
Sound Field Analysis of Rooms with 
Ceiling Absorbers

Hallvard Andreas Granseth

Master of Science in Physics and Mathematics

Supervisor: Jon Andreas Støvneng, IFY
Co-supervisor: Peter Svensson, IET

Magne Skålevik, Brekke & Strand Akustikk AS

Department of Physics

Submission date: June 2015

Norwegian University of Science and Technology



 



Abstract

The theory on damped modes and absorption of modes with grazing incidence pre-
sented by Kinsler et al. has been applied to the shoebox-shaped room with five hard
walls and one absorber wall, using measurements in a scale model box. Single mode
reverberation time analysis, estimations of reverberation time based on grazing mode
absorption via measurements of the specific acoustic impedance, and measurements of
vertical components of the sound intensity has all been used in an attempt at identifying
grazing modes and comparing the theoretical descriptions to the observed sound field.

The thesis found Kinsler et al.’s theory on damped modes and absorption of modes
with grazing incidence to be poorly suited for the shoebox-shaped room with five hard
walls and one absorber wall. Grazing modes and non-grazing modes were not sep-
arable, neither by reverberation time estimates nor by sound intensity measurements.
The reverberation time estimates using the damped modes & grazing mode absorption
theory were several orders of magnitude less than the observed reverberation time. The
most likely weakness in the theory is thought to be the assumption on wall impedance,
which does not fit with porous absorbers on rigid walls.
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Sammendrag

Teori om dempede moder og absorpsjon av moder med streifende innfall presentert av
Kinsler et al. har blitt anvendt på et skoeskeformet rom med fem harde vegger og en
absorberende vegg, ved bruk av målinger i en skalamodell. Analyse av enkeltmoders
etterklangstid, estimering av etterklangstid basert på absorpsjonsteorien for streifende
moder via målinger av spesifikk akustisk impedans, og målinger av vertikalkompo-
nenter av lydintensitet har blitt brukt i et forsøk på å identifisere streifende moder og
sammenligne de teoretiske beskrivelsene med det observerte lydfeltet.

Denne masteroppgaven fant at Kinsler et al.’s teori om dempede moder og absorp-
sjon av moder med streifende innfall var dårlig tilpasset det skoeskeformede rommet
med fem harde vegger og en absorberende vegg. Streifende moder og ikke-streifende
moder var ikke separable, hverken ved estimering av etterklangstid eller ved lydinten-
sitetsmålinger. Estimatene for etterklangstid ved bruk av teorien om dempede moder &
absorpsjon av moder med streifende innfall var flere størrelsesordener mindre enn den
observerte etterklangstiden. Den mest sannsynlige svakheten i teorien er tenkt å være
antagelsen om veggimpedans, da denne ikke passer med porøse absorbenter på harde
vegger.
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H = Transfer function
I = Sound intensity
k = Wave number
p = Sound pressure
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αx,y,z = Spacial absorption coefficient
β = Temporal absorption coefficient
θ = Angle of wave propagation
λ = Wave length
σ = Airflow resistivity
ω = Angular frequency

Relevant constants
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ρ0 = Equilibrium density of air
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Chapter 1
Introduction

1.1 Background

The Norwegian Standard NS8175 Acoustic conditions in buildings, Sound classifica-
tion of various types of buildings serves as reference for the Norwegian Building Codes,
and includes limiting values for room acoustical parameters. In general, these limiting
values are given for reverberation time, T , and mean sound absorption coefficient ᾱ for
the surfaces in various rooms and building types [16, pp. 3,9,12]. With T being one of
normally only two room acoustical parameters, the importance of being able to predict
it is self-evident.

However, the shoebox-shaped, or rectangular cuboid, room with hard, flat walls
and floors and a soft, absorbing ceiling makes T difficult to predict. This room has
been dubbed THE HARD CASE [15]. Common HARD CASE rooms are offices, meet-
ing rooms, classrooms, recording or rehearsal spaces for music, gymnastic halls and
cafeterias.

1.2 Motivation

A previous project by the author [5] investigated the behaviour of sound absorbing
surfaces in THE HARD CASE, using a scale model box. The focus of the investigation
was a difference in absorbing ability between high and low frequencies that varied
significantly from what was expected, as shown in Figure 1.1. Above some unknown
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Chapter 1. Introduction

cross-over frequency fx, the sound wave will be affected by the absorber to a lesser
degree. However below fx, the sound wave will be affected by the absorber to quite
a larger degree. The observed differences in absorption characteristics between low
and high frequencies are not predicted by any existing theory, nor is the cross-over
frequency region specified. Figure 1.1 shows how the low-frequency region features
an unexpectedly high α compared to predictions of αdiffuse and α(θ → 90◦) by the
Delany-Bazley model, and assuming locally reacting material.

It should be noted that the absorption coefficient α obtained from the measurements
of the scale model absorber has been derived using the Sabine expression for reverber-
ation time (equation (2.48). This equation assumes diffuse field conditions, which are
not met by THE HARD CASE – and particularly not below the Schröder frequency.
Consequently, the blue ’Scale model measured α’ line in Figure 1.1 should be viewed
with some scepticism. Note also how the ’Scale model measured α’ line might artic-
ulate two frequency dependences: One frequency dependence of α for the absorber
sample, and another for the coupling between the absorber and the sound field.

Figure 1.1: Theoretical diffuse field absorption, theoretical quasi-grazing absorption and mea-
sured scale model absorption for a porous absorber, with scale model Schröder frequency
fs ≈ 1.4 kHz

Eliminating possible explanations having to do with the scale model and absorbers

2



1.3 Problem description

used, the following hypothesis was formulated to explain this behaviour: The sound
field can be described as sound waves divided into two groups – the waves that are
propagating parallel to the ceiling absorber and the waves that are not. The sound
waves that are not propagating parallel to the ceiling can be said to have a vertical
component.

The vertical components of the sound field will be quickly damped and
the horizontal components will die out more slowly. This remaining re-
verberant field will constitute a 2D sound field propagating parallel to the
ceiling. The observed frequency dependent absorption might be explained
by grazing incidence absorption (of the 2D field in the ceiling absorber)
having different charactereistics than what is predicted by standard theory.

Examining existing theory on grazing incidence absorption, the frequency dependence
observed is not described, and the difference in absorption between modes with grazing
incidence (or grazing modes) and modes with non-grazing incidence (or non-grazing
modes) is not big enough to account for the observed absorption differences. The
experimental results indicates the theoretical relationship between grazing modes and
non-grazing modes may be incorrect, and a look at grazing incidence absorption is
warranted.

1.3 Problem description
In rooms where the absorption is dominated by ceiling absorbers, long re-
verberation time can be observed at middle and high frequencies, i.e. that
absorbers have low efficiency. This is explained by the sound field be-
ing dominated by horizontally propagating sound waves that are slightly
damped. The ceiling absorber can still function efficiently at low frequen-
cies, although standard theory predicts the opposite to be true. In this mas-
ter thesis the functioning of the ceiling absorber will be explored using
scale model measurements and theoretical calculations.

To elaborate, theory by Kinsler et al. [8, p. 350] on damped modes’ grazing incidence
absorption states that grazing modes will be absorbed by a factor 1/2 the absorption
of non-grazing modes, and consequently that grazing modes will have twice the re-
verberation time of non-grazing modes. The expressions are not linked to frequency
dependence in a way that sufficiently explains the observed absorption. If the the-
oretical expression for grazing modes can be challenged, grazing modes might have

3



Chapter 1. Introduction

a frequency dependent absorption more in line with the observed absorption and the
hypothesis explaining the reverberant behaviour of THE HARD CASE might be valid.

By measuring T for single modes and comparing T for grazing modes with T
for non-grazing modes, it might be possible to dispute the validity of Kinsler et al.’s
expressions. Additionally, T may be determined from the expressions for grazing in-
cidence absorption based on measurements of the specific acoustic impedance, and
thereby also indicate the validity (or lack thereof) of Kinsler et al.’s expressions. Fi-
nally, measurements of the vertical sound intensity component might serve to identify
any grazing modes and maybe offer some illumination into how the absorber interacts
with the sound field.

1.4 Structure
Chapter 2 will contain the relevant theoretical background in room acoustics. Chapter
3 will present the scale model box and sound absorber, the measurement method and
equipment used. The measurement results are presented in Chapter 4, including modal
estimations of T , calculations of T based on the theoretical expressions for grazing
incidence and some examinations of the sound intensity as a function of distance to the
absorber ceiling. The results will be discussed and compared in Chapter 5. This chapter
will also contain comments on sources of error and some suggestions for further work.
Lastly, Chapter 6 presents the conclusions.

4



Chapter 2
Theory

This chapter presents some important concepts in room acoustics - namely the wave
equation & modes, intensity & impedance, reflection & absorption, and reverberation
time. Different approaches to grazing incidence absorption are briefly elaborated. In
addition, some notes on the Fourier transform, the scale model and the sound absorber
are also included.

Notation

• Bold characters denote complex quantities.

• X∗ denotes the complex conjugate of X .

• j denotes the complex number
√
−1.

2.1 Wave theoretical room acoustics

The concepts elaborated in Section 2.1 will be presented in depth. This is because they
are particularly important for understanding the implications of the results presented in
Chapter 4.

5



Chapter 2. Theory

2.1.1 The wave equation
The partial differential equation called The Wave Equation can be used with knowledge
of the room’s dimensions and boundary conditions to derive the exact sound pressure
anywhere within the room [21, p. 497] [8, p. 349]. Including a sound source term, the
inhomogeneous wave equation can be expressed as

∇2p(x, y, z, t)− 1

c2
∂2p(x, y, z, t)

∂t2
= q(x′, y′, z′, t′) (2.1)

where p(x, y, z, t) is the sound pressure at coordinates (x, y, z) and time t and q(x′, y′, z′, t′)
is the source signal at coordinates (x′, y′, z′) and time t′. Removing the source term
from the equation (replacing the right-hand side with zero) gives the homogeneous ver-
sion of the wave equation, which can be used to derive an expression for p(x, y, z, t):

In a closed rectangular cuboid cavity with rigid boundaries (where the sound energy
cannot escape) and assuming the time dependency of p can be expressed as ejωt, we
can assume a solution to the wave equation for p [8, p. 247]

p(x, y, z, t) = X(x)Y (y)Z(z)ejωt (2.2)

where the separation of variables leads to the following set of equations:

(
d2

dx2
+ kx

)
X = 0(

d2

dy2
+ ky

)
Y = 0(

d2

dz2
+ kz

)
Z = 0

and the wave number (ω
c

)2

= k2 = k2
x + k2

y + k2
z . (2.3)

The boundary condition of rigid boundaries means that the air particle velocity
component normal to the wall has to be zero at the wall. This is expressed as(

δp

δi

)
i=0

=

(
δp

δi

)
i=Li

= 0 , i = x, y, z (2.4)
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2.1 Wave theoretical room acoustics

where Li are the dimensions of the cavity, and which leads to p expressed as a sum of
cosines:

pnxnynz = ΣnxnynzAnxnynz cos (kxx) cos (kyy) cos (kzz) e
jωnxnynz t (2.5)

where the cosine functions are called modes [8, p. 53], Anxnynz
is called the mode

amplitude and the wave number components are quantized in the following manner:

ki,ni
=

niπ

Li
, ni = 0, 1, 2...

i = x, y, z (2.6)

where ni is called the order of the mode.
Combining equations (2.3) and (2.6) gives the eigenfunctions or modal frequencies

of the cavity:

fnxnynz
=
c

2

√(
nx
Lx

)2

+

(
ny
Ly

)2

+

(
nz
Lz

)2

(2.7)

These frequencies are also called natural frequencies or standing waves, because
their wavelengths corresponds to the dimensions of the cavity in such a way that the
sound waves will interfere positively with themselves. Note that energy loss is not in-
cluded, theoretically causing infinitely high amplitudes for perfectly rigid cavity walls.

2.1.2 Standing waves
Reducing the theory to one dimension for a moment, the sound pressure distribution
of the fundamental mode of order 1 (nx = 1) will follow the cosine expression from
equation (2.5) for half a period, having |p| = pmax at both walls (x = 0 & x =
Lx). The sound pressure will have a node (where the sound pressure is zero) half-way
between the pressure maxima.

The 2nd order mode (or 1st harmonic) will follow the same pattern for one period
– having half as long wavelength and twice as high frequency. The mode has pressure
maxima at both walls and halfway between the walls, with two nodes half-way between
pressure maxima. Similarly, the 3rd order mode (or 2nd harmonic) has a wavelength
that is 1/3 the wavelength of the fundamental mode, with four pressure maxima and
three nodes.

Plotting the absolute value |p| of the cosine-function sound pressure distribution for
the first 10 modes in Figure 2.1, the following can be observed:

7



Chapter 2. Theory

• All odd order modes will have a node at Li/2.

• Every other even order mode will have nodes at Li/4 and 3Li/4

Figure 2.1: Pressure distribution of modes nx = 1− 10 in 1D

2.1.3 The few modes region & the Schröder region

The number of eigenfunctions ∆N with a resonance frequency within a frequency
range ∆f is called the mode density

∆N

∆f
≈ 4πf2

3c3
V +

πf

2c2
S +

L

8c
(2.8)

where S is the total surface area of the room and L is the total length of the edges of the
surface segments [19, p. 111]. What equation (2.8) demonstrates is that there are few
modes at low frequencies and many modes at high frequencies. If there are few modes
in a frequency range, the sound pressure may differ significantly across the room –
having clearly defined sound pressure nodes and maxima. On the other hand if the
mode density is high enough, the response curves of the standing waves will overlap:
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2.1 Wave theoretical room acoustics

Any sound pressure maxima will be due to interference between more than one mode
and the average sound pressure distribution will be the same throughout the room.

For increasingly higher frequencies, the sound field will demonstrate increasing
amounts of diffuse field characteristics. In a diffuse sound field, the sound pressure is
the same across the entire room. A perfectly diffuse field is only theoretically possi-
ble, but for sufficiently high mode density and modal overlap, it is possible to have a
fairly diffuse field. Specifically, for increasing frequencies the probability of finding
overlapping modes that together will constitute a diffuse field, is higher.

In a sound field with high enough modal overlap, single modes cannot be distin-
guished from each other and statistical room acoustics (see Section 2.5) is the only
practical way to describe the room’s acoustics. The criterion of sufficiently high mode
density was defined by Schröder in the 1962 as a three-fold modal overlap [13, p. 1].
The frequency range with the minimum three-fold average modal overlap is called the
Schröder region. Furthermore, he developed a frequency limit, above which the prob-
ability of finding this average three-fold modal overlap is high. This frequency limit is
called the Schröder frequency:

fs = 2000 ·
√
T

V
. (2.9)

Schröder also introduced another characteristic property of the high frequency re-
gion, namely the average maximum spacing between frequency maxima as a function
of the reverberation time[13, p. 3]:

fmax ≈
4

T
. (2.10)

Just as the high frequency region (or the Schröder region) is defined by a mini-
mum three-fold average modal overlap, the low frequency region is defined by modes
being separable. Hence, the low frequency region is also called the few modes re-
gion. However, the Schröder frequency limit is not meant as a sharp boundary and a
cross-over region between the few modes region and the Schröder region is observable.
Specifically, it is possible to observe sound fields where equation (2.10) are valid for
frequencies below f = fs .

In other words, the few modes region where fmax is not defined and modes are
separable, can be followed by a cross-over region where fmax is valid while f < fs.
The cross-over region is then followed by the Schröder region, where fmax is valid
and f > fs.

By applying equation (2.10) to equation (2.8), the frequency limit between the few
modes region and the cross-over region becomes

9
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fnew = 900 ·
√
T

V
, (2.11)

as suggested by Magne Skålevik [14, p. 3].
In other words, the modal theory applies up to fnew, statistical theory applies from

fs and upwards, but in the frequency range fnew − fs the literature is inconclusive.

2.1.4 Damped modes
Without perfectly rigid cavity walls, the particle velocity at the wall, normal to the wall
will not be zero and equations (2.4) are no longer valid. Instead the temporal absorption
coefficient β and the spacial absorption coefficients αi are introduced [8, p. 349]:

ki = ki + jαi , i = x, y, z(ωD
c

)2

= k2
x + k2

y + k2
z

ωD = ωD + jβ (2.12)

This leads to the expression for damped pD:

pDnxnynz
= Σnxnynz

Anxnynz
cos (kxx+ φx) cos (kyy + φy) cos (kzz + φz) e

jωDt

(2.13)
where ki, φi and αi are determined by the boundary conditions of the cavity. Simpli-
fying the expression in equation (2.13) somewhat, it can be rewritten as

pDnxnynz
(x, y, z) = Σnxnynz

Anxnynz
Φnxnynz

(x, y, z) ejωDt (2.14)

where Φ (x, y, z) substitutes the cosines.
Around a resonance frequency, this sum will be dominated by one term in the

series:

pDnx=a, ny=b, nz=c (x, y, z) ≈ AabcΦabc (x, y, z) ejωDt . (2.15)

2.1.5 Modes with grazing incidence
Mode frequencies with only one non-zero order ni are termed axial modes because the
sound pressure wave propagates parallell to one of the axes. Mode frequencies with
two non-zero orders ni are termed tangential modes because the sound pressure wave
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2.2 Intensity & impedance

propagates parallel to one of the surfaces. Modes frequencies without non-zero orders
(nx,y,z 6= 0) are termed oblique modes.

Tangential mode sound pressure waves travelling parallel to one of the surfaces of
the room, have an incidence angle on the surface of 90◦. These modes are said to have
grazing incidence on the surface.

The amount of sound energy transmitted into the wall and reflected back from the
wall will depend both on the material the wall is made from and on the incidence
angle of the sound wave. As the incidence angle approaches 90◦ the amount of energy
absorbed is greatly diminished.

2.2 Intensity & impedance

2.2.1 Intensity
The acoustic intensity I of a sound wave is the time-averaged rate of work being done
on one fluid element by another [8, p. 125]. This is expressed as the time-averaged
product of the particle sound pressure and velocity:

I =
1

τ2 − τ1

∫ τ2

τ1

p(t) · u(t)dt (2.16)

where τ2−τ1 is the time period of the averaging. For a plane wave propagating parallel
to the x-axis, p = ±ρ0cu, which reduces the expression for the intensity in the x-
direction to

Ix = p(t) · ux(t) = ± P 2

2ρ0c
(2.17)

where P is the amplitude of p.

2.2.2 Impedance
The sound field impedance is obtained by dividing the acoustic pressure by the particle
velocity. This is also called the specific acoustic impedance:

z =
p

u
. (2.18)

For a plane wave the specific acoustic impedance becomes

Z = ±ρ0c (2.19)
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where ρ0 is the equilibrium density of the medium and c is the speed of sound in the
medium. Because this is an important characteristic property of media it is called the
characteristic impedance.

For plane, propagating waves the specific acoustic impedance will be real, but for
standing waves between two walls, the incident and reflected pressures cannot be as-
sumed perfectly in or out of phase. This leads to that the specific acoustic impedance
must be assumed complex [8, p. 126], comprising the specific acoustic resistance and
the specific acoustic reactance:

z = r + jx . (2.20)

Looking at the interface between two media, one can assume the boundary con-
ditions continuity of pressure and continuity of the normal component of the particle
velocity. This can also be expressed as the continuity of the normal specific acoustic
impedance [8, p. 160]:

zn =
p

u cos(θi)
= rn + jxn (2.21)

where θi is the incidence angle.

2.2.3 Oblique incidence absorption

Looking at reflection and transmission of sound pressure waves from one medium to
another, the pressure reflection and transmission coefficients can be defined as

R =
pr
pi

T =
pt
pi

1 = T −R

where pi is the pressure of the incident wave, pr is the pressure of the reflected wave
and pt is the pressure of the transmitted wave.

An oblique incidence sound pressure wave from one medium onto the surface of
another is usually described using specular reflection and transmission: Assuming both
media can be approximated to fluids and continuity of pressure and of the normal com-
ponent of the particle velocity at the interface, R can then be calculated using the
incidence angles and the characteristic impedances of the media [19, p. 83]:

12



2.2 Intensity & impedance

R =

Z2

cos (θt)
− Z1

cos (θi)
Z2

cos (θt)
+

Z1

cos (θi)

=
Z2 cos (θi)− Z1 cos (θt)

Z2 cos (θi) + Z1 cos (θt)
(2.22)

where Z1,2 is the characteristic impedance of the media, θi is the incidence (and re-
flection) angle and θt is the transmission angle. Letting the incidence angle approach
θi = 90◦ leads to |R| = 1 for grazing incidence – meaning no sound wave transmission
in medium 2 (the wall), ergo no sound absorption.

2.2.4 Locally reacting material

When medium 2 is solid, the velocity of the refracted wave is decomposed into a tan-
gential and a normal component:

vt =
c

mt

vn =
c

mn

where vi is the velocity component in the solid, mi is the average index of refraction
and c is the speed of sound in air. Empirically, mt is so much larger than unity as to be
indistinguishable from infinity [12, p. 58]. This leads to vt << vn and is expressed as
the assumption that the material is locally reacting.

This is particularly common for anisotropic materials. For isotropic materials, the
speed of longitudinal wave propagation in the material will be small compared to in the
air [8, p. 161]. Combining this with Snell’s law [19, p. 82] gives θt << θi. Assuming
cos(θt) = 1 and using the complex normal specific impedance (2.21), it’s possible to
obtain the following expression for R:

R =

rn −
Z1

cos (θi)
+ jxn

rn +
Z1

cos (θi)
+ jxn

. (2.23)

where normally rn >> Z1, which leads to |R| = 1 for θi = 90◦.
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2.3 Sound absorbers
Sound absorbers are usually divided into two categories: porous absorbers and res-
onator absorbers. Common types of porous absorbers are mineral wool (or ’mineral
fibre’) and plastic foam. Plastic foam has an open cell structure, while mineral wool
is made up of anisotropically oriented fibres with a diameter of a few microns [19, p.
156]. The air inside the material is moveable. When sound waves cause the air in the
porous absorber to move, energy will be lost in the friction movement of the structure
and converted to heat.

Resonator absorbers are mass-spring systems where sound waves cause the mass
to oscillate. The energy will then dissipate through damping in the system. These
systems work best around their resonance frequencies. One type of resonance absorber
is the Helmholtz resonator, which is an air cavity with a small opening. The air in the
opening works as a mass, and the air in the cavity works as a spring.

As this thesis concerns itself with porous absorbers, these will be examined in more
detail.

2.3.1 The impedance at the absorber surface
For simplicity, normal incidence is assumed. A plane wave propagating parallel to the
x-axis with normal incidence on a perfectly flat and rigid wall will have the specific
acoustic impedance

zx =∞ (2.24)

at the wall. Substituting the rigid wall for a heavy plate where some of the sound
energy is transmitted through the plate, the plane wave will have the specific acoustic
impedance

zx = jωm+ ρ0c (2.25)

where m is the mass of the plate.
The absorption coefficient can [19, p. 75] be expressed as

α = 1−
∣∣R∣∣2 (2.26)

and R relates to the specific acoustic impedance like this:

zx = ρ0c
1 + R

1−R
, (2.27)

relating the absorption coefficient to the specific acoustic impedance [19, p. 77]:
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2.3 Sound absorbers

α =
4<
{zx
Z

}
∣∣∣∣zxZ

∣∣∣∣2 + 2<
{zx
Z

}
+ 1

. (2.28)

2.3.2 The Delany & Bazley model
The most popular model for describing the behaviour of porous absorbers is the empir-
ical model by Delany & Bazley [19, p. 180]. This model describes the absorber by its
complex characteristic impedance and complex wave propagation coefficient Γ = j ·k:

Z = ρ0c

{
1 + a

(
f

σ

)b
− jc′

(
f

σ

)d}

Γ =
ω

c0

{
p

(
f

σ

)q
+ j

[
1 + r

(
f

σ

)s]}
(2.29)

where σ is the airflow resistivity. Furthermore, a, c′, p and r are the empirical coef-
ficients of ( fσ ) and b, d, q and s are the empirical degrees of ( fσ ) [10, pp. 121-122].
The empirical coefficients and degrees have been revisited first by Miki and later by
Komatsu.

Using the Delany-Bazley model with the Winflag simulation software (see Section
3.3) in the following setup

• air

• porous layer Delany-Bazley model, thickness d

• HARD WALL

gives the following illustration of absorption coefficient efficiency as function of fre-
quency and thickness d of the absorber layer presented in Figure 2.2. Note that this
simulation uses σ = 10 kPa s/m2. As shown in the figure, absorption efficiency in-
creases for increasing frequency and for increasing absorber thickness.

It’s customary to approximate the frequency where the absorber approaches maxi-

mum effectiveness to d ≈ λ

4
where λ is the wavelength of the sound. For the absorbers

presented here, only the three thickest absorbers approach α ≈ 1 in the relevant fre-
quency range. The three absorbers approach α ≈ 1 for the following frequencies:
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• d = 50 mm⇒ f =
c

4 · d
= 1715 Hz

• d = 100 mm⇒ f = 857.5 Hz

• d = 500 mm⇒ f = 171.5 Hz

The α-plots for these three absorbers with the d ≈ λ

4
frequencies marked can be

seen in Figure 2.3. From this figure it’s apparent that this approximation is better for
increasing frequencies. It’s also worth noting that the absorber thickness of 500 mm is
unusual.

The fluctuations of the curves as they approach α = 1 is caused by the absorber
being finite in extent. An infinitely large absorber surface would not have the observed
fluctuations.
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2.3 Sound absorbers

Figure 2.2: Simulated absorption coefficients for different absorber thicknesses using WinFlag
& the Delany-Bazley model

Figure 2.3: Simulated α using WinFlag & the Delany-Bazley model with the frequencies corre-

sponding to d =
λ

4
marked as vertical lines
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2.4 Grazing incidence absorption
The principle of specular reflection that is commonly used for calculating oblique in-
cidence absorption fails to describe the absorption of a grazing incidence sound wave,
i.e. when cos (θ) = 0 in equations (2.22) and (2.23). These conventional approaches
to sound absorption fail to describe the absorption characteristics of THE HARD CASE,
as illustrated in Figure 1.1.

Note that for perfect conditions of smooth, flat walls that are infinitely hard, placed
perfectly perpendicular to each other, assuming locally reacting surfaces and the room
as an infinitely long tube, there would be no grazing incidence absorption.

Kinsler et al. [8, p. 350] has derived an expression for grazing incidence absorption
based on equation (2.13) and a series of assumptions:

• Looking at a cuboid room with five perfectly rigid wall and one lossy wall at
x = Lx, isolating the problem to 1D.

• The absorbing characteristics of the wall are determined by its normal specific
acoustic impedance zx (2.21). This makes the boundary conditions somewhat
simpler to formulate.

• Neglecting the reactive part of the complex normal specific acoustic impedance
(equation (2.20)) leads to the following expression:

zx = ρ0c vx (2.30)

where vx is the dimensionless relationship between the impedance in the interface (par-
allel to the x-axis) and the characteristic impedance of air: zwalln /Zair.

The rest of the walls are perfectly rigid, giving the coefficients from equation (2.12):

αy = αz = 0

φall = 0

β = βx .

(2.31)

Solving the remainder of the
(
ωD+jβ

c

)2

= k2
x + k2

y + k2
z condition from equation

(2.12) gives the real and imaginary parts of the expression as the boundary conditions
for the grazing incidence absorption expressions:
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k2 − α2
x =

ω2
D − β2

x

c2
(2.32)

βx = kxαx
c2

ωD
. (2.33)

(2.34)

The boundary condition zx =
p

ux
= ρ0c vx at x = Lx gives

tan [(kx + jαx)Lx] = j
1

vx

(ωD + jβx) /c

kx + jαx
. (2.35)

For all normal modes, the nearly rigid wall leads to the approximation kxLx ≈
nxπ. Applying this and series expansion to the left hand side, equation (2.35) can be
rewritten:

(kxLx − nxπ) + jαxLx = j
1

vx

(ωD + jβx) /c

kx + jαx
nx = 0, 1, 2... . (2.36)

Looking at equation (2.36) for grazing modes (nx = 0), the imaginary part can be
written as

2Lxkxαx =
ωD
cvx

, (2.37)

which when substituted into equation (2.34) gives the expression for βgrazing as

βgrazing =
1

2

c

vxlx
. (2.38)

Looking at equation (2.36) for non-grazing modes (nx 6= 0), the imaginary part
can be written as

αxkxLx + αx (kxLx − nxπ) =
ωD
cvx

. (2.39)

Assuming kxLx = nxπ to be a reasonable assumption for lower order modes and sub-
stituting the resulting expression into equation (2.34) gives the expression for βnon−grazing
as

βnon−grazing =
c

vxlx
, (2.40)
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which is then assumed valid for lower order modes.
Comparing equations (2.38) and (2.40) reveals the relation

βnon−grazing = 2 · βgrazing . (2.41)

For convenience, equations (2.38) and (2.40) are rewritten expressing β as a function
of the impedance using equation (2.30):

βnormal =
c

zx
ρc
· Lx

βgrazing =
1

2

c
zx
ρc
· Lx

. (2.42)

2.4.1 The inverse proportionality of T and β
Equation (2.5) expresses the sound pressure as a sum of cosines multiplied by a tem-
poral factor:

pDnxnynz
∝ ejωDt = ej(ωD+jβ)t (2.43)

so that the dependence of p on β can be expressed as:

pDnxnynz
∝ e−βt . (2.44)

As described in Section 2.5, the reverberation time T is the time it takes the sound
pressure to decrease by 60 dB. Decibel is defined as 20 log10 (p/preference), which
gives a decrease in pressure by 60 dB as the decrease to 1/1000. This can be expressed
using equation (2.44) as

∆p =
1

1000
= eβT60 , (2.45)

or

T60 =
ln (1000)

β
, (2.46)

showing the inverse proportionality of T and β. Revisiting equations (2.38) and (2.40)
shows how the reverberation time of grazing modes will be twice that of non-grazing
modes:

Tgrazing = 2Tnon−grazing (2.47)
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2.4.2 Alternative approach

An alternative theoretical approach to absorption as a function of incidence angle was
presented by Sven-Ingvar Thomasson in 1982 [17]. His approach provides an expres-
sion for the absorption coefficient which does not include the cosine function and con-
sequently does not approach zero for incidence angles θ ⇒ 90◦.

This expression behaves somewhat like THE HARD CASE, in that the absorption
approaches α ⇒ 1 for ca. 400 Hz, just like in Figure 1.1. However, this expression
does not predict the steep drop in absorption observed at high frequencies in THE
HARD CASE, but rather a gradual decrease to α ≈ 0.5 at ca. 3 kHz.

Consequently, Thomasson’s expressions have been omitted, even if they’re men-
tioned here to point out how the expressions in Section 2.4 are not the only ones de-
scribing grazing incidence absorption.

2.5 Statistical room acoustics

Above the Schröder frequency (equation (2.9)) the modal overlap makes single modes
indistinguishable. In this frequency region the wave theoretical room acoustics (Sec-
tion 2.1) cannot describe the properties of the room. The statistical approach is much
easier to work with and above the Schröder frequency it is highly accurate.

Statistical room acoustics can also be used below the Schröder frequency, but as
the mode density decreases, so does the statistical accuracy.

2.5.1 Reverberation time

The reverberation time, T , was developed by Sabine in the the 1890s and is defined as
the time it takes for the sound pressure level to decrease by 60 dB after the sound source
ceases. Sabine’s equation for T is an empirical relation between the reverberation time
of the room, the volume of the room and the absorbing characteristics of the room’s
surfaces [8, p. 338]:

TSabine =
24 · ln(10)

c

V

A+ 4mV
=

0.161V

SᾱS + 4mV
. (2.48)

Here, c is the speed of sound, V is the volume of the room, S is the surface area of
the room, ᾱS is the (Sabine) mean sound absorption coefficient and m is the energy
attenuation coefficient for sound pressure waves travelling through air. The term 4·m·V
consequently represents energy absorption in air. Notice how the absorption areaA has

21



Chapter 2. Theory

been replaced by the product of the surface area S and the mean absorption coefficient
ᾱS in the final expression.

TSabine assumes a diffuse sound field. For sufficiently diffuse sound field condi-
tions, ᾱS will range between 0 for perfectly hard, 100 % reflecting surfaces and 1 for
perfectly soft, 100 % absorbing surfaces. However, for increasingly non-diffuse sound
field conditions, the absorption coefficient αS can become larger than 1.

Kinsler et al [8, p. 338] gives an approximation of the attenuation coefficient for
air absorption as

m = 5.5 · 10−4

(
50

RH

)(
f

1000

)1.7

(2.49)

whereRH is the relative humidity of the air given in percent, f is the frequency and the
expression (2.49) is sufficiently accurate for relative humidities ranging from 20 - 70 %

and in the frequency range 1.5 - 10 kHz. As m ∼
(

f
1000

)1.7

, air absorption constitutes
a negligible error for frequencies below 1.5 kHz. Since the measurements performed
in this particular project has an upper frequency limit of 1 kHz, air absorption will be
neglected.

The Sabine equation (2.48) assumes a diffuse sound field, where the sound energy
density is the same in every point in the room. It will give T > 0 even for values of
ᾱ approaching and equal to 1. The most common improvement to the Sabine equa-
tion is the Eyring reverberation time, which is based on the mean free path between
reflections:

TEyring =
0.161V

−S ln(1− ᾱE) + 4mV
. (2.50)

As long as ᾱSabine calculated from equation (2.48) is allowed to exceed 1, it is
possible to directly derive the corresponding ᾱEyring [1, p. 1409].

2.5.2 Measuring the reverberation time
Comparing the signal sent to the loudspeaker with the signal received from the micro-
phone using a Fourier transform gives the transfer functionH(ω) and impulse response
h(t) of the room. Integration of the impulse response by the following expression

E(t) =

∫ ∞
τ

h2(t) dt (2.51)

will give the energy decay E(t) from the time t = τ [19, p. 107]. The energy decay
curve, also called the Schröder curve, shows the decay of the sound pressure energy
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in the room as a function of time and is used for estimating the reverberation time by
using a least squares fit line. A sketched Schröder curve can be seen in Figure 2.4.

Figure 2.4: Sketch of Schröder curve

As the situation of having a test signal more than 60 dB stronger than the back-
ground noise floor is unusual and impractical, the measurement of T will usually in-
volve extrapolating the fitted line based on different parts of the decay slope:

• T60 denotes a fitted line based on the dynamic range from 0 to -60 dB.

• T30 is the most common substitute for T60. T30 uses the dynamic range from -5
dB to -35 dB to extrapolate the line. The T30 value will then be twice the time it
takes for the sound energy to decay from -5 to -35 dB.

• As an alternative to T30, T20 uses the dynamic range from -5 dB to -25 dB.

• Lastly there’s Early Decay Time (EDT), which uses the dynamic range from 0 to
-10 dB.

2.5.3 Decay curve linearity

For a perfectly straight line Schröder curve, T20 = T30. Measuring T20 ≈ T30 is an
indication of a diffuse sound field. In most normal situations, T20 6= T30 and T20 is
then often used as an alternative to T30 because T20 will favour earlier reflections more
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than T30 will. The early reflections have greater influence on the perceived acoustics
of a room, and EDT is sometimes included in addition to T20 or T30 for this reason.

The curvature parameter C gives the percentage the Schröder curve deviates from
a straight line by the following expression:

C = 100 ·
(
T30

T20
− 1

)
[%] (2.52)

where C has typical values between 0 % and 5 %. Higher values than 10 % indicate a
far from straight line decay [6, p. 15]. In other words, the curvature parameter reveals
whether or not the calculated T is mainly dependent on the chosen dynamic range. In
cases of strongly non-diffuse fields (e.g. THE HARD CASE) T30 6= T20, C 6= 0 and the
calculated T is to a high degree dependent on which dynamic range is chosen for the
calculation.

In other words, the curvature parameter is a good way to identify a possible HARD
CASE room. Examples of non-straight Schröder curves can be seen in Figures 3.6b,
4.6 and in Appendixes A.4 and A.6.

2.6 The Fourier transform & filtering

2.6.1 The Fourier transform

The Fourier transform is defined [11, p. 519] as

F (ω) = F
{
f(t)

}
=

1√
2π

∫ ∞
−∞

f(t) e−jωtdt . (2.53)

Letting h(t) be the recorded impulse response, the length of h(t) is called the du-
ration D, and the width of the spectrum of the transfer function H(ω) is called the
bandwidth B. Because the duration and the bandwidth have a reciprocal relationship,
the duration-bandwidth product is constant [4, p. 233]:

∆t ·∆ω = C (2.54)

where C is a constant. This is called the uncertainty relation and implies a wide enve-
lope ∆ω for short ∆t and vice versa.
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2.6.2 The filterwidth
Isolating a mode fc in the frequency spectrum of H(ω) using a bandpass filter ∆f =
fc ± B/2 with a chosen filter bandwidth (or filterwidth) B, will lead to the fourier-
transformed time signal h(t)∆f having an envelope ∆t.

The envelope ∆t will distort the energy decay curve E(t) (2.51) unless the impulse
response of the filter is much shorter than the impulse response of the system under test
[7, p. 187]. For E(t) to remain acceptably un-distorted, the bandwidth B of the filter
has to fulfill the following requirement:

B · T60 > 4 (2.55)

where T60 is the reverberation time of the system under test [7, p. 188].

2.6.3 The transform properties of p(χ, t)
The homogeneous wave equation is derived to the expression for the sound pressure
p(x, y, z, t) given in equation (2.14). Including a source term, it can be shown [2, p.
94] that equation (2.14) can be expressed on the following form

p(χ, t) = C · ΣmnqΛmnqΦ (χs) Φ (χ) cos (ωmnqt) e
−δmnqt (2.56)

where C is a constant, Λmnq is proportional to Anxnynz in equation (2.14), Φ (χs) is
the cosine expression for the sound source point, Φ (χ) is the cosine expression for the
receiver point, δmnq is the damping factor, and nxnynz has been substituted with mnq
and (x, y, z) with χ for a more economic expression.

Equation (2.56) has a Fourier transform that can be expressed like this [2, p. 93]:

p(χ, ω) = C · ΣmnqΛmnq
Φ (χs) Φ (χ)

ω2 − ω2
mnq ± 2jδmnq

ejωt . (2.57)

2.7 Scale model considerations
Using a scale model for measurments entails some considerations when comparing
results to full-scale measurements.

Using scale model ratio of 1:X , the wavelength in the scale model becomes

λscale model =
λfull scale

X
. (2.58)

Using f = c
λ gives the frequency relationship
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fscale model = X · ffull scale (2.59)

between the scale model and full scale measurements. Equation (2.48) then gives the
following relationship for T :

Tscale model = 0.161
Vscale model
Ascale model

= 0.161

Vfull scale
X3

Afull scale
X2

=
Tfull scale

X
. (2.60)
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Measurements

This chapter presents the scale model and sound absorber used. The measurement
setup and equipment are described and measurement methods are elaborated.

3.1 Description of the scale model

The scale model is a box made of 18 mm plywood with inner dimensions Lx × Ly ×
Lz = 1.47 × 2.37 × 0.85 m3. With a scale factor of 1:4, this scales up to a room of
dimensions 5.9×9.5×3.4 m3. This is a realistic room size, easily comparable to rooms
on the NTNU campus. A sketch of the scale model is included in Figure 3.1.

The absorber used with the scale model box is a plastic foam absorber of 50 mm
thickness. This absorber was installed in the box with a 50 mm gap between the ab-
sorber and the actual box ceiling. Note how the apparent height inside the box is 10 cm
less with the absorber installed. This has been taken into account when calculating the
volume and dimensions of the box – making Lz = 0.75 m with the absorber installed.

3.1.1 Comments on modes

Previous measurements in the box conducted by Bjørn Kolbrek [9] showed all modes
in the box corresponding very well with the theoretical calculation of modes in a box
of those dimensions – with the exception of the first mode. This indicates that the
walls of the box are not perfectly stiff. Still, the approximation of ’hard walls’ is a
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(a) Sketch of scale model box

(b) Sketch detail of absorber ceiling

Figure 3.1: Sketch of scale model box with detail
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reasonably good one. Using equation (2.7), the theoretical first mode in the box is the
[nx ny nz] = [1 0 0] = 72 Hz mode and the second is the [0 1 0] = 117 Hz mode.

Previous measurements in the box conducted by Jakob Vennerød [18, p. 12] iden-
tified a peak in T in the 315 Hz 1/3 octave band, which disappeared when the two
short-side walls were reinforced by wooden beams connecting them to the surrounding
concrete structure. This reinforcement has also been made for the present study.

3.1.2 Measurement frequency range
With previous measurements of the reverberation time in the scale model box by the
author [5, p. 20] as basis, T can be approximated across frequencies to roughly 1.5 s.
Equation (2.9) and gives the Schröder frequency

fs ≈ 2000 ·
√

1.5

2.37 · 1.47 · 0.85
= 1423 Hz (3.1)

and equation (2.11) the upper limit of the few mode region

fnew ≈ 900 ·
√

1.5

2.37 · 1.47 · 0.85
= 640 Hz . (3.2)

As these are statistical boundaries and not ’hard limits’, the frequency range of the
measurements has been chosen to 100 Hz - 1000 Hz.

3.2 The measurement setup
To be able to calculate the T of a single mode, it’s necessary to filter out all the parts of
the transfer function H(ω) that is not the relevant mode. However, equation (2.55) re-
lates a lower limit to how narrow the filter can be without distorting the calculations. It
is therefore necessary to obtain a sufficiently high degree of separation between modes,
so that the filter does not include more than one mode. This can be done by suppressing
some of the modes, while looking at the other ones.

As elaborated in Section 2.1.2, the odd modes will all have a node half-way between
the relevant walls. Placing the sound source and the receiver at i = Li/2 will suppress
the modes ni = 1, 3, 5... where i = x, y, z. Similarly, every other even mode will
have nodes a quarter-distance from the relevant walls. Placing the sound source and
the receiver at i = Li/4 or i = 3 · Li/4 will suppress the modes ni = 2, 6, 10...

This leads to the following sound source and receiver placements:

1. Source & receiver at x = Lx/2 , suppressing the modes nx = 1, 3, 5...
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2. Source & receiver at x = Lx/4 , suppressing the modes nx = 2, 6, 10...

3. Source & receiver at y = Ly/2 , suppressing the modes ny = 1, 3, 5...

4. Source & receiver at y = Ly/4 , suppressing the modes ny = 2, 6, 10...

All four positions were used in all measurements (see Section 3.4). The source &
receiver placements in the scale model are shown in Figure 3.2.

For the primary measurements, both the source and the receiver were mounted 50
cm above the floor. For the secondary measurements the source was mounted 50 cm
above the floor and the receiver was mounted first at 1 cm below the absorber ceiling,
second at 10 cm below the ceiling and last at 20 cm below the ceiling.

Figure 3.2: Schematic diagram of measurement positions in the scale model. S marks sound
source and R marks sound receiver
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3.3 Measurement equipment

3.3 Measurement equipment
The sound source used was a 2” AuraSound driver mounted on a sealed aluminium
pipe. The loudspeaker rolls off with ∼12 dB/oct below 200 Hz in free field, and is
omni-directional within ± 1 dB below 1 kHz [18, p. 57].

The receiver used was a Microflown USP Regular. The reason for using this micro-
phone is that it can record the particle velocity components in 3D – ux, uy and uz , as
well as the pressure p.

Because the modes are also decomposable into x, y, z-components this ability in
the sound probe was thought to be an advantage in achieving good mode separation in
the Primary approach measurements (see Section 3.4.1). For the Additional approaches
measurements, the probe was used to record both the impulse responses p(t) and uz(t)
(see Section 3.4.2).

The p channel of the microphone has a corner frequency at 180 Hz, which means it
will function like a 2nd order high-pass filter, rolling off with -3 dB at 180 Hz. The uz
channel of the microphone has a corresponding corner frequency at 440 Hz. Note that
this will cause transfer functions to appear slightly too low in the lower frequencies,
but it will not influence the estimates of T , and is considered insignificant for this study.

Software
WinMLS 2004 was used to measure impulse responses in the room by the sine sweep
method. Furthermore, it was also used to calculate T by 1/3 octave band frequencies.
The sweep time of the sine sweep was set to the maximum 100 seconds. This is be-
cause averaging several shorter sweep measurements underestimate the energy of the
reverberation tail and the high frequencies of the signal, as well as providing signifi-
cantly poorer SNR [3, p. 16]. The sampling frequency was set to 48 kHz and the length
of the impulse response was set to 6 seconds.

Post-calculation and plotting was done with MATLAB R2014a. Some simulations
were also performed in WinFlag – a Norwegian program for calculation of sound ab-
sorption, impedance and sound reduction index of layers of different construction ma-
terials by the matrix method [20, p. 4].

Equipment list
The list in Table 3.1 includes all equipment in the measurment chain used in the mea-
surements described in Chapter 3. A thermometer and hygrometer were included to
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monitor room temperature and relative humidity in the air.

Device Manufacturer Model Serial Number
Loudspeaker AuraSound NSW2-326-8A N/A
Power amplifier Quad 50E 11852
Microphone Microflown Technologies USP Regular UR-900843
Signal Conditioner Microflown Technologies MFSC-4 SC4-900843
USB sound card AXYS D-audio 009900086
Software Morset Sound WinMLS 2004 N/A
Laptop DELL Vostro 3550 DQ18BR1

Table 3.1: Signal chain elements

The sound source and receiver are presented in Figure 3.3.

3.4 Method

3.4.1 Primary approach

Estimating modal T

For the primary approach, the primary setup with both sound source and receiver
mounted 50 cm above the floor was used. The impulse response of the scale model
box was recorded measuring p, ux, uy and uz for each measurement position. How-
ever, the WinMLS software is not able to record four separate channels simultaneously,
which lead to the four different impulse responses being recorded sequentially.

The reason for recording all four different impulse responses was to be able to pick
the one with the best mode separation and SNR. Checking the SNR was done directly
in WinMLS where SNR is presented in 1/3 octave bands. Since the loudspeaker rolls
off with 12 dB/oct below 200 Hz, the lowest bands will usually have the worst SNR.
Discounting the first mode (see Section 3.1.1) the lowest relevant mode is the [0 1 0]
mode at f = 117 Hz. This is in the 125 Hz 1/3 octave band, which spans 112-141 Hz.
Consequently, the 125 Hz band will usually be the band with the worst SNR (of the
bands that are of interest).

The 1/3 octave band SNR values for measurement position 1 is presented in Table
3.2. The SNR tables for the all four positions are included in Appendix A.1.
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(a) Microflown Probe (b) Pipe loudspeaker on stand

Figure 3.3: Sound source and receiver

As Table 3.2 shows, p(t) had better SNR than the impulse responses using the par-
ticle velocity components had. Consequently, all further measurements and processing
were done using p(t). To increase the empirical foundation and to account for inac-
curate sound source and receiver placement, p(t) for positions 1-4 was recorded three
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f [Hz] SNR (p) SNR (ux) SNR (uy) SNR (uz)
100 23.3 12.4 26.1 4.8
125 45.4 19.6 30.0 20.7
160 50.6 24.8 34.9 25.8
200 45.5 27.0 37.8 32.0
250 54.5 31.0 40.5 33.2
315 55.4 26.0 35.7 27.2
400 54.7 21.7 36.9 31.2
500 59.1 20.7 37.2 31.1
630 56.7 21.3 35.2 27.8
800 55.7 22.7 34.5 25.1

1k 59.0 25.1 33.1 24.8

Table 3.2: Signal-to-noise ratio for measurement position 1 [dB] in 1/3 octave bands

times. The source and receiver were placed in each position individually for each of
the three measurement serieses.

WinMLS was then used to calculate T in 1/3 octave bands and these T -values
were used in conjunction with equation (2.55) to determine the frequency dependent
filterwidth B.

The impulse responses p(t) were used to calculate the transfer functions Hp(ω).
The prominent mode peaks of the transfer function were identified, selected and fil-
tered. The least number of prominent peaks across all transfer functions (in the relevant
frequency range of 100-1000 Hz) were 17, and so for simplicity 17 peaks were selected
from each transfer function. Figure 3.4 shows an example of a prominent mode peak
in a transfer function. Note how the part of the transfer function included in the filter
is marked red.

The filter used was a 2nd order butterworth filter which has a 12 dB/octave roll-off.
This was run both backwards and forwards – in practice creating a 4th order filter with
24 db/octave roll-off. Running the filter backwards reduces unwanted influences from
the filtering process considerably [7, p. 187]. Running the filter both backwards and
forwards eliminates any phase shift errors.

An illustration of the filter can be made using the normalized dirac δ-function,
which has the value 1 at a single point and is zero everywhere else. Running the filter
on this function is a good illustration both of the filter, and the uncertainty relation
from Section 2.6. The dirac δ-function is plotted in Figure 3.5a and the filtered dirac in
Figure 3.5b.

The filtered impulse response was cropped to eliminated background noise, the
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Figure 3.4: Transfer function Hp,1 with a selected mode peak and its filter

resulting energy decay curve was plotted and optimal linear decay was chosen. This
linear decay was then used to determine the T of the mode. An example of the cropped
impulse response can be seen in Figure 3.6a and an example of the corresponding
energy decay line fit is shown in Figure 3.6b.

Checking the influence of the filterwidth

The filter used on the transfer functions in the primary approach has a lower limit
bandwidth given by equation (2.55) that lets E(t) remain acceptably un-distorted. It
would be of interest to investigate how T varies as a function of filterwidth, to check if
this lower limit is visible in the present measurements.

To check the filterwidth, a mode peak with good SNR and reasonable frequency-
spacing to other modes was selected. The filtering and curve fitting described above
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(a) A dirac δ-function (b) The filtered dirac δ-function

Figure 3.5: Dirac delta-function in an arbitraryA-space and filtered delta-function in the inverse
A−1 space

was then applied to the selected mode for 14 different filterwidths ranging from 3 Hz
to 38 Hz.

3.4.2 Additional approaches

These approaches are based on the continuity of acoustic pressure p and normal com-
ponent of the particle velocity u at the interface between two media – the air and the
wall. This means (by way of equation (2.18)) that the specific acoustic impedance
in the air at the interface between air and wall will be the same as in the wall at the
interface.

In other words, the specific acoustic impedance of the ceiling absorber can be found
by measuring the impulse responses p and u⊥ in the air right next to it.

Calculating T based on measurements of the absorption coefficient β

The microphone was placed 1 cm below the absorber ceiling, as described in Section
3.2, and the impulse responses p(t) and uz(t) were used via the transfer functions
Hp(ω) and Huz

(ω) to find the specific acoustic impedance:

zz =
Hp(ω)

Huz
(ω)

. (3.3)
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(a) Cropped impulse response noise floor transition

(b) Energy decay curve and fitted line for the chosen mode peak

Figure 3.6: Cropped impulse response & energy decay with linear regression for the selected
mode peak

37



Chapter 3. Measurements

Inserting equation (3.3) into equation (2.42) leads to β expressed by the transfer func-
tions of the measurements:

βnormal =
c

Hp ·H∗ux
ρc
∣∣Hux

∣∣2 · Lx
βgrazing =

1

2

c

Hp ·H∗ux
ρc
∣∣Hux

∣∣2 · Lx
Note how the numerator and denominator of the specific acoustic impedance from
equation (3.3) has been multiplied with the complex conjugate of the denominator to
achieve a real denominator.

T is found by inserting equation (3.4) into equation (2.46).

Sound intensity and the absorber

For the second part of the Additional approaches, the microphone was placed at dis-
tances d = 1, 10 and 20 cm below the absorber ceiling, as described in Section 3.2, and
the impulse response of the scale model was recorded using p and uz .

The intensity component Iz(d) was then calculated for all 12 points, as elaborated
in Section 2.2.1. Because the sound pressure varies a lot across the space of the room
as described in Sections 2.1.2 and 2.1.3, normalization was attempted by the following
procedure: The transfer functions Hp,1−12 from the 12 measurement positions were
averaged as shown in the following expression:

Hp =

∣∣∣Hp,1 ·H∗p,1
∣∣∣+ ...+

∣∣∣Hp,12 ·H∗p,12

∣∣∣
12

, (3.4)

leading to the normalized z-componen of the intensity:

Inormz,i =
Iz,i

Hp

, i = 1, 2...12 . (3.5)

3.4.3 WinFlag simulations
Using the Delany-Bazley model (see Section 2.3.2), The WinFlag simulation software
is able to predict the absorbing properties of an absorber for a given sound incidence
angle, over a frequency range f , for a given flow resistivity σ. Previous measurements
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by the author using a standing wave tube [5, p. 33] determined σ = 4.2 kPa s/m2 for
the porous absorber.

The WinFlag simulations were performed with the following setup:

• air

• porous / Komatsu (50 mm, σ = 4.2)

• air (50 mm)

• HARD WALL

where ’porous / Komatsu’ signifies a 50 mm thick layer of porous absorber with air-
flow resistiviy 4.2 kPa s/m2, modeled by the Komatsu version of the Delany-Bazley
equations.

These simulations are presented as part of the argument in Section 5.2.1.
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Chapter 4
Measurement results

This chapter presents the measurement results. These include the estimations of T for
single modes and the test results from the filter that was used to attain the modal T
estimations. Furthermore, calculated values of T based on the theoretical expressions
for grazing incidence are included as well as measurements of the vertical component
of the sound intensity Iz as function of distance to the absorber.

Note how only the main result of the estimated T for all processed single modes
have been included in its entirety. This is the Figure 4.3. The rest of the results are
presented in representative samples. The measurement results are elaborated in much
greater detail in the appendices.

4.1 Primary approach

4.1.1 Estimation of modal T
For the primary approach estimating T for modal peaks, the method described in Sec-
tion 3.4.1 was used. The recorded transfer function using p(t) for position 1 and
measurement series 1 is shown in Figure 4.1 as an example of the recorded transfer
functions. All 12 transfer functions can be found in Appendix A.2.

The transfer functions shown in Figure 4.1 and Figure A.1 were used by WinMLS
to calculate 1/3 octave band T30 values. The filterwidths B used for modal estimation
of the mode peaks in Figure 4.1 were calculated from these T30 values. The T30 values
and corresponding filterwidths B for measurement series 1 are shown in Figure 4.2.
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Figure 4.1: Transfer function Hp(ω), position 1, measurement series 1

The T30 and B values for measurement series 2 & 3 are included in Appendix A.3.
For each of the 12 transfer functions, 17 prominent mode peaks were selected and

processed as described in Section 3.4.1. Further examples of the impulse response,
noise floor transition and energy decay curve with fitted regression line determining T
of the mode can be reviewed in Appendix A.4. The resulting 204 T -values are shown
in Figure 4.3. Figure 4.3 is repeated in a larger version in Appendix A.5.

The first observation made from Figure 4.3 is that the estimated T values for graz-
ing modes are marked blue and the estimated T values for non-grazing modes are
marked red. Section 2.4.1 elaborates how the grazing incidence absorption derivation
of Kinsler et al [8, p. 350] implies T of grazing modes to be twice that of T for non-
grazing modes. Figure 4.3 shows Tgrazing to be indistinguishable from Tnon−grazing.

The second observation to be made from Figure 4.3 is that the estimated values for
T for the same mode is different in different measurements. The most obvious example
is the [2 0 0]-mode at 145 Hz, which is included in 9 of the 12 transfer functions. The
estimated reverberation time ranges from 0.26 s to 0.43 s, spanning a ∆T = 0.17
s. However, as the frequency increases, the span in estimated T for a single modes
narrows.

Furthermore, as the frequency and the mode density increases, the spacing be-
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(a) WinMLS-calculated 1/3 octave band T30

(b) Corresponding filterwidths B to WinMLS-calculated T30

Figure 4.2: 1/3 octave band parameters directing the filterwidth
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Figure 4.3: Estimated T for 204 mode peaks selected from 12 transfer functions Hp

tween modes decreases. This leads to fewer estimations of T for the same modes,
which might also be part of the reason for why the span in estimated T over several
measurements is narrowing.

44



4.1 Primary approach

4.1.2 Checking the influence of the filterwidth
The mode that was selected for checking the filterwidth was the [2 0 0]-mode at 145
Hz. This mode has very good mode separation, with the two adjacent modes [1 1 0]
at 137 Hz and [2 1 0] at 186 Hz. Because this mode has nx = even, the measurement
position 2 was not included. The transfer functions used was the Hp for measurement
series 1, they are shown in Figure 4.4.

The resulting estimations of T for the 145 Hz mode are shown in Figure 4.5 for
filterwidths ranging from 3 Hz to 38 Hz. As can be seen, the estimations are fairly
constant for most wide filters, decreasing ever so slightly for filterwidths narrower than
20 Hz and down to ca 10 Hz. Filterwidths narrower than 9 Hz gives artificially high
estimations of T . This is because the energy decay curve measured is distorted by the
envelope ∆t of the filter, as elaborated in Section 2.6.2.

The energy decay curves of the filtered transfer function for position 1 are shown
together in Figure 4.6 for the filterwidths 3, 6, 9 and 11 Hz. The same four energy
decay curves are included for all three positions in Appendix A.6. Figure 4.6 displays
the marked change in energy decay slopes for the narrow filters.

Figure 4.4: 145 Hz peak, measurement series 1, positions 1,3,4
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Figure 4.5: Estimated T of the 145 Hz peak, for different filterwidths
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(a) Energy decay, B = 3 Hz (b) Energy decay, B = 6 Hz

(c) Energy decay, B = 9 Hz (d) Energy decay, B = 11 Hz

Figure 4.6: Energy decays for the four narrowest filters, position 1
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4.2 Additional approaches

For the additional approaches, the method described in Section 3.4.2 was used.

4.2.1 T based on measurements of β

For calculating β, the transfer functions Hp and Huz
for all four positions at d =1

cm below the ceiling were used with equation (2.42) to calculate the absorption coef-
ficients. These are shown for position 1 in Figure 4.7, with the measured mode peak
frequencies from Section 4.1 (for position 1) drawn as vertical lines.

Figure 4.7: Calculated absorption coefficients β, position 1

Because the transfer functions used for calculating β are continuous, the resulting
calculated β is too. However, the theory used in the calculations (Section 2.4) applies
only to discreet modes. The values of the β curves from Figure 4.7 where they are
intersected by the frequencies of the measured modes (the vertical lines) are replicated
in Figure 4.8.
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Figure 4.8: Calculated absorption coefficients β for position 1, shown only at measured (mode)
frequencies

As described in Section 3.4.2, the absorption coefficient values are inserted into
equation (2.46) to get the reverberation time estimates in Figure 4.9.

Figure 4.9: Values for T given by the calculated values for β in position 1
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The absorption coefficients and corresponding reverberation time estimates for all
four positions are included in Appendix B.1.

4.2.2 The intensity profile Iz(d)
The normalized z-component of the intensity Iz(d) described in Section 3.4.2 is plot-
ted for position 1 in Figure 4.10. The mode frequencies measured in position 1 are
drawn as vertical lines.

Figure 4.10: Iz(d), position 1

As with the β measurements in the previous Section, the points of interest are the
intersection frequencies of the measured modes. The frequency range from 125 - 500
Hz have therefore been sectioned into 6 separate figures zooming in on a minor part of
the frequency range to better show the Iz(d) values at the relevant frequencies. This
can be seen in Figure 4.11. Figures 4.10 and 4.11 have been reiterated for positions 2,3
and 4 in Appendix B.2.
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(a) Iz(d), position 1, 1st mode (b) Iz(d), position 1, 2nd mode

Figure 4.11: Iz(d), position 1, frequency scale zoom

What is obvious in all but the 3rd and 5th mode (Figures 4.11c and 4.11d) is that
the z-component of the intensity varies for different distances d between the sound
receiver and the absorber.

It’s worth noting how 8 of the 9 modes (excepting the 4th mode at 272 Hz) have
nz = 0, meaning they are grazing modes. Examining only the grazing modes in
Figure 4.11, and doing the same for Figures B.8, B.9 and B.10 in Appendix B.2 shows
how roughly half of the grazing modes will have Iz varying significantly for different
distances d. The other half of the grazing modes are varying to a lesser degree or very
little.
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(c) Iz(d), position 1, 3rd mode (d) Iz(d), position 1, 4th and 5th mode

(e) Iz(d), position 1, 6th and 7th mode (f) Iz(d), position 1, 8th and 9th mode

Figure 4.11: Iz(d), position 1, frequency scale zoom
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In this chapter, the measurement results are discussed. Some implications and possible
explanations are developed. A number of possible, likely and actual sources of errors
in the measurements and results are elaborated. Furthermore, the results and their
possible implications are summed up and finally some suggestions for further work are
included.

5.1 Primary approach

5.1.1 Estimation of modal T

The estimated modal T results presented in Section 4.1.1 contradicts existing theoret-
ical predictions given by Kinsler et al [8]. As Kinsler et al. uses this grazing mode
absorption theory with the Sabine expression for T (see equation (2.48)), the contra-
dictory results will also be discussed using the Sabine expression.

The first point on which the results differ from the theory is the separability of
the modes. Section 2.4.1 describes how the reverberation time Tgrazing of grazing
modes should be twice that of non-graing modes Tnon−grazing. The results show how
Tgrazing is statistically indistinguishable from Tnon−grazing.

Calculating the average Tgrazing and Tnon−grazing for the 500 Hz 1/3 octave band
as a representative example gives the estimated reverberation time as
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T500,grazing = 0.0742± 0.0064 s
T500,non−grazing = 0.0687± 0.0127 s

with a 95 % confidence interval given by the student t-distribution [11, p. 1052].
This result relies on the estimation of T being good enough. With good mode

separation, suitably narrow filters and good signal-to-noise ratios for most modes (see
Appendix A.4) the estimation method appears to be good.

The second point on which the results differ from the theory is the values of the rever-
beration time. Assuming perfectly hard walls and floors and a 100 % effective absorber
ceiling gives the lowest possible TSabine by equation (2.48) as:

Trandom =
0.161 · LxLyLz

LxLy · 1
= 0.161 · 0.75 = 0.12 s

Tgrazing = 2 · Trandom = 0.24 s .

The results on the other hand, gives T in the 500 Hz and 630 Hz 1/3 octave bands as

T500 = 0.0730± 0.0054 s
T630 = 0.0787± 0.0080 s

with a 95 % confidence interval given by the student t-distribution. In other words, the
measured T is significantly lower than the minimum predicted TSabine.

As noted in Section 2.5, the Sabine expression will give T > 0 for α = 1, but as
Kinsler et al. refers to the Sabine expression for T in relation to the grazing incidence
absorption it is appropriate to also relate the results to TSabine.

It’s worth noting that the setup used for calculating TSabine = 0.12 s mentioned above
will give the following values for TEyring, using equation (2.50):

αEyring =
Sceiling αceiling

Stotal

Trandom =
0.161V

−Stotal ln (1− αEyring)
= 0.104s

Tgrazing = 2 · Trandom = 0.207 s .
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5.1.2 The influence of the filterwidth

Figure 4.5 shows how too narrow filters will give false high estimations of T . As the
filterwidths narrows to 9 Hz, estimations of T starts to rise. For narrower filterwidths
than 9 Hz, the (false) high estimations T increase fast. Keeping in mind that the 145
Hz mode is in the 160 Hz 1/3 octave band and examining the calculated filterwidth
B based on the WinMLS-calculated 1/3 octave band T30 values (displayed in Figure
4.2b, the minimum filterwidth B for the 160 Hz band is given as approximately 8-13
Hz (depending on measurement position).

This indicates that the filterwidth lower limit presented in equation (2.55) is an
effective boundary to achieve as narrow filters as possible without getting false high
estimations of T .

5.2 Additional approaches

5.2.1 T based on measurements of β

The β values presented in Figure 4.8 are very high, and consequently they result in very
low values for T , as seen in Figure 4.9. Ranging from approximately 0.1 · 105 6 β 6
5·105, the absorption values give reverberation times in the 0.01·10−3 6 T 6 0.5·10−3

s range.
Reverberation times in the milliseconds is obviously not the case for most any

room. Taking a second look at the assumptions made to develop the grazing mode
absorption theory in section 2.4, one of the assumptions that make up the basis for the
expressions stands out:

Neglecting the reactive part of the normal specific acoustic impedance
leads to the following expression:

zx = ρ0cvx

where vx is the dimensionless relationship zwallx /Zair.

Running a WinFlag simulation as described in Section 3.4.3, it becomes obvious that
the reactive (imaginary) part of the impedance is far from zero. This is shown in Figure
5.1. Because =

{
zx
}
6= 0 it is reasonable to question the validity of this assumption.
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Figure 5.1: Simulated absorber impedance using WinFlag & the Delany-Bazley model (Ko-
matsu version)

To illustrate how the derivation of β could look differently if vx were complex (and
thereby making zx complex), vx can be substituted by

vx = Rv + jIv , (5.1)

which can be inserted into equation (2.36):

(kxLx − nxπ) + jαxLx = j
1

Rv + jIv

(ωD + jβx) /c

kx + jαx
nx = 0, 1, 2... . (5.2)

Solving equation (5.2) first for nx = 0 gives the imaginary part of the equation as

kxαx

[
2RvLx + IvLx

(
kx
αx
− αx
kx

)]
=
ωD
c
, (5.3)

and combined with equation (2.34) this gives
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βgrazing =
c

2RvLx + IvLx

(
kx
αx
− αx
kx

) . (5.4)

Solving equation (5.2) next for nx 6= 0 and assuming (like in Section 2.4) kxLx ≈
nxπ, the imaginary part of the equation can be expressed as

kxαx

(
RvLx − IxLx

αx
kx

)
=
ωD
c
, (5.5)

and combined with equation (2.34) this gives

βnon−grazing =
c

RvLx − IvLx
αx
kx

. (5.6)

These expressions for βgrazing and βnon−grazing are somewhat more different
from each other than than the ones in Section 2.4. Further analysis could be done
by letting the WinFlag simulation provide Rv and Iv from the simulation. The ratio of
αx to kx defines these expressions to some degree, and could also be examined further.

Examining the line of reasoning in Section 2.4 further, the next approximation is that
kxLx ≈ nxπ for the expression in equation (2.35). Testing this approximation is a
simple matter: Setting up the parameters

nx = 1

Lx = 1

kx =
nxπ

0.99Lx
,

it is now possible to substitute them into the left hand side of equations (2.35) and
(2.36). The calculation of these expressions for different values of αx are shown in
Figure 5.2. They show this approximation to be adequate for values of αx up to ca 0.4.

5.2.2 The intensity profile Iz (d)
As described in Chapter 2, modes with grazing incidence on a surface in the x, y-plane
will not have any sound waves propagating along the z-axis. Theoretically, these modes
will have uz = 0 and consequently the vertical intensity component Iz = 0. However,
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Figure 5.2: Calculated disparity between equations (2.35) and (2.36) for different values of αx

when the boundary condition in the z-dimension is an impedance z 6= ∞, the mode
must have an intensity component Iz 6= 0. Experimentally, Iz should then not be
significantly different from background noise. As described in Section 4.2.2, it’s not
possible to distinguish grazing modes from non-grazing modes in the measurements
based on this criteria.

As the observed ’grazing’ modes are indeed damped more than can be attributed to
the walls, the sound energy is presumably dissipating through the absorber, as specified
by the boundary condition. This means vertical energy transference is occurring and
consequently that the mode has a vertical intensity component. This is particularly well
illustrated in Figure B.8c, where the ’grazing’ mode [3 0 0] obviously has a vertical
intensity component that is not zero.

This suggests that there might not be any true grazing modes present in the mea-
surements. One possible explanation is that there are no true grazing modes present in
enclosed spaces, at least not parallel to any sound absorbing surface.

It should be noted in this context that the theoretical expressions for grazing inci-
dence absorption presented by Kinsler et al. (Section 2.4) is not based on this line of
reasoning. Observe how the hard wall differs from the absorber surface:

1. The surface is a hard wall. uz = 0 at the wall⇒ zz =∞ and Iz = 0.
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2. The surface is an absorber. uz 6= 0 at the wall⇒ zz 6=∞ and Iz 6= 0.

Operating with the term damped modes assumes that the specific acoustic impedance
in the air next to the absorber surface

zair =
pair
uair

≈ zabsorber 6=∞ (5.7)

at the absorber surface.
Still, the expressions presented in Section 2.4 are nonetheless contradicted by the

experimental results.

Taking a closer look at a plane wave propagating parallel to a surface, the hard wall sce-
nario in Figure 5.3a gives a true plane wave and true grazing incidence. The absorber
scenario in Figure 5.3b gives a quasi-plane wave that is interacting with the surface.
But it still retains most plane wave characteristics.

Comparing Figures 5.3a and 5.3b, it can be noted how

p = p(x, t) ⇒ uz =
∂p

∂z
= 0

p = p(x, z, t) ⇒ uz =
∂p

∂z
6= 0 .

The expressions for p(z) are not trivial and beyond the scope of this thesis.
The relevance of the absorber surface in Figure 5.3b is made by the geometry.

When the plane wave is propagating parallel to a soft surface, its behaviour can be
described as if there was a boundary layer along the surface:

If there are no restrictions in the z-dimension (Lz → ∞), the thickness of the
boundary layer is negligible (LBL << Lz) and the wave is not attenuated by the
surface. However if there is a limitation in the z-dimension (Lz 9 ∞), then LBL is
not negligible compared to Lz and the wave will interact with the boundary layer. In
the boundary layer, the wave will have a z-component: p(x, t)BL = p(x, z, t).

This might serve to explain how the grazing modes cease being ’true’ grazing
modes when propagating parallel to a surface that is not infinitely hard, and this may
be somewhat easier to observe in the HARD CASE geometry than for other types of
rooms.
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(a) Plane wave propagating parallel to a
hard wall

(b) Quasi-plane wave propagating parallel
to a soft wall

Figure 5.3: Plane wave propagating parallel to a hard & a soft surface

5.3 Sources of error
Concerning weaknesses in the results, the most obvious one is that the same mode
will have different estimations of T from different measurements. However, this is
most pronounced for the lowest frequency modes and as the frequency increases, the
span in estimated T values for a single modes narrows. This is in accordance with the
theory from Section 2.1.3, stating that higher frequencies have higher mode density,
more even sound pressure distribution throughout the room and less uncertainty in the
estimation of T .

Earlier measurements in the scale model box by the author [5, p. 20] confirm
widening confidence interval for decreasing frequencies, and a figure of these mea-
surements is included here for illustrative purposes: Figure 5.4 also includes a 95 %
confidence interval using the student t-distribution.

Another problem with the results is that as the mode separation spacing decreases
(for increasing frequencies), the identification of mode peaks becomes increasingly
uncertain. This is because even though the theoretical modes given by equation (2.7)
are fairly accurate, they are not perfectly spot-on. As shown in Figure 5.5, the modes
of the measured transfer function are not perfectly aligned with the relevant theoretical
mode frequencies.

60



5.3 Sources of error

Figure 5.4: Previous T30 measurements of the scale model box in 1/3 octave bands

Figure 5.5: Transfer function Hp,1(ω) (position 1, measurement series 1) with relevant theoret-
ical mode frequencies as vertical lines
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Note how the relevant theoretical mode frequencies plotted as vertical lines are
the mode frequencies that are not suppressed by the sound source and receiver place-
ment. Figure 5.5 shows a transfer function for position 1, in which the modes with
nx = 1, 3, 5... will be suppressed. Accordingly, these mode frequencies are not plot-
ted. The 3 remaining transfer functions for positions 2,3,4 from measurement series 1
are presented with relevant theoretical modes in Appendix C.

The mode separation might have been improved by using the u(t) impulse re-
sponses instead of the p(t) impulse response. However, as elaborated in Section 3.4.1,
this would have been at the expense of significantly poorer signal-to-noise ratios.

The attempt at normalizing the vertical component of sound intensity Iz described
in Section 3.4.2 has an obvious weakness in that the mean transfer function used as
basis for the normalization is not statistically representative for the room – using only
the 4 measurement positions that were used for the measurements. Improvement of
the normalized Iz could be achieved by measuring more transfer functions at different
points in the room.

The measurement equipment will probably affect the measurements. One example
is the loudspeaker, as its size makes it into a sound diffuser. The diffusing element is
probably not negligible on account of the size of the loudspeaker not being negligible,
compared to the size of the room. Scattering effects of sound waves on objects will be
present for ka > 1 where k is the wave number and a is the dimension of the object.
Using the loudspeaker length of 40 cm gives scattering effects above approximately
140 Hz.

Another systematic error source is the scale model. Shortcomings in the model
construction can lead to inaccuracies – as with the walls that are not stiff enough,
leading to incorrect frequency placement for the measured [1 0 0] mode (compared to
the theoretical mode frequency), as well as probably giving some margin of error for
the reverberation times at low frequencies.

When measuring impulse responses, a sufficiently high signal-to-noise ratio is
needed. Most measurements have been checked for sufficient SNR in low frequency
1/3 octave bands, as the low frequency bands usually have the worst SNR due to the
roll-off of the sound source and receiver.

It is possible that some measurements might have been recorded while disturbed by
outside noises from the the rest of the building. WinMLS have shown itself to be some-
what unstable, giving completely wrong results from time to time. Erroneous results
from these erratic sources have been removed whenever they have been discovered.

Room temperature was recorded to vary between 18.4◦C and 20.2◦C. Relative hu-
midity in the air were recorded to vary from 25 - 33 %. These fluctuations are not
accounted for in the measurements, as their impact on the results are deemed negligi-
ble.
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5.4 Concluding remarks
This thesis appertain to small shoebox-shaped rooms with hard, flat walls and an ab-
sorbing ceiling, dubbed THE HARD CASE. This room shape leads to some frequency
dependent absorption characteristics that are in opposition to predictions by existing
theory.

The hypothesis used as a starting point is that the existing expressions for grazing
mode absorption and non-grazing mode absorption can be tested and rejected. Specif-
ically, the expression under scrutiny states that grazing modes will be absorbed by a
factor 1/2 the absorption on non-grazing modes, and consequently that grazing modes
will have twice the reverberation time of non-grazing modes.

The aim of this thesis was to provide measurements that would try to validate or
possibly reject this relation.

The primary approach to this was an attempt at estimating the reverberation time of
single modes and identifying the modes as either grazing or non-grazing modes. The
reverberation time of grazing modes and non-grazing modes could then be compared.
This was achieved, even if the identification of modes might be drawn into doubt –
particularly for increasing frequencies and mode density.

However, the 204 mode peaks analysed were not statistically separable into two
distinct clouds of data-points. In other words, it was not possible to separate one group
of modes from another based on reverberation time estimates. This is a very good in-
dication that the hypothesis is good.

There were two additional approaches complementing the primary approach. The first
was to calculate the absorption coefficients β from measurements of p and uz , and
then the reverberation times T from β. These values for T proved to be several orders
of magnitude smaller than what was observed – Giving reverberation times in millisec-
onds. This is also a good indication that the hypothesis is good.

The second part of the complementary approaches was to measure the vertical com-
ponent of the sound intensity Iz as a function of distance d from the absorber ceiling.
The motivation for doing this was not directly linked to the main aim of the thesis –
testing the absorption of grazing modes. Rather, this part of experiment was an effort
into understanding the workings of the absorber.

These measurements showed that it was not possible to separate the grazing modes
from the non-grazing modes based on any assumption that the grazing modes should
behave differently than the non-grazing modes with respect to the vertical intensity
component.
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This might indicate that any 2D sound field propagating more or less parallel to the
ceiling might not have all the characteristics attributed to ’true’ (theoretical) grazing
modes. However, it might also just as well be explained by the fact that the space is
damped by the absorber ceiling.

Furthermore, the values of the estimated T for the modes between approximately 450
Hz and 700 Hz were significantly lower than the minimum possible T predicted by
conventional theory. That is, both the Sabine and Eyring expressions for minimum T
overshot the estimated modal T from the measurements. This is another very good
indicator that existing theory can be rejected.

Examining the derivation of β and the assumptions made, one weakness stands
out: Kinsler et al. [8] assumes the specific acoustic impedance of the absorber surface
approximately equal to the resistive part of the impedance – neglecting the reactive part.
Closer examination of the impedance reveals this to be a rather poor approximation.

5.5 Suggestions for further work
To achieve better understanding of what is actually happening in and to develop a solid
theoretical foundation for accurately predicting the acoustics of THE HARD CASE,
some topics for further work are suggested:

As this thesis finds no fault in the mathematical derivations of the expressions for
grazing incidence absorption, further analysis of the assumptions that make up the basis
for the derivations are in order.

One assumption that has not been discussed is that the material is locally reacting.
All theoretical models and expressions used in this thesis assumes the absorber material
to be locally reacting. That is to say: the sound wave incident on an absorber surface
can be decomposed into two waves inside the material – one parallel to the absorber
surface and one perpendicular to it. The common assumption in most room acoustics
is that the attenuation of the wave propagating parallel to the surface is so much larger
than for the wave propagating perpendicular to the surface, that the parallel wave is
neglected. A common exception is sound propagation in ducts – where the porous ab-
sorber can be assumed globally reacting, but whether duct theory is applicable to THE
HARD CASE has not been determined. Local reaction absorption is relevant mainly in
relation to the discussion about true grazing modes in enclosed spaces and plane waves
propagating parallel to soft walls (see Section 5.2.2).

Another assumption made in the derivation is that kxLx = nxπ, which enables
equation (2.39) to be simplified in order to provide the expression (2.40). For nx =
1 this gives kxLx = π, which is what would be expected in a hard wall scenario.
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However, with an efficient absorber the validity of the hard wall assumption is not
obvious. Further investigations into which modes nx the assumption is adequate for,
and the magnitude of any margin of error such an assumption might entail, is warranted.

The assumption that the specific acoustic impedance of the absorber surface is ap-
proximately equal to the resistive part of the impedance has been explored in Section
5.2.1 and a (somewhat quick-fix) alternative (including a complex ratio of impedances
zwallx /Zair = vx = Rv + jIv) has been sketched. The resulting expressions (5.4) and
(5.6) should be tested.

The difference in absorption characteristics of THE HARD CASE between low and
high frequencies (which cannot be explained by existing theory) elicits a closer look
at the cross-over region. For the scale model, this is the frequency range of approxi-
mately 600-1000 Hz (see Figure 1.1). Why is the ratio between theoretical diffuse field
absorption and HARD CASE (scale model) absorption almost ∼ 2 at low frequencies
while down to ∼ 1/9 for high frequencies? The impedance simulations in Figure 5.1
show

∣∣={z}∣∣ is only dramatically increasing for frequencies below ∼ 250 Hz, which
means there are no obvious explanations for the change in absorption characteristics at
the cross-over region.

A basic property of THE HARD CASE is that vertical components of the reverber-
ant sound field is attenuated faster than the horizontal components. Theory and experi-
ments indicate this behaviour in the high-frequency region, but it is not observed in the
low-frequency region. Contrary to what is expected, experiments show examples of
grazing modes (at least grazing according to theory) with equally strong vertical com-
ponents as the non-grazing modes. It could be speculated how a good porous absorber
affects the low-frequency grazing modes to such an extent that they cease being graz-
ing modes. With no true horizontal modes, the ’basic property of THE HARD CASE’
(with vertical components of the reverberant field quickly damped and horizontal com-
ponents damped much slower) is not present in the low-frequency region.

If this is the case, one important practical implication would be that a sound absorb-
ing ceiling can be more than twice as efficient as the same amount of sound absorbers
evenly divided between surfaces in all three dimensions x, y, z. This will require fur-
ther investigations.
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Chapter 6
Conclusions

Kinsler et al.’s [8] theory on damped modes does not seem to be applicable to the
shoebox-shaped room with five hard walls and one absorber wall (denoted THE HARD
CASE in this thesis):

• No factor 2 reverberation time has been observed between one group of modes
and another.

• The assumption Kinsler et al. makes on wall impedance – which is the basis for
the damped mode analysis – does not fit with porous absorbers on rigid walls.

Furthermore:

• The characteristics of ’true’ grazing waves could not be applied to any sound
waves in these measurements. The existence of ’true’ grazing waves in the HARD
CASE scenario are drawn into doubt, and by extension is drawn into doubt for
all non-perfectly hard surfaces.

• For measurements in the HARD CASE scenario, it has been possible to analyse
the reverberation times of up to 17 modes in each measurement position, indi-
rectly.

• The use of a Microflown USP Regular sound probe could have given sparser
mode peaks in the impulse responses (by using the particle velocity component
sensors), and thereby facilitate the analysis of more modes. However, using the
pressure sensor gives a superior SNR.
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Appendix A
Primary Approach

Appendix A contains the intermediate measurement results and post-processing results
from the Primary approach section of the results presented in Chapter 4.

A.1 Signal-to-noise ratios
Section A.1 presents the SNR values for all four channels of the Microflown probe
from all four measurement positions.

f [Hz] SNR (p) SNR (ux) SNR (uy) SNR (uz)
100 23.3 12.4 26.1 4.8
125 45.4 19.6 30.0 20.7
160 50.6 24.8 34.9 25.8
200 45.5 27.0 37.8 32.0
250 54.5 31.0 40.5 33.2
315 55.4 26.0 35.7 27.2
400 54.7 21.7 36.9 31.2
500 59.1 20.7 37.2 31.1
630 56.7 21.3 35.2 27.8
800 55.7 22.7 34.5 25.1

1k 59.0 25.1 33.1 24.8

Table A.1: Signal-to-noise ratio for measurement position 1 [dB]
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f [Hz] SNR (p) SNR (ux) SNR (uy) SNR (uz)
100 33.3 6.2 24.4 8.4
125 39.2 14.6 31.9 21.7
160 41.9 18.0 30.0 26.6
200 54.9 36.1 38.6 39.3
250 54.9 32.6 39.6 34.5
315 55.8 29.8 37.9 27.6
400 54.0 32.8 36.0 33.1
500 57.0 30.9 37.3 30.2
630 55.6 27.0 34.8 28.9
800 57.0 30.6 34.4 24.5

1k 57.8 28.1 33.1 23.7

Table A.2: Signal-to-noise ratio for measurement position 2 [dB]

f [Hz] SNR (p) SNR (ux) SNR (uy) SNR (uz)
100 13.9 20.6 6.0 15.7
125 36.4 33.5 17.1 18.0
160 44.6 35.5 22.8 21.6
200 50.3 38.1 20.8 33.3
250 53.2 38.8 29.1 33.7
315 55.6 34.1 25.7 30.3
400 50.0 34.6 25.0 29.4
500 58.7 34.6 22.0 31.5
630 57.4 33.1 20.1 27.7
800 56.0 32.5 20.3 25.8

1k 57.2 31.1 21.7 24.0

Table A.3: Signal-to-noise ratio for measurement position 3 [dB]
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f [Hz] SNR (p) SNR (ux) SNR (uy) SNR (uz)
100 36.6 24.2 22.1 12.5
125 49.2 36.7 33.8 23.2
160 51.3 39.4 28.8 23.3
200 59.9 40.1 33.2 32.3
250 55.9 34.7 32.4 33.0
315 47.6 32.8 28.7 28.5
400 52.8 32.6 34.9 29.6
500 57.4 33.1 29.6 28.4
630 55.1 31.8 31.0 22.5
800 58.2 33.4 28.0 21.3

1k 55.9 34.3 25.1 20.0

Table A.4: Signal-to-noise ratio for measurement position 4 [dB]
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A.2 Transfer functions

Section A.2 includes the transfer functions Hp(ω) for all four measurement positions
and all three measurement serieses.

(a) Hp,1, position 1

(b) Hp,1, position 2

Figure A.1: Transfer functions Hp,1 from measurement series 1
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(c) Hp,1, position 3

(d) Hp,1, position 4

Figure A.1: Transfer functions Hp,1 from measurement series 1
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(a) Hp,2, position 1

(b) Hp,2, position 2

Figure A.2: Transfer functions Hp,2 from measurement series 2

78



(c) Hp,2, position 3

(d) Hp,2, position 4

Figure A.2: Transfer functions Hp,2 from measurement series 2
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(a) Hp,3, position 1

(b) Hp,3, position 2

Figure A.3: Transfer functions Hp,3 from measurement series 3
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(c) Hp,3, position 3

(d) Hp,3, position 4

Figure A.3: Transfer functions Hp,3 from measurement series 3
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A.3 Filter parameters

Section A.3 contains the WinMLS-calculated 1/3 octave band T30 values and corre-
sponding filterwidths B for all 3 measurement serieses.

(a) 1/3 octave band T30

(b) 1/3 octave band B

Figure A.4: WinMLS-calculated T30 & B from measurement series 1
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(a) 1/3 octave band T30

(b) 1/3 octave band B

Figure A.5: WinMLS-calculated T30 & B from measurement series 2
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(a) 1/3 octave band T30

(b) 1/3 octave band B

Figure A.6: WinMLS-calculated T30 & B from measurement series 3
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A.4 Mode processing
Section A.4 includes the transfer functions, the filtered impulse responses, and the en-
ergy decay curves of each of the 17 modes selected for analysis from the measurement
position 1 and measurement series 1 impulse response. The energy decay curve also
includes the fitted linear regression line used for determining T .

(a) Mode 1, transfer function
(b) Mode 1, filtered impulse
response

(c) Mode 1, fitted line energy
decay

(d) Mode 2, transfer function
(e) Mode 2, filtered impulse
response

(f) Mode 2, fitted line energy
decay

Figure A.7: Measurement 1, position 1, Modes 1-2
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(a) Mode 3, transfer function
(b) Mode 3, filtered impulse
response

(c) Mode 3, fitted line energy
decay

(d) Mode 4, transfer function
(e) Mode 4, filtered impulse
response

(f) Mode 4, fitted line energy
decay

(g) Mode 5, transfer function
(h) Mode 5, filtered impulse
response

(i) Mode 5, fitted line energy
decay

Figure A.8: Measurement 1, position 1, Modes 3-5
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(a) Mode 6, transfer function
(b) Mode 6, filtered impulse
response

(c) Mode 6, fitted line energy
decay

(d) Mode 7, transfer function
(e) Mode 7, filtered impulse
response

(f) Mode 7, fitted line energy
decay

(g) Mode 8, transfer function
(h) Mode 8, filtered impulse
response

(i) Mode 8, fitted line energy
decay

Figure A.9: Measurement 1, position 1, Modes 6-8
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(a) Mode 9, transfer function
(b) Mode 9, filtered impulse
response

(c) Mode 9, fitted line energy
decay

(d) Mode 10, transfer func-
tion

(e) Mode 10, filtered impulse
response

(f) Mode 10, fitted line en-
ergy decay

(g) Mode 11, transfer func-
tion

(h) Mode 11, filtered im-
pulse response

(i) Mode 11, fitted line en-
ergy decay

Figure A.10: Measurement 1, position 1, Modes 9-11
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(a) Mode 12, transfer func-
tion

(b) Mode 12, filtered im-
pulse response

(c) Mode 12, fitted line en-
ergy decay

(d) Mode 13, transfer func-
tion

(e) Mode 13, filtered impulse
response

(f) Mode 13, fitted line en-
ergy decay

(g) Mode 14, transfer func-
tion

(h) Mode 14, filtered im-
pulse response

(i) Mode 14, fitted line en-
ergy decay

Figure A.11: Measurement 1, position 1, Modes 12-14
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(a) Mode 15, transfer func-
tion

(b) Mode 15, filtered im-
pulse response

(c) Mode 15, fitted line en-
ergy decay

(d) Mode 16, transfer func-
tion

(e) Mode 16, filtered impulse
response

(f) Mode 16, fitted line en-
ergy decay

(g) Mode 17, transfer func-
tion

(h) Mode 17, filtered im-
pulse response

(i) Mode 17, fitted line en-
ergy decay

Figure A.12: Measurement 1, position 1, Modes 15-17
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A.5 Estimation of modal T

Section A.5 repeats the estimated T for all 204 mode peaks result presented in Chapter
4 in a larger figure.

Figure A.13: Estimated T for 204 mode peaks selected from 12 transfer functions Hp
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A.6 The influence of the filterwidth
The energy decay for the 145 Hz peak with fitted linear regression line is included for
measurement positions 1,3 and 4, and filterwidths 3,6,9 and 11 Hz.

(a) Position 1, filterwidth 3
Hz

(b) Position 1, filterwidth 6
Hz

(c) Position 1, filterwidth 9
Hz

(d) Position 1, filterwidth 11
Hz

Figure A.14: Position 1, filtered energy decay

92



(a) Position 3, filterwidth 3
Hz

(b) Position 3, filterwidth 6
Hz

(c) Position 3, filterwidth 9
Hz

(d) Position 3, filterwidth 11
Hz

Figure A.15: Position 3, filtered energy decay
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(a) Position 4, filterwidth 3
Hz

(b) Position 4, filterwidth 6
Hz

(c) Position 4, filterwidth 9
Hz

(d) Position 4, filterwidth 11
Hz

Figure A.16: Position 4, filtered energy decay
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Appendix B
Additional approaches

Appendix B contains the intermediate measurement results and post-processing results
from the additional approaches sections of the results presented in Chapter 4.

B.1 Calculated β and T (β)
Section B.1 contains the calculated β-values and their corresponding T -values for all
4 measurement positions.
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(a) β, position 1

(b) β, position 2

Figure B.1: Calculated absorption coefficients β
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(c) β, position 3

(d) β, position 4

Figure B.1: Calculated absorption coefficients β
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(a) T (β), position 1

(b) T (β), position 2

Figure B.2: Calculated T (β)
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(c) T (β), position 3

(d) T (β), position 4

Figure B.2: Calculated T (β)
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B.2 The intensity profile Iz(d)
Section B.2 includes all 12 measurements of Iz divided into figures for the 4 mea-
surement positions. In addition, the intersection points of the first (lowest) mode fre-
quencies are examined in closer detail for each of the 4 measurement positions. These
close-ups are presented in Figures B.7, B.8, B.9 and B.10.

Figure B.3: Iz(d), position 1

Figure B.4: Iz(d), position 2
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Figure B.5: Iz(d), position 3

Figure B.6: Iz(d), position 4
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(a) Iz(d), position 1 – 1st mode (b) Iz(d), position 1 – 2nd mode

(c) Iz(d), position 1 – 3rd mode (d) Iz(d), position 1 – 4th and 5th mode

(e) Iz(d), position 1 – 6th and 7th mode (f) Iz(d), position 1 – 8th and 9th mode

Figure B.7: Iz(d), position 1, frequency scale zoom
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(a) Iz(d), position 2 – 1st mode (b) Iz(d), position 2 – 2nd mode

(c) Iz(d), position 2 – 3rd and 4th mode (d) Iz(d), position 2 – 5th mode

(e) Iz(d), position 2 – 6th and 7th mode (f) Iz(d), position 2 – 8th, 9th and 10th mode

Figure B.8: Iz(d), position 2, frequency scale zoom
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(a) Iz(d), position 3 – 1st mode (b) Iz(d), position 3 – 2nd and 3rd mode

(c) Iz(d), position 3 – 4th and 5th mode (d) Iz(d), position 3 – 6th and 7th mode

(e) Iz(d), position 3 – 8th and 9th mode (f) Iz(d), position 3 – 10th and 11th mode

Figure B.9: Iz(d), position 3, frequency scale zoom
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(a) Iz(d), position 4 – 1st mode (b) Iz(d), position 4 – 2nd mode

(c) Iz(d), position 4 – 3rd mode (d) Iz(d), position 4 – 4th and 5th mode

(e) Iz(d), position 4 – 6th mode (f) Iz(d), position 4 – 7th, 8th and 9th mode

Figure B.10: Iz(d), position 4, frequency scale zoom
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Appendix C
Discussion

Appendix C contains some complimentary figures to to the ones presented in Chapter 5.
Figures C.1 show the transfer functions from measurement series 1 with the theoretical
mode frequencies relevant to the measurement position drawn as vertical lines. Note
that the figure showing measurement position 1 has already been presented in Chapter
5, so only the figures showing measurement positions 2,3 and 4 are included here.

(a) Hp,1, position 1

Figure C.1: Transfer functions Hp,1 (from measurement series 1) with theoretical modes
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(b) Hp,1, position 3

(c) Hp,1, position 4

Figure C.1: Transfer functions Hp,1 (from measurement series 1) with theoretical modes
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