anisotropic etchants of silicon etch the 
(100) and (110) crystal planes significantly faster than the (111) crystal planes, e.g., the {110} 
planes are etched in KOH about twice as rapidly as {100} planes, while {111} planes are etched at 
a rate about 100 times slower than for {100} planes (Seidel et al., 1990). 

Fig. 10 demonstrates the basic concepts of bulk micromachining by anisotropic etching of a 
(100) silicon substrate, e.g., a (100) silicon substrate etching proceeds along the (100) planes while 
it is practically stopped along the (111) planes. Since the (111) planes make a 54.7° angle with the 
(100) planes, the slanted walls are induced. Due to the slanted (111) planes, the size of the etch 
mask opening determines the final etch result (e.g., a hole or a cavity). If the etch mask openings 
are rectangular (or square) and the sides are aligned with the [110] direction (i.e., the direction of 
the intersection line between (100) and (111) planes), no undercutting of the etch mask feature 
takes place, assuming the etch rate of the (111) planes is negligible. Furthermore, the illustration of 
Fig. 10 is explained as follows: (a) the bottom plan view of an anisotropic etched wafer showing 
the fabrication of cavities, diaphragms and holes; (b) the top plan view of an anisotropically etched 
wafer showing the fabrication of a cantilever beam using the etch stop layers; (c) the cross section, 
A-A', showing the hole, diaphragm and cavity of (a); (d) the cross section, B-B', showing the 
cantilever beam of (b). 
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Fig. 10 A schematic drawing of the basic concepts of bulk micromachining by anisotropic etching of a (100) 
silicon substrate (Mehregany, 1993; Bhat, 2007) 

 
 

2.4 Markets for Microsystems and MEMS 

Since the demonstration of the first micromachined accelerometer in 1979 at Stanford 
University (Roylance and Angell, 1979), MEMS devices have been widely used in the industry 
over the past several decades. Silicon pressure sensor, accelerometers, gyroscopes, microphones, 
inject print heads, high-resolution digital displays and micro-fuel cells have been leading consumer 
applications in the present markets. New applications include tire pressure sensing, RF (Radio 
Frequency) MEMS, fiber optical components, MOEMS (Micro-opto-electromechanical systems), 
energy harvesting systems, MEMS based oscillators and fluid management and process in devices 
for chemical microanalysis, medical diagnostics, and drug delivery. 

As an emerging technology with significant future potential, MEMS is subjected to a rising 
level of excitement and publicity. Fig. 11 shows the market for the different MEMS devices. Fig. 
12 shows the MEMS regional production sites revenues breakdown in 2005. At Yole, it predicts 
that the MEMS market will be 9.7B$ in 2010 and 18 B$ in 2015 (Mounier and Eloy, 2007). 
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Fig. 11 Global MEMS market 2005-2010 for first-level packaged devices (Yole Development, 2006) 

 

 

Fig. 12 MEMS regional production sites revenues breakdown in 2005 (Mounier and Eloy, 2007) 

 
In a word, Micro-electro-mechanical structures and systems are miniature devices that enable 

the operation of complex systems. They exist today in many environments, especially automotive, 
IT, consumer, aerospace and medical. Their potential for a wide range of future applications is real 
and the MEMS market will continuously grow. 
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2.5 Journals, conferences and websites in MEMS 

Table. 1 
List of Journals/Magazines, Conferences and online resources in MEMS 
List Information resources 

Journal of Micromechanical Systems (JMEMS) 
Journal of Micromechanics and Microengineering (JMM) 
Sensors and Actuators (A: Physical, B: Chemical & C: Materials) 
Sensors Magazine 
Micronews (Yole Development) 
Micromachine Devices 
MST News 
Micro/Nano Newsletter   
Small Times Magazine 
IEEE Electron Device Letters 
Journal of the Electrochemical Society 

Journal and Magazines 

Journal of the Vacuum Society 
  

International Conference on Solid-State Sensors, Actuators and 
Microsystems (Transducers), held on odd years 
Solid-State Sensor and Actuator Workshop (Hilton-Head), held on 
even years 
MicroElectroMechanical Systems Workshop (MEMS), IEEE 
International Society for Optical Engineering (SPIE) 
Micro Total Analysis Systems (μTAS) 
European Microelectronics and Packaging Conference 

Conferences 

Micromachining and Micropackaging of Transducers 
  

MEMSnet 
www.memsnet.org 
Yole Development 
http://www.yole.fr/ 
MEMS Industry Group™ 
www.memsindustrygroup.org 
MEMS Exchange 
www.mems-exchange.org 
Silicon-Based MEMS site at Sandia National Laboratories 
http://mems.sandia.gov/ 
IEEE Xplore 
http://ieeexplore.ieee.org/Xplore/dynhome.jsp 
United States Patent and Trademark office 
http://www.uspto.gov/ 

Online Resources 

DARPA 
www.darpa.mil 

http://www.memsnet.org/�
http://www.yole.fr/�
http://www.memsindustrygroup.org/�
http://www.mems-exchange.org/�
http://mems.sandia.gov/�
http://ieeexplore.ieee.org/Xplore/dynhome.jsp�
http://www.uspto.gov/�
http://www.darpa.mil/�
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Microfabrica 
http://www.microfabrica.com/ 
trimmer.net TMsite 
http://www.trimmer.net/ 
Center for Integrated Systems (Stanford University) 
http://www-cis.stanford.edu/ 
IDA 
Mems.ida.org 
MEMSSCAP 
http://www.memscap.com/ 
Small Times 
http://www.smalltimes.com/ 
The MOSIS Services 
http://www.mosis.com// 
NEXUS 
www.nexus-mems.com 
AIST-MITI 
www.aist.go.jp 
NIST 
www.atp.nist.gov 
Berkeley Sensor & Actuator Center 
http://www-bsac.eecs.berkeley.edu/ 
ATIP 
www.atip.org 
VDI/VDE-IT 
www.mstonline.de 
Danny Banks’ MEMS book 
http://www.dbanks.demon.co.uk/ueng/index.html 

 
 

http://www.microfabrica.com/�
http://www.trimmer.net/�
http://www-cis.stanford.edu/�
http://www.memscap.com/�
http://www.smalltimes.com/�
http://www.mosis.com//�
http://www.nexus-mems.com/�
http://www.aist.go.jp/�
http://www.atp.nist.gov/�
http://www-bsac.eecs.berkeley.edu/�
http://www.atip.org/�
http://www.mstonline.de/�
http://www.dbanks.demon.co.uk/ueng/index.html�
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CHAPTER 3  
 
 

Anisotropic Elasticity 
 
 

 
 
 
 

3.1 Linear anisotropic elastic materials 

For small displacements, it is a consequence of Hooke’s law that the stresses are proportional 
to the strains. In a fixed rectangular coordinate system  1,  2,  3ix i  , let ,  i iju  , and ij  be the 

displacement, stress, and strain, respectively. Strain is acquired by differentiating the displacement, 

iu , with respect to position and the strain-displacement relations is  

  , ,

1

2ij i j j iu u    (2) 

in which a comma stands for partial differentiation. 
The constitutive equations that relate the stress and strain for an anisotropic solid can be 

expressed in tensor form as: 
    or   ij ijkl kl ij ijkl klC S      (3) 

where ijklC  and ijklS  are, respectively, the elastic stiffnesses and compliances. They possess the full 

symmetry and satisfy the requirement that the strain energy is positive. The elastic stiffness tensor, 

ijklC , is a fourth-order tensor that in its most general form contains 36 elastic constants. The 

stiffness constants satisfy the following symmetry conditions: 
 ijkl jikl klij ijlkC C C C    (4) 

In this case, a linear anisotropic elastic material can have as many as 21 independent elastic 
constants. Additional material symmetries can further reduce the number of independent constants 
to a minimum of two, for a material that has an infinite number of symmetry planes. These 
materials are designated as isotropic materials, and the two independent elastic constants are often 
presented as the Young’s modulus and the Poisson ratio. On the other hand, cubic materials have 
nine planes of symmetry. Three planes of symmetry have normals on the three coordinate axes and 
six planes of symmetry are planes at an angle 45 to the coordinate axes. The number of 
independent elastic constants is three for cubic materials. 

In the absence of body forces, the state of equilibrium can be expressed as: 
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 , 0ij j   (5) 

in which the stress, ij , is a second-order tensor. Insertion of (2) into (3)1, and then into (5) yields 

 ,ij ijkl k lC u   (6) 

 , 0ijkl k ljC u 
 (7) 

According to the contracted notation (e.g., Christensen, 1979; Lekhnitskii, 1950; Voigt, 1910; 
Jones, 1975; Cowin et al., 1992), the ordinary elastic constants C  are determined from the 

stiffness by replacing 11 by 1, 22 by 2, 33 by 3, 23 by 4, 13 by 5, 12 by 6. As a result, the stress-
strain law (3) can be stated as  
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 (8) 

i.e.,  
 ,  C C C        (9) 

Note that engineering strains are used throughout this thesis. 
For isotropic material, the stiffness can be presented as  

 

+2                         0         0       0

            +2                0         0        0

                        +2       0        0        0

                                       
C

   
  

 



        0        0

                                                         0

                                                            




 
 
 
 
 
 
 
 
 

 (10) 

In the above,   and   are called Lamé constants (   is also donated as the shear modulus), 

expressed by 
  1 1 2

E
 


 

 and 
 2 1

E





 with E  being Young’s modulus and   being 

Poisson’s ratio.  
Consider anisotropic elastostatics, two-dimensional deformations of anisotropic elastic bodies 

are addressed in this thesis. Main deformation modes are hence briefly presented in the following. 
For two-dimensional deformations for which the displacement iu   1,  2,  3i   depends only on 1x  

and 2x , the equations of equilibrium Eq. (7) is written explicitly as  

  1 1 ,11 2 2 ,22 1 2 2 1 ,12 0i k k i k k i k i k kC u C u C C u     (11) 

which provides three differential equations for the three displacement components 1u , 2u  and 3u . 

In general, the in-plane and anti-plane deformation may be coupled for anisotropic solids, e.g., in-
plane loading gives rise to anti-plane displacements and vice versa. In certain cases, however, the 
in-plane and anti-plane deformations are decoupled. This situation occurs when 

14 15 24 25 34 35 46 56 0C C C C C C C C         as described by Ting (1996). If the anti-plane 

displacement 3u  can be uncoupled from the in-plane displacements 1u  and 2u , we may consider 
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anti-plane deformations and in-plane deformations separately. The deformations due to in-plane 
displacement are plane strain deformations. For the plane strain deformations 
    1 1 1 2 2 2 1 2 3, ,  , ,  0u u x x u u x x u    (12) 

The third equation is satisfied if the material meets  
 14 15 24 25 46 56 0C C C C C C       (13) 

For the anti-plane deformations 
  1 2 3 1 20,  ,u u u u x x    (14) 

Note that imposing the conditions (13) can induce the first two equations in (14) to vanish 
identically. Hence, an anisotropic elastic material that can sustain a plane strain deformation can 
also maintain an anti-plane deformation.  

On the other hand, when in-plane and anti-plane deformation are coupled for a very general 
anisotropic elastic body, all three displacement components have to be considered simultaneously 
even though they depend only on 1x  and 2x . Such a deformation is called a generalized plane 

strain deformation, i.e., 3 13 230,  0,  0u      but 33 0  . 

 
 

3.2 Stiffness transformation between a crystallographic coordinate 
system and a global coordinate system 

In order to derive some of the required relations between the elastic constants in one 
crystallographic system and the elastic constants in another system, rotated with respect to the first, 
a brief presentation of transformation theory is given in this section. This can be used to determine 
the elastic constants in a system of coordinates, different from the crystallographic axis system. 
The detailed description can be found in (e.g., Chadwick and Smith, 1977). 

The importance of the constitutive equation in tensor equations (3) lies in the fact that it 
provides a ready method for transforming the elastic constants from one system of axes to another 
system by means of the tensor transformation equations 

 ji k l
ijkl mnop

m n o p

xx x x
C C

x x x x

     
   

 (15) 

A simple form with the reduced index symbols is shown in Eq. (16) for calculating the result of 
the indicated operation above.  
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 (16) 

This relation is a general solution to solve the case ij jiC C , as emerging for magnetostrictive, 

electrostrictive, or photoelastic tensors. As far as an elastic tensor, ij jiC C , is concerned, the 

direction cosines are related to the partial derivatives appearing in (16) as in Eq. (17). 
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If the elastic stiffness matrix in the crystallographic axis system is C , the transformed stiffness 
matrix in the other system of coordinates will be TE = DCD . That is, by introducing the direction 
cosines from Eq. (17), the six possible row multiplying factors are  
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           +    +     

            +    +     

           +    +       

m

l l m m n n m n n m l n n l l m m l

l l m m n n m n n m l n n l l m m l

l l m m n n m n n m l n n l l m m l

 
 
 
 
 
 
 

 
  

 (18) 

The corresponding column multipliers are  

 

2 2 2
1 2 3 2 3 1 3 1 2

2 2 2
1 2 3 2 3 1 3
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l l l l l l l l l
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1 1 2 2 3 3 2 3 2 3 1 3 1 3 1 2 1 2

1 1

      

                                                                               

2            2           2          +     +      

2     

m m
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n l



2 2 3 3 2 3 2 3 1 3 1 3 1 2 1 2

1 1 2 2 3 3 2 3 2 3 1 2 1 2 1 2 1 2

         2             2             +        +       

2             2            2            +       +     

n l l n l n n l l n n l l n n l

l m l m l m l m m l l m m l l m m l

 
 
 
 
 
 
 

 
  

 (19) 

 
 
 

3.3 The Stroh formalism 

Basic formulations for representing displacement and stress fields in an anisotropic body under 
plane deformation have been developed in two entirely different ways by Lekhnitskii (1950) and 
Eshelby et al. (1953). Lekhnitskii (1950) introduced the complex potentials for stress to treat 
generalized plane deformation problems. Using the compatibility equations, he derived a set of 
coupled elliptic partial differential equations for the complex potentials, to obtain the general 
representation for solutions. On the other hand, Eshelby et al. (1953) presented a more elegant 
formalism, based on the Navier-Cauchy equations. Following the work of Eshelby, Stroh (1958; 
and 1962) subsequently developed a powerful formalism for treating a certain class of two-
dimensional problems involving dislocations, line forces and steady state waves in anisotropic 
elastic solids (including the surface waves, Stonely waves, and waves in layered composites). The 
formalism is well-known in the physics and materials science community.  

The advantages of Stroh’s formalism are also widely recognized. Unlike the two-dimensional 
anisotropic solutions developed by Green and Zerna (1954) which are restricted to plane strain 
deformations and hence to monoclinic materials which posses a symmetry plane at 3 0x  , the 

Stroh formalism can apply to general anisotropic elastic materials for which all three displacement 
components are necessarily coupled. Besides, unlike the Lekhnitskii’s formalism (1950; 1957), 
which breaks down for orthotropic materials (Ting and Chou, 1982) and requires a special 
treatment (Wang and Choi, 1982), the Stroh formalism has no such restrictions. Note that the 
Lekhnitskii’s formalism begins with the stresses and assumes that stresses depend only 1x  and 2x . 

It is thus a compliance-based formalism. By contrast, the Stroh formalism starts with the 
displacements and assumes that displacments depend only 1x  and 2x . Hence, it is a stiffness-based 

formalism. According to the Lekhnitskii formalism, the stress is expressed in terms of a pair of 
stress functions such that the equilibrium equations are satisfied identically, and through the 
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compatibility conditions a system of high order differential equations for the stress functions is 
derived to determine the solution. In the Stroh formalism the general solution is expressed with 
respect to the eigenvectors and analytic functions of complex variables, and the matrix identities 
derived from the eigen relations are useful in simplifying or interpreting the results.  

Suo (1990) showed that these two formulations derived in very different ways are equivalent to 
each other. This was further taken for granted that Barnett and Kirchner (1997) gave a formal 
proof of the equivalence of the sextic equations in the two formalisms (Tarn, 2002). An excellent 
review on the Stroh formalism can be found in the paper of Chadwick and Smith (1977), see also 
Ting (1996; 2000). It should be noted that the Stroh formalism does not allow anti-plane 
deformations associated with extension, torsion and bending (Tarn, 2002). 

 

Fig. 13 Schematic plot of a closed integration contour around a general corner in dissimilar materials where 

1 2 3 4 2 4, ,C C C C C C C C        

 
The Stroh’s formalism for anisotropic elasticity is outlined below. The first eigenvalue 

problem is set up and the method for solving six complex eigenvalues p  is also presented here. 

In two-dimensional anisotropic elastostatics, the general displacements u  in the material 

 ,M M A B  around the interface corner can be expressed by  

  
3

3
1

( ) ( )f z f z     





 u a a  (20) 

As Stroh’s formalism is based on the assumption that two-dimensional deformations 

  1,  2,  3iu i   depend only 1x  and 2x , a general solution for iu  depends on one composite 

variable that is linear combination of 1x  and 2x . Without loss of generality, we choose the 

coefficient of 1x  in the linear combination to be unity and 1 2z x p x   . Furthermore, f  are 

arbitrary functions of the arguments z , where z  is the complex variable. f  depend on the 

geometry, radial distance from the interface corner and material elastic parameters. The six 
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complex eigenvalues p  satisfy 3p p    and are the solutions of a quadratic eigenvalue problem 

(22).  
Differentiating equation (20) twice with respect to 1x  and 2x , we get  

 
, 1 2

, 1 2 1 2

( ) ( )

( )( ) ( )
k l l l k

k lj l l j j k

u p a f z

u p p a f z

 

   

 

  
 (21) 

The prime denotes differentiation with argument z  and li  is the Kronecker delta. Insertion of (21) 

into the stress-strain law ,ij ijkl k lC u   and then into the static equilibrium equations , 0ij j  , 

results in the eigenvalue equations written in matrix form as:  

  2( )p p   TQ R R T a 0  (22) 

in which 

 1 1 1 2 2 2,  ,  ik i k ik i k ik i kQ C R C T C    (23) 
Equation (22) is the characteristic equation of anisotropic materials and p is the material 
eigenvalues of the anisotropic material. For a non-trivial solution of a , the characteristic equation 

must be zero, i.e. 2det ( ) 0p p   TQ R R T , which leads to six roots for the eigenvalue p. In 

matrix form and with Voigt’s notation, we have 

 
11 16 15 66 26 46 16 12 14

16 66 56 26 22 24 66 26 46

15 56 55 46 24 44 56 25 45

,    and  

C C C C C C C C C

C C C C C C C C C

C C C C C C C C C

     
            
          

Q T R  (24) 

2 2 2
11 16 66 16 12 66 26 15 14 56 46

2 2
66 26 22 56 46 25 24

2
55 45 44

2 ( ) ( )

2 ( )

2

C pC p C C p C C p C C p C C p C

C pC p C C p C C p C

symmetric C pC p C

        
       
   

a 0  (25) 

In the special case of isotropic elasticity  

 

2 0 0 0 0 0 0

0 0 ,  0 2 0 ,  0 0

0 0 0 0 0 0 0

   
   

 

     
             
          

Q T R  (26) 

where the Lamé constants are denoted by 
  1 1 2

E
 


 

and 
 2 1

E





 with E  being 

Young’s modulus and   being Poisson’s ratio.  
Furthermore, the stress function   in the material  ,M M A B  around the interface corner 

can be represented as  

 
3

3
1

( ) ( )f z f z     





    b b  (27) 

In most applications the arbitrary functions f  appearing in (20) and (27) are of the same 

functional form. We may then have  
    3( ) ,  ( ) ,  where 1,2,3f z f z q f z f z q            (28) 

q  are arbitrary complex constants. The second equation of (28) helps to obtain the real form 

solutions for u  and  . Equations (20) and (27) can thus be written as  

   *2Re f zu A q  (29) 
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   *2Re f z B q  (30) 

where Re stands for the real part, A and B are 3 × 3 complex matrices defined by  
 [ ,  ,  ],  [ , , ] 1 2 3 1 2 3A a a a B b   b   b  (31) 

and  *f z  is the diagonal matrix 

        * 1 2 3diag ,  ,  f z f z f z f z     (32) 

The stresses can be further expressed in accordance with the stress function   as  

    1 2
2 1

   or  ,  k k
k k k k

d
pb f z b f z

dr x x

          
 

t   (33) 

Inserting Eq. (21)1 into the constitutive equation ,ij ijkl k lC u   and then making use of Eq. (23), we 

get ij : 

 
   
   

1

2

i ik ik k

i ki ik k

Q pR a f z

R pT a f z





 

 
 (34) 

Comparing Eq. (33) with Eq. (34), the relation between a and b yields:  

    T 1
p p

p
    b R T a Q R a  (35) 

This equation distinguishes the Stroh formalism from others in that the vectors a  and b  for 

different   are related. Note that a and b are termed as the Stroh eigenvectors, satisfying 

3  a a  and 3  b b , related through the matrices Q, R and T described in Eq. (24). Without 

loss of generality, the imaginary part of p  is taken to be positive. Overbars of ,  ,  ,  p z  a b  

denote the complex conjugates.  
With this, the above quadratic eigenvalue problem can be recast as a conventional six-

dimensional linear eigenvalue problem 

 

1 2

3 1

    

,   

T p

p

     
    

    
 

    
 

N N a a

N N b b

a
Nη η η

b

 (36) 

In the above, 1 T
1

N = T R , 1
2

N = T  and 1 T
3

N = Q + RT R . Until now, the first eigenvalue 

problem is solved by using the characteristic equation (36) for the complex eigenvalue p . Note 

that 2N  and 3N  are symmetric and that 2N  is positive definite and 3N  is positive semi-definite. 

The 6 × 6 matrix N  is the fundamental elasticity matrix first introduced by Ingebrigtsen and 
Tonning (1969). It should be also noted that 3N  has the dimensions of stress, 2N  has the 

dimension of compliance and 1N  is dimensionless. Eshelby et al. (1953) stated that since p  

cannot be real if the strain energy is to be positive, we have three pairs of complex conjugates for 
p  as well as for η . If p  and  1, 2, ,6  η   are the eigenvalues and eigenvectors, we let 

 3

3

,  Im 0 
 1, 2,3

p p p  

 





  
 η η

 (37) 

where Im denotes the imaginary part. 
The Stroh eigenvectors are determined up to an arbitrary constant. They are normalized as  
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T T

ˆˆ
  and  ,  1, 2,3

ˆ ˆˆ ˆ2

 
 

   

 
a b

a = b =
2a b a b

 (38) 

in which ˆa  and ˆ
b  are the non-normalized eigenvectors, i.e. those that would be produced by a 

standard eigensolver. 
The physical meanings of  p, a, b have been explored by Ting (1996). Since the eigenvalues 

p  and the eigenvectors a  and b  depend only on the elastic stiffnesses ijklC , they can be 

regarded as material constants in despite of their complex values. For general anisotropic elastic 
materials, there are three polarization planes (the planes ,  ,  1 2 3a a a  ) for the displacement u  and 

three polarization planes (the planes , ,1 2 3b   b   b ) for the surface traction t . The displacement 

associated with 3a  is the anti-plane displacement and the stresses associated with 3b are the anti-

plane stresses. Additionally, the displacement associated with ,  1 2a a  is the in-plane displacement 

and the stresses associated with ,1 2b   b  are the in-plane stresses. Although no physical meanings 

for the complex eigenvalues p  have been found, it is shown that p are solely responsible for the 

locations of the image singularities for Green’s functions for half-spaces, bi-materials, and elliptic 
inclusions. 

 
 

3.4 Asymptotic analysis 

Asymptotic analysis of the singular stress field at the vertex of re-entrant corners involves two 
eigenvalue problems. One is material related as stated in Sec 3.3, the other is geometry related, as 
presented in this section. 

It is well known from Williams (1952) that the eigen-equation in a notched/cracked body for 
an isotropic material (i.e.    in Fig. 13) can be represented by Eq. (39) where plus sign and 
minus sign are associated with the opening mode (mode I) and sliding mode (mode II), 
respectively  
     sin 2 sin 2 0          (39) 

The stress singularity depends only on the notch angle   regardless of material. For a crack, 

    , Eq. (39) simplifies to I IIsin 2 sin 2 0    and the stress singularity is 1
2 ; for a 

free edge, 2    , the stress singularity disappears.  
Furthermore, the characteristic equation of the stress singularity for a general re-entrant corner 

bonding two dissimilar isotropic materials with two arbitrarily oriented traction free surfaces at 
   and     is expressed by Carpenter (1984a) 

 

   
   

   
   

   
   

   
   

cos 2 cos 2 sin 2 sin 2

   cos 2 cos 2    sin 2 sin 2

det 0

sin 2 sin 2 cos 2 cos 2

   sin 2 sin 2    cos 2 cos 2

   

       

   

       

  

   

                            

 

   

 (40) 

For a general anisotropic bi-material system, the formalisms to solve   are briefly and 
explicitly presented below. Meanwhile, the singular stress fields around the notch tip are also 
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shown. Recall the displacement and the stress functions near a sharp notch in an anisotropic solid 
expressed in Eqs. (20) and (27), note that  f z   is the arbitrary function of z  and often have the 

form of z . As suggested by Ting (1996; 1997), Labossiere and Dunn (1999), we choose  f z  

as  

    3

1 1
  and   f z z q f z z h 

           (41) 

where q  and h  are the unknown complex constants and will be determined by Eq. (46) once   

is obtained. Using the expression 1 2 ( ) (cos sin )z x p x r r p           , the displacements 

and tractions in a plane polar coordinate system originated at the notch tip are derived 

 
   

   

3

1

3
1

1

1M M M

M M M

r q h

r q h
r

 
     



 
     



   

    







   

    





u a a

t b b
 (42) 

where superscript M  indicates material A  or B . The second eigenvalue problem can be solved 
using the boundary conditions for the interface notch problem, see Fig. 13.  

The traction-free boundary conditions on the notch flanks ( ,        ) and the continuity 
conditions of the stresses and displacements along the interface ( 0  ) result in the following 
boundary condition equations  
            0, 0, 0 0 , 0 0  A B A B A B     t t t t u u  (43) 

Substituting Eq. (42) into Eq. (43), a group of 12 linear equations in the 12 unknown 
coefficients  ,  , ; 1, 2,3M Mq h M A B     is deduced. 

 

   

   

       

       

3 3

1 1

3 3

1 1

3 3 3 3

1 1 1 1

3 3

1 1

0

0

0 0 0 0 0

0 0 0 0

A A A A A A

B B B B B B

A A A A A A B B B B B B

A A A A A A B B B B B B

q h

q h

q h q h

q h q h

 
     

 

 
     

 

   
           

   

   
           

  

   

   

   

   

 

 

   

  

 

   

   

  

 

 

   

 

b b

b b

b b b b

a a a a
3 3

1 1

0


 

 (44) 

Using Eq. (44)1 and (44)2, we can express Ah  in terms of Aq  and Bq  in terms of Bh , 
respectively. A non-trivial solution exists only if the determinant of the coefficient matrix vanishes. 
This occurs when the eigenvalue,  , satisfies the following equation which is dependent on the 
stiffness matrix, ijklC : 

 
        
        

1 1 1 1

1 1 1 1

A A A A B B B B
A A

B B
A A A A B B B B

   

   

     
  

   
 

b B b B b B b B
B q

0
B ha B a B a B a B

 (45) 

which results in six simultaneous eigenvalue equations with six unknowns  ,  1, 2,3A Bq h      

      ,  det 0   K D 0 K  (46) 
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In the above equations, 1 2 3, , M M M M   a a a a , 1 2 3, , M M M M   b b b b , 

     1 1 2 2 3 3, ,A A A A A A A          B b b b
, 

     1 1 2 2 3 3, ,B B B B B B B            B b b b , 

T
,  A A B B   D B q B h ,  

T

1 2 3, ,M M M Mq q q   q , 
T

1 2 3, ,M M M Mh h h   h  ( , )M A B  

When the in-plane and anti-plane deformation are decoupled, the equation (44) can be 
rewritten in matrix notation as: 

 
IP IP IP

AP AP AP





κ q O

κ q O
 (47) 

where  TIP
1 2 1 2   q q h hq ,  TAP

3 3 q hq , the matrix IPO  is a 4 1 null matrix, and APO  is a 2 1  

null matrix. The superscript IP  denotes in-plane terms, and AP  denotes anti-plane terms.  
Equation (47) is the characteristic equation for the eigenvalues   of the anisotropic notched 

body. The values of   can be obtained by solving the roots of the determinant of IPκ  or APκ . 
Once the value of   has been computed from the characteristic equation (46) or (47), the 
eigenvectors  q, h  can only be solved up to an arbitrary constant multiplier. Then the stress 
intensity factor for a sharp notch, wedge corner or a crack, can be computed using the path 
independent H-integral approach (e.g., Labossiere and Dunn, 1999; Shang et al., 2008; 2009). If 
the real part of   is smaller than one, then the stress field near 0r   has generally the 1r  type 
singularity. Eigenvalues are thus called singular eigenvalues. The roots of the characteristic 
equation with the real parts smaller or equal to zero are ignored since the associated eigensolution 
requires infinite strain energy (Yin, 1999). In the particular case of a crack ( 0)   with an 
isotropic or anisotropic homogeneous material, the well-known result, 1

2   is obtained. In the 

case of an edge notch  , 2      with a homogeneous isotropic or anisotropic material, 

1   is yielded and the stress singularity disappears.  
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CHAPTER 4  
 
 

Notch Mechanics and Fracture Mechanics 
 
 

 
 
 
 

Why should we use notch mechanics to solve the crack intiation problem for an interface 
corner? Because traditional failure theories for brittle materials are inapplicable to notch problem. 
Strength theories are not appropriate as the elastic fields at the interface corner often exhibit 
singular behavior, similar to the stress field ahead of a crack. Both classical fracture mechanics 
approaches and interface fracture mechanics, are not applicable since no precrack exists in a 
notched body. 

Note that mK  is used herein to indicate the stress intensity factor in classical fracture 

mechanics, while n
mK  is the intensity of notch stress field with respect to eigenvalues 

m  1,2,m N   where N  is the number of eigenvalues available from the characteristic 

equation. n
mK  are functions of the thermomechanical loading, material properties and the geometry.  

The general configuration for a notch/wedge/crack geometry in dissimilar anisotropic materials 
is addressed here, see Fig. 13. Such a situation usually induces mixed-mode deformations and the 
stress fields are no longer symmetric and/or anti-symmetric. The stresses and displacements in the 
vicinity of the interface corner are often obtained using complex variable methods or the Airy’s 
stress function approach. Using either of these methods, the asymptotic fields near the interface 
corner can be expressed as  
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

 

 




 (48) 

where  1, 2,m m N    are the eigenvalues of the problem. Superscript M  indicates material A  

or B  which is elastic, homogeneous, isotropic or anisotropic. 0 ( )M
ij   denotes the constant stress 

field ( Re( ) 1m  ) independent of the radial distance from the notch corner and 0 ( )M
iu   is the 

associated displacement field near the interface corner. These constant terms which can be 
determined analytically, are finite for thermal loading and/or surface tractions on the notch flanks 
but vanish for remote mechanical loading. Besides, the remaining stress term is comprised of 
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several stress fields of the form 1mn
mK r  . When two or more stress fields of the form 1mn

mK r   exist 

near the notch corner, one pair of n
mK  and 1m   describes one stress field, and the total stresses 

are determined by superposing contributions from all the stress fields. There are an infinite number 
of values m  which satisfy the eigenvalue equations. Both the stress intensity factor and the stress 

singularity may be real positive, real negative or complex, but in most circumstances, they are real 
constants (e.g., Banks-Sills and Sherer, 2002; Qian and Akisanya, 1999a). Although not explicitly 
shown in Eq. (48), there are certain special combinations of elastic properties and notch angles that 
can also generate logarithmic singularities, as described in Sec 4.2.1. In this study, the power-
logarithmic singularity is not considered. Moreover, only positive m  are admissible in order to 

ensure finite displacements at the notch tip.  ,mM
ij mf    is a function describing the angular 

profile of the stress field in conjunction with material elastic properties and the opening angle. 
Note that  ,mM

ij mf    is non-dimensional but  ,mM
i mg    has the unit of 2 1(length) (force) . They 

are determined analytically while the eigenvalues  1, 2, ,m m N    for a given notch geometry 

are obtained by solving a characteristic equation. The closed-form expression for these functions 
will be briefly described below. More details can be found in references such as Stroh (1958); Ting 
(1996); Labossiere and Dunn (1999); and Shang et al. (2008; 2009). 

Consider a linear elastic body with a re-entrant corner subjected to remote in-plane mechanical 
loading, see Fig. 13. Without loss of generality, we focus on two singular terms, i.e. 1 20 1    , 

considering the higher order terms ( 1m  ) to be insignificant. The singular stress and 

displacement field around the notch tip can be reduced as follows: 

 
   

   

1 2

1 2
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1 1 2 2

1 2
1 1 2 2

( , ) , ,

( , ) , ,

M n M n M
ij ij ij

M n M n M
i i i

r K r f K r f

u r K r g K r g

 

 

     

    

  

 
 (49) 

r  and   are the polar coordinates with an origin at the notch tip. For the homogeneous isotropic 
case, 1

21 2   , corresponding to the definition by Williams (1952) and Hong and Stern (1978). 

 
 

4.1. Classical fracture mechanics 

It is well known that the stress fields near the tip of a crack in a linear elastic material exhibit a 
square-root singularity. The amplitudes of the singular stress fields are characterized by the stress 
intensity factors mK  (SIFs). In linear elastic fracture mechanics, the SIFs are usually used as the 

quantitative parameters describing the amplitude of singular stress fields for elastic cracked bodies.  
Analytical solutions of SIFs are limited to a few idealized cases. For practical problems 

involving finite geometries and complex loadings, numerical methods such as finite element 
methods or boundary element methods must be employed to extract the SIFs. Alternatively, SIFs 
can be calculated by the path-independent J-integral, proposed by Rice (1968). With this, the data 
far from the crack tip are used and higher accuracy can be achieved. Nevertheless, the J-integral 
approach is not applicable for mixed-mode problems since the integral value gives only the sum of 
SIFs. Instead, an energy method via the path-independent contour integrals can be utilized to 
obtain SIF corresponding to each fracture mode. By using this method, the interaction energy 
between the elastic state of interest and an auxiliary state is examined and the appropriate auxiliary 
states should be chosen. The concept of this method was discussed by Chen and Shield (1977). 
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Stern et al. (1976) and Yau et al. (1980) have applied this approach for isotropic homogeneous 
materials. Hong and Stern (1978) and Sih and Asaro (1988) have also used the method for 
interfacial crack problems with isotropic bi-materials. In the works of Stern et al. (1976) and Hong 
and Stern (1978), Betti’s reciprocal work theorem was used to obtain SIFs by integrating 
displacements and tractions in the problem of interest and those in the particular auxiliary fields. 
Yau et al. (1980) and Sih and Asaro (1988) gave line integrals for SIFs based on the interaction 
energy release rate. Sih and Asaro (1988) have employed the singular fields for isotropic bi-
material interfacial cracks as the auxiliary state in their analysis. Both types of integrals are limited 
to contours enclosing only one crack tip. Wu (1989) further derived path-independent integrals for 
a crack in a homogeneous anisotropic medium. The basic concept used in Wu (1989) is that the 
energy release rate associated with a crack tip is a quadratic in SIFs which characterize the square-
root singular stress field at the crack tip. In addition, the new integrals are utilized to determine the 
stress intensity factors due to a body force and a dislocation for a finite crack in an infinite 
anisotropic body. 

 
 

4.2. Notch mechanics 

The presence of V-notches in an elastic body may induce stress singularities at the tips within 
the context of small strain elasticity theory. Fracture is often initiated in the highly-stressed regions 
near the notch tips. It is thus important to determine the near-tip fields accurately to assess the 
reliability and integrity of notched body. With given notch angle and materials, and boundary 
conditions on the notch faces, the structure of the singular fields can be determined by asymptotic 
analysis to within multiplicative constants (Ting and Chou, 1981; Wu and Chang, 1993). The 
complete singular stress field is derived by Wu and Chang (1993) for an infinite wedge in the 
presence of body forces or dislocations. For bodies with finite dimensions, for which analytic 
solutions are generally not available, near-tip stresses can only be determined by numerical 
methods.  

Due to the singular nature of the stress field, i.e., the stress approaches infinity near the notch 
tip, it is usually difficult to accurately compute stresses near notch tips using regular boundary 
element or finite element methods. Several techniques have been proposed to overcome the 
difficulty. For example, eigenfunction expansion method (Gross and Mendelson, 1972), path-
independent integral in the case of a crack (Wu, 1989), a combination of eigenfunction expansion 
method and standard boundary element method treated for isotropic plates (Barone and Robinson, 
1972), and a combination of eigenfunction expansion method and boundary integral equation (Wu 
and Chen, 1996) extended to anisotropic notched bodies and traction problems. Complete fields 
near the tip of a V-notch in an anisotropic body are also derived in (Wu and Chen, 1996). 
 

4.2.1. Eigenvalue λ describing the order of the notch tip stress singularity 

Note that   may be real or complex, depending upon the relative elastic properties of the 
materials, the wedge angles as well as the edge loads. The eigen-equation may yield an infinite 
number of possible solutions for the eigenvalue  . Only positive solutions are admissible in order 
to ensure finite displacements, i.e., 0  . Since we are concerned with the singular stress field 
surrounding the notch tip, then in the limit as 0r  , the dominant stress field terms come from 

1  . 
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Certain situations yield stress singularities of the form ( ln )O r r  as 0r  . Power-
logarithmic singularities have been extensively reviewed in (Song, 2005). When the eigenvalues 
change from real to complex at some opening angles of a composite material wedge, multiple 
eigenvalues corresponding to the same independent eigenfunction may occur. The power series 
solution breaks down at these critical angles and exhibits very low numerical accuracy for a 
specific range of opening angles around the critical values. The analytical solution of such a 
special case includes terms with not only power functions but also logarithmic functions of the 
radial coordinate. The power-logarithmic stress singularities have been identified by Dempsey and 
Sinclair (1979; 1981) for multi-material wedges subjected to homogeneous boundary conditions 
on the surfaces forming the wedge vertex. Dempsey (1995) examined the eigenvalues in the 
asymptotic solutions for isotropic composite wedges under homogeneous boundary conditions. It 
has been pointed out that the power-logarithmic function is more singular than the power function 
at the vertex and particular cases in which the logarithmic singularities occur are identified. Also, 
Pageau et al. (1996) have investigated the power-logarithmic stress singularities. Joseph and 
Zhang (1998) have reviewed the studies on power-logarithmic stress singularities for multiple 
material wedge. Angular variations of the displacement and stress fields are presented in (Joseph 
and Zhang, 1998; Gadi et al., 2000) for wedges comprised of isotropic materials. Conditions for 
such behavior are described by Ting (1996) for anisotropic bimaterials. Bogy and Wang (1971) 
determined how the order of the singularity in the stress field at the corner depends on the material 
constants and corner angle for two materially dissimilar isotropic, homogeneous, elastic wedges. 
Furthermore, additional logarithmic singularities can be induced by inhomogeneous boundary 
conditions on the surfaces forming the wedge vertex and by body forces (Timoshenko and Goodier, 
1970; Chen, 1996). A related problem is a wedge under a concentrated couple studied by 
Sternberg and Koiter (1958). Dempsey (1981) obtained a solution including a power-logarithmic 
stress term for a single material wedge at its critical angle. The solution, however, can still be very 
large at an angle very close to the critical value. Ting (1985) has provided a continuous solution as 
the vertex angle passes to the critical angle. Sinclair (1998; 1999a; 1999b) has extended Ting’s 
(1985) technique to solve several commonly occurred cases in single material wedges. Gadi et al. 
(2000) have investigated the thermally induced stresses in a composite wedge and presented cases 
with triple eigenvalues, which results in the square of the logarithmic function of the radial 
coordinate. These analytical methods require the determination of the critical angles as the first 
step of an analysis. 
 

4.2.2. H-integral approach  

The H-integral approach, as a tool to derive stress intensity factors for notches and cracks, is 
based on a combination of finite element results, Betti's law, and asymptotic analysis with a 
complementary field. This approach gains its popularity by the fact of avoiding time-consuming 
mesh refinement near the singularity, easy performance of parametric analyses and excellent 
numerous accuracy. 

First of all, we will briefly introduce Betti’s reciprocal law (Sokolnikoff, 1956). If you have a 
linear elastic body in equilibrium subject to two different sets of forces with corresponding 
displacements, we will get the following equation called Betti’s law, see Fig. 14.  

 * *
n n

i i i iF u F u   (50) 
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Fig. 14 Two systems in Betti’s law 

 
If we apply the Betti’s law to the linear elastic planar notched body particularly with closed 

contour 1 2 3 4C C C C C     around a re-entrant corner excluding the stress singularity in a planar 

linear elastic body, as shown in Fig. 15, and two systems are replaced with two fields: actual field 
and complementary field (singular field), the Betti’s reciprocal law in the absence of any body 
force can be stated as  

  * *
1 2 3 40   

ijij i i jC
u u n ds where C C C C C        (51) 

and where ( , ) ( , )i j r  are the plane polar coordinates centered at the interface corner, jn  is the 

outward unit normal to the counterclockwise closed contour C , ds is an infinitesimal line segment 
of C . ij , iu  are the notch corner stress and displacement fields in terms of eigenvalue ( 1)m m    

and stress intensity factor n
mK . *

ij
 , *

iu  are complementary singular stresses and displacements 

satisfying the same boundary conditions as ( ij , iu ) but with respect to an associated eigenvalue 
*
m  and stress intensity factor *n

mK . Note that the employed complementary field has no physical 

significance here. 

 
Fig. 15. Illustration of the closed contour around a re-entrant corner  
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Szabo and Babuska (1988) and Wu and Chang (1993) showed that if m  is an eigenvalue for 

the given material properties and notch geometry, *
m m    is also the eigenvalue for the same 

problem. Hence, the near-tip stress and displacement fields corresponding to the eigenvalue *
m  

can be taken as the complementary fields. According to Eq. (49), they are described by 
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 (52) 

Since the integration in (51) vanishes along the traction free surfaces 1C  and 3C . i.e., 
* 0
ijij j jn n   , see Fig. 13, it reduces to  

    
2 4

* * * *

ij ijij i i j ij i i j

C C

u u n ds u u n ds         (53) 

On the left-hand side of Eq. (53), the contour integral is simplified to either one coefficient 
proportional to the stress intensity factor or a linear combination of 1

nK  and 2
nK  for an arbitrarily 

small radius   (Stern and Soni, 1976b) 

  
2

* *
1 1 2 2ij

n n
ij i i j

C

I u u n ds e K e K        (54) 

where 1e , 2e  are constants. The unstarred stresses and displacements along 2C  were taken from 

the asymptotic analysis, Eq. (49), while the starred stresses and displacements were employed 
from the complementary singular field, Eq. (52).  

Accordingly, only the outer contour 4C  is involved in the numerical integration for 

determining the desired stress intensity factors. The H-integral is defined as 

    
4

* * * *
ij i ij i j ij i ij i j

C

H u u n ds u u n ds   


      (55) 

and in polar coordinates, the above equation becomes 

  * * * *

rrr r r rr rH u u u u rd




  
    


     (56) 

In Eq. (55),   can be any contour within the planar linear elastic body commencing on the lower 
notch flank and terminating on the upper. The unstarred fields ( , )ij iu  are obtained from the finite 

element calculations while the starred fields * *( , )ij iu  are taken from the complementary singular 

field satisfying the same boundary conditions as those for ( , )ij iu . Sinclair (1985) also presents 

how the integral (54) yields the mode I intensity factor for a mixed-mode problem in an isotropic 
material. This is basically because the complementary fields in the mode I integral are symmetric 
so that when they are multiplied by any anti-symmetric fields, including the singular mode II field, 
then integrated, no contribution results, i. e., the only nontrivial contributions to IH  must come 

from the symmetric part of ij , iu . Analogously, IIH  may be shown to pick off only IIK  in 

mixed-mode problems.  
For a general corner (Fig. 13), we can define the respective stress intensity factors by 

 
   

1 21 21 10, 0 0, 0

, ,
lim ,  lim rn n

r r

r r
K K

r r
 

  

   
    

   (57) 

where  , r  are the normal and shear component in the   direction of the stress field, 

respectively. 1 2,     are the eigenvalues stemming from the corresponding eigen-equation (46).  
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The different stress intensity factors 1
nK  and 2

nK  corresponding to the individual eigenvalues 

1  and 2  can be evaluated simultaneously (Carpenter and Byers, 1987). Alternatively, it can be 

attained independently as described here. Since the eigenvectors M Mq , h  in Eq. (45) for each 
eigenvalue are determined only up to an arbitrary constant, we normalize the stress fields such that 

   1 21 1
1 2, 0 , , 0n n

rr K r r K r 
         . Similarly, for the complementary field: 

  1 1* *
1, 0 nr K r 

     ,   2 1* *
2, 0 n

r r K r 
     . Note that the complementary field must satisfy 

the equilibrium equations and traction-free conditions on the notch flanks so that the integral along 
the inner contour C  yields the desired stress intensity factor. Moreover, the complementary 

solution is chosen with eigenvalue *
m m    to eliminate the dependence of the integrand on the 

r -coordinate. With all these conditions, the magnitudes of  * 1, 2n
mK m   are determined so that 

the resulting inner contour integral identically produces nK , either  1 1 21,  0nK e e   or 

 2 1 20,  1nK e e  . The choice of  * 1, 2n
mK m   is also described by Banks-Sills and Sherer (2002) 

and Zhang and Mikkola (1992).  
As indicated in some other studies (e.g., Carpenter, 1984a; 1984b; Stern et al., 1976; 

Labossiere and Dunn, 1998; 1999), inaccuracy of the stress intensity factor can be induced by the 
numerical approximations (Gauss points or nodes, idealization) made in the finite element 
calculations and by the numerical integration schemes (programming details) adopted to calculate 
the H-integral. It can be improved by generating a reasonable finite element mesh, averaging 
results obtained along various contours and choosing a contour with a reasonable number of 
integration points, sufficiently far from the notch tip where the numerical results are generally 
smooth. Furthermore, the acquisition of complementary stress intensity factors *n

mK  on actual 

integration paths may also provide an alternative check for accuracy of compuational procedures. 
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CHAPTER 5  
 
 

Summary of Appended Papers 
 
 

 
 
 
 
Fracture of anodic-bonded silicon-thin film glass-silicon triple stacks 
Shang LY, Zhang ZL and Skallerud B.  
Engineering Fracture Mechanics; 2008; 75(5):1064-82. 
 

Two types of silicon-thin film glass-silicon (Si-Glass-Si) triple stacks specimens with a sharp 
corner are examined. Three approaches including displacement approach, stress approach and H-
integral approach are presented and compared. The applicability of the H-integral approach is 
quantified and the different failure criteria have been discussed. The effect of glass thickness on 
the stress intensity factor has been studied and proved that the glass thickness is an important 
geometrical quantity affecting the stress intensity factors for triple stacks with a thick glass layer. 
Mesh refinement and the influencing factors on critical stress intensity have also been addressed. 
 
 
Evaluation of fracture mechanics parameters for free edges in multi-layered 
structures with weak singularities 
Shang LY, Zhang ZL and Skallerud B.  
International Journal of Solids and Structures; 2009; 46(5):1134-48. 
 

The edge stress intensity factor in multi-layered structural components with weak singularities 
is investigated in detail. The dependence of stress singularity on elastic mismatch parameters of 
various material combinations is analyzed and illustrated. The effects of elastic mismatch, bond 
area and metal layer thickness on the stress intensity factor have been quantified. Standardized 
numerical formulae of the dimensionless stress intensity factor have been derived to guide the 
engineering application. Moreover, the analysis of the competition for crack initiation between a 
free edge interface and a 90º notch interface in the chosen specimen has been explored and the 
question of prevailing failure mode in multi-layered structural components has been addressed. 
Also, plastic deformations in the ductile material, anisotropy of the silicon substrate and different 
failure criterions have been discussed.  
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Comments on the evaluation of the stress intensity factor for a general re-
entrant corner in anisotropic bi-materials 
Shang LY, Zhang ZL and Skallerud B.  
Engineering Fracture Mechanics; accepted, DOI: 10.1016/j.engfracmech.2009.01.012. 
 

The computational procedure to obtain the stress intensity factor is illustrated in a flow chart. 
Three puzzling issues emerging often in the notch mechanics are addressed. Eigen-equation with 
regard to the stress singularity is interpreted from a mathematical viewpoint and the detailed 
calculation of eigenvalues for the corner problem has been presented. The different definitions of 
stress intensity factors is explained in a historical perspective and the stress intensity factor with 
respect to the shear stress component has been addressed by means of example calculation. 
Additionally, the effect of contour selection is further discussed and some suggestions are made 
for improving accuracy of results. 

 
 
Other articles:  
Crack initiation at thin-film edges with weak singularity 
Shang LY, Zhang ZL and Skallerud B.  
Proceedings of 17th European Conference on Fracture (ECF), 2-5, Sep, 2008, Brno, Czech 
Republic. 
 
Fracture initiation for anodic-bonded triple stacks  
Shang LY, Zhang ZL and Skallerud B. 
Proceedings of the 20th Nordic Seminar on Computational Mechanics (NSCM), 23-24, Nov, 2007, 
Göthenburg, Sweden. 
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CHAPTER 6  
 
 

Conclusions and Further Work 
 
 

 
 
 
 

6.1 Concluding Remarks 

To conclude, we have looked deeply into the analysis of a sharp re-entrant corner and a free 
edge in multi-layered structure without pre-existing crack. Singular near-tip stress fields and 
fracture parameters to correlate crack initiation have been extensively studied.  

An efficient computational procedure to obtain stress intensity factors around multimaterial 
interface corners can be realized by the path-independent H-integral. The stress intensity factors 
are obtained for a wide range of material and geometry parameters. For the interface corner 
problem considered in Paper I and II, the stress intensity factors obtained from the H-integral 
approach show excellent agreement with those obtained from the asymptotic solutions by finite 
element calculations of displacements along the notch flanks or of stresses along the interface. The 
deviation of the displacement approach and the stress approach from the H-integral method is 
typically less than 5%. 

Furthermore, the influencing factors of the stress intensity factors have been investigated, 
including not only the interface corner geometry, the thickness of intermediate layer, and material 
elastic constants, but also the interface strength resulting in diverse failure modes. Different failure 
criteria for notch problems have been addressed in Paper I and Paper II, such as strength approach, 
interfacial mechanics method, strain energy method. The feasibility and accuracy of H-integral 
method has also been explored.  

The effects of elastic mismatch, bond area and metal layer thickness on the stress intensity 
factor have been quantified in Paper I and II for the various aspects of the notch problem. The 
proposed approach is favorable from an engineering point of view, due to the fact that such 
situations occur very frequently in composite structural elements and it can be used as a 
supplement for a preliminary design of new MEMS components. On the other hand, the effect of 
intermediate glass thickness in triple stacks on the stress intensity factor has been presented in 
Paper I. It has been found that the mode 1 stress intensity factor increases with glass thickness but 
basically decreases for mode 2 loading as the glass thickness increases. It also turns out that the 
glass thickness is an important geometrical quantity affecting the stress intensity factors for triple 
stacks with a thick glass layer. 
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The accuracy and stability of the results obtained from H-integral approach have been 
discussed. In Paper I, it has been found that relatively course meshes can be used in the H-integral 
approach. But it should be pointed out that the smallest mesh size is restricted by geometric 
conditions around the notch tip, such as glass thickness, etching depth and so on. The effect of 
contour selection is further explored in Paper III. It has been suggested that the selection of outer 
contour location should be neither be very close to the notch tip which is disturbed by material 
nonlinearities and geometric irregularities nor be far away from the interface corner which is 
affected by far-field loading and boundaries. Plastic deformation in the ductile material has been 
explored in paper II. The existence of the K -dominated field with respect to the applicability of 
the H-integral approach has been studied. The extent of the singular field is assessed by comparing 
the asymptotic solution to the detailed finite element analysis of the stress fields. It is observed that 
the valid range of the K -field is strongly influenced by the thin-film thickness.  

Besides, the analysis of the competition for crack initiation between a free edge interface and a 
90º notch interface in the chosen specimen has been presented in Paper II. Due to the possibility to 
shift the crack initiation site between two different notch interfaces, sufficient attention has been 

paid to this issue. It has been found out that the stress field is proportional to 
1

Y

r  .The fracture 

competition between different interfaces is governed by the set ( K  or Y ,  , fracture resistance) 
of the corresponding notch, respectively. 

Standardized numerical formulae for varying material combinations in a notched bi-material 
system are proposed from a design engineer’s perspective. The average solution proposed in 
Appendix may be a favorable alternative to provide application guidance for engineers. 

Comparison between isotropic Si and anisotropic Si substrate is also illustrated in Paper II. 
Anisotropy of the Si substrate has a significant influence on the stress intensity factor when 
combined with an Au or Al metal layer but not with a Cu layer for free edge bi-material problems. 

The different definitions of stress intensity factors are further explained in Paper III from a 
historical perspective and the stress intensity factor with respect to the shear stress component has 
been calculated for a sample. The analysis shows that the definition according to Eq. (57) provides 
the most accurate results. Moreover, eigen-equation with regard to the stress singularity is 
interpreted in Paper III from a mathematical viewpoint and the detailed calculation of eigenvalues 
for the corner problem has been presented.  

 
 

6.2 Recommendations for future work 

Some recommendations for future work are summarized in the following. 
 The methodology and computational procedure presented herein to obtain stress intensity 

factors around multimaterial interface corners open up for integration of this with commercial 
finite element codes in a user-friendly option.  
 A notched body subjected to remote forces in dissimilar materials generally results in the 

mixed-mode deformations. The problem of finding the appropriate mixed-mode failure criterion 
for interface corners is still open. If mode 1 stress singularity is not dominating, i.e., more than one 
comparable deformation modes exist, the evaluation of the interface strength is challenging, The 
proposal of the dimensionless stress intensity factor has removed the effect of interface geometry, 
such as bond width, intermediate layer thickness, but not the notch angles. A unified failure 
criterion applicable for different angles may be further explored. 
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 Our study is a continuum problem. It can be used for macroscopic notch problems although 
it is hard to find sharp notches in macroscopic world. On the other hand, sharp notches in the 
microscopic domain can be obtained. However, the size effect and limitations (e.g., the effect of 
the non-sharp notch root, the effect of plastic zone and material nonlinearities) for applying the 
method presented in this thesis to nanoscales are worthy of further investigations. 
 Very few experimental data for the real MEMS components are available, specifically for 

corrosive and high temperature environment. Hence, more comprehensive test programs are 
required. 
 The main focus of the MEMS industry is on the electrical and material functionalities 

rather than the mechanical properties. More focus on mechanical aspects can help the industry to 
understand the failure mechanisms and reduce the failure rates in manufacturing MEMS products. 
 When different notch interfaces exist in a multi-layered structural component, the question 

of shifting the crack initiation site between two interfaces and which interface will fail first are still 
pending. 
 Due to its specific crystallographic structure, anisotropy of the single crystal silicon may 

have a significant influence on the stress intensity factor at interface corners. This effect should be 
quantified for guidance of application.  
 The thin intermediate layers grown between the silicon substrate and the steel cantilever 

are not considered in the present study. We assume that the interface is perfectly bonded with no 
relative displacements between each other. The validity of this assumption should be studied 
further (e.g., Carpenter, 1984a; 1984b; Stern et al., 1976; Labossiere and Dunn, 1998; 1999). 
 The awareness of the anisotropic elasticity and the notch mechanics is still low in the 

engineering field. An advanced fracture mechanics course may be introduced to a master’s 
program for engineering graduates. 
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Abstract 
In this study we focus on the fracture behavior of two types silicon-thin film glass-silicon (Si-Glass-Si) triple 

stacks specimens with a sharp corner. We determine the notch stress intensity factor  for both specimens 
using a combination of the Williams eigenfunction expansion method, Stroh’s sextic formalism, finite element 
analysis, and the path-independent H-integral. Empirical solutions of dimensionless stress intensity factors are 
proposed for two typical specimens, and the dependence of geometry is analyzed. Furthermore, the effect of 
glass thickness on stress intensity is explored for anodic-bonded Si-Glass-Si triple stacks. We discuss the 

feasibility of using a critical value of  to correlate the failure results for both specimens with various bond 
area and glass thickness. 

nK

nK

 
Keywords: MEMS reliability, interface fracture, wafer bonds, notch mechanics, path-independent integral 
 

1. Introduction 
 
Wafer-to-wafer bonding is critical in the production of Micro-Electro-Mechanical Systems 

(MEMS). Among the different types of wafer bonding, the anodic bonding plays an important role 
especially for silicon wafers. Anodic bonding (also called field-assisted thermal bonding, 
electrostatic bonding, etc), a technique for sealing glass and silicon wafers, was presented by 
Wallis and Pomerantz (1969). The advantage of anodic bonding for MEMS is that the low 
temperature provides a metalization layer that does not degrade due to temperature effects. Anodic 
bonding is a commercially available technique. However, thin-film anodic bonding, invented by 
Brooks and Donovan (1972), is not yet industrialized. Si-Glass-Si triple stacks with free edges and 
corners are also common in wafer-level vacuum packaging of microelectronic devices and 
microsensors. A thin layer of glass is either electron beam evaporated or sputtered onto a silicon 
wafer. Another silicon wafer is then bonded onto the glass film. Detailed techniques can be found 
in Ref. (Visser, 2002). All published results indicate that a certain minimum critical thickness of 
the glass layer is required to ensure good bonding, otherwise, it will decrease the bond strength or 
even result in failure. The minimum thickness of the glass film depends on the concentration of 
alkali ions in the glass, and the typical minimum thickness is 2 m  (Quenzer et al., 2001). In 
contrast to sputtering, evaporation can contain many more sodium ions in the glass layer and the 
anodic bonding can be performed at lower temperature and voltage in the bonding process (Choi et 
al., 1997). An advantage with thin-film anodic bonding, as compared to anodic bonding, is that 
problems caused by different thermal expansion coefficients and Young’s modulus of the glass and 
the silicon are reduced. Additionally, two highly patterned silicon wafers can be bonded together 
with thin-film anodic bonding. The disadvantage with the technique is that the process has not 
been studied and optimized to the same degree as the well known anodic bonding process. 

                                                        
1 Corresponding author: e-mail: Zhiliang.zhang@ntnu.no 
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In linear elastic fracture mechanics, the use of a critical stress intensity factor  to predict 

brittle fracture of cracked solids is widely accepted. The feasibility of using the single parameter 
 (or a function of two parameters in mixed-mode cases) is due to the universal nature of the 

singular stress field surrounding a crack tip as shown by Williams (1952). In a number of MEMS 
components, sharp re-entrant corners or notches are introduced, usually to facilitate fabrication. 
Over the last 20 years, notch mechanics and analysis of an interface between two elastically 
dissimilar materials have been an active research field. As we know, the near-tip singular stress 
field in a notched body is characterized by the form 

CK

K

  I IIn I II
ij I ij IIK r f K r  1 1n

ijf     . The 

stress singularity 1   for various single and multiple-phase notch geometries in both isotropic 
(e.g., Bogy and Wang, 1971; Dempsey and Sinclair, 1979; Dunn et al., 1997b; Dunn et al., 1997a; 
Dempsey and Sinclair, 1981; Hein and Erdogan, 1971) and anisotropic (e.g., Cho et al., 1992; 
Pageau et al., 1995; Suwito et al., 1999; Suwito et al., 1998; Wu and Chen, 1996; Dunn et al., 2000; 
Ting, 1997; Ting and Chou, 1981) media has been studied. For multimaterial media, the situation 
becomes complicated as in mixed-mode deformation the asymptotic elastic fields depend on radial 
position, elastic mismatch and interface corner geometry. Accordingly, the mode I and mode II 
fields are usually not symmetric with the notch bisector as they are for the isotropic homogeneous 
case. An efficient computational procedure to obtain stress intensity factors around multimaterial 
interface corners can be realized by the path-independent H-integral. The interested readers can 
confer the review of Hutchinson and Suo (1992), and Labossiere and Dunn (1999) for more details. 
Despite some extensive studies related to anisotropic materials and bimaterial media, few studies 
focused on the three-material interface notch problems. This gives motivation of our work. 

In this paper, we extend the H-integral approach to compute stress intensity factors at interface 
corners of thin-film anodic-bonded Si-Glass-Si triple stacks. Two types of specimens, named 
MESA and FRAME, with different bond area and various glass thickness are considered. We apply 
this approach to the mixed-mode I and II loading. The stress intensity factors obtained from the 
H-integral approach are in good agreement with those obtained by matching the asymptotic 
solutions with detailed finite element analysis.  Empirical solutions of dimensionless stress 
intensity factors are established to facilitate engineering application. Furthermore, the effect of 
glass thickness on the stress intensity is studied for triple stacks. The magnitude of critical stress 
intensity factor for thin-film Si-Glass-Si triple stacks is determined from tests. Finally, mesh effect 
and some uncertainties are discussed.   
 

2. Asymptotic analysis of interface notch tip fields with anisotropic elastic 
materials 

 
The asymptotic analysis of anisotropic elastic fields at the bimaterial interface corner is briefly 

presented. The asymptotic analysis solves two eigenvalue problems obtained by Stroh's sextic 
formalism (e.g., Labossiere and Dunn, 1999; Stroh, 1958; Ting, 1996) and the eigenfunction 
expansion method of Williams (1952).  

 

2.1  First eigenvalue problem - Stroh’s sextic formalism 

 
According to Stroh, when two-dimensional deformations depend only on 1x  and 2x , the 

displacement u and stress function   of an anisotropic elastic solid in a fixed rectangular 
coordinate system can be generally expressed as: 
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 
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3
1

( ) ( )f z f z     





 u a a
 (1) 

 

3

3
1

( ) ( )f z f z     





    b b
 (2) 

Here f are arbitrary functions of their arguments  depending on the geometry and loading, 

 is the complex variable.  The six complex eigenvalues satisfy 
z

1 p x2z x   p 3p p    and 

are the solutions of the quadratic eigenvalue problem (4).  In addition, a and b are the Stroh 
eigenvectors and satisfy 3  a a  and 3 b b  related through the matrix Q, R and T 

described later. ,  and  depend only on the elastic stiffnesses . Without loss of 

generality, the imaginary part of  is taken to be positive. Overbar of denotes the 

complex conjugate.  

p a b ijklC

p zp , , ,a b

In terms of the stress-strain laws ,ij ijkl k lC u   and using Eq. (1), the equilibrium equations 

 can be written: 0, ljkijkluC

 1 2 1 2( )( )ijkl l l j j kC p p a 0     
 (3) 

in which a comma denotes differentiation and li is the Kronecker delta. The above equation can 
be written in matrix form as:  

  2( )p p   TQ R R T a 0
 (4) 

where ,  and 11kiik CQ  21kiik CR  22kiik CT  . For a non-trivial solution of a , we must have 
2det ) p T 0






2



(p  TQ R R , which results in six roots for the eigenvalue p. In matrix forms and 

with Voigt’s notation, 

  (5) 

11 16 15 66 26 46 16 12 14

16 66 56 26 22 24 66 26 46

15 56 55 46 24 44 56 25 45

,    and  

C C C C C C C C C

C C C C C C C C C

C C C C C C C C C

    
          
        

Q T R

  (6) 

2 2
11 16 66 16 12 66 26 15 14 56 46

2 2
66 26 22 56 46 25 24

2
55 45 44

2 ( ) ( )

2 ( )

2

C pC p C C p C C p C C p C C p C

C pC p C C p C C p C

symmetric C pC p C

        
      
   

a 0

Differentiating Eq. (1) and then inserting into constitutive equation, we can obtain ij : 

 

 
 

1

2

i ik ik k

i ki ik k

Q pR a f z 
 R pT a f z





 

 
 (7) 

Making use of Eq. (2), the relation between a and b can be written:  

 
   T 1

p p
p

    b R T a Q R a
 (8) 

The above quadratic eigenvalue problem (three dimensional) can be recast as a conventional 
six-dimensional linear eigenvalue problem 
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  (9) 

1 2

3 1

    

,   

T p

p  

     
    

    
 

    
 

N N a a

N N b b

a
N

b

where ,  and . Since 1 T
1

N = T R 1
2

N = T 1 T
3

N = Q + RT R p  cannot be real if the strain 

energy is to be positive (Eshelby et al., 1953), we have three pairs of complex conjugates for p  

as well as for  . If p  and  are the eigenvalues and eigenvectors, we let  1, 2, ,6  

 

3

3

,  Im 0 
 1, 2,3

p p p  

 


 





  
   (10) 

where Im denotes the imaginary part. 
The Stroh eigenvectors are determined up to an arbitrary constant. They are normalized as:  

 
T T

ˆˆ
  and  

ˆ ˆˆ 2

 
 

ˆ 

a b
a = b =

2a b a b   (11) 

where ˆa  and ˆ
b  are the non-normalized eigenvectors, i.e. those that would be produced by a 

standard eigensolver; a  and b  represent the direction of the displacement u  and traction 

t , respectively . 

 

2.2  Second eigenvalue problem – notch tip stress singularity 

 
A stress singularity exists at sharp notches/crack tips. The degree of stress singularity is 

obtained from solving the second eigenvalue problem. 
The traction  at any material point (r,t  ) along the radial line from the notch tip can be 

written  

 
1 2

2

   or  ,  k k
k k

d

dr x x1

   
  


t  

  (12) 
where  is the stress function given by Eq.  (2) and r is the radial distance measured from the 
notch tip.  

By choosing  (e.g., Ting, 1997; Labossiere and Dunn, 1999; Ting, 1996) as  zf

 
   3

1 1
  and   f z z q f z z h           (13) 

where q and h  are the unknown complex constants and will be determined by Eq. (19) once λ is 

obtained. Using the expression 1 2 ( ) (cos sin )z x p x r r p           , the displacement and 

traction functions can be written 

 

   

   

3

1

3
1

1

1M M M

M M M

r q h

r q
r

 
     



  h     


   

    







   

    





u a a

t b b
 (14) 

where superscript M  indicates material A  or B . The second eigenvalue problem can be 
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solved by using the boundary conditions for the interface notch problem, see Fig. 1. There are four 
sets of boundary conditions: 

 

     

     

           
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3 3

1 1

3 3

1 1

3 3 3 3

1 1 1 1

0  ,        0

0  ,     0
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0 0  , 0

A A A A A A A

B B B B B B B

A B A A A A A A B B B B B B

A B A A

q h

q h

q h q

 
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 

 
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 

   
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   
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 
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

 

 

   

  

     
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

 

 

   

t b b

t b b

t t b b b b

u u a

0h 

     
3 3 3 3

1 1 1 1

0 0 0A A A A B B B B B Bq h q
  

         
   

  
   

0h     a a a 
 (15) 

The equations above can be rewritten as  

 

A A A A

B B B B

A A A A B B B B

A A A A B B B B

 

 

B q + B h = 0

B q + B h = 0

b q + b h b q b h = 0

a q + a h a q a h = 0  (16) 
where 

,     1 1 2 2 3 3, ,A A A A A A A         B b b b
      1 1 2 2 3 3, ,B B B B B B B            B b b

T

1 2 3, ,M M M Mq q q

b ,

, , , 1 2 3, , M M M M   a a a a 1 2, , M M M Mb b b b3      q 1 2, ,M M Mh h hh,  
T

3
M  

( , )M A B  
From the first two equations, we have 

 

 
 

A A A

B B

 
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-1

-1B B

h B B

q B B

Aq

h
 (17) 

By substituting Eq. (17) into the last two equations of Eq. (16), we get 

 

        
        

1 1 1 1

1 1 1 1
0

A A A A B B B B
A A

B B
A A A A B B B B

   

   

     
  

   


b B b B b B b B
B q

B ha B a B a B a B
  (18) 

that results in 6 simultaneous eigenvalue equations  

  (19)   0 K D

where 
T

,  A A B B D B q B h 



. For the single crystal silicon and glass material considered in this 

study, , can be partitioned into in-plane and anti-plane deformations.  K

   (20) 

IP

AP

 
  


K 0
K

0 K

In order to obtain a non-trivial solution, we get the characteristic equation for   

  (21) 
 det 0   K
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3. H-integral approach  
 
A path-independent H-integral approach for calculation of the stress intensity factor at sharp 

notches (e.g., Labossiere and Dunn, 1999) is briefly presented here. The main advantage of this 
method is that the stress intensity factor can be obtained by a contour integral around the notch tip 
with only tractions and displacements required. 

Considering the configuration of a bimaterial interface corner shown in Fig. 1, the upper and 
lower notch faces are at    and     and the notch angle is  , where angle   is 
measured from the interface. For anisotropic materials, their elastic stiffnesses can be transformed 
with respect to the 1 2x x  axes (Mason, 1958). The notch faces are traction-free and the notched 

body is loaded at remote boundaries by tractions or displacements.  

 

Fig. 1. Configuration of bimaterial interface corner  

 
In this paper we study only the in-plane fields and real eigenvalues I  and II  solved by 

(21). With normalizations of the mode I fields by   1
22 0 In

IK r     and of the mode II fields 

by , the in-plane asymptotic singular fields near the notch tip can be 

expressed as: 

  1
12 0 IIn

IIK r   
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i i i

r K r f K r f
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 

 

  

 

  

 




 (22) 

and before normalization, 



x2

Material A 


Material B

x1



r


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Here the superscript M  indicates material  or ,  are notch stress intensity factors 

where  corresponds to deformation mode I or II that are analogous to the opening and sliding 
modes in a homogeneous notched solid, 

A

1

B n
mK

m

n   are the stress singularities, and mM
ijf  and  

are functions depending on angle 

mM
ig

  and material stiffnesses. In Eq. (22), only the stress intensity 
factors  and  cannot be determined from the asymptotic analysis. They depend on the 

geometry of the notched body, material elastic constants, and the far-field loading.  

n
IK n

IIK

The path independent H-integral is based on the application of Betti's reciprocal work theorem 
which suppose two sets of elastic fields: the actual and the complementary. If   is a root of Eq. 
(21), so is *    (Wu and Chang, 1993).   Hence, the chosen complementary solution is 
given by Eq. (24) and Eq. (25).   
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 (25) 
In the absence of body forces and singularities, the H-integral takes the form: 

  (26) 
 * * 0

ijij i i jH u u n ds 


 
where  is a closed contour around the notch tip,  is the unit outward normal to ,  jn  ij ,  

and 

iu
*

ij
 ,  are the actual and complementary stresses and displacements that satisfy the 

equilibrium and constitutive relations, respectively. 

*
iu

Taking a counter-clockwise contour around the notch tip from the lower face to upper face, in 
polar coordinates, the above equation is expressed as 

 
 * * * *

rrr r r rr rH u u u u




  
rd   


    

 (27) 
and in Cartesian coordinates, it is given by 
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   * * * * * * * *

x x xy y x x xy y y y xy x y y xy xy x
H u u u u dy u u u u                dx

I

)

 (28) 
Taking advantage of Eq. (26), we obtain an explicit expression for the mode I scaling factor 
 by setting  and similarly the mode II scaling factor  by setting 

.  

*n
IK n

IH H K  *n
IIK

n
II IIH H K 

Dimensionless considerations illustrate that the stress intensity factor  takes the form: nK

  (29) 
1

0 ( ) (nK length Y geometry 

where 0  is a nominal stress and  is a non-dimensional function of geometry.  Y
 

4. Application to Si-Glass-Si triple stacks 
 

4.1  Specification of Si-Glass-Si triple stacks with mixed-mode I and II loading  

2a 
54.74º  

2w 

SI 

GLASS 

SI 

x1 

x2 

h 

  

 

b 

54.74ºh

2w 

SI 

GLASS x1 

x2 

SI 

 
                (a)                                           (b)  

Fig. 2. Notched (a) MESA and (b) FRAME triple-stacks specimens 54.74

 
In this work, triple stacks are composed of Si-Glass-Si multimaterials. Two types of specimens, 

MESA and FRAME, Fig. 2, have been studied. The overall width of the specimen ( 2 ) is w
3500 m , the etching depth (the height of bond pad, h ) is 18 m . Five bond lengths ( 2 ), 

 and 
a

700,  1000,  1414,  1700 2000 m , and four glass thicknesses ( t ), 3, 3.6, 5 and 10 m , have 
been considered for the MESA specimens. For the FRAME specimens, five bond lengths ( 2 ), 

 and 1900
b

400,  800,  1200,  1600 m , and five glass thicknesses,  and 183,  3.6,  5,  10 m , have 

been analyzed. A remote tensile nominal stress 0 / 2F 1tw   is applied to all the specimens, 

where  is the thickness of the specimen in 1t 3x direction. Brittle fracture initiated at the interface 

corner. It should be noted that even though the specimens have remote tension, they are subjected 
to mixed-mode I and II loading at notch tip. The interface corner is  which is a result 
of etching process. Silicon is an elastic brittle material and its elastic stiffness matrix 
corresponding to the 

54.74 

1 2x x  axes in Fig. 2 is given by Eq. (30). Corning #7740 PYREX glass is 
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used here with elastic modulus 63E GPa  and Poisson’s ratio 0.2  . Making use of 
symmetry, we only take account of a half-model in the plane strain finite element analysis for both 
specimens. ABAQUS was used in the analysis.  

  (30) 

194.36 63.9 35.24 0 0

63.9 165.7 63.9 0 0

35.24 63.9 194.36 0 0

0 0 0 0 0

0 0 0 50.9 0

0 0 0 0 79.56

ijC G

 
 
 
 

  
 
 
 

0

0

0

79.56

0

0

0.5078,  I

Pa


For the materials considered, using the asymptotic singularity analysis described in Section 2, 

we obtain the eigenvalues 0.6199II   . The angular variation of the stress and 

displacement fields ( )I
ijf  , ( )I

ig  , *( )I
ijf   and *I

ig ( )  are shown in Fig. 3 (a), and ( )II
ijf  , 

( )II
ig  , *( )II

ijf   and *(II
ig )  are shown in Fig. 3 (b) where , ,i j r  . 
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 (b) 

Fig. 3. Angular variation of the stress and displacement fields (a) ( )I
ijf  , ( )I

ig  , * ( )I
ijf  , * ( )I

ig   and (b) 

( )II
ijf  , ( )II

ig  , * ( )II
ijf  , * ( )II

ig   for Si-Glass-Si triple stacks with notch angle  54.74 

 
In order to study the effect of glass thickness and bond area on the fracture behavior, 

dimensional considerations of  yield the following form: n
mK

 1
0 , ,mn n a h t

m m w w hK w Y    (31) 
where  , ,n a h t

m w w hY  ,m I II   is a dimensionless calibration function and is specific for the 

geometry, the thickness of glass layer, boundary conditions, and elastic constants.  In this study, 
we only take a fixed value of 0.0103h

w  ; consequently,  , ,n a h t
m w w hY  reduces to  ,n a t

m w hY . 

Furthermore, we can write 

 

 
 

1 1 1

2 2 2

, ( ) ( )    for MESA

, ( ) ( )   for FR

n a t a t
m refw h w h

n b t b t
m refw h w h

Y Y f g

Y Y f g

  

   AME
 (32) 

where 
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4.2  Results  
 

4.2.1 Validation of the H-integral approach 

 
Before it can be conveniently applied to study the fracture problem, the accuracy of the 

H-integral should be quantified for the Si-Glass-Si triple stack problem. It is found that for the 
MESA and FRAME specimens, the stress intensity factors calculated from the H-integral agree 
very well with asymptotic solutions obtained directly by finite element computations of 
displacements along the notch flanks or of the stress along the interface. The variations are within 
5% for all calculations. 

Table 1 – Table 4 (  in boldface ) show the dimensionless stress intensity factors  and 

 obtained from H-integral and asymptotic analysis with different bond length and glass 

thickness for both MESA and FRAME specimens. 

refY n
IY

n
IIY

 

Table 1 
n

IY  and n
IIY  obtained from H-integral and asymptotic analysis with 0.286a

w   for MESA specimens. 

t/h 
H -integral

IY  
uθ-asymptotic

IY  
sθθ -asymptotic

IY  
H -integral

IIY  
uθ-asymptotic

IIY  
sθθ -asymptotic

IIY  

0.167 0.477 0.461 0.488 0.986 0.942 0.972 
0.200 0.479 0.464 0.488 0.978 0.937 0.966 
0.278 0.483 0.469 0.489 0.964 0.928 0.955 
0.556 0.491 0.479 0.492 0.935 0.910 0.932 

 

Table 2 
n

IY  and n
IIY  obtained from H-integral and asymptotic analysis with 0.2t

h   for MESA specimens 

a/w 
H -integral

IY  
uθ-asymptotic

IY  
sθθ -asymptotic

IY  
H -integral

IIY  
uθ-asymptotic

IIY  
sθθ -asymptotic

IIY  

0.200 0.579 0.561 0.589 1.177 1.128 1.163 
0.286 0.479 0.464 0.488 0.978 0.937 0.966 
0.404 0.394 0.381 0.401 0.806 0.776 0.797 
0.486 0.350 0.339 0.357 0.719 0.695 0.711 
0.571 0.311 0.302 0.317 0.640 0.612 0.633 

 

Table 3 
n

IY  and n
IIY  obtained from H-integral and asymptotic analysis with 0.114b

w   for FRAME specimens. 

t/h 
H -integral

IY  
uθ-asymptotic

IY  
sθθ-asymptotic

IY  
H -integral

IIY  
uθ-asymptotic

IIY  
sθθ -asymptotic

IIY  

0.167 0.494 0.478 0.506 1.020 0.980 1.010 
0.200 0.497 0.481 0.506 1.018 0.979 1.005 
0.278 0.503 0.488 0.509 1.007 0.973 0.998 
0.556 0.518 0.506 0.520 0.991 0.970 0.986 
1.000 0.536 0.524 0.536 0.983 0.963 0.982 

 

65 



 
66 PAPER I 
 

Table 4 
n

IY  and n
IIY  obtained from H-integral and asymptotic analysis with 0.2t

h   for FRAME specimens. 

b/w 
H -integral

IY  
uθ-asymptotic

IY  
sθθ -asymptotic

IY  
H -integral

IIY  
uθ-asymptotic

IIY  
sθθ-asymptotic

IIY  

0.114 0.497 0.481 0.506 1.018 0.979 1.005 
0.229 0.335 0.325 0.341 0.693 0.668 0.685 
0.343 0.275 0.266 0.280 0.571 0.546 0.564 
0.457 0.246 0.238 0.250 0.511 0.492 0.505 
0.543 0.234 0.227 0.238 0.486 0.466 0.480 

 

4.2.2 Empirical solutions of n
IY  and n

IIY  for MESA and FRAME specimens 

 
To facilitate engineering application, we established empirical solutions of  for MESA and 

FRAME specimens. The following geometrical ranges are considered: the solutions are applicable 
over the range 

n
IY

0.2 0.571,  0.167 0.556a t
w h     for MESA specimens, and over the range 

 0.114 0.543,  0.167 1b
w   t

h  for FRAME specimens, respectively. According to Eq. (32), the 

normalized results obtained from H-integral approach are accurately fitted by the power function 

   k

if geometry j geometry  and    s

ig geometry l geometry , 1, 2i  . The best-fit values of 

the parameters j , ,  and  are shown in k l s Fig. 4 and  
Fig. 5 for MESA and FRAME, respectively. 
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(a)                                        (b) 

Fig. 6. int
I

H egralY   and int
II

H egralY   for (a) MESA specimens and (b) FRAME specimens 

 

From Eqs. (4.2) and (4.3), the dimensionless stress intensity factor  obtained from the 

H-integral can be fitted by the following functions: 

n
IY

 

 
     

-int

0.57552 0.02355

1, 0.39848 1.03873
H egral

I Ia t a t
refw h w hY Y


  

 (33) 
where 

 0.286, 0.2
1 0.479   and  0.2 0.571,  0.167 0.556.

a t
w h

I I a t
ref w hY Y

 
       

for the MESA specimens, and  
 

      0.50695 0.0456

-int 2, 0.32949 1.07547  I Ib t b t
H egral refw h w hY Y


  

 (34) 
where  

 2 0.114, 0.2
0.497 and 0.114 0.543,  0.167 1.b t

w h

I I b t
ref w hY Y

 
       

for the FRAME specimens. 
 

Fig. 6 compares the int
I

H egralY   and int
II

H egralY   . It can be observed from Fig. 6 that both 

int
I

H egralY   and int
II

H egralY   decrease with increasing bond area. 

 

4.2.3 Effect of glass thickness 

 
In order to understand the effect of glass thickness on the stress intensity factor, we have 

artificially extended glass thickness to 1750t m . Fig. 7 compares the thin-film MESA 
specimen with glass thickness 3t m  and the extreme bimaterial MESA specimen with glass 

thickness 1750t m . It can be observed that the thicker the glass layer, the higher the int
I

H egralY  . 
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Fig. 7. The dimensionless stress intensity factors for two glass thicknesses. 

 

It also has been found from Fig. 8 that the  increases with glass thickness while basically 

decreases for mode II loading as the glass thickness increases. Furthermore, for thin-film MESA 
and FRAME specimens, 

n
IY

Fig. 9, it can be observed that varying thickness of glass does not affect 
 and  significantly. Nevertheless, for the other MESA specimens with thicker glass layer, 

the stress intensity factors differ greatly. Hence, it can be concluded that the glass thickness is an 
important geometrical quantity affecting the stress intensity factors for triple stacks with thick 
glass layer. 
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Fig. 8. (a) int
I

H egralY   and (b) int
II

H egralY   for MESA specimens with glass thickness over the range 
3 1750 m  
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Fig. 9. int
I

H egralY   and int
II

H egralY   for thin-film (a) MESA and (b) FRAME triple stacks 

 

4.2.4 Failure criterion 
 

Fracture resistance of structural components with stress concentration at sharp notches can be 
evaluated by different failure criteria. As discussed earlier, the notch tip in both MESA and 
FRAME specimens is subjected to mixed-mode loading. It is interesting to investigate the failure 
criterion. In order to assess whether  can be used to predict fracture initiation, various MESA 

and FRAME specimens were designed for pull tests (Visser, 2002). Ten to twenty different test 
specimens were used for each specific bond area and the experimental failure strength was fitted to 
Weibull distributions. Chips were glued onto grinded hexagonal head cap screws with a thin layer 
of Micro BondTM III CTCA3-3 or Loctite 420. The dimensions of the test specimen are 
summarized in 

n
ICK

Table 5. One wafer in each wafer couple for thin-film anodic bonding experiment 
was covered with a sputtered layer of PYREX, Corning#7740 glass (3.6 0.2 m thick) on top of a 
thin dielectric layer. A thin dielectric layer was always grown or deposited before sputtering of the 
glass layer so as to reduce the possibility of electrical breakdown during the bonding process. The 
thin dielectric layer was removed from the backside of the wafers before bonding for electrical 
contacting. 
 

Table 5 

Dimensions of bond areas for test specimens for pull tests (Visser, 2002). 

Geometry name Outer dimensions (µmµm) Inner dimensions (µmµm) 
MESA 1 1000  1000 - 
MESA 2 1414 1414 - 
MESA 3 2000  2000 - 
FRAME 1 2700  2700 2300  2300 
FRAME 2 2700  2700 1900  1900 
FRAME 3 2700  2700 1100  1100 
Etch process 500 g KOH : 1 l DIW, 80 C, 18-20 µm 
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It is well known that a traditional yield criterion is not applicable to correlate with failure 
because typically the failure load measured from tests depends on specimen geometry, size and 
type of remote loading. Instead, some studies have shown that the critical stress intensity factor 

 can be used as a single parameter to correlate fracture initiation at sharp notches, which is 

possibly independent of some geometry parameters (e.g., Dunn et al., 1997a; 2000; Labossiere and 
Dunn, 1999; Suwito, 1997). 
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Fig. 10. The critical stress intensity factor for MESA and FRAME specimens 

 
 

The corner in the present test specimens involves mixed-mode deformation. From the 
asymptotic analysis, the stress singularity for mode I is strong, but it is weaker for mode II. This is 

discussed by Dunn et al. (2000). In this case, the critical stress intensity  ,n n n
C IC IICK K K

IC

 is 

mainly characterized by . The critical notch stress intensity factor, , can be computed 

from Eq. (4.2) using 

n
ICK

0

nK

f  , the nominal failure strength, which is calculated using the 

measured failure force divided by the overall structure cross-section area in the pull test. 
According to average fracture strength f  (Visser, 2002), the critical stress intensity factors  

based on the test specimens are shown in 

n
ICK

0.4922m
0.4922m

Fig. 10. For the MESA specimen, the critical stress 
intensity factor  obtained for the averaged failure strength for the three specimens of different 

bond length are 1.01, 1.26 and 1.76 , respectively; while for the FRAME, the 
corresponding critical stress intensity factors are 1.75, 1.54 and 1.71 . The average 
value of  is  for MESA specimens and 1.67  for FRAME 

specimens, respectively. The averaged experimental nominal failure strengths and the strengths 
calculated using the averaged  for the different bond area are shown in 

n
ICK
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MPa
MP
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ICK 0.MP m

n
ICK
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n
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Table 6 and Fig. 11. It 

can be seen that the averaged  can be used to predict brittle fracture of the anodic-bonded 

FRAME specimens. However, for the MESA specimens the agreement is not very satisfactory. 
The cause of deviations for MESA specimens will be studied subsequently in more detail (Section 
5.2).  
 
 

70 



 
PAPER I Fracture of anodic-bonded silicon-thin film glass-silicon triple stacks   71 

Table 6 

Comparison of the experimental and predicted nominal failure strength f  

Specimen 
Weibull average 
experimental f  

( MPa ) 

Predicted f  

 ( MPa ) 
Specimen 

Weibull average 
experimental f  

( MPa ) 

Predicted f  

( MPa ) 

MESA1 1.600 2.126 FRAME 1 2.674 2.545 
MESA2 2.424 2.587 FRAME 2 3.497 3.775 
MESA3 4.286 3.271 FRAME 3 5.257 5.139 
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Fig. 11. The experimental and predicted nominal failure strength f  for (a) MESA and (b) FRAME 
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It should be noted that the failure strength employed in the industry is defined as the measured 
failure force divided by the overall bonded area, i.e., the net-section bond strength N  (see Fig. 

12). The bond strength for MESA and FRAME specimens are shown in Fig. 13. It can be seen 
from Fig. 13 that a distinct geometry dependence is not observed for MESA specimens, but for 
FRAME specimens a significant geometry effect can be seen. With respect to the bond area, a 
large bond strength of the thinnest FRAME was observed, but increasing the bond area for the 
FRAME specimen does not necessarily lead to a proportionally higher resistance against an 
externally applied force. 

The failure criterion applied here is based on the assumption that K-dominated annulus exists 
around the interface corner. The elastic fields can neither be very close to notch tip which is 
disturbed by material nonlinearities and geometric irregularities nor be far away from the interface 
corner which is affected by far-field loading and boundaries. To qualify this K-dominated annulus, 
finite element analysis is performed at failure loads. The accuracy of the failure criterion is further 
depicted in Fig. 14 which shows a logarithmic diagram of the interface normal and shear stresses 
near the notch tip with 0.229b

w   and 0.2t
h  . The normal stress   obtained from two 

methods agrees to 5% within a distance of 2.5 m  while the shear stress r  agrees to 10% 

within a distance of 0.7 m . Similar results are obtained for other specimens. 
  

              
(a)                                         (b)  

Fig. 12. Schematic definition of net-section bond strength N  for (a) MESA and (b) FRAME 
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Fig. 13. Net-section bond strength N  for MESA and FRAME specimens  

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

r (m)

In
te

rf
ac

e 
st

re
ss

 (
M

P
a)

 

 

S


(Finite Element Analysis)

S


(H-integral)

S
r

(Finite Element Analysis)

S
r

(H-integral)

 

Fig. 14. Interface stress near the notch tip with 0.229b
w   and 0.2t

h   for FRAME specimens  

 

5. Discussion 

5.1  Mesh effect 
 

The important feature of H-integral approach is that a relatively coarse mesh can be used for 
the finite element analysis (e.g., Labossiere and Dunn, 1999; Zhang and Mikkola, 1992). For 
example, for MESA specimen with 0.286a

w   and 0.278t
h  , a fine and coarse mesh near the 

notch tip are depicted in Fig. 15. Through the glass layer, only five elements are created for the 
coarse mesh model while 39 elements are used for the fine mesh model. The smallest element size 
for the fine and coarse mesh is 0.01 and 1 m , respectively. It should be pointed out that the 
smallest mesh size is restricted by geometric conditions around the notch tip, such as glass 
thickness, etching depth and so on. Furthermore, four integral contours around the notch tip are 
tested with the coarse meshes and the values of stress intensity factors are 2.154, 2.137, 2.155, and 
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2.145 , respectively. As a result, the deviation of stress intensity from 2.137 
obtained from fine mesh is less than 1%.  

0.4922MPa mm
0.4922mmMPa 

    

1 

2 

3 
4 

 

 

                        (a)                                     (b)  

Fig. 15. (a) Fine mesh and (b) coarse mesh at a close look near the notch tip 

For MESA Specimen with 0.286a
w  and 0.278t

h   

5.2  Uncertainties 
 

In this section, we further interpret the reasons resulting in deviation for MESA specimens and 
discuss the applicability of a critical stress intensity factor.  

For the MESA specimens, the predicted nominal failure strength did not match very well with 
experimental values. We believe this is mainly due to the difficult control of the loading alignment. 
The effect of misalignment has been further studied, Fig. 16. Several misalignment values have 
been tried. It has been found that a loading misalignment of 300D m  will result in a much 
better agreement. The FRAME specimens are less sensitive to loading misalignment due to large 
redundancy. 
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Fig. 16. The effect of loading misalignment on the predicted nominal failure strength f  
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An important issue for notch mechanics is to understand the applicability of the critical stress 

intensity factor  for interface corners. Actually,  can no longer be simply treated as a 

size-independent material parameter like that in the linear elastic fracture mechanics. It depends 
not only on interface corner geometry and material elastic constants, but also on interface strength 
resulting in diverse failure modes. For instance, Dunn et al. (2000) and Labossiere et al. (2002) 
carried out similar tests with a weaker interface and obtained smaller critical stress intensity factor 
than that with a strong interface. For the test specimens employed herein, we have a strongly 
bonded interface and it was also observed that fracture initiated from the notch tip and propagated 
into the glass or partly along the bonded interface.  

n
ICK n

ICK

In addition, residual stress can possibly influence the results and it deserves attention in the 
future work. It may be one of the reasons for the scatter of failure strength in the tests.  

Furthermore, it is observed from finite element analyses that the thickness of Si-wafers also 
affects the dimensionless stress intensity factor. For thin Si-wafers, for example, 0.35-1.75mm 
thick, the values of stress intensity can apparently vary with thickness of Si-wafers. However, 
when Si-wafers are thick enough, for instance, larger than 1.75mm, the thickness dependence will 
disappear. This effect will be investigated more in the future. 

Finally, the critical stress intensity factor  derived here did not yield the same value for 

both MESA and FRAME specimens with the same notch angle. The exact reasons are not apparent. 
Apart from the discussions above, the possible reasons leading to the differences are as follows: 
the simplified use of a single parameter  in mixed-mode loading, the control of loading 

alignment, different failure modes and the effect of residual stress. 

n
ICK

n
ICK

 

6. Conclusions 
 

For the triple stacks interface corner problem considered in this paper, the stress intensity 
factors obtained from the H-integral approach show excellent agreement with those obtained from 
the asymptotic solutions by finite element calculations of displacements along the notch flanks or 
of stresses along the interface. The deviation of the displacement approach and the stress approach 
from the H-integral approach is less than 5%. 

The effect of glass thickness on the stress intensity factor has been studied. It has been found 
that the mode I stress intensity factor increases with glass thickness while basically decreases for 
mode II loading as the glass thickness increases. Moreover, the stress intensity factors vary 
significantly with a thicker glass layer but are not affected greatly for thin-film anodic-bonded 
triple stacks. Hence, it turns out that the glass thickness is an important geometrical quantity 
affecting the stress intensity factors for triple stacks with a thick glass layer. 

In order to facilitate engineering application, empirical solutions of stress intensity factors for 
MESA and FRAME specimens have been proposed. It should be pointed out that the critical stress 
intensity factor  depends on the interface corner geometry, material elastic constants, failure 

modes and residual stress. In this paper,  and  

have been used to characterize MESA and FRAME specimens, respectively. Loading alignment 
has been found to play a significant role in fracture behavior of MESA specimens. 

n
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0.49221.34n
ICK MPa mm  0.49221.67n
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Abstract 

This study focuses on the stress intensity factors for free edges in multi-layered structural components. The 
effects of elastic constants of various material combinations on the weak singularity at free edges are analyzed. 
Using the H-integral approach, the effects of elastic mismatch parameters, the bond area and the thickness of the 
thin metal layer on the stress intensity factor are quantified and the results are compared with detailed finite 
element solutions. A good agreement between numerical predictions obtained from the H-integral and the 
detailed FE results is achieved, showing the applicability of this approach. Similar to a crack problem, the 
singular elastic field dominates in an annular region adjacent to the notch tip. The relationship between the valid 
range of the -dominated field and the thin-film thickness is then demonstrated. Furthermore, the competition 
of crack initiation between the free edge interface (180º opening angle) and a 90º notch interface in a generic 
specimen is investigated, in order to find out which is the prevailing failure mode. Comparison between isotropic 
Si and anisotropic Si substrate is also illustrated. Anisotropy of the Si substrate has a significant influence on the 
stress intensity factor when combined with an Au or Al metal layer but not with a Cu layer. Additionally, 
standardized numerical formulae of the dimensionless stress intensity factor have been derived to guide the 
engineering application. 

K

 
Keywords: weak singularity, fracture mechanics, free edge, multi-layer, stress intensity factor 
 

1. Introduction 
 
Multi-layered thin films on silicon substrates are often used in micro-electro-mechanical 

systems (MEMS) because they provide certain advantages over mechanical connectors. By virtue 
of elastic mismatch and/or notch angle, stress concentrations may develop at the notch corner (Fig. 
1) and a weak singularity (λ>0.9) may exist at free edges (Fig. 2). Weak singularities can cause 
malfunctions and result in mechanical failures. An interface edge and a notch are critical positions 
for crack initiation. Subjected to the remote mechanical loading, the interface stress field around 
the notch corner is proportional to  1 1, 2,m

m

nK r m N   

m
K

1m

 where  is the number of 

eigenvalues available from the characteristic equation. Superscript  indicates the notch for the 
sake of distinction from the stress intensity factor  in classical fracture mechanics,  is the 

radial distance from the notch corner and 

N

n
r

   is the order of the stress singularity. The stress 

field is singular for 0 Re( ) 1m   where Re( )m  is the real part of m . Here  is the 

intensity of notch stress field with respect to eigenvalue 
m

nK

m . The dependence of the order of notch 

stress singularity on the material properties and on the notch geometry is well understood (e.g., 
Williams, 1952; Carpenter, 1984a; 1984b; Hutchinson and Suo, 1992; Chen and Nisitani, 1993; 
Yang and Munz, 1997; Labossiere and Dunn, 1999; Paggi and Carpinteri, 2008). The magnitude of 
critical  depends not only on joint geometry, material properties and applied load, but also on 

failure mode, residual stress, mode mixity and loading alignment, see Shang et al. (2008). The 
m

nK
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knowledge of both  and 
m

nK m  is needed to fully describe the stress and displacement fields 

near the interface corner. Therefore, the motivation for our work is to properly characterize the 
singular stresses and associated displacements so that joint geometries and material combinations 
can be appropriately chosen to minimize risk of failure. In addition, if more than one critical 
position exists to render failure in a structure, for instance, interface X  and interface Y  shown 
in Fig. 3, the evaluation of interface strength becomes an important issue. As far as we know, very 
few studies have concerned the competition between different notches in MEMS components.  
Carpinteri and Paggi (2007) discussed the competition between different failure modes for the 
problem of crack propagation from the fracture mechanism’s point of view. In comparison, we 
herein focus on various notch angles and from the mechanical perspective address the competition 
between different crack initiation sites to find out which is the prevailing failure mode in 
multi-layered structures. In addition, one dielectric layer  (Fig. 3) often is grown or 

deposited on the silicon substrate during the bonding process. However, Kitamura et al. (2007) 
reported that the effect of this thin interlayer on the stress distributions along the interface is 
negligible. Hence, in the current study we omit this layer. 

2SiO

The failure initiation criterion at interface corners has been discussed in many studies (e.g., 
Stern et al., 1976; Sinclair, 1985; Carpenter and Byers, 1987; Munz and Yang, 1993; Carpenter, 
1995; Yang and Munz, 1997; Labossiere and Dunn, 1998; Dunn et al., 2000; Reedy and Guess, 
2002; Qian, 2001; Wang et al., 2002). Mainly two different failure criteria have been proposed to 
predict the failure initiation at sharp notches (Fig. 1) or wedge corners (e.g., Luo and Subbarayan, 
2007). One is based on the assumption of “small scale yielding” near the corner. The failure occurs 
when the dominating stress intensity factor reaches a critical value (e.g., Hutchinson, 1990; Reedy 
and Guess, 1993; Yin, 1999). Alternatively, failure occurs when the function of comparable stress 
intensity factors, for example in the IK KII  space in case of mixed-mode deformation, reaches 

a critical value (e.g., Labossiere et al., 2002). In the other approach, failure starts at the notch 
corner when the strain energy density at a point ahead of the notch reaches a critical value (e.g., 
Sih and Ho, 1991). Our paper addresses methods for crack initiation analysis at free edges and the 
stress intensity factor-based approach will be employed. A convenient computational procedure 
using the path independent H-integral approach is utilized. With this, the stress intensity factor for 
a general notch problem is obtained. The H-integral approach for cracked isotropic solids, 
pioneered by Stern et al. (e.g., Stern et al., 1976; Stern and Soni, 1975; 1976; Hong and Stern, 
1978; Stern, 1979) and Snyder and Cruse (1975), was extended by Carpenter (1984a), Sinclair et 
al. (1984; 1985) and Babuska and Miller (1984) to notched solids in isotropic media where both 
mode I and mode II loading were taken into account. This was further extended to an isotropic 
bimaterial notched body by Carpenter and Byers (1987) and Banks-Sills (1997), and applied by 
Labossiere and Dunn (1999) to a general sharp notch with anisotropic materials. The effect of 
higher order terms ( m 1)   on the stress state near the interface corner of a bi-material joint is 

demonstrated by Qian and Akisanya (1999). For the last decades, there has been much 
development of special hybrid and displacement-based finite elements in order to improve the 
accuracy of the solution. Nonetheless, the H-integral approach differs from the other methods in 
that a path independent contour integral combining finite element results with an asymptotic 
analysis is evaluated. With this, no special elements are required, relatively coarse finite element 
meshes can be used and complicated loading and boundary condition can be easily handled, thus 
avoiding time-consuming mesh refinement near the singularity. 

This paper is organized as follows. First, the theoretical free edge singularity is calculated for a 
bi-material system and the actual stress fields in the multi-layer system are then analyzed by 
detailed finite element simulations. Second, some standardized numerical formulae are provided, 
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that are useful for engineering applications. Furthermore, using the H-integral approach, the effects 
of the elastic mismatch parameters, the bond area and the thickness of the thin metal layer on the 
stress intensity factor are investigated and quantified. Fourth, the competition of crack initiation 
between a free edge interface (180º opening angle) and a 90º notch interface in a generic MEMS 
specimen (Fig. 3) is discussed. Finally, numerical predictions obtained from the H-integral 
approach are shown to be in agreement with the detailed finite element solutions, demonstrating 
that the former is applicable for multi-layered structures with weak singularities. The relationship 
between the -dominated field and the thin-film thickness is provided. K

 
Fig. 1 Schematic plot of a closed integration contour around a general corner in dissimilar materials where 

1 2 3 4 2 4, ,C C C C C C C C        

 

 
Fig. 2 Schematic plot of an edge-bonded interface in a bi-material system. 

 



Material B 

Material A 

1x  

2x  







r 

2 ( )C C

4 ( )C 



 
1C  

3C  



jn

Interface 

Material B 

90

90  

Material A Crack Initiation site 

Free edges 

83 



 
84  PAPER II  

 

Fig. 3 Schematic plot of the generic specimen and loading conditions. 

 

2. Asymptotic analysis 
 

In order to obtain the order of stress singularity, which depends both on the notch angle and on 
the elastic parameters, a preliminary asymptotic analysis of the stress field has to be carried out 
first. Asymptotic analysis of the singular stress field at the vertex of re-entrant corners involves 
two eigenvalue problems. One is material related and the other is geometry related. The theory is 
briefly summarized in this section.  

It is well known from Williams (1952) that the eigen-equation in a notched/cracked body for 
an isotropic material (i.e.    in Fig. 1) can be represented by eq. (1) where plus sign and 
minus sign are associated with the opening mode and sliding mode, respectively  

  (1)     sin 2 sin 2 0        

The stress singularity depends only on the notch angle   regardless of material. For a crack, 

    , Eq. (1) simplifies to I IIsin 2 sin 2 0    and the stress singularity is 1
2 ; for an 

edge, , the stress singularity disappears. Furthermore, the characteristic equation of 
the stress singularity for a general re-entrant corner with two arbitrarily oriented traction free 
surfaces at 

90   

   and     is expressed by Carpenter (1984a) 
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   
   

   
   

   
   

   
   

cos 2 cos 2 sin 2 sin 2

   cos 2 cos 2    sin 2 sin 2

det 0

sin 2 sin 2 cos 2 cos 2

   sin 2 sin 2    cos 2 cos 2

   

       

   

       

  

   

                            

 

   
 (2) 

The general configuration for a notch/wedge/crack geometry in dissimilar anisotropic materials 
is addressed here, see Fig. 1. Such a situation usually results in mixed-mode deformations and the 
stress fields are no longer symmetric and/or anti-symmetric.  

In general, the stresses and displacements in the vicinity of the interface corner are obtained 
using complex variable methods or the Airy’s stress function approach. Using either of these 
methods, it can be shown that the asymptotic fields near the interface corner can be expressed as  

 

  

   

1
0

1

0
1

,

,

m

m

m

m

N
M n mM M
ij ij m ij

m

N
M n mM M
i i m i

m

K r f

u K r g u





    

  







 

 




 (3) 

where  are the eigenvalues of the problem. Superscript  1, 2,m m   N M  indicates material 

 or A B  which is elastic, homogeneous, isotropic or anisotropic. 0 (M
ij )   is the constant stress 

field ( Re( ) 1m  ) independent of the radial distance from the notch corner and 0 ( )M
iu   is the 

associated displacement field near the interface corner. These terms can be determined analytically 
and are finite for thermal loading and/or surface tractions on the notch flanks but vanish for remote 
mechanical loading. The remaining stress term is comprised of several stress fields of the form 

. When two or more stress fields of the form 1mn
mK r 1mn

mK r   exist near the notch corner, one pair 

of  and n
mK 1m   describes one stress field, and the total stresses are determined by superposing 

contributions from all stress fields. There are an infinite number of values m  which satisfy the 

eigenvalue equations. Both the stress intensity factor and the stress singularity may be real positive, 
real negative or complex, but in most circumstances, they are real constants (e.g., Qian and 
Akisanya, 1999; Banks-Sills and Sherer, 2002). Although not explicitly shown in Eq. (3), there are 
certain special combinations of elastic properties and notch angles that can also generate 
logarithmic singularities (e.g., Bogy, 1971; Dempsey and Sinclair, 1979; Dempsey and Sinclair, 
1981; Dempsey, 1995; Chen, 1996; Sinclair, 1999). In this study, the power-logarithmic singularity 
is not considered. Moreover, only positive m  are admissible in order to ensure finite 

displacements at the notch tip.  ,mM
ij mf    is a function describing the angular profile of the 

stress field in conjunction with material elastic properties and the opening angle. Note that 
 , m

mM
ijf    is non-dimensional but  m,mM

ig    has the unit of . They are 

determined analytically while the eigenvalues 

2 orc 1e)(length) (f

 1, 2, ,m  m N  for a given notch geometry are 

obtained by solving a characteristic equation. The closed-form expression for these functions will 
be briefly described below. More details can be found in references such as Stroh (1958); Ting 
(1996); Labossiere and Dunn (1999); Shang et al. (2008).  

Consider a linear elastic body with a re-entrant corner subjected to remote in-plane mechanical 
loading, see Fig. 1. Without loss of generality, we focus on two singular terms, i.e. 1 20 1    , 
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considering the higher order terms ( 1m  ) to be insignificant. The singular stress and 

displacement field around the notch tip can be reduced as follows: 

 

   
   1 2

1 1

1 1 2

( , ) , ,

( , ) , ,

M n M M
ij ij

M n M M
i i i

r K r f f

u r K r g K

1 21 11 2
2

1 2
2

n
ij

n

K r

r g

 

 

2  

   

 

 

   


 (4) 

r  and   are the polar coordinates with an origin at the notch tip. For the homogeneous isotropic 
case, 1

21 2  



, corresponding to the definition by Williams (1952) and Hong and Stern (1978). 

The first eigenvalue problem proceeds as follows. Employing Stroh’s sextic formalism (e.g., 
Stroh, 1958; Ting, 1996), the displacements u  and stress function   in the material 

 ,M M A B  around the interface corner can be expressed by  

 
 

3

3
1

( ) ( )f z f z     





 u a a
 (5) 

 

3

3
1

( ) ( )f z f z     





    b b
 (6) 

f  are arbitrary functions of the arguments z , where 1z x p x 2   is the complex variable. 

f  depend on the geometry, radial distance from the interface corner and material elastic 

parameters. The six complex eigenvalues p  satisfy 3p p    and are the solutions of a 

quadratic eigenvalue problem (7). In addition, a and b are the Stroh eigenvectors, satisfy 

3  aa  and 3  b b , related through the matrices Q, R and T described in the following. 

p , a  and b  depend only on the elastic stiffnesses . Without loss of generality, the 

imaginary part of 
ijklC

p  is taken to be positive. Overbars of  denote the complex 

conjugates.  

,  p z ,  ,    a b

,ijkl k lC uUsing the stress-strain law ij   and the static equilibrium equations , 0ijkl k ljC u   

with eq. (5), the resulting eigenvalue equations can be written in matrix form as:  

  2( )p p   TQ R R T a 0
 (7) 

where , 1 1ik i kQ C 1 2ik i kR C  and 2 2i kT Cik  . For a non-trivial solution of , the characteristic 

equation must be zero, i.e. 

a
2det (p  TQ R

26

22

24

C C

C

C






0

0 0

 

) 0p R T






0

0








, which results in six roots for the 

eigenvalue p. In matrix form and with Voigt’s notation, we have 

  (8) 

11 16 15 66 46 16 12 14

16 66 56 26 24 66 26 46

15 56 55 46 44 56 25 45

,    and  

C C C C C C C

C C C C C C C C

C C C C C C C C

   
        
      

Q T R

In the special case of isotropic elasticity  
  

  (9) 

2 0 0 0 0 0

0 0 ,  0 2 0 ,  0

0 0 0 0

   
 

 

    
           
        

Q T R

where the Lamé constants are expressed by 
 1 1 2

E
 


 

and 
 2 1

E





 with  being E
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Young’s modulus and   being Poisson’s ratio for material A or B. Making use of the constitutive 
equation and Eq. (6), the relation between a and b can be written:  

 
   T 1

p p
p

    b R T a



η

2

Q R a
 (10) 

With this, the above quadratic eigenvalue problem can be recast as a conventional 
six-dimensional linear eigenvalue problem 

  (11) 

1 2

3 1

    

,   

T p

p

     
    
    

 
    

 

N N a a

N N b b

a
Nη η

b

where ,  and . Eshelby et al. (1953) stated that since 1 T
1

N = T R 1N = T 1 T
3

N = Q + RT R

p  cannot be real if the strain energy is to be positive, we have three pairs of complex conjugates 

for p  as well as for η . If p  and  1, 2, ,6  η   are the eigenvalues and eigenvectors, we 

let 

 

3

3

,  Im 0 
 1, 2,3

p p p  

 





  
 η η

 (12) 
where Im denotes the imaginary part. 

The Stroh eigenvectors are determined up to an arbitrary constant. They are normalized as  

 
T T

ˆˆ
  and  ,  1, 2,3

ˆ ˆˆ ˆ2

 
 

   

 
a b

a = b =
2a b a b  (13) 

where ˆa  and ˆ
b  are the non-normalized eigenvectors, i.e. those that would be produced by a 

standard eigensolver; a  and b  represent the direction of the displacement u  and traction 

t , respectively . 

Now we turn to the second eigenvalue problem, i.e. finding the stress singularity governed by 

m . As suggested by Ting (1996; 1997); Labossiere and Dunn (1999), we choose  f z  as  

 
   3

1 1
  and   f z z q f z z h           (14) 

where q  and h  are the unknown complex constants and will be determined by Eq. (19) once 

  is obtained. Using the expression 1 2 ( ) (cos sin )z x p x r r p           , the 

displacements and tractions in a plane polar coordinate system originated at the notch tip are 
derived 

 

   

   

3

1

3
1

1

M M1 M

M M M

r q h

r q h
r

 
     



 
     

   

     





   

    

u a a

t b b



 (15) 
where superscript M  indicates material  or A B . The second eigenvalue problem can be 
solved using the boundary conditions for the interface notch problem, see Fig. 1.  

The traction-free boundary conditions on the notch flanks ( ,       
0

) and the continuity 
conditions of the stresses and displacements along the interface (  ) result in the following 
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boundary condition equations  

            0, 0, 0 0 , 0 0A B A B A B     t t t t u u  
 (16) 

Substituting eq. (15) into eq. (16), a group of 12 linear equations in the 12 unknown coefficients 
 is deduced.  ,  , ; 1, 2,3M Mq h M A B   
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

 (17) 
Using eq. (17)1 and (17)2, we express  in terms of  and  in terms of , 

respectively. A non-trivial solution exists only if the determinant of the coefficient matrix vanishes. 
This occurs when the eigenvalue, 

Ah Aq Bq Bh

 , satisfies the following equation which is dependent on the 
stiffness matrix, : ijklC

 

        
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   


b B b B b B b B
B q

0
B ha B a B a B a B

  (18) 
which results in six simultaneous eigenvalue equations with six unknowns    ,  1, 2,3A Bq h   

  (19)      ,  det 0   K D 0 K

In the above equations,      1 1 2 2 3 3, ,A A A A A A A          B b b b

B

, 

,      1 1 2 2 3 3, ,B B B B B B            B b b b
T

,  A A B B   D B q B h , , 

, , 

1 2 3, , M M M M   a a a a

1 2 3, , M M M M   b b b b
T

1 2 3, ,M M M Mq q q   q
T

1 2 3, ,M M M Mh h h    ( ,h  )M A B  

Eventually, in the particular case of a crack  with an isotropic or anisotropic 
uni-material, the well-known result, 

( 0 )  

1
2   is obtained. In the case of an edge notch 

 with a homogeneous isotropic or anisotropic material, we obtain  180 , 90    1   and 

the stress singularity disappears. Once the value of   has been computed from the characteristic 
equation (19), the eigenvectors  M Mq , h  can be calculated.  
 

3. Computation of stress intensity factors by the H-integral approach 
 

To complete the knowledge of the stress and displacement fields in the neighbourhood of a 
notch tip, the stress intensity factors are required. Once the order of the stress singularity is 
obtained from the asymptotic analysis above, the stress intensity factor for a sharp notch, wedge 
corner or a crack can be computed using the path independent H-integral approach (e.g., Shang et 
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al., 2008; Labossiere and Dunn, 1999). Based on Betti’s reciprocal work theorem (Rogers and 
Causey, 1962), the concept of this contour integral method is to combine the numerical stress and 
displacement solutions with an appropriate complementary field so that the value of the integral 
gives the magnitude of the notch stress intensity. This simple procedure comes with significant 
savings in computational time compared to the other approaches and also with the possibility to 
easily perform parametric analyses.  

Consider for example a closed contour  excluding the stress singularity in a planar linear 
elastic body, as shown in 

C
Fig. 1. The Betti’s reciprocal law in the absence of any body force can be 

stated as  

  (20) 
 * *

1 2 30   
ijij i i jC

u u n ds where C C C C      4C

and where ( , ) ( , )i j r 

C ij

are the plane polar coordinates centered at the interface corner,  is the 

outward unit normal to the counterclockwise closed contour , is an infinitesimal line 
segment of . 

jn

C ds
 ,  are the notch corner stress and displacement fields in terms of eigenvalue 

 and stress intensity factor , 

iu

1)(m m   n
mK *

ij
 ,  are complementary singular stresses and 

displacements satisfying the same boundary conditions as (

*
iu

ij , ) but with respect to an 

associated eigenvalue 

iu
*
m  and stress intensity factor . Note that the employed 

complementary field has no physical significance here. 

*n
mK

Szabo and Babuska (1988) and Wu and Chang (1993) showed that if m  is an eigenvalue for 

the given material properties and notch geometry, *
m m    is also the eigenvalue for the same 

problem. Hence, the near-tip stress and displacement fields corresponding to the eigenvalue *
m  

can be taken as the complementary fields. According to eq. (4), they are described by 
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 (21) 
Since the integration in (20) vanishes along the traction free surfaces  and . i.e. 

, see 
1C 3C

* 0
ijij j jn n   Fig. 1, it reduces to  

  (22) 
   

2 4

* * * *

ij ijij i i j ij i i j

C C

u u n ds u u n       
On the left-hand side of Eq. (22), the contour integral is simplified to either one coefficient 
proportional to the stress intensity factor or a linear combination of  and  for an 

arbitrarily small radius 
1
nK 2

nK

  (e.g., Stern et al., 1976) 

 
 

2

* *
1 1 2 2ij

n n
ij i i j

C

I u u n ds e K e       K

ds

 (23) 
where ,  are constants. The unstarred stresses and displacements along  were taken from 

the asymptotic analysis, eq. 
1e 2e 2C

(4), while the starred stresses and displacements were employed from 
the complementary singular field, eq. (21). 

Accordingly, only the outer contour  is involved in the numerical integration for 

determining the desired stress intensity factors. The H-integral is defined as 
4C

  (24) 
   

4

* * * *
ij i ij i j ij i ij i j

C

H u u n ds u u n   


    
and in polar coordinates, the above equation becomes 
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 * * * *

rrr r r rr rH u u u u




  
rd   


    

 (25) 
In eq. (24),  can be any contour within the planar linear elastic body commencing on the lower 
notch flank and terminating on the upper. The unstarred fields 


( , )ij iu  are obtained from the 

finite element calculations while the starred fields  are taken from the complementary 

singular field satisfying the same boundary conditions as those for 

* *( , )ij iu
( ,ij iu )  

For a general corner (Fig. 1), we can define the respective stress intensity factors by 

 

   
11 210, 0 0, 0

, ,
lim ,  lim rn n

r r

r r
K K

r
 

  2 1r

  
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 



 (26) 

where  , r  are the normal and shear component in the   direction of the stress field, 

respectively. 1,  2   are the eigenvalues stemming from the corresponding eigen-equation (19).  

The different stress intensity factors  and  corresponding to the individual 

eigenvalues 
1
nK 2

nK

1  and 2  can be evaluated simultaneously (e.g., Carpenter and Byers, 1987). 

Alternatively, it can be attained independently as described here. Since the eigenvectors M Mq , h  
in eq. (18) for each eigenvalue are determined only up to an arbitrary constant, we normalize the 
stress fields such that    , 0 , 0rr K r K   1 1

1 ,n r  2 1
2
nr    

 * *
1, 0 nr 

. Similarly, for the 

complementary field: 1 1K r    ,  *
2, 0 n

r r K
2 1r *     . Note that the 

complementary field must satisfy the equilibrium equations and traction-free conditions on the 
notch flanks so that the integral along the inner contour C  yields the desired stress intensity 

factor. Moreover, the complementary solution is chosen with eigenvalue *
m m    to eliminate 

the dependence of the integrand on the -coordinate. With all these conditions, the magnitudes of 
 are determined so that the resulting inner contour integral identically produces , 

either  or . The choice of 

r

 2 1 20,  1nK e e

* 1, 2n
mK m 

nK e

 nK

 1 1 21,  0e   *n
mK m 1, 2  is also described 

by Banks-Sills and Sherer (2002) and Zhang and Mikkola (1992).  
 

4. Results and discussion 
 

In this section, we apply the path independent H-integral approach to an edge notch and a  
notch in multi-layered structures as depicted in 

90


Fig. 4. Finite element analyses are performed with 
ABAQUS. Eight-noded quadrilateral, reduced integration elements were used. Plane strain 
conditions are assumed in all simulations and three dimensional effects are not considered. We also 
assume that the materials are perfectly bonded along the interface. The loading system proposed 
by Kitamura et al. (2002; 2003; 2007) has been chosen for the study. Typical material 
combinations in microelectronic devices are taken into consideration. The elastic properties of the 
materials are listed in Table 1. Beam span , height  and width of silicon substrate  are 

 and 3.4 , respectively. A 350
L h w

10,  1 mm μm  thick [100] silicon substrate and 8μm  thick adhesive 
layer is employed for all specimens.  
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4.1. Order of singularity results 

 
The eigenvalues describing the order of the stress singularity for different material 

combinations are listed in Table 2. These can be obtained analytically from eq. (19). It can be seen 
that the orders of the stress singularities at interface X  vary from -0.07 to 0. Hence, interface X  
displays a typical weak singularity problem. Combined with commonly used metal layer, the 
isotropic silicon has slightly higher singularity compared to the anisotropic silicon. For the cases 
such as Si/Cu, Ta/Si and TiN/Si,   is almost equal to 1, i.e., vanishing singularity. Additionally, 
for all the material combinations studied here, Au and Al have stronger singularities than the rest. 
interface  shows a higher singularity than interface Y X . 

 
Fig. 4 Finite Element mesh and dimensions. 

Table 1 

Elastic properties used in Finite Element Analysis 

 Isotropic Materials 
Materials Elasticity Au Cu Al Si Steel Epoxy 

Young’s Modulus ( GPa ) 83 129 70 167 200 2.50 
Poisson’s Ratio 0.44 0.34 0.35 0.30 0.30 0.30 

Materials Elasticity SiO2 Ta TiN TaN Glass SiN 
Young’s Modulus ( GPa ) 92 186 195 350 63 304 

Poisson’s Ratio 0.30 0.34 0.3 0.35 0.20 0.27 
 Anisotropic Silicon [100] 

Elastic Stiffness Matrix 

11 12 12

12 11 12

12 12 11

44

44

44

0 0 0

0 0 0

0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

S S S

S S S

S S S
GPa

S

S

S

 
 
 
 

  
 
 
 
  

S  

where  (Mason, 1958) 11 12 44165.7 ,  63.9 ,  79.56S GPa S GPa S GPa  
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Table 2 

The eigenvalues describing the order of stress singularity with the varying material properties and the 
corner geometry 

Material 
A 

Material B 1  Material 
A 

Material B 1  

Au 0.9332 Au 0.9522 
Al 0.9304 Al 0.9481 
Cu 0.9912 Cu 0.9967 

Glass 0.9710 Glass 0.9825 
SiO2 0.9718 SiO2 0.983 

Ta 1 Ta 0.9981 
TiN 0.9979 TiN 0.9946 
SiN 0.9689 SiN 0.9624 

Interface X  
(free edge) 

TaN 

Isotropic 
silicon 

0.9637 TaN 

Anisotropic 
silicon 

0.9556 
Interface  Y

(  notch) 90
 Steel Epoxy 0.7049    

 

4.2. The influence of elastic properties of bi-materials on the stress singularity 

 
Various researchers have studied material mismatch parameters and the stress singularities at 

interface corners/wedges/cracks since the pioneering work described by Williams (1952; 1959). 
By contrast, our study focuses on the evaluation of the weak singularity for a free edge interface 
(Fig. 2). A wide range of elastic moduli and Poisson’s ratios has been taken into account, covering 
most material combinations of interest in the electronic industry. The influence of elastic constants 
in various material combinations on the free edge singularity is displayed in the following. 
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A
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A
=70GPa, 

A
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A
=129GPa, 

A
=0.34)

 

Fig. 5 The effect of Young’s modulus ratio ( 0.30B  ) on weak singularity. 
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First, the orders of stress singularities are illustrated for the free edge with conventional metal 

material, i.e., Au, Al, Cu as upper material A  together with a wide range of values for B

A

E

E
. 

Varying , it can be observed from BE Fig. 5 that the stress singularity decreases first with modulus 

ratio B

A

E

E
 and then increases with B

A

E

E
 when the material  is more compliant than the 

substrate material

A

B . Note that if both 1B

A

E

E
  and the Poisson’s ratio A B  are met, the stress 

singularity 1   is zero in just one point on the abscissa, which is equivalent to the case for 
edge-bonded homogeneous isotropic material. The reason why we get a region of vanishing 
singularity instead of one point, see Fig. 5, is due to the different value of Poisson’s ratio for 
material A  and B  here. Moreover, the effect of Poisson’s ratio on stress singularity is further 
depicted in Fig. 6. The more the Poisson’s ratio of material A  deviates from 0.3, the wider is the 
range of the no-singularity zone ( 1 

GP

). For example, no stress singularity occurs when the 
Poisson’s ratio of material  equals 0.45 and its Young’s modulus ranges from 140 to 230 GP . 
Similarly, the singularity vanishes when the Poisson’s ratio of material  equals 0.2 and its 
Young’s modulus varies from 90 to 160 . When the Poisson’s ratio of material 

A a
A

a A  equals 0.3, 
the range of its Young’s modulus to reach no-singularity shrinks to around 150 . GPa
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Fig. 6 The effect of Poisson’s ratio on weak singularity when material B  is [100] silicon.  
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4.3

application of the 

. Standardized numerical formulae for the stress intensity factor 
 

For a practical H-integral, standardized numerical formulae for calculating 
the stress intensity factor for the specimens considered in this study can be derived. Since n

mK  has 

the dimension of   1 mstress length


, it is impossible to compare the magnitude of the stress 

intensity factor for different material combinations even if the notch geometry is the same. With 
the aim of a quantitative measure of the stress intensity factor for various materials and applied 
loads, the following non-dimensional stress intensity factor (e.g., Labossiere and Dunn, 1999; 
Carpinteri et al., 2006) can be used  

10
2

,
6m PL

w
bh

n
n mKa t

Y
w t 

 



 
 

 force, and span, width 
ending on the geometry 

of the structure by m

 
 (27) 

where a , w , t , 0t , P , L , b , and h  denote, respectively, the bond length, substrate width, 

conductor layer thickness, nominal/characteristic thickness, concentrated
and height of the steel beam (Fig. 4), whereas Y  is a shape function dep

eans of the ratios 
0

,  
a t

w t
. Furthermore, we can write 

 0 0

,     n n
m ref

a t a t
Y Y f g

w t w t

          
      (28) 

where 

0 0 , ,  0.5, 0.2n n
refn n

r

w t w ta t a t
f g Y Y

w Y

                
  

 

According to Eq. 
0 0

, 0.2 0.5,

m

n n
m m

ref ef

a t a t
Y Y

Y t w t

   
    

  
e es s (28), th  r ult obtained from the H-integral approach can be fitted to the 

power function    k
f geometry j geometry  and    s

g geometry l geometry . The best-fit 

values of the parameters j , k , l  and s  are shown in Fig. 7 for the isotropic Au/Si 
multi-layered structure. The detailed values obtained from H-integral approach and mathematical 
fit are given in Table 3. Moreover, the reference geometry we chose here is representative for 
practical applications. 

0.4 0.5 0.6

1.1

0.7 0.8
0.6

0.7

0.8

0.9

1

a/w

f(
a

/w
)

f(a/w)=0.490*(a/w)(-1.010)
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0
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Fig. 7 The power function    
0

  a t
w tf and g  for isotropic Au/Si multi-layered structure 
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Table 3 

Fitting of the H-integral solutions for isotropic Au/Si multi-layered structure 

a

w
 0

, 0.2n
m

n
ref

a t
Y

w t

Y

 
 

   

a
f

w
 
 
 

 
0t

t
 

0

0.5,n
m

nYref

a t
Y

w t

 
 

   0t 

t
g
 
   

0.5 1 0.989 0.05 1. 4 30 1.292 
0.56 0.869 0.881 0.1 1.109 1.128 
0.62 0.779 0.797 0.2 1 0.986 
0. 8 6 0.727 0.727 0.3 0.895 0.911 
0. 4 0.683 0. 8 7 66 0  .5 0.815 0.825 

   0  .75 0.773 0.773 
  0.721  1 0.729 

 
Consequently, a standardized numerical formula for the engineering design reads 

     
-int 0 0

0.1951.010
, 1.464 0.490 0.721

H egral

n a t a t
w t w tY


  

  (29) 
where 

0
0.5, 0.2

0

01.464,  =1000   and  0.5 0.74,  0.05
a t
w t

ref wY Y t nm
   
 

    1.n n a t
t   

uch relationships can be derived for other material combinations as well. 

d ctor layer thickness, and bond area on the 
imensionless stress intensity factor Y  

 
 the effect of material 

mis

ti
alu

S
 

4.4. Effects of material mismatch, con u
d

The aim of this section is to present a parametric study including
match, thin film thickness, and bond area on the singular stress field.  

Using the geometry, loading and mesh illustrated in Fig. 4 as a basis, material combinations 
are chosen relevant to the integrated circuits industry. The effect of the elastic mismatch on stress 
intensity factor is investigated here. Alterna ve conductor layers of copper (Cu), gold (Au) or 

minium (Al) are employed for material A , see Fig. 2. For the free edge interface (interface 
X ), it can be observed from Fig. that the structure with a Cu layer yields the highest 
dimensionless stress intensity factor 1

nY , followed by that with Au and Al layer. Comparison 

between isotropic Si and anisotropic Si substrate is also included. Anisotropy of the Si substrate 
has a significant influence on the stress intensity factor when combined with an Au or Al metal 
layer but not with a Cu layer. Unlike the response of the structure with a Cu layer, the stress 
intensity factor for an isotropic Si substrate is lower than that for an anisotropic Si substrate with 
the other two metal materials. We believe this is due to the copper and isotropic silicon having 
similar elastic constants and single crystal silicon being only slightly elas anisotropic 

(Suwito, 1997). Besides, Au and Al have similar performance owing to 

8 

tically 

1Au

AlE
 . It is not 

surprising that the influence of the metal material properties and e anisotropy of sili

E

 th con substrate 
on the stress intensity factor for the sharp notch (interface ) is insignificant.  90  Y
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Fig. 8 The effect of material properties and thickness of metal layer on the dimensionless stress intensity 

factor ( ) 0 1000t n m

 
Fig. 8 also shows the effect of thin-film thickness on the dimensionless stress intensity factor. 

In these simulations, the bond area is kept constant ( 1.7 mma  ), the thin film thickness equal to 
50, 100, 200, 300, 500, 750 and 1000  are analyzed. It turns out that the magnitude of stress 
intensity factor for interface 

nm
X  approaches a constant value with increasing the thickness of 

metal layer. It is clearly shown that the contribution of thin-film thickness needs to be considered 
in order to accurately describe the singular stress state in the vicinity of free edge interface when 
the metal layer is less than 300 nm thick. That is to say, the stress intensity factor is sensitive to 
thin-film thickness in some cases whereas the thickness component can be ignored in considering 
the dimensionless stress intensity factor when metal layer is above a certain thickness. On the 
other hand, the stress intensity factor decreases with the increasing conductor layer thickness but 
the variation of metal layer thickness has no contribution to the change of singular stress field for 
interface . Y

In addition, the effect of the bond width is depicted in Fig. 9. In this case, the metal layer (Au) 
remains 200  thick (nm

0
0.2t

t  ), the isotropic silicon substrate thickness is 3.4 mm  whereas the 

bond width is varied from  to . The stress intensity factor for interface 1.7 2.5 mm X  clearly 
decreases with the bond area but change insignificantly for interface .  Y
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Fig. 9 The effect of bond area for an isotropic Si substrate  

 

4.5. The competition between the  notch interface and the free edge interface  90

 
It is of interest to discuss the competition of crack initiation between the free edge interface 

(interface X ) and the 90º notch interface (interface Y ) in the chosen specimens. The 
dimensionless stress intensity factor is higher for the former than for the latter as shown in Y Fig. 
8. But the stress field is governed by the combination of  and Y  , i.e., the stress is proportional 

to 
1

Y

r  . In the competition between notch X  and  this has to be considered. For notch ,Y Y   

is 0.7049, and for notch X ,   is an order of magnitude less. In addition, the fracture resistance 
for the material at notch X  and Y  will differ. Hence, the fracture competition is governed by 
the set (  or Y , K  , fracture resistance) of notch X  and Y , respectively. 

 
4.6. Applicability of the H-integral and existence of the -dominated field K
 

The proposed H-integral approach is based on the assumption of anisotropic elasticity with the 
dominance of a -field. The asymptotic solution has poor approximation very close to and far 
away from the interface corner. Stress singularity at the notch tip is only theoretically possible as 
the notch root radius will be finite, the material can be non-linear and inhomogeneous. Provided 
that the inelastic zone is much smaller than the -dominated field, the stress obtained from the 
asymptotic analysis can reflect the actual stress state. The plastic region is controlled by the yield 
stress. Following the work of Irwin (1960), the plastic zone size is estimated by Banks-Sills and 
Sherer (2002) for dissimilar isotropic bi-material and by Suwito (1997) for anisotropic silicon. In 
our investigation, since the analyses are for linear elastic materials, it is assumed that the plastic 
zone size is very small, i.e., small scale yielding conditions hold at the interface corner. 

K

K

Far away from the notch tip, the solution is perturbed by finite boundaries and loading so that 
 can no longer characterize the actual stress state and then higher order terms are required to 

describe the behaviour. As a result, the asymptotic solution has a limited domain of validity.  

n
mK

To quantify the extent of the region dominated by the -field and validate the applicability of K
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the H-integral approach, finite element calculations were performed for diverse material 
combinations, illustrated in Fig. 10. The stress component   along the interface X  is 

employed. Subjected to the remote load of , the results obtained from the H-integral 

approach and the detailed FE solutions agree satisfactorily, e.g., the normal stress 

200 μN

  obtained 

from two methods agrees to 10% within a distance of  for A  case with 
 bond width. Similar results are obtained for the other material systems. 
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Fig. 10 Comparison of interface stress from asymptotic solutions associated with 1  and the detailed finite 

element results for different material combinations 

 
Furthermore, a full singular stress field can be developed in an infinite bi-material system. 

Crack initiation is clearly governed by this K-dominated field. However, this is not always the case 
for a multi-layered thin film system. The extent of the singular field is strongly influenced by finite 
geometry, such as the thin film thickness. It is possible to evaluate the size of K-field by comparing 
the asymptotic solution to a detailed FE numerical analysis. Consider an Au layer bonded with a 
1.7  wide isotropic silicon substrate. mm Fig. 11 shows the interface stress   from detailed 

finite element analysis with varying metal layer thickness subjected to remote load of  . 

Regarding a 5% deviation of predicted 

200 μN

  calculated from the H-integral approach from the 

detailed FE results, Fig. 12 further shows the relationship between the valid range of K-field and 
the thin-film thickness for the free edge interface. The thicker the metal layer, the more extensive 
is the valid range of K-field for interface X . In contrast to Fig. 10, the valid K-field is much 
larger for interface  displayed in Y Fig. 13. It should be also pointed out that even though the 
metal layer thickness reaches nanometer scale, the stress intensity factor  can still characterize 

the singular stress field. The H-integral approach is a sufficient and effective way to evaluate the 

n
mK
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interface failure for multi-layered thin film structures, remembering that the selection of the outer 
contour should be neither very close to nor far away from the notch tip. It should also be noted that 
inaccuracy of the stress intensity factor can be induced by the numerical approximations made in 
the finite element calculation and by the numerical integration scheme adopted to calculate the 
H-integral. It can be improved by generating a reasonable finite element mesh and choosing a 
contour with a reasonable number of integration points, sufficiently far from the notch tip (e.g., 
Stern et al., 1976; Carpenter, 1984a; 1984b; Banks-Sills, 1997; Labossiere and Dunn, 1998; 1999; 
Banks-Sills and Sherer, 2002). It has also been observed that the choice of the integration path is 
less significant for interface  than that for interface Y X .  

10
0

10
2

10 10
31

10
2

10
4

10
5

10
1

r (nm)

In
te

rf
ac

e 
st

re
ss

 


(M
P

a)

 

 

S


(FEA, 50nm)

S


(FEA, 100nm)

S


(FEA, 200nm)

S


(FEA, 300nm)

S


(FEA, 500nm)

S


(FEA, 750nm)

S


(FEA, 1000nm)

thickness

 
Fig. 11 The interface stresses obtained from detailed finite element solution with varying metal layer 

thickness 
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Fig. 12 The relationship of -dominated field and thin-film thickness. K
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Fig. 13 Interface stress for interface  with 200nm thick metal layer Y

 
A failure criterion based on the critical concentrated stress fc  (Kitamura et al., 2007) has 

been proposed to characterize the crack initiation. It was shown that the slope of interface stress is 
very moderate and the stress near the edge is almost constant in the nanometer (or atomic) range 
among the specimens with metal layer ( 200  thick) in the region of nm 500 nmr  . However, our 
study found that an observable stress gradient exists for both interface X  and interface  
shown in 

Y
Fig. 11 and Fig. 14. Besides, from the magnified view of stress distributions near the free 

edge interface, see Fig. 15, it indicates that the stress gradient is significant for the specimens with 
metal layers thinner than . As a consequence, we believe that the critical stress intensity 
factor is a feasible and alternative method to correlate crack initiation compared with critical 
failure strength for the problem shown in  

100 nm

Fig. 3. However, when the thin-film thickness is very low and the elastic singularity may not 
dominate a region compared to the inelastic zone, it may be possible that  no longer is 

feasible for fracture initiation prediction. Note that from 

n
mK

Table 2, the slope of the stress versus  
curves for this material combination should ideally be -0.0668. Some deviation from this value 
appears in the slopes in 

r

Fig. 15. This is due to the influence of the layer thickness and some 
inaccuracies, and the finite element meshes employed to get these very detailed stress results close 
to the notch tip. 
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Fig. 14 The stress distributions along the interface . Y
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Fig. 15 The magnified view (log–log plot) of the stress distributions near the interface edge for the Au/Si 

specimens. 
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It is also worth noting that the deformation is actually mixed-mode for an interfacial notch with 
dissimilar materials. Interface shear stress and normal stress for  case with 

 versus the distance from the interface corner are plotted in 
Au (200 nm)/Si

0.0670.5 MPa m

2100 μm Fig. 16. Note that the shear 
stress along the interface is much lower than the normal stress. Mode I deformation is dominating 
in the cases analyzed here. Again, one typical case of  was chosen for comparison, 
as depicted in 

Au(200 nm)/Si
Fig. 4. Finite element calculations were performed with the applied load equal to the 

failure load 0.6 N (Kitamura et al., 2007). The free edge fracture toughness attained from 
H-integral approach is , which matches well with  from the 
literature (Kitamura et al., 2007). Therefore, this comparison suggests that the critical mode I 
stress intensity factor can be used to correlate the onset of fracture at the interface corner. 
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Fig. 16 Interface normal stress and shear stress 

 
A possible criticism of H-integral approach arises in that we have disregarded the possibility of 

plastic deformation in ductile metal layer. To check the validity of this approximation, 
elastic-plastic analysis was executed to allow plastic deformation in the metal layer. Taking 

 as an example and assuming the elastic–linear hardening model with a yield 
stress of  and a hardening modulus of 8.3 . Applying the critical delamination load 

 from (Kitamura et al., 2007) to the specimen, it is observed that no plastic strain 

occurred in the finite element analysis. An explanation for this is that the relatively stiff silicon 
substrate and the steel cantilever compared with the compliant gold film restrain the plastic 
deformation of the metal layer. On the other hand, given that silicon exhibits no observable 
plasticity at room temperature (Lawn, 1995), it is reasonable to assume the -field is relatively 

Au (200 nm)/Si
160 MPa

0.6 NcP 
GPa

K
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large compared to the plastic zone at the notch tip. This is further supported by Sinclair and 
Lawn’s (1972) calculation, which shows that strong crack tip non-linearities extend only a few 
atomic spacings from the crack tip. 
 

5. Conclusions 
 

Our study shows that the H-integral is a feasible and a reliable approach to compute the edge 
stress intensity factor in multi-layered structural components with weak singularities. The 
asymptotic analysis provides the basis for a proper modelling of the singular stress field and 
illustrates the dependence of stress singularity on elastic mismatch parameters. The stress intensity 
factors are obtained for a wide range of material and geometry parameters. 

A wide range of material combinations which commonly appear in the integrated circuits 
industry is considered. The effects of elastic mismatch, bond area and metal layer thickness on the 
stress intensity factor have been quantified. The proposed approach is favourable from an 
engineering point of view, due to the fact that such situations are occurring very frequently in 
composite structural elements and it can be used as a supplement for a preliminary design of new 
components. 

Furthermore, the analysis of the competition for crack initiation between a free edge interface 
and a 90º notch interface in the chosen specimen has been presented and the question of prevailing 
failure mode in multi-layered structural components is addressed. Due to the possibility to shift the 
crack initiation site between two different notch interfaces, sufficient attention should be paid to 
this issue. 

The applicability of the H-integral approach and existence of the -dominated field has been 
studied. The extent of the singular field is assessed by comparing the asymptotic solution to the 
detailed Finite Element analysis of the stress fields. It is observed that the valid range of the 

-field is strongly influenced by thin-film thickness. The relation between the K-field and 
thin-film thickness is depicted as well. Again, to demonstrate the accuracy of this contour integral 
approach, example problems are considered and results are in good agreement with those from the 
literature.  

K

K

In addition, plastic deformation in the ductile material, anisotropy of the silicon substrate and 
different failure criterions have been explored. Standardized numerical formulae have also been 
provided to for practical application of the H-integral.  

Note that the grown of thin interlayers between the Silicon substrate and the steel cantilever is 
not considered in the present study. This hypothesis results in perfectly bonded interfaces, 
assuming no relative displacements between each other. The validity of this hypothesis deserves 
further discussion (e.g., Sinclair, 1996; Carpinteri and Paggi, 2008).  
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Abstract 

This paper illustrates an efficient contour integral procedure to obtain stress intensity factors in 
combination of the asymptotic analysis with finite element analysis. Note that this set-up is very general: the 
material can be anisotropic elastic, and the specimen can be built as a bi-material system, notches of arbitrary 
opening angle can be analyzed ( =0 → crack,  =180° → free edge). The purpose of this technical note is 
to comment on three issues in the notch mechanics: the interpretation of the eigenvalue equation, the 
definition of stress intensity factors, and the effect of the outer contour location on H-integral evaluations. 
 
Keywords: stress intensity factor, contour location, notch mechanics, eigenvalue equation 
 

1. Introduction 

It is well known that the failure of many bonded joints often initiates at the interface corner ( 
Fig. 1) due to the stress concentration. The singular stress fields around the corner play an 

important role in assessing the reliability of the joints and can be characterized by eigenvalues m  

and notch stress intensity factors . An efficient contour integral procedure to obtain stress 

intensity factors in combination of the asymptotic analysis with finite element analysis is briefly 
illustrated in 

n
mK

Fig. 2. Note that this set-up is very general: the material can be anisotropic elastic, 
and the specimen can be built as a bi-material system, notches of arbitrary opening angle can be 
analyzed ( =0 → crack,  =180° → free edge). The detailed descriptions can be found elsewhere 
(Shang et al., 2008; 2009).  

 

Fig. 1 Schematic plot of a re-entrant corner in a bi-material system 

The purpose of this technical note is to comment on three issues in the notch mechanics: the 
interpretation of the eigenvalue equation, the definition of stress intensity factors, and the effect of 
the outer contour location on H-integral evaluations. 
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Fig. 2 flow chart illustrating the procedure to obtain the stress intensity factor 
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2. Interpretation of the eigenvalue equation  
 
Utilizing the traction-free boundary conditions (1) on the notch flanks ( ,        ) and 

continuity along the interface,  

            0, 0, 0 0 , 0 0A B A B A B     t t t t u u  
 (1) 

six simultaneous eigenvalue equations with six unknowns  ,  1, 2,3A Bq h     are deduced as: 

 

        
        

1 1 1 1

1 1 1 1

A A A A B B B B
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A A A A B B B B

   

   

     
  

   


b B b B b B b B
B q

0
B ha B a B a B a B



1

. (2) 
The above equation can be simplified to 

  (3)      ,  det 0  1K D 0 K

where ( )  (cos sin )p      
,      1 1 2 2 3 3 , ,A A A B A B A         B b b

3 3
B 

 b

b
, 

,    1 1 2 2 , ,B B B      B b B B B   b
T

 ,  A A B B   D B q B h , 

, , 1 2 3 , , M M M  a a  , M Mb bM a a 1 2 3, M M  b b
T

3
M

1 2 , ,M M Mq q q    1 2 , ,M Mh h hhq

,  

, . 
T

3
M M  

M A B  corresponds to material system A or B. With this, the eigenvalues  can be 

obtained.  

1, 2,...m 

One aspect that is not clearly shown in the literature is why the determinant of the matrix 
 1K  is sufficient for a non-trival solution of (3) regardless of the matrix  D , noting that the 

matrix  is also a function of D  . The reason for it is stated below. 
Equation (2) can be rewritten as  

 

        
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
. (4) 

That is, 

 . (5)   K q 0

A non-trivial solution exists only if the determinant of the coefficient matrix vanishes, i.e.:  

           det 0 det 0 det det 0        1 2 1 2K K K K K 
. (6) 

Furthermore, 
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 Det 02K λ , and consequently Eq. (6) reduces to  det 0 1K . 

 
3. Definition of stress intensity factors  

 
Another issue in the notch mechanics relates to the definition of stress intensity factors. The 

concept of ,  and  in notch mechanics is quite different from the three deformation 

modes in traditional fracture mechanics. As we know, an interface edge and a notch are critical 
positions for crack initiation. Subjected to the remote mechanical loading, the interface stress field 
around the notch corner is proportional to 

1
nK 2

nK 3
nK

 1 1, 2,m

m

nK r m N   

m
K

1m

 where  is the number of 

eigenvalues available from the characteristic equation. Superscript  indicates the notch for the 
sake of distinction from the stress intensity factor  in classical fracture mechanics,  is the 

radial distance from the notch corner and 

N

n
r

   is the order of the stress singularity. The stress 

field is singular for 0 R 1e( )m   where Re( )m  is the real part of m .  

For a re-entrant corner (Fig. 1), we can define the two first stress intensity factors in terms of 
the opening and shear stress along either the interface for bi-materials or the bisector of 
homogeneous isotropic or anisotropic material, by using 1  and 2 . Note that this is not the 

same as the Mode I and Mode II stress intensity factors employed in classical fracture mechanics 

 

   
11 210, 0 0, 0

, ,
lim ,  lim rn n

r r

r r
K K

r
 

  2 1r

  
   

 



 (8) 

where  , r  are the normal and shear component of the stress field, respectively. Note that 

the definition of the stress intensity factor for a general corner problem is somewhat arbitrary. 
Nevertheless, some authors gave a different definition from (8). For instance, Stern and Soni (1976) 
used the following definition  

 

   
11 210, 0 0, 0

, ,
lim ,  lim rn n

r r

r r
K K

r
 

  1 1r

  
   

 



 (9) 
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where the value of 1  is the smallest non-negative root of the characteristic equation (Stern and 

Soni, 1976; Carpenter, 1984a) and the principal part of the elastic state (near-tip displacements and 
stresses) is then precisely the eigenstate in terms of the value of 1 . Carpenter (1984a) also 

followed this notation but changed back to (8) for all his subsequent studies. It is noted that there is 
two alternative ways of defining . Hence, we focus on the shear stress term in eqs. 2

nK (8) and (9) 

subsequently. 
In a historical perspective, the former definition (8) seems more reasonable. This definition is 

supported by Suwito’s (Dunn et al., 1997) experimental work. In his investigation, the notched 
flexure specimen (isotropic acrylic) were subjected to pure mode II loading and the eigenvalue 
describing the stress singularity of 90° notch was 2 0.9085   ( 1 0.5445  ). Displacement 

components along the notch flanks were used to extract . The critical stress intensity factor 

 was used to correlate fracture initiation. Meanwhile, it was illustrated that a better fit to 

detailed finite element results could be achieved if the constant term (

2
nK

2
nK

1  ) was also considered.  
As a matter of fact, the slope of  versus log r log r  curve is no other than the order of the 

stress singularity 1   for a single deformation mode. As for mixed-mode, usually the sum of the 
different singular fields, such as  terms, will match the detailed finite element results in a 

wider range than that with any individual stress intensity factor  or . However, the 

dominating stress intensity factor can be in good agreement with the detailed FE solutions.  

1 2
n nKK

1
nK 2

nK

The definition (8) is further explored in the following example. Consider a 90° notched 
specimen having the dimensions: height 42 mmH  , width 17.2 mmw   and notch depth 

, see 1.78 mmd  Fig. 3. The Young’s modulus and Poisson’s ratio for the specimen are 72.6 GPa 
and 0.2, respectively. The specimen is subjected to an asymmetrical displacement. This provides 
an antisymmetric field of deformation for pure mode II loading. ABAQUS is used in the numerical 
modelling work. The total structure is meshed using standard eight-noded isoparametric elements. 
These elements perform well for elastic analysis. The plane strain conditions are assumed. Half a 
model with mesh refinement is also displayed in Fig. 3. Consequently, the logarithmic plot of 
shear stress at 0   versus the distance from the notch tip is depicted in Fig. 4. It is noted that 
the predicted values with regard to the definition (8) match the finite elements solutions 
satisfactorily, but a poor match is obtained with the results in terms of the definition (9). Similar 
conclusions are found for a 60º notched specimen. 
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Fig. 3 Model subjected to pure mode II loading. 
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Fig. 4 Comparison of FE results and asymptotic prediction obtained from two different definitions.  
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Additionally, the in-plane and anti-plane deformation, in general, may be coupled for 

anisotropic solids, e.g., in-plane loading gives rise to anti-plane displacements and vice-versa. In 
certain cases, however, the in-plane and anti-plane deformation can decouple. This situation occurs 
when the elastic components in the 6  6 stiffness matrix 

 , (10) 14 15 24 25 46 56 0C C C C C C     

as described by Ting (1996). The asymptotic analysis mentioned above assumes that the in-plane 
and anti-plane deformation is decoupled. Then, the method to solve anti-plane problem is 
separated and described in other literature (e.g., Ting, 1996; Dunn et al., 2001). 

 
4. Selection of the outer integration path  
 

The H-integral approach, as a tool to derive stress intensity factors for notches and cracks, is 
based on a combination of finite element results, Betti's law, and asymptotic analysis with a 
complementary field (Shang et al., 2008; 2009). The H-integral approach differs from the other 
methods in that it utilizes the finite element data remote from the notch tip. As a result, there is no 
need to employ extensive mesh refinement and special singular elements near the corner. 
Theoretically, this contour integral is path-independent. Carpenter (1984a) studied a 90° corner 
problem for a homogeneous material with plane stress analysis, Stern and Soni (1976) explored the 
computation of stress intensities at fixed-free corners. Both of them stated that results are relatively 
insensitive to which outer contour is chosen.  

Nonetheless, this is not always true. Stern et al. (1976)analyzed crack and tilt crack problems 
and found that the accuracy and stability of the results are exceptional with the worst error for any 
contour studied being 2.4% for  and 5.3% for . While this accuracy is typical, more 

deviation is usually found between the various contours. The innermost contour (very close to the 
crack tip) usually gives less accuracy than the contours more remote from the crack tip. Carpenter 
(Carpenter, 1984b) performed plane stress analysis and showed that the further the contour lies 
from the notch tip, the greater the number of nodes had to be considered for a given accuracy of 
results, particularly for . Moreover, Carpenter and Byers (1987) investigated a 90° corner 

problem and indicated that prediction of the stress intensity factor, in general, is better with the 
smaller radii than with the larger radii but there were some exceptions. Stern et al. (1976) also 
pointed out that results from the exterior contour (very close to finite boundaries) are not likely to 
be satisfactory in the presence of discontinuities in the boundary data. The reason for this variation 
of results with radii and deformation mode was unclear.  

IK IIK

2
nK

In our investigation, the selection of outer contour location should be neither very close to nor 
far away from the notch tip (e.g., Shang et al., 2008; 2009; Labossiere and Dunn, 1998; 1999). Far 
away from the notch tip, the solution is perturbed by finite boundaries and loading, such as a 
thin-film interlayer in a multi-layered structure (e.g., Shang et al., 2008) and a traction surface. As 
a result,  can no longer characterize the actual stress state and then higher order terms are 

required to describe the behaviour. The accuracy of H-integral approach can be evaluated by 
comparing with asymptotic solutions obtained directly by finite element computations of 
displacements along the notch flanks or of the stresses along the interface or bisection line (

n
mK

0  ). 
The worst deviations for any contour studied (Shang et al., 2008) are typically 3% for  and 

5% for .  
1
nK

2
nK

As indicated in some other studies (e.g., Carpenter, 1984a; 1984b; Stern et al., 1976; 
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Labossiere and Dunn, 1998; 1999; Banks-Sills, 1997; Banks-Sills and Sherer, 2002), inaccuracy of 
the stress intensity factor can be induced by the numerical approximations (Gauss points or nodes, 
idealization) made in the finite element calculations and by the numerical integration schemes 
(programming details) adopted to calculate the H-integral. It can be improved by generating a 
reasonable finite element mesh, averaging results obtained along various contours and choosing a 
contour with a reasonable number of integration points, sufficiently far from the notch tip where 
the numerical resu are generally smooth. Furthermore, the acquisition of complementary stress 
intensity factors *n

mK  on actual integ
lts 

ration paths may also provide an alternative check for 

accuracy of computational procedures. 

. Conclusions 
 

selection is further discussed and some suggestions are 
ma e for improving accuracy of results. 
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Since the notch mechanics is a quite new field, some unsolved problems still exist. It is 
essential to clear up any confusion about this subject matter. This technical note mainly addresses 
three issues. Eigen-equation with regard to the stress singularity is interpreted from a mathematical 
viewpoint and the detailed calculation of eigenvalues for the corner problem has been presented. 
The different definitions of stress intensity factors is explained in a historical perspective and the 
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With the development of micromachining techniques, multi-layered thin films on silicon 
substrates have a wide variety of applications in electronics packaging and integrated circuits. Due 
to the elastic mismatch, stress concentrations may develop and a weak singularity (λ>0.9) may 
exist at free edges (Fig. 1). The initiation of failure at free edges in multi-material systems often 
occurs.  

This appendix is used as a supplement to Paper II. Free-edge in multi-layered structural 
components with weak singularities is further examined. Standardized numerical formulae for 
varying material combinations are proposed from a design engineer’s perspective. It has also been 
shown that the material dependence can be normalized. The extent of the -dominated field is 
assessed by comparing the asymptotic solution to the detailed finite element analysis. It is 
observed that the valid range of the -field is strongly influenced by thin-film thickness but not 
by bond width. 

K

K

 

 
Fig. 1 An edge geometry with dissimilar materials 

 

The multi-layered structures considered in our study are shown again in Fig. 2. Typical 
material combinations in microelectronic devices are taken into account. The elastic properties of 
the materials and the evaluation of   for various joint geometries and material combinations are 
listed in Table 1. Plane strain conditions are assumed in all modelling. Finite element analyses are 
performed with ABAQUS. Eight-noded isoparametric elements were used. We also assume that 
the materials are perfectly bonded along the interface. The mesh refinement, dimensions and 
loading conditions are depicted in Fig. 2. Beam span , height  and width  of silicon 
substrate are 10, 1 and 3.4 mm, respectively. The anisotropic silicon substrate employed here is 
350 μm thick oriented in [100] crystal direction with elastic constants of , 

 and 

L h w

11 165.7GPaC

12 63.9GPaC  44 79.56GPaC  (Mason, 1958). 
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Fig. 2 Specimen geometry, finite element mesh and loading conditions. 

 

Table 1 

Material elastic properties and the orders of stress singularities with varying material combinations and 
joint geometries 

 Isotropic Materials 
Materials Elasticity Au Cu Al Si Steel Epoxy 

Young’s Modulus ( ) GPa 83 129 70 167 200 2.50 

Poisson’s Ratio 0.44 0.34 0.35 0.30 0.30 0.30 

       

Interface X  
Material 

A 
Material 

B 1  Material 
A 

Material B 1  

 Au 
Isotropic 
silicon 

0.9332 Au 
Anisotropic 

silicon 
0.9522 

 Al  0.9304 Al  0.9481 
 Cu  0.9912 Cu  0.9967 

Interface  Y Steel Epoxy 0.7049    
 

Non-dimensional stress intensity factor  
 

A combination of the finite element results and a path independent contour integral is used to 

evaluate the stress intensity factor. Since  has the unit of n
mK   1 mstress length


, dimensional 

considerations dictate that 

 

 
0

1
2

,
6

n
n ma t

m w t

K
Y

PL
w

bh




, (1) 
where , , , , , , , and  denote, respectively, the bond length, substrate width, 

conductor layer thickness, nominal thickness, concentrated force, and span, width and height of the 
steel beam (

a w t 0t P L b h

Fig. 2), whereas  is a shape function depending on the notch geometry and material Y
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elastic constants. Furthermore, we can write 

 
     

0
,n na t a t

m refw t w tY Y f g  
0 , (2) 

where 

         0 0

0 0

, 0.2 0.5,
 , ,  0.5, 0.2

m

n na t a t
m mw t w t n na t a

refw t wn n
ref ref

Y Y
f g Y Y

Y Y

 
    t

t 



. 

The results obtained from the H-integral approach can be fitted to the power function 

   k
f geometry j geometry  and    s

g geometry l geometry . The best-fit values for the 

isotropic Cu/Si and Au/Si cases are shown in Fig. 3.  
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Fig. 3 Non-normalized fitting functions (Cu/Si and Au/Si) 

 
Consequently, standardized numerical formulae for two individual cases read for the isotropic 

Cu/Si case: 

 
     

-int 0 0

0.2671.118
, 2.854 0.454 0.651

H egral

n a t a t
w t w tY


  

, where  (3) 0 =1000t nm

and for the isotropic Au/Si case: 

 
     

-int 0 0

0.1951.009
, 1.464 0.490 0.721

H egral

n a t a t
w t w tY


  

, where  (4) 0 =1000t nm
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Furthermore, if we normalize the dimensionless stress intensity factor by dividing with the 
corresponding reference value, the respective power function for different material combinations 
amazingly falls very close to one curve, see Fig. 4. The greatest scatters of two individual cases from the 
average fitting are 7.8% and 5.6% for Cu/Si and Au/Si case, respectively. It is still appreciable 
from the engineering’s perspective. Hence, the average solution proposed here may be a favorable 
alternative. 

Discussion: Applicability of H-integral approach 

 
The proposed H-integral approach is based on the assumption of elasticity with the dominance 

of a -field. Consider a typical case for an Au layer bonded with an isotropic silicon substrate. 
The interface stress component 

K

  is plotted against the distance from the free edges with 

varying metal layer thickness (Fig. 5a) and various bond width (Fig. 5b). The extent of the 
-dominated region is estimated by comparing finite element results with asymptotic analysis. 

The two solutions are in good agreement for all the cases. It matches up to a radial distance of 70 
nm for the specimen with a 1.7 mm wide and 300 nm thick metal layer regarding a 5% deviation. 
It matches up to 45 nm for the specimen with a 200 nm thick and 2.5 mm wide metal layer 
considering a 10% difference. As expected, the thicker the thin-film layer, the greater is the valid 

-dominated region. Within the bond range we investigated here, the difference of -field has 
not a significant dependence on the bond width. It seems that the deviation is slightly larger with 
increasing bond width but tends to stabilize for the specimens with a bond width larger than 2.3 
mm. Moreover, the use of the critical stress intensity factor as a failure initiation parameter 
requires that the size of inelastic zone (process zone) should be much smaller than the extent of the 

-field under the failure load. Taking  as an example and assuming the 
elastic–linear hardening model with a yield stress of  and a hardening modulus of 8.3 

. Applying the critical delamination load 

K

K

K

GP

K

Au(200 nm)/Si
160

0.6 NcP
 MPa

a   (Kitamura et al., 2007) to the specimen, 

it was observed that no plastic strain occurred in the finite element analysis.  
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Fig. 5 -dominated field for specimens with (a) an Au layer thickness from 50 to 300 nm and K

 (b) an Au layer bond width from 1.7 to 2.5 mm 

 

Summary 

To provide application guidance for engineers, standardized numerical formulae for normalized 
stress intensity factors are summarized corresponding to different material combinations. It has 
also been shown that the material dependence can be normalized. The average solution proposed 
here may be a favorable alternative to provide application guidance for engineers. Furthermore, the 
extent of the -dominated field is assessed by comparing the asymptotic solution to the detailed 
finite element analysis. It is observed that the valid range of the -field is strongly influenced by 
thin-film thickness but not by bond width.  

K
K
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