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Abstract 
 

Pull out tests were carried out in the laboratory of rock mechanics at Norwegian University of 

Science and Technology (NTNU) for the purpose of determining the critical embedment length 

of fully grouted rebar bolts. The 20-mm rebar bolts and the grouting material, “the Rescon 

Zinc bolt cement” used in the testing are widely used in underground projects in Norway. 

Different embedment lengths, ranging from 10 cm to 40 cm, were employed in the tests under 

different water-cement ratios for the grouting mortar. The critical embedment length for a 

given water-cement ratio is determined on the diagram of the pull - out load versus the 

embedment length. A chart of the critical embedment bolt length versus the water-cement 

ratio as well as the uniaxial compressive strength of the cement mortar is established based 

on the testing results. In the theoretical part of the thesis, the main focus is on rock bolting. 

Bolting principals are introduced along with different types of rock bolts, design of bolting 

systems and stability problems caused by rock stresses. In the final part of the theoretical part 

the procedure of pull out testing is described and the load bearing capacity of rock bolts are 

categorized into the groups in accordance with load deformation performance. Finally, 

previous pull out test research is presented.  
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1 Chapter – Introduction 

1.1 In general 

For a long period, rock bolts have been used for the support of underground excavations in 

civil and mining engineering to increase a structure’s stability. Rock bolts transfer pressure 

from the unstable face of the rock structure to a more stable core. To measure relative 

performance of different anchor systems in rock mass, pull out test are performed on rock 

bolts. Different anchor systems, such as mechanical anchors or different bond materials, and 

lengths for grouted anchors are tested and the data are used to choose anchor types and 

select the correct bolt length, spacing and size of bolts. 

In the theoretical part of the thesis, the main focus will be on rock bolts in general.  After an 

introduction of rock bolts and their history, the bolting principals are presented. It is believed 

that bolting’s binding effect is accomplished by a basic mechanism that depends on the 

geology and the stress regime. Different types of rock bolts are then categorized into three 

main groups according to their anchoring mechanisms. The groups are mechanically anchored 

rock bolts, friction anchored rock bolts and fully grouted rock bolts.  The main focus will be on 

fully grouted bolts with cement and the water-to-cement ratio used in the grouting. Things 

like the setting time of the mixture are an important issue in the application of cement-

grouted bolts, and this will be introduced in more detail. Stability problems caused by rock 

stresses are a factor in underground excavations. The need for rock support can be estimated 

from the rock mass properties and the possibilities of optimizing the excavation geometry.  In 

the chapter about stability problems caused by stresses, it is explained how the in situ stresses 

change with greater depth, and what effect stress has in weak and hard rock. Rock bolts are 

suitable choices in rock mass with stress problems. 

Geotechnical discontinuities in the intact rock, material properties, distribution and 

magnitude of rock stresses are all factors that affect the design of a rock bolting system. To 

create a complete and appropriate rock bolting system design, it is important to properly 

investigate parameters such as length, bolt type, spacing and pattern. In the chapter about 

design of bolting system, these parameters are described in more detail. The final chapter in 

the theoretical part is about pull out testing.  The testing procedure is described and the load 
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bearing capacity of rock bolts are categorized into the groups in accordance with load 

deformation performance. Finally, previous pull out test research is presented.  

In the case study section, results from pull out tests are introduced. The pull out tests were 

carried out in a laboratory at Norwegian University of Science and Technology (NTNU). In 

collaboration with Statens Vegvesen and Professor Charlie Li, supervisor of this project, it was 

decided to perform testing on 20 mm rebar bolts grouted with Rescon Zinc bolt cement 

mortar. Both rebar bolts and the cement mortar are usually used in underground projects in 

Norway. This specific test was performed to evaluate the critical length of fully grouted rebar 

bolts. From a plot of load versus displacement, the ultimate and working capacities of the bolt 

can be calculated. Ultimate capacity is the maximum load sustained by the anchor system and 

working capacity is the load on the anchor system at which significantly increasing 

displacement begins. In this pull out test different embedment length and variation in cement- 

water mixing ratios of grout was used. A sufficient number of tests were taken to determine 

the average bolt capacities. Finally, a uniaxial compressive strength test was performed on the 

cement mortar with variation in cement to water mixing ratios.  

1.2 Purpose of the thesis 

The main purpose of the thesis is to obtain understanding of the load bearing capacity of fully 

grouted rebar bolts with different water-to-cement ratios and variations in embedment 

length. In spite of much research, in which pull out tests have been conducted on fully grouted 

bolts, there is still a lack of understanding as to how different embedment lengths, grouted 

with different ratios, affect the load bearing capacity.  In this thesis, the relationship between 

critical bolt length and w/c numbers is estimated, along with the relationship between the 

critical length and the uniaxial compressive strength of the grout.  Also, the aim of the thesis 

is that the reader will gain greater knowledge of rock bolts in general and their function.  
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2 Chapter – Rock bolts 

2.1 Introduction  

In underground excavations, stability is improved by adding rock support.  The most dominant 

support method in the Scandinavian tunneling industry has historically been rock bolts (Nilsen 

and Palmström, 2000). 

 The rock bolting system improves the competence of disturbed rock masses by preventing 

joint movements, forcing the rock to support itself. The rock bolt support system binds 

together a discontinued, fractured, laminated and jointed rock mass. In addition to 

strengthening and stabilizing jointed rock masses, rock bolting has a marked effect on the 

stiffness of the rock. Through a friction effect, a suspension effect or a combination of both, 

rock bolts reinforce rock mass. Because of this, the technique of rock bolts is approved for 

mines and tunnels in all types of rock (Kılıc, Yasar and Celik, 2002). Rock bolts are used both 

as an initial support and as the final rock support. They are used at the tunnel face as an initial 

support to ensure safe working condition for workers (Nilsen and Palmström, 2000). Rock bolts 

can be installed individually to fix individual loose blocks at the excavation face (called spot 

bolting) and afterwards with systematic bolting. Systematic bolting is a pre-planned pattern 

of bolts that is based on geological conditions.  

 

Figure 1-  Rock bolts can be installed both individually and with systematic bolting. Systematic bolting is a pre-
planned pattern of bolts based on geological conditions, but individual bolts are also installed to fix single 
loose blocks (Nilsen and Palmström, 2000). 
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There are various methods used for the design of the required pattern to secure the rock mass. 

Geological mapping and Q value are mainly used. Systematic bolting is used both during the 

excavation of the tunnel and at the end of the excavation. It is intended to give a more general 

support in failure zones (Nilsen and Palmström, 2000).  

Table 1 – Main areas of application for systematic and spot bolting (Bjørn Nilsen, Professor at Department of 

Geology and Mineral Resources Engineering, personal communication, 10. October 2013). 

Main areas of application for systematic bolting or spot bolting 

 Spot bolting  Systematic bolting 

Fractured rock Support against rock 
slide/rock falls 

X 

Heavily fissured rock X  
 

Used in combination with 
other methods 

Rock burst/high stress X In combination with fiber-
reinforced sprayed concrete 

Weakness zones X As one element in a larger 
concept  

http://www.ntnu.edu/igb
http://www.ntnu.edu/igb
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Generally, a rock bolt consists of a plane steel rod with an anchor at one end and a face plate 

and a nut at the other. The anchor may be mechanical or chemical. The length of the drilling 

hole, which the bolt is injected into, should be at least 100 mm longer than the rock bolt. This 

prevents the bail from dislodging when it is forced against the end of the hole. After 

installation the anchor will be seated with a sharp pull.  To increase the anchor force, the bolt 

is tightened to force the cone into the wedge. If rock bolts are meant to provide a temporary 

support, they are usually left ungrouted. If they are, on the other hand, used to provide a 

permanent support, or in rock with corrosive groundwater, the gap between the rock wall and 

the bolts may be filled with cement or resin grout. These materials lock the anchor in place 

and shield it from disturbing blasting vibrations. One of the primary causes of rock bolt failure 

is rusting or corrosion. The grout, filled in the gap, can prevent the bolts from rusting (Hoek, 

2007a). 

2.2 History of bolts 

For a long period, rock bolting has been used widely for rock reinforcement in civil and mining 

engineering to increase structures’ stability. They play a crucial role for construction 

companies that work with natural material, especially rocks and stones, while providing 

protection for underground caverns, tunnels, and rock cuttings (n. fjellskæring) and slopes (Li, 

2009). 

In the years of 1855-1861, rock bolts were used for the first time in construction when the 

Telemark Canal, which connects the coast of Telemark with the interior from Skien to Dalen 

in Norway, was built (Statens Vegvesen, 1999). Telemark Canal was completed in 1893 and it 

was called “the eighth wonder of the world” (Telemarkskanalen, 2009). The rock bolts in the 

canal were short, with a diameter of 40 mm, and their main use was to stabilise blocks in the 

mountainside. Bolstad and Hill (1983) reported the use of mechanical bolts in a metal mine in 

the United States 1927. Later, bolts became the most dominant support method in 

underground construction around the world. Mining companies were pioneers in using rock 

bolts, primarily companies from the United States, South Africa and Norway.  The U.S Bureau 

of Mines (USBM1) was the first company to use roof bolting technology in 1947; the 

                                                           
1 Primary United States government agency conducts scientific research and disseminate information on the 
extraction, processing, use, and conservation of mineral resources. 

http://en.wikipedia.org/wiki/Federal_government_of_the_United_States
http://en.wikipedia.org/wiki/Mineral
http://en.wikipedia.org/wiki/Natural_resource
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technology was employed to reduce the number of fatal accidents caused by roof falls. Five 

years later annual roof bolt consumption had reached 25 million.  

Rock bolts quickly became an inexpensive and practical support method and today they are 

used as a support in tunnels, caverns, rock cuttings and construction pits. They are also used 

as a base reinforcement when building bridges, docks and dams in rock. The usage of bolts as 

a rock support has increased significantly since 1970. Mechanization is probably the main 

reason, but as it grows the production rate of drilling and other construction methods also 

increased. To cope with this, the rate of reinforcement had to increase and new types of rock 

support evolved to resolve problems related to rock. Most stability problems today are 

possible to solve with rock bolts and shotcrete. Used with modern equipment, it provides an 

effective and quick support method.  Specific equipment like bolt rigs and robots are also used 

to a greater extent than before (Statens Vegvesen, 1999). 

The first type of rock bolts used underground were split and wedge bolts. These first types are 

not in use anymore because they are considered unsafe. Since then, rock bolts have evolved 

significantly; the main focus today is that bolts have to be strong enough to sustain the dead 

weight of the unstable blocks. Safety is an important factor in modern construction. All 

regulations have become stricter to provide safer work conditions for workers and also to 

ensure that the finished work is safe for use. It also depends a lot on the nature of the work. 

For example, more emphasis is placed on safety in large road tunnels or storage caverns than 

in water tunnels. In the case of road tunnels, damage from a collapse would be much more 

than if a water tunnel collapsed. Advanced methods based on empirical data are used more 

today than before.  The main reason is because of the builders’ requirements in connection 

with difficult and complex projects (Statens Vegvesen, 1999). 

Nowadays, in US coal mines about 100 million roof bolts are installed every year in excavated 

entries (Yassein et al., 2004). Similar numbers of rock bolts are installed in Australia. In 1997 

the usage of rock bolts worldwide was in excess of 500,000,000 annually (Winsdor, 1997). In 

Norway approximately 500,000 rock bolts are installed every year. They are used as a 

temporary support system in underground excavations or as a permanent support system.  

Figure 2 shows how the usage of rock bolts has grown in the coal mining industry from 1920 

until the beginning of 2000 (Junlu, 1999). 
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Figure 2 – The growth in usage of bolts in the coal mine industry increased greatly from 1920 until the beginning 
of 2000. Mechanization is probably the main reason for the increase (JunLu, 1999). 

 

2.3 Bolting principles 
 

Rock bolting is a very successful method in a variety of geological and geotechnical conditions. 

As mentioned earlier, the main function of bolting is to bind together broken rocks such as 

sedimentary rocks that contain bedding planes, jointed and fractured rocks, or rocks with 

artificial cracks caused by explosions or excavations (Peng and Tang, 1984). It is believed that 

bolting’s binding effect is accomplished by the following basic mechanism depending on the 

geology and the stress regime: 

 Skin control 

 Suspension 

 Stitching (beam building) 

 Supplemental support  

The bolt binding is achieved by one or a combination of these mechanisms (JunLu, 1999). A 

brief description of these four mechanisms will be given below.  

2.3.1 Skin Control 

At the skin of the opening of underground excavations, where the strong and massive roof is 

essentially self-supporting, cracks, cross beds, joints and slickensides may create occasional 
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hazardous loose rock. In that kind of situation, it is important that the function of the bolts is 

to prevent local rock falls. It is not necessary to prevent a major collapse in such an 

environment. A sufficient support system should be a pattern of relatively light and short roof 

bolts. In weaker ground, skin control may also be an important secondary function of roof 

bolts.  In figure 3, a skin control mechanism is described graphically (Mark, Molinda and 

Dolinar, n.d.) 

 
Figure 3 – Skin control. It is important that the function of the bolts is to prevent local rock falls. A sufficient 
support system should be a pattern of relatively light and short roof bolts (Mark, Molinda and Dolinar, n.d.). 

2.3.2 Suspension – Hang up to the above stable layer 

In many underground openings, a stronger unit that is largely self-supporting overlies a weak 

immediate layer. This weak layer tends to sag (Mark, Molinda and Dolinar, n.d.). If the layer is 

not properly supported in time, the laminated immediate roof may separate from the main 

roof and fall out. In this situation, roof bolts act to suspend the weaker layer. The bolts anchor 

the immediate roof to the self-supporting main roof by the tension applied to them (JunLu, 

1999). In the suspension mode, experience has shown that rock bolts are very efficient. 

However, suspension becomes more difficult if the weak layer gets too thick; more than 3 ft 

becomes difficult to handle (Mark, Molinda and Dolinar, n.d.). 

In suspension, the essential bolt force is calculated by predicting that the whole weight of the 

lower-strength beddings will be borne by the supported bolts. The length of the bolts used in 

the openings, which must be anchored in the stable rock, is determined by the thickness of 
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the bedding. The bolt spacing is not critical; it is based on the bolts’ strength and the weight 

of the rock (Li, 2013). 

 
Figure 4 - Suspension bolting. Length of the bolt is important for anchoring in stable rock (Li, 2013).  

2.3.3 Stitching (beam building) 

It is very common that no self-supporting bed is within reach; in this case, the bolts must tie 

the roof together to create a so-called “beam.” The ordinary roof bolts are not able to reach 

an anchor for suspension. In this situation, the bolts can still be applied with good success.  

Both vertical and horizontal movements along the bedding interfaces are caused by sagging 

and separation of the roof laminate.  The horizontal movements are greatly reduced by bolting 

through these layers; tension is applied to the bolts manually on installation or induced by the 

vertical displacement of the rock, forcing the layers together. That makes all the layers move 

with the same magnitude of vertical displacement. Along the bedding interface, frictional 

forces, which are proportional to the bolt tension, are induced and also make horizontal 

movement difficult.  Beam building is very similar to clamping a number of thin and weak 

layers into a strong layer, forming a fixed-end composite beam. Theoretically, given that all 

the thin layers that are clamped into a single strong layer are made of the same material, the 

maximum bending strain at the clamped ends of the composite beam is:  
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𝜀𝑚𝑎𝑐 =

𝑤𝐿2

2𝐸𝑇
 

(2.1) 

 

Where  

W = Unit weight of the immediate roof 

L = Length of the immediate roof 

E = Young’s modulus 

T = Thickness of the composite beam 

The equation above shows that the thicker the beam is, the smaller the maximum strain 

induced at the clamped ends. Research has implied that if the bolt spacing is decreased, and 

tension, the number of bolted laminates, and the roof span are all increased, then the beam 

building effects increase (JunLu, 1999). Generally, higher densities of rock support are needed 

in beam building than in suspension, as the bolts have to work much harder. Beam building 

applications along with supplemental support (described later) have been the most 

troublesome for design (Mark, Molinda and Dolinar, n.d.). 

 

Figure 5 – Beam building/stitching. It is very common that no self-supporting bed is within the reach so the 
bolts must tie the roof together to create a so-called “beam.” If the bolt spacing is decreased, and tension, the 
number of bolted laminates, and the roof span are all increased, then the beam building effects increase (Li, 
2013). 
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2.3.4 Supplemental support 

The roof in underground excavations may sometimes be extremely weak and/or the stress 

extremely high. In that situation, roof bolts may not be able to prevent the failure of the roof 

from progressing beyond a reasonable anchorage horizon.  Rock support like cable bolts, cable 

trusses or standing support is necessary in these situations to carry the deadweight load of 

the broken roof. The roof bolts used in these cases are primarily to prevent unravelling of the 

immediate roof (Mark, Molinda and Dolinar, n.d.). 

 
Figure 6 – Supplemental support in failing roof. In some situations where the roof is extremely weak or the 
stress is extremely high, roof bolts are not able to prevent the failure of the roof from progressing beyond a 
reasonable anchorage horizon. Cable bolts, cable trusses or standing support are then necessary support. 
(Mark, Molinda and Dolinar, n.d.). 

2.4 Different types of bolts 

Different types of rock bolts are categorized into three main groups according to their 

anchoring mechanisms. The groups are as follows: 

 Mechanically anchored bolts 

 Friction-anchored bolts 

 Fully grouted rock bolts 

(Li, 2011). 

Below, these groups of rock bolts will be described in more detail. Table 2 describes the 

advantages and disadvantages of these different groups and Table 3 collects information 

about some typical technical data for different bolt types. 
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2.4.1 Mechanically anchored bolts 

Mechanically anchored bolts can be divided into two groups: expansion shell anchor and slit 

and wedge type rock bolts. The anchoring part is either fixed by a wedge-shaped clamping 

part or by a threaded clamping (Kılıc, Yasar and Celik, 2002). Mechanically anchored bolts are 

one of the first rock reinforcements used in underground mining and they are still used around 

the world, including in Canadian mines. If a rock bolt with an expansion shell anchor is well 

seated in a rock and the rock is hard enough to provide a good grip for the anchor, the 

expansion shell anchor will allow the rock bolt to be tensioned to its maximum load-bearing 

capacity. In fact, if the rock bolt is overloaded, failure is most likely in the threads at either the 

faceplate or anchor end rather than by anchor slip. Mechanically anchored rock bolts provide 

very effective support in many conditions, such as when rock blocks have been loosened by 

intersecting joints, bedding planes in the rock or when blocks loosen because of poor quality 

blasting. Mechanically anchored bolts hold up the dead weight of the loose material. They are 

often used with the addition of mesh where small rock pieces can fall out between bolt heads. 

These rock bolts are normally tensioned up to about 70% of their ultimate breaking load in 

order to tighten the loose block and wedges. This provides as much interlocking between the 

blocks as possible and helps the rock to support itself. 

 

Figure 7 – Mechanically anchored rock bolt. When the bolt is rotated the wedge is pulled into a conical 
expansion shell. The shell is forced to expand against and into the rock wall of the hole (Hoek, 2012). 
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There are unfortunately some problems with mechanically anchored rock bolts. Old rock bolts 

which have lost all their tension are often seen underground; anchors tend to slip 

progressively with time. This is most likely a result of vibrations induced by blasting nearby. 

Rusting of bolts in rock masses with aggressive groundwater is another problem. In cases like 

this, the life of unprotected bolts may be less than a year even though it requires bolts with 

long-term life. Mechanically anchored rock bolts should be grouted in place in such 

circumstances (Hoek, and Wood, 1987). 

The most common type of mechanically anchored rock bolts are expansion shell anchored 

bolts. A wedge is attached to the bolt shank; when the bolt is rotated, the wedge is pulled into 

a conical expansion shell. When that happens, the shell is forced to expand against and into 

the rock wall of the hole. The anchoring mechanisms of this type of bolt are friction and 

interlock between the expansion shell and the wall of the borehole. Because of the limited 

length of the expansion shell, the load-bearing capacity of the bolt is relatively low. Expansion 

shell bolts have wide application in mining as well as in civil engineering projects. When the 

bolts are used as a permanent support it can be necessary to have the void between the bolt 

and the borehole post grouted. It is not recommended to use expansion shell bolts in a very 

hard rock, as it will prevent the shell from gripping the rock and the anchor will slip under load 

(Li, 2013).  

If the anchor slips or the mechanically anchored rock bolt breaks, the capacity of the bolt drops 

to zero.  That may lead to a rock fall from the supported rock.  This is one of the main 

disadvantages of mechanically anchored bolts. This is not a problem for the other types, such 

as fully grouted bolts and friction-anchored. If slip occurs or the face plate breaks off from the 

friction-anchored bolts, the remaining length of the bolt is still anchored and still provides 

support (Hoek and Wood, 1987). 

2.4.2 Friction – anchored bolts 

Friction-anchored rock bolts are the second group. Frictional bolts are bolted in a special way, 

using frictional resistance to sliding generated by a radial force against the borehole wall over 

the whole bolt length (Kılıc, Yasar and Celik, 2002). Friction bolts stabilise the rock mass by the 

friction, without needing any important auxiliaries like mechanical locking devices or grouting 

to transfer load to the reinforcing element (Li, 2013). One of the main advantages of friction-
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anchored rock bolts is that they accommodate large rock formations. However, they do not 

tolerate high load-bearing capacity (Li, 2011). 

 

Figure 8 – Friction anchored rock bolt.  Injection of Swellex (Atlas Copco, 2012). 

 Both fully grouted bolts and friction-anchored bolts, like Split Set, cannot be tensioned and 

therefore they have to be installed before any large movement takes place in the rock.  The 

support action for Split Set is similar to that of an untensioned rebar and therefore it must be 

installed very close to the face. However, this apparent problem can be turned to advantage. 

Experience has shown that a combination of careful blasting and installation of frictional bolts 

can provide an effective support system that supports a much wider range of rock conditions 

than mechanically anchored bolt are able to handle (Hoek and Wood, 1987). Frictional bolts 

can be divided into two types of bolts available on market: 

 Swellex  

 Split Set 

2.4.2.1 Swellex  

Swellex bolts were developed by Atlas Copco AB. The Swellex rock bolting system has become 

standard in mines and tunnels all around the world. They offer an environmentally safe 

solution with high efficiency and immediate support.  Today there are three versions of 

Swellex bolts on market offering different yielding properties to match rock mass conditions. 

They have been used successfully in many tunnels without any application of external systems.  
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The cost of support has reduced greatly with the use of the Swellex system, as has the overall 

cost of the mining and tunneling projects (Atlas Copco, 2012). The anchoring mechanism of 

the Swellex is both frictional and mechanical interlocking.  The initial form of the bolt is a 

folded tube that has a diameter smaller than the diameter of the borehole. When the folded 

tube has been installed in the borehole it expands to the size of the borehole using high-

pressure water. The Swellex bolt will start to slide when it is subjected to a load that 

approaches the ultimate tensile strength of the bolt (Li, 2013). Mechanical interlocking of the 

bolt and the rock prevents the sliding of the bolt. The expanded folded tube leads to some 

reduction in length, which puts the Swellex into tension (Hoek and Woods, 1987). 

2.4.2.2 Split  Set 

Split Set was developed by Scott in collaboration with the Ingersoll-Rand Company in the 

United States (Hoek and Wood, 1987). Split Set is a true friction-anchored rock bolt. It is a bolt 

for temporary stabilization and consists of a high strength steel tube slotted along its length 

and a plate. The diameter of the bolt is greater than the diameter of the borehole so the bolt 

is driven into a slightly smaller hole (Hardi Rock Control Europe b.v., 2012). The anchor 

mechanism of the Split Set is the friction between the bolt and the wall of the borehole (Li, 

2012). When the bolt is hammered into the borehole the frictional force is induced by the 

spring action of the compressed steel tube along the length of the tube and anchors the tube 

into the wall.  If the Split Set is not installed close to the face, or the stresses imposed on the 

tubes are not very large, then the installation may be quite effective. They are also simple and 

quick to install (JunLu, 1999).  

2.4.3 Fully grouted rock bolts 

The third and final group is fully grouted rock bolts. They can be divided into two groups 

depending on how they are anchored: 

 Resin-grouted rock bolts 

 Cement-grouted rock bolts 

In U.S. coal mines, approximately 10,000 miles of underground entries are developed every 

year. To support these roadways about 80 million roof bolts are installed and more than 80% 

of the total are fully grouted rock bolts (Mark et al., n.d). 
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The main characteristic of fully grouted bolts (dowel) is that they are bolts without any 

mechanical anchors. Usually they consist of ribbed rebar installed in a bore hole and bonded 

over its full length to the rock mass. Fully grouted rock bolts are commonly used in mining 

when stabilizing tunnels, roadways in mines, drifts and shafts for the reinforcing of its 

peripheries. Compared to other rock bolts, the fully grouted rebar bolts have benefits such as 

simplicity in installation, relatively lower cost and more versatility.  

It is important to install grouted bolts as soon as possible after excavation. The reason is that 

they are self-tensioning when the rock starts to move and dilate, so they have to be installed 

before the deformation in the rock occurs and before the bolts lose their interlocking and 

shear strength. Fully grouted bolts are passive bolts, not activated in the installation phase 

(Kılıc, Yasar and Celik , 2002). 

Fully grouted bolts are often used for systematic bolting, as the grouting gives the bolt 

protection from corrosion (Statens vegvesen, 1999). Poor anchorage of fully grouted rock 

bolts can be a problem. Roof movements within the anchorage zone in underground 

excavations can pull the rock bolt out of the upper portion of the hole at loads that are not as 

high as the yield strength of the rod. Weak rock and poor installation quality are the main 

causes for poor anchorage (Mark et al., n.d). 
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Figure 9  – Fully grouted rock bolt. The bolt consists of three parts; rod, face plate and a bonding (Hoek, 2012). 

Fully grouted rock bolts generally consist of three parts: steel bar, bearing plate and bonding 

material. The first two parts are similar to those used with mechanical bolts, but the last part 

characterizes the bolt type. The difference with the steel bar from mechanical bolts is that its 

surface is always deformed or ribbed to both ensure better mixing for catalyst and resin and 

to increase frictional grip between the steel bar and resin. The bearing plate for fully grouted 

bolts is only used for coverage. 

 The bonding material comprises either cement or resin. These two different bonding 

materials for fully grouted rock bolts will be described more specifically (Peng and Tang, 1983). 

2.4.3.1 Resin-grouted rock bolts 

Fully resin-grouted bolts are the most sophisticated rock bolt system currently used. It 

combines most of the advantages of other bolt systems.  Resin and a catalyst are packaged in 

a plastic tube and separated from each other to prevent chemical interaction. These plastic 

capsules are then placed in the borehole with a loading stick before the bar is inserted. The 

bar is rotated into the hole, which breaks the plastic tube and mixes the resin and catalyst 

together (Hoek and Wood, 1987). Resin-anchored bolts can be installed in all types of rock or 

concrete. They are mostly used where expansion shells are inappropriate rock support (DSI, 

2014). They are also increasingly used in critical applications where cost is not as important as 
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speed and reliability (Hoek and Wood, 1987). The anchorage length of the resin bolts can be 

adjusted to varying rock conditions and it is possible to install them at any angle above or 

below horizontal.  To apply a compressive force across layered rock strata, tension bolts with 

resin point anchorage are used. The bolt tension is applied before the slow-setting resin cures 

but after the fast-setting resin has cured. Untensioned resin bolts have to rely on the 

movement of the rock strata to load the bolts (DSI, 2104).  

The development of resin as a bonding material is a further improvement from the cement 

bonding agent. The major advantages from the cement agent are better anchorage over a 

wider range of strata types and shorter setting time than cement.  However, the resin’s high 

cost is the main disadvantage (Peng and Tang, 1983). 

There are some features that are important to achieve successful installation using resin-

grouted bolts. First, there is the relation between the hole diameter and the bolt diameter. To 

ensure proper mixing and higher anchorage capacity, the diameter between the hole and the 

rebar cannot be too great. According to Wilding and Thomson, the optimum difference is 6, 4 

mm (1981).  

Mixing and curing time are also important factors to proper installation. If the resin is over-

mixed, the anchor strength will weaken or be destroyed. Probably the most important factor 

to achieve successful installation is the curing time. If the curing is disturbed before it is 

completed, then the ultimate strength of the resin will never be realized (Peng and Tang, 

1983). 

2.4.3.2 Fully cement -grouted rock bolts 

Grouting with cement is the oldest method of full column anchor bolting. This improved 

anchorage method works best in weak or fractured strata. The main disadvantage of fully 

cement-grouted bolts is the uncertainty about cement shrinkage and the longer setting time 

of the bolts, which limits its use to underground excavations where speed is not required 

(Peng and Tang, 1983). 

There are many types of grout available on the market today, but in situations where the rock 

has a measure of short-term stability, the most sufficient grout type is simple Portland cement 

with reinforcing dowels (Kılıc, Yasar and Celik, 2002). 
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 When using Portland cement-grouted rock reinforcement, the grout is pumped into the bore 

holes and the bars are driven into the filled holes. The grout is introduced through a central 

hole in the bar as the grout intake or air vent, or a plastic tube alongside the bar. It is important 

for grouted reinforcement to follow the manufacturer’s instructions or engineer’s 

specifications so the grout is properly and fully distributed around the bar when it is driven 

into the hole. These requirements include information such as hole diameter appropriate for 

the bar diameter, number and size of packages for the bar diameter, maximum drilling depths 

of holes, and the length to achieve full grout distribution and encapsulation of the bar and 

anchor. The bar will be exposed to corrosion if the grout is not fully distributed around it 

(Kendorski, 2003). 

 When testing the load-bearing capacity of fully cement-grouted rock bolts there are a few 

important parameters that need to be taken under consideration, including bolt shape, bolt 

diameter, length of the bolts, rock strength and grout strength (Kılıc, Yasar and Celik, 2002).  

 

Figure 10 – Pull out test performed on rebar bolt grouted with cement mortar. The figure is taken after the 
testing has been performed. 

Fully grouted rebar bolt 
The most common grouted rock bolt is the fully grouted rebar or threaded bar made of steel. 

The grouting agent for rebar bolts are cement or resin. Rebar bolts are untensioned bolts and 

are used as both temporary and permanent support in mining and civil engineering. Rebar 
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tolerates high load and is a suitable support system in hard rock conditions. However, they 

cannot tolerate much deformation and it takes the cement grout anywhere from a few hours 

up to days to cure, which can be a big disadvantage (Li, 2013). 

 
Cement grouted cablebolt  
Grouted cablebolt is a reinforcing element that has been used for reinforcement of structures 

in rock. It is made of steel wires and is installed untensioned or tensioned with cement 

grouting. Grouted cablebolts are used in the mining industry and civil engineering but play 

different roles under these situations. In mines, cablebolts are installed untensioned and fully 

grouted for temporary support but in civil engineering they are a permanent support.  

 

Figure 11 - Grouted cables can be used in place of rebar when more flexible support is required (Hoek, 2012).  
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Table 2 – Advantages and disadvantages of the bolt types described in the chapter. 

Bolt types Advantages  Disadvantages 

 
 
 
 
 
 

Mechanically anchored 
(expansion shell) 

 

1)Relatively inexpensive 
2)Immediate support action 
after installation((Li, 2013) 
 
 

1) Limited to use in moderately 
hard rock. 
2) Difficult to install reliably. 
3) Must be monitored and 
checked for proper tensioning. 
4) Loses its reinforcement 
capacity as a result of blast 
vibrations or chips of rock 
spalling from underneath the 
face plate due to high contact 
forces. 
5) Only used for temporary 
reinforcement unless corrosion 
protected and post-grouted. 
(Li, 2013) 
 

 
 
 
 
 

Friction anchored bolts 
Swellex 

1) Quick and simple installation.  
2) Immediate support action 
after installation 
3) Used in a variety of ground 
conditions. 
 4) Little training required to use 
the equipment 
5) Swellex requires no 
environmental harmful chemical 
grouts to anchor the bolt in the 
rock (Atlas Copco, 2012) 
 

1) Corrosion a problem in long 
term installations 
 2) Requires a pump for 
installation  
3) May require a sleeve at the 
collar to prevent spalling under 
certain rock condition (Hoek and 
Wood, 1987). 
4) Relatively expensive  
5) Relative low shear strength (Li, 
2013). 
 

 
 
 
 
 

Friction anchored bolts 
Split Set 

1) Relative cheap rock bolts  
2) Easy to install  
(Hardi Rock Control Europe b.v., 
2012). 
3) Useful in moving and bursting 
 ground 
4) Immediate support action 
after installation 
 

1) Cannot be tensioned  
 2) Sensitive to corrosion and 
that is why they cannot be used 
in long term installations  
3) The device cannot be grouted 
4) Relatively expensive  
5) Successful installation of 
longer bolts can be difficult  
6) It has a very resistance to 
shear displacement  
 

 
 
 
 
 

Fully grouted rock bolts (resin) 

1) Convenient system and simple 
to use 
2) Very high strength anchors 
can be formed in rock of poor 
quality 
3) Good anchorage over a wider 
range of strata types 
(Hoek and Wood, 1987) 

1) Effective resin mixture needs a 
careful adherence to 
recommendations provided by 
manufacturers 
2) Resins are expensive material 
3) Limited shelf-life, particularly 
in hot climates 
(Hoek and Wood, 1987 
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4) Permanently effective 
throughout its full bonding 
length 
5) Prevents both vertical and 
horizontal strata movements 
6) Seal wet holes and exclude air 
7) Damage to the bolt head, 
bearing plate, or rock at the 
collar of the hole will not cause 
the bolts to become ineffective 
8) Can absorb blast vibrations 
without bleed-off of the bolt load 
(Peng and Tang, 1983) 
 

 
 
 
 
 

Fully grouted rock bolts 
(cement) 

Rebar 

1) Competent and durable 
reinforcement system with 
proper installation  
2) High load-bearing capacity in 
hard rock conditions 
(Li, 2013) 
 

1) Time consuming for cement 
grout to cure before bolt can 
take full load  
2) Cement grout cures in hours 
or days.  
3) Quality of grouting is difficult 
to control.  
4) Cannot be used in water 
carrying boreholes 
5) Are not able to tolerate much 
deformation 
(Li, 2013) 
 

 
 
 
 

Fully grouted rock bolts 
(cement) 

Cable bolts 

1) Relatively cheap 
2) Competent and durable 
reinforcement system 
3) It provides high loadbearing 
capacity in hard rock conditions 
4) Can be installed to any length 
(Li, 2013) 
 

1) Standard cement used in the 
grout- long-time of curing  
2) Quality of the grouting is 
difficult to control 
3) It cannot be used in water 
carrying boreholes.  
3) Tensioning of the cables is 
possible only if installation 
procedures are followed 
specifically  
(Li, 2013) 
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Table 3 – Typical technical data for different bolt types (Li, 2013). 

Typical technical data for different bolt types 

Bolt type Steel 
strength 

(MPa) 

Steel 
diameter 

(mm) 

Yield 
load 
(kN) 

Ultimate 
load 
(kN) 

Ultimate 
axial 

strain (%) 

Bolt length  
(m) 

Hole 
diameter 

(mm) 

Expansion 
shell 

700 16 140 180 14 Any length 
required 

35-38 

Swellex X X 100/205 110/215 20/15 
(steel) 

Any length 
required 

35±/48± 

Split Set X 39/46 90/135 110/163 16 (steel) 0.9-3.0/0.9-3.6 35-38/41-
45 

Fully 
grouted 
rebar 

570 20 120 180 15 Any length 
required 

35±5 

Fully 
grouted 
cable bolt 

1950 2*15,2 500 500 4,8 Any length 
required 

48-64 

 

2.5 W/C ratio for fully grouted bolts 

Water-to-cement (w/c) mass ratio is the most important factor in concrete mix because it 

controls the mechanical properties and durability of the hardened concrete.  Water-to-

cement ratio is the weight of water and cement in freshly prepared concrete, and is defined 

by dividing the water placed in the mixture with the weight of the cement, which is set in the 

same concrete mixture.  

 𝑟𝑎𝑡𝑖𝑜 =
𝑤

𝑐
 

 

(2.2) 

By increasing the water in the mixture, the water-to-cement ratio gets higher; as the cement 

volume increases, the ratio gets lower. A low ratio gives better properties than a high ratio. 

Therefore, it is recommended to use the exact amount of water to get the necessary 

workability but no more than that. An overly high water-to-cement ratio reduces the long-

term strength of the concrete, increases the drying shrinkage, and decreases the water 

resistance (Hákon Ólafsson, 1991).  

Cement grout is formed by mixing cement powder with water. The ratio is more or less similar 

to that of concrete. Setting and hardening of cement grout in a hole are important processes 

which affect the performance of the grout. The presence of excessive voids also affects the 
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strength, stiffness and permeability of grout. Cement mortar is a mixture of cement, water 

and sand. The typical proportion by weight is 1:0.4:3. While cement grout is constructed by 

pouring the grout in the holes, cement mortar is placed and packed (Chu, 2010). 

Sometimes additives are introduced into the cement mix to provide extra features. Adding 

bentonit clay in a proportion of up to 2% of the cement weight creates a plastic grout. Other 

additives can accelerate the setting time of the grout, improve fluidity (allowing injection at 

lower water-to-cement ratios), and expand the grout and so pressurize the borehole. Extreme 

caution should be taken when using additives to avoid side effects such as corrosion and 

weakening of the grouting (Kılıc, Yasar and Celik, 2002). 

A comprehensive investigation was undertaken by Hyett, Bawden and Reicher (1992) in order 

to determine the physical and mechanical properties for Portland cement grouts with a variety 

of water-to-cement ratios. The range was between 0.25 and 0.7. The grouting was 

investigated for pull out testing to understand major factors influencing the bond capacity of 

grouted cable bolts. The samples were mixed and then left to cure for 28 days at a relative 

humidity of 95%.  The results in Figure 12 show that for water-to-cement ratios ranging from 

0.7 to 0.35 the uniaxial compressive strength (UCS), tensile strength and Young’s modulus all 

increased. 
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Figure 12 – Mechanical properties of 28-day cure Portland cement (Hyett, Bawden and Reicher, 1992). 

 

However, when the ratio became less than 0.35 only the Young’s modulus continued to 

increase, while any trend in the strength data was overshadowed by an increase in the scatter 

of both results from the UCS and the tensile strength. Even though the details obtained in the 

tests above are undoubtedly a result of the particular mixing system used, rather than being 

true material properties, they may still apply to many grout pumping systems.  From these 

results, it can be presumed that the grout of water-to-cement ratio: 0.30 may be both 

impractical and undesirable for cable bolts. The reason is because the cement mix is too thick, 

so it is difficult to pump and because of its variability in strength. According to the results, the 

most suitable ratios range from 0.35 – 0.40.   

The evolution of grout pumps has always been a critical factor in underground construction. 

It is important that the pumps are capable of pumping grouts with a low enough water-to-
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cement ratio to achieve adequate strengths. A range of grout pumps are on the market today 

that are capable of pumping viscous grouts and can operate under typical conditions. Hyet et 

al (1992) reported a comprehensive testing program on Portland cement grouts. The cement 

grout had hardened for 28 days before uniaxial compressive strength (UCS) and deformation 

modulus were measured. The results (Figure 13) showed that the UCS and the deformation 

modulus decreased with increasing water-to-cement ratio.  

 

 
Figure 13 – Relationship between the w/c ratio and the average UCS and deformation modulus. The tests are 

taken 28 days after grouting (Hoek, 2007). 

The results from three ratios were also reported with Mohr failure envelopes. They showed 

that grouts with ratios of 0.35 to 0.4 are much better than the ratio of 0.5. The scatter in the 

test results for ratios of less than 0.35 increased markedly, according to Hyett et al. The 

implication is that the ideal water-to-cement ratio for cable reinforcement lies between 0.35 

and 0.4. The table below shows the characteristics of grouts with different ratios: 
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Table 4-Characteristics of grouts with different water-to-cement ratios (Hoek, 2007). 

w/c ratio Characteristics at end of 
grout hose 

Characteristics when 
handled 

0.30 Dry, stiff sausage structure. Sausage fractures when bent. 
Grout too dry to stick to hand. 
Can be rolled into balls.  

0.30 Moist sausage structure. 
’Melts’ slightly with time. 

Sausage is fully flexible. Grout 
will stick to hand.  
Easily rolled into wet, soft 
balls. 

0.35 Wet sausage structure. 
Structure ‘melts’ away with 
time. 

Grout sticks readily to hand. 
Hangs from hand when 
upturned. 

0.40 Sausage structure lost 
immediately. Flows viscously 
under its own weight to form 
pancake.  

Grout readily sticks to hand 
but can be shaken free. 

0.50 Grout flows readily and 
splashes on impact with 
ground.  

Grout will drip from hand – no 
shaking required. 
 
 

 

The effects of grout properties on the pull - out load capacity of rebar bolts were tested and 

results presented by Kilic, Yasar and Celik (2002). This project was conducted to develop a 

safe, practical and economical support system for engineering works. The results showed that 

water-to-cement ratios in grouting materials significantly affect the pull out strength of rock 

bolts (Figure 14). 
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Figure 14 –The figure shows the influence of w/c ratio on the bolt pull - out testing. Maximum pull out load 
decreases as the w/c ratio gets higher (Kilic, Yasar and Celik, 2002). 

When the ratio increases, the values for the UCS and shear strength will become lower (as 

shown in Table 5).  

Table 5 – Variation in water-to-cement ratio influences the uniaxial compressive strength and the shear 
strength of grouting (Kilic, Yasar and Celik (2002). 

w/c UCSg 

(MPa) 
Τg 

(MPa) 
Ab 

(cm2) 
Pb 

(kN) 
τb 

(MPa) 

0.34 42.0 11.9 102 80.9 7.93 

0.36 38.9 11.3 102 79.0 7.75 

0.38 33.3 10.7 102 77.4 7.59 

0.40 32.0 10.3 102 75.3 7.38 

Rock: Basalt; diameter of the bolt:12mm 
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 A ratio between 0.34 and 0.40 presents the best results.  The ratio of 0.34 gives the best bond 

strength (τb) (see figure 15). However, other problems occur with that ratio. The pumpability 

of the grout decreases and a number of difficulties appear in the application. The pumpability 

increases as the ratio becomes higher, so it will be easier to fill the drill holes. However, that 

affects the bond strength. The bond strength is primarily frictional for fully cement-grouted 

bolts and relies on the shear strength at the bolt-grout or grout-rock interface. In other words, 

every change in the shear strength affects the bond strength and load capacity of the bolts 

(Kilic, Yasar and Celik, 2002). 

 

Figure 15 – The ratio of 0.34 gives the best bond strength. However, other problems occur with that ratio, 
such as decreasing pumpability (Kilic,Yasar and Celik, 2002). 

2.5.1  Curing time of grouting 

The setting time of cement mortar is an important issue in the application of cement-grouted 

rock bolts. It affects the stabilizing ability of bolts. It takes time for the cement to set and 

harden; therefore, grouted bolts cannot be used for immediate support. Eight groups of bolts 

of the same length and mortar with a w/c ratio of 0.4, were pull-out tested by Kilic et al (2002). 

They were tested to determine the effects of curing time on the bolts’ bond strength. Each 



 

30 
 

group of the rock bolts used a different curing time. Results showed that the first 7 days the 

bolt bond strength and the maximum pull-out load of bolts increased rapidly.  After 7 days, 

the tests still increased but more slowly. 

 

Figure 16 – Different curing times for each group of the rock bolts. In the first 7 days the bolt bond strength 
and the maximum pull-out load of bolts increases rapidly.  After 7 days the tests still increase, but more slowly 
(Kilic et al, 2002). 

Rock bolts may lose their supporting ability through the yielding of rock bolt materials, failure 

at the bolt-grout or grout-rock interface and unravelling of rock between bolts. However, 

according to laboratory tests and field observations, the main failure mode is shear at the bolt-

grout interface. Therefore, it is important to focus on that in rock bolt testing. 

2.6 Use of bolts in Norway 

The tectonic history of the Norwegian bedrock is a complicated story of structural patterns 

and discontinuities, caused by intense folding and metamorphism that are hard to explain.  

Different rock types and features are detected at the surface and sub-surface in Norway. Even 

though the Norwegian bedrock is quite stable (a good rock quality), numerous discontinuities 

in terms of joints and weakness zones are detected. Rock stresses causing stability problems 

in underground excavations in Norway are partly related to high rock cover and tectonic 

stresses. Also, most Norwegian underground excavations (like tunnels) are located in the 



 

31 
 

saturated zone of the rock mass. Water inflow and groundwater are therefore important 

issues to deal with. Despite a great variety of ground conditions, causing problems in 

tunneling, the overall conditions for underground excavations are considered favorable in 

Norway. In 1909, when the railway line between Oslo and Bergen was opened, 184 tunnels 

had been excavated; in the 1970s, when the Norwegian oil and gas era began, experiences 

grew in underground excavations for storage, transport tunnels and pipeline shores. 

(NFF,n.d.a)  The most commonly used support method in Norwegian excavations is rock bolts 

and sprayed concrete. Over the years, rock bolts with end anchoring by an expansion shell 

have been mostly used as a temporary support, and fully grouted bolts with cement as a 

permanent support. Lately, end anchored resin rock bolts have been used much more often, 

mainly in the tunneling industry, as a permanent support. About 250,000 rock bolts are used 

in Norway each year, mostly for tunnel support. The long-term durability of bolts is a crucial 

parameter and much research has been conducted by the Norwegian Public Road 

Administration, the main producer of bolts in Norway. The most durable product, according 

to the Public Road Administration, is fully grouted rebar bolts. One of the newest rock bolts is 

the CT bolt, which is a steel rebar bolt with an ordinary expansion shell and an arrangement 

for the injection of cement. In this way, the CT bolt can be used both as an ordinary end 

anchored bolt for temporary support and then as a permanent grouted bolt (NFF,n.d.b)  

 

Figure 17 – CT bolt.  It is a steel rebar bolt with an ordinary expansion shell and an arrangement for the 
injection of cement (NFF, n.d.b). 
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3 Chapter – Stability problems caused by rock stresses 

3.1 Introduction 

Stresses have great impact on stability at the site of an underground excavation. Stability 

problems occur when the stresses around the excavation exceed the strength of the rock mass 

and it yields – higher stress causes instability.  Low stress may also reduce the stability in 

jointed rock mass because of normal stresses on joints. This causes rock blocks to slide. It is 

possible to analyze potential stability problems caused by stresses if the rock mass properties 

are known. The need for rock support can be estimated from the rock mass properties and 

the possibilities of optimizing the excavation geometry. Stress information regarding the 

magnitude and direction of principal stresses are fully obtained by performing rock stress 

measurements. For each individual case, rock measurement has to be performed because 

rock stresses vary considerably from place to place. There have been many different methods 

used to measure in situ stresses throughout the years, but the most common method today 

is triaxial stress measurements by drill hole overcoring and hydraulic fracturing. In Norway, 

the so-called “door stopper method,” or two-dimensional overcoring, is used in cases of heavy 

fracturing or for measurements in pillars (Nilsen and Palmström, 2000).  

3.2 Definition of stress 

The definition of stress is a force over area. Force is, according to Newton’s first law of motion, 

the product of mass (m) times acceleration (a): 

 𝐹 = 𝑚𝑎 

 

(3.1) 

Force is defined in Newton (N) as the physical quantity required applying acceleration (a) of 

one meter per second squared to a mass of one kilogram.  

 
𝐹 = 1𝑁 = 𝑘𝑔 ∗

𝑚

𝑠2
 

 

(3.2) 

The acceleration due to gravity on earth is 𝑎 = 𝑔 = 9,8𝑚/𝑠2 and a kg of mass creates a force 

of  

 
𝐹(𝑒𝑎𝑟𝑡ℎ) = 1 𝑘𝑔 ∗ 9,8

𝑚

𝑠2
= 9,8𝑁 

 

(3.3) 
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When a force of 1N is acting over a one square meter area the stress is called one Pascal or 

Pa. In the world of engineering, this is a relatively small stress; most often, it is preferable to 

work with the mega Pascal (MPa), which is equal to 106Pa (Herget, 1988). 

3.3 Stresses in rock mass 

Rock stresses exist within the rock mass and are characterized by their directions and 

magnitudes. Conventionally compressive stress is positive, and tensile stress is negative. 

Normal stresses on planes with no shear stresses are called principal stresses and are referred 

to as: 

 𝜎1 = major principal stress (largest compressive stress) 

 𝜎2 = intermediate principal stress 

 𝜎3= minor principal stress (smallest compressive stress) 

Stresses found in the rock can be grouped according to origin, into natural stresses and 

induced stresses; these are the main components influencing magnitude and direction of the 

stress field.  Natural stresses are stresses found in rock before excavation and are comprised 

of gravitational stresses, topographic stresses, residual stresses, tectonic stresses and thermal 

stresses (Appendix B). Induced stresses will now be described in more detail. 

3.3.1 Induced stresses 

When an opening is excavated in a rock mass, the stress field is locally disrupted. This leads to 

a new set of stresses induced in the rock surrounding the opening, due to manmade 

excavations. 
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Figure 18 - Illustration of principal stresses induced in an element of rock that is close to an underground 
excavation.  The figure shows the vertical in situ stress, 𝛔v, the horizontal in situ stress 𝛔hi that is in a plane 
normal to the tunnel axis, and finally the horizontal in situ stress  𝛔h2 that is parallel to the tunnel axis (Hoek, 
2007b). 

Figure 18 shows an example of the stresses induced in the rock when a horizontal circular 

tunnel is excavated in a rock mass. After the excavation, the stresses in the immediate vicinity 

of the tunnel are changed and new stresses are induced. The redistribution of stresses is 

concentrated in the rock mass close to the tunnel. But farther away from the opening, say a 

distance of three times the radius from the center of the hole, the disturbance to the in situ 

stress field is negligible. Three principal stresses acting on a typical element of rock are shown 

in Figure 18. 
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Figure 19 - Principal stress directions in the rock surrounding a horizontal tunnel (Hoek, 2007b). 

The principal stresses are perpendicular to a plane, but they may be inclined to the direction 

of the applied in situ stress.  Figure 19 shows the direction of the principal stresses surrounding 

a horizontal tunnel subjected to a horizontal in situ stress σℎ1 equal to 3*𝜎𝑣 where σ𝑣is the 

vertical in situ stress (Hoek, 2007b). 

3.4 Stability problems caused by rock masses 

The most fundamental concern in a design of underground excavations - such as tunnels, mine 

slopes or caverns - for civil and mining engineering projects are in situ stresses in rock. They 

play a crucial role in the stability of the rock mass. If the rock stresses are too low, this will 

lead to de-stressing in the rock after excavation; when rock stresses become too high, rock 

failure will happen due to stress concentration (Li, 2011). The only way of applying rock 

strength determination and failure theories to a rational design of rock excavation is to make 

an assessment of stresses in rock. This increases understanding of rock burst phenomena and 

predicts the destressing of rock (Herget, 1988).   

3.4.1 Stresses in depths 

Most excavations in earlier times were conducted in locations closed to the surface. It is a fact 

that in situ stresses become higher with depth. The rock stresses at low depth are most often 

lower than the strength of the rock, and the rock is characterized by well-developed rock joint 
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sets. At low depths the most concern is falls of loosened rock blocks. In these cases, rock 

support is used to prevent the falling of blocks. The maximum load exerted on the support 

system is the dead weight of the falling block; that is, a load-controlled condition. It is 

important that the support system used in the excavation project is strong enough to bear the 

dead weight of the loosened rock blocks. For that reason, it is appropriate to use a safety 

factor2 for the rock support design in a load controlled condition. This principle states that the 

load applied to a structure cannot be beyond the strength of the structure. It means that the 

safety factor should be larger than 1 for a safe design. In underground openings at shallow 

depths, this principle is valid because the load on the rock support system is mainly the dead 

weight of loosened rock blocks. The quality of a rock mass becomes better at greater depth, 

due to reduction in geological discontinuities compared to conditions in more shallow depths. 

Rock stresses, however, get higher as depth increases.  Then, the greatest stability concerns 

in underground openings are rock failures caused by high stresses. Two consequences of high 

stresses are large deformation in soft and weak rock, and rockburst in hard rocks (Li, 2011). 

3.4.2 In hard rock 

When maximum tangential stress is greater than the rock mass strength, fracturing at the 

excavation boundary may occur in hard or brittle rocks. That is called spalling and causes 

instability problems during tunneling and other underground excavations. The spalling 

phenomenon occurs when a compressive stress induces crack growth behind excavated 

surfaces, causing buckling of thin rock slabs.  The severity of spalling can vary from minor 

spalling to the complete collapse of excavations. Spalling may also increase chance for water 

loss from water tunnels during operation (Siren, Martinelli and Uotinen, 2011). When the rock 

stresses are very high (i.e., tangential stresses are much higher than rock mass strength) the 

rock mass may fail with loud sounds in brittle rocks, leading to rock burst. If one were standing 

close to the failure zone, one would hear the snapping noises of the rock failure accompanying 

slice ejections. This noise may continue for a period of hours or days afterwards, then 

gradually change to discrete muffled sounds when the fracture goes deeper into the rock (Li, 

2012). A rock burst event is classified as either strain burst or fault-slip burst. If there is stress 

concentration in the nearby field of an underground opening the burst event is called strain 

burst. The stresses become so high that the rock is not capable of sustaining them so the rock 

                                                           
2 Safety factor is defined as the ratio of the strength of the support system to the weight (i.e. load) of the block.  
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bursts out. Fault-slip burst occurs when strain waves3 reach the walls and roof of openings 

and trigger the rock burst event.  The fault-slip rock burst is usually more powerful than the 

strain rock burst (Charlie and Doucet, 2011). Many deep-level mines around the world have 

suffered from rock burst problems and there are reports available since 1942 where rock burst 

has been experienced. Rock burst is a serious problem that may lead to catastrophic situations 

in underground excavations; in extreme circumstances, loss of human life results (Hoek, 

2007c). 

3.4.3 In weak rock  

Weak and soft rock is characterized by relatively low strength and low deformation modulus. 

Rock types like mudstone, chloritic and talc-rich rocks contain soft minerals and therefore 

belong to weak rock category (Li, 2012). When tunneling or excavating through very weak, 

highly sheared and deformed rocks, the rock mass may squeeze. The squeezing occurs when 

overburden stress exceeds the rock mass strength, and the pressure gradually builds up.  This 

plastic deformation intensifies with increased time and tunnel advancement. When the strain 

exceeds 10%, extreme squeezing happens. Extreme squeezing can cause severe stability 

problems, which are quite challenging to address (Stefanussen, 1999).   

Rock squeezing is always correlated with high stresses. The rock deformation increases with 

time because of the creeping behavior of weak and soft rocks. There will not be any volume 

increase related to the squeezing, but dilation occurs in the less confined direction, toward 

the opening space (Charlie and Doucet, 2011). In a mine drift located at 900m depth, 

observation showed that the wall convergence reached up to 600 mm in a three-month 

period. To constrain the rock squeezing to an acceptable extent in the area, a yieldable rock 

support system consisting of rock bolts and meshes was used. The rock bolts functioned as 

hanging elements to transfer the load on the meshes to the relatively competent rock mass 

behind (Li, 2012). 

                                                           
3Excavations of underground openings may result in reductions in the normal stresses on some pre-existing 
faults near the undergrond openings. This in turn brings about reductions in the shear resistance of the faults, 
and slippage induces strain/stress waves that propagate spherically outward from the site of slippage.  
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Figure 20 – Squeezing in a 10 meter span tunnel. Approximately 1 meter of inward displacement is in the 
roof and sidewalls (Hoek and Marion. 2000).  

3.5 Bolts used as support in rock stresses 

The major stability concern in shallow depths, where in situ stresses are usually low, are rock 

falls under gravity. The blocks are stabilized by installing rock bolts and other support devices.  

In these circumstances the bolts have to be strong enough to sustain the dead weight of the 

rock. Therefore, when selecting a bolt type for these situations, the most crucial parameter is 

strength. Fully grouted rebar bolts are the ideal type of bolt for this purpose since they fully 

utilize the strength of the bolt steel (Li, 2011). 

However, the major shortcoming of rebar bolts is that they do not tolerate much deformation 

and therefore could not survive large rock dilations. A small amount of fracture opening would 

likely result in premature failure of the bolt material. In high-stress rock conditions at great 

depth, rock bolts are subjected to both shear and pull loads. The rebar bolts are too stiff to 

accommodate large displacement in creeping conditions, similar to the case of rock burst. 

When the bursting occurs the bolts simply fail because of their stiffness (Charlie and Doucet, 

2011). Therefore, rebar bolts are neither appropriate for rock support in creeping conditions 

nor in bursting conditions.  Bolts in high-stress conditions should have both high load bearing 

capacity and be able to accommodate large rock dilations; that is, they should be able to 
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absorb a large amount of energy prior to failure (Li, 2009). Rebar bolts absorb little energy 

because of their small deformation, and Split Set (frictional bolts) absorb little energy because 

of their small load bearing capacity (Charlie and Doucet, 2011). Energy absorbing bolts like D 

bolts or cone bolts should be a suitable choice in high stress at great depth (Charlie and 

Doucet, 2011). In rock mass where rock burst occurs, minimum tensioning is applied to 

expansion shell-anchored bolts and resin-anchored bolts. Large steel plates are also used to 

avoid crushing the surrounding rock. In all situations, except where rock burst occurs, the bolts 

are only tensioned to 25-50 % of their yield strength (Hoek, E, 2012). 

The safety factor for rock support systems in high-stress conditions is calculated on the basis 

of the released energy and the energy absorption of the support system. The safety factor is 

expressed as: 

  

𝑆𝐹 =  
𝐸𝑛𝑒𝑟𝑔𝑦 𝑎𝑏𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛 𝑜𝑓 𝑟𝑜𝑐𝑘 𝑠𝑢𝑝𝑝𝑜𝑟𝑡

𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑑 𝑒𝑛𝑒𝑟𝑔𝑦 𝑓𝑟𝑜𝑚 𝑟𝑜𝑐𝑘
 

 

 

(3.4) 

The principle above is also valid for weak rock where squeezing occurs, although it is not as 

easy to determine the released energy from squeezing rock as in the case of a rock burst event 

(Li, 2012). 
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4 Chapter – Design of bolting system 

4.1 Introduction 

Geotechnical discontinuities in the intact rock, material properties, distribution and 

magnitude of rock stresses, and size and shape of excavation openings are all factors that 

affect the design of a rock bolting system. To create a complete and appropriate rock bolting 

system design, it is important to properly investigate the following parameters: 

 Selection of bolt type 

 Bolt length 

 Anchor capacity 

 Pattern and spacing 

Interactions between these parameters are very complex and our understanding of their 
mechanics remains imperfect. 

4.2 Selection of bolt type 

Different types of rock bolts are designed and manufactured to meet all kinds of geological 

situations and support requirements. For instance, some rock bolts are used as a temporary 

support while other types are permanent. Then there are bolts that are a more appropriate 

choice for hard rock conditions, while others are used mainly in weak rock mass. It is essential 

for a successful bolt type selection to examine carefully the geological conditions and 

understand the performance of different types of bolts under different settings (Smith, 1993). 

Guidelines for selecting the right bolt type are presented below: 

Mechanically anchored rock bolts are used in: 

 Harder rock condition in cases where the rock properties will not affect the gripping 

force of the anchor (Smith, 1993) 

 Rock as spot bolting to secure unstable blocks at the tunnel face (Statens vegvesen, 

1999) 

 Rock as a temporary reinforcement with the exception of areas of high rock stress 

(Statens vegvesen, 1999)  

 Rock that is not highly fractured (Smith, 1993) 

 Water tunneling (Statens vegvesen, 1999) 

 Where bolt tension can be checked regularly 

 Rock that does not experience high shear forces 

 Areas far from blast sites. In this situation, the bolt tension may be lost 
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 (Smith, 1993) 

Friction-anchored rock bolts are designed for use in: 

 A variety of ground conditions 

 Mining industry for medium-term support requirements – Swellex bolts 

 Moving and bursting ground – Split Set 

 Rock that needs relatively light support duties – Split Set  

 (Hoek and Wood, 1987) 

 Rock effectively as spiling as well as face, roof and wall support in any material where 

hole diameters can be maintained – Swellex (Atlas Copco, 2012) 

 Daily support for optimum cost efficiency in mining and tunneling areas not requiring 

rock bolts’ ductility (Atlas Copco, 2012) 

 Rock not needing long-term installations. Corrosion can be a problem in these 

situations (Hoek and Wood, 1987) 

Grouted bolts are used in: 

 Conditions where the usage of mechanical bolts is not recommended 

 Permanent reinforcement systems 

 Rock where wide fractures and voids are not present. This may lead to a loss of 

significant amounts of grout 

 Boreholes where continuous water run-off will not interfere with the installation 

 Rock to prevent both vertical and horizontal strata movements 

 Rock blasting. The bolt absorbs blast vibrations without bleed-off of the bolt load 

(JunLu, 1999) 

Untensioned grouted bolts are recommended in: 

 Rock that is highly fractured and deformable as long as adequate bolt installation is 

feasible 

Tensioned grouted bolts are recommended: 

 Where additional frictional forces may enhance roof stability in combination with a 

grouted column (JunLu, 1999) 

As mentioned earlier, it is a general rule that mechanical bolts cannot be reliably installed in 

critical areas as permanent support. Furthermore, they are not suitable where roof 

deformation may likely occur, or in rock like shales and clays that are extremely soft and 
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exhibit highly plastic behavior. However, when selecting temporary reinforcement systems, 

mechanical bolts should be the first option. To ensure the best performance of mechanical 

bolts, if they are chosen, the following guidelines should be followed: 

1) To prevent strata separation it is important to bolt the roof as soon as possible after 

the excavation.  

2) On-site pull out tests should be made to determine the optimum expansion shell and 

the optimum anchorage horizon.   

3) To reinforce the strata effectively, employ substantial structural components, such as 

high strength bolts and plates with low deformation characteristics 

4) Ensure all bolts are working together. That is done by installing them with equal 

tension (Peng and Tang1984).  



 

44 
 

Table 6 - Suggested support type for various rock conditions (Hoek and Wood, 1987). 

Rock Conditions  Suggested support type 
 
Sound rock with smooth walls created by good 
blasting. Low in situ stresses. 

No support or alternatively, where required for safety, 
mesh held in place by grouted dowels or mechanically 
anchored rock bolts, installed to prevent small pieces from 
falling. 

 
Sound rock with few intersecting joints or bedding 
planes resulting in loose wedges or blocks. Low in 
situ stresses.  

Scale well then install tensioned, mechanically anchored 
bolts to the blocks into surrounding rock. Use straps across 
bedding planes or joints to prevent small pieces falling out 
between bolts. In permanent openings, such as shaft 
stations or crusher chambers, rock bolt should be grouted 
with cement to prevent corrosion.  

 
Sound rock damaged by blasting with a few 
intersecting planes. Low in situ stresses. 

Chain link or weld mesh held by tensioned mechanically 
anchored rock bolts, to prevent falls of loose rock. 
Attention must be paid to scaling and to improving blasting 
to reduce amount of loose rock.  

 
 
Closely jointed blocky raveling from surface causing 
deterioration if unsupported. Low stress conditions. 

Shotcrete layer, approximately 50 mm thick. Addition of 
micro-silica and steel fiber reduces rebound and increases 
strength of shotcrete in bending. Larger wedges are bolted 
so that shotcrete is not overloaded. Limit scaling to control 
raveling. If shotcrete not available, use chain-link or weld 
mesh and pattern reinforcement such as split sets or 
Swellex. 

 
 
 
 
Stress-induced failure in jointed rock. First 
indication of failure due to high stresses are seen in 
borehole walls and in pillar corners 

Pattern support with grouted dowels or Swellex. Split sets 
are suitable for supporting small amounts of failure. 
Grouted tensioned or untensioned cables can be used but 
mechanically anchored rock bolts are less suitable for this 
application. Typical length of reinforcement should be 
about ½ the span of openings less than 6 m and between ½ 
and 1/3 for spans of 6 to 12 m. Spacing should be 
approximately ½ the dowel length. Support should be 
installed before significant movement occurs. Shotcrete 
can add significant strength to rock and should be used in 
long-term openings (ramp etc.). Mesh and straps may be 
required in short-term openings (drill-drives etc.) 

 
Draw points developed in good rock but subjected to 
high stress and wear during blasting and drawing of 
stopes.  

Use grouted rebar for wear resistance and for support of 
draw point brows. Install this reinforcement during 
development of the trough drive and draw point, before 
rock movement takes place as a result of drawing of stopes. 
Do not use shotcrete or mesh in draw points – place dowels 
at close spacing in blocky rock.  

 
 
Fractured rock around openings in stressed rock 
with a potential for rock bursts. 

Pattern support required but in this case flexibility required 
absorbing shock from the rock burst.  Split sets are good 
since they will slip under shock loading but will retain some 
load and keep mesh in place. Grouted dowels and Swellex 
will also slip under high load but some face plates may fail. 
Mechanically anchored bolts are poor in these conditions. 
Lacing between heads of reinforcement helps to retain rock 
near surface under heavy rock bursting.  

 
 
Very poor rock associated with faults or shear zones. 
Rock bolts or dowels cannot be anchored in this 
material.  

Fiber-reinforced shotcrete can be used for permanent 
support under low stress conditions or for temporary 
support to allow steel sets to be placed. Note that shotcrete 
layer must be drained to prevent build-up of pressure 
behind the shotcrete. Steel stets are required for long-term 
support where it is evident that stresses are high or that 
rock is continuing to move. Capacity of steel stets are 
estimated from amount of loose rock to be supported.   
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4.3 Bolt length 

Bolt length is generally based on the total thickness of unstable strata, especially when they 

are used to control stability. In underground situations such as caverns or tunneling, the 

maximum length of a rigid bolt is limited by the roof-to-floor height of the opening. There are, 

however, some types of bolts that can be bent before they are inserted into the boreholes 

and then straightened afterwards. Fully grouted rebar bolts can be bent and then straightened 

afterwards, but the bolt strength is reduced. Cable bolts can overcome this limitation, as they 

are bolts with great flexibility. When rock bolts mainly act in suspension, they have to be long 

enough to be firmly anchored in a competent rock mass. If suspension is not allowed in the 

situation, the bolts have to be long enough to create beam-building effects or keying effects 

(See chapter theories of rock bolting) (JunLU, 1999). 

Biron and Arioglu (1982) developed a guideline to determine bolt length in underground 

openings. There is a linear relationship between bolt length and the roof span. According to 

the guidelines, bolt length for strong roofs is about one-third of the roof span, and for weak 

roofs bolt length is about one-half of the roof span. Bolting in a very strong roof, where they 

are only meant to prevent spalling, has a minimum recommended bolt length of 3 feet 4 

inches. Some general empirical rules for bolt lengths have been provided; these rules are as 

follows: 

Estimated minimum bolt length should be the greatest of the following three: 

 Twice the bolt spacing; 

 Defined by the average discontinuity spacing in the rock mass the minimum bolt length 

should be three times the width of critical and potentially unstable rock blocks; 

 If the span is less than 20 feet, bolt length should be one-half the span. For spans 

between 20 to 60 feet, linearly interpolate between 10- to 16-foot lengths, 

respectively. Higher than that, sidewall bolts in excavations should be one-fifth of wall 

height. According to section 74 of Code of Federal Regulations 30 (from 1977), no 

length of rock bolts used in a roof should be less than 2.5 feet plus 1 foot if anchored 

in the stronger strata to suspend the immediate roof. 

(JunLU, 1999). 
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When the length of rock bolts is chosen, it matters whether they are to be used, for example, 

in tunnels or caverns. The typical length of rock bolts in tunnels is 2-4 meters and the diameter 

of the bolts is 20-25 mm. In caverns, the bolts’ length is generally quite longer. The typical 

length is 6 meters with a diameter of 25-32 mm.  In Norway, when the length of rock bolts is 

selected for tunnels, the following equation is applied: 

  

𝐿𝑏 = 1.4 + 0.184𝐷𝑡 

 

 

(4.1) 

Dt stands for the diameter of the tunnels in meters.  

Another equation has been suggested for selecting the length. This equation takes into 

account the rock mass condition when designing the bolts, especially the size of the block.  

The equation is: 

  

𝐿𝑏𝑟𝑜𝑜𝑓 = 1.4 + 0.16Dt (1 +
0.1

𝐷𝑏
) 

 

 

(4.2) 

 

 
𝐿𝑏𝑟𝑜𝑜𝑓 = 1.4 + 0.08(𝐷𝑡 + 0.5𝑊𝑡) (1 +

0.1

𝐷𝑏
) 

(4.3) 

 

Wt stands for the height of tunnel wall in meters and Db for the block diameter   (Nilsen and 

Palmström, 2000). 

4.3.1 Q system used for selecting bolt length 

In 1974 the Norwegian Geotechnical Institute (NGI) developed the Q system for rock mass 

classification. This classification system is for estimating tunnel support and is based on 

numerical assessments of rock mass quality: 

 Rock quality designation - RQD  

 Joint set number - Jn  

 Joint roughness - Jr  

 Joint alteration - Ja  
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 Joint water reduction - Jw  

 Stress reduction factor - SRF  

The parameters above are grouped into three quotients that give the overall rock mass 

quality. The first two represent the overall structure of the rock mass. Their quotient is a 

relative measure of the block size. The second quotient is described as an indicator of inter-

block shear strength and the third quotient is described as the active stresses. The Q value 

relates to tunnel support requirements by defining the equivalent dimensions of the 

underground opening. Equivalent dimension is a function of size and type of the excavation. 

By dividing the diameter, height or the span of the excavation by the excavation support ratio 

(ESR) we will get the equivalent dimension. ESR is not the same for different types of 

underground openings. For power stations, roads and railway tunnels, ESR is 1.0 

By using the Q system chart (see Figure 21) we get an indication of the support system that 

should be used for each case, whether it is bolt support or use of shotcrete. The length of bolts 

can be decided using the chart and bolt spacing both in un-shotcreted and shotcreted areas. 

Other necessary information from the chart can be seen in the figure below (Nilsen and 

Palmström, 2000). 

  

Figure 21 – Q system chart gives an indication of the support system; length of bolts, bolt spacing and shotcrete 

(Barton et al, 1974).  
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4.4 Anchor capacity, pattern and spacing 

The intensity of support provided by a rock bolting system is determined by three main 

factors: 

• Capacity of the individual bolts 

• The density of the bolt pattern 

• The length of the bolts 

The capacity of rock bolts is determined by the diameter and size of the bolt, its strength and 

its anchorage capacity (Mark, Molinda and Dolinar, n.d.) 

The anchorage capacity depends on different things for various bolt types. Anchorage capacity 

for mechanical bolts depends on how firmly the expansions shell grips against the borehole 

wall. The maximum gripping is determined by the rock type and the integrity of the rock 

surrounding the anchorage area.  In most cases, stronger rock or rocks of higher integrity 

provide better anchorage for mechanical bolts. The best way to determine the maximum 

carrying capacity, where there is no anchoring slipping or failure, is an underground in situ pull 

test. When defining the difference between good anchoring and poor anchoring, the 

movement and the yield strength are measured. A good anchoring system has minimum 

movement and an anchorage capacity exceeding the bolt yield strength. A fair anchorage is 

one whose capacity is equal to or slightly exceeds the bolt yield strength. Finally, poor 

anchorage moves excessively with loads below the bolt yield strength (Peng, 1984). Research 

has shown that fully grouted rock bolts are at least twice as strong as a mechanical bolt of the 

same size.  The clearance between fully grouted bolts and the borehole is important for 

anchoring capacity and rigidity. By increasing the clearance, both rigidity and capacity 

decrease (JunLu, 1999). 

The density of rock bolt patterns in underground openings depends on the number of bolts 

per row and the spacing between rows. In the United States, coal mines follow a systematic 

pattern of bolting, regardless of the bolt length. It has become the near-universal standard to 

support four bolts per row (Mark, Molinda and Dolinar, n.d.). 

The bolts are most often installed vertically, and in some situations at an incline.  Systematic 

bolting does not work under all circumstances. Fairhurst and Singh (1974) pointed out that 

sometimes a systematic pattern works too well by leaving the supported rock intact. In that 

case, the entire section of the supported rock may fail as a unit.  This failure, according to 
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Jorstad (1967), is associated with artificial fracturing caused by the longest bolts. Other 

research has shown that fractures are more likely to form as the bolt spacing is reduced. There 

are many factors that affect bolt spacing, such as location of weakness planes, strata thickness, 

roof conditions in underground excavations, bolt tension, and bolt characteristics such as yield 

strength, length, and diameter. These factors affect bolt spacing because bolt patterns and 

strata interact (JunLu, 1999). 

The bolt spacing can be estimated as: 

  

𝑏 =
2

3
𝑙 

 

 

(4.4) 

Or 

  

𝑏 =
2

9
𝐿 

 

 

(4.5) 

 

Where: 

𝑏 = Bolt spacing 

𝑙 = Bolt length 

𝐿 = Roof span 

 

To measure the intensity of the rock bolts, a summary variable has been developed, ARBS 

(Analysis of Roof Bolt Systems) that includes all three factors mentioned above. The equation 

is as follows: 

  

𝐴𝑅𝐵𝑆 =
(𝐿𝑏)(𝑁𝑏)(𝐶)

(𝑆𝑏)(𝑊𝑒)
 

 

 

(4.6) 

 

Where: 

Lb = Length of the bolt  
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Nb = Number of bolts per row 

C = Bolt capacity  

Sb = Spacing between rows of bolts  

We = Entry width (span) (Mark, Molinda and Dolinar,n.d). 

There are some general rules to check for rock bolt spacing. The maximum bolt spacing should 

be at least:  

 One-half the bolt lengths; 

 One and one-half the width of critical and potentially unstable rock blocks; 

 6 feet. 

Minimum bolt spacing should not be less than 3 feet (JunLu, 1999).  
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5 Chapter – Pull-out test 

5.1 Introduction 

Following is a definition of a pull out test: 

Rock bolts are installed in the same manner and material as their intended 

construction use. They are pulled out hydraulically and at the same time the 

displacement of the bolts head is measured. The rock bolts are pulled until 

the anchor system or the rock fails. The results from the testing are 

calculated from the plot of load versus displacement and that gives us the 

ultimate and working capacities of the rock bolts (Scribd, 2011). 

The objective of pull out testing is to measure the working and ultimate capacities of a rock 

bolt anchor. Ultimate capacity is the maximum load sustained by the anchor system and 

working capacity is the load on the anchor system at which significantly increasing 

displacement begins. Load is the total axial force on the rock bolt. The displacement is an 

important measure to find the ultimate and working capacities. The displacement is the 

movement of the rock bolt head. Failure in rock bolt testing happens when the anchor system 

or rock are not able to sustain increased load without rapidly increasing deformation. 

Sometimes the peak load itself cannot be sustained.  

Pull-out testing does not measure the entire roof support system nor include tests for pre-

tensioned bolts or evaluation on mine roof support system.  Pull-out tests apply to 

mechanically, cement- and resin-grouted, or other similar anchor systems. 

Information gathered from pull-out tests may give a quantitative measure of the relative 

performance of different anchor systems in the same rock type. Data from the testing can be 

used to select a suitable anchor type and determine bolt length, spacing and size. 

It is important to conduct anchor pull tests in all rock types in which construction bolts will be 

installed. Also, a sufficient number of tests should be taken to determine the average bolt 

capacities (ASTM International, 2014) 
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Figure 22 - Typical pull load–displacement curves for fully bonded rebar, expansion shell and frictional bolts 
are presented in the figure (Li, 2011). 

5.2 Testing procedure 

When a pull-out test is performed the anchors used should be from the manufacturer's 

standard production stock. The testing should be adjusted to the specific anchor system to get 

the most relevant results.  If mechanical anchors are tested, it is important to make sure that 

no anchors are defective. The anchors should be correctly sized for the hole’s diameter, and 

the size of the anchors must be known. If grout or resin are used as anchors, they have to be 

fresh. The resin cartridge size should be compatible with the borehole diameter, bar diameter 

and the length of anchorage required. If grout is injected, the mixing and the injection 

equipment have to be compatible with the recommendations of the manufacturer.  

Before the bars are injected, the boreholes are washed or blown to keep all cuttings away 

from the hole. There is no need for the holes to be as deep as the length of the bolts. However, 

they have to be deep enough to keep the anchor from the zones of disturbance caused by any 

excavation during field testing. The borehole has to be straight for a pull-out test. If it is not 

possible to see more than one-half of the hole’s bottom, the hole is not straight enough and 

therefore cannot be used (ISRM, n.d.) 
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Pull-out tests are always performed on untensioned rock bolts4. If tests are performed on fully 

grouted bolts it is important to consider the recommended curing times for the resin or grout. 

The time varies considerably and this may have significant effects on strength (See chapter 

about water-to-cement ratio).  To assess the effect of grouted bond length on anchor strength, 

more than one anchorage length should be tested, using similar curing times (ASTM, 2014). 

Finally, when the estimated curing time is completed, the rock bolts are pulled out 

hydraulically while the displacement of the bolt’s head is measured. The equipment used for 

pulling out the bolts should be capable of applying a load greater than the strength of both 

the anchor and the bolt to be tested.  It is vital that the applied load is axial with the bolt; a 

wedge is used to ensure this (ISRM, n.d.). 

 

Figure 23 - It is vital that the applied load is axial with the bolt; a wedge is used to ensure this. 

The anchor is tested by increasing the load until the bolt yields, breaks, or slides from the 

grouting without any yielding. Fully grouted rebar bolts start to yield around 170 kN, and from 

                                                           
4 Tension bolts can provide extra force across the discontinuity surfaces and hence inhibit further block 
displacement. However, in tensioned bolts the tension may not be sustained over the design life, due to 
relaxation. The advantage of untensioned bolts is that block displacements induce the necessary tension within 
them, due to dilation of the shearing discontinuity (Harrison and Hudson, 2000).   

http://www.amazon.com/John-P-Harrison/e/B001HMRM0Q/ref=sr_ntt_srch_lnk_1?qid=1398462840&sr=1-1
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that point up to 200kN the rebar yields before it breaks (Charlie Li, Professor at Department 

of Geology and Mineral Resources Engineering, oral source, 15. March 2014).  

5.3 Load-bearing capacity of bolts 

Results from pull-out tests give information about axial load bearing capacity of rock bolts. 

They also give recommendations for selecting appropriate bolt types for specific purposes (Li, 

2013). It is important that an installed support system is in harmony with the ground behavior 

to reach optimal equilibrium in an economical and timely manner without any possibility of 

jeopardizing safety (Foo et al., 2011).  

In accordance with load deformation performance, rock bolts can be categorized into three 

groups: 

 Ductile bolts 

 Strength bolts  

 Energy-absorbing bolts.  

Ductile bolts are capable of accommodating large deformation but do not bear high load. 

Strength bolts, on the other hand, have high load-bearing capacity but low deformation. The 

third group, energy-absorbing bolts, are capable of both, bearing high load and also 

accommodating large deformation. They are a suitable choice for rock reinforcement in highly 

stressed rock (Li, 2012).  

 Figure 24 presents results from pull-out tests carried out in a laboratory. It shows examples 

of non-linear support reaction curves for various types of rock bolt. 

 

Figure 24 – Results from pull-out tests carried out in a laboratory (Li, 2013).  

http://www.ntnu.edu/igb
http://www.ntnu.edu/igb
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The figure shows that all grouted bolts have rather low deformation, meaning that they 

accommodate relatively low displacement. For example, the displacement when 20 mm 

cement-grouted rebar bolts rupture is around 30-40 mm.  They can be described as stiff 

reinforcing elements.  However, all grouted rock bolts have high load-bearing capacity, as they 

tolerate more than 150 kN (Li, 2013). Fully grouted rebar bolts qualify as an example of 

strength bolts (Li, 2012). Swellex and Split Set are friction-anchored rock bolts. Friction bolts 

can accommodate large rock formations, but their load-bearing capacity is rather low (Li, 

2011). The figure shows that Swellex bolts have rather high load-bearing capacity (around 

120kN) compared to Split Set, which have a load bearing capacity around 50kN. However, 

both types can accommodate large displacement, up to 150 mm Charlie, 2013). Both Split Set 

and Swellex are classified as ductile bolts (Li, 2011). 

Mechanically anchored rock bolts can bear a relatively high load and are able to deform a bit 

more than the grouted rock bolts. Expansion shell bolts are mechanically anchored and can 

bear loads up to75 kN and may accommodate a displacement up to 50 mm.  The blue curve 

in Figure 24 represents the results from pull-out testing on D bolts. The results show that D 

bolts can tolerate high loads and also large deformation of the rock. None of the other bolt 

types can both tolerate large deformation and bear high loads as well as D bolts. It can be 

estimated from this information that D bolts may be important for getting maximum safety 

benefits.  D bolts are categorized as energy-absorbing bolts (NTNU, 2014). 

Energy-absorbing bolts are used both in mines and civil tunnels today. When the bolts are put 

in a borehole, the shank is fully encapsulated. A sleeve that contains a thin-walled steel tube 

is connected to the bolt head, and when the bolt is pulled in the rock the steel tube is pressed 

by the head. When the tube starts to move, the sleeve stops it and the tube is forced to buckle 

to accommodate the rock’s deformation (Li, 2011). Conventional rock bolts often fail 

prematurely in high rock stresses. The ideal rock bolts in that circumstances should be able to 

accommodate large rock dilations and absorb a large amount of energy prior to failure. 

Energy-absorbing bolts are the ideal bolts in that case.  

D bolts (short for “deformable bolts”) are different from other energy-absorbing bolts in that 

they are multi-point-anchored when all other types are two-point anchored. D bolts are fully 

bonded in the borehole with resin or cement grout (Li, 2012). The anchors in D bolts are 

stronger than the shank of the bolt and they are firmly fixed in the grout. The smooth bar 

section between anchors is weakly bonded to the grout. When the anchors dilate, they will 
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restrain the dilation so that a tensile load is induced in the smooth bar. The bar is able to 

elongate plastically until its ultimate strain limit is reached. All the smooth bar sections in the 

rock bolt act independently. If one section fails, it does not affect other sections of the bolt, 

localizing any effects (Li, 2010). 

5.4 Pull-out testing - previous research 

 

Pull-out tests on fully grouted cable bolts 

Investigation on major factors influencing the bond capacity of grouted cable bolts was 

conducted both in the laboratory and the field by Hyett, Bawden and Reichert (1992). The 

bolts were grouted using Portland cement. The results from their investigation revealed the 

most critical components for cable bolt capacity: first, the cement properties which are 

controlled by water/cement ratio; second, the embedment length; finally, the radial 

confinement that acts on the outer surface of the cement annulus. Grout with rather low 

water/cement ratio (<0.40) can increase peak cable bolt capacities by 50-75%. However, if the 

ratio goes under 0.30, it will become a super-thick paste and will both be impractical and 

undesirable. Different embedment lengths in pull-out testing indicated that capacity of the 

cables increased with embedment length. When determining the embedment length for 

cables, the joint spacing along the axis of the bolt should be examined. Results from RQD5 may 

give valuable information about the rock mass quality of where the bolts are injected. 

Influence of the bolt diameter, length and variant in water to cement ratio on bond 

strength of fully grouted bolts 

It is important to have a good understanding of the mechanism of load transfer in rock bolts 

as well as the behavior of the bolt-grout interaction. This knowledge improves the 

performance of fully grouted bolts. As the performance of fully grouted bolts depends on bond 

strength, pull-out tests were performed by Karanam and Dasyapu (2003) with various bolt 

diameters, lengths and water-cement mixing ratios of grout. The investigations were 

conducted on smooth bolts to check the influence of the bolt diameter, bolt length and variant 

in w/c ratio on the bond strength of the fully grouted bolts. The grout composition consisted 

                                                           
5 Rock quality designation or RQD is determined by measuring the core recovery percentage of core chunks 
greater than 100 mm in length. Core that is not hard or sound should not be counted even if they are 100 
mm in length. 
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of the following w/c ratios: 1:1, 0.67, 0.5, 0.4 and 0.38.  Water/cement ratio under 0.38 was 

not possible because the grout was too thick. The borehole was fixed at 33 mm diameter, but 

changes in bolts diameter were made to check the effect of grout thickness on the bolt 

diameter.  The diameters of the bolts were: 9.525, 12.7, 19.05 and 25.4mm. After three weeks 

of curing, a pull-out test was performed on dry samples.  The bond strength was found by 

dividing the maximum load when the bolts failed with the surface area of the bolts.  Table 7 

gives all the bond strength values obtained by pull-out test with different values.  The results 

showed that the bond strength became higher with lower water to cement ratio and greater 

bolt diameter. The bond strength also increased with longer bolts.  

Table 7 - Bond strength values obtained by pull-out tests with different values (Karanam and Dasyapu, 2003). 

Bolt 

diameter 

(mm) 

 

Bond strength (MPa) 

 c/w: 1:1 c/w: 0.67 c/w: 0.50 c/w: 0.40 c/w: 0.38 

9.525 0.5358 1.0280 1.0500 1.0798 1.1098 

12.70 0.9644 1.6072 1.6480 2.0090 2.2050 

19.05 1.0046 1.6740 1.7690 2.0580 2.3040 

25.4 1.2446 1.7808 1.8032 2.1560 2.4000 

 

Pull-out tests performed on different bolt types 

Pull-out tests were conducted in a laboratory by Fumio et al (2001). Bolts were grouted with 

cement paste into an artificial rock made of concrete. The curing time of the artificial rock was 

14 days. Different bolts types were installed into the rock and grouted with Portland cement 

with a water-to-cement ratio of 0.35. The same embedment length (35 cm) was used in all the 

test cases. The curing time of the grout was 17 days and its uniaxial compressive strength was 

measured to be 89.7 MPa.  Two types of rock bolts were used for the pull-out testing; a 

deformed bolt with diameter of 25 mm and a twist bolt with diameter of 24 mm. Two types 

of cable bolts were also used; a plain strand cable bolt and a bulb strand cable bolt; both bolt 

types were 15.2 mm diameter. The bolts were all pulled up with a hydraulic cylinder linked 
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with an electric oil pump which contained a pressure cell to measure the pulling force. Force 

and displacement were recorded.  

 

 
Figure 25 – Load displacement curves for all the cases (Ito et al, 2001). 

Figure 25 shows results from the pull-out tests with load-displacement curves for all the bolts. 

The results show the strong effects of bolt type on the deformational behavior. The point 

where the bolt begins to slide away from elastic behavior is defined as the yielding point.  The 

curves in the figure show that the yield forces in case 1 and 2 are 170 kN and 215 kN, but the 

values for cases 3 and 4 are lower.  However, the initial stiffness is greater for case 1 and 2 

and the displacements at the yielding points are smaller. To summarize this from the design 

point of view, the yield force of the rock bolts are greater than that of cable bolts, but the 

displacement of the rock bolts are lower.  

Investigation on the effect of confining pressure on bond capacity of bolts 

Laboratory test were performed by Mossavi, Jafari and Khosravi (2003). The aim was to 

investigate the effect of confining pressure on bond capacity of bolts. Two different types of 

rock bolts were considered for the research: 20 mm Dywidag continuous thread (CT) bar and 

a 22 and 28 mm ribbed rock bolts. The bolts were pulled axially through a Portland cement 

grout with 0.40 in water/cement ratio. The bond may be defined as the gripping effect of the 

cement on an embedded length of steel bar to resist forces tending to slide the bar. Properties 

of both the cement and the bar play large roles in developing high or low values of bond 

capacity. Compressive strength of the grout and the smoothness and shape of the bar are 

examples of important properties.  Slip between rebar and grout is mainly a frictional failure. 

The confining stress (normal stress) plays a big part in this load utilization. Stresses vary 



 

59 
 

significantly in underground excavations. In some situations the stress increases, while in 

others it decreases. These changes affect the bond capacity of the rock bolts. 

It is also important to examine the quality of the Portland cement grout. The strength of the 

grouting may vary if it is produced by different factories, even though it has been mixed with 

exactly the same water/cement ratio.  Uniaxial compressive strength (UCS) tests of the grout 

were performed in this research to avoid any inconsistency between the strength of different 

cement grouts. Often, UCS testing of the grout samples is recommended, rather than only 

mentioning the water/cement ratio of the grout.  The UCS tests on the grout gave results equal 

to 30 and 42 MPa. During the pull-out testing, the axial load and the displacement of the bolts 

as well as the radial dilation of the grout were recorded. The results were presented in load 

and bond capacity. The load-bearing capacity results showed that the axial load increased 

linearly to a point where divergence began from the elastic behavior. As confining pressure 

increased, the peak point in most cases shifted more to the right, which means higher axial 

displacement. At this load level, radial cracks in the sample have most likely fully developed, 

leading to a decrease in bond strength.  Figure 26 shows the results of a pull-out test for a 20 

mm Dywidag bar with UCS=42MPa for the grout.  

 
Figure 26 - Results of a pull-out test for 20 mm Dywidag bar with UCS=42 (Mossavi, Jafari and Khosravi, 2003).   

Effect of grout properties on the pull-out load capacity of fully grouted rock bolt 

Approximately 80 laboratory pull-out tests were performed on rebar bolts grouted into basalt 

block with cement mortar. The tests were carried out in order to explain and develop the 

relations between untensioned rebar bolts and the grouting material. This simple pull-out test 

program evaluated the relations between: bolt diameter and pull-out load of bolt; bolt area 
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and pull-out load of bolt; bolt length and pull-out load of bolt; water-to-cement ratio and bolt 

bond strength; and mechanical properties of grout material and bolt bond strength, curing 

time and bolt strength. The grouting mixture was Portland cement with a water/cement ratio 

of 0.34, 0.36, 0.38 and 0.40. The curing time was 28 days.  The bolts had been inserted to the 

center of the boreholes and when the curing time was over the rebar bolts were axially loaded 

and the load gradually increased until the rebar failed. The bond strength was calculated by 

dividing the load by the surface area of the rebar.  More pull-out test were performed with 

various grout types, bolt dimensions and curing times. 

The results from the testing showed that the bolt capacity depends mainly on the mechanical 

properties of the grouting material. Changes can be made in the grouting, as in water-to-

cement ratio, mixing time, additives and curing time, which can lead to both increases and 

decreases of the bolt bearing capacity. Increasing the curing time increased the bolt bond 

strength. The first day, the bolt bond strength was 19 kg/cm, 2.77 kg/cm2 in 7 days and 86 

kg/cm2 in 35 days (see Figure 16). By increasing the bolt diameter and the length, the bearing 

capacity will become higher. However, this increase is limited to the ultimate tensile strength 

of the bolt material.  In the pull-out test, bond failure occurred between the bolt and the 

cement grout (Kılıc, Yasar and Celik, 2002). 
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Figure 27 – Rock bolts grouted with different embedment length. By increasing the length, the bearing capacity 

will become higher (Kılıc, Yasar and Celik, 2002). 

 

 

Figure 28 – Maximum pull-out load versus bolt length. The load increases with more bolt length (Kılıc, Yasar 

and Celik, 2002). 
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Performance of D-bolts under static loading 

Pull out tests on D bolts were performed by Charlie and Doucet (2011) in the rock mechanics 

laboratory at the Norwegian University of Science and Technology. The bolts were 20 mm in 

diameter and 0.9 m/0.8-m long (test section/ stretch length). To simulate the rock mass, two 

concrete blocks of high strength were used.  The blocks were placed in a test rig and holes 

were drilled. The bolts were encapsulated in the boreholes with cement mortar and the water-

to-cement ratio of the mixture was 0.35.  The curing time was 3 days, and then the tests were 

performed.  Results are shown in Figure 29. 

 

 
Figure 29 – Results from pull-out test (Charlie and Doucet, 2011). 

At a displacement of 110 mm the bolt OP1 failed, while OP2 failed at a displacement of 120 

mm. Both bolts started to yield at 170 kN and had a tensile strength up to approximately 210 

kN.  Figure 30 shows the bolt, OP1, after the pull-out test.  
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Figure 30 – Bolt OP1 after the pull-out test. The bolt failed at the displacement of 110 mm.  It started to yield 

at 170 kN and had a tensile strength up to approximately 210 kN (Charlie and Doucet, 2011). 

 

Rebar bolts and D bolts have the same tensile strength and in the rock mass they react in quite 

similar ways until the yielding starts. Until the ultimate strain of the D bolt steel is reached, 

every section of the D bolts can elongate at yield. The D bolts have significantly larger plastic 

deformation capacity than rebar bolts.  

  



 

64 
 

  



 

65 
 

6 Chapter – Pull-out test performed on rebar bolts 

6.1 Introduction and purpose 

Pull-out testing was carried out in a laboratory at Norwegian University of Science and 

Technology (NTNU). In collaboration with Statens Vegvesen and Professor Charlie Li, 

supervisor of this project, it was decided to perform pull-out tests on 20 mm rebar bolts and 

grout the bolts with Rescon Zinc bolt cement mortar (Appendix A). The material is the same 

as its intended construction use.  The rock bolts are also installed in the same manner. Both 

rebar bolts and the cement mortar are commonly used in underground projects in Norway.   

This test was performed to evaluate the critical length of fully grouted rebar bolts (see figure 

31). This critical length is defined as the greatest grouted length of the bolt wherein the bolt 

is pulled out hydraulically without the failure of the rod. From a plot of load versus 

displacement the load bearing capacity of the bolt can be seen. In this pull-out test different 

embedment lengths and variation in cement-water mixing ratios of grout were used. Uniaxial 

compressive strength testing was also performed on the cement mortar with variation in 

cement-to-water mixing ratios.  The ultimate load bearing capacity of the 20 mm rebar bolts 

used in the tests is 200kN.  The steel strength of the rebar is 630 MPa, where it is found by 

multiplying the cross section of the rebar bolts with the ultimate load.   

 

Figure 31 - The critical length is defined as the greatest grouted length of the bolt wherein the bolt is pulled 
out hydraulically without the failure of the rod.  The first three points (bolts) on the graph are pulled out 
without any failure. The embedment length for point number four is longer than the critical embedment 
length. It means that before the bolt is pulled out it breaks. It is necessary to test two bolts, one just before 
the critical point and other right after. The rebar bolt used in this test is capable of bearing 200 KN before it 
breaks. As embedment length increases, more loads are required to obtain failure. 
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6.2 Water-cement ratio and embedment length 

The capacity of rock bolts depends on the water-to-cement ratio. For example, a lower 

amount of water used in the mix may increase the bolt capacity by 50-75%. However, if the 

ratio becomes too low the mix will be undesirable and impractical. The Rescon Zinc bolt 

cement mortar used in the mixture consists of both cement and silica. The silica has many 

abilities. It makes it easier to pump the grout and shortens the curing time of the grout (Are 

Håvard Høien, Statens vegvesen, oral source, 6. May 2014). Therefore, to find the accurate 

water-to-cement ratio of the mix the following calculations have to be made (Ratios from 

Table 8 are used in the calculations): 

  

(
𝑤𝑎𝑡𝑒𝑟

𝑐𝑒𝑚𝑒𝑛𝑡)

(
𝑤𝑎𝑡𝑒𝑟

𝑐𝑒𝑚𝑒𝑛𝑡 + 𝑠𝑖𝑙𝑖𝑐𝑎
)

=
0,49

0,29
= 1,7 

 

 

(5.1) 

For instance, if the aim is to find w/c+s ratio that corresponds to w/c ratio: 0. 49, the 

calculations above gives: 

  

0,49

1,7
= 0,29 

 

 

(5.2) 

The same method is used to find other w/c+s in this project.  

Table 8 – This table was used to find the accurate water to cement ratio of the mixture in the test (Skjølsvold, 
2011). 

Mix 1 2 3 4 5 6 

Water per 25 kg 7,25 6,96 6,36 6,07 5,77 5,48 

Water/cement+silica 0,29 0,28 0,25 0,24 0,23 0,22 

Water/cement 0,49 0,47 0,43 0,41 0,39 0,37 

 

A lot of time was spent on determine the most suitable water-to-cement ratios for the testing. 

Finally, three ratios were used to evaluate the influence of the water-to-cement number of 

the critical length; 0.40, 0.46 and 0.50.  For all three ratios different embedment lengths of 

the bolts were tested to find out how the capacity of the rebar bolts would change with 

different length. Table 9 shows all the different specimens used in the pull-out test. 
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Table 9 – Number of bolt samples. The main focus on w/c ratios: 0.4, 0.46 and 0.5. However, two bolts tested 
with w/c ratio: 0.375. 

Embedment length 
(cm) 

 Water-cement ratio 

 0.375 0.40 0.46 0.50 

10 1 3 3 3 

15 X 3 X X 

20 X 3 3 3 

25 X X 3 X 

30 X 3 3 3 

40 1 1 X 2 

Total 2 13 12 11 

 

Three cement mortar samples were also added for each of the water-to-cement numbers. The 

samples were then tested to determine the uniaxial compressive strength (UCS) of the cement 

mortar (see Table 10).  

Table 10 – Number of cement mortar samples. Dimension of the cubes are: 100*100*100 mm. 

w/c-ratio 0.40 0.46 0.50 

Cubic samples 3 3 3 

 

From the test results the aim was to find: 

1. Critical grouted bolt length to the typical 20 mm rebar bolts 

2. Relationship between the critical bolt length and w/c-number 

3. Relationship between the critical bolt length and the uniaxial compressive strength of 

the cement mortar 

6.3 Materials and equipment  

Significant time was spent on the preparations of the pull-out test, which required a great 

variety of equipment and material. Below is a list of things necessary for the test preparation 

and the pull-out test itself; 

 Concrete block (see figure 32) 

 Drilling machine with  a 46mm diameter cutter 

 Frame to estimate the location of every borehole (see figure 32) 

 Water (different amount for each different w/c ratio) 

 Rescon Zinc bolt cement mortar(25 kilo bags) 
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 Hand-held drill mixer for the cement mortar 

 Grout mixer with a pump to fill up the boreholes 

 Rebar bolts with different embedment lengths. However, the length of the bolts from 

the top of the concrete block up to the end of the bolts should be the same for every 

bolt or 75 cm (see figure 34) 

 Frame to keep the bolts from dropping into the holes(see figure 33) 

 Tape to fasten the bolts to the frame (see figure 33) 

 Hydraulic jack with a hand pump and cylinder 

 Cylinder base. The measured length of the base and the cylinder was 60 cm. This length 

is called the stretch length of the bolt.  

 Wedge (fastening device) attached to the bolt. Transfer tensile load from the jack to 

the rebar bolt 

 Ropes to keep the cylinder steady while performing the test 

 Extensometer used to measure the displacement 

 Caliper used to measure the displacement for some bolts. 

 Measuring tape and marker pen 

 Computer for test results 

 Safety equipment such as protective clothing, glasses, gloves, helmets, hearing 

protection, and protection wall. 
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Figure 32 - Strong concrete block, USC ca. 100 MPa.  The frame is put on the block and holes are drilled into 
the block. The diameter of the holes are 46mm and the depth varies between 40 and 50 cm. 

 

Figure 33 – Frame is used to keep the bolts from dropping into the holes and keep the vertical while the grout 

hardens.  
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Figure 34 - The length of the bolts from the top of the concrete block up to the end of the bolts is the same for 
every bolt or 75 cm. The stretch length of the bolt (the length of the base and the cylinder) is however, 60 cm. 

6.4 Procedure 

6.4.1 Drilling and grouting 

Rebar bolts with a diameter of 20 mm were grouted vertically, with cement mortar, into a 

concrete block in a laboratory. First, boreholes were drilled into a strong concrete block, USC 

ca. 100 MPa. Approximately 50 holes with a diameter of 46 mm were drilled into the block 

with a depth ranging between 0.40 and 0.50 m. but there was no need for the holes to be as 

deep as the length of the bolts. A drilling machine with a 46 mm diameter cutter was used for 

the work along with a frame to estimate the location of every borehole (figure 32). The drilling 

was performed horizontally and afterwards all the boreholes were washed carefully to keep 

all the cuttings away. Then the block was turned with the holes facing the ceiling.   

With all the holes ready, the next step was preparing the bolts for grouting. The estimated 

embedment lengths of the rebar bolts are shown in table 9. However, despite the different 

embedment lengths, the same bolt length was measured from the top of the concrete block 
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up to the end of the bolts for every bolt. The measured length was 75 cm. 60 cm of that was 

covered with the cylinder and the base. That length is the stretch length of the bolt. The bolts 

were cut as Figure 35 shows and then prepared for injection.  

 

Figure 35 – The bolts were first cut and then grouted afterwards. The total length of the bolts was 75 
centimeter plus the different embedment length for every bolt. 

Water-to-cement ratios of the grout used for the testing are shown in Table 10. A hand-held 

drill mixer was used while mixing the Rescon Zinc bolt cement mortar with the water. When 

the mixture was fully mixed, it was poured into a grout mixer that contained a pump. Then 

the prepared grout mortar was pumped into the holes and the bolts inserted to the center of 

the drilling holes with different embedment lengths. It is important to ensure that the grout 

mortar is perfectly compacted in the hole to prevent inaccurate results. A frame was used to 

keep the bolts from dropping into the holes (Figure 33).  Estimated curing time for the grout 

was seven days and afterwards the plan was to pull the bolts up under axial loading.  
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6.4.2 Pull-out test 

After the grouting’s curing time, the pull-out test was executed. A hydraulic hand pump with 

cylinder was used for the test (Appendix C). The cylinder and base were placed on the rebar 

bolt along with a wedge (fastening device) to ensure that the applied load is axial with the 

load.  The wedge transfers tensile load from the jack to the rebar. Robes were then used to 

keep the cylinder steady while the test was carried out.  Finally, an extensometer was arranged 

above the rebar to measure the displacement.  

 

Figure 36 – The pull-out test setup. Rebar bolt grouted in concrete block and hydraulic jack used to pull out 
the bolt. The tested stretch length is 60 cm. 

When the entire setup was completed, the rebar bolts were loaded hydraulically and at the 

same time the displacement of the bolts head was measured. The load gradually increased 

until the bolts slid from the grouting or they started to yield or break. The pull-out test was 

repeated for various grout types and bolts with different embedment length. All load and 

displacement results from the testing were collected graphically in a computer. Pull-out length 

was estimated, changes in bolt diameter were measured in bolts that yielded, and the strain 

of the yielded bolts was calculated. While performing the pull-out tests, all necessary safety 

equipment was used. 
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Figure 37 – Wedge used as a fastening device. 

6.4.3 UCS test 

UCS tests were performed on the cement mortar with different ratios to find the uniaxial 

compressive strength. 10x10 cm cubic boxes were filled up with cement mortar and tested 

seven days later. The samples were put in a triaxial compressive machine and loaded axially 

to failure, with no confinement. In this uniaxial compressive strength test the σ3=0. 
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Figure 38 – 10x10 cm cubic boxes filled up with cement mortar and seven days later tested to find the uniaxial 
compressive strength of the grout.   
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7 Chapter – Results 

In this chapter, results from pull-out testing on rebar bolts with diameter of 20 mm, grouted 

with different water-to-cement ratios and variations in embedment length, will be presented 

both graphically and in writing. First the results from the pull-out testing will be introduced 

followed by the results from the uniaxial compressive strength test (UCS test) performed on 

cement cubes with different water-to-cement ratios. 

The pull-out test was performed vertically, which led to number of problems; the test 

preparation changed throughout the whole testing process to accommodate these issues. 

Some displacement measurements were performed manually for safety reasons, in case the 

bolts break, but using extensometer to measure the displacement of the bolt is much quicker 

and more accurate way.  

7.1 Pull-out tests on rebar 

38 rebar bolts were grouted and then pulled out afterwards in a laboratory.  The estimated 

grouting time was seven days, but for some bolts the grouting time went up to eight days; 

there were two bolts that were pulled out after eleven days (All different grouting time is 

showed in Appendix D). This may have affected the results. Every rebar bolt was identified 

with a specific number, subject to the embedment length, water-to-cement ratio and the 

sample number.  In Table 11 the identification system is explained.   In Appendix E are figures 

of all the pull out tested rebar bolts and the measured pull out length is shown.  

Table 11 – Identification system for tested rebar. For instance, if rebar bolt is grouted with w/c ratio: 0.40m, 
the embedment length is 30 cm and this is the second sample, the identification number of the bolt would be 
B232. 

B=Bolt w/c ratio w/c number Embedment length 
(cm) 

Embedment number ID (three types of 
every sample 

B 0.59 0 10 1 1,2,3 

B 0.375 1 20 2 1,2,3 

B 0.40 2 30 3 1,2,3 

B 0.46 3 40 4 1,2,3 

B 0.50 4 14 5 1,2,3 

B   25 6 1,2,3 

 

Results from these 38 rebar bolts are presented below. 

 



 

76 
 

 

7.1.1 Water to cement ratio: 0.40 

 

 

Figure 39 - The maximum load is 87.6 kN for B211 before the bolt starts to slide from the grout. The bolt had 
been grouted 8 days earlier like the other two. The maximum load for B12 is lower or 77.2 kN.  The grout got 
cracked and the bolt began to slide. B213 was measured using extensometer. The maximum load was around 
60 kN before sliding like the other two. The embedment length is too short and therefore the bolts do not 
tolerate high load. 

Embedment length: 10 cm 

Three rebar bolts were grouted with w/c ratio: 0.40 and 10 cm in embedment length. Figure 

39 shows the results with load versus displacement curves. The displacement of rebar bolt 

number B213 was measured using an extensometer but the displacement for the other two, 

B211 and B212, were measured manually. The maximum load for B213 is lower than the 

maximum load for the other two but all the bolts slid from the grout. The entire bolt number 

B213 slid from the grout.  B211 had sunk little further than the other two so the embedment 

length was 2-3 cm longer. Hence, the maximum load was higher for B211. Grouting the bolts 

with 10 cm embedment length is too short; the rebar bolts did not tolerate much load and 

therefore they began to slide from the cement mortar.  The grouting time was eight days.  
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Figure 40 - Maximum load for B251 around 120 kN. Rebar starts to yield around 170 kN so the bolt just slid 
from the cement mix when the maximum load had been reached.  Maximum load for B252 is around 120kN. 
The bolt starts to slide at the displacement of 10 cm. The final bolt reaches 100 kN. The grout did not fill up 
the hole completely which resulted with lower load.   

Embedment length: 15 cm 

Three rebar bolts were grouted with w/c ratio: 0.40 and 15 cm in embedment length. Figure 

40 shows the results with load versus displacement curves. The results were similar for all 

three bolts. The maximum load for B251 and B253 was between 115-120 kN but B253 was 

little lower or around 100 kN. All bolts slid from the grout. The pull-out length for B251 was 

measured at 6 cm (figure 41). The grout for B253 did not fill up the hole completely and the 

cohesion between the grout and the concrete block was not strong. Therefore, the maximum 

load was lower. The grouting time was seven days. 

 

Figure 41 – The black mark on the bolt is to measure the pull-out length. The length is 6 cm. The bolt slid from 
the grout with maximum load around 120 kN.   
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Figure 42 - The maximum load reached only 64 kN for B221.  The reason is bad grouting but it did not fill up 
the hole like it should. Therefore, the maximum load was so low. Maximum load for the other two bolts, went 
over 180 kN and as the test results shows the bolts reached the yielding point (around 170-175 kN). B223 
yielded up to 30 cm in displacement before the bolt slid from the grout and the load started to decrease. All 
three bolts slid from the grout. 

Embedment length: 20 cm 

Three rebar bolts were grouted with w/c ratio: 0.40 and 20 cm in embedment length. Figure 

42 above shows the results graphically. The results for B221 are an example of bad grouting. 

The grout did not fill up the hole like it should. The form of the grouting was like squeezing 

tooth paste; in this case, it is important to stir the grout completely, which can be a rather 

difficult task. The maximum load was around 60 kN and the displacement, measured manually 

just like B222, was minor. Hence, B222 and B223 were grouted better than B221, the results 

were more accurate. The maximum load of both bolts went over 180 kN and as the test results 

show, the bolts reached the yielding point (around 170-175 kN). B223 yielded up to 30 cm in 

displacement before the bolt slid from the grout and the load started to decrease. Before and 

after the testing, the length of B223 was measured. The bolt had stretched 2.5 cm after the 

test and the pull-out length was 6 cm.  The grouting time was 9 days. 
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Figure 43 – Pull-out length is 6 cm. This bolt yielded before it slid from the grout. The figure shows how the 
surface of the grout breaks around the bolt.  

 

 

Figure 44 – The load was increased steadily and all three bolts reached the yielding point, 170 kN. The 

displacement for B231 was low because the test was stopped right away as the bolt had reached the maximum 

load of 200 kN.  The displacement of B232 is longer and the bolt yielded much more than B231. It was going 

to break when the test was stopped cause of safety reasons. The third rebar, B233, however, broke. The 

maximum load was 200 kN. The stretch length of the bolt yielded a lot until the bolt broke. The Figure shows 

how the bolt is necking; the load drops quickly and the bolt breaks. 
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Embedment length: 30 cm 

Three rebar bolts were grouted with w/c ratio: 0.40 and 30 cm in embedment length. Results 

are presented in figure 44.  The load was increased steadily and all three bolts reached the 

yielding point, 170 kN. Both B231 and B232 were measured manually, because of safety 

concerns. The displacement for B231 was low because the test was stopped right away as the 

bolt had reached the maximum load of 200 kN. However, when B323 reached the maximum 

load of 200 kN, the pumping was kept going to test the deformation of the bolt. The tension 

in B323 was high and the diameter of the bolt became smaller. The measured diameter after 

the test was 1 mm smaller than before. The bolt was going to break when it was decided to 

stop the testing for safety reasons. The third rebar, B233, however, broke. The maximum load 

was 200 kN. The length of the bolt stretched a lot until the bolt broke. The curve shows how 

the bolt is necking; the load drops quickly and the bolt breaks. The diameter of the B233 was 

measured close to the breaking point, when it had reduced by 1 mm. The grouting time was 

nine days.  

 

Figure 45 – The embedment length was longer then the critical length, so the bolt broke. The reduction in 
diameter closest to the breakage increased until the bolt broke. The maximum load reached 200 kN. 
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Figure 46 – The displacement of the bolt was measured manually and the load was increased until the load 
was 183 kN. The bolt had yielded a little bit but before the bolt broke the test was stopped for safety reasons. 
The stretch length of the bolt had increased much. 

Embedment length: 40 cm 

Only one rebar bolt, B241, was grouted with w/c ratio: 0.40 and 40 cm in embedment length. 

The reason was because the bolt with 30 cm embedment length broke, so the embedment 

length for that bolt was longer than the critical embedment length. Figure 46 shows the result for 

B241. The displacement of the bolt was measured manually and the load was increased until 

the load was 183 kN. The bolt had yielded a little bit but before the bolt broke the test was 

stopped for safety reasons. The stretch length of the bolt had increased significantly. The 

cohesion between the bolt and the cement was strong and the pull-out length was around 1 

cm. Grouting time of the cement mortar was nine days.   
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Figure 47 - The figure shows two bolts that were the same length before the test. However, the stretch length 
for B241 increased significantly while B221 slid from the grout with maximum load around 60 kN.  
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7.1.2 Maximum load versus different embedment length for w/c ratio: 0.40 

 

Figure 48 – The maximum load increases with greater embedment length. The bolts with the first three lengths, 
10 cm, 15 cm and 20, all slid from the grout. The bolts with 20 cm length were however, close to the critical 
length. The maximum load reached approximately 180 kN and the bolts began to yield until they slid from the 
cement. 30 cm embedment length is, however, longer than the critical embedment length. The bolts with 30 
cm length reached 200 kN which resulted in breakage of the bolts. 

The critical length is defined as the greatest grouted length of the bolt wherein the bolt is 

pulled out of the grouting without the failure of the rod. Figure 48 shows the results for bolts 

grouted with different embedment length with w/c ratio: 0.40. The maximum load increases 

with greater embedment length. The bolts with the first three lengths, 10 cm, 15 cm and 20, 

all slid from the grout. The bolts with 20 cm length were close to the critical length. The 

maximum load reached approximately 180 kN and the bolts began to yield which led to 

increasing of the stretch length. Then the bolts slid from the cement.  30 cm embedment 

length is, however, longer than the critical embedment length. The bolts with 30 cm length 

reached 200 kN which resulted in breakage of the bolts – the rebar used in this test is only 

capable of bearing 200 kN before it breaks. 
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7.1.3 Water-to-cement ratio: 0.46 

 

 

Figure 49 –Similar results for all three bolts. The maximum load reached approxamately 50 kN before the bolts 

slid from the grout. The embedment length was too short so the bolts did not bear much load before sliding.  

Embedment length: 10 cm 

Three rebar bolts were grouted with w/c ratio: 0.46 and 10 cm in embedment length. Figure 

49 shows the results with load versus displacement curves.  The grouting time for all bolts, 

B311, B312 and B313, was eight days. The maximum load was similar for all three rebars, 

between 40 and 50 kN. The embedment length was too short so the bolts did not bear much 

load before they all slid from the grout. The measured pull-out length for the bolts was 

between 4 and 6 cm. 
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Figure 50 –The cohesion between the grout and the concrete block was weak and when the bolt was pulled 
out the grout was stuck on the bolt. 

 

 

Figure 51 –Similar results for B321 and B322. The maximum load were approximately 120kN for both bolts and 

they slid from the cement at the displacement of 5-8 cm. The results from B323 were different. The maximum 

load was much higher, up to 170kN. It is close to the yielding point for the rebars, which is 170 – 175 kN.  The 

bolt had sunk down in the borehole so the embedment length was closer to 25 cm. Therefore, the load was 

much higher than for the other bolts. 
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Embedment length: 20 cm 

Three rebar bolts were grouted with w/c ratio: 0.46 and 20 cm in embedment length. Figure 

51 shows the results with load versus displacement curves. B321 and B322 have similar 

results. The maximum load was approximately 120kN for both bolts and they started to slide 

with displacement around 5-8 cm. The grouting time for both bolts was the same, seven days. 

However, the results from B323 were different. The maximum load was much higher, up to 

170kN, which is high for bolts grouted with 20 cm embedment length. It is close to the yielding 

point for the rebars, which is 170 – 175 kN.  The reason for this result was because the bolt 

had sunk down in the borehole so the embedment length was closer to 25 cm. Therefore, the 

results for B321 and B322 are more accurate. The grouting time for B323 was one day shorter 

than for the other two.  The pull out length of the bolts was between 6 and 7 cm.  

 

Figure 52 –  Similar results for all three bolts. They all reached the yielding point in the testing.   The maximum 

load went up to 192 kN for B362 and like the other two it began to slide afterwards. The displacement when 

the bolts slid was between 30 and 50 mm. The stretch length stretched when the bolts started to yield.  

Embedment length: 25 cm 

Three rebar bolts were grouted with w/c ratio: 0.46 and 25 cm in embedment length. Figure 

52 shows the results with load versus displacement graph. All three bolts, B361, B362 and 

B363 yielded in the testing. The maximum load went up to 192 kN for B362 and like the other 

two, it began to slide afterwards. The displacement when the bolt slid was between 30 and 
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50 mm. The length stretched when the bolts started to yield; B361 increased by 2 cm and the 

pull-out length was 5 cm. For B362 the pull out length was 4.7 cm and the stretch length 

afterwards had increased by 3.3 cm. The pull-out length for the third bolt, B363, was 5.5 cm 

and the stretch length had elongated by 2.2 cm. Grouting time for all three rebar bolts was 

seven days.  

 

Figure 53 – Pull out length is 5.5 cm and the grout has broken in the surface. This bolt yielded before it slid 
from the grout. 

 

Figure 54 – B331 started to yield when the load reached 170 kN. The bolt had yielded up to 180 kN with 
displacement of 30 mm when it was decided to stop the test for safety reasons. The maximum load for B332 
was higher, almost 200 kN. The bolt started to yield when the load reached 170 kN and from that up to 
approximately 200 kN the stretch length of the bolt increased. The bolt slid when the displacement reached 
70 mm. The same result was obtained from B333. However, the displacement went up to 70 mm before the 
bolt started to slide. 
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Embedment length: 30 cm 

Three rebar bolts were grouted with w/c ratio: 0.46 and 30 cm in embedment length. Figure 

54 shows the results with load versus displacement curves.  The grouting time for the bolts 

was eight days. The first bolt, B331, started to yield when the load reached 170 kN.  When the 

load reached 180 kN with displacement of 30 mm, the pull-out test was stopped for safety 

reasons. The maximum load for B332 was higher, almost 200 kN with zero pull out length. The 

bolt started to yield when the load reached 170 kN and from that up to approximately 200 kN 

the stretch length of the bolt increased. The bolt started to slide when the displacement 

reached 60 mm. The same result was obtained from the third bolt, B333. However, the 

displacement went up to 70 mm before the bolt started to slide. The rebar bolts were very 

close to the critical embedment length which would end with the breakage of the bolts. The 

diameter of B332 was measured before and after the testing. The measurement showed that 

the diameter had decreased by 1 mm. Hence, the stretch length had increased by 5 cm.  

 

Figure 55 – The bolt was barely pulled from the grout, but was at the verge of breakage. 
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7.1.4 Maximum load versus different embedment length for w/c ratio: 0.46 

 

Figure 56 - The first three lengths are under the maximum load at which the rebar bolts will break. The fourth 

embedment length, 30 cm, was on the verge of being the critical length. The maximum load reached 200 kN 

but the curve dropped before the bolts broke at the displacement of 50 – 70 cm. The bolts slid from the grout. 

Therefore, there was no bolt grouted with a water-to-cement ratio of 0.46 that had longer embedment length 

than the critical length. Embedment length between 30 and 35 cm is a recommended length to see if the bolt 

will break.  

Rebar bolts with four different embedment lengths were grouted with w/c ratio: 0.46. Figure 

56 shows the maximum load of the bolts versus different embedment lengths to find the 

critical length, wherein the bolt with the greatest length is pulled out without failure. The first 

three lengths are all under the maximum load wherein the rebar bolts will break. The fourth 

embedment length, 30 cm, was on the verge of being the critical length. The maximum load 

reached 200 kN but the curve dropped before the bolts broke at the displacement of 50 – 70 

cm. and the bolts slid from the grout. Therefore, there was no bolt grouted with a water-to-

cement ratio of 0.46 that had a longer embedment length than the critical length. Embedment 

length between 30 and 35 cm is a recommended length to see if the bolt will break.  

  

0

50

100

150

200

250

0 5 10 15 20 25 30 35

M
ax

im
u

m
 lo

ad
 (

kN
)

Embedment length (cm)

w/c ratio: 0.46

10 cm

20 cm

25 cm

30 cm



 

90 
 

7.1.5 Water to cement ratio: 0.50 

 

 

Figure 57 – Similar results for all three rebar bolts. The maximum load is between 50 and 60 kN and the 
displacement is 5-10 mm when the bolts slid from the grouting. The bolts do not tolerate high load wherain 
the embedment length is too short and the water to cement ratio is rather high. 

Embedment length: 10 cm 

Three rebar bolts were grouted with w/c ratio: 0.50 and 10 cm in embedment length. Figure 

57 presents the results. There were similar results for all three rebar bolts. The maximum load 

was between 50kN and 60kN before the bolts slid from the grout. The pull-out length is also 

similar for all bolts or around 5 cm. The embedment length is too short and therefore the bolts 

do not tolerate high load. Also the water-to-cement ratio is rather high and the grouting 

becomes weaker at the higher ratio. The grouting time was seven days. 
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Figure 58 – Similar results for all three bolts. The maximum load was between 130 and 145 kN. All three bolts 
slid from the grouting with displacement up to approximately 10 mm. 

Embedment length: 20 cm 

Three rebar bolts were grouted with w/c ratio: 0.50 and 20 cm in embedment length. Figure 

58 shows the results with load versus displacement curves.  There were similar results for all 

three bolts. The maximum load was between 130 and 145 kN and little difference between 

the pull-out length of the bolts. B211 had a pull-out length of 3.8 cm; the other two, B212 and 

B213, had pull-out lengths of just over 4 cm.  All three bolts slid from the grouting.  The 

grouting time was seven days for all three bolts.  
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Figure 59 - All bolts yielded when the load reached 170 kN. From that up to the maximum loads, with 30-50 
mm in displacement, the stretch length of the bolts increased until they slid.  The maximum load of B532 was 
199 kN before it slid from the cement mortar. The rebar bolts were close to the critical embedment length. 
However, the bolts did not break and if the pull out test had been carried on the curves would have shown the 
load decreasing gradually, not dropping quickly as happens if bolts break. 

Embedment length: 30 cm 

Three rebar bolts were grouted with w/c ratio: 0.50 and 30 cm in embedment length. Figure 

59 shows the results with load versus displacement curves. The grouting time for all three 

bolts was seven days. All bolts, B531, B532 and B533, began to yield when the load reached 

170 kN. From that up to the maximum loads, with 30-50 mm in displacement, the stretch 

length of the bolts increased until they started to slide.  The maximum load of B532 went up 

to 199 kN before it slid from the cement mortar.  However, the pull-out length was zero. When 

the bolts yielded the diameter decreased for all three bolts. The diameter of B531 was, before 

testing, 21.21 mm and 20.56 mm afterwards. The stretch length had also gone from 73 cm up 

to 74.2 cm. The stretch length for B532 had increased by 3.8, with the diameter changing by 

0.71mm. The diameter of B533 decreased by 0.76 mm, and the stretch length elongated by 2 

cm. The rebar bolts were close to the critical embedment length, which would end with the 

breakage of the bolts. However, the bolts did not break and if the pull out test had been 

carried on, instead of stopping as soon as the load began to drop, the curves would have 

shown the load decreasing gradually, not dropping quickly as happens if bolt breaks. 
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Figure 60 - the pull-out length was zero. Reduction in diameter of B533 was 0.76 mm and the stretch length 
elongated by 2 cm. 

 

Figure 61 –Both bolts, B541 and B542, started to yield around 170 kN and the maximum load for both bolts 

went up to 200 kN.  B541 was going to break but to keep the extensometer safe the load was decreased and 

the pull out test stopped. B542 was also going to break but the test was carried out until the displacement had 

reached 70 mm and then it was stopped.  
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Embedment length: 40 cm 

Two rebar bolts were grouted with w/c ratio: 0.50 and 40 cm in embedment length. Figure 61 

shows the results with load versus displacement curves. Both bolts, B541 and B542, started to 

yield around 170 kN. The maximum load for both bolts went up to 200 kN. For B541 the stretch 

length increased by 4.2 cm and the pull out length was zero. The diameter of the bolt 

decreased by 0.26 mm. The pull-out test was stopped when displacement reached up to 60 

mm. The bolt was going to break but to keep the extensometer safe the load was decreased 

and the pull-out test stopped. The diameter of B542 had decreased from 21.20 mm to 19.69 

mm after the pull-out test. The stretch length had increased by 6 cm before the test was 

stopped. The bolt was going to break but the test was carried out until the displacement had 

reached 70 mm. The grouting time was seven days.  

7.1.6 Maximum load versus different embedment length for w/c ratio: 0.50 

 

Figure 62 - The maximum load for the three first lengths is below 200 kN but the rebar bolts used only tolerate 

200 kN and up to 95 cm in displacement. The bolts with 40 cm embedment length went over the critical 

embedment length. They were tested and stopped just before they were going to break. The critical 

embedment length, or the greatest length were the bolts are pulled out without breakage, is therefore 

between 30 and 40 cm, closer to 30 though. 

Rebar bolts with four different embedment lengths were grouted with a water-to-cement 

ratio: 0.46. The aim was to find the critical length. The Figure 62 shows three lengths below 
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the critical length, wherein the bolts are pulled out without the failure of the rod. The 

maximum load for the three first lengths is below 200 kN but the rebar bolts used only tolerate 

200 kN and up to 95 cm in displacement. The final 40 cm bolts, however, went over the critical 

embedment length. They were tested and stopped just before they were going to break. The 

critical embedment length, or the greatest length were the bolts are pulled out without 

breakage, is therefore between 30 and 40 cm, and closer to 30. 

7.1.7 Water to cement ratio: 0.375 

In the beginning the plan was to grout 12 bolts with a water-to-cement ratio of 0.375. 

However, it was decided that the ratio was not a suitable choice because of poor pumpability; 

the grout was too thick.  Therefore, only two bolts were tested with that grouting. Results 

from these two measurements are presented in figures 63 and 64. The first bolt, B111, was 

grouted with 10 cm in embedment length but the second one, B141, was grouted with 40 cm 

in embedment length.  

 

Figure 63 – The maximum load reached 60 kN and the bolt slid from the grout with displacement 

approximately 5 mm. The embedment length was too short so the bolt did not tolerate much load. 

The grouting time was 11 days for both B111 and B141.  B111 slid from the grout. The 

embedment length was too short so therefore, the maximum load only reached 60 kN and 

then the bolt easily slid from the grout. Different results were obtained with B141.  The bolt 

tolerated a 200 kN load and the displacement went up to approximately 96 mm. Then there 
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was a high pop and the bolt broke. The broken bolt, along with the extensometer, flew meters 

up in the air and fell down with loud noises. Afterwards, more time was spent on safety rules 

to keep things like this from happening again.  

 

Figure 64 – The bolt tolerated 200 kN load and the displacement went up to approximately 96 mm. The figure 

shows clearly the necking of the bolt before it breaks. The rebar used in the testing tolerates only 200kN and 

displacement up to approximately 95 mm. 
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Figure 65 – the figure shows B141 afterwards. The bolt broke and took the wedge with it. The bolt flew 2-3 
meters in the air when it broke.  

7.1.8 Reduction in diameter and strain measurements 

Equation 6.1 below was used to find the strain of the yielded bolts: 

  

𝜀 = 𝑑𝑙/𝑙0 

 

 

(6.1) 

Where 

dl = change of length (cm) 

lo = initial length (cm) 

The stretch length of the bolts was measured before every test and then measured 

afterwards. Two marks were put on the bolts to identify the stretch length so there would not 

be any mistake when the stretch length was measured afterwards. The first mark was on the 

bolt, closest to the surface of the concrete block, and the second one was 60 cm up from the 

concrete block. To find the most accurate results of the diameter changes, a caliper was used. 
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The diameter of the rock bolts was measured before testing and then afterwards when the 

stretch length had increased because of yielding. Results for both strain and reduction in 

diameter are shown in table 12. The most reduction in diameter was where the greatest 

stretch length was recorded. The strain is also highest where the greatest stretch length is. 

The bolts that tolerated most load bearing capacity in the tests had the greatest stretch length 

and therefore, the most reduction in diameter and highest strain.  

Table 12 – Reduction in diameter and strain measurements of yielded bolts taken together in a table. The 

measured stretch length before testing was 60 cm. The reduction is more as the load is higher. Some tests 

were stopped before the bolts break and therefore the reduction would be more than the measurement 

shows.  

Bolts number Reduction in diameter 
(mm) 

Strain 
(%) 

B222 0.15 2% 

B223 0.85 4.2% 

B231 0.20 2.5% 

B232 1.4 10% 

B233 Breakage Over 10% 

B361 0.80 3.3% 

B362 0.95 5.3% 

B363 0.85 3.6% 

B331 0.50 3.5% 

B332 0.85 7.3% 

B333 1 8.3% 

B531 0.65 2% 

B532 0.69 6.1% 

B533 0.76 3.3% 

B541 1.26 7% 

B542 1.51 10% 

 

7.2 Uniaxial compressive strength test (UCS test) 

The uniaxial compressive strength of the grouting materials has an important role in the 

behavior of rock bolts. Increasing grout compressive strength considerably increases the bond 

strength of the grouted bolts. The aim was to find the relationship between the critical bolt 

length and the uniaxial compressive strength of the cement mortar. Therefore, uniaxial 

compressive strength tests were conducted on cement cubes with three different water-to-

cement ratios of the cement mortar. The samples are shown in table 10. First, the plan was to 

use grout with the water to cement ratio of 0.375. However, the grout was too dry and the 

pumpability was not good enough (See figure in Appendix F). Therefore, grout with higher 

water to cement ratio was used for grouting.  
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The uniaxial compressive strength test was performed in a triaxial compressive strength 

machine.  To get the most accurate results the maximum load (when the specimen broke) was 

divided with the area of the specimen. All specimen in the test had the same area which was 

10*10 cm. The answers are given in MPa which is the unit for stress.  Table 13 shows the 

results for every specimen. Appendix F shows figures from all the specimen before and after 

the UCS test.  

Table 13 - Uniaxial compressive strength test performed on cement cubes with different water-to-cement 
ratios. The results from the cube with the mark (*) would most likely be higher but before the test was 
performed there was breakage in the samples.  

Uniaxial compressive strength test performed on cement cubes  

specimen for every w/c ratio 

W/C ratio 1. (MPa) 2. (MPa) 3. (MPa) 4. (MPa) 

0.40 33* 49 43* 43* 

0.46 29 31 29 X 

0.50 45 43 43 X 
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Figure 66 –  UCS test versus water/cement ratio. From the results it was not possible to find the relationship 
between the critical bond length and the uniaxial compressive strength of the cement mortar.  

The tests were carried out in two separate days. First, three cement cubes were tested with 

the water to cement ratio of 0.46 and one cube with the ratio of 0.40. The grouting time for 

these cubes was seven days. Then the rest of the cubes, three cement cubes with water to 

cement ratio of 0.40 and three with the ratio of 0.50, were tested few weeks later with the 

same grouting time. According to Hyet et al (1992) and Kilic, Yasar and Celik (2002) the UCS is 

supposed to decrease with increasing water to cement ratio. The results given in table 13 and 

figure 66 do not show similar results.  

The results from the previous testing day, were much lower than the results obtained from 

the UCS tests that was performed few weeks later. The cement cube with the ratio of 0.40 

had UCS around 33 MPa while cement cubes with the same ratio, tested few weeks later, had 

UCS around 50 MPa. The cement cubes with the ratio of 0.50 showed also higher UCS than 

the cubes with lower ratio or 0.46. It is not possible to estimate what results are the most 

accurate and which are not because there are too much difference between the values. From 

the results it can be estimated that some kind of error has occurred. It is not certain what 

causes this error but most likely it was either mistakes made when the grout was mixed or 

some technical problems with the triaxial compressive strength machine.  
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The aim was to find the relationship between the critical bolt length and the uniaxial 

compressive strength of the cement mortar but with these results it is not possible. If these 

results are used they would give incorrect relationship between the critical length and the UCS 

of the cement mortar.  Due to lack of time it was not possible to test new specimen and 

present them in this thesis. However, it is highly recommended that UCS test is performed 

again on cement cubes with given ratios and then be sure that all mixture of the grout is 

correct as well as the triaxial compressive strength machine. When that is done it should be 

easy to find the relationship between the critical length and the UCS strength of the grout.  

 

 

  



 

102 
 

  



 

103 
 

8 Chapter – Conclusion  
Pull-out tests were performed on fully grouted rebar bolts, grouted with the following water-

to-cement ratios: 0.40, 0.46 and 0.50.  

The diameter of the tested rebar bolts was 20mm and the ultimate load bearing capacity of 

the bolts was 200 kN with steel strength of 630 MPa. The bolts were grouted with Rescon Zinc 

bolt cement mortar. The maximum displacement of the rebar, before breakage, was 

approximately 95 cm. 

The main purpose of the testing was to find the critical embedment length for bolts grouted 

with different water to cement ratios.  Different embedment lengths, ranging from 10 cm to 

40 cm, were employed in the tests under different ratios for the grouting mortar. The critical 

length was determined on diagrams of the pull - out load versus the embedment length.   

The results showed that for rebar bolts grouted with a water-to-cement ratio of 0.40 the bolts 

with 20 cm embedment length were close to the critical length. The maximum load reached 

approximately 180 kN and the bolts began to yield until they slid from the cement. 30 cm 

embedment length, however, was longer than the critical embedment length. They reached 

200 kN and the bolts broke. For rebar bolts with the ratio of 0.46 the 30 cm embedment length 

was on the verge of being the critical length. The maximum load reached 200 kN but the curve 

dropped before the bolts broke at the displacement of 50 – 70 cm and the bolts slid from the 

grout.  There were no bolt tested with a longer embedment length and therefore, there was 

no bolt grouted with a water-to-cement ratio of 0.46 that had longer embedment length than 

the critical length. However, from the results it can be recommended to test bolts with 

embedment length between 30 and 35 cm to see if that length goes over the critical length. 

Finally, the critical length for the ratio of 0.50 was between 30 and 40 cm. The bolts tested 

with 30 cm embedment length were close to the critical length but bolts with 40 cm broke 

and therefore, they went over the critical length.  

From the test results the relationship between critical embedment length and water-to-

cement ratios can be seen. The critical length increases with higher water-to-cement ratios. 

For example, the rebar bolts grouted with a water-to-cement ratio of 0.40 are capable of 

tolerating more load when they are grouted with shorter embedment lengths than, for 

instance, bolts with the ratio of 0.50. In most cases the maximum load was higher for bolts 
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grouted with lower water-to-cement ratio even though the bolts were grouted with same 

embedment length.  

As the tests results show, the water-to-cement ratio is an extremely important factor and it 

has a great impact on the load bearing capacity of the fully grouted rebar. Before the tests 

were performed some investigations were made on possible ratios for the grouting. Results 

showed that grout with a water-to-cement ratio lower than 0.40 were not usable for the 

testing. Specimens with water-to-cement ratios of 0.35 and 0.375 were too dry and did not 

have good pumpability.  It is important that the grout is pumpable without being too fluid or 

too dry. Also, it is important to ensure uniform mixing between grout and the water. That was 

not possible with a ratio lower than 0.40. When bolts are grouted it is important that the space 

between the bolt and the hole wall is completely filled with grout.  The grout did not fill up 

the hole like it should for bolt number B221. The form of the grouting was like squeezing tooth 

paste; in that case, it is important to stir the grout better so it is easier to fill it and then the 

bond strength between the bolt and grout will become higher. The maximum load for that 

bolt was therefore much lower than for a bolt grouted with same ratio and the same 

embedment length. The grout ratio for bolt number B221 was 0.40 and it was the driest ratio 

used in these testing. It was possible to stir the grout but if the ratio had been lower, then the 

form of the grout would have also been like tooth paste and that would have influenced the 

pull out tests results. The estimated grouting time was seven days but many tests were 

performed eight or nine days after the grouting. It seems that it did not have great effect on 

the results. 

The reduction in diameter was measured for all the bolts that yielded after they had been 

pulled out. The strain was also measured for the yield bolts. The strain for bolt number B233 

reached more than 10% before it broke. The reduction in diameter increases as the strain 

becomes higher. For bolt number B233 the reduction was more than 1.5 mm before it broke. 

One of the aims with this thesis was to find the relationship between the critical bolt length 

and the uniaxial compressive strength of the cement mortar. It was not possible because of 

some error that occurred when the UCS tests were performed on cement cubes with different 

water to cement ratio. Therefore, it is recommended to perform UCS tests again to find this 

relationship.  
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Appendix 
A) 
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B) 

Natural stresses 

Natural stresses are stresses found in rock before excavation and comprise of gravitational stresses, 

topographic stresses, residual stresses, tectonic stresses and thermal stresses  

Gravitational stresses 

Gravitational stresses are caused by the weight of the rock per unit area above a specific point in the 

earth’s crust. Assuming the surface is horizontal then the vertical gravitational stress at a depth z is: 

𝜎𝑧 = 𝜌 ∗ 𝑔 ∗ 𝑧 

ρ=density=mass/volume 

g=acceleration=9,8 m/s2 

z=depth 

Over 1000 meters from gravity the gradient of stress is 0.026 MPa/m but increases to 0.029MPa/m 

when the density of rocks reaches 3000 kg/m3 (Herget, 1988). The magnitude of the vertical stress 

may be the same as the magnitude of the gravitational vertical component with some deviations. As 

illustrated in the figure ___the deviations are particularly at great depths. 

 

Figure – As the depth below surface increases the vertical stresses increases as well. The magnitude of 

the vertical stress may be the same as the magnitude of the graviational vertical components with 

some deviation. As seen from the figure, the deviations are particulary at great dephts (Hoek, 2007b). 
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It is more complex to define the horizontal component than the vertical component. The reason is 

different boundary conditions and the effect of rock mass properties. It depends for example whether 

the material in the crust is strictly elastic or not. If the material is strictly elastic and there are no 

horizontal displacement the Poisson’s ratio (𝑣) is used to describe the relationship between the two 

components of the gravitation stresses. The equation for horizontal stresses is: 

𝜎𝐻 =
𝑣

1 − 𝑣
∗ 𝜎𝑧 

The Poisson´s ratio can varies between 0.15 to 0.35 for most of the rocks but  𝑣 = 0,25 is a very 

common value for rock masses. It means that the horizontal stress induced by gravity is 1/3 of the 

vertical stress (Herget, 1988). 

Topographic stresses 

The topography has a great influence on the rock stress situation when the surface is uneven. 

Topographic stresses are stresses caused by topographic effects. In deep valleys and mountain slopes 

where underground excavations are often located the stress situations by topographic effects will be 

dominated. σ1 Is more or less parallel to the slope of the valley near the surface and the minor principal 

stress,σ3 is perpendicular to the slope in same situation (Nilsen and Palmström, 2000). 

Tectonic stresses 

It can be difficult to predict magnitude and direction of tectonic stresses unless there have been recent 

movement caused by tectonic or seismic activity (Herget, 1988). Tectonic stresses are mainly caused 

by plate tectonic or the continental drift. Incidents such as faulting and folding are occur because of 

tectonic stresses. The total horizontal stresses are normally much higher than the horizontal stress 

caused by gravitation. That is mainly due to the existence of tectonic stresses. This is mainly in places 

at shallow or moderate depths (Nilsen and Palmström, 2000). 

Residual stresses 

Stresses that are locked into the rock material during earlier stages of it geological history are referred 

to as residual stresses. Stress caused by contraction during a cooling of rock melt is an example of 

residual stress. By using strain recovery measurements on rock samples of different size it is possible 

to identify residual stresses. Abnormally high vertical stresses are often explained as being caused by 

residual stresses (Nilsen and Palmström, 2000). 

Thermal stresses 

Thermal stresses are due to cooling or heating of rock. Close to the surface the rock is exposed to the 

sun that causes thermal stresses. Results of heating occur also from the interior of the earth by 

radioactivity and other geological processes (Herget, 1988). 
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C) 

Hydraulic jack used for pull out test 
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D) 

Table for different grouting time 

Rock bolts Time (days) 

B211 8 

B212 8 

B213 8 

B251 7 

B252 7 

B253 7 

B221 9 

B222 9 

B223 9 

B231 9 

B232 9 

B233 9 

B241 9 

B311 8 

B312 8 

B313 8 

B321 8 

B322 8 

B323 7 

B361 7 

B362 7 

B363 7 

B331 8 

B332 8 

B333 8 

B511 8 

B512 8 

B513 8 

B521 7 

B522 7 

B523 7 

B531 7 

B532 7 

B533 7 

B541 7 

B542 7 

B111 11 

B141 11 
 

Grouting time for cement cubes was seven days for all specimen
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E)  

Figures from pull out testing. Pull out length shown for every bolt tested. 

 B111  B141 

 B211  B212 

 B213  B221 
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  B222    B223 

 B231  B232

 B233 
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 B241  B311 

 B312  B313 

 B321   B322 
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 B323  B331  

 B332   B333 

  B361  B362 
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  B363  B251 

 B252   B253 

 B511  B512 
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 B513  B521  

 B522  B523 

 B531  B532 
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 B533   B542

 B541  
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F) 

 Figures of UCS specimen 

   

w/c ratio: 0.46 before and after 

   

w/c ratio: 0.46 before and after 

   

w/c ratio: 0.46 before and after 

   

w/c ratio: 0.40 before 
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w/c ratio: 0.40 after 

   

w/c ratio: 0.40 before 

   

w/c ratio:0.40  after 

   

w/c ratio: 0.50 before and after 
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w/c ratio: 0.50 before and after 

   

w/c ratio: 0.50 before and after 

   

w/c ratio: 0.40 before and after 

   

w/c ratio: 0.40 before 
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w/c ratio: 0.40 after 

   

w/c ratio: 0.40 before and after 

  

w/c ratio: 0.375. It was too dry. Not possible to make cement cubes 

 

 

 

 


