

# Magnetic susceptibility of sedimentary rocks from Bjørnøya

Kjetil Skrede

Geology Submission date: July 2012 Supervisor: Mai Britt E. Mørk, IGB Co-supervisor: Odleiv Olesen, NGU - Sokkelgeofysikk

Norwegian University of Science and Technology Department of Geology and Mineral Resources Engineering

# **Summary**

Magnetic susceptibility values are important in interpreting regional magnetic anomalies and in crustal modelling. In this study, magnetic susceptibility has been measured on 548 rock samples from the sedimentary succession of the island of Bjørnøya in the Barents Sea. In addition, magnetic remanence has been measured on most of the samples, which is equally important as the susceptibility.

Variations of susceptibility for the different formations as well as different lithologies have been analysed and compared in the study. Optical microscopy and scanning electron microscope (SEM) analysis was used to examine the mineral source of selected samples with higher susceptibility. The results revealed noticeable variations amongst the stratigraphic formations and members, although the susceptibilities were generally low. There was a clear trend that the fine-grained samples such as siltstones and shales had the highest susceptibilities compared to carbonates and the coarsergrained conglomerates and sandstones.

Siderite and pyrite was found to be the mineralogical source of the relative high susceptibilities, as samples rich in siderite gave the highest values. No Fe-bearing heavy minerals like magnetite or pyrrhotite was found in the scanning electron microscope analyses.

# Acknowledgements

I will like first and foremost like to thank my supervisor Mai Britt Mørk for the help and guidance along the way of this thesis in addition to my co-supervisor Odleiv Olesen at the Geological Survey of Norway (NGU).

I would also like to thank Jörg Ebbing and the rest of the people at the Continental margin geophysics department at NGU and Melanie for help and instruction at the petrophysical/palaeomagnetic laboratory (PPL) during the measurements.

A huge thank goes also to Atle Mørk for help in preparation and information of the sample material from Bjørnøya and NGU for the funding of the sample transport and letting me use the petrophysical laboratory.

Last but not least I would like to thank my parents at home for supporting me during my study years at NTNU.

# **Table of Contents**

| Summary                                | 1  |
|----------------------------------------|----|
| Acknowledgements                       | 3  |
| 1. Introduction                        | 9  |
| 1.1 Objective                          | 9  |
| 1.2 Background                         | 9  |
| 2. Approach                            |    |
| 2.1 Density                            |    |
| 2.2 Susceptibility                     |    |
| 2.3 Remanence                          |    |
| 3. Rock Magnetism                      |    |
| 3.1 Magnetic Susceptibility            | 14 |
| 3.1.1 Diamagnetism                     | 14 |
| 3.1.2 Paramagnetism                    | 15 |
| 3.1.3 Ferromagnetism                   | 15 |
| 3.2 Magnetic properties of rocks       |    |
| 3.3 Remanent and Induced Magnetization |    |
| 4. The Geology of Bjørnøya             | 20 |
| 4.1 Hecla Hoek basement                |    |
| 4.2 Røedvika Formation                 |    |
| 4.2.1 Vesalstranda Member              | 23 |
| 4.2.2 Kapp Levin Member                | 24 |
| 4.2.3 Tunheim Member                   | 26 |
| 4.3 Nordkapp Formation                 | 27 |
| 4.3.1 Kapp Harry Member                | 28 |
| 4.3.2 Nordhamna Member                 | 28 |
| 4.4 Landnørdingsvika Formation         | 29 |
| 4.5 Kapp Kåre Formation                |    |
| 4.5.1 Bogevika Member                  | 31 |

|   | 4.5.2 Efuglvika Member           | 33   |
|---|----------------------------------|------|
|   | 4.5.3 Kobbebukta Member          | 33   |
|   | 4.6 Kapp Hanna Formation         | 35   |
|   | 4.7 Kapp Duner Formation         | . 36 |
|   | 4.8 Hambergfjellet Formation     | . 37 |
|   | 4.9 Miseryfjellet Formation      | . 38 |
|   | 4.10 Urd Formation               | . 39 |
|   | 4.11 Skuld Formation             | . 39 |
| 5 | . Sample Material                | 40   |
|   | 5.1 Vesalstranda Member          | . 40 |
|   | 5.2 Kapp Levin Member            | 41   |
|   | 5.3 Tunheim Member               | .42  |
|   | 5.4 Kapp Harry Member            | .46  |
|   | 5.5 Nordhamna Member             | . 47 |
|   | 5.6 Landnørdingsvika Formation   | .49  |
|   | 5.7 Bogevika Member              | . 50 |
|   | 5.8 Efuglvika Member             | . 51 |
|   | 5.9 Kobbebukta Member            | 51   |
|   | 5.10 Kapp Hanna Formation        | . 52 |
|   | 5.11 Kapp Duner Formation        | . 55 |
|   | 5.12 Hambergfjellet Formation    | . 58 |
|   | 5.13 Miseryfjellet Formation     | . 60 |
|   | 5.14 Urd Formation               | . 64 |
|   | 5.15 Skuld Formation             | 65   |
| 6 | . Results                        | . 66 |
|   | 6.1 Susceptibility Distributions | . 66 |
|   | 6.1.1 Vesalstranda Member        | 66   |
|   | 6.1.2 Kapp Levin Member          | 67   |
|   | 6.1.3 Tunheim Member             | 67   |

|    | 6.1.4 Nordkapp Formation                    | 68   |
|----|---------------------------------------------|------|
|    | 6.1.5 Landnørdingsvika Formation            | 69   |
|    | 6.1.6 Bogevika Member                       | 69   |
|    | 6.1.7 Efuglvika Member                      | 70   |
|    | 6.1.8 Kobbebukta Member                     | 71   |
|    | 6.1.9 Kapp Hanna Formation                  | 71   |
|    | 6.1.10 Kapp Duner Formation                 | 72   |
|    | 6.1.11 Hambergfjellet Formation             | 73   |
|    | 6.1.12 Miseryfjellet Formation              | 73   |
|    | 6.1.13 Urd and Skuld Formations             | 74   |
| (  | 6.2 Stratigraphic susceptibility variations | . 75 |
| (  | 6.3 Lithological susceptibility variations  | . 77 |
| (  | 6.4 Koeningsberger ratios (Q-values)        | . 78 |
|    | 6.4.1 Stratigraphic Q-value variations      | 78   |
|    | 6.4.2 Lithological Q-value variations       | 79   |
| 7. | Mineralogical Analyses                      | . 80 |
| -  | 7.1 Vesalstranda Member                     | . 80 |
| -  | 7.2 Efuglvika Member                        | . 84 |
| •  | 7.3 Kapp Hanna Formation                    | . 87 |
| •  | 7.4 Kapp Duner Formation                    | . 88 |
| -  | 7.5 Miseryfjellet Formaton                  | . 90 |
| 8. | Summary and Discussion                      | . 91 |
| 9. | Conclusion                                  | . 92 |
| 10 | ). References                               | . 93 |
| Ap | opendix                                     | . 97 |
|    | A.1 Sample list                             | . 97 |
|    | A.2 Electron Dispersive Spectra (EDS)       | . 97 |
|    | A.2.1 Vesalstranda Member                   | 117  |
|    | A.2.2 Efuglvika Member                      | 122  |
|    | A.2.3 Kapp Hanna Formation                  | 125  |

# **1. Introduction**

# **1.1 Objective**

This study aims to examine lithological and stratigraphic variations in magnetic susceptibility from the Upper Devonian to the Upper Triassic sedimentary succession of Bjørnøya and to investigate the mineralogical source of the susceptibility.

Density is also measured, in addition to magnetic remanence. The relationship between induced and remanent magnetization can be examined by calculating the Koenigsberger ratios (Q-values) for different formations/members and lithologies. Knowledge of Q-values is important to determine if remanence contributes to regional magnetic anomalies.

# **1.2 Background**

The western Barents Sea is dominated by a thick sedimentary succession and structural highs and lows (Faleide et al. 1993; Gabrielsen et al. 1990). Compaction in the deep sedimentary basins, resulting in a decrease in both acoustic impedance contrast and the signal-to-noise ratio because of densities close up to basement rocks are leading to large uncertainties estimating the top-basement in both seismic and gravity (Barrere 2009). The magnetization contrast between sedimentary and basement rocks is usually high and therefore an interpretation of the magnetic field is generally effective in basement studies (Marello et al. 2010). Due to the ambiguity in magnetic field interpretation, constraining data is needed.

Sedimentary magnetic studies have been done earlier of the quartz-bearing sandstones of the Brent Formation in the North Sea which revealed low susceptibilities (Hauger & van Veen 1995; Løvlie & van Veen 1995).

However, the OSRAM Project (Origin of Sediment-Related AeroMagnetics) documented that part of the offshore Mesozoic and Cenozoic sedimentary successions are magnetic (Mørk et al. 2002) and that finer clastic sediments have higher susceptibilities than the coarser-grained sandstones (Olesen et al. 2010). This also is compatible with the results from magnetic susceptibility study of the upper Triassic Lunde Formation in the northern North Sea done by Hounslow et al. (1995).

# 2. Approach

This study includes an overview of the geology and stratigraphy of Bjørnøya and the samples representing the different formations and members. The sample material used in the project was collected during fieldwork in 1984-86 as part of the Arctic Geo-Program launched by SINTEF Petroleum Research, former Continental Research Institute (IKU). 548 samples have been measured for density and susceptibility whereas 446 of these also have been measured for magnetic remanence. The measurements were done in the petrophysical/palaeomagnetic laboratory (PPL) of the Geological Survey of Norway, NGU. To fulfill the requirements to be stored in the national geophysical database the samples had to exceed 50 g and contain UTM coordinates (Olesen et al. 1993).

The practical work has included:

- Compile background data, and preparion of sample list (see Appendix A.1).
- Sample identification and sample preparation.
- Identification of UTM coordinates from location maps.
- Laboratory measurements of density, magnetic susceptibility and remanence.
- Analyses of selected samples by optical microscope ans scanning electron microscope (SEM) of polished thin sections.
- Plotting and interpretatation of data.

The analytical procedure of the different measurements described below is taken mainly from a report by Torsvik and Olesen (1988) and Puranen & Sulkanen (1985):

### **2.1 Density**

Volume and density can be derived from measuring dry and wet weight of a sample according to the Archimedes's principle. However, the samples must be saturated in water at least 12 hours before measurements. A Precisa 4200C SCS weight connected to a PC is used at the laboratory with a resolution power of 0.1 gram.

Volume and density are calculated from the following formulas:

$$V = W_{dry} - W_{wet}$$
 (cm<sup>3</sup>) ,  $ho = rac{m}{V} \cdot 1000$  (kg/m<sup>3</sup>) where,

V = Volume (cm<sup>3</sup>)  $W_{dry} = dryweight (cm/s<sup>2</sup>)$   $W_{dry} = wetweight (cm/s<sup>2</sup>)$  m = mass (N) $\rho = density (kg/m<sup>3</sup>)$  After checking that the weight reads zero, the sample is placed on top of the weight for dry-weight measurements saturated with water. The sample is then put in the water container under the wetweight measurements (underfloor weighting).

### 2.2 Susceptibility

Volume susceptibility measurements where performed using a frequency-oscillator and a frequency counter. The susceptibility of a sample is calculated from the frequency difference between empty coil and coil with inserted sample. The best suitable pick-up coil (32, 64 or 103 mm in diameter) is selected dependent on the size of the sample. The period of the coil rather than the frequency is measured.

A measurement of empty coil is done after pick-up coil is selected. A sample is then inserted in the coil and measured from the PC. The susceptibility is calculated from the following formula:

$$Sus_a = CFac \cdot \left(\frac{T1}{T0}\right)^{1/2} \cdot \frac{T1-T0}{V} \quad (1 \cdot 10^{-6} SI) \quad where,$$

Sus<sub>a</sub> = Apparent Susceptibility  $(1 \cdot 10^{-6} SI)$ CFac = Coil constant T0 = Period of empty coil (s) T1 = Period of sample in coil (s) V = Volume of sample (m<sup>3</sup>)

Corrected for demagnetization factor, susceptibility becomes:

$$True Sus = \frac{Sus_a \cdot 4 \cdot 3.14159}{(4 \cdot 3.14159 - 4.19 \cdot Sus_a)} \quad (1 \cdot 10^{-6} SI)$$

The NGU susceptibility system has been tested against a low field induction bridge KLY-2, which is one of the best susceptibility instruments available. The sensitivity of the NGU system is approximately  $1 \cdot 10^{-5}$  SI, tested on the smallest 32 mm coil.

### 2.3 Remanence

The remanence measurements where done using a fixed Schonstedt fluxgate magnetometer, positioned within a two-layered  $\mu$ -metal shield cylinder open in both ends. The fluxgate probe is monitored from the Schonstedt Digital magnetometer, and an analog signal is transferred to a Digital Voltmeter and then to a PC.

After the background field value is measured, the sample is inserted close to the probe (10 cm from center of sample to the probe) inside a sample holder and measured again. The remanence of the sample is then determined by varying sample positions according to Cartesian design and measuring corresponding field values.

The sample positions according to Cartesian design (see Fig. 2.1):

- Pos 1 Sample remanence in + X direction (X1)
  - 2 Sample remanence in -X direction (X2)
  - 3 Sample remanence in + Y direction (Y1)
  - 4 Sample remanence in Y direction (Y2)
  - 5 Sample remanence in + Z direction (Z1)
  - 6 Sample remanence in -Z direction (Z2)

The total remanence (M) of the sample can be determined by the formula:

$$M = (Xm^2 + Ym^2 + Zm^2)^{1/2}$$
 (mA/M) where

 $Xm = \frac{(X1-X2)}{2}$   $Ym = \frac{(Y1-Y2)}{2}$   $Zm = \frac{(Z1-Z2)}{2}$ 

The Schonstedt fluxgate magnetometer is calibrated against a molspin spinner magnetometer capable of measuring NRM intensities down to approximately 0.1 - 0.2 mA/M, approximately 1000 times more sensitive than with the Schonstedt Fluxgate Magnetometer. The sensitivity depends on the volume of the sample, approximately 50-100 mA/M for 200 cm<sup>3</sup> samples.



Fig. 2.1 Procedure for remanence measurements of handsamples (Puranen & Sulkanen, 1985).

# 3. Rock Magnetism

This chapter gives an overview of the main properties measured in the study based on selected literature (Hunt et al. 1995, Reynolds 1997, Lowrie 2007 and Dunlop & Özdemir 2007).

### **3.1 Magnetic Susceptibility**

Magnetic susceptibility (MS) is an extremely important property and plays the same role as density does in gravity surveys.

MS is a measure of materials magnetic response to an external magnetic field. The volume susceptibility k (dimensionless units) is defined as the ratio of the material magnetization J (per unit volume) to the external magnetic field H:

$$J = kH$$
.

The mass susceptibility  $\chi$  (m<sup>3</sup>kg<sup>-1</sup>) is defined as the ratio of the material magnetization *J* (per unit mass) to the external magnetic field *H*:

$$J = \chi H.$$

On the basis of magnetic susceptibility, three classes of magnetic behavior can be distinguished: *diamagnetism, paramagnetism and ferromagnetism*.

### **3.1.1 Diamagnetism**

In a diamagnetic material, all the electron shells are complete and so there are no unpaired electrons. When an external magnetic field is applied the electrons orbit opposes the applied field, producing a weak negative susceptibility, see Fig.3.1. The susceptibility of diamagnetic minerals has no temperature dependence and is often masked by stronger paramagnetic and ferromagnetic minerals. Common minerals in this group are quartz and calcite, see Table 1.

### 3.1.2 Paramagnetism

In paramagnetic materials, unpaired electrons produce unbalanced spin moments that align themselves toward the field direction when a magnetic field is applied. The susceptibility of paramagnetic materials is inversely proportional to the temperature given by the Curie-Weiss Law. Some examples of paramagnetic minerals are clay minerals as illite and montmorillonite, biotite, pyrite and siderite, see Table 1.



Fig.3.1 Variations of magnetic magnetization M in diamagnetic and paramagnetic materials with applied magnetic field (Lowrie 2007).

### **3.1.3 Ferromagnetism**

In ferromagnetic materials, the spin moments of unpaired electrons are coupled due to very strong interaction between adjacent atoms and overlap of electron orbits. These small areas where magnetic coupling occurs, referred to as magnetic domains, give rise to a strong spontaneous magnetization that can exist without an external magnetic field.

This is the effect of hysteresis in ferromagnetic minerals, called remanence or isothermal remanent magnetization ( $M_{rs}$ ) if first magnetized to saturation ( $M_s$ ), see Fig. 3.3. For a given ferromagnetic mineral the ratio  $M_{rs}/M_s$  depends on grain size.

The magnetic coupling can result in aligned (either parallel or antiparallel) or canted moments and can be divided in four different types, a) ferromagnetism, b) antiferromagnetism, c) spin-canted antiferromagnetism or parasitic ferromagnetism and d) ferrimagnetism, see Fig.3.2.



Fig.3.2 Schematic representations of the alignments of atomic moments in different ferromagnetic minerals (Modified from Lowrie 1997).

### Ferromagnetism

Truly ferromagnetic minerals such as iron, nickel and cobolt have parallel alignments of moments and very high susceptibility, but only occur rarely in nature.

### Antiferromagnetism

In certain minerals where the interaction between magnetic spins becomes possible, superexchange of electrons results in antiparallel directions of magnetic moments. Antiferromagnetic alignment breaks down at the Néel temperature  $T_N$  and remanent magnetization is not possible (see Fig.3.2). Ilmenite (FeTiO<sub>3</sub>) and ulvöspinel (Fe<sub>2</sub>TiO<sub>4</sub>) are two antiferromagnetic minerals, see Table 1.

### Parasitic ferromagnetism

Parasitic ferromagnetism is a result of antiferromagnetic imperfections or canting of the atomic moments and shows magnetic hysteresis and characteristic Néel temperature. An important example is hematite ( $\alpha$ Fe<sub>2</sub>O<sub>3</sub>), see Table 1.

### Ferrimagnetism

Indirect exchange involving antiparallel and unequal magnetization of the sublattices result in net spontaneous magnetization. Above the Néel temperature or more commonly the Curie temperature the ferrimagnetic minerals behaves paramagnetic. Magnetite ( $Fe_3O_4$ ) is the most important mineral in addition to but maghemite ( $\gamma$ Fe2O3), pyrrhotite ( $Fe_7S_8$ ) and goethite ( $\alpha$ Fe0OH), see Table 1.



#### Fig. 3.3 Hysteresis loop illustrating a cycle of magnetization in a ferromagnetic mineral (Lowrie 2007).

| Mineral                                                   | K (10 <sup>-6</sup> SI)     | $\chi$ (10 <sup>-8</sup> m <sup>3</sup> kg <sup>-1</sup> ) |
|-----------------------------------------------------------|-----------------------------|------------------------------------------------------------|
| Diamagnetic                                               |                             |                                                            |
| Quartz (SiO <sub>2</sub> )                                | -16.4                       | -0.62                                                      |
| Calcite)                                                  | -13.6                       | -0.48                                                      |
| Paramagnetic                                              |                             |                                                            |
| Troilite (FeS)                                            | 0.6-1.7 x 10 <sup>3</sup>   | 13-35                                                      |
| Pyrite (FeS <sub>2</sub> )                                | 1.5 x 10 <sup>3</sup>       | 30                                                         |
| Siderite (FeCO₃)                                          | 4.9 x 10 <sup>3</sup>       | 123                                                        |
| Biotites                                                  | 0.5-1.15 x 10 <sup>3</sup>  | 17-38                                                      |
| Clay minerals (illite, montmorillonite)                   | 0.33-041 x 10 <sup>3</sup>  | 13-15                                                      |
| Ferro,- Ferri,- Antiferromagnetic                         |                             |                                                            |
| Pyrrhotite (Fe <sub>7</sub> S <sub>8</sub> )              | $3.2 \times 10^{6}$         | $6.9 \times 10^4$                                          |
| (Fe <sub>9</sub> S <sub>10</sub> )                        | $0.17 \times 10^{6}$        | $0.38 \times 10^4$                                         |
| Hematite ( $\alpha$ Fe <sub>2</sub> O <sub>3</sub> )      | $0.5-40 \times 10^3$        | 10-760                                                     |
| Maghemite, multidomain (γFe <sub>2</sub> O <sub>3</sub> ) | 2.0-2.5 x 10 <sup>6</sup>   | $4.0-5.0 \times 10^4$                                      |
| Magnetite, multidomain (Fe <sub>3</sub> O <sub>4</sub> )  | $3.0 \times 10^{6}$         | $5.8 \times 10^4$                                          |
| Ilmenite (FeTiO₃)                                         | $0.22-380 \times 10^4$      | $0.4-0.5 \times 10^{5}$                                    |
| Ulvöspinel (Fe <sub>2</sub> TiO <sub>4</sub> )            | $4.8 \times 10^3$           | 100                                                        |
| Titanomagnetite (TM60)                                    | 0.13-0.62 x 10 <sup>6</sup> | $0.25 - 1.2 \times 10^4$                                   |
| Titanomaghemite                                           | $2.8 \times 10^{6}$         | $5.7 \times 10^4$                                          |
| Goethite ( $\alpha$ Fe00H)                                | $1.1-1.2 \times 10^3$       | 25-280                                                     |

#### Table 1 Susceptibilities of some common minerals.

*Source:* Hunt et al. 1995 Rock Physics and Phase Relations – A Handbook of Physical Constants and D. J. Dunlop and Ö. Özdemir 2007, Magnetizations in Rocks and Minerals.

### 3.2 Magnetic properties of rocks

Rocks containing ferromagnetic minerals like mafic and ultramafic rocks minerals normally have the highest susceptibilities while sedimentary rocks normally have the lowest values, see Fig. 3.4. However, the magnetic susceptibility is a result of all the minerals in a rock in comparison to the remanent magnetization where only ferromagnetic minerals contribute.



Fig. 3.4 Median susceptibility values and ranges of some common rock types (Lowrie 2007).

### **3.3 Remanent and Induced Magnetization**

In addition to the induced magnetization, many rock and minerals exhibit a permanent or natural remanent manetization (NRM). The remanent magnetization or the intensity of this remanent magnetization ( $J_r$ ) is still measurable in absence of an external field (H).Together with the intensity of the induced magnetization ( $J_i$ ) they shape the resultant (J) by their directions and magnitudes, see Fig. 3.5.



Fig. 3.5 Vectorial summation of induced and remanent magnetizations (Reynolds 1997).

The ratio between the two intensities  $J_r / J_i$  is called the Königsberger ratio (Q-ratio) and decribes the relationship between the induced and remanent magnetization.

$$Q = NRM / (k (SI) * H (A/m))$$

where,

NMR = Natural Remanent Magnetization (A/m)k = volume susceptibility (dimensionless units, SI)H = external magnetic field (A/m)

If the value is over 1, the remanent magnetization has a significant importance in magnetic anomaly interpretations.

ca 120 m

> 500 m

# 4. The Geology of Bjørnøya

The Geology of Bjørnøya consists of Devonian, Carboniferous, Permian and Triassic rocks overlying the Pre-Old Red Basement often referred to as "Hecla Hoek", see Fig. 4.1.

### 4.1 Hecla Hoek basement

**Younger Dolomite Series** 

Slate-Quartzite Series

**Older Dolomite Series** 

The stratigraphic lowest Russehamna Formation consists of grey massive dolomites and local units of oolitic sandstones and stromatolites overlain by the approximately 150 m thick overlying Sørhamna Formation consisting of quartzitic sandstones and shales. The uppermost Ymerdalen Formation consists of a 400 m thick massive grey dolomite and limestone overlain by 240 m thick black limestone, see Table 2 (Braathen et al. 1999).

| Holtedahl (192             | :0)               | Krasilsciko          | ov & Livsic (1974) |
|----------------------------|-------------------|----------------------|--------------------|
| Unit                       | Min.<br>thickness | Unit                 | Thickness          |
| Tetradium Limestone Series | > 240 m           | Vmerdalen Em > 450 m |                    |
|                            |                   | riferualerri         | 111 × 400 111      |

Sørhamna Fm

Russehamna Fm

|  | Table 2 Old and new terminology | of the "Hecla Hoek" | basement (Worsley | vet al. 2012). |
|--|---------------------------------|---------------------|-------------------|----------------|
|--|---------------------------------|---------------------|-------------------|----------------|

>400 m

> 175 m

> 400 m



Fig. 4.1 Geological map of Bjørnøya with stratigraphic type sections (Dallmann 1999).



Fig. 4.2 Simplified stratigraphic column of Bjørnøya (Worsley et al. 2001).

# 4.2 Røedvika Formation

The lower coal and shale unit of the Ursa Sandstone was renamed to Røedvika Formation by Cutbill and Challinor (1965) and divided into three members by Worsley and Edwards (1976): Vesalstranda Member, Kapp Levin Member and Tunheim Member, see Fig. 4.2.

The thickness of the formation varies from about 360 m on the eastern coast to about 120 m on the southwestern coast over a distance of about 10 km. The variations are based both on available exposures and on borehole data (Worsley and Edwards 1980).

### 4.2.1 Vesalstranda Member

The Vesalstranda Member outcrops along Vesalstranda from Røedvika to just south of Kapp Levin on the southeast coast (see Fig. 4.1) and comprises the lower 200 meters of the formation (Worsley and Edward 1976).

The lowermost member of the Røedvika Formation consist largly of flood plain sediments deposited by northwest flowing meandering rivers, represented by grey and purple sandstones with subsidiary siltstones, mudstones and a few thin conglomerate beds see Fig. 4.4. Abundant of plant fossils, coal and black coaly shales occur in the fine-grained part of the member (Gjelberg 1978; Worsley and Gjelberg 1980).



Fig. 4.3 Flood plain deposits from the lower Vesalstranda Member at the southern foot of Miseryfjellet at Vesalstranda (Worsley et al. 2012).

Worsley and Edward (1976) noticed that the member consisted of fining upward sequences deposited by meandering rivers. In addition, Gjelberg (1978) showed that small coarsening upward sequences occur and that lacustrine sub-environment also were important. Two depositional environments of Vesalstranda Member were recognized, floodplain environment and lacustrine deltaic environment, see Fig. 4.3.

### **4.2.2 Kapp Levin Member**

Accessible complete sections of the Kapp Levin Member are exposed on the northeast side of Miseryfjellet on the southeast coast and north to Rifleodden (see Fig. 4.1) with a total thickness around 75 m.

The Kapp Levin Member is dominated by grey cross-stratified sandstones, conglomeratic sandstones, and conglomerates with a few lenticular units of shale and interlayered thin sandstones. A 15 m thick fine-grained, laterally extensive unit is present in the upper part of the member (Gjelberg 1981).

Palaeocurrent towards all but southwest is recorded with an average flow direction towards the east and northeast (Worsley & Edwards 1976, Worsley et al. 2001).

The overall change to coarser sediments from the underlying Vesalstranda Member is probably a result of increased palaeoslope with alluvial fan systems that built out from the southwestern uplifted footwall margin. Fine-grained sediments at the top of the member marks an abrupt change in depositional environment around the Famennian/Tournaisian, see Fig. 4.4 (Gjelberg 1981, Worsley et al. 2001).



Fig. 4.4 Block diagram illustrating the development of the Røedvika Formation (From Gjelberg 1987).

### 4.2.3 Tunheim Member

The Tunheim Member is best and most accessibly exposed on the east/northeast coast of Bjørnøya from Rifleodden and northwards (see Fig. 4.1). However, a complete section is not available since the uppermost part of the member is not exposed.

The member is about 80 m thick and consists of grey sandstones and shales with local conglomerates and coal. Conglomerates are locally developed in the lower part of the member. As in the Vesalstranda Member, plant fossils are abundant in the shales and underclays are developed (Gjelberg 1981).

Cross-bedding indicates flow to the NW, N and NE representing re-establishment of floodplain environments with meandering streams flowing largely towards the northwet (see Fig. 4.4).

#### Lower Unit (Multistorey channel sandstones)

The more than 30 m thick lower sandstone unit below the A-coal is composed of 3-5 fining upward sandstone sequences which are eroding into the other (Gjelberg 1982).

#### *Upper Unit (Mudstone – shale – sandstone and coal association)*

Above the lower sandstone unit occurs a succession of interbedded mudstones/shales and sandstones, coals and coaly shales with highly variable thickness and lateral distribution. Two relative thick and laterally extensive sandstone sequences occur including a prominent sequence between the A- and the B-coal (Gjelberg 1982).

Above this prominent sandstone sequence occur a mudstone/siltstone unit which includes the B- and C-coal seams of Horn and Orvin (1928). Overlying these coal bearing intervals is a sandstone sequence of complex character.

# 4.3 Nordkapp Formation

The best exposure of the Nordkapp Formation is in Landnørdingsvika on the southwest coast (see Fig. 4.1) where the uppermost 120 m of the 230 m thick formation is exposed. Because of faulting of the formation in exposures on the north coast the true thickness is obscured.

The Nordkapp Formation represent a return to eastward flowing sandy braided streams, although streamflood and mass flow conglomerates formed on alluvial fan systems in the upper part. This uppermost part with association of conglomerates and black coaly shales contrast to the underlying monotonous quartzitic sandstones and probably marks the initiation of rifting in the area (Gjelberg and Steel 1981).

Since the uppermost part of the formation contains much more conglomerate and mudstone than the rest of the formation, it has been divided in a lower Kapp Harry Member and an upper Nordhamna Member, see Fig. 4.5



Fig. 4.5 Stratigraphic logs through the Kapp Harry Member and Nordhamna Member at Nordhamna (Worsley et al. 2012).

### 4.3.1 Kapp Harry Member

The Kapp Harry Member is exposed in Landnørdingsvika on the southwest coast and on the north coast around Nordkapp, Herwigshamna (Bjørnøya Radio), Gravodden and Nordhamna (see Fig. 4.1).

The member consists mainly of uniformly developed sandstone with occasional beds of prebbly sandstone and thin conglomerates. Beds of mudstone and siltstone are scarce. Beds are usually very lenticular and often bounded by curved erosion surfaces. Large scale, high angle planar cross-stratification dominates and are relative laterally extensive. Trough cross-stratification and low angle, nearly horizontal stratification is also common (Gjelberg 1981).

### 4.3.2 Nordhamna Member

The Nordhamna Member is exposed in Landnørdingsvika on the southwest coast in addition to Nordhamna and Kobbebukta on the north coast (see Fig. 4.1) where it is 65, 40 and 20 m thick respectively.

The dominating lithologies are sandstones, conglomerates and siltstones/mudstones where the conglomerates and siltstones/mudstones in Landnørdingsvika account for 24% and 19% of the succession respectively. Very complex and lenticular bedding type dominates and siltstones/mudstone horizons locally contain a lot of organic material with thin coals and coaly shales (Gjelberg 1981).

# 4.4 Landnørdingsvika Formation

The Landnørdingsvika Formation outcrops at Landnørdingsvika on the southwest coast, Raudnuten approximately 4 km north of Landnørdingsvika and Kobbebukta and Nordhamna on the north coast (see Fig. 4.1), with a complete section of 205 meter at Landnørdingsvika on the southwest coast.

With red beds now dominating, the Landnørdingsvika Formation represents a significant change in the sedimentary environment from moist climated floodplains with high water table to semi-arid or arid climate with well drained plains, see Fig. 4.6 (Gjelberg and Steel 1981).

Floodplain and coastal plain deposits dominates the lower part and fanglomerates interbedded with shallow marine clastics and carbonates dominates the upper part of the formation. The marine facies gradually increase in volume upwards before it culminates in the overlying Kapp Kåre Formation, see Fig. 4.7 (Gjelberg and Steel 1983).

The lithology on the north coast is different from Landnørdingsvika in the southwest coast with no conglomerate sequences and no obvious break in deposition between the Nordkapp and the Landnørdingsvika Formations, probably representing a more distal facies development (Gjelberg 1981).





Fig. 4.6 Palaeogeographic summary maps for main late Palaeozoic depositional phases (Worsley et al. 2001).

|       | 3       | Prograding shoreline                                                                                             | w E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-------|---------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | -       | Tidal flat cycles                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       | >       | Prograding shoreline                                                                                             | ittime                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|       | •       | Fining upwards tidal flat<br>cycles                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 80,00 | 1       | Coastal plain with alluvial<br>fan lobes                                                                         | A State of the second s |
|       | + + +   | Tidal flat and coastal lagoon<br>with interfingering<br>conglomerates of alluvial<br>fan lobes                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       |         | Prograding shoreline<br>Tidal flat with interfingering<br>alluvial fan lobes                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       | 1<br>,  | Flood plain and coastal<br>plain with interfingering<br>alluvial fan toes                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       | •       | Flood plain<br>and<br>coastal plain                                                                              | W F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|       | t<br>gl | Flood plain and coastal<br>plain with interfingering<br>alluvial fan toes<br>Flood plain<br>and<br>coastal plain | W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

Fig. 4.7 Interpretative composite log through the Landnørdingsvika Formation, with schematic palaeogeographic reconstructions, based on Gjelberg and Steel (1983).

# 4.5 Kapp Kåre Formation

The 215 m thick Kapp Kåre Formation is defined by the disappearance of conglomerates and the development of mixed clastic and carbonate sequences. Isolated thin conglomerates do however occur in the lower part of the formation. The Kapp Kåre Formation is dated by fusulinids and the first fusulinids found near this transition have a late Bashkirian age.

The Kapp Kåre Formation was introduced by Worsley and Edwards (1976) and approximates to the "Ambigua Limestone" of Anderson (1900) and later workers and the Kobbebukta Formation introduced by Krasilscikov and Livsic (1974).

### 4.5.1 Bogevika Member

The Bogevika Member is exposed in Landnørdingsvika and Bogevika on the southwest coast and in Kobbebukta in the north coast (see Fig. 4.1) with significant different facies development, see Fig. 4.8.

The member consist of cyclically interbedded carbonates, sandstones and shales which is believed to reflect interplay between long and short term sea level fluctuations and local often tectonically controlled supply of siliciclastics (see Fig. 4.8). Sandstones become less common upwards with a gradual transition through limestone and shale interaction to the carbonate dominated Efuglivika Member.

The section in Bogevika, 2 km to the north of Landnørdingsvika represents the uppermost 30 m of the 95 m thick Bogevika Member and consist of 0.5-4 m thick stacked carbonate rich sandstones, shallow marine carbonates and red siltstone. Each cycle shows evidence of subarial exposure at the top in form of red siltstone with abundant caliche nodules, mud cracks and roots.

The approximately 45 m thick section in Kobbebukta is also suggested to represent the upper part of the member (Kirkemo 1979), but here the member is composed of more complicated silisiclastic dominated cycles. These cycles are 8.5-12 m thick, each consisting of 3-4 higher order subcycles, some of which resemble the cycles seen at Bogevika (Stemmerik and Worsley 2000).



Fig. 4.8 Depositional model for the Bogevika Member showing facies distribution during (a) sea level rise, (b) maximum flooding and (c) sea level lowstand for one glacioeustatic sea level cycle (Stemmerik and Worsley 2000).

# 4.5.2 Efuglvika Member

The Efuglvika Member is fully exposed around Kapp Kåre, a promontory marking of the western limit of Landnørdingsvika on the southwest coast were it is 75 m thick (see Fig. 4.1), and is composed of cyclically interbedded limestones with abundant chert. Exposures show a series of typically 5-8 m thick shoaling upwards rhythms passing from 1.5-3.5 m thick bioturbated chert rich wackestone into chert free grainstones, sometimes with erosive or karstified tops.

Well developed prograding intertidal and supratidal deposition and absence of vertical facies gradation suggest that the Efuglvika Member cycles formed on a very broad and relatively deep shelf far from any land area (Stemmerik and Worsley 2000).

The member is also well exposed and has been studied in detail in the vicinity of Ærfuglvika (the formal approved name of Efuglvika) on the southwest coast. Variations in cycle stacking pattern like in the Bogevika Member are not apparent, and the member appears to be very uniform throughout the island.

### 4.5.3 Kobbebukta Member

The Kobbebukta Member introduced by Kirkemo (1979) is exposed around Kapp Kåre on the southwest coast and at Kobbebukta on the north coast (see Fig. 4.1), and consists of interbedded marine limestones, shales and conglomerates. The conglomerate clasts is mostly composed of intraformational chert and limestone (Worsley et al. 2001), see 4.10.

Deposition took place during differential subsidence of the study area related to active faulting where the northwestern part of the island was subsiding more rapidly than the southwestern part, and most of the eastern part of the island was uplifted above sea level.

The member is only 2-3 m to locally absent in the Bogevika-Landnørdingsvika area and thickens to approximately 20 m in Ærfuglvika where basal conglomerates are overlain by a few meters of bedded shelf carbonates followed by phylloid algal buildups. In the Kobbebukta area the member is approximately 30 m thick and consists of shelf carbonates which is adruptly intercalated vertically and laterally with thick subarial and submarine conglomerates (Stemmerik and Worsley 2000).

Syndepositional faulting uppermost in the Kobbebukta Member mark a change in tectonic activity which is followed by renewed and repeated tectonic activity in the late Carboniferous to Early-Permian, see Fig. 4.9



Fig. 4.9 Syndepositional fault with intraformational conglomerates in the Kobbebukta Member reflecting renewed tectonic activity, uppermost in the Kapp Kåre Formation (Worsley et al. 2001).
# 4.6 Kapp Hanna Formation

The "Yellow Sandstone" of Anderson (1900) and later workers outcrops for several kilometers along the north and west coast (see Fig. 4.1) and display alternations of conglomerates, sandstones, shales and dolomites. The base is defined by extraformational conglomerate with various underlying lithologies as a result of fault movements (Dallmann 1999).

Both fining and coarsening upward sequences are displayed, representing alluvial, coastal and marginal marine environments. Complex development with numerous small fault blocks makes lateral correlation difficult, but studies suggest a thickness around 145 m (Agdestein 1980), see Fig. 4.10.

A fining trend in the upper part of the formation reflects local tectonic stability and relative sea level rise in the mid-Gzelian with interbedded thin sandstones and dolomitic mudstones (Worsley et al. 2001).



Fig. 4.10 Composited interpretative logs through the Kapp Hanna Formation, indicating complex local variations in facies developments (modified from Worsley et al. 2001).

# 4.7 Kapp Duner Formation

The formerly assigned "Fusulina Limestone" carbonates outcrops on the western coast of Bjørnøya (see Fig. 4.1) and is at least 90 m thick in the western and northwestern cliffs.

Three discrete depositional successions can be distinguished in the Kapp Duner Formation on Bjørnøya. Two lowermost tabular Palaeoplysina buildups are overlain by a karstic surface before deposition of 5-7 m thick NNE-SSW trending lenticular paleoaplysinid buildups.

The uppermost buildups are overlain by 40 m thick Late Asselian lagoonal to restricted bedded dolomites with small isolated Palaeoplysina mounds (see Fig. 4.11) marked by an another karstic surface. The major erosional surface in the middle of the formation is correlated with a regional relative fall in sea level in the Late Gzelian subsequent followed by a Asselian transgression that progressively onlapped the entire Bjørnøya area due to regional uplift (Worsley et al. 2001).

The Kapp Duner Formation consists of four facies types composed of Palaeoaplysina wackestone to boundstone buildups, biogenic wackestones and mudstones, fusulinid packstones and fine-grained silisiclastics (Stemmerik et al. 1994).



Fig. 4.11 Uppermost lagoonal-restricted shelf deposits with small Palaeoplysina mounds south of Kapp Duner on the west coast. The cliff is approximately 30 m high (Dallmann 1999).

### **4.8 Hambergfjellet Formation**

The up to 60 m thick Hambergfjellet Formation is preserved only on the southernmost mountaintops (see Fig. 4.1) and wedges out rapidly north and eastwards with unconformable lower and upper boundaries see Fig. 4.12.



Fig. 4.12 Relationship between sedimentary units and the Hecla Hoek basement at the southwestern cliffs of Alfredfjellet (Worsley et al. 2001).

The Hambergfjellet Formation consist of basal fossiliferous sandstones that pass up into sandy packstones and grainstones with a rich and varied marine fauna of bryozoans, crinoids and brachiopods, see Fig. 4.2.

A new rapid transgression associated with a shift in depositional conditions towards coolwater carbonates took place during the earliest Artinskian in the Barents Sea. Maximum relative sea level occurred during the mid-Artinskian and the late Artinskian is dominated by bryozoans-crinoid grainstones in the outer shelf areas and brachiopod dominated packstones in inner shelf areas such as Bjørnøya (Stemmerik 2000).

Fauna similar to the upper parts of the Gipshuken Formation and the occurrence of conodonts belonging to the *Neostreptognathodus pequopensis* Zone (Nakrem 1991) associated with the fusulinid *Schwagerina jenkinsi* in the upper part, suggests a latest Sakmarian to late Artinskian age for the Hambergfjellet Formation (Stemmerik 1997; Worsley et al. 2001).

# 4.9 Miseryfjellet Formation

The Miseryfjellet Formations lower parts are exposed on the north coast and in the southwestern mountain areas and on the slopes of Miseryfjellet in the southeastern part of Bjørnøya where it is fully developed (see Fig. 4.1).

The 115 m thick formation consists of basal conglomerates and sandstones that pass into irregularly bedded sandy packstones and grainstones with distinctive silica cement (see Fig. 4.2). An up to 20 m thick sandstone unit interpreted as a shoal complex is developed in the middle of the formation.

Biofacies consisting of brachiopods, bryozoans and echinoderms suggests moderately shallow, high energy depositional environments in an open marine environment. The formation is regarded as Kungurian-Ufimian in age (Nakrem 1991).

The depositional areas of the Barents Sea region in the Kungurian-Ufimian became gradually deeper and coolwater carbonates, spiculites and shales were deposited throughout the area. Inner shelf brachiopod and bryozoan dominated packstones were deposited locally on Spitsbergen, Bjørnøya and along the margins of the Finnmark Platform (Stemmerik 2000).



Fig. 4.13 Siliceous rocks of the Miseryfjellet Formation in the southeastern part of Bjørnøya forming the steep wall in the middle of the mountain (Dallmann 1999).

### 4.10 Urd Formation

Preserved only on the highest peaks at the southeastern part of the island (see Fig. 4.1), the approximately 200 m thick shale dominated Triassic beds rests disconformably on the uppermost resistant limestones of the Miseryfjellet Formation (Mørk et al. 1990; Worsley et al. 2001).

The 65 m thick Urd Formation consists of shales and siltstones with sandstone beds at the base and with increasingly more common dolomite nodules and beds in the upper part of the formation. Poorly preserved ammonites throughout the formation suggest a Lower to Middle Triassic age (Mørk et al 1982, 1990).

The 20 cm thick Verdande Bed consisting of phosphate nodules represents the top of the formation (see Fig. 4.14).

### **4.11 Skuld Formation**

The 135 m thick Skuld Formation, which is preserved on the uppermost mountain peaks of Miseryfjellet forms a major coarsening upward succession defined by several minor rhythms, see Fig. 4.14 (Mørk et al. 1990, 1992).

The basal beds of Late Ladinian age represent a shallowing upwards prodeltaic facies and consist of bluish-grey shales with purple weathering siderite nodules. Hummocky bedding, wave ripples and occasional marine fossils from the middle part of the formation indicate deposition in shallow shelf environments. The top of the formation consists of a 20 m thick sandstone unit of Carnian age preserved on the highest peaks of Miseryfjellet (Worsley et al. 2001).



Fig. 4.14 The Triassic type section of the Urd and Skuld formations along the southern slope of Urd (Worsley et al. 2012).

# **5. Sample Material**

Samples from the sedimentary succession on Bjørnøya were collected as part of the Arctic Geo-Program launched by SINTEF Petroleum Research (former IKU – Continental Shelf Institute) during fieldwork in 1984-86, many with a palynological purpose. 548 collected samples from these fieldtrips are described below, mainly collected from coastal exposures around the island.

# **5.1 Vesalstranda Member**

The sample material from the Vesalstranda Member is collected from the southwestern part of Miseryfjellet and near Kapp Levin at the southeast and east coast of Bjørnøya (see Fig. 4.1), 24 samples in total.

#### Miseryfjellet SW/Vesalstranda

20 samples from the southwestern part of Miseryfjellet/Vesalstranda represent most of the samples from the Vesalstranda Member. The samples hold stratigraphic position covering the entire member, consisting of shales, claystones, siltstones and sandstones (6, 5, 4 and 5 samples respectively).



Fig. 5.1 The Vesalstranda Member below the cliff forming Miseryfjellet Formation (Worsley et al. 2012).

#### Kapp Levin

4 samples near Kapp Levin represent the lowermost 4 m of the Vesalstranda Member. All of the samples are coal samples, see Fig. 5.2.

#### Summary

The stratigraphic covering of the approximately 200 m thick Vesalstranda Member is good with samples from the entire member. The lithological representation is also considered to be good consisting of coals, underclays, shales, siltstones and sandstones.



Fig. 5.2 Vesalstranda and Kapp Levin members seen from Kapp Levin (Worsley et al. 2012).

# **5.2 Kapp Levin Member**

The samples from the Kapp Levin Member are collected at Vesalstranda near Kapp Levin and at Kapp Levin on the eastern part of Bjørnøya (see Fig. 5.2). 4 samples are from Vesalstranda and 4 samples are from Kapp Levin.

#### Vesalstranda

The 4 samples from Vesalstranda are all shale samples without stratigraphic information believed to represent the lowermost or the upper part of the member.

#### Kapp Levin

All of the 4 samples from Kapp Levin hold stratigraphic position from 0 to 60 m above base. The three lowermost samples are all sandstone samples from 0 to 50 m above base, while the uppermost sample at 60 m is a shale sample.



Fig. 5.3 The Kapp Levin Member at Kapp Levin (Worsley et al. 2012).

#### Summary

Overall, the stratigraphic representation of the Kapp Levin Member is satisfactory with samples up to 60 m of the approximately 80 m thick member. Compared to the member lithological distribution of sandstones and shales, shale samples are over-represented with 5 samples of in total 8 samples from the member.

### **5.3 Tunheim Member**

30 samples at the northeast and east coast of Bjørnøya at Kolbukta, Austervågen, Engelskelva, Tunheim, Framnes and Rifleodden (approximately 1 km south of Framnes) from north to south represent the sample material from the Tunheim Member (see Fig. 5.4).

#### Rifleodden and Framnes

1 shale sample at Rifleodden (b of Fig. 5.5) is collected above a conglomerate bed from the lower unit, probably in the lower part of the member or on top of the lower unit under the A-coal seam.

Also, 3 samples collected at Framnes (c, d of Fig. 5.5) represents the top of the lower unit and the A-coal seam consisting of siltstones, underclays and coals, approximately 1 km north of Rifleodden.



Fig. 5.4 Localities of the Tunheim Member at the east/northeast coast with point-bar growth directions between the A- and B-coal (Worsley et al. 2012).

#### Tunheim

9 samples from the area around Tunheim (d, e of Fig. 5.5) approximately 2 km to the northwest of Framnes represents both the lower and upper units of the Tunheim Member.

3 sandstone samples represent the lower unit below the A-coal while 1 sandstone sample has been collected over the C-coal. 2 samples are from the A-coal seam (including 1 coal and 1 underclay).

The 2 remaining samples without stratigraphic information from Tunheim are coal samples believed to represent the A-coal and the B- or/and C-coal seam, see Fig. 5.6.



Fig. 5.5 Correlations of the Tunheim Member on the northeast coast of Bjørnøya (Worsley et al. 2012).

#### Austervågen and Engelskelva

Further northwest at Austervågen and Engelskelva (o of Fig. 5.5), 5 samples from Austervågen and 4 samples from Engelskelva have been collected, both from the upper unit.

The samples from Austervågen are collected north of the outlet of Engelskelva (see Fig. 5.4) and represent the top of the sandstone sequence between the A- and the B- coal seams and the B- coal seam. The Engelskelva section is believed to represent the section between the B- and C-coal seams including 1 coal sample from the B- or C-coal seam.



Fig. 5.6 Point-bar deposits between the A- and B-coal and B- and C-coal seams at Tunheim (Worsley et al. 2012).

#### Kolbukta

8 samples from Kolbukta furthest northwest (t, u and v of Fig. 5.5) are believed to represent the upper unit from the B-coal and upwards with 1 registered coal sample from the B-coal seam. The samples consist of 3 coal samples, 1 sandstone sample and 4 shale samples.

#### Summary

Overall, the stratigraphic representation of the Tunheim Member is satisfactory, with samples mainly from the upper unit, 23 compared to 7 from the lower unit. The lithological representation is good consisting of coals, sandstones, shales, claystones and siltstones.

# **5.4 Kapp Harry Member**

The sample material from the Kapp Harry Member is collected between Landørdingsvika and Kapp Harry (including Båtvika and the river and river mouth from Ellasjøen) at the southwest coast and Nordkapp on the north coast (see Fig. 4.1). 17 samples represent fairly coarse deposits and shales, mainly from the lower part of the member.

#### Båtvika

The 6 samples from Båtvika on the southwest coast are all sandstone samples and good representation of the composition of the lower unit, 1 m below to 45 m above base.



Fig. 5.7 Sandstones of the Kapp Harry Member at Båtvika (Worsley et al. 2012).

#### Ellasjøen

2 shale samples from the river Fossåa from Ellasjøen represent shales below the base of the member. 3 sandstone samples collected by the mouth of Fossåa represent the section above the basal sandstone.

#### Nordkapp

6 samples from the Nordkapp area are collected at two different locations, between Nordkapp and Padda and at Nordkapp. Padda is located a few hundred meters west of Nordkapp, see Fig. 4.1.

3 samples between Nordkapp and Padda represent the lowermost part of the member at Nordhamna, consisting of 1 conglomerate and 2 shale samples. The 3 remaining samples are sandstone samples from the section at Nordkapp and good lithological representation of the member, ranging from 5.5 to 24 m.

#### Summary

The lithological representation of the Kapp Harry Member is good consisting of 1 conglomerate sample, 12 sandstone samples and 4 shale samples. The stratigraphic representation is not fully satisfactory with most of the samples from the lower part of the member.

### **5.5 Nordhamna Member**

Samples from the Nordhamna Member are collected at Landnørdingsvika and Båtvika between Kapp Harry and Landnørdingsvika on the southwest coast and Nordhamna on the north coast (see Fig. 4.1).

#### Landnørdingsvika

Only 1 sample is collected from the Nordhamna Member at Landnørdingsvika, consisting of 1 conglomerate representing the very uppermost part of the section.



Fig. 5.8 Sandstones, conglomerates and shales of the Nordhamna Member at Landnørdingsvika (Worsley et al. 2012).

#### Båtvika

2 sandstone samples from Båtvika represent the uppermost part of the Nordhamna Member. The samples are correlated from the Kapp Harry Member, 108 and 117 m above base.

#### Nordhamna

7 samples from the lower 23 m of the member, including 3 sandstones from the base of the member are collected at Nordhamna. All the samples are sandstones, except 1 shale sample.



Fig. 5.9 Miseryfjellet Formation angular unconformibly overlying the Nordkapp Formation on the north coast (Worsley et al. 2012).

#### Summary

The lithological distribution of the samples from the Nordhamna Member is satisfactory consisting of mainly sandstones in addition to a conglomerate and shale sample. The stratigraphic representation is also considered to be satisfactory.

# 5.6 Landnørdingsvika Formation

The sample material from the Landnørdingsvika Formation is entirely represented from Landnørdingsvika on the southwest coast and Nordhamna on the north coast (see Fig. 4.1).

#### Landnørdingsvika

16 samples from Landnørdingsvika represent the sample material from the southwest coast. 12 of these samples hold stratigraphic positions between 2 and 195 m of the 205 m thick type section, mainly from the lower part of the section. The different lithologies are conglomerates, carbonates, sandstones, siltstones and shales.



Fig. 5.10 View of the Landnørdingsvika Formation in its type area (Dallmann 1999).

#### Nordhamna

The sample material from the north coast is represented by 4 samples from the Nordhamna section (3 samples from Nordhamna and 1 sample at the river mouth of Lakselva). No samples hold stratigraphic position from the 70 meter thick succession in Nordhamna. On the basis of facies evolution and lithology it is suggested that this succession may be equivalent to the upper/middle part of the formation at Landnørdingsvika.

#### Summary

Overall, the lithological and stratigraphic representation of the Landnørdingsvika Formation is satisfactory with samples consisting of conglomerates, carbonates, sandstones, siltstones and shales (2, 4, 7, and 6 samples respectively) mostly from the lower part of the formation.

# 5.7 Bogevika Member

The sample material from the Bogevika Member is from Landnørdingsvika on the southwestern coast and in Kobbebukta on the northern coast (see Fig. 4.1), consisting of 11 and 37 samples respectively.

#### Landnørdingsvika

11 samples from Landnørdingsvika on the southwest coast consist mainly of carbonates, siltstones and shales ranging from 12 to 96 m above base.

The samples are mainly from upper part consisting of 5 carbonate samples, 2 sandstone samples, 3 siltstone samples and 1 shale sample, with only 1 sample collected from the lower 40 m of the member. However, the samples give a relatively good lithological representation of the member overall.

#### Kobbebukta

The 38 samples from Kobbebukta consist mainly of carbonates and shales with only a few sandstone samples which unfavour the lithological representation, 13, 19 and 4 samples respectively. However, the stratigraphical covering of the member in Kobbebukta is good, ranging from 0.8 to 50.6 m.



Fig. 5.11 The Bogevika Member in Kobbebukta on the north coast (Worsley et al. 2012).

#### Summary

Overall, the samples from the Bogevika Member consist mainly of carbonates and shales which unfavour the lithological representation. The stratigraphic representation is very good in Kobbebukta compared to Landnørdingsvika where mainly the upper part is represented.

# 5.8 Efuglvika Member

The sample material from the Efuglvika Member is collected at Landnørdingsvika and Ærfuglvika in the southwestern coast of Bjørnøya, in addition to Raudnuten in the southern inland approximately 4 km north of Landnørdingsvika (see Fig. 4.1), consisting of 10, 19 and 19 samples respectively.

#### Landnørdingsvika

All of the 10 samples from Landnørdingsvika hold their stratigraphic positions ranging from 4 to 45 m from the approximately 75 m thick succession. The samples from Landnørdingsvika are entirely composed of carbonates.

#### Ærfuglvika

All of the 19 samples from Ærfuglvika on the southwest coast also hold their stratigraphic position from the approximately 35 m thick section ranging from 0 to 22 m, entirely composed of carbonates.

#### Raudnuten

From the southwestern inland at Raudnuten the 19 samples are also entirely composed of carbonates, but with 8 samples lacking their stratigraphic positions. The 11 samples that hold stratigraphic position are ranging from 7.5 to 40 m of the 40 m thick section.

#### Summary

The lithological and stratigraphic representation of the Efuglvika Member from the southwestern coast and southern inland is very good, consisting of 48 samples in total.

# 5.9 Kobbebukta Member

#### Kobbebukta

The sample material from the Kobbebukta Member is entirely from Kobbebukta on the north coast (see Fig. 4.1) and is composed of carbonates and shales. 8 of the total 10 samples hold their stratigraphic positions from the approximately 10 m thick section in Kobbebukta, ranging from 2.1 to 10 m.

#### Summary

Sample covering of the Kobbebukta Member is not so extensive as the Bogevika and Efuglvika Members with only 10 samples. However, the lithological and stratigraphic representation of the member is satisfactory.

# **5.10 Kapp Hanna Formation**

The sample material from the Kapp Hanna Formation is collected at the north/northwest and west/southwest coast of Bjørnøya in addition to 1 sample from Raudnuten in the southern inland.

### North/Northwest Coast

#### Kobbebukta

28 samples from the north coast are entirely collected at Kobbebukta (see Fig. 4.1). 14 samples hold their stratigraphic position and belonging sections divided in B2, B1, A, C1, B and C after Agdesteins (1980) interpretations. The sections represent the approximately lower 108 m of the 150 m thick Kapp Hanna Formation (see Fig. 4.10).

The remaining 14 samples that lack stratigraphic position and/or their sections consist of conglomerates, sandstones, carbonates and shales, 1, 2, 6 and 5 samples respectively.

#### C section

3 samples are collected from the lowermost 3.5 m thick shale unit which is continuation of the upper shale unit in section B. In addition, 1 sandstone sample is collected from the lower 9 m thick sandstone unit above the lowermost shale unit of the approximately 31 m thick section.

#### B section

1 shale sample from the approximately 20 m thick section B is collected 13.0 m above base in the upper shale unit.

#### C1 section

1 shale sample 8.0 m above the fault bounded base of the approximately 15 m thick coarsening upward sequence represents section C1.

#### A section

1 shale sample is collected from the middle shale and sandstone unit of the section, 6.0 m above the base from the approximately 13 m thick section A.

#### B1 section

4 samples from the approximately 16.5 m thick section B1 hold their stratigraphic position ranging from 1.5 to 16.0 m, consisting of sandstone, conglomerate, dolomite and shale. 1 remaining sample without stratigraphic position is a carbonate sample.

#### B2 section

3 samples ranging from 3.0 to 13.0 m above base consisting of 2 conglomerates and 1 sandstone sample represent section B2.



Fig. 5.12 The shaly middle part of the Kapp Hanna Formation with green reduction of red shale below the sandstone (Worsley et al. 2012).

#### Nordvestbukta

1 conglomeratic sandstone sample is collected at Nordvestbukta on the northwest coast between Kobbebukta and Snyta (see Fig. 4.1).

The sample is believed to represent either sections M, L1, K1 or L (Agdestein 1980), which represents the upper part of the Kapp Hanna Formation. The sample does not hold stratigraphic position.

#### Snyta

5 samples from Snyta (see Fig. 4.1) represent the very uppermost section N after Agdestein (1980) and consist of 3 dolomite and 2 shale samples, ranging from 14 m to 24 m above base.

### West/Southwest Coast

The sample material from the west-southwest is almost entirely collected at the bay Langbukta north of Kapp Hanna at the west coast and Ærfuglvika at the southwest coast of Bjørnøya (see Fig. 4.1).

In addition, 1 sample from Bendabukta, a small creek from the river Benda between Bogevika and Kapp Kåre at the southwest coast and Raudnuten in the southern inland approximately 4 km north of Landnørdingsvika have been collected (see Fig. 4.1).

#### Langbukta

The 15 samples from Langbukta represent section F (Agdestein 1980) and consist of shales and sandstones, 12 and 3 samples respectively.

7 of the 15 samples hold their stratigraphic position ranging from 7.5 to 15.0 m above base of the approximately 20 m thick section.

In addition, 1 sandstone sample from the river mouth of Langsiget represent section G. The sample is collected above a conglomeratic unit, probably at the start of the fining upward sequence between 4 and 9 m.

#### Ærfuglvika

4 samples are collected from Ærfuglvika on the southwest coast and represent 3 different sections after Agdestein (1980) interpretations, representing the lower and middle part of the formation.

#### Section I

1 sandstone and siltstone sample represents the approximately 33 m thick section I. The samples are from the very lowermost part of the section, 2.5 and 4.0 m above base respectively.

#### Section J

1 shale sample represents the approximately 18 m thick section J (Agdestein 1980) 37.0 m above base, measured from the lower 33 m thick I section.

#### Section D

The last samples from north of Ærfuglvika represents section D (Agdestein 1980). The limestone sample has no stratigraphic position but is believed to represent the uppermost carbonate unit in the section.

#### Bendabukta and Raudnuten

No information about belonging sections is given for sample from Bendabukta on the southwest coast and Raudnuten at the southern inland. The sample from Bendabukta is a conglomerate while the sample from Raudnuten is a sandstone rich carbonate.

#### Summary

With a total of 57 samples covering both the lower and upper part, the stratigraphic representation of the 145 m thick Kapp Hanna Formation is good. However, the lithological distribution is of the formation is not fully satisfactory because of the high amount of shale samples.

### **5.11 Kapp Duner Formation**

The sample material from the Kapp Duner Formation is almost entirely represented from northwest and west coast with samples mainly from Amfiet on the northwest coast and Teltvika on the west coast (see Fig. 4.1), 50 and 59 samples respectively.

The samples from Amfiet and Teltvika represent Palaeoaplysina buildups complexes from different buildup levels in addition to lagoonal-restricted shelf deposits with Palaeoplysina mounds. Buildup level 1 and 2 represents the lowermost tabular complexes and level 3 to 7 represents the uppermost lenticular complexes (Stemmerik et al. 1994).



Fig. 5.13 Correlation of partial sections though the Kapp Duner Formation with (inset) an example of stacked Palaeoplysina buildups at Amfiet (Worsley et al. 2001).

# Northwest Coast\Inland

#### Nordvestbukta W

4 samples from Nordvestbukta West on the northwest coast (see Fig. 4.1) hold stratigraphic position, ranging from 6.0 m to 19.0 m and are believed to represent the lowermost and the uppermost buildups. In addition, 1 bioherm sample without stratigraphic position most likely represents coral colonies from the basal part of the lowermost tabular buildups.

1 sandstone and dolomite sample ranging from 6.0 m to 7.5 m could represent an infilled palaeokarst surface at buildup level 1 and dolomitised biogenic wackestone or mudstone at the start of buildup level 2. The uppermost 2 limestones at level 16.0 and 19.0 are believed to represent the uppermost buildups at level 3 or 4.

#### Snyta

1 dolomite sample from Snyta between Nordvestbukta and Amfiet (see Fig. 4.1) hold stratigraphic information and is believed to represent the base of the formation below the lowermost buildups.

#### Amfiet

41 samples including 33 samples with stratigraphic information represent the sample material from Amfiet on the northwest coast, see Fig. 4.1.

23 samples hold stratigraphic position and are believed to represent both lower and upper buildup levels. In addition, 12 reef samples are believed to represent coral colonies at the basal part of the lowermost tabular buildups (Stemmerik et al. 1994). The sample lithologies are almost entirely carbonates including dolomites and a few shales, 35 and 5 samples respectively, in addition to 1 sandstone sample.

#### Amfiet North

The 5 fusulinid samples in addition to 1 dolomite sample without stratigraphic information represent the sample material from Amfiet North.

#### Amfiet South

The sample material from Amfiet South consists of 2 carbonate samples over and under fusulinids, in addition to a dolomite sample without stratigraphic information.

#### Kluftvann

7 samples from Kluftvann approximately 0.5 km east of Amfiet in the northwestern inland (see Fig. 4.1) have been collected with a fusulinid purpose from a 3.8 m long stratigraphic interval. The samples containing sandstones could represent a maximum flooding event with fusulinid packstones.

### West Coast

#### Drangane

6 samples ranging from 0.9 m to 3.7 m, in addition to 3 dolomite sample without stratigraphic information represent the Kapp Duner Formation at Drangane midway between Amfiet and Teltvika (see Fig. 4.1). The samples consist of 4 carbonate samples including a fusulinid sample, 3 dolomite samples and 2 shale samples.

#### Teltvika

The 59 samples from Teltvika (see Fig. 4.1) probably represent level 3, 4 and 5 from the buildup complexes in addition to lagoonal-restricted shelf deposits.

48 samples hold stratigraphic position with several fusulinid samples, most likely fusulinid packstones in lagoonal-restricted shelf Palaeoplysina mounds or fusulinid wackstones between the buildups. The samples lithologies are almost entirely carbonates with a few sandstones and shales, 50, 3 and 6 samples respectively.

#### Kapp Elisabeth

10 samples from Kapp Elisabeth (see Fig. 4.1) on the west coast consist of 9 samples from Kapp Elisabeth and 1 sample from Kapp Elisabeth South. The samples are believed to represent the uppermost lagoonal-restricted shelf deposits consisting of 6 shale and 4 carbonate samples.

#### Summary

Overall, the lithological representation of the Kapp Duner Formation is very good consisting of 141 samples, represented from the west and northwest coast in addition to Kluftvann in the northwestern inland. The stratigraphic representation is also good with samples from both the lower and upper part of the formation.

# **5.12 Hambergfjellet Formation**

The sample material from the Hambergfjellet Formation is represented by 24 samples collected from the southern mountain areas, including Alfredfjellet, Hambergfjellet and Fuglefjellet in addition to Avdalen on the western side of Alfredfjellet (see Fig. 4.1).

Fuglefjellet is the southernmost mountain located approximately 1.5 km southeast of Hambergfjellet in the extreme south of Bjørnøya (see Fig. 4.1).

#### Alfredfjellet

8 samples consisting of 2 samples from Alfredfjellet N and W and 6 samples from Alfredfjellet SE represent the base and the lower to middle/upper part of the formation respectively. The 2 samples from Alfredfjellet N and W are both limestone samples while the samples from Alfredfjellet SE consist of 4 carbonates and 1 sandstone and shale sample.

The 2 samples from Alfredfjellet SE are lacking stratigraphic information but are most likely from the middle and upper part of the section collected 235 and 250 m above the sea level. The 6 samples from Alfredfjellet SE consist of carbonates, sandstone and shale, 4, 1 and 1 respectively.

#### Avdalen

5 samples have been collected from the valley Avdalen on the western side of Alfredfjellet. All samples hold their stratigraphic positions. 2 shale samples are collected at the base of the formation under the basal sandstone, while the 3 other sandstone samples probably represent the basal sandstone unit in the middle of the formation.

#### Hambergfjellet

The 8 samples from Hambergfjellet are collected at two or three different locations and also hold their stratigraphic position representing the lower to upper part of the formation.

The HAM-1 section described by Nakrem (1991) is represented by 3 samples consisting of 2 basal sandstone samples in addition to 1 shale sample from the middle part of the section. The two other sections are lacking basal sandstone and consist of 3 carbonates and 2 shales representing the lower to upper part of the formation.

#### Fuglefjellet

The 3 samples from Fuglefjellet all hold their stratigraphic position and consist of 1 carbonate and 2 shale samples, representing the base and the middle and/or upper part of the formation respectively.



Fig. 5.17 Fuglefjellet southernmost on Bjørnøya with the small island Stappen on the right (Worsley et al. 2012).

#### Summary

Overall, the lithological and stratigraphic representation of the Hambergfjellet Formation is considered to be satisfactory consisting of 10 carbonates, 6 sandstones and 8 shales with samples from the lower and upper part of the formation.

# **5.13 Miseryfjellet Formation**

The sample material from the Miseryfjellet Formation includes exposed areas from the north coast and southern mountain areas in addition to the slopes of Miseryfjellet where the formation is best developed (see Fig. 4.1), 89 samples in total.

### **North Coast**

29 samples from Gravodden, Herwigshamna/Bjørnøya Radio and Kaffistigen/Nordkapp on the north coast all hold their stratigraphic position, representing the lower 16 m of the formation, consisting of carbonates and shales.

The meteorological station Bjørnøya Radio is located at the harbor Herwigshamna. Kaffistigen is located approximately 350 m west of Nordkapp, on the north coast (see Fig. 4.1).

#### Gravodden

3 samples at Gravodden on the north coast consisting of 1 siltstone sample and 2 carbonate samples represent the lowermost part of the formation from 1.0 m to 4.0 m.



Fig. 5.18 Angular unconformity between the Nordkapp and Miseryfjellet formations at Gravodden (Worsley et al. 2012).

#### Herwigshamna/Bjørnøya Radio

8 samples from Herwigshamna including Bjørnøya Radio have been collected, 5 and 3 samples respectively.

The samples from Herwigshamna are all limestone samples and represent the lower 15 m of the formation while the samples from Bjørnøya radio represent the very lowermost of the formation consisting of 1 carbonate and 2 shale samples.

#### Kaffistigen/Nordkapp

14 samples from Kaffistigen near Nordkapp on the north coast represent the lower 10 m of the formation. The samples consist of 11 shales and 3 carbonates.

4 samples from Nordkapp easternmost on the North coast are all carbonate samples from the very lowermost part of the formation, except 1 sample from the lower part of the formation (16 m).

### South

10 samples from the Alfredfjellet, Hambergfjellet and Fuglefjellet represent the Miseryfjellet Formation at the southern mountain areas, mainly from the lowermost part of the formation. As explained earlier, Fuglefjellet is located approximately 1.5 km southeast of Hambergfjellet (see Fig. 4.1).

#### Alfredfjellet

2 samples from Alfredfjellet represent the very lowermost of the formation, consisting of 1 conglomerate and shale sample. In addition, 2 shale samples are believed to represent the upper part of the Hamberfjellet Formation, 10 and 12 m below base.

#### Hambergfjellet

2 samples from Hamberfjellet N and 1 sample from Hambergfjellet represent the lower 6 m of the formation including 2 samples at the base from both locations.

#### Fuglefjellet

3 shale samples are collected at Fuglefjellet from the lower/middle part of the formation, ranging from 35 m to 45 m above base.

### **Southeast**

50 samples from the slopes of Miseryfjellet represent the sample material at the southeastern part of Bjørnøya (see Fig. 4.1) from the Miseryfjellet Formation collected at Oppgangsdalen, Skrekkjuvet, Urd, Osten and Brettingsdalen (see Fig. 5.19).



# Fig. 5.19 Miseryfjellet at the southeastern part of Bjørnøya. The red line is part of a walking route from the Bjørnøya Fieldguide (Worsley et al. 2012).

#### Oppgangsdalen

1 limestone sample collected at the valley Oppgangsdalen at the southwestern slope of Miseryfjellet (Fig. 5.19) is believed to represent the uppermost part of the formation, 5 m below the Permian/Triassic boundary.

#### Skrekkjuvet

21 samples from Skrekkjuvet on the southern part of Miseryfjellet (Fig. 5.19) contain mostly samples from the lower part of the formation in addition to a few samples from the uppermost part of the formation. The lithologies are mainly carbonates with a few shales in addition to 1 sandstone sample 1 m below the base.



Fig. 5.20 Eastern slope of Miseryfjellet with the vertical cliff Skrekkjuvet (Worsley et al. 2012).

#### Urd

4 sandstone samples are collected in the area around Urd, the southernmost mountainpeak of Miseryfjellet (Fig. 5.19). 1 sample is from the basal sandstone and 2 samples from the middle sandstone unit.

#### Osten

2 limestones samples from Osten ("the cheese") at the crest above Vesalstranda between Urd and Verdande (Fig. 5.19) represent the top of the formation consisting of 1 grey and 1 red limestone sample.



Fig. 5.22 The limestone rock Osten ("the cheese") representing the top of the formation (Worsley et al. 2012).

#### Brettingsdalen

22 samples have been collected from the type area Brettingsdalen on the eastern side of Miseryfjellet (Fig. 5.19), ranging from 2 m to 80 m. The samples lithologies are carbonates and shales, 15 and 7 samples respectively.

#### Summary

The lithological representation of the Miseryfjellet Formation is considered to be good consisting of 54 carbonates, 6 conglomerates/sandstones and 29 siltstones/shales, collected at the north, southern mountain areas and the southeastern slopes around Miseryfjellet. The stratigraphic representation however is only satisfactory with most of the samples from the lower/middle part of the formation.

# 5.14 Urd Formation

11 samples collected from Skrekkjuvet and Oppgangsdalen (see Fig. 5.19) represent the sample material from the Urd Formation. The samples represents the very lowermost to the very uppermost of the formation, consisting of mainly shales, including 1 phosphate sample from the very uppermost 20 cm thick Verdande Bed, see Fig. 5.23.



Fig. 5.23 Phosphate nodules of the Verdanda Bed (Worsley et al. 2012).

#### Summary

The lithological and stratigraphic representation of Urd Formation is very good consisting of mainly shales (including 1 phosphate sample) from the very lowermost to the very uppermost of the 65 m thick formation.

# 5.15 Skuld Formation

10 samples collected at Oppgangsdalen (see Fig. 5.19) represent the sample material from the 135 m thick Skuld Formation, ranging from 74 m to 172 m above base, correlated from the 65 m thick Urd Formation. The samples are mainly shales, except 1 siltstone sample at 172 m.



Fig.5.24 Carnian sandstone from the top of the formation on the highest peak of Miseryfjellet (Worsley et al. 2012).

#### Summary

The lithological and stratigraphic representation of the Skuld Formation is also considered to be good with 10 samples from the lower to the upper part of the formation. The only missing is the 20 m thick sandstone of Carnian age preserved on the highest mountain peaks of Miseryfjellet, see Fig. 5.24.

# 6. Results

The result of this study is divided in 4 sections:

- 1) Susceptibility distribution for the different formations and members.
- 2) Stratigraphic susceptibility distributions.
- 3) Lithological susceptibility distributions.
- 4) Koeningsberger ratios (Q-values).

# **6.1 Susceptibility Distributions**

### 6.1.1 Vesalstranda Member

The Vesalstranda Member hold some of the highest susceptibilities measured, including 3 samples above 400 ( $10^{-6}$  SI) from the middle/upper part of the member. 4 samples have been analysed in optical microscope and 2 of these in scanning electron microscope (SEM) to find the mineralogical source of the high susceptibilities. Average susceptibility of the Vesalstranda Member consisting mainly of siltstones and shales (including claystones) is 202 ( $10^{-6}$  SI). The coal samples have the lowest values while the sandstones and siltstones/shales have the highest values, up to 2171 ( $10^{-6}$  SI), see Fig. 6.1.



Fig. 6.1 Susceptibility distribution for the different lithologies of the Vesalstranda Member.

### **6.1.2 Kapp Levin Member**

The susceptibilities from the Kapp Levin Member are considerably lower than the values from the Vesalstranda Member consisting of 6 shales and 2 sandstones, see Fig. 6.2. The sandstone samples have an average susceptibility of only 15 ( $10^{-6}$  SI) compared to 92 ( $10^{-6}$  SI) for the shales. Total average susceptibility of the Kapp Levin Member is 63 ( $10^{-6}$  SI).



Fig. 6.2 Susceptibility distribution for sandstones and shales of the Kapp Levin Member.

### 6.1.3 Tunheim Member

Although the Tunheim Member very much lithological resembles the Vesalstranda Member, the susceptibility values are much lower, see Fig. 6.3. Average susceptibility of the sandstones, coals and siltstones/shales from the Tunheim Member is 4, 26 and 88 ( $10^{-6}$  SI) respectively with a total average susceptibility of 50 ( $10^{-6}$  SI).



Fig. 6.3 Susceptibility distribution for the different lithologies of the Tunheim Member.

### **6.1.4 Nordkapp Formation**

The average susceptibility of the Nordkapp Formation is very low with a value of only 27 ( $10^{-6}$  SI), consisting of 22 sandstone and 5 shale samples, see Fig. 6.4. Because of the over-representation of shales from the Kapp Harry Member and lack of shale samples from the Nordhamna Member, the average susceptibility of 36 and 12 (SI\*10<sup>-6</sup>) respectively for the members is probably misleading.



#### Fig. 6.4 Susceptibility distribution for the different lithologies of the Nordkapp Formation.

### 6.1.5 Landnørdingsvika Formation

The susceptibilities of the Landnørdingsvika Formation are higher than the underlying Nordkapp Formation with an average susceptibility of 77 ( $10^{-6}$  SI). The susceptibility values varies from -7 to 242 ( $10^{-6}$  SI) consisting of conglomerates/sandstones, siltstones/shales and carbonates, with carbonate samples having the lowest average susceptibility value of only 13 ( $10^{-6}$  SI), see Fig. 6.5.



Fig. 6.5 Susceptibility distribution for the different lithologies of the Landnørdingvika Formation.

### 6.1.6 Bogevika Member

The susceptibility values of the Bogevika Member consisting of sandstones, carbonates and siltstones/shales are slightly higher than the Landnørdingsvika Formation, ranging from -25 to 273 ( $10^{-6}$  SI) with an average susceptibility of 102 ( $10^{-6}$  SI). Average susceptibility values for the siltstones and shales are 151 ( $10^{-6}$  SI) and only 51 ( $10^{-6}$  SI) for the carbonates, see Fig. 6.6 for distribution.



Fig. 6.6 Susceptibility distribution for the different lithologies of the Bogevika Member.

### 6.1.7 Efuglvika Member

Overall, the susceptibility values from the Efuglvika Member consisting entirely of carbonates are very low with an average value of only 24 ( $10^{-6}$  SI). Because of a sample from Raudnuten with a susceptibility of 537 ( $10^{-6}$  SI) the average susceptibility increases from 13 to 24 ( $10^{-6}$  SI).



#### Fig. 6.7 Susceptibility distribution for the different lithologies of the Efuglvika Member.
### 6.1.8 Kobbebukta Member

The samples from the Kobbebukta Member consisting of carbonates and shales are slightly higher than the Bogevika Member with an average susceptibility of 114 ( $10^{-6}$  SI). The susceptibilities for the carbonates are also slightly higher compared to the Bogevika Member. Average susceptibility for the carbonates and shales are 83 and 150 ( $10^{-6}$  SI) respectively, see Fig. 6.8 for distribution.



Fig. 6.8 Susceptibility distribution for the different lithologies of the Kobbebukta Member.

### **6.1.9 Kapp Hanna Formation**

Analyses of sandstone mineralogy done by Agdestein (1980) show a marked dominance of Hecla Hoek clasts in southwestern exposures in contrast to Upper Devonian-Middle Carboniferous dominantly clast content of the northwest exposures (Agdestein 1980).

The susceptibilities from Kobbebukta on the north coast are slightly higher than the rest of sample exposures with an average susceptibility of 239 ( $10^{-6}$  SI), including 1 sample from section A at Kobbebukta with a value of 2913 ( $10^{-6}$  SI), see Fig. 6.9. The sample has been analysed in optical microscope and scanning electron microscope (SEM). Total average susceptibility of the Kapp Hanna Formation is 164 ( $10^{-6}$  SI).



Fig. 6.9 Susceptibility distribution for the different lithologies of the Kapp Hanna Formation.

#### 6.1.10 Kapp Duner Formation

The susceptibilities from the Kapp Duner Formation are generally very low and consist of mainly carbonates (including dolomites), in addition to a few sandstones and shales, see Fig. 6.10. 1 coral sample from Amfiet on the northwest coast had a relatively high susceptibility of 678 ( $10^{-6}$  SI). The total average susceptibility of the Kapp Duner Formation is 46 ( $10^{-6}$  SI).





### **6.1.11 Hambergfjellet Formation**

The susceptibilities from the Hambergfjellet Formation are also very low, similar to the Kapp Duner Formation, consisting of carbonates, sandstones and shales with average susceptibilities of 28, 54 and 66 ( $10^{-6}$  SI) respectively, see Fig. 6.11 for distribution. Total average susceptibility for the Hambergfjellet Formation is 47 ( $10^{-6}$  SI).



Fig. 6.11 Susceptibility distribution for the different lithologies of the Hambergfjellet Formation.

#### **6.1.12 Miseryfjellet Formation**

The susceptibility values for the Miseryfjellet Formation are also generally very low except for a few limestone samples, see Fig. 6.12 for distribution. 1 limestone samples collected at Osten from the very uppermost part of the formation with a susceptibility value of 495 ( $10^{-6}$  SI) has been analysed in optical microscope and scanning electron microscope (SEM) for mineralogical source. Total average susceptibility of the Miseryfjellet Formation is 56 ( $10^{-6}$  SI).



Fig. 6.12 Susceptibility distribution for the different lithologies of the Miseryfjellet Formation.

### 6.1.13 Urd and Skuld Formations

The shale dominated Urd and Skuld formations revealed relative high average susceptibility values of 166 and 261 (10<sup>-6</sup> SI) respectively without any really high susceptibilities of single samples, see Fig. 6.13. The susceptibility difference between the two formations most likely reflects the higher clay content in the Skuld Formation than the Urd Formation. No mineralogical analyses have been done of the two formations but pyrite has been found in both formations, in addition to siderite nodules in the Skuld Formation (Mørk et al. 1990).



Fig. 6.13 Susceptibility distribution for the shale dominated Urd and Skuld formations.

### 6.2 Stratigraphic susceptibility variations

The stratigraphic results revealed that the Triassic formations consisting almost entirely of siltstones and shales had some of the highest average susceptibility values. The Vesalstranda Member had some of the highest single susceptibility values which also resulted in the second highest average susceptibility of 202 ( $10^{-6}$  SI), see Fig. 6.14.

The lowest values were registered in the carbonate dominated formations and members like the Efuglvika Member and the Kapp Duner, Hambergfjellet and Miseryfjellet formations, in addition to sandstone rich formations like the Nordkapp Formation. The absolute lowest values of these were registered by carbonate and chert dominated Efuglvika Member and the sandstone dominated Nordkapp Formation with average susceptibility values of 24 and 27 (10<sup>-6</sup> SI) respectively.

The mixed carbonate and clastic Bogevika and Kobbebukta members of the Kapp Kåre Formation in addition to the Kapp Hanna Formation revealed moderately high susceptibility values of 102, 114 and  $164 (10^{-6} \text{ SI})$  respectively, see Fig. 6.14.

Since the number of samples (Qty) valid for calculating the Q-values are less than the number of measured samples for density and susceptibility, two different sample numbers (Qty) in Table 3 and 4 are given.

| Formation/Member    | Qty     | Density<br>(kg/ m³) | Susceptibility<br>(SI * 10 <sup>-6</sup> ) | Q-value |
|---------------------|---------|---------------------|--------------------------------------------|---------|
| Vesalstranda Mb     | 24/23   | 2466                | 202                                        | 2.82    |
| Kapp Levin Mb       | 8/2     | 2519                | 63                                         | 0.92    |
| Tunheim Mb          | 30/21   | 2240                | 50                                         | 2.42    |
| Nordkapp Fm         | 27/21   | 2469                | 27                                         | 4.61    |
| Landnørdingsvika Fm | 20/14   | 2623                | 77                                         | 5.62    |
| Bogevika Mb         | 49/32   | 2624                | 102                                        | 2.44    |
| Efuglvika Mb        | 48/37   | 2681                | 24                                         | 1.74    |
| Kobbebukta Mb       | 10/10   | 2709                | 114                                        | 2.14    |
| Kapp Hanna Fm       | 57/43   | 2676                | 164                                        | 2.46    |
| Kapp Duner Fm       | 141/106 | 2716                | 46                                         | 5.00    |
| Hambergfjellet Fm   | 24/17   | 2620                | 47                                         | 2.02    |
| Miseryfjellet Fm    | 89/62   | 2602                | 56                                         | 3.08    |
| Urd Fm              | 11/9    | 2501                | 166                                        | 1.42    |
| Skuld Fm            | 10/8    | 2527                | 261                                        | 0.83    |

Table 3 Average density, susceptibility and Q-values for different formations and members.



Fig. 6.14 Average stratigraphic susceptibility values of the sedimentary succession of Bjørnøya.

## 6.3 Lithological susceptibility variations

The lithological variations revealed that the siltstones and shales (including claystones) have the highest susceptibilities (see Fig. 6.15) with an average susceptibility of 150 ( $10^{-6}$  SI) compared to the coals, conglomerates/sandstones and carbonates with average susceptibilities of only 40, 41 and 45 ( $10^{-6}$  SI) respectively, see Table 4.

| Lithology            | Qty     | Density<br>(kg/ m <sup>3</sup> ) | Susceptibility<br>(SI * 10 <sup>-6</sup> ) | Q-value |
|----------------------|---------|----------------------------------|--------------------------------------------|---------|
| Cgl /Sst             | 92/79   | 2575                             | 41                                         | 3.02    |
| Conglomerate         | 10/9    | 2657                             | 35                                         | 2.57    |
| Sandstone            | 82/70   | 2560                             | 42                                         | 3.10    |
| Carbonate            | 265/206 | 2690                             | 45                                         | 3.63    |
| Dolomite             | 47/36   | 2762                             | 40                                         | 5.61    |
| Limestone            | 31/10   | 2633                             | 55                                         | 1.63    |
| Silt/Shale/Claystone | 177/112 | 2586                             | 150                                        | 3.11    |
| Siltstone            | 15/11   | 2639                             | 272                                        | 5.33    |
| Shale                | 139/80  | 2575                             | 139                                        | 3.27    |
| Claystone            | 23/21   | 2613                             | 135                                        | 1.41    |
| Coal                 | 13/8    | 1749                             | 40                                         | 1.21    |

Table 4 Average density, susceptibility and Q-values for different lithologies.



Fig.6.15 Total susceptibility distribution of different lithologies.

### 6.4 Koeningsberger ratios (Q-values)

The Koenigsberger ratio values (Q-values) has been calculated to see variations in both formations/members and different lithologies. The geomagnetic field (B) is set to 54000 nT which give us a value of 42.97 A/m of the induced magnetization (H) and the formula:

$$Q = \frac{Mr (A/M)}{(k (SI) * H (A/m))} = NRM / (k * 42.97)$$

### 6.4.1 Stratigraphic Q-value variations

Calculation of the Koeningsberger ratio (Q-ratio) revealed very high values and large variation between the formations and members (see Table 3 and Fig. 6.16).

The Landnørdingvika and Kapp Duner Formation had the highest values of 5.6 and 5.0 respectively while the Skuld Formation and Kapp Levin Member had the lowest values of less than 1.



Fig. 6.16 Average stratigraphic Q- values of the sedimentary succession of Bjørnøya.

### 6.4.2 Lithological Q-value variations

The Q-values for the different lithologies also revealed very high values and variations. The largest average values were registered in dolomites and siltstones with an average value of 5.6 and 5.3 respectively, while the lowest were registered in coals, claystones and limestones with values of 1.2, 1.4 and 1.6 respectively (see Table 4).

## 7. Mineralogical Analyses

To find the mineralogical source of the relative high susceptibilities, 8 samples have been analysed in optical microscope and 4 of these in scanning electron microscope (SEM). Energy dispersive spectra (EDS) used in the mineral identification are enclosed in Appendix A.2.

Siderite and pyrite were found to the mineralogical cause of the relative high susceptibility values. No other magnetic heavy mineral like magnetite or pyrrhotite was found in the SEM-analyses. Samples with mainly pyrite seem to have lower susceptibility values than with siderite.

## 7.1 Vesalstranda Member

4 samples from the Vesalstranda Member with susceptibilities from 297 to 2171 (10<sup>-6</sup> SI) revealed that siderite was the main cause of the high values in addition to what was thought to be pyrite. The siderite occurs most as cement in addition to partial dissolution/inclusions in quartz grains, Fig. 7.1 and 7.2. Scanning electron microscope (SEM) revealed no other magnetic heavy mineral like magnetite and pyrrhotite but non-magnetic minerals like zircon and barite was present, see Fig. 7.7. Pyrite was also present in some of samples, see Fig. 7.5.



Fig. 7.1 Optical micrograph (parallel polars) of sandstone, sample S4502. The picture shows light brown calcite and brown siderite between the quartz grains.



Fig. 7.2 Optical micrograph (crossed polars) of sandstone, sample S4502. Partial dissolution of quartz grains with calcite and siderite in the pore space in addition signs of physical compaction (concavo-convex and long contacts) in the middle of the picture.



Fig. 7.3 Optical micrograph (parallel polars) of sandstone, sample S4504. Another sample also with calcite and siderite in addition to deformed muscovite grains in the pore space. The brown "cloud" in the middle/lower and right side of the picture is due to oxidized siderite.



Fig. 7.4 Optical micrograph (parallel polars) of sandstone, sample S4506. Lower half of the picture shows abundant precipitated siderite crystals along a permeable crack.



Fig. 7.5 Electron scanning microscope (SEM backscattered electron image) of sandstone, sample S4506. Example of carbonate zonation with outermost light grey siderite and a white pyrite grain in the middle of the picture. Object 38 at the yellow cross is a muscovite.



Fig. 7.6 Optical micrograph (parallel polars) of siltstone, sample S4508. The sample with the highest susceptibility value registered from the Vesalstranda Member with abundant of brown siderite.



Fig. 7.7 Electron scanning microscope (SEM backscattered electron image) of siltstone, sample S4508. Two white non-magnetic heavy minerals, zircon with the characteristic shape to the left and barite in permeable cracks. The other two recognized minerals are quartz and calcite (4508 4 and 4508 5/4508 6 respectively).

## 7.2 Efuglvika Member

1 chertified carbonate sample (rugose coral) from Raudnuten on the southern inland of Bjørnøya revealed that pyrite and small amounts of siderite was the mineralogical cause for the relatively high susceptibility of 537 (10<sup>-6</sup> SI). Pyrite, chalcedony and quartz in the sample could be an indicator of fluctuating hypersaline and fresh water conditions (Folk & Siedlecka 1974).



Fig. 7.8 Optical micrograph (crossed polars) of silicified carbonate, sample S4421. Chertified rugose coral with fibrous chalcedony and large quartz crystals in the pore space.



Fig. 7.9 Optical micrograph (parallel polars) of silicified carbonate, sample S4421. Dark spots of contamination along the coral structure in addition to green calcite in upper right corner. The crystal upper left in the picture is thought to be pyrite.



Fig. 7.10 Electron scanning microscope (SEM backscattered electron image) of silicified carbonate, sample S4421. White sheetlike pyrite grain in the middle of the picture surrounded by calcite, quartz and an unidentified deformed mineral to the right.



Fig. 7.11 Electron scanning microscope (SEM backscattered electron image) of silicified carbonate, sample S4421. Picture showing a small grey calcite grain surrounded by lighter grey siderite.

## 7.3 Kapp Hanna Formation

1 sample with a relative high susceptibility of 2913 (10<sup>-6</sup> SI) showed pyrite as the main cause of the susceptibilities and possibly iron-rich carbonate see Fig. 7.12 and 7.13. However, the susceptibility value was suspiciously high since only pyrite was the contributor and no other Fe-bearing heavy minerals like magnetite were present.



Fig. 7.12 Optical micrograph (crossed polars) of shale, sample S4239. Picture showing a calcite grain and smaller carbonate rhombes which turned out to be iron-rich carbonate.



Fig. 7.13 Scanning electron microscope (SEM) of shale, sample S4239. Carbonate zonation with outermost iron-rich carbonate and two white pyrite grains.

## 7.4 Kapp Duner Formation

Siderite was thought to be the mineralogical source of the relative high susceptibility (678  $10^{-6}$  SI) of the rugose coral sample collected at Amfiet on the northwest coast, see Fig. 7.14 and 7.15.



Fig. 7.14 Optical micrograph (parallel polars) of coral limestone, sample S7308. The framework of a rugose coral with small carbonate rhombes on the inner structure walls of the coral.



Fig. 7.15 Optical micrograph (parallel polars) of coral limestone, sample S7308. Calcite rhombes with what was thought to be brown siderite.

## 7.5 Miseryfjellet Formaton

1 red limestone sample collected at Osten representing the uppermost part of the Miseryfjellet Formation revealed that pyrite was the main cause of susceptibility in addition to small amounts of siderite, see Fig. 7.16.



Fig. 7.16 Optical micrograph (parallel polars) of limestone, sample S5095. Picture showing abundance of calcite with black pyrite scattered around the sample.

### 8. Summary and Discussion

The Vesalstranda Member contained samples with relatively high susceptibilities, including two finegrained sandstone samples around 500 ( $10^{-6}$  SI) and a siltstone sample with a value of over 2000 ( $10^{-6}$  SI). The remaining 4 samples with relatively high susceptibility values around 500 ( $10^{-6}$  SI) and upwards is from different formations and members.

Analyses in optical microscope and scanning electron microscope (SEM) revealed that siderite in addition to pyrite is the the mineralogical source of the relatively high susceptibilities. No other Febearing heavy minerals like magnetite or pyrrhotite was found in scanning electron microscope (SEM) analyses.

There is a clear trend that the fine-grained sediments generally have higher susceptibilities than coarser-grained sediments like conglomerates and sandstones which agrees with earlier studies done by Hounslow et al. (1995) and Mørk et al. (2002). This is also true for the carbonates, including dolomites and limestones which also generally have low susceptibility values. The average susceptibility for the siltstones, shales and claystones are 150 ( $10^{-6}$  SI) compared to the carbonates and coarser-grained conglomerates and sandstones with values of only 45 and 41 ( $10^{-6}$  SI) respectively.

This trend is also seen in the different formations and members which are dominated by mainly one lithology. Although missing samples with relatively high susceptibilities the shale dominated Skuld Formation has the highest average susceptibility value of 261 ( $10^{-6}$  SI) with many samples above 300 ( $10^{-6}$  SI). The lowest values were registered by the carbonate and chert dominated Efuglvika Member and the sandstone dominated Nordkapp Formation with average susceptibility values of only 24 and 27 ( $10^{-6}$  SI) respectively.

The Q-ratio values for the different lithologies revealed that the average values is over 3 for the coarser-grained conglomerates and sandstones, carbonates (including dolomite and limestone) and the finer-grained siltstones, shales and claystones. The different formations and members also had high values in addition to large variations with values ranging from less than 1 to 5.6.

# 9. Conclusion

Noticeable variations of susceptibilities were discovered in the different formations and member although the susceptibilies were generally low.

The siltstones, shales and claystones generally had the highest susceptibilities while the carbonates and coarser-grained conglomerates and sandstones had the lowest values.

Siderite in addition to pyrite was found to be the mineralogical cause of the relative high susceptibilities. No other Fe-bearing heavy minerals like magnetite were found in scanning electron microscope (SEM).

Calculation of Koenigsberger-ratios revealed high values for the lithologies in addition to the formations and members which is an indicator that remanence is important for magnetic anomaly interpretations.

## **10. References**

Agdestein, T. 1980: En stratigrafisk, sedimentologisk og diagenetisk undersøkelse av karbon-perm sedimenter (Kapp Hanna og Kapp Dunér formasjonene) på Bjørnøya, Svalbard. Unpublished thesis, University of Oslo, Norway.

Andersson, J.G. 1900: Über die Stratigraphie und Tektonik der Bären Insel. Bulletin of the Geological Institution of the University of Uppsala 7, 243–280.

Barrere, C. 2009: Integrated geophysical modelling and tectonic evolution of the western Barents Sea. Phd thesis, NTNU, Norway.

Braathen, A., Maher Jr., H.D., Haabet, T.E., Kristensen, S.E., Tørudbakken, B.O. & Worsley, D. 1999: Caledonian thrusting on Bjørnøya: implications for Paleozoic and Mesozoic tectonism of the western Barents Shelf. Norsk Geologisk Tidsskrift 79, 57–68.

Cutbill, J.L. & Challinor, A. 1965: Revision of the stratigraphical scheme for the Carboniferous and Permian rocks of Spitsbergen and Bjørnøya. Geological Magazine 102, 418–439.

Dallmann, W.K. (ed.) 1999: Lithostratigraphic lexicon of Svalbard. Review and recommendations for nomenclature use. Upper Palaeozoic to Quaternary bedrock. Norsk Polarinstitutt, Tromsø, 318 p.

Dunlop, D. J. & Özdemir, Ö. 2008: Magnetizations in rocks and minerals, in Geomagnetism. Vol.5 edited by M. Kono. In Treatise on Geophysics edited by G. Schubert, Elsevier, 277-336.

Faleide, J.I., Vågnes, E. and Gudlaugsson, S.T., 1993: Late Mesozoic-Cenozoic evolution of the southwestern Barents Sea in a regional rift - shear tectonic setting, Marine and Petroleum Geology 10, 186-214.

Folk, R.L. & Siedlecka, A. 1974: The "schizohaline" environment: its sedimentary and diagenetic fabrics as exemplified by late Paleozoic rocks of Bear Island, Svalbard. Sedimentary Geology 11, 1–15.

Gabrielsen, R.H., Færseth, R.B., Jensen, L.N., Kalheim, J.E. & Riis, F. 1990: Structural elements of the Norwegian continental shelf. Part I: The Barents Sea Region. Norwegian Petroleum Directorate, Bulletin 6, 33 p.

Gjelberg, J.G. 1978: Facies analysis of the coal-bearing Vesalstranda Member (Upper Devonian) of Bjørnøya. Norsk Polarinstitutt Årbok 1977, 71–100.

Gjelberg, J.G. 1981: Upper Devonian (Famennian) - Middle Carboniferous succession of Bjørnøya, a study of ancient alluvial and coastal marine sedimentation. Norsk Polarinstitutt Skrifter 174, 67 p.

Gjelberg, J.G. 1982: The Tunheim Member (Lower Carboniferous) Bjørnøya. A field guide. Internal publ., University of Bergen, 17 p.

Gjelberg, J.G. & Steel, R.J. 1981: An outline of Lower-Middle Carboniferous sedimentation on Svalbard. Effects of tectonic, climatic and sea level changes in rift basin sequences. In Kerr, J.W. (ed.):

Geology of the North Atlantic Borderlands, Canadian Society of Petroleum Geologists, Memoir 7, 543–561.

Gjelberg, J.G. & Steel, R.J. 1983: Middle Carboniferous marine trangression, Bjørnøya, Svalbard: facies sequences from an interplay of sea level changes and tectonics. Geological Journal 18, 1–19.

Gjelberg, J.G. 1987: Early Carboniferous graben style and sedimentation response, Svalbard. Geological Journal Special Issues 12, European Dinantian Environments, 93-113.

Hauger, E. & van Veen, P. 1995: Application of magnetostratigraphy to Brent Group reservoir zonation in the Visund Basin. Geological Society Special Publications 98, 187–204.

Holtedahl, O. 1920: On the Palaeozoic Series of Bear Island, especially on the Hecla Hoek system. Norsk Geologisk Tidsskrift 5, 121–148.

Horn, G. & Orvin, A. 1928: Geology of Bear Island. Skrifter om Svalbard og Ishavet 15, 152 p.

Hounslow, M. W., Maher, B. A., & Thistlewood, L. 1995: Magnetic mineralogy of sandstones from the Lunde Formation (late Triassic), northern North Sea, UK: Origin of the palaeomagnetic signal. Geological Society Special Publication 98, 119–147.

Hunt, C. P., Moskowitz, B. M., & Banerjee, S. K. 1995: Magnetic properties of rocks and minerals (Vol. 3). Rock physics and phase relations. A handbook of physical constants, AGU Reference Shelf, American Geophysical Union, 189-204.

Kirkemo, K. 1979: En sedimentologisk undersøkelse av Kapp Kåre-formasjonen (moskov), Bjørnøya. Unpublished thesis, University of Oslo, Norway.

Konieczny, R.M. 1987: The Permian palynology of Bjørnøya, IKU Report 23.1252.02/02/87, 52 p. (Confidential) Trondheim.

Krasilscikov, A.A. & Livsic, J.J. 1974: Tectonika ostrova Medvezij (Tectonics of Bjørnøya): Geotektonika 4, 39–51.

Lowrie, W. 2007: Fundamentals of Geophysics (Second Edition), Cambridge University Press.

Løvlie, R. & van Veen, P. 1995: Magnetic susceptibility of a 180 m sediment core: reliability of incremental sampling and evidence for arelationship between susceptibility and gamma activity. Geological Society Special Publications 98, 259–266.

Marello, L. 2010: Magnetic basement study in the Barents Sea from inversion and forward modelling. Tectonophysics 493, 153-171.

Mørk, A., Knarud, R. & Worsley, D. 1982: Depositional and diagenetic environments of the Triassic and Lower Jurassic succession of Svalbard. In Embry, A.F. & Balkwill, H.R. (eds.): Arctic Geology and Geophysics, Canadian Society of Petroleum Geologists, Memoir 8, 371–398.

Mørk, A., Vigran, J.O. & Hochuli, P.A. 1990: Geology and palynology of the Triassic succession of Bjørnøya. Polar Research 8, 141–163.

Mørk, A., Vigran, J.O., Korchinskaya, M.V., Pchelina, T.M., Fefilova, L.A., Vavilov, M.N. & Weitschat, W. 1992: Triassic rocks in Svalbard, the Arctic Soviet islands and the Barents Shelf: bearing on their correlations. In Vorren, T.O, Bergsager, E., Dahl-Stamnes, Ø.A., Holter, E., Johansen, B., Lie, E. & Lund, T.B. (eds.): Arctic Geology and Petroleum Potential, 457–479. Norwegian Petroleum Society Special Publication 2, Elsevier, Amsterdam.

Mørk, M.B.E., McEnroe, S. A., Olesen, O. 2002: Magnetic susceptibility of Mesozoic and Cenozoic sediments off Mid Norway and the role of siderite: implications for interpretation of high-resolution aeromagnetic anomalies. Marine and Petroleum Geology 19, 1115-1126.

Nakrem, H.A. 1991: Conodonts from the Permian succession of Bjørnøya Svalbard. Norsk Geologisk Tidsskrift 71 235-248.

Olesen, O., Reitan, M. & Sæther, P. O. 1993: Petrofysisk database PETBASE 3.0, Brukerbeskrivelse. Norges Geologiske Undersøkelse Internal Report 93.023.

Olesen, O, Brönner, M, Ebbing, J. et al. 2010: New aeromagnetic and gravity compilations from Norway and adjacent areas: methods and applications. Petroleum Geology Conference Series 7, 559-586.

Puranen, R. & Sulkanen, K. 1985: Technical description of microcomputer- controlled petrophysical laboratory. Geological Survey of Finland Q15/27/85/1.

Reynolds, J. M. 1997: An introduction to Applied and Environmental Geophysics, John Wiley & Sons Ltd.

Simonsen, B.T. 1988: Upper Palaeozoic fusulinids of Bjørnøya. IKU Report 23.1252.06/02/88, 90 p. Trondheim.

Stemmerik, L. 1997: Permian (Artinskian - Kazanian) cool-water carbonates in North Greenland, Svalbard and the western Barents Sea. In James, N.P. & Clark, J. (eds.): Cool-water Carbonates. Society of Economic Paleontologists and Mineralogists, Special Publication 56, 349–364.

Stemmerik, L. 2000: Late Palaeozoic evolution of the North Atlantic margin of Pangea. Palaeogeography, Palaeoclimatology, Palaeoecology 161, 95-126.

Stemmerik, L. & Worsley, D. 2000: Upper Carboniferous cyclic shelf deposits, Kapp Kåre Formation, Bjørnøya – response to high frequency, high amplitude sea level fluctuations and local tectonism. Polar Research 19, 227–249.

Stemmerik, L., Larson, P., Larssen, G.B., Mørk, A. & Simonsen, B.T. 1994: Depositional evolution of Lower Permian Palaeoaplysina build-ups, Kapp Dunér Formation, Bjørnøya, Arctic Norway. Sedimentary Geology 92, 161–174.

Torsvik, T.H. & Olesen, O. 1988: Petrophysical and Palaeomagnetism initial report of the Norwegian Geological Survey Laboratory, Norges Geologiske Undersøkelse Report 88.171.

Vigran, J.O. 1986: The Upper Devonian - Carboniferous succession of Bjørnøya – A review of plant macrofossils, palynology and ages. IKU Report 23.1252.01/01/86, 75 p.

Vigran, J.O. 1987: Devonian and Carboniferous palynomorphs from Bjørnøya. IKU Report 23.1252.01/01/87, 130 p.

Worsley, D. & Edwards, M.B. 1976: The Upper Palaeozoic succession of Bjørnøya. Norsk Polarinstitutt Årbok 1974, 17–34.

Worsley, D. & Gjelberg, J.G. 1980: Excursion Guide to Bjørnøya, Svalbard, Palaeontological Contribution University of Oslo 258, 33 p.

Worsley, D., Agdestein, T., Gjelberg, J.G., Kirkemo, K., Mørk, A., Nilsson, I., Olaussen, S., Steel, R.J. & Stemmerik, L. 2001: The geological evolution of Bjørnøya, Arctic Norway: implications for the Barents Shelf. Norwegian Journal of Geology 81, 195-234.

Worsley, D., Gjelberg, J.G. & Mørk, A. 2012: Bjørnøya - an Upper Palaeozoic-Triassic window into the Barents Shelf, NGFs Geological Guides, 51 p.

Appendix

# Appendix

A.1 Sample list

A.2 Electron Dispersive Spectra (EDS)

|        | Level |              |              |           |              |      |            |             |          |         |           |         |         |
|--------|-------|--------------|--------------|-----------|--------------|------|------------|-------------|----------|---------|-----------|---------|---------|
| Sample | (m)   | Locality     | Group        | Formation | Member       | Zone | UTM X      | UTM Y       | Litho    | Density | Suscept   | Rem     | Q-value |
| S4514  | 250.0 | Miseryfj SW  | Billefjorden | Røedvika  | Vesalstranda | 33N  | 623418.255 | 8262579.429 | Shale    | 2475    | 13.9000   | 6.2000  | 10.3803 |
| S4512  | 240.0 | Miseryfj SW  | Billefjorden | Røedvika  | Vesalstranda | 33N  | 623418.255 | 8262579.429 | Clayst   | 2546    | 63.6000   | 6.7000  | 2.4516  |
| S4513  | 240.0 | Miseryfj SW  | Billefjorden | Røedvika  | Vesalstranda | 33N  | 623418.255 | 8262579.429 | Shale    | 2205    | 52.2000   | 5.5000  | 2.4520  |
| S4511  | 237.5 | Miseryfj SW  | Billefjorden | Røedvika  | Vesalstranda | 33N  | 623418.255 | 8262579.429 | Shale    | 2207    | 125.5000  | 7.9000  | 1.4649  |
| S4510  | 236.0 | Miseryfj SW  | Billefjorden | Røedvika  | Vesalstranda | 33N  | 623418.255 | 8262579.429 | Shale    | 2263    | 56.4000   | 0.0000  | 0.0000  |
| S4509  | 234.5 | Miseryfj SW  | Billefjorden | Røedvika  | Vesalstranda | 33N  | 623418.255 | 8262579.429 | Clayst   | 2576    | 45.0000   | 0.0000  | 0.0000  |
| S4508  | 223.0 | Miseryfj SW  | Billefjorden | Røedvika  | Vesalstranda | 33N  | 623418.255 | 8262579.429 | Silt     | 3249    | 2170.8999 | 2.2000  | 0.0236  |
| S4507  | 201.0 | Miseryfj SW  | Billefjorden | Røedvika  | Vesalstranda | 33N  | 623418.255 | 8262579.429 | Silt     | 2566    | 48.5000   | 7.6000  | 3.6468  |
| S4506  | 184.0 | Miseryfj SW  | Billefjorden | Røedvika  | Vesalstranda | 33N  | 623418.255 | 8262579.429 | Sst      | 2767    | 490.7000  | 8.8000  | 0.4174  |
| S4505  | 135.0 | Miseryfj SW  | Billefjorden | Røedvika  | Vesalstranda | 33N  | 623418.255 | 8262579.429 | Shale    | 2663    | 257.1000  | 0.0000  | 0.0000  |
| S4504  | 125.0 | Miseryfj SW  | Billefjorden | Røedvika  | Vesalstranda | 33N  | 623418.255 | 8262579.429 | Sst      | 2760    | 524.3000  | 0.0000  | 0.0000  |
| S4503  | 79.0  | Miseryfj SW  | Billefjorden | Røedvika  | Vesalstranda | 33N  | 623418.255 | 8262579.429 | Clayst   | 2674    | 171.5000  | 10.8000 | 1.4655  |
| S4502  | 78.0  | Miseryfj SW  | Billefjorden | Røedvika  | Vesalstranda | 33N  | 623418.255 | 8262579.429 | Sst      | 2721    | 297.4000  | 2.7000  | 0.2113  |
| S4501  | 35.0  | Miseryfj SW  | Billefjorden | Røedvika  | Vesalstranda | 33N  | 623418.255 | 8262579.429 | Shale    | 2633    | 43.5000   | 9.2000  | 4.9219  |
| S4500  | 10.0  | Miseryfj SW  | Billefjorden | Røedvika  | Vesalstranda | 33N  | 623418.255 | 8262579.429 | Silt     | 2564    | 35.2000   | 26.4000 | 17.4540 |
| S4499  | 7.0   | Miseryfj SW  | Billefjorden | Røedvika  | Vesalstranda | 33N  | 623418.255 | 8262579.429 | Silt     | 2569    | 110.6000  | -       | -       |
| S4498  | 4.1   | Miseryfj SW  | Billefjorden | Røedvika  | Vesalstranda | 33N  | 623418.255 | 8262579.429 | Clayst   | 2621    | 26.3000   | 0.0000  | 0.0000  |
| S4497  | 4.0   | Miseryfj SW  | Billefjorden | Røedvika  | Vesalstranda | 33N  | 623418.255 | 8262579.429 | Clayst   | 2617    | 0.0000    | 0.0000  | 0.0000  |
| S4496  | 0.1   | Miseryfj SW  | Billefjorden | Røedvika  | Vesalstranda | 33N  | 623418.255 | 8262579.429 | Silt Sst | 2591    | 16.1000   | 8.8000  | 12.7201 |
| S4495  | 0.0   | Miseryfj SW  | Billefjorden | Røedvika  | Vesalstranda | 33N  | 623418.255 | 8262579.429 | Silt Sst | 2623    | 21.4000   | 3.4000  | 3.6974  |
| S7264  | 4.0   | K.Levin      | Billefjorden | Røedvika  | Vesalstranda | 33N  | 627456.000 | 8266186.000 | Coal     | 1731    | 151.6000  | 0.0000  | 0.0000  |
| S7263  | 3.0   | K.Levin      | Billefjorden | Røedvika  | Vesalstranda | 33N  | 625770.000 | 8269789.000 | Coal     | 2471    | 97.3000   | 15.3000 | 3.6594  |
| S7262  | 2.0   | K.Levin      | Billefjorden | Røedvika  | Vesalstranda | 33N  | 627456.000 | 8266186.000 | Coal     | 1543    | 0.0000    | 0.0000  | 0.0000  |
| S7261  | 1.0   | K.Levin      | Billefjorden | Røedvika  | Vesalstranda | 33N  | 627456.000 | 8266186.000 | Coal     | 1554    | 33.9000   | 0.0000  | 0.0000  |
| S7629  |       | Vesalstranda | Billefjorden | Røedvika  | K.Levin      | 33N  | 626374.000 | 8262620.000 | Shale    | 2541    | 95.4000   | -       | -       |
| S7625  |       | Vesalstranda | Billefjorden | Røedvika  | K.Levin      | 33N  | 626374.000 | 8262620.000 | Shale    | 2609    | 116.5000  |         | -       |
| S7808  |       | Vesalstranda | Billefjorden | Røedvika  | K.Levin      | 33N  | 626374.000 | 8262620.000 | Shale    | 2532    | 80.5000   | -       | -       |

| S7807 |      | Vesalstranda | Billefjorden | Røedvika | K.Levin | 33N | 626374.000 | 8262620.000 | Shale      | 2605 | 82.4000  | -       | -       |
|-------|------|--------------|--------------|----------|---------|-----|------------|-------------|------------|------|----------|---------|---------|
| S7250 | 60.0 | K.Levin      | Billefjorden | Røedvika | K.Levin | 33N | 627456.000 | 8266186.000 | Shale      | 2622 | 84.7000  | 0.0000  | 0.0000  |
| S7329 | 50.0 | K.Levin      | Billefjorden | Røedvika | K.Levin | 33N | 627456.000 | 8266186.000 | Sst        | 2442 | 0.0000   | 2.7000  | -       |
| S7328 | 20.0 | K.Levin      | Billefjorden | Røedvika | K.Levin | 33N | 627456.000 | 8266186.000 | Sst        | 2400 | 0.0000   | 1.8000  | -       |
| S7330 | 0    | K.Levin      | Billefjorden | Røedvika | K.Levin | 33N | 627456.000 | 8266186.000 | Sst        | 2397 | 45.5000  | 3.6000  | 1.8413  |
| S4465 | 5.08 | Kolbukta     | Billefjorden | Røedvika | Tunheim | 33N | 624216.000 | 8271274.000 | Silt Shale | 2379 | 62.4000  | 13.9000 | 5.1840  |
| S4464 | 3.28 | Kolbukta     | Billefjorden | Røedvika | Tunheim | 33N | 624216.000 | 8271274.000 | Coal       | 1410 | -10.1000 | 2.2000  | -5.0692 |
| S4461 | 1.98 | Kolbukta     | Billefjorden | Røedvika | Tunheim | 33N | 624216.000 | 8271274.000 | Shale      | 2558 | 149.9000 | -       | -       |
| S4460 | 1.13 | Kolbukta     | Billefjorden | Røedvika | Tunheim | 33N | 624216.000 | 8271274.000 | Coal       | 1396 | 0.0000   | 8.5000  | -       |
| S4458 | 1.01 | Kolbukta     | Billefjorden | Røedvika | Tunheim | 33N | 624216.000 | 8271274.000 | Sst        | 2629 | 26.0000  | 4.1000  | 3.6698  |
| S4457 | 0.97 | Kolbukta     | Billefjorden | Røedvika | Tunheim | 33N | 624216.000 | 8271274.000 | Shale      | 2623 | 119.6000 | 29.9000 | 5.8180  |
| S4455 | 0.45 | Kolbukta     | Billefjorden | Røedvika | Tunheim | 33N | 624216.000 | 8271274.000 | Coal Shale | 2102 | 89.9000  | 0.0000  | 0.0000  |
| S4452 |      | Kolbukta     | Billefjorden | Røedvika | Tunheim | 33N | 624216.000 | 8271274.000 | Coal       | 1646 | 19.7000  | 4.4000  | 5.1978  |
| S4471 |      | Austervågen  | Billefjorden | Røedvika | Tunheim | 33N | 624880.000 | 8270487.000 | Coal       | 2060 | 61.8000  | 3.2000  | 1.2050  |
| S4470 |      | Austervågen  | Billefjorden | Røedvika | Tunheim | 33N | 624880.000 | 8270487.000 | Clayst     | 2267 | 55.8000  | 2.5000  | 1.0427  |
| S4469 |      | Austervågen  | Billefjorden | Røedvika | Tunheim | 33N | 624880.000 | 8270487.000 | Sst        | 2310 | 0.0000   | 3.9000  | -       |
| S4468 |      | Austervågen  | Billefjorden | Røedvika | Tunheim | 33N | 624880.000 | 8270487.000 | Clayst     | 2580 | 39.5000  | 4.1000  | 2.4156  |
| S4466 |      | Austervågen  | Billefjorden | Røedvika | Tunheim | 33N | 624880.000 | 8270487.000 | Shale      | 2559 | 40.4000  | 0.0000  | 0.0000  |
| S4476 |      | Engelskelva  | Billefjorden | Røedvika | Tunheim | 33N | 624652.000 | 8269681.000 | Coal       | 2589 | 89.9000  | -       | -       |
| S4475 |      | Engelskelva  | Billefjorden | Røedvika | Tunheim | 33N | 624652.000 | 8269681.000 | Shale      | 2536 | 95.9000  | 7.6000  | 1.8443  |
| S4474 |      | Engelskelva  | Billefjorden | Røedvika | Tunheim | 33N | 624652.000 | 8269681.000 | Clayst     | 2581 | 88.8000  | -       | -       |
| S4472 |      | Engelskelva  | Billefjorden | Røedvika | Tunheim | 33N | 624652.000 | 8269681.000 | Clayst     | 1999 | 97.5000  | 0.0000  | 0.0000  |
| S4480 |      | Framnes      | Billefjorden | Røedvika | Tunheim | 33N | 627435.000 | 8268525.000 | Silt       | 2509 | 28.7000  | 15.7000 | 12.7307 |
| S4479 |      | Framnes      | Billefjorden | Røedvika | Tunheim | 33N | 627435.000 | 8268525.000 | Coal       | 1841 | 18.1000  | -       | -       |
| S4478 |      | Framnes      | Billefjorden | Røedvika | Tunheim | 33N | 627435.000 | 8268525.000 | Clayst     | 2633 | 126.3000 | 0.0000  | 0.0000  |
| S7356 | 2.0  | Tunheim      | Billefjorden | Røedvika | Tunheim | 33N | 625770.000 | 8269789.000 | Sst        | 2450 | -13.9000 | 3.1000  | -5.1902 |
| S7355 | 1.0  | Tunheim      | Billefjorden | Røedvika | Tunheim | 33N | 625770.000 | 8269789.000 | Sst        | 2535 | 9.3000   | 2.9000  | 7.2569  |
| S7357 | 0.0  | Tunheim      | Billefjorden | Røedvika | Tunheim | 33N | 625770.000 | 8269789.000 | Sst        | 2417 | 0.0000   | 2.3000  | -       |
| S7369 |      | Tunheim      | Billefjorden | Røedvika | Tunheim | 33N | 625770.000 | 8269789.000 | Coal       | 1339 | 57.0000  | 8.5000  | 3.4704  |
|       |      |              |              |          |         |     |            |             |            |      |          |         |         |

| S7368 |       | Tunheim       | Billefjorden | Røedvika | Tunheim    | 33N | 625770.000 | 8269789.000 | Coal   | 1508 | 0.0000   | 15.3000 | -       |
|-------|-------|---------------|--------------|----------|------------|-----|------------|-------------|--------|------|----------|---------|---------|
| S4486 |       | Tunheim cliff | Billefjorden | Røedvika | Tunheim    | 33N | 625962.123 | 8269806.953 | Clayst | 2582 | 152.9000 | 9.6000  | 1.4612  |
| S4485 |       | Tunheim cliff | Billefjorden | Røedvika | Tunheim    | 33N | 625962.123 | 8269806.953 | Coal   | 1651 | 0.0000   | 4.4000  | -       |
| S4484 |       | Tunheim       | Billefjorden | Røedvika | Tunheim    | 33N | 625770.000 | 8269789.000 | Sst    | 2512 | 6.4000   | 2.0000  | 7.2725  |
| S4483 |       | Tunheim       | Billefjorden | Røedvika | Tunheim    | 33N | 625770.000 | 8269789.000 | Sst    | 2426 | 0.0000   | 0.0000  | -       |
| S4477 |       | Rifleodden    | Billefjorden | Røedvika | Tunheim    | 33N | 627470.000 | 8266871.000 | Shale  | 2580 | 83.7000  | 0.0000  | 0.0000  |
| S7322 | 117.0 | Båtvika       | Billefjorden | Nordkapp | Kapp Harry | 33N | 619210.000 | 8257982.000 | Sst    | 2447 | 15.6000  | 2.5000  | 3.7295  |
| S7321 | 108.0 | Båtvika       | Billefjorden | Nordkapp | Kapp Harry | 33N | 619210.000 | 8257982.000 | Sst    | 2496 | 22.0000  | 2.3000  | 2.4330  |
| S5952 | 45.0  | Båtvika       | Billefjorden | Nordkapp | Kapp Harry | 33N | 619210.000 | 8257982.000 | Sst    | 2475 | 0.0000   | 20.1000 | -       |
| S5949 | 30.0  | Båtvika       | Billefjorden | Nordkapp | Kapp Harry | 33N | 619210.000 | 8257982.000 | Sst    | 2395 | 40.0000  | 17.8000 | 10.3561 |
| S5948 | 24.0  | Båtvika       | Billefjorden | Nordkapp | Kapp Harry | 33N | 619210.000 | 8257982.000 | Sst    | 2467 | 13.5000  | 14.3000 | 24.6511 |
| S5945 | 15.0  | Båtvika       | Billefjorden | Nordkapp | Kapp Harry | 33N | 619210.000 | 8257982.000 | Sst    | 2450 | 0.0000   | 0.0000  | 0.0000  |
| S5944 | -1.0  | Båtvika       | Billefjorden | Nordkapp | Kapp Harry | 33N | 619210.000 | 8257982.000 | Sst    | 2499 | 19.0000  | 6.0000  | 7.3491  |
| S5943 | -2.0  | Båtvika       | Billefjorden | Nordkapp | Kapp Harry | 33N | 619210.000 | 8257982.000 | Sst    | 2419 | 41.5000  | 22.6000 | 12.6735 |
| S4439 | 5.0   | Ellasjøen     | Billefjorden | Nordkapp | Kapp Harry | 33N | 620575.000 | 8258905.000 | Sst    | 2428 | 0.0000   | 0.0000  | 0.0000  |
| S4438 | 1.5   | Ellasjøen     | Billefjorden | Nordkapp | Kapp Harry | 33N | 620575.000 | 8258905.000 | Sst    | 2457 | 58.0000  | -       | -       |
| S4437 | 1.0   | Ellasjøen     | Billefjorden | Nordkapp | Kapp Harry | 33N | 620575.000 | 8258905.000 | Sst    | 2443 | 0.0000   | 0.0000  | 0.0000  |
| S4436 | -0.1  | Ellasjøen     | Billefjorden | Nordkapp | Kapp Harry | 33N | 620575.000 | 8258905.000 | Shale  | 2581 | 64.9000  | 23.0000 | 8.2474  |
| S4433 | -1.5  | Ellasjøen     | Billefjorden | Nordkapp | Kapp Harry | 33N | 620575.000 | 8258905.000 | Shale  | 2652 | 124.9000 | 65.3000 | 12.1671 |
| S4445 | 24.0  | Nordkapp      | Billefjorden | Nordkapp | Kapp Harry | 33N | 621767.000 | 8273638.000 | Sst    | 2573 | 63.9000  | -       | -       |
| S4443 | 9.5   | Nordkapp      | Billefjorden | Nordkapp | Kapp Harry | 33N | 621767.000 | 8273638.000 | Sst    | 2487 | -24.4000 | 25.9000 | 24.7027 |
| S4440 | 5.5   | Nordkapp      | Billefjorden | Nordkapp | Kapp Harry | 33N | 621767.000 | 8273638.000 | Sst    | 2457 | 21.9000  | 23.2000 | 24.6535 |
| S4449 | 4.0   | Nordkapp      | Billefjorden | Nordkapp | Kapp Harry | 33N | 621767.000 | 8273638.000 | Cgl    | 2705 | 92.3000  | 27.7000 | 6.9841  |
| S4448 | 3.0   | Nordkapp      | Billefjorden | Nordkapp | Kapp Harry | 33N | 621767.000 | 8273638.000 | Shale  | 2607 | 90.2000  | -       | -       |
| S4446 | 1.0   | Nordkapp      | Billefjorden | Nordkapp | Kapp Harry | 33N | 621767.000 | 8273638.000 | Shale  | 1311 | 13.3000  | -       | -       |
| S7351 | 23.0  | Nordhamna     | Billefjorden | Nordkapp | Nordhamna  | 33N | 617638.000 | 8272214.000 | Sst    | 2639 | 35.0000  | 1.6000  | 1.0639  |
| S7350 | 20.0  | Nordhamna     | Billefjorden | Nordkapp | Nordhamna  | 33N | 617638.000 | 8272214.000 | Sst    | 2602 | 48.6000  | 2.2000  | 1.0535  |
| S7349 | 18.0  | Nordhamna     | Billefjorden | Nordkapp | Nordhamna  | 33N | 617638.000 | 8272214.000 | Sst    | 2648 | 22.3000  | 2.3000  | 2.4003  |
| S7353 | 2.0   | Nordhamna     | Billefjorden | Nordkapp | Nordhamna  | 33N | 617638.000 | 8272214.000 | Shale  | 2553 | -15.8000 | 2.3000  | -3.3877 |
|       |       |               |              |          |            |     |            |             |        |      |          |         |         |

| S7347 | 0.0   | Nordhamna      | Billefjorden | Nordkapp   | Nordhamna | 33N | 617638.000 | 8272214.000 | Sst        | 2495 | -18.8000 | 2.0000  | -2.4758 |
|-------|-------|----------------|--------------|------------|-----------|-----|------------|-------------|------------|------|----------|---------|---------|
| S7346 | 0.0   | Nordhamna      | Billefjorden | Nordkapp   | Nordhamna | 33N | 617638.000 | 8272214.000 | Sst        | 2515 | 7.8000   | 3.5000  | 10.4426 |
| S7348 | 0.0   | Nordhamna      | Billefjorden | Nordkapp   | Nordhamna | 33N | 617638.000 | 8272214.000 | Sst        | 2484 | -5.9000  | 0.0000  | 0.0000  |
| S4429 | 0.0   | Landnørdin     | Billefjorden | Nordkapp   | Nordhamna | 33N | 618785.000 | 8258322.000 | Cgl        | 2372 | 11.4000  | 1.8000  | 3.6745  |
| S7345 | 195.0 | Landnørdin     | Gipsdalen    | Landnørdin |           | 33N | 618785.000 | 8258322.000 | Sst        | 2645 | 16.7000  | 3.7000  | 5.1561  |
| S7344 | 190.0 | Landnørdin     | Gipsdalen    | Landnørdin |           | 33N | 618785.000 | 8258322.000 | Carb       | 2640 | 0.0000   | 3.3000  | -       |
| S4432 | 93.0  | Landnørdin     | Gipsdalen    | Landnørdin |           | 33N | 618785.000 | 8258322.000 | Cgl        | 2675 | 34.5000  | 3.8000  | 2.5633  |
| S7343 | 55.0  | Landnørdin     | Gipsdalen    | Landnørdin |           | 33N | 618785.000 | 8258322.000 | Sst        | 2632 | -7.2000  | 2.3000  | -7.4341 |
| S4431 | 52.0  | Landnørdin     | Gipsdalen    | Landnørdin |           | 33N | 618785.000 | 8258322.000 | Sst        | 2572 | 14.4000  | 3.9000  | 6.3028  |
| S4428 | 46.0  | Landnørdin     | Gipsdalen    | Landnørdin |           | 33N | 615544.000 | 8271644.000 | Sst        | 2505 | 23.3000  | 17.5000 | 17.4790 |
| S4427 | 37.0  | Landnørdin     | Gipsdalen    | Landnørdin |           | 33N | 615544.000 | 8271644.000 | Sst        | 2532 | 31.8000  | 3.3000  | 2.4150  |
| S4426 | 25.0  | Landnørdin     | Gipsdalen    | Landnørdin |           | 33N | 615544.000 | 8271644.000 | Sst        | 2551 | 16.6000  | 2.6000  | 3.6450  |
| S4425 | 5.5   | Landnørdin     | Gipsdalen    | Landnørdin |           | 33N | 615544.000 | 8271644.000 | Shale      | 2447 | 61.4000  | -       | -       |
| S7648 | 4.0   | Landnørdin     | Gipsdalen    | Landnørdin |           | 33N | 618785.000 | 8258322.000 | Carb       | 2687 | 0.0000   | 15.7000 | -       |
| S4430 | 2.0   | Landnørdin     | Gipsdalen    | Landnørdin |           | 33N | 618785.000 | 8258322.000 | Silt       | 2677 | 216.8000 | 11.8000 | 1.2667  |
| S4333 | 0.0   | Landnørdin     | Gipsdalen    | Landnørdin |           | 33N | 618785.000 | 8258322.000 | Carb Cgl   | 2702 | 45.9000  | 2.9000  | 1.4703  |
| S7656 |       | Landnørdin     | Gipsdalen    | Landnørdin |           | 33N | 618785.000 | 8258322.000 | Carb       | 2712 | 34.9000  | 9.3000  | 6.2014  |
| S7514 |       | Landnørdin     | Gipsdalen    | Landnørdin |           | 33N | 618785.000 | 8258322.000 | Red Shale  | 2645 | 128.0000 | 7.5000  | 1.3636  |
| S7516 |       | Landnørdin     | Gipsdalen    | Landnørdin |           | 33N | 618785.000 | 8258322.000 | Carb Shale | 2629 | 241.9000 | -       | -       |
| S7524 |       | Landnørdin     | Gipsdalen    | Landnørdin |           | 33N | 618785.000 | 8258322.000 | Sst        | 2638 | 126.5000 | 2.6000  | 0.4783  |
| S7522 |       | Nordhamna      | Gipsdalen    | Landnørdin |           | 33N | 617638.000 | 8272214.000 | Red Shale  | 2673 | 238.8000 | -       | -       |
| S7519 |       | Nordhamna      | Gipsdalen    | Landnørdin |           | 33N | 617638.000 | 8272214.000 | Shale      | 2559 | 124.4000 | -       | -       |
| S7518 |       | Utløp Lakselva | Gipsdalen    | Landnørdin |           | 33N | 618412.406 | 8272045.465 | Carb       | 2688 | 17.5000  | 26.3000 | 34.9746 |
| S7517 |       | Nordhamna      | Gipsdalen    | Landnørdin |           | 33N | 617638.000 | 8272214.000 | Sst        | 2652 | 177.9000 | 21.0000 | 2.7471  |
| S4314 | 50.6  | Kobbebukta     | Gipsdalen    | K.Kåre     | Bogevika  | 33N | 615544.000 | 8271644.000 | Carb       | 2700 | 64.8000  | 4.1000  | 1.4725  |
| S7611 | 50.5  | Kobbebukta     | Gipsdalen    | K.Kåre     | Bogevika  | 33N | 615544.000 | 8271644.000 | Carb       | 2697 | 67.9000  | 8.0000  | 2.7419  |
| S4312 | 43.5  | Kobbebukta     | Gipsdalen    | K.Kåre     | Bogevika  | 33N | 615544.000 | 8271644.000 | Carb       | 2719 | 98.2000  | 2.8000  | 0.6636  |
| S4311 | 42.5  | Kobbebukta     | Gipsdalen    | K.Kåre     | Bogevika  | 33N | 615544.000 | 8271644.000 | Shale      | 2505 | 119.7000 | -       | -       |
| S4310 | 41.0  | Kobbebukta     | Gipsdalen    | K.Kåre     | Bogevika  | 33N | 615544.000 | 8271644.000 | Sst        | 2650 | 10.5000  | 3.3000  | 7.3141  |
|       |       |                |              |            |           |     |            |             |            |      |          |         |         |

| S4309 | 38.0 | Kobbebukta | Gipsdalen | K.Kåre | Bogevika | 33N | 615544.000 | 8271644.000 | Shale      | 2498 | 109.3000 | 0.0000  | 0.0000  |
|-------|------|------------|-----------|--------|----------|-----|------------|-------------|------------|------|----------|---------|---------|
| S4382 | 33.5 | Kobbebukta | Gipsdalen | K.Kåre | Bogevika | 33N | 615544.000 | 8271644.000 | Shale      | 2398 | 189.6000 | -       | -       |
| S4383 | 33.0 | Kobbebukta | Gipsdalen | K.Kåre | Bogevika | 33N | 615544.000 | 8271644.000 | Shale      | 2474 | 146.1000 | -       | -       |
| S4307 | 32.5 | Kobbebukta | Gipsdalen | K.Kåre | Bogevika | 33N | 615544.000 | 8271644.000 | Shale      | 2663 | 145.4000 | 0.0000  | 0.0000  |
| S4306 | 31.5 | Kobbebukta | Gipsdalen | K.Kåre | Bogevika | 33N | 615544.000 | 8271644.000 | Shale      | 2489 | 206.3000 | 0.0000  | 0.0000  |
| S4386 | 28.5 | Kobbebukta | Gipsdalen | K.Kåre | Bogevika | 33N | 615544.000 | 8271644.000 | Shale      | 2478 | 23.2000  | 0.0000  | 0.0000  |
| S4305 | 27.0 | Kobbebukta | Gipsdalen | K.Kåre | Bogevika | 33N | 615544.000 | 8271644.000 | Carb       | 2696 | 97.8000  | 0.0000  | 0.0000  |
| S7610 | 27.0 | Kobbebukta | Gipsdalen | K.Kåre | Bogevika | 33N | 615544.000 | 8271644.000 | Carb       | 2709 | 53.9000  | 5.9000  | 2.5474  |
| S4388 | 24.5 | Kobbebukta | Gipsdalen | K.Kåre | Bogevika | 33N | 615544.000 | 8271644.000 | Shale      | 2463 | 87.1000  | -       | -       |
| S4304 | 22.0 | Kobbebukta | Gipsdalen | K.Kåre | Bogevika | 33N | 615544.000 | 8271644.000 | Shale      | 2571 | 139.7000 | -       | -       |
| S4303 | 21.5 | Kobbebukta | Gipsdalen | K.Kåre | Bogevika | 33N | 615544.000 | 8271644.000 | Shale      | 2502 | 182.2000 | 8.1000  | 1.0346  |
| S4302 | 21.0 | Kobbebukta | Gipsdalen | K.Kåre | Bogevika | 33N | 615544.000 | 8271644.000 | Shale      | 2434 | 157.1000 | 12.4000 | 1.8369  |
| S4301 | 20.5 | Kobbebukta | Gipsdalen | K.Kåre | Bogevika | 33N | 615544.000 | 8271644.000 | Shale      | 2632 | 133.0000 | 23.5000 | 4.1120  |
| S4300 | 20.3 | Kobbebukta | Gipsdalen | K.Kåre | Bogevika | 33N | 615544.000 | 8271644.000 | Carb       | 2730 | 91.6000  | 9.7000  | 2.4644  |
| S4404 | 14.0 | Kobbebukta | Gipsdalen | K.Kåre | Bogevika | 33N | 615544.000 | 8271644.000 | Shale      | 2526 | 159.8000 | -       | -       |
| S4405 | 13.5 | Kobbebukta | Gipsdalen | K.Kåre | Bogevika | 33N | 615544.000 | 8271644.000 | Shale      | 2537 | 63.7000  | -       | -       |
| S4406 | 13.0 | Kobbebukta | Gipsdalen | K.Kåre | Bogevika | 33N | 615544.000 | 8271644.000 | Shale      | 2559 | 222.6000 | -       | -       |
| S7631 | 10.0 | Kobbebukta | Gipsdalen | K.Kåre | Bogevika | 33N | 615544.000 | 8271644.000 | Shale      | 2436 | 28.1000  | -       | -       |
| S4410 | 9.5  | Kobbebukta | Gipsdalen | K.Kåre | Bogevika | 33N | 615544.000 | 8271644.000 | Shale      | 2653 | 202.9000 | -       | -       |
| S4319 | 9.0  | Kobbebukta | Gipsdalen | K.Kåre | Bogevika | 33N | 615544.000 | 8271644.000 | Shale      | 2597 | 181.3000 | -       | -       |
| S4296 | 8.9  | Kobbebukta | Gipsdalen | K.Kåre | Bogevika | 33N | 615544.000 | 8271644.000 | Carb Onc   | 2690 | 140.8000 | 17.8000 | 2.9421  |
| S4295 | 8.0  | Kobbebukta | Gipsdalen | K.Kåre | Bogevika | 33N | 615544.000 | 8271644.000 | Carb Sst   | 2687 | 58.2000  | 8.6000  | 3.4388  |
| S7609 | 8.0  | Kobbebukta | Gipsdalen | K.Kåre | Bogevika | 33N | 615544.000 | 8271644.000 | Carb       | 2686 | 24.1000  | 25.6000 | 24.7205 |
| S4294 | 7.7  | Kobbebukta | Gipsdalen | K.Kåre | Bogevika | 33N | 615544.000 | 8271644.000 | Shale Silt | 2573 | 111.3000 | -       | -       |
| S4323 | 6.1  | Kobbebukta | Gipsdalen | K.Kåre | Bogevika | 33N | 615544.000 | 8271644.000 | Sst        | 2668 | 117.8000 | 11.1000 | 2.1929  |
| S4293 | 6.0  | Kobbebukta | Gipsdalen | K.Kåre | Bogevika | 33N | 615544.000 | 8271644.000 | Carb       | 2701 | 14.9000  | 4.7000  | 7.3408  |
| S4292 | 4.7  | Kobbebukta | Gipsdalen | K.Kåre | Bogevika | 33N | 615544.000 | 8271644.000 | Carb Sst   | 2689 | 0.0000   | 6.5000  | -       |
| S7608 | 4.5  | Kobbebukta | Gipsdalen | K.Kåre | Bogevika | 33N | 615544.000 | 8271644.000 | Carb       | 2694 | 15.3000  | 4.8000  | 7.3010  |
| S4315 | 4.3  | Kobbebukta | Gipsdalen | K.Kåre | Bogevika | 33N | 615544.000 | 8271644.000 | Carb       | 2694 | 28.0000  | 15.3000 | 12.7165 |
|       |      |            |           |        |          |     |            |             |            |      |          |         |         |

| S4316 | 1.6  | Kobbebukta | Gipsdalen | K.Kåre | Bogevika  | 33N | 615544.000 | 8271644.000 | Silt      | 2653 | 123.0000 | 18.7000 | 3.5381  |
|-------|------|------------|-----------|--------|-----------|-----|------------|-------------|-----------|------|----------|---------|---------|
| S4317 | 1.0  | Kobbebukta | Gipsdalen | K.Kåre | Bogevika  | 33N | 615544.000 | 8271644.000 | Carb      | 2796 | 94.9000  | 0.0000  | 0.0000  |
| S4321 | 0.8  | Kobbebukta | Gipsdalen | K.Kåre | Bogevika  | 33N | 615544.000 | 8271644.000 | Carb      | 2702 | 12.5000  | 2.0000  | 3.7235  |
| S7806 |      | Kobbebukta | Gipsdalen | K.Kåre | Bogevika  | 33N | 615544.000 | 8271644.000 | Sst       | 2613 | 223.7000 | 3.1000  | 0.3225  |
| S4374 | 96.0 | Landnørdin | Gipsdalen | K.Kåre | Bogevika  | 33N | 618785.000 | 8258322.000 | Sst       | 2650 | 21.3000  | 3.2000  | 3.4963  |
| S4373 | 90.0 | Landnørdin | Gipsdalen | K.Kåre | Bogevika  | 33N | 618785.000 | 8258322.000 | Silt      | 2714 | 215.0000 | -       | -       |
| S4372 | 78.0 | Landnørdin | Gipsdalen | K.Kåre | Bogevika  | 33N | 618785.000 | 8258322.000 | Carb Sst  | 2700 | 11.6000  | 6.1000  | 12.2379 |
| S4371 | 73.0 | Landnørdin | Gipsdalen | K.Kåre | Bogevika  | 33N | 618785.000 | 8258322.000 | Silt      | 2644 | 178.1000 | 38.2000 | 4.9915  |
| S4370 | 72.5 | Landnørdin | Gipsdalen | K.Kåre | Bogevika  | 33N | 618785.000 | 8258322.000 | Carb      | 2675 | -25.3000 | 65.8000 | 60.5257 |
| S4369 | 66.0 | Landnørdin | Gipsdalen | K.Kåre | Bogevika  | 33N | 618785.000 | 8258322.000 | Shale     | 2587 | 232.2000 | -       | -       |
| S4368 | 60.0 | Landnørdin | Gipsdalen | K.Kåre | Bogevika  | 33N | 618785.000 | 8258322.000 | Silt      | 2651 | 272.9000 | 45.5000 | 3.8801  |
| S4367 | 59.5 | Landnørdin | Gipsdalen | K.Kåre | Bogevika  | 33N | 618785.000 | 8258322.000 | Carb      | 2698 | 0.0000   | -       | -       |
| S4366 | 52.0 | Landnørdin | Gipsdalen | K.Kåre | Bogevika  | 33N | 618785.000 | 8258322.000 | Carb      | 2680 | 40.5000  | 30.4000 | 17.4684 |
| S4364 | 42.0 | Landnørdin | Gipsdalen | K.Kåre | Bogevika  | 33N | 618785.000 | 8258322.000 | Carb      | 2737 | 0.0000   | 7.4000  | -       |
| S4362 | 12.0 | Landnørdin | Gipsdalen | K.Kåre | Bogevika  | 33N | 618785.000 | 8258322.000 | Carb      | 2691 | 93.9000  | 16.6000 | 4.1141  |
| S4361 | 45.0 | Landnørdin | Gipsdalen | K.Kåre | Efuglvika | 33N | 618785.000 | 8258322.000 | Carb      | 2693 | 0.0000   | 16.6000 | -       |
| S4359 | 43.0 | Landnørdin | Gipsdalen | K.Kåre | Efuglvika | 33N | 618785.000 | 8258322.000 | Carb      | 2692 | 17.1000  | 0.0000  | 0.0000  |
| S4358 | 42.0 | Landnørdin | Gipsdalen | K.Kåre | Efuglvika | 33N | 618785.000 | 8258322.000 | Carb      | 2677 | -9.7000  | 14.6000 | 35.0280 |
| S4357 | 36.0 | Landnørdin | Gipsdalen | K.Kåre | Efuglvika | 33N | 618785.000 | 8258322.000 | Carb      | 2704 | 10.9000  | 2.4000  | 5.1241  |
| S4356 | 31.0 | Landnørdin | Gipsdalen | K.Kåre | Efuglvika | 33N | 618785.000 | 8258322.000 | Carb      | 2708 | 9.4000   | 2.9000  | 7.1797  |
| S5207 | 25.5 | Landnørdin | Gipsdalen | K.Kåre | Efuglvika | 33N | 618785.000 | 8258322.000 | Limestone | 2695 | 49.9000  | -       | -       |
| S5206 | 20.0 | Landnørdin | Gipsdalen | K.Kåre | Efuglvika | 33N | 618785.000 | 8258322.000 | Carb      | 2687 | -22.6000 | 58.9000 | 60.6515 |
| S4355 | 14.0 | Landnørdin | Gipsdalen | K.Kåre | Efuglvika | 33N | 618785.000 | 8258322.000 | Carb      | 2706 | 27.1000  | 2.8000  | 2.4045  |
| S4354 | 13.0 | Landnørdin | Gipsdalen | K.Kåre | Efuglvika | 33N | 618785.000 | 8258322.000 | Carb      | 2698 | 26.4000  | 9.3000  | 8.1981  |
| S4353 | 4.0  | Landnørdin | Gipsdalen | K.Kåre | Efuglvika | 33N | 618785.000 | 8258322.000 | Carb      | 2707 | 0.0000   | 9.2000  | -       |
| S4422 | 40.0 | Raudnuten  | Gipsdalen | K.Kåre | Efuglvika | 33N | 619300.000 | 8262576.000 | Carb      | 2689 | -17.9000 | 19.0000 | 24.7022 |
| S4423 | 38.5 | Raudnuten  | Gipsdalen | K.Kåre | Efuglvika | 33N | 619300.000 | 8262576.000 | Carb      | 2704 | 0.0000   | 0.0000  | 0.0000  |
| S4421 | 38.0 | Raudnuten  | Gipsdalen | K.Kåre | Efuglvika | 33N | 619300.000 | 8262576.000 | Carb      | 2613 | 536.5000 | 4.7000  | 0.2039  |
| S4419 | 34.5 | Raudnuten  | Gipsdalen | K.Kåre | Efuglvika | 33N | 619300.000 | 8262576.000 | Carb      | 2689 | 0.0000   | 25.8000 | -       |
|       |      |            |           |        |           | -   |            |             |           |      |          |         |         |

| S4418   | 27.0  | Raudnuten  | Gipsdalen | K.Kåre | Efuglvika | 33N | 619300.000 | 8262576.000 | Carb      | 2688 | -19.3000 | 14.5000 | 17.4842 |
|---------|-------|------------|-----------|--------|-----------|-----|------------|-------------|-----------|------|----------|---------|---------|
| S4417   | 25.0  | Raudnuten  | Gipsdalen | K.Kåre | Efuglvika | 33N | 619300.000 | 8262576.000 | Carb      | 2670 | 0.0000   | 0.0000  | 0.0000  |
| S4416   | 23.0  | Raudnuten  | Gipsdalen | K.Kåre | Efuglvika | 33N | 619300.000 | 8262576.000 | Carb      | 2681 | 39.6000  | 21.0000 | 12.3412 |
| S4415   | 20.0  | Raudnuten  | Gipsdalen | K.Kåre | Efuglvika | 33N | 619300.000 | 8262576.000 | Carb      | 2692 | -38.7000 | -       | -       |
| S4414   | 20.0  | Raudnuten  | Gipsdalen | K.Kåre | Efuglvika | 33N | 619300.000 | 8262576.000 | Carb      | 2693 | 0.0000   | 17.0000 | -       |
| S4413   | 16.0  | Raudnuten  | Gipsdalen | K.Kåre | Efuglvika | 33N | 619300.000 | 8262576.000 | Carb      | 2700 | 19.0000  | 0.0000  | 0.0000  |
| S4412   | 7.5   | Raudnuten  | Gipsdalen | K.Kåre | Efuglvika | 33N | 619300.000 | 8262576.000 | Carb      | 2697 | 32.8000  | 10.4000 | 7.3789  |
| S7354-7 | 0.0   | Raudnuten  | Gipsdalen | K.Kåre | Efuglvika | 33N | 619300.000 | 8262576.000 | Carb      | 2575 | 21.8000  | 3.2000  | 3.4161  |
| S7354-6 | 0.0   | Raudnuten  | Gipsdalen | K.Kåre | Efuglvika | 33N | 619300.000 | 8262576.000 | Carb      | 2557 | 0.0000   | 0.0000  | 0.0000  |
| S7354-5 | 0.0   | Raudnuten  | Gipsdalen | K.Kåre | Efuglvika | 33N | 619300.000 | 8262576.000 | Carb      | 2333 | 22.9000  | 5.1000  | 5.1829  |
| S7354-4 | 0.0   | Raudnuten  | Gipsdalen | K.Kåre | Efuglvika | 33N | 619300.000 | 8262576.000 | Carb      | 2584 | 17.4000  | 0.0000  | 0.0000  |
| S7354-3 | 0.0   | Raudnuten  | Gipsdalen | K.Kåre | Efuglvika | 33N | 619300.000 | 8262576.000 | Carb      | 2689 | 0.0000   | 0.0000  | 0.0000  |
| S7354-2 | 0.0   | Raudnuten  | Gipsdalen | K.Kåre | Efuglvika | 33N | 619300.000 | 8262576.000 | Carb      | 2687 | 9.8000   | 4.4000  | 10.4487 |
| S7354-1 | 0.0   | Raudnuten  | Gipsdalen | K.Kåre | Efuglvika | 33N | 619300.000 | 8262576.000 | Carb      | 2638 | 25.7000  | 8.1000  | 7.3348  |
| S7354   | 0.0   | Raudnuten  | Gipsdalen | K.Kåre | Efuglvika | 33N | 619300.000 | 8262576.000 | Carb      | 2583 | 11.6000  | 2.6000  | 5.2161  |
| S7646   |       | Raudnuten  | Gipsdalen | K.Kåre | Efuglvika | 33N | 619300.000 | 8262576.000 | Carb      | 2700 | 93.3000  | 6.9000  | 1.7211  |
| S4351   | 22.0  | Ærfuglvika | Gipsdalen | K.Kåre | Efuglvika | 33N | 616599.000 | 8260779.000 | Carb      | 2698 | 34.7000  | 26.0000 | 17.4373 |
| S4350   | 20.1  | Ærfuglvika | Gipsdalen | K.Kåre | Efuglvika | 33N | 616599.000 | 8260779.000 | Carb      | 2708 | 19.7000  | 6.2000  | 7.3242  |
| S4349   | 20.05 | Ærfuglvika | Gipsdalen | K.Kåre | Efuglvika | 33N | 616599.000 | 8260779.000 | Carb      | 2742 | 27.4000  | 4.3000  | 3.6522  |
| S4352   | 19.0  | Ærfuglvika | Gipsdalen | K.Kåre | Efuglvika | 33N | 616599.000 | 8260779.000 | Carb      | 2776 | 16.4000  | 2.6000  | 3.6895  |
| S7688   | 18.0  | Ærfuglvika | Gipsdalen | K.Kåre | Efuglvika | 33N | 616599.000 | 8260779.000 | Carb      | 2698 | 25.1000  | 0.0000  | 0.0000  |
| S4346   | 16.0  | Ærfuglvika | Gipsdalen | K.Kåre | Efuglvika | 33N | 616599.000 | 8260779.000 | Carb      | 2696 | 0.0000   | 72.5000 | -       |
| S4345   | 15.0  | Ærfuglvika | Gipsdalen | K.Kåre | Efuglvika | 33N | 616599.000 | 8260779.000 | Carb      | 2700 | 0.0000   | 41.2000 | -       |
| S7811   | 15.0  | Ærfuglvika | Gipsdalen | K.Kåre | Efuglvika | 33N | 616599.000 | 8260779.000 | Limestone | 2734 | 22.7000  | 8.0000  | 8.2016  |
| S7810   | 15.0  | Ærfuglvika | Gipsdalen | K.Kåre | Efuglvika | 33N | 616599.000 | 8260779.000 | Limestone | 2820 | 21.7000  | 2.3000  | 2.4666  |
| S7813   | 14.5  | Ærfuglvika | Gipsdalen | K.Kåre | Efuglvika | 33N | 616599.000 | 8260779.000 | Carb      | 2707 | 25.6000  | 27.1000 | 24.6356 |
| S4343   | 12.0  | Ærfuglvika | Gipsdalen | K.Kåre | Efuglvika | 33N | 616599.000 | 8260779.000 | Carb      | 2671 | 0.0000   | 13.9000 | -       |
| S4342   | 11.0  | Ærfuglvika | Gipsdalen | K.Kåre | Efuglvika | 33N | 616599.000 | 8260779.000 | Carb      | 2697 | 11.8000  | 12.6000 | 24.8498 |
| S4341   | 9.5   | Ærfuglvika | Gipsdalen | K.Kåre | Efuglvika | 33N | 616599.000 | 8260779.000 | Carb      | 2715 | 50.2000  | 18.8000 | 8.7154  |
|         |       |            |           |        |           |     |            |             |           |      |          |         |         |

| S4340 | 9.1  | Ærfuglvika | Gipsdalen | K.Kåre  | Efuglvika  | 33N | 616599.000 | 8260779.000 | Carb       | 2706 | -13.5000  | 20.2000 | 34.8219 |
|-------|------|------------|-----------|---------|------------|-----|------------|-------------|------------|------|-----------|---------|---------|
| S4338 | 5.5  | Ærfuglvika | Gipsdalen | K.Kåre  | Efuglvika  | 33N | 616599.000 | 8260779.000 | Carb       | 2702 | 0.0000    | 20.5000 | -       |
| S4337 | 2.0  | Ærfuglvika | Gipsdalen | K.Kåre  | Efuglvika  | 33N | 616599.000 | 8260779.000 | Carb       | 2699 | 8.5000    | 12.8000 | 35.0450 |
| S4336 | 0.5  | Ærfuglvika | Gipsdalen | K.Kåre  | Efuglvika  | 33N | 616599.000 | 8260779.000 | Carb       | 2699 | 25.1000   | 26.7000 | 24.7555 |
| S5156 | 0.0  | Ærfuglvika | Gipsdalen | K.Kåre  | Efuglvika  | 33N | 616599.000 | 8260779.000 | Dolo       | 2705 | 25.0000   | -       | -       |
| S4331 | 10.0 | Kobbebukta | Gipsdalen | K.Kåre  | Kobbebukta | 33N | 615544.000 | 8271644.000 | Carb       | 2720 | 76.9000   | 2.4000  | 0.7263  |
| S4330 | 8.0  | Kobbebukta | Gipsdalen | K.Kåre  | Kobbebukta | 33N | 615544.000 | 8271644.000 | Carb       | 2716 | 124.2000  | 22.6000 | 4.2347  |
| S4335 | 5.0  | Kobbebukta | Gipsdalen | K.Kåre  | Kobbebukta | 33N | 615544.000 | 8271644.000 | Carb       | 2761 | 78.0000   | 0.0000  | 0.0000  |
| S4328 | 5.0  | Kobbebukta | Gipsdalen | K.Kåre  | Kobbebukta | 33N | 615544.000 | 8271644.000 | Shale      | 2701 | 81.7000   | 12.4000 | 3.5321  |
| S7612 | 4.0  | Kobbebukta | Gipsdalen | K.Kåre  | Kobbebukta | 33N | 615544.000 | 8271644.000 | Carb       | 2714 | 76.6000   | 12.1000 | 3.6761  |
| S4327 | 3.3  | Kobbebukta | Gipsdalen | K.Kåre  | Kobbebukta | 33N | 615544.000 | 8271644.000 | Shale      | 2687 | 161.1000  | 0.0000  | 0.0000  |
| S4334 | 2.1  | Kobbebukta | Gipsdalen | K.Kåre  | Kobbebukta | 33N | 615544.000 | 8271644.000 | Shale      | 2721 | 208.5000  | 55.0000 | 6.1389  |
| S4332 | 0.0  | Kobbebukta | Gipsdalen | K.Kåre  | Kobbebukta | 33N | 615544.000 | 8271644.000 | Carb       | 2700 | 58.3000   | 6.3000  | 2.5148  |
| S7340 |      | Kobbebukta | Gipsdalen | K.Kåre  | Kobbebukta | 33N | 615544.000 | 8271644.000 | Carb       | 2730 | 189.1000  | 0.0000  | 0.0000  |
| S7338 |      | Kobbebukta | Gipsdalen | K.Kåre  | Kobbabukta | 33N | 615544.000 | 8271644.000 | Sst        | 2642 | 87.0000   | 2.3000  | 0.6152  |
| S4263 | 28.0 | Kobbebukta | Gipsdalen | K.Hanna |            | 33N | 615544.000 | 8271644.000 | Sst        | 2703 | 96.8000   | 17.6000 | 4.2313  |
| S4254 | 23.0 | Kobbebukta | Gipsdalen | K.Hanna |            | 33N | 615544.000 | 8271644.000 | Clayst     | 2670 | 136.0000  | 8.5000  | 1.4545  |
| S4253 | 22.0 | Kobbebukta | Gipsdalen | K.Hanna |            | 33N | 615544.000 | 8271644.000 | Clayst     | 2750 | 140.9000  | 24.9000 | 4.1127  |
| S4252 | 20.0 | Kobbebukta | Gipsdalen | K.Hanna |            | 33N | 615544.000 | 8271644.000 | Clayst     | 2708 | 262.7000  | 25.4000 | 2.2501  |
| S7506 | 17.0 | Kobbebukta | Gipsdalen | K.Hanna |            | 33N | 615544.000 | 8271644.000 | Shale      | 2658 | 199.5000  | -       | -       |
| S4247 | 16.0 | Kobbebukta | Gipsdalen | K.Hanna |            | 33N | 615544.000 | 8271644.000 | Shale      | 2470 | 182.6000  | -       | -       |
| S4250 | 13.0 | Kobbebukta | Gipsdalen | K.Hanna |            | 33N | 615544.000 | 8271644.000 | Cgl        | 2634 | 41.3000   | 0.0000  | 0.0000  |
| S4241 | 13.0 | Kobbebukta | Gipsdalen | K.Hanna |            | 33N | 615544.000 | 8271644.000 | Clayst Sst | 2742 | 163.5000  | 0.0000  | 0.0000  |
| S4249 | 11.5 | Kobbebukta | Gipsdalen | K.Hanna |            | 33N | 615544.000 | 8271644.000 | Sst        | 2661 | 45.9000   | 5.0000  | 2.5351  |
| S4255 | 8.0  | Kobbebukta | Gipsdalen | K.Hanna |            | 33N | 615544.000 | 8271644.000 | Clayst     | 2631 | 242.2000  | 0.0000  | 0.0000  |
| S7605 | 7.0  | Kobbebukta | Gipsdalen | K.Hanna |            | 33N | 615544.000 | 8271644.000 | Carb       | 2690 | 92.6000   | 16.3000 | 4.0965  |
| S4239 | 6.0  | Kobbebukta | Gipsdalen | K.Hanna |            | 33N | 615544.000 | 8271644.000 | Shale      | 2798 | 2913.3999 | 35.1000 | 0.2804  |
| S4246 | 5.5  | Kobbebukta | Gipsdalen | K.Hanna |            | 33N | 615544.000 | 8271644.000 | Dolo       | 2709 | 87.7000   | 4.6000  | 1.2207  |
| S4244 | 3.0  | Kobbebukta | Gipsdalen | K.Hanna |            | 33N | 615544.000 | 8271644.000 | Cgl        | 2650 | 0.0000    | 31.0000 | -       |
|       |      |            |           |         |            |     |            |             |            |      |           |         |         |

| S4251   | 3.0  | Kobbebukta    | Gipsdalen | K.Hanna | 33N | 615544.000 | 8271644.000 | Cgl       | 2718 | 171.6000 | 3.2000  | 0.4340  |
|---------|------|---------------|-----------|---------|-----|------------|-------------|-----------|------|----------|---------|---------|
| S4248   | 1.5  | Kobbebukta    | Gipsdalen | K.Hanna | 33N | 615544.000 | 8271644.000 | Cgl       | 2726 | -53.8000 | 8.2000  | -3.5470 |
| S4243   | 1.5  | Kobbebukta    | Gipsdalen | K.Hanna | 33N | 615544.000 | 8271644.000 | Sst       | 2675 | 104.1000 | 6.6000  | 1.4755  |
| S7801   |      | Kobbebukta    | Gipsdalen | K.Hanna | 33N | 615544.000 | 8271644.000 | Carb      | 2830 | 124.7000 | 3.7000  | 0.6905  |
| S7800   |      | Kobbebukta    | Gipsdalen | K.Hanna | 33N | 615544.000 | 8271644.000 | Carb      | 2846 | 143.3000 | 0.0000  | 0.0000  |
| S7613   |      | Kobbebukta    | Gipsdalen | K.Hanna | 33N | 615544.000 | 8271644.000 | Carb      | 2726 | 324.7000 | 12.7000 | 0.9102  |
| S7606   |      | Kobbebukta    | Gipsdalen | K.Hanna | 33N | 615544.000 | 8271644.000 | Carb      | 2698 | 37.7000  | 13.9000 | 8.5804  |
| S7515   |      | Kobbebukta    | Gipsdalen | K.Hanna | 33N | 615544.000 | 8271644.000 | Sst       | 2548 | 70.8000  | 26.6000 | 8.7435  |
| S7509   |      | Kobbebukta    | Gipsdalen | K.Hanna | 33N | 615544.000 | 8271644.000 | Red Shale | 2706 | 348.1000 | _       | -       |
| S7508   |      | Kobbebukta    | Gipsdalen | K.Hanna | 33N | 615544.000 | 8271644.000 | Shale     | 2757 | 137.6000 | 24.3000 | 4.1098  |
| S7507   |      | Kobbebukta    | Gipsdalen | K.Hanna | 33N | 615544.000 | 8271644.000 | Shale     | 2746 | 364.4000 | 39.1000 | 2.4971  |
| S7365   |      | Kobbebukta    | Gipsdalen | K.Hanna | 33N | 615544.000 | 8271644.000 | Carb      | 2637 | 66.2000  | 9.3000  | 3.2693  |
| S7510-2 |      | Kobbebukta    | Gipsdalen | K.Hanna | 33N | 615544.000 | 8271644.000 | Shale     | 2744 | 148.4000 | 26.3000 | 4.1244  |
| S7510-1 |      | Kobbebukta    | Gipsdalen | K.Hanna | 33N | 615544.000 | 8271644.000 | Sst       | 2669 | 111.0000 | 12.4000 | 2.5998  |
| S7352   | 0.0  | Nordvestbukta | Gipsdalen | K.Hanna | 33N | 613901.000 | 8271120.000 | Cgl Sst   | 2666 | 36.6000  | 1.6000  | 1.0174  |
| S5133   | 24.0 | Snyta         | Gipsdalen | K.Hanna | 33N | 612949.000 | 8270599.000 | Dolo      | 2726 | 86.1000  | _ '     | -       |
| S4051   | -0.2 | Snyta         | Gipsdalen | K.Hanna | 33N | 612949.000 | 8270599.000 | Dolomite  | 2667 | 0.0000   | 5.7000  | -       |
| S4049   | -3.0 | Snyta         | Gipsdalen | K.Hanna | 33N | 612949.000 | 8270599.000 | Clayst    | 2677 | 83.5000  | _ !     | -       |
| S4048   | -4.5 | Snyta         | Gipsdalen | K.Hanna | 33N | 612949.000 | 8270599.000 | Shale     | 2797 | 34.3000  | 18.2000 | 12.3484 |
| S4047   | -9.5 | Snyta         | Gipsdalen | K.Hanna | 33N | 612949.000 | 8270599.000 | Dolo      | 2810 | 46.8000  | 3.7000  | 1.8399  |
| S4274   | 15.0 | Langbukta     | Gipsdalen | K.Hanna | 33N | 614074.000 | 8264346.000 | Sst       | 2670 | 54.9000  | 10.0000 | 4.2390  |
| S4275-2 | 14.0 | Langbukta     | Gipsdalen | K.Hanna | 33N | 614074.000 | 8264346.000 | Silt Sst  | 2838 | 219.3000 | 29.9000 | 3.1730  |
| S4275   | 14.0 | Langbukta     | Gipsdalen | K.Hanna | 33N | 614074.000 | 8264346.000 | Silt Sst  | 2735 | -36.6000 | 8.2000  | -5.2140 |
| S4278   | 11.5 | Langbukta     | Gipsdalen | K.Hanna | 33N | 614074.000 | 8264346.000 | Clayst    | 2685 | 115.6000 | 34.7000 | 6.9856  |
| S4270   | 11.5 | Langbukta     | Gipsdalen | K.Hanna | 33N | 614074.000 | 8264346.000 | Clayst    | 2724 | 164.1000 | 12.3000 | 1.7443  |
| S4280   | 10.1 | Langbukta     | Gipsdalen | K.Hanna | 33N | 614074.000 | 8264346.000 | Clayst    | 2681 | 177.6000 | 0.0000  | 0.0000  |
| S4281   | 9.6  | Langbukta     | Gipsdalen | K.Hanna | 33N | 614074.000 | 8264346.000 | Clayst    | 2695 | 207.7000 | 10.9000 | 1.2213  |
| S4282   | 9.0  | Langbukta     | Gipsdalen | K.Hanna | 33N | 614074.000 | 8264346.000 | Clayst    | 2695 | 178.6000 | 11.3000 | 1.4724  |
| S6732   | -7.0 | Langbukta     | Gipsdalen | K.Hanna | 33N | 614074.000 | 8264346.000 | Shale     | 2636 | 79.2000  | 0.0000  | 0.0000  |
|         |      |               |           |         |     |            |             |           |      |          |         |         |
| S6731 | -7.5    | Langbukta       | Gipsdalen | K.Hanna | 33N | 614074.000 | 8264346.000 | Shale     | 2585 | 88.4000  | _ !     | -       |
|-------|---------|-----------------|-----------|---------|-----|------------|-------------|-----------|------|----------|---------|---------|
| S6730 | -9.5    | Langbukta       | Gipsdalen | K.Hanna | 33N | 614074.000 | 8264346.000 | Shale     | 2605 | 91.1000  | _ !     | -       |
| S6729 | -11.0   | Langbukta       | Gipsdalen | K.Hanna | 33N | 614074.000 | 8264346.000 | Shale     | 2661 | 46.2000  |         | -       |
| S6728 | -12.0   | Langbukta       | Gipsdalen | K.Hanna | 33N | 614074.000 | 8264346.000 | Shale     | 2651 | 115.9000 | 18.3000 | 3.6745  |
| S6726 | -14.8   | Langbukta       | Gipsdalen | K.Hanna | 33N | 614074.000 | 8264346.000 | Shale     | 2599 | 57.5000  | _ !     | -       |
| S6723 | -20.4   | Langbukta       | Gipsdalen | K.Hanna | 33N | 614074.000 | 8264346.000 | Shale     | 2576 | 76.6000  |         | -       |
| S6720 | -24.0   | Langbukta       | Gipsdalen | K.Hanna | 33N | 614074.000 | 8264346.000 | Shale     | 2584 | 92.0000  | _ !     | -       |
| S7504 |         | Utløp Langsiget | Gipsdalen | K.Hanna | 33N | 614226.198 | 8264044.985 | Sst       | 2622 | 59.0000  | 15.6000 | 6.1533  |
| S7804 |         | Ærfuglvika N    | Gipsdalen | K.Hanna | 33N | 616427.210 | 8260983.772 | Limestone | 2723 | 66.3000  | 14.2000 | 4.9844  |
| S4289 | 37.0    | Ærfuglvika      | Gipsdalen | K.Hanna | 33N | 616599.000 | 8260779.000 | Clayst    | 2646 | 210.1000 | 24.8000 | 2.7470  |
| S4286 | 4.0     | Ærfuglvika      | Gipsdalen | K.Hanna | 33N | 616599.000 | 8260779.000 | Sst       | 2489 | 34.9000  | 3.9000  | 2.6006  |
| S4285 | 2.5     | Ærfuglvika      | Gipsdalen | K.Hanna | 33N | 616599.000 | 8260779.000 | Silt      | 2584 | 193.9000 | _       | -       |
| S4411 | 10.0    | Raudnuten       | Gipsdalen | K.Hanna | 33N | 619300.000 | 8262576.000 | Sst Carb  | 2382 | 10.9000  | 0.0000  | 0.0000  |
| S7689 |         | Bendabukta      | Gipsdalen | K.Hanna | 33N | 618062.663 | 8259127.911 | Cgl       | 2609 | 29.7000  | 3.3000  | 2.5858  |
| S7654 | 19.0    | Nordvestbukta W | Gipsdalen | K.Duner | 33N | 613755.536 | 8271081.948 | Limestone | 2807 | 24.2000  | 12.8000 | 12.3092 |
| S7653 | 16.0    | Nordvestbukta W | Gipsdalen | K.Duner | 33N | 613755.536 | 8271081.948 | Limestone | 2811 | 66.4000  | 11.7000 | 4.1006  |
| S7652 | 7.5     | Nordvestbukta W | Gipsdalen | K.Duner | 33N | 613755.536 | 8271081.948 | Dolo      | 2822 | 48.8000  | 25.9000 | 12.3514 |
| S7651 | 6.0-7.0 | Nordvestbukta W | Gipsdalen | K.Duner | 33N | 613755.536 | 8271081.948 | Sst       | 2833 | 0.0000   | 9.0000  | -       |
| S7607 |         | Nordvestbukta W | Gipsdalen | K.Duner | 33N | 613755.536 | 8271081.948 | Bioherm   | 2744 | 40.3000  | 0.0000  | 0.0000  |
| S4050 | 0.5     | Snyta           | Gipsdalen | K.Duner | 33N | 612949.000 | 8270599.000 | Dolomite  | 2750 | 0.0000   | 3.7000  | -       |
| S4097 | 22.0    | Amfi            | Gipsdalen | K.Duner | 33N | 612786.000 | 8269557.000 | Dolomite  | 2749 | 117.0000 | 35.1000 | 6.9816  |
| S7227 | 21.0    | Amfi            | Gipsdalen | K.Duner | 33N | 612786.000 | 8269557.000 | Shale     | 2801 | 0.0000   | _       | -       |
| S4098 | 20.0    | Amfi            | Gipsdalen | K.Duner | 33N | 612786.000 | 8269557.000 | Dolomite  | 2821 | 54.6000  | 0.0000  | 0.0000  |
| S4099 | 19.5    | Amfi            | Gipsdalen | K.Duner | 33N | 612786.000 | 8269557.000 | Carb      | 2815 | 68.0000  | 18.0000 | 6.1602  |
| S4100 | 19.2    | Amfi            | Gipsdalen | K.Duner | 33N | 612786.000 | 8269557.000 | Carb      | 2708 | 26.8000  | 40.3000 | 34.9949 |
| S4101 | 19.0    | Amfi            | Gipsdalen | K.Duner | 33N | 612786.000 | 8269557.000 | Carb      | 2702 | 0.0000   | _       | -       |
| S4103 | 18.6    | Amfi            | Gipsdalen | K.Duner | 33N | 612786.000 | 8269557.000 | Carb      | 2700 | 78.1000  | 8.2000  | 2.4434  |
| S4104 | 18.3    | Amfi            | Gipsdalen | K.Duner | 33N | 612786.000 | 8269557.000 | Carb      | 2706 | 55.8000  | 0.0000  | 0.0000  |
| S4106 | 18.2    | Amfi            | Gipsdalen | K.Duner | 33N | 612786.000 | 8269557.000 | Carb      | 2700 | 49.9000  | 0.0000  | 0.0000  |
|       |         |                 |           |         |     |            |             |           |      |          |         |         |

| S4107   | 18.1 | Amfi | Gipsdalen | K.Duner | 33N | 612786.000 | 8269557.000 | Carb     | 2681 | 63.3000  | -       | -       |
|---------|------|------|-----------|---------|-----|------------|-------------|----------|------|----------|---------|---------|
| S4061   | 18.0 | Amfi | Gipsdalen | K.Duner | 33N | 612786.000 | 8269557.000 | Dolo Sh  | 2702 | -84.5000 | 13.3000 | -3.6629 |
| S7226   | 18.0 | Amfi | Gipsdalen | K.Duner | 33N | 612786.000 | 8269557.000 | Shale    | 2672 | 98.3000  | -       | -       |
| S7319   | 15.0 | Amfi | Gipsdalen | K.Duner | 33N | 612786.000 | 8269557.000 | Carb     | 2540 | 6.0000   | 2.7000  | 10.4724 |
| S4060   | 13.0 | Amfi | Gipsdalen | K.Duner | 33N | 612786.000 | 8269557.000 | Dolomite | 2699 | 24.7000  | 13.1000 | 12.3427 |
| S4110   | 13.0 | Amfi | Gipsdalen | K.Duner | 33N | 612786.000 | 8269557.000 | Dolomite | 2764 | 0.0000   | 7.0000  | -       |
| S4111   | 10.8 | Amfi | Gipsdalen | K.Duner | 33N | 612786.000 | 8269557.000 | Dolomite | 2816 | 0.0000   | 4.9000  | -       |
| S4112   | 10.5 | Amfi | Gipsdalen | K.Duner | 33N | 612786.000 | 8269557.000 | Shale    | 2756 | 25.0000  | -       | -       |
| S7224   | 10.0 | Amfi | Gipsdalen | K.Duner | 33N | 612786.000 | 8269557.000 | Shale    | 2709 | 252.3000 | 0.0000  | 0.0000  |
| S7318   | 10.0 | Amfi | Gipsdalen | K.Duner | 33N | 612786.000 | 8269557.000 | Sst      | 2602 | 13.5000  | 2.1000  | 3.6201  |
| S4113   | 9.0  | Amfi | Gipsdalen | K.Duner | 33N | 612786.000 | 8269557.000 | Dolomite | 2829 | 20.0000  | 4.5000  | 5.2362  |
| S4114   | 8.0  | Amfi | Gipsdalen | K.Duner | 33N | 612786.000 | 8269557.000 | Dolomite | 2803 | 28.4000  | -       | -       |
| S4115   | 5.0  | Amfi | Gipsdalen | K.Duner | 33N | 612786.000 | 8269557.000 | Dolomite | 2693 | 55.3000  | 19.6000 | 8.2483  |
| S4117   | 1.5  | Amfi | Gipsdalen | K.Duner | 33N | 612786.000 | 8269557.000 | Dolomite | 2810 | 16.3000  | 5.1000  | 7.2814  |
| S7312   | 1.0  | Amfi | Gipsdalen | K.Duner | 33N | 612786.000 | 8269557.000 | Bioherm  | 2709 | 6.9000   | 2.2000  | 7.4201  |
| S7639   | -0.1 | Amfi | Gipsdalen | K.Duner | 33N | 612786.000 | 8269557.000 | Dolo     | 2798 | 41.0000  | -       | -       |
| S7320   | 0.0  | Amfi | Gipsdalen | K.Duner | 33N | 612786.000 | 8269557.000 | Carb     | 2707 | 0.0000   | 2.4000  | -       |
| S7317   | 0.0  | Amfi | Gipsdalen | K.Duner | 33N | 612786.000 | 8269557.000 | Carb     | 2752 | -20.5000 | 3.0000  | -3.4057 |
| S7316   | 0.0  | Amfi | Gipsdalen | K.Duner | 33N | 612786.000 | 8269557.000 | Carb     | 2654 | 52.5000  | 0.0000  | 0.0000  |
| S7315   | 0.0  | Amfi | Gipsdalen | K.Duner | 33N | 612786.000 | 8269557.000 | Carb     | 2669 | 40.7000  | 2.6000  | 1.4867  |
| S7314   | 0.0  | Amfi | Gipsdalen | K.Duner | 33N | 612786.000 | 8269557.000 | Carb     | 2701 | 11.3000  | 1.8000  | 3.7071  |
| S7313   | 0.0  | Amfi | Gipsdalen | K.Duner | 33N | 612786.000 | 8269557.000 | Carb     | 2778 | 26.1000  | 1.6000  | 1.4266  |
| S7311-2 | 0.0  | Amfi | Gipsdalen | K.Duner | 33N | 612786.000 | 8269557.000 | Bioherm  | 2694 | 40.1000  | 0.0000  | 0.0000  |
| S7311-1 | 0.0  | Amfi | Gipsdalen | K.Duner | 33N | 612786.000 | 8269557.000 | Bioherm  | 2768 | 19.4000  | 2.0000  | 2.3992  |
| S7310   | 0.0  | Amfi | Gipsdalen | K.Duner | 33N | 612786.000 | 8269557.000 | Carb     | 2709 | 23.4000  | 1.8000  | 1.7902  |
| S7309   | 0.0  | Amfi | Gipsdalen | K.Duner | 33N | 612786.000 | 8269557.000 | Carb     | 2727 | 13.2000  | 2.1000  | 3.7024  |
| S7308   | 0.0  | Amfi | Gipsdalen | K.Duner | 33N | 612786.000 | 8269557.000 | Carb     | 2544 | 678.2000 | 1.8000  | 0.0618  |
| S4121   | 0.0  | Amfi | Gipsdalen | K.Duner | 33N | 612786.000 | 8269557.000 | Dolomite | 2780 | 47.5000  | 35.7000 | 17.4908 |
| S4120   | 0.0  | Amfi | Gipsdalen | K.Duner | 33N | 612786.000 | 8269557.000 | Dolomite | 2653 | 47.2000  | 0.0000  | 0.0000  |
|         |      |      |           |         |     |            |             |          |      |          |         |         |

| S4119   | 0.0  | Amfi      | Gipsdalen | K.Duner | 33N | 612786.000 | 8269557.000 | Dolomite | 2766 | 29.1000  | -       | -       |
|---------|------|-----------|-----------|---------|-----|------------|-------------|----------|------|----------|---------|---------|
| S4118   | 0.0  | Amfi      | Gipsdalen | K.Duner | 33N | 612786.000 | 8269557.000 | Dolomite | 2720 | 19.1000  | 3.0000  | 3.6553  |
| S7671   |      | Amfi      | Gipsdalen | K.Duner | 33N | 612786.000 | 8269557.000 | Dolo     | 2834 | -32.1000 | 10.1000 | -7.3224 |
| S4096-1 | 0.9  | Amfi N    | Gipsdalen | K.Duner | 33N | 612786.000 | 8269557.000 | Carb     | 2669 | 56.3000  | 17.7000 | 7.3164  |
| S4096-2 | 0.9  | Amfi N    | Gipsdalen | K.Duner | 33N | 612855.539 | 8269649.300 | Carb     | 2700 | 0.0000   | 0.0000  | 0.0000  |
| S4095   | 0.7  | Amfi N    | Gipsdalen | K.Duner | 33N | 612855.539 | 8269649.300 | Carb     | 2691 | 46.2000  | -       | -       |
| S4094   | 0.3  | Amfi N    | Gipsdalen | K.Duner | 33N | 612855.539 | 8269649.300 | Carb     | 2656 | 50.7000  | -       | -       |
| S4093   | 0.1  | Amfi N    | Gipsdalen | K.Duner | 33N | 612855.539 | 8269649.300 | Carb     | 2793 | 0.0000   | 24.2000 | -       |
| S7672   |      | Amfi N    | Gipsdalen | K.Duner | 33N | 612855.539 | 8269649.300 | Dolo     | 2809 | 17.0000  | 3.8000  | 5.2020  |
| S4078   | 18.1 | Amfi S    | Gipsdalen | K.Duner | 33N | 612720.846 | 8269496.240 | Carb     | 2657 | 103.9000 | -       | -       |
| S4079   | 17.9 | Amfi S    | Gipsdalen | K.Duner | 33N | 612720.846 | 8269496.240 | Carb     | 2793 | 13.6000  | 6.0000  | 10.2671 |
| S7500   |      | Amfi S    | Gipsdalen | K.Duner | 33N | 612720.846 | 8269496.240 | Dolomite | 2783 | 0.0000   | 0.0000  | 0.0000  |
| S7337   | 3.5  | Kluftvann | Gipsdalen | K.Duner | 33N | 613292.000 | 8269587.000 | Sst      | 2607 | 12.5000  | 2.8000  | 5.2129  |
| S7336   | 3.0  | Kluftvann | Gipsdalen | K.Duner | 33N | 613292.000 | 8269587.000 | Sst      | 2602 | 6.2000   | 0.0000  | 0.0000  |
| S7335   | 2.5  | Kluftvann | Gipsdalen | K.Duner | 33N | 613292.000 | 8269587.000 | Sst      | 2556 | 10.7000  | 3.4000  | 7.3949  |
| S7334   | 2.0  | Kluftvann | Gipsdalen | K.Duner | 33N | 613292.000 | 8269587.000 | Carb     | 2702 | 31.6000  | 2.0000  | 1.4729  |
| S7333   | 1.0  | Kluftvann | Gipsdalen | K.Duner | 33N | 613292.000 | 8269587.000 | Carb     | 2771 | 6.2000   | 2.8000  | 10.5100 |
| S7332   | 0.0  | Kluftvann | Gipsdalen | K.Duner | 33N | 613292.000 | 8269587.000 | Sst      | 2723 | 16.4000  | 0.0000  | 0.0000  |
| S7331   | -0.3 | Kluftvann | Gipsdalen | K.Duner | 33N | 613292.000 | 8269587.000 | Dolo     | 2818 | 0.0000   | 12.3000 | -       |
| S4080   | 3.7  | Drangane  | Gipsdalen | K.Duner | 33N | 612282.000 | 8269284.000 | Carb     | 2683 | -24.8000 | -       | -       |
| S4081   | 3.5  | Drangane  | Gipsdalen | K.Duner | 33N | 612282.000 | 8269284.000 | Carb     | 2703 | 24.2000  | 7.6000  | 7.3086  |
| S4082   | 3.1  | Drangane  | Gipsdalen | K.Duner | 33N | 612282.000 | 8269284.000 | Carb     | 2670 | 0.0000   | 19.3000 | -       |
| S4083   | 2.8  | Drangane  | Gipsdalen | K.Duner | 33N | 612282.000 | 8269284.000 | Carb     | 2650 | 24.9000  | -       | -       |
| S4085   | 2.2  | Drangane  | Gipsdalen | K.Duner | 33N | 612282.000 | 8269284.000 | Shale    | 2594 | 0.0000   | -       | -       |
| S7234   | 2.0  | Drangane  | Gipsdalen | K.Duner | 33N | 612282.000 | 8269284.000 | Dolo     | 2811 | 26.8000  | 8.5000  | 7.3811  |
| S4090   | 0.9  | Drangane  | Gipsdalen | K.Duner | 33N | 612282.000 | 8269284.000 | Shale    | 2669 | 32.8000  | -       | -       |
| S7232   | 0.0  | Drangane  | Gipsdalen | K.Duner | 33N | 612282.000 | 8269284.000 | Dolomite | 2634 | 25.7000  | 0.0000  | 0.0000  |
| S7674   |      | Drangane  | Gipsdalen | K.Duner | 33N | 612282.000 | 8269284.000 | Dolo     | 2819 | 0.0000   | 15.3000 | -       |
| S4073   | 17.1 | Teltvika  | Gipsdalen | K.Duner | 33N | 612630.000 | 8267879.000 | Shale    | 2722 | 77.0000  | 0.0000  | 0.0000  |
|         |      |           |           |         |     |            |             |          |      |          |         |         |

| S5132 | 16.0 | Teltvika | Gipsdalen | K.Duner | 33N | 612630.000 | 8267879.000 | Dolo      | 2716 | 60.8000  | 32.3000 | 12.3633 |
|-------|------|----------|-----------|---------|-----|------------|-------------|-----------|------|----------|---------|---------|
| S5131 | 13.0 | Teltvika | Gipsdalen | K.Duner | 33N | 612630.000 | 8267879.000 | Limestone | 2709 | 79.7000  | _       | -       |
| S4139 | 12.0 | Teltvika | Gipsdalen | K.Duner | 33N | 612630.000 | 8267879.000 | Carb      | 2806 | 54.4000  | 9.6000  | 4.1068  |
| S4140 | 11.0 | Teltvika | Gipsdalen | K.Duner | 33N | 612630.000 | 8267879.000 | Carb      | 2749 | 53.2000  | 8.4000  | 3.6745  |
| S7622 | 10.5 | Teltvika | Gipsdalen | K.Duner | 33N | 612630.000 | 8267879.000 | Dolo      | 2812 | 8.4000   | 2.6000  | 7.2033  |
| S4141 | 10.0 | Teltvika | Gipsdalen | K.Duner | 33N | 612630.000 | 8267879.000 | Carb      | 2728 | 38.1000  | 4.0000  | 2.4433  |
| S5128 | 8.0  | Teltvika | Gipsdalen | K.Duner | 33N | 612630.000 | 8267879.000 | Limestone | 2681 | 23.2000  | _       | -       |
| S4143 | 7.3  | Teltvika | Gipsdalen | K.Duner | 33N | 612630.000 | 8267879.000 | Carb      | 2659 | 16.7000  | 0.0000  | 0.0000  |
| S4144 | 7.0  | Teltvika | Gipsdalen | K.Duner | 33N | 612630.000 | 8267879.000 | Carb      | 2688 | 44.9000  | 6.7000  | 3.4727  |
| S4146 | 6.0  | Teltvika | Gipsdalen | K.Duner | 33N | 612630.000 | 8267879.000 | Carb Sh   | 2369 | 132.3000 | 5.2000  | 0.9147  |
| S7623 | 6.0  | Teltvika | Gipsdalen | K.Duner | 33N | 612630.000 | 8267879.000 | Carb      | 2698 | 43.0000  | 0.0000  | 0.0000  |
| S5127 | 6.0  | Teltvika | Gipsdalen | K.Duner | 33N | 612630.000 | 8267879.000 | Limestone | 2674 | 53.4000  | -       | -       |
| S4071 | 5.9  | Teltvika | Gipsdalen | K.Duner | 33N | 612630.000 | 8267879.000 | Carb Sh   | 2813 | 35.9000  | 3.8000  | 2.4633  |
| S4070 | 5.5  | Teltvika | Gipsdalen | K.Duner | 33N | 612630.000 | 8267879.000 | Carb Sh   | 2649 | 120.1000 | 18.9000 | 3.6623  |
| S7620 | 5.5  | Teltvika | Gipsdalen | K.Duner | 33N | 612630.000 | 8267879.000 | Carb      | 2367 | 88.0000  | 44.1000 | 11.6625 |
| S7619 | 5.5  | Teltvika | Gipsdalen | K.Duner | 33N | 612630.000 | 8267879.000 | Dolo      | 2778 | 19.9000  | 9.9000  | 11.5776 |
| S4148 | 5.0  | Teltvika | Gipsdalen | K.Duner | 33N | 612630.000 | 8267879.000 | Dolo      | 2678 | 25.5000  | 8.0000  | 7.3010  |
| S7614 | 5.0  | Teltvika | Gipsdalen | K.Duner | 33N | 612630.000 | 8267879.000 | Sst       | 2536 | -8.7000  | 9.2000  | 24.6095 |
| S4069 | 4.8  | Teltvika | Gipsdalen | K.Duner | 33N | 612630.000 | 8267879.000 | Sst       | 2608 | 21.8000  | 2.3000  | 2.4553  |
| S4149 | 4.4  | Teltvika | Gipsdalen | K.Duner | 33N | 612630.000 | 8267879.000 | Sh Dolo   | 2805 | 48.6000  | 29.8000 | 14.2697 |
| S4132 | 4.0  | Teltvika | Gipsdalen | K.Duner | 33N | 612630.000 | 8267879.000 | Carb      | 2696 | 21.8000  | 0.0000  | 0.0000  |
| S4150 | 4.0  | Teltvika | Gipsdalen | K.Duner | 33N | 612630.000 | 8267879.000 | Sh Dolo   | 2803 | 124.2000 | 0.0000  | 0.0000  |
| S4122 | 4.0  | Teltvika | Gipsdalen | K.Duner | 33N | 612630.000 | 8267879.000 | Carb      | 2694 | 22.5000  | 23.9000 | 24.7201 |
| S4123 | 3.6  | Teltvika | Gipsdalen | K.Duner | 33N | 612630.000 | 8267879.000 | Carb      | 2699 | 38.4000  | 11.5000 | 6.9695  |
| S4151 | 3.5  | Teltvika | Gipsdalen | K.Duner | 33N | 612630.000 | 8267879.000 | Sh Dolo   | 2643 | 68.9000  | 4.3000  | 1.4524  |
| S4067 | 3.3  | Teltvika | Gipsdalen | K.Duner | 33N | 612630.000 | 8267879.000 | Shale     | 2754 | 39.7000  | 6.3000  | 3.6930  |
| S4124 | 3.0  | Teltvika | Gipsdalen | K.Duner | 33N | 612630.000 | 8267879.000 | Carb      | 2700 | 37.8000  | 6.0000  | 3.6940  |
| S4152 | 2.9  | Teltvika | Gipsdalen | K.Duner | 33N | 612630.000 | 8267879.000 | Sh Dolo   | 2777 | 101.5000 | 0.0000  | 0.0000  |
| S4133 | 2.7  | Teltvika | Gipsdalen | K.Duner | 33N | 612630.000 | 8267879.000 | Carb      | 2695 | 45.5000  | 16.1000 | 8.2347  |
|       |      |          |           |         |     |            |             |           |      |          |         |         |

| S4066   | 2.6  | Teltvika | Gipsdalen | K.Duner | 33N | 612630.000 | 8267879.000 | Dolo Sh   | 2648 | 52.8000  | 28.1000 | 12.3853 |
|---------|------|----------|-----------|---------|-----|------------|-------------|-----------|------|----------|---------|---------|
| S4125   | 2.5  | Teltvika | Gipsdalen | K.Duner | 33N | 612630.000 | 8267879.000 | Carb      | 2693 | 45.7000  | 6.8000  | 3.4628  |
| S4134   | 2.3  | Teltvika | Gipsdalen | K.Duner | 33N | 612630.000 | 8267879.000 | Carb      | 2694 | 46.7000  | 0.0000  | 0.0000  |
| S4126   | 2.1  | Teltvika | Gipsdalen | K.Duner | 33N | 612630.000 | 8267879.000 | Carb      | 2703 | 107.0000 | 19.5000 | 4.2412  |
| S4154   | 2.0  | Teltvika | Gipsdalen | K.Duner | 33N | 612630.000 | 8267879.000 | Dolo      | 2803 | 53.6000  | 28.5000 | 12.3741 |
| S4155   | 1.7  | Teltvika | Gipsdalen | K.Duner | 33N | 612630.000 | 8267879.000 | Dolo      | 2823 | -18.4000 | 8.2000  | 10.3712 |
| S4127   | 1.6  | Teltvika | Gipsdalen | K.Duner | 33N | 612630.000 | 8267879.000 | Carb      | 2704 | 35.2000  | 18.7000 | 12.3633 |
| S4136   | 1.4  | Teltvika | Gipsdalen | K.Duner | 33N | 612630.000 | 8267879.000 | Carb      | 2681 | 13.8000  | 14.6000 | 24.6212 |
| S4156   | 1.4  | Teltvika | Gipsdalen | K.Duner | 33N | 612630.000 | 8267879.000 | Dolomite  | 2782 | 182.4000 | 12.1000 | 1.5438  |
| S4128   | 1.2  | Teltvika | Gipsdalen | K.Duner | 33N | 612630.000 | 8267879.000 | Carb      | 2799 | 34.6000  | 17.3000 | 11.6360 |
| S4129   | 1.0  | Teltvika | Gipsdalen | K.Duner | 33N | 612630.000 | 8267879.000 | Carb      | 2705 | 58.8000  | 15.6000 | 6.1742  |
| S5126   | 1.0  | Teltvika | Gipsdalen | K.Duner | 33N | 612630.000 | 8267879.000 | Limestone | 2721 | 46.0000  | -       | -       |
| S4157   | 0.9  | Teltvika | Gipsdalen | K.Duner | 33N | 612630.000 | 8267879.000 | Dolomite  | 2618 | 10.4000  | 15.6000 | 34.9081 |
| S4137   | 0.7  | Teltvika | Gipsdalen | K.Duner | 33N | 612630.000 | 8267879.000 | Carb      | 2672 | 106.9000 | 0.0000  | 0.0000  |
| S4130   | 0.6  | Teltvika | Gipsdalen | K.Duner | 33N | 612630.000 | 8267879.000 | Carb      | 2707 | 52.7000  | 28.0000 | 12.3647 |
| S4158   | 0.4  | Teltvika | Gipsdalen | K.Duner | 33N | 612630.000 | 8267879.000 | Dolomite  | 2758 | 47.7000  | 10.1000 | 4.9276  |
| S4131   | 0.2  | Teltvika | Gipsdalen | K.Duner | 33N | 612630.000 | 8267879.000 | Carb      | 2807 | 43.6000  | 0.0000  | 0.0000  |
| S4138   | 0.2  | Teltvika | Gipsdalen | K.Duner | 33N | 612630.000 | 8267879.000 | Carb      | 2710 | 38.6000  | 13.6000 | 8.1995  |
| S4159   | 0.1  | Teltvika | Gipsdalen | K.Duner | 33N | 612630.000 | 8267879.000 | Dolomite  | 2710 | 130.4000 | 17.3000 | 3.0875  |
| S7616   | 0.0  | Teltvika | Gipsdalen | K.Duner | 33N | 612630.000 | 8267879.000 | Carb      | 2815 | 55.4000  | 11.9000 | 4.9989  |
| S5125   | 0.0  | Teltvika | Gipsdalen | K.Duner | 33N | 612630.000 | 8267879.000 | Limestone | 2715 | 198.4000 | -       | -       |
| S4065   | -1.0 | Teltvika | Gipsdalen | K.Duner | 33N | 612630.000 | 8267879.000 | Dolomite  | 2827 | 29.8000  | 0.0000  | 0.0000  |
| S7615   | -3.5 | Teltvika | Gipsdalen | K.Duner | 33N | 612630.000 | 8267879.000 | Dolo      | 2775 | 28.8000  | 15.3000 | 12.3633 |
| S7814   |      | Teltvika | Gipsdalen | K.Duner | 33N | 612630.000 | 8267879.000 | Sst       | 2531 | 0.0000   | 49.7000 | -       |
| S7675   |      | Teltvika | Gipsdalen | K.Duner | 33N | 612630.000 | 8267879.000 | Carb      | 2697 | 15.6000  | 23.4000 | 34.9081 |
| S7621   |      | Teltvika | Gipsdalen | K.Duner | 33N | 612630.000 | 8267879.000 | Dolo      | 2814 | 12.4000  | 0.0000  | 0.0000  |
| S7618   |      | Teltvika | Gipsdalen | K.Duner | 33N | 612630.000 | 8267879.000 | Dolo      | 2807 | 61.2000  | 9.1000  | 3.4604  |
| S7603-2 |      | Teltvika | Gipsdalen | K.Duner | 33N | 612630.000 | 8267879.000 | Dolo      | 2700 | 51.6000  | 7.7000  | 3.4728  |
| S7603-1 |      | Teltvika | Gipsdalen | K.Duner | 33N | 612630.000 | 8267879.000 | Carb      | 2699 | 34.4000  | 5.4000  | 3.6532  |
|         |      |          |           |         |     |            |             |           |      |          |         |         |

| S6741 | 17.0 | K. Elisabeth   | Gipsdalen  | K.Duner   | 33N | 613217.000 | 8265913.000 | Carb Shale | 2672 | 60.2000  | 0.0000  | 0.0000  |
|-------|------|----------------|------------|-----------|-----|------------|-------------|------------|------|----------|---------|---------|
| S6739 | 7.9  | K. Elisabeth   | Gipsdalen  | K.Duner   | 33N | 613217.000 | 8265913.000 | Carb Shale | 2638 | 60.0000  | -       | -       |
| S6738 | 6.2  | K. Elisabeth   | Gipsdalen  | K.Duner   | 33N | 613217.000 | 8265913.000 | Shale      | 2751 | 65.9000  | -       | -       |
| S6737 | 3.7  | K. Elisabeth   | Gipsdalen  | K.Duner   | 33N | 613217.000 | 8265913.000 | Shale      | 2656 | 81.4000  | -       | -       |
| S7802 | 3.5  | K. Elisabeth   | Gipsdalen  | K.Duner   | 33N | 613217.000 | 8265913.000 | Carb       | 2700 | 24.6000  | 2.6000  | 2.4596  |
| S6736 | 3.0  | K. Elisabeth   | Gipsdalen  | K.Duner   | 33N | 613217.000 | 8265913.000 | Shale      | 2689 | 124.0000 | -       | -       |
| S6733 | 1.7  | K. Elisabeth   | Gipsdalen  | K.Duner   | 33N | 613217.000 | 8265913.000 | Shale      | 2753 | 188.6000 | -       | -       |
| S7599 |      | K. Elisabeth   | Gipsdalen  | K.Duner   | 33N | 613217.000 | 8265913.000 | Carb       | 2704 | -12.7000 | 5.7000  | 10.4449 |
| S7596 |      | K. Elisabeth   | Gipsdalen  | K.Duner   | 33N | 613217.000 | 8265913.000 | Carb       | 2813 | 15.0000  | 0.0000  | 0.0000  |
| S7601 |      | K. Elisabeth S | Gipsdalen  | K.Duner   | 33N | 613391.252 | 8265807.478 | Carb       | 2720 | 69.4000  | 10.9000 | 3.6551  |
| S5001 | 0.0  | Alfredfj N     | Bjarmeland | Hambergfj | 33N | 621095.618 | 8257638.022 | Limestone  | 2666 | 0.0000   | -       | -       |
| S5000 | 0.0  | Alfredfj W     | Bjarmeland | Hambergfj | 33N | 620638.673 | 8257011.083 | Limestone  | 2651 | -17.6000 | 0.0000  | 0.0000  |
| S7636 | 25.0 | Alfredfj SE    | Bjarmeland | Hambergfj | 33N | 621382.043 | 8256717.704 | Carb       | 2599 | 0.0000   | 4.3000  | -       |
| S7635 | 12.0 | Alfredfj SE    | Bjarmeland | Hambergfj | 33N | 621382.043 | 8256717.704 | Carb       | 2671 | 34.0000  | 18.6000 | 12.7312 |
| S7634 | 4.5  | Alfredfj SE    | Bjarmeland | Hambergfj | 33N | 621382.043 | 8256717.704 | Sst        | 2646 | 27.3000  | 8.6000  | 7.3311  |
| S7633 | 2.0  | Alfredfj SE    | Bjarmeland | Hambergfj | 33N | 621382.043 | 8256717.704 | Carb       | 2680 | 166.3000 | 10.5000 | 1.4694  |
| S7638 |      | Alfredfj SE    | Bjarmeland | Hambergfj | 33N | 621382.043 | 8256717.704 | Carb       | 2685 | 26.6000  | 10.0000 | 8.7489  |
| S7637 |      | Alfredfj SE    | Bjarmeland | Hambergfj | 33N | 621382.043 | 8256717.704 | Carb Shale | 2674 | 0.0000   | 35.7000 | -       |
| S7230 | 28.0 | Avdalen        | Bjarmeland | Hambergfj | 33N | 620210.104 | 8257188.633 | Sst        | 2568 | 49.1000  | 0.0000  | 0.0000  |
| S7307 | 7.0  | Avdalen        | Bjarmeland | Hambergfj | 33N | 620210.104 | 8257188.633 | Sst        | 2595 | 90.5000  | 1.8000  | 0.4629  |
| S7306 | 1.5  | Avdalen        | Bjarmeland | Hambergfj | 33N | 620210.104 | 8257188.633 | Sst        | 2561 | 97.3000  | 2.3000  | 0.5501  |
| S7221 | 0.0  | Avdalen        | Bjarmeland | Hambergfj | 33N | 620210.104 | 8257188.633 | Shale      | 2559 | 58.5000  | 0.0000  | 0.0000  |
| S7220 | 0.0  | Avdalen        | Bjarmeland | Hambergfj | 33N | 620210.104 | 8257188.633 | Shale      | 2539 | 100.6000 | 0.0000  | 0.0000  |
| S7327 | 30.5 | Hambergfj      | Bjarmeland | Hambergfj | 33N | 621311.000 | 8255649.000 | Carb       | 2660 | 15.3000  | 0.0000  | 0.0000  |
| S7326 | 20.0 | Hambergfj      | Bjarmeland | Hambergfj | 33N | 621311.000 | 8255649.000 | Carb       | 2665 | 44.2000  | 2.8000  | 1.4742  |
| S6744 | 17.3 | Hambergfj      | Bjarmeland | Hambergfj | 33N | 621311.000 | 8255649.000 | Shale      | 2647 | -42.8000 | -       | -       |
| S5602 | 8.0  | Hambergfj      | Bjarmeland | Hambergfj | 33N | 621311.000 | 8255649.000 | Shale      | 2428 | 265.1000 | -       | -       |
| S6742 | 8.0  | Hambergfj      | Bjarmeland | Hambergfj | 33N | 621311.000 | 8255649.000 | Sst        | 2654 | 34.8000  | 12.3000 | 8.2255  |
| S5599 | 6.3  | Hambergfj      | Bjarmeland | Hambergfj | 33N | 621311.000 | 8255649.000 | Carb Shale | 2537 | 51.1000  | -       | -       |
|       |      |                |            |           |     |            |             |            |      |          |         |         |

| S7325   | 3.7  | Hambergfj    | Bjarmeland | Hambergfj | 33N | 621311.000 | 8255649.000 | Shale Carb | 2634 | 46.6000  | 0.0000  | 0.0000  |
|---------|------|--------------|------------|-----------|-----|------------|-------------|------------|------|----------|---------|---------|
| S5141   | 0.0  | Hambergfj    | Bjarmeland | Hambergfj | 33N | 621311.000 | 8255649.000 | Sst        | 2673 | 26.4000  | -       | -       |
| S7240   | 26.0 | Fuglefjellet | Bjarmeland | Hambergfj | 33N | 621311.000 | 8255649.000 | Shale      | 2603 | 55.8000  | 8.8000  | 3.6701  |
| S7239   | 21.0 | Fuglefjellet | Bjarmeland | Hambergfj | 33N | 621311.000 | 8255649.000 | Shale      | 2618 | 38.1000  | 0.0000  | 0.0000  |
| S7367   | 0.0  | Fuglefjellet | Bjarmeland | Hambergfj | 33N | 622061.000 | 8254728.000 | Carb       | 2676 | -38.5000 | 17.2000 | 10.3969 |
| S4031   | 4.0  | Gravodden    | Tempelfjo  | Miseryfj  | 33N | 618606.000 | 8272600.000 | Carb       | 2641 | 43.5000  | 11.6000 | 6.2059  |
| S4029   | 1.5  | Gravodden    | Tempelfjo  | Miseryfj  | 33N | 618606.000 | 8272600.000 | Carb       | 2650 | 199.8000 | 12.6000 | 1.4676  |
| S4028   | 1.0  | Gravodden    | Tempelfjo  | Miseryfj  | 33N | 618606.000 | 8272600.000 | Shale Silt | 2589 | 77.1000  | 28.9000 | 8.7232  |
| S5124   | 15.0 | Herwigshamna | Tempelfjo  | Miseryfj  | 33N | 619230.000 | 8272580.000 | Limestone  | 2560 | -19.7000 | 20.9000 | 24.6896 |
| S5122   | 10.0 | Herwigshamna | Tempelfjo  | Miseryfj  | 33N | 619230.000 | 8272580.000 | Limestone  | 2430 | 28.2000  | -       | -       |
| S5121   | 8.0  | Herwigshamna | Tempelfjo  | Miseryfj  | 33N | 612630.000 | 8267879.000 | Limestone  | 2587 | 29.7000  | _       | -       |
| S5119   | 5.0  | Herwigshamna | Tempelfjo  | Miseryfj  | 33N | 619230.000 | 8272580.000 | Limestone  | 2624 | 103.2000 | 36.5000 | 8.2309  |
| S5115   | 1.5  | Herwigshamna | Tempelfjo  | Miseryfj  | 33N | 619230.000 | 8272580.000 | Limestone  | 2533 | 26.4000  | -       | -       |
| S4026   | 1.3  | Radiostasj.  | Tempelfjo  | Miseryfj  | 33N | 619111.000 | 8272228.000 | Carb       | 2660 | 76.3000  | 38.2000 | 11.6513 |
| S4025   | 0.8  | Radiostasj.  | Tempelfjo  | Miseryfj  | 33N | 619111.000 | 8272228.000 | Shale      | 2563 | 89.3000  | -       | -       |
| S7252   | 0.5  | Radiostasj.  | Tempelfjo  | Miseryfj  | 33N | 619111.000 | 8272228.000 | Shale      | 2601 | 152.7000 | _       | -       |
| S4004   | 10.0 | Kaffistigen  | Tempelfjo  | Miseryfj  | 33N | 621480.000 | 8273518.000 | Carb       | 2685 | 47.1000  | 21.6000 | 10.6725 |
| S7249   | 7.0  | Kaffistigen  | Tempelfjo  | Miseryfj  | 33N | 621480.000 | 8273518.000 | Shale      | 2621 | 91.7000  | -       | -       |
| S4003   | 6.5  | Kaffistigen  | Tempelfjo  | Miseryfj  | 33N | 621480.000 | 8273518.000 | Carb       | 2672 | 59.3000  | 0.0000  | 0.0000  |
| S4002-2 | 5.0  | Kaffistigen  | Tempelfjo  | Miseryfj  | 33N | 621480.000 | 8273518.000 | Carb Shale | 2683 | 82.5000  | 21.9000 | 6.1777  |
| S4002   | 5.0  | Kaffistigen  | Tempelfjo  | Miseryfj  | 33N | 621480.000 | 8273518.000 | Carb Shale | 2627 | 57.5000  | 3.6000  | 1.4570  |
| S7248   | 5.0  | Kaffistigen  | Tempelfjo  | Miseryfj  | 33N | 621480.000 | 8273518.000 | Shale      | 2660 | 105.8000 | -       | -       |
| S7247   | 4.5  | Kaffistigen  | Tempelfjo  | Miseryfj  | 33N | 621480.000 | 8273518.000 | Shale      | 2645 | 50.6000  | _       | -       |
| S7246   | 3.5  | Kaffistigen  | Tempelfjo  | Miseryfj  | 33N | 621480.000 | 8273518.000 | Shale      | 2638 | 157.7000 | -       | -       |
| S4001   | 3.0  | Kaffistigen  | Tempelfjo  | Miseryfj  | 33N | 621480.000 | 8273518.000 | Carb       | 2661 | 72.9000  | _       | -       |
| S7245   | 2.5  | Kaffistigen  | Tempelfjo  | Miseryfj  | 33N | 621480.000 | 8273518.000 | Shale      | 2644 | 133.0000 | 28.3000 | 4.9519  |
| S7244   | 2.0  | Kaffistigen  | Tempelfjo  | Miseryfj  | 33N | 621480.000 | 8273518.000 | Shale      | 2632 | 136.7000 | -       | -       |
| S7242   | 0.8  | Kaffistigen  | Tempelfjo  | Miseryfj  | 33N | 621480.000 | 8273518.000 | Shale      | 2608 | 210.5000 | 0.0000  | 0.0000  |
| S7241   | 0.5  | Kaffistigen  | Tempelfjo  | Miseryfj  | 33N | 621480.000 | 8273518.000 | Shale      | 2516 | 60.4000  | 32.1000 | 12.3681 |
|         |      |              |            |           |     |            |             |            |      |          |         |         |

| S4000 | 0.2   | Kaffistigen   | Tempelfjo | Miseryfj | 33N | 621480.000 | 8273518.000 | Shale      | 2557 | 36.1000  | 6.6000  | 4.2547  |
|-------|-------|---------------|-----------|----------|-----|------------|-------------|------------|------|----------|---------|---------|
| S5113 | 16.0  | Nordkapp      | Tempelfjo | Miseryfj | 33N | 621767.000 | 8273638.000 | Carb       | 2571 | 67.0000  | 35.6000 | 12.3654 |
| S5103 | 1.0   | Nordkapp      | Tempelfjo | Miseryfj | 33N | 621767.000 | 8273638.000 | Limestone  | 2504 | 90.1000  | _       | -       |
| S4023 | 1.0   | Nordkapp      | Tempelfjo | Miseryfj | 33N | 621767.000 | 8273638.000 | Carb       | 2703 | 68.2000  | 14.6000 | 4.9820  |
| S4022 | 0.1   | Nordkapp      | Tempelfjo | Miseryfj | 33N | 621767.000 | 8273638.000 | Carb       | 2665 | 43.6000  | 15.4000 | 8.2199  |
| S4035 | 0.0   | Alfredfj      | Tempelfjo | Miseryfj | 33N | 621183.569 | 8256723.329 | Cgl        | 2662 | 16.4000  | 0.0000  | 0.0000  |
| S4036 | 0.1   | Alfredfj      | Tempelfjo | Miseryfj | 33N | 621183.569 | 8256723.329 | Shale      | 2642 | 74.5000  | 7.8000  | 2.4365  |
| S7222 | -10.0 | Alfredfj      | Tempelfjo | Miseryfj | 33N | 621183.569 | 8256723.329 | Shale      | 2618 | 40.9000  | 21.7000 | 12.3473 |
| S7223 | -12.0 | Alfredfj      | Tempelfjo | Miseryfj | 33N | 621183.569 | 8256723.329 | Shale      | 2645 | 69.3000  | 30.9000 | 10.3767 |
| S4034 | 6.0   | Hambergfj N   | Tempelfjo | Miseryfj | 33N | 621364.181 | 8256098.841 | Carb       | 2757 | 102.4000 | 8.1000  | 1.8409  |
| S4033 | 0.0   | Hambergfj N   | Tempelfjo | Miseryfj | 33N | 621364.181 | 8256098.841 | Carb       | 2691 | 41.1000  | 0.0000  | 0.0000  |
| S5150 | 0.0   | Hambergfj     | Tempelfjo | Miseryfj | 33N | 621311.000 | 8255649.000 | Carb       | 2643 | 0.0000   | 41.3000 | -       |
| S7237 | 45.0  | Fuglefjellet  | Tempelfjo | Miseryfj | 33N | 622061.000 | 8254728.000 | Shale      | 2560 | 38.8000  | 12.2000 | 7.3175  |
| S7236 | 40.0  | Fuglefjellet  | Tempelfjo | Miseryfj | 33N | 622061.000 | 8254728.000 | Shale      | 2669 | 0.0000   | 18.1000 | -       |
| S7235 | 35.0  | Fuglefjellet  | Tempelfjo | Miseryfj | 33N | 622061.000 | 8254728.000 | Shale      | 2568 | 72.2000  | 0.0000  | 0.0000  |
| S5099 | -5.0  | Oppgangsdalen | Tempelfjo | Miseryfj | 33N | 624413.000 | 8262241.000 | Limestone  | 2601 | 0.0000   | 63.4000 | -       |
| S5092 | 112.5 | Skrekkjuvet   | Tempelfjo | Miseryfj | 33N | 625061.000 | 8261842.000 | Limestone  | 2593 | 56.9000  | -       | -       |
| S5090 | 112.0 | Skrekkjuvet   | Tempelfjo | Miseryfj | 33N | 625061.000 | 8261842.000 | Limestone  | 2616 | 0.0000   | _       | -       |
| S4037 | 35.0  | Skrekkjuvet   | Tempelfjo | Miseryfj | 33N | 625061.000 | 8261842.000 | Carb       | 2597 | 217.0000 | 5.7000  | 0.6113  |
| S4038 | 31.0  | Skrekkjuvet   | Tempelfjo | Miseryfj | 33N | 625061.000 | 8261842.000 | Carb       | 2656 | 23.1000  | 7.3000  | 7.3544  |
| S4039 | 25.0  | Skrekkjuvet   | Tempelfjo | Miseryfj | 33N | 625061.000 | 8261842.000 | Carb       | 2657 | 15.2000  | 4.8000  | 7.3491  |
| S5076 | 24.0  | Skrekkjuvet   | Tempelfjo | Miseryfj | 33N | 625061.000 | 8261842.000 | Limestone  | 2350 | 51.4000  | -       | -       |
| S4040 | 20.0  | Skrekkjuvet   | Tempelfjo | Miseryfj | 33N | 625061.000 | 8261842.000 | Carb       | 2662 | 23.1000  | 7.3000  | 7.3544  |
| S5074 | 18.0  | Skrekkjuvet   | Tempelfjo | Miseryfj | 33N | 625061.000 | 8261842.000 | Limestone  | 2352 | 0.0000   | _       | -       |
| S4041 | 15.0  | Skrekkjuvet   | Tempelfjo | Miseryfj | 33N | 625061.000 | 8261842.000 | Carb       | 2671 | 0.0000   | 0.0000  | 0.0000  |
| S5072 | 12.0  | Skrekkjuvet   | Tempelfjo | Miseryfj | 33N | 625061.000 | 8261842.000 | Limestone  | 2485 | 82.5000  | _       | -       |
| S4042 | 11.0  | Skrekkjuvet   | Tempelfjo | Miseryfj | 33N | 625061.000 | 8261842.000 | Carb       | 2672 | 17.3000  | 2.7000  | 3.6321  |
| S7256 | 10.0  | Skrekkjuvet   | Tempelfjo | Miseryfj | 33N | 625061.000 | 8261842.000 | Shale Carb | 2527 | 43.1000  | 0.0000  | 0.0000  |
| S5069 | 6.5   | Skrekkjuvet   | Tempelfjo | Miseryfj | 33N | 625061.000 | 8261842.000 | Limestone  | 2606 | -33.1000 | _       | _       |
|       |       |               |           |          |     |            |             |            |      |          |         |         |

| S7255 | 5.0  | Skrekkjuvet    | Tempelfjo | Miseryfj | 33N | 625061.000 | 8261842.000 | Shale     | 2515 | 0.0000   | 10.8000 | -       |
|-------|------|----------------|-----------|----------|-----|------------|-------------|-----------|------|----------|---------|---------|
| S4043 | 5.0  | Skrekkjuvet    | Tempelfjo | Miseryfj | 33N | 625061.000 | 8261842.000 | Carb      | 2669 | -55.2000 | 12.3000 | -5.1856 |
| S7254 | 2.5  | Skrekkjuvet    | Tempelfjo | Miseryfj | 33N | 625061.000 | 8261842.000 | Shale     | 2570 | 65.5000  | 34.8000 | 12.3644 |
| S4044 | 2.0  | Skrekkjuvet    | Tempelfjo | Miseryfj | 33N | 625061.000 | 8261842.000 | Carb      | 2673 | 16.4000  | 5.2000  | 7.3789  |
| S5065 | 2.0  | Skrekkjuvet    | Tempelfjo | Miseryfj | 33N | 625061.000 | 8261842.000 | Limestone | 2491 | 52.8000  | -       | -       |
| S5063 | 0.1  | Skrekkjuvet    | Tempelfjo | Miseryfj | 33N | 625061.000 | 8261842.000 | Limestone | 2607 | 27.8000  | -       | -       |
| S4178 | 0.0  | Skrekkjuvet    | Tempelfjo | Miseryfj | 33N | 625061.000 | 8261842.000 | Carb      | 2686 | 300.7000 | 0.0000  | 0.0000  |
| S4045 | -1.0 | Skrekkjuvet    | Tempelfjo | Miseryfj | 33N | 625061.000 | 8261842.000 | Sst       | 2471 | 10.1000  | 4.5000  | 10.3687 |
| S7658 |      | Urd            | Tempelfjo | Miseryfj | 33N | 625360.000 | 8262570.000 | Sst       | 2609 | 128.2000 | 59.0000 | 10.7102 |
| S7360 |      | Urd            | Tempelfjo | Miseryfj | 33N | 625360.000 | 8262570.000 | Sst       | 2372 | 0.0000   | 1.9000  | -       |
| S7359 |      | Urd            | Tempelfjo | Miseryfj | 33N | 625360.000 | 8262570.000 | Sst       | 2553 | 27.0000  | 2.8000  | 2.4134  |
| S7358 |      | Urd            | Tempelfjo | Miseryfj | 33N | 625360.000 | 8262570.000 | Sst       | 2502 | -9.2000  | 4.1000  | 10.3712 |
| S5097 | -0.1 | Osten          | Tempelfjo | Miseryfj | 33N | 625944.000 | 8262868.000 | Grey Lime | 2639 | 26.7000  | 0.0000  | 0.0000  |
| S5095 | -0.1 | Osten          | Tempelfjo | Miseryfj | 33N | 625944.000 | 8262868.000 | Red Lime  | 2847 | 494.8000 | 15.0000 | 0.7055  |
| S4021 | 80.0 | Brettingsdalen | Tempelfjo | Miseryfj | 33N | 626909.000 | 8264893.000 | Carb      | 2641 | -12.5000 | 6.9000  | 12.8462 |
| S4020 | 78.0 | Brettingsdalen | Tempelfjo | Miseryfj | 33N | 626909.000 | 8264893.000 | Carb      | 2636 | 26.2000  | 19.7000 | 17.4985 |
| S4019 | 70.0 | Brettingsdalen | Tempelfjo | Miseryfj | 33N | 626909.000 | 8264893.000 | Carb      | 2666 | -16.4000 | 7.3000  | 10.3589 |
| S5060 | 67.0 | Brettingsdalen | Tempelfjo | Miseryfj | 33N | 626909.000 | 8264893.000 | Limestone | 2641 | -26.9000 | -       | -       |
| S4018 | 59.0 | Brettingsdalen | Tempelfjo | Miseryfj | 33N | 626909.000 | 8264893.000 | Carb      | 2689 | -5.8000  | 4.5000  | 18.0559 |
| S4017 | 54.0 | Brettingsdalen | Tempelfjo | Miseryfj | 33N | 626909.000 | 8264893.000 | Carb      | 2582 | 40.4000  | 2.5000  | 1.4401  |
| S4016 | 46.0 | Brettingsdalen | Tempelfjo | Miseryfj | 33N | 626909.000 | 8264893.000 | Carb      | 2371 | 18.9000  | 3.0000  | 3.6940  |
| S4015 | 41.0 | Brettingsdalen | Tempelfjo | Miseryfj | 33N | 626909.000 | 8264893.000 | Carb      | 2595 | 8.6000   | 0.0000  | 0.0000  |
| S4014 | 36.0 | Brettingsdalen | Tempelfjo | Miseryfj | 33N | 626909.000 | 8264893.000 | Carb      | 2546 | 32.2000  | 3.4000  | 2.4573  |
| S4013 | 34.0 | Brettingsdalen | Tempelfjo | Miseryfj | 33N | 626909.000 | 8264893.000 | Carb      | 2564 | -27.8000 | 8.8000  | -7.3667 |
| S4012 | 32.0 | Brettingsdalen | Tempelfjo | Miseryfj | 33N | 626909.000 | 8264893.000 | Carb      | 2525 | 26.7000  | 0.0000  | 0.0000  |
| S7342 | 30.0 | Brettingsdalen | Tempelfjo | Miseryfj | 33N | 626909.000 | 8264893.000 | Carb      | 2671 | 82.7000  | 6.5000  | 1.8291  |
| S4011 | 25.0 | Brettingsdalen | Tempelfjo | Miseryfj | 33N | 626909.000 | 8264893.000 | Carb      | 2580 | 74.3000  | 13.5000 | 4.2284  |
| S4010 | 20.0 | Brettingsdalen | Tempelfjo | Miseryfj | 33N | 626909.000 | 8264893.000 | Shale     | 2600 | 30.3000  | 4.8000  | 3.6867  |
| S4009 | 17.0 | Brettingsdalen | Tempelfjo | Miseryfj | 33N | 626909.000 | 8264893.000 | Shale     | 2606 | 58.9000  | 6.2000  | 2.4497  |
|       |      |                |           |          |     |            |             |           |      |          |         |         |

| S6755 | 15.0  | Brettingsdalen | Tempelfjo    | Miseryfj |          | 33N | 626909.000 | 8264893.000 | Carb Shale | 2605 | 59.9000  | 13.3000 | 5.1672  |
|-------|-------|----------------|--------------|----------|----------|-----|------------|-------------|------------|------|----------|---------|---------|
| S6754 | 12.0  | Brettingsdalen | Tempelfjo    | Miseryfj |          | 33N | 626909.000 | 8264893.000 | Carb Shale | 2560 | 91.5000  | 0.0000  | 0.0000  |
| S4008 | 11.0  | Brettingsdalen | Tempelfjo    | Miseryfj |          | 33N | 626909.000 | 8264893.000 | Carb       | 2636 | -25.5000 | 8.1000  | -7.3923 |
| S4007 | 6.5   | Brettingsdalen | Tempelfjo    | Miseryfj |          | 33N | 626909.000 | 8264893.000 | Shale      | 2606 | 43.5000  | 20.0000 | 10.6998 |
| S4006 | 5.0   | Brettingsdalen | Tempelfjo    | Miseryfj |          | 33N | 626909.000 | 8264893.000 | Carb       | 2656 | 0.0000   | 6.0000  | 0.0000  |
| S7231 | 5.0   | Brettingsdalen | Tempelfjo    | Miseryfj |          | 33N | 626909.000 | 8264893.000 | Shale      | 2548 | 32.8000  | 34.8000 | 24.6911 |
| S4005 | 2.0   | Brettingsdalen | Tempelfjo    | Miseryfj |          | 33N | 626909.000 | 8264893.000 | Shale      | 2599 | 62.8000  | 16.7000 | 6.1886  |
| S4203 | 65.0  | Oppgangsdalen  | Sassendalen  | Urd      | Verdande | 33N | 624413.000 | 8262241.000 | Phos       | 2670 | 62.8000  | 0.0000  | 0.0000  |
| S4187 | 64.0  | Oppgangsdalen  | Sassendalen  | Urd      |          | 33N | 624413.000 | 8262241.000 | Shale      | 2403 | 172.9000 | 9.1000  | 1.2248  |
| S4188 | 59.0  | Oppgangsdalen  | Sassendalen  | Urd      |          | 33N | 624413.000 | 8262241.000 | Shale      | 2432 | 107.0000 | -       | -       |
| S4189 | 49.0  | Oppgangsdalen  | Sassendalen  | Urd      |          | 33N | 624413.000 | 8262241.000 | Shale      | 2458 | 239.6000 | -       | -       |
| S4190 | 39.0  | Oppgangsdalen  | Sassendalen  | Urd      |          | 33N | 624413.000 | 8262241.000 | Shale      | 2541 | 193.2000 | 6.2000  | 0.7468  |
| S4191 | 29.0  | Oppgangsdalen  | Sassendalen  | Urd      |          | 33N | 624413.000 | 8262241.000 | Shale      | 2487 | 202.4000 | 22.6000 | 2.5986  |
| S4192 | 18.0  | Oppgangsdalen  | Sassendalen  | Urd      |          | 33N | 624413.000 | 8262241.000 | Shale      | 2561 | 282.1000 | 11.1000 | 0.9157  |
| S4193 | 6.0   | Oppgangsdalen  | Sassendalen  | Urd      |          | 33N | 624413.000 | 8262241.000 | Shale      | 2616 | 247.4000 | 18.4000 | 1.7308  |
| S4194 | 2.0   | Oppgangsdalen  | Sassendalen  | Urd      |          | 33N | 624413.000 | 8262241.000 | Shale      | 2412 | 134.6000 | 23.8000 | 4.1150  |
| S4202 | 1.2   | Skrekkjuvet    | Sassendalen  | Urd      |          | 33N | 625061.000 | 8261842.000 | Silt Sst   | 2417 | 97.2000  | 0.0000  | 0.0000  |
| S4200 | 0.05  | Skrekkjuvet    | Sassendalen  | Urd      |          | 33N | 625061.000 | 8261842.000 | Silt       | 2510 | 91.5000  | 5.8000  | 1.4752  |
| S4210 | 172.0 | Oppgangsdalen  | Kapp Toscana | Skuld    |          | 33N | 624413.000 | 8262241.000 | Silt       | 2533 | 203.5000 | 8.2000  | 0.9377  |
| S4212 | 167.0 | Oppgangsdalen  | Kapp Toscana | Skuld    |          | 33N | 624413.000 | 8262241.000 | Shale      | 2499 | 235.1000 | -       | -       |
| S4213 | 158.0 | Oppgangsdalen  | Kapp Toscana | Skuld    |          | 33N | 624413.000 | 8262241.000 | Shale      | 2510 | 334.8000 | -       | -       |
| S4214 | 143.0 | Oppgangsdalen  | Kapp Toscana | Skuld    |          | 33N | 624413.000 | 8262241.000 | Shale      | 2532 | 319.3000 | 12.6000 | 0.9183  |
| S4216 | 126.0 | Oppgangsdalen  | Kapp Toscana | Skuld    |          | 33N | 624413.000 | 8262241.000 | Shale      | 2547 | 293.7000 | 9.3000  | 0.7369  |
| S4217 | 115.0 | Oppgangsdalen  | Kapp Toscana | Skuld    |          | 33N | 624413.000 | 8262241.000 | Shale      | 2522 | 315.5000 | 11.0000 | 0.8114  |
| S4218 | 102.0 | Oppgangsdalen  | Kapp Toscana | Skuld    |          | 33N | 624413.000 | 8262241.000 | Shale      | 2556 | 184.7000 | 0.0000  | 0.0000  |
| S4219 | 93.0  | Oppgangsdalen  | Kapp Toscana | Skuld    |          | 33N | 624413.000 | 8262241.000 | Shale      | 2562 | 206.6000 | 6.5000  | 0.7322  |
| S4220 | 84.0  | Oppgangsdalen  | Kapp Toscana | Skuld    |          | 33N | 624413.000 | 8262241.000 | Shale      | 2516 | 191.8000 | 0.0000  | 0.0000  |
| S4221 | 74.0  | Oppgangsdalen  | Kapp Toscana | Skuld    |          | 33N | 624413.000 | 8262241.000 | Shale      | 2497 | 322.2000 | 34.2000 | 2.4702  |
|       |       |                |              |          |          |     |            |             |            |      |          |         |         |

## A.2.1 Vesalstranda Member





Total: 98,75 100,00 100,00

A.2



Objects 37 Date:23.05.2012 11:19:09 HV:20,0kV Puls th.:20,50kcps

| El                       | AN                       | Series                                                   | unn. C<br>[wt.%]                       | norm. C<br>[wt.%]                      | Atom. C<br>[at.%]                       | Error | (1 | Sigma)<br>[wt.%]                     |
|--------------------------|--------------------------|----------------------------------------------------------|----------------------------------------|----------------------------------------|-----------------------------------------|-------|----|--------------------------------------|
| C<br>O<br>Al<br>Si<br>Fe | 6<br>8<br>13<br>14<br>26 | K-series<br>K-series<br>K-series<br>K-series<br>K-series | 9,32<br>37,96<br>0,71<br>0,81<br>53,43 | 9,12<br>37,13<br>0,69<br>0,80<br>52,26 | 18,65<br>57,03<br>0,63<br>0,70<br>22,99 |       |    | 1,57<br>4,54<br>0,07<br>0,06<br>1,45 |
|                          |                          | Total:                                                   | 102,23                                 | 100,00                                 | 100,00                                  |       |    |                                      |



Objects 38 Date:23.05.2012 11:19:25 HV:20,0kV Puls th.:21,09kcps

| El | AN | Series   | unn. C<br>[wt.%] | norm. C<br>[wt.%] | Atom. C<br>[at.%] | Error | (1 | Sigma)<br>[wt.%] |
|----|----|----------|------------------|-------------------|-------------------|-------|----|------------------|
|    |    |          |                  |                   |                   |       |    |                  |
| С  | 6  | K-series | 11 <b>,</b> 32   | 11 <b>,</b> 90    | 19 <b>,</b> 66    |       |    | 2,00             |
| 0  | 8  | K-series | 38 <b>,</b> 55   | 40,53             | 50,26             |       |    | 4,80             |
| Mg | 12 | K-series | 1,38             | 1,45              | 1,18              |       |    | 0,11             |
| Al | 13 | K-series | 12 <b>,</b> 57   | 13,22             | 9,72              |       |    | 0,63             |
| Si | 14 | K-series | 17,21            | 18,10             | 12,78             |       |    | 0,76             |
| Κ  | 19 | K-series | 7,14             | 7 <b>,</b> 51     | 3,81              |       |    | 0,25             |
| Fe | 26 | K-series | 6,93             | 7,29              | 2,59              |       |    | 0,22             |
|    |    |          |                  |                   |                   |       |    |                  |
|    |    | Total:   | 95 <b>,</b> 10   | 100,00            | 100,00            |       |    |                  |

S4508:



4508 3 Date:24.05.2012 08:45:23 HV:20,0kV Puls th.:15,94kcps

| El                                  | AN                                   | Series                                                               | unn. C<br>[wt.%]                                         | norm. C<br>[wt.%]                                        | Atom. C<br>[at.%]                                        | Error | (1 | Sigma)<br>[wt.%]                                     |
|-------------------------------------|--------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|-------|----|------------------------------------------------------|
| C<br>O<br>Al<br>Si<br>S<br>Fe<br>Ba | 6<br>8<br>13<br>14<br>16<br>26<br>56 | K-series<br>K-series<br>K-series<br>K-series<br>K-series<br>L-series | 12,08<br>17,08<br>0,57<br>0,66<br>10,74<br>1,90<br>45,88 | 13,59<br>19,21<br>0,64<br>0,74<br>12,09<br>2,14<br>51,60 | 35,65<br>37,84<br>0,75<br>0,83<br>11,88<br>1,21<br>11,84 |       |    | 2,01<br>2,36<br>0,06<br>0,06<br>0,42<br>0,10<br>1,30 |
|                                     |                                      | Total:                                                               | 88,91                                                    | 100,00                                                   | 100,00                                                   |       |    |                                                      |





| El                             | AN                             | Series                                                               | unn. C<br>[wt.%]                                | norm. C<br>[wt.%]                               | Atom. C<br>[at.%]                               | Error | (1 | Sigma)<br>[wt.%]                             |
|--------------------------------|--------------------------------|----------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------|----|----------------------------------------------|
| C<br>O<br>Mg<br>Ca<br>Mn<br>Fe | 6<br>8<br>12<br>20<br>25<br>26 | K-series<br>K-series<br>K-series<br>K-series<br>K-series<br>K-series | 13,86<br>36,94<br>0,79<br>1,29<br>0,88<br>44,07 | 14,17<br>37,76<br>0,81<br>1,32<br>0,90<br>45,05 | 26,63<br>53,29<br>0,75<br>0,74<br>0,37<br>18,21 |       |    | 2,35<br>4,72<br>0,08<br>0,07<br>0,06<br>1,22 |
|                                |                                | Total:                                                               | 97,83                                           | 100,00                                          | 100,00                                          |       |    |                                              |



A.2

4508 5 Date:24.05.2012 08:45:54 HV:20,0kV Puls th.:14,89kcps

| El                 | AN                 | Series                                       | unn. C<br>[wt.%]               | norm. C<br>[wt.%]               | Atom. C<br>[at.%]               | Error | (1 | Sigma)<br>[wt.%]             |
|--------------------|--------------------|----------------------------------------------|--------------------------------|---------------------------------|---------------------------------|-------|----|------------------------------|
| C<br>O<br>Si<br>Fe | 6<br>8<br>14<br>26 | K-series<br>K-series<br>K-series<br>K-series | 9,79<br>27,40<br>26,18<br>0,50 | 15,32<br>42,90<br>40,99<br>0,79 | 23,49<br>49,37<br>26,88<br>0,26 |       |    | 1,89<br>3,54<br>1,14<br>0,05 |
|                    |                    | Total:                                       | 63,86                          | 100,00                          | 100,00                          |       |    |                              |





| El                                  | AN                                   | Series                                                                           | unn. C<br>[wt.%]                                         | norm. C<br>[wt.%]                                        | Atom. C<br>[at.%]                                        | Error | (1 | Sigma)<br>[wt.%]                                     |
|-------------------------------------|--------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|-------|----|------------------------------------------------------|
| C<br>O<br>Na<br>Al<br>Si<br>K<br>Fe | 6<br>8<br>11<br>13<br>14<br>19<br>26 | K-series<br>K-series<br>K-series<br>K-series<br>K-series<br>K-series<br>K-series | 10,82<br>37,56<br>1,35<br>17,48<br>18,17<br>4,98<br>1,26 | 11,81<br>41,00<br>1,48<br>19,08<br>19,83<br>5,43<br>1,37 | 18,96<br>49,40<br>1,24<br>13,63<br>13,62<br>2,68<br>0,47 |       |    | 2,24<br>4,96<br>0,13<br>0,87<br>0,81<br>0,19<br>0,08 |
|                                     |                                      | Total:                                                                           | 91 <b>,</b> 62                                           | 100,00                                                   | 100,00                                                   |       |    |                                                      |







Total: 91,12 100,00 100,00

\_\_\_\_\_







keV

| El                      | AN                       | Series                                                   | unn. C<br>[wt.%]                       | norm. C<br>[wt.%]                      | Atom. C<br>[at.%]                       | Error | (1 | Sigma)<br>[wt.%]                     |
|-------------------------|--------------------------|----------------------------------------------------------|----------------------------------------|----------------------------------------|-----------------------------------------|-------|----|--------------------------------------|
| C<br>O<br>Al<br>V<br>Fe | 6<br>8<br>13<br>23<br>26 | K-series<br>K-series<br>K-series<br>K-series<br>K-series | 7,22<br>26,03<br>0,49<br>0,61<br>57,53 | 7,86<br>28,33<br>0,53<br>0,66<br>62,62 | 18,28<br>49,48<br>0,55<br>0,36<br>31,33 |       |    | 1,25<br>3,19<br>0,05<br>0,05<br>1,56 |
|                         |                          | Total:                                                   | 91,87                                  | 100,00                                 | 100,00                                  |       |    |                                      |

A.2





| El           | AN           | Series                           | unn. C<br>[wt.%]       | norm. C<br>[wt.%]      | Atom. C<br>[at.%]       | Error | (1 Sigma)<br>[wt.%]  |
|--------------|--------------|----------------------------------|------------------------|------------------------|-------------------------|-------|----------------------|
| C<br>O<br>Ca | 6<br>8<br>20 | K-series<br>K-series<br>K-series | 6,39<br>24,13<br>63,20 | 6,82<br>25,74<br>67,44 | 14,70<br>41,69<br>43,60 |       | 1,18<br>4,02<br>1,88 |
|              |              | Total:                           | 93 <b>,</b> 72         | 100,00                 | 100,00                  |       |                      |

cps/eV 40 - Ci 35-Fe 30-25-20 15 4 10 Ca 5-Ē Ma E\_0 10 keV 12 8 14 16 18 20 6



|    |    |          | [wc.o]   | [WC.0] | [ac. 0] | [wc.o] |
|----|----|----------|----------|--------|---------|--------|
| с  | 6  | K-series | <br>8,68 | 8,63   | 17,62   | 1,51   |
| 0  | 8  | K-series | 37,26    | 37,04  | 56,77   | 4,52   |
| Mg | 12 | K-series | 0,60     | 0,60   | 0,60    | 0,07   |
| Si | 14 | K-series | 2,54     | 2,52   | 2,20    | 0,14   |
| Ca | 20 | K-series | 1,81     | 1,80   | 1,10    | 0,08   |
| Fe | 26 | K-series | 49,72    | 49,42  | 21,70   | 1,36   |
|    |    | Total:   | 100,60   | 100,00 | 100,00  |        |





| El | AN | Series   | unn. C<br>[wt.%] | norm. C<br>[wt.%] | Atom. C<br>[at.%] | Error (1 | Sigma)<br>[wt.%] |
|----|----|----------|------------------|-------------------|-------------------|----------|------------------|
|    |    |          |                  |                   |                   |          |                  |
| С  | 6  | K-series | 11,97            | 11,95             | 21,20             |          | 1,82             |
| 0  | 8  | K-series | 40,04            | 39,98             | 53 <b>,</b> 24    |          | 5,59             |
| Ca | 20 | K-series | 48,15            | 48,07             | 25,56             |          | 1,44             |
|    |    |          |                  |                   |                   |          |                  |
|    |    | Total:   | 100,15           | 100,00            | 100,00            |          |                  |



Objects 26 Date:23.05.2012 10:19:31 HV:20,0kV Puls th.:20,61kcps

| El                 | AN                 | Series                                       | unn. C<br>[wt.%]              | norm. C<br>[wt.%]             | Atom. C<br>[at.%]              | Error | (1 | Sigma)<br>[wt.%]             |
|--------------------|--------------------|----------------------------------------------|-------------------------------|-------------------------------|--------------------------------|-------|----|------------------------------|
| C<br>O<br>Mg<br>Si | 6<br>8<br>12<br>14 | K-series<br>K-series<br>K-series<br>K-series | 8,63<br>34,81<br>0,57<br>3,07 | 9,07<br>36,60<br>0,60<br>3,22 | 18,42<br>55,82<br>0,60<br>2,80 |       |    | 1,48<br>4,23<br>0,07<br>0,16 |
| Ca<br>Fe<br>       | 20<br>26           | K-series<br>K-series<br>Total:               | 1,59<br>46,45<br><br>95,12    | 1,67<br>48,84<br>100,00       | 1,02<br>21,34<br>100,00        |       |    | 0,08<br>1,27                 |



## A.2.3 Kapp Hanna Formation



Objects 9 Date:23.05.2012 09:07:39 HV:20,0kV Puls th.:14,64kcps

| El                       | AN                       | Series                                                   | unn. C<br>[wt.%]                        | norm. C<br>[wt.%]                       | Atom. C<br>[at.%]                        | Error | (1 | Sigma)<br>[wt.응]                     |
|--------------------------|--------------------------|----------------------------------------------------------|-----------------------------------------|-----------------------------------------|------------------------------------------|-------|----|--------------------------------------|
| C<br>O<br>Mg<br>Ca<br>Fe | 6<br>8<br>12<br>20<br>26 | K-series<br>K-series<br>K-series<br>K-series<br>K-series | 6,88<br>27,86<br>11,69<br>27,19<br>0,54 | 9,28<br>37,57<br>15,76<br>36,66<br>0,72 | 16,45<br>49,99<br>13,81<br>19,48<br>0,28 |       |    | 1,10<br>3,68<br>0,67<br>0,82<br>0,05 |
|                          |                          | Total:                                                   | 74,15                                   | 100,00                                  | 100,00                                   |       |    |                                      |



| Objects 10 | Date:23.05.2012 09:08:1 HV:20,0kV | Puls th.:16,22kcps |
|------------|-----------------------------------|--------------------|
|------------|-----------------------------------|--------------------|

| El                       | AN                       | Series                                                   | unn. C<br>[wt.%]                         | norm. C<br>[wt.%]                        | Atom. C<br>[at.%]                       | Error | (1 Sigma)<br>[wt.%]                  |
|--------------------------|--------------------------|----------------------------------------------------------|------------------------------------------|------------------------------------------|-----------------------------------------|-------|--------------------------------------|
| C<br>O<br>Mg<br>Ca<br>Fe | 6<br>8<br>12<br>20<br>26 | K-series<br>K-series<br>K-series<br>K-series<br>K-series | 10,61<br>36,26<br>6,59<br>25,46<br>12,15 | 11,65<br>39,82<br>7,23<br>27,96<br>13,34 | 20,67<br>53,03<br>6,34<br>14,86<br>5,09 |       | 1,53<br>4,52<br>0,39<br>0,77<br>0,36 |
|                          |                          | Total:                                                   | 91,08                                    | 100,00                                   | 100,00                                  |       |                                      |



Objects 11 Date:23.05.2012 09:08:41 HV:20,0kV Puls th.:15,49kcps

| El                       | AN                       | Series                                                   | unn. C<br>[wt.%]                       | norm. C<br>[wt.%]                       | Atom. C<br>[at.%]                       | Error | (1 Sigma)<br>[wt.%]                  |
|--------------------------|--------------------------|----------------------------------------------------------|----------------------------------------|-----------------------------------------|-----------------------------------------|-------|--------------------------------------|
| C<br>O<br>Mg<br>Ca<br>Fe | 6<br>8<br>12<br>20<br>26 | K-series<br>K-series<br>K-series<br>K-series<br>K-series | 9,69<br>32,38<br>8,16<br>26,76<br>8,17 | 11,38<br>38,02<br>9,59<br>31,42<br>9,59 | 20,27<br>50,84<br>8,44<br>16,77<br>3,67 |       | 1,43<br>4,13<br>0,48<br>0,81<br>0,25 |
|                          |                          | Total:                                                   | 85.16                                  | 100.00                                  | 100.00                                  |       |                                      |

otal: 85,16 100,00 100,00





| El                       | AN                       | Series                                                   | unn. C<br>[wt.%]                         | norm. C<br>[wt.%]                        | Atom. C<br>[at.%]                       | Error | (1 Sigma)<br>[wt.%]                  |
|--------------------------|--------------------------|----------------------------------------------------------|------------------------------------------|------------------------------------------|-----------------------------------------|-------|--------------------------------------|
| C<br>O<br>Mg<br>Ca<br>Fe | 6<br>8<br>12<br>20<br>26 | K-series<br>K-series<br>K-series<br>K-series<br>K-series | 12,03<br>40,14<br>5,02<br>21,86<br>14,62 | 12,84<br>42,85<br>5,36<br>23,34<br>15,60 | 22,13<br>55,46<br>4,57<br>12,06<br>5,78 |       | 1,68<br>4,87<br>0,31<br>0,67<br>0,42 |
|                          |                          | Total:                                                   | 93 <b>,</b> 67                           | 100,00                                   | 100,00                                  |       |                                      |