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1. Introduction 

Steel cables are important components of major bridges. For the design of bridge cables the 

corresponding design value for the cable tension capacity is considered. The design value is 

evaluated by multiplying the characteristic strength by a partial safety factor. Hereby, the partial 

safety factor for the design resistance of bridge cables depends on four main aspect: i) the effect 

of the cable length; ii) the Daniels’ effect; iii) the target reliability and iv) the damage allowance, 

i.e. how many wires failures are allowable.   

To date, a framework that takes into account the above mention aspects for the calibration of the 

safety factor exists. However, the framework makes use of several simplifications. The 

simplifications relate in particular to the effect of deterioration on the cable capacity over time 

and to the considerations of system effects in the cable. This makes it by now impossible to 

consider the beneficial effects of deterioration protection and cable inspection and maintenance 

in the design process explicitly 

2. Short description of the research project 

The work to be performed in this master thesis consists of: 

 Modelling probabilistically one (or more) aspects or phenomena influencing the cable 

capacity and reliability (e.g. initial strain due to installation, corrosion, fatigue etc.); 

 Perform a specific literature review on these phenomena; 

 Create a framework for updating the aforementioned models based on different 

information (e.g. initial wire tests, inspection during life etc.) 

 Implement Matlab scripts (or other programming languages) for the models above. 

The thesis must be written according to current requirements and submitted to the Department of 

Structural Engineering, NTNU, no later than June 10th, 2015. 

NTNU, January 21th, 2015  

Jochen Köhler
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Preface 

This master thesis concludes our two-year master’s degree in civil engineering at the Norwegian 

University of Science and Technology (NTNU). It has been carried out during the spring 

semester of 2015, at the Department of Structural Engineering.  

This thesis focus on a literature review on basic concepts of bridge cables, system effects that 

influence the cable capacity, the use of statistical methods for updating the parameters of the 

strength distribution and reliability. A framework containing all these effects made in MATLAB. 

Neither of the authors had much prior knowledge about steel cables, statistics or calculation of 

reliability. We therefore feel that we have challenged ourselves and learned a lot from this study. 

We would like to thank our supervisor associated Professor Jochen Köhler and PhD candidate 

Michele Baravalle, for all the help and time they have used on us. They always directed us in the 

right direction and gave us guidance whenever we needed it.  

This master thesis has been very educational and interesting and we are very happy that we chose 

to write a master thesis provided by the Department of Structural Engineering at NTNU.  
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Abstract 

Many of the cable bridges in Norway, and Europe are in general nearing their estimated lifespan. 

Due to the sheer number of bridges, it is not possible to rebuild or redesign all of these. 

However, many are still in good condition, a scheme to verify their reliability are required. The 

cables make up the load bearing part in a cable bridge, failure of these cables leads to the failure 

of the entire bridge. One of the main concerns, especially regarding older bridges, is that the 

cables are subject to corrosion damage and the uncertainties related to the remaining reliability.  

The main goal of this thesis is to create a framework in MATLAB that displays the system 

effects that influence the capacity of the cable and an updating scheme for the strength- and 

reliability distribution of the cable. The first part of the thesis focus on the properties of steel 

cables and system effects that influence the cable capacity. Daniels effect and length effect are 

commonly considered as system effects. Daniels effect take into account that the strength of a 

cable consisting of 150 wires and more tends towards a normal distributed of the cable strength. 

This leads to a capacity reduction between 6-8 %. Length effect takes into account that the 

number of links in a wire increase over time, which lead to a reduction factor around 8-10 % of 

the capacity. The effect of initial wire strain is shown to have an impact on the cable capacity 

and should therefore be taken as a reduction factor along the same lines as Daniels- and length 

effect. 

The second part of the thesis focus on the updating of the strength and reliability distribution of 

the cable. An updated strength distribution of the cable is found with the use of Bayesian 

statistics. Baye’s method updates the strength distribution when additional information are 

implemented. This new information are gathered through use of proof or failure testing of the 

wires. The probability of failure are based on the updated strength distribution, which again are 

used to calculate the reliability of the cable.  
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Sammendrag 

Mange av de norske og europeiske hengebroene ble bygget på slutten av 1960 tallet. Flere av 

disse nærmer seg nå sin estimerte livstiden uten at dette nødvendigvis har en direkte 

sammenheng med den eksisterende bærekapasiteten til broene. De sosioøkonomiske kostnadene 

gjør det umulig å bytte ut alle broer innenfor et kort tidsrom. En løsning er å oppdatere 

påliteligheten etter den faktiske styrken til broen i dag. Dette er midlertidig ikke noe som kan 

gjøres uten grundig analyser av tilstanden til både kablene og broen forøvrig. En av de største 

bekymringene, og usikkerhetene er faren for skader på kablene, siden disse utgjør bæresystemet 

for en hengebro. En slik usikkerhet er uakseptabel og bør ikke være et beslutningsgrunnlag, både 

på grunn av økonomiske og etiske hensyn.  

Hovedmålet med denne oppgaven var å lage et rammeverk i MATLAB, som viser hvilke 

systemeffekter som påvirker kabelstyrken og en metode for å kalkulere påliteligheten til kabelen. 

Den første delen av oppgaven fokuserer på de grunnleggende egenskapene til en stålkabel og 

hvordan de forskjellige systemeffektene påvirker kapasiteten til kabelen. Hvis antall stålvaiere i 

kabelen overstiger 150-200 vaiere, blir styrken redusert med en faktor på 6-8 % som en følge av 

Daniels effekt. Lengde effekten tar hensyn til at en vaier blir inndelt i flere elementer, som følge 

av tidsavhengige effekter. Beregningene viser at styrken til en kabelen blir redusert med 8-10%.  

Underveis blir det vist at innledende tøyning i vaierne burde inkluderes i dimensjoneringen på lik 

linje med Daniels- og lengde effekt. 

Del to av oppgaven forklarer hvordan fordelingen til styrken og påliteligheten av kabelen kan 

oppdateres. Oppdateringsprosessen bygger på bruk av Baye’s statistikk. Baye’s statistikk bygger 

på å kombinere tidligere informasjon, med ny informasjon for å finne den oppdaterte 

fordelingen. Den nye informasjonen blir implementert ved enten å være test- eller brudd-last av 

vaierne. Ved å implementere begge metodene i rammeverket, vil dette føre til en robust modell. 

Den oppdaterte styrke fordelingen brukes til å beregne sannsynligheten for svikt, som videre blir 

brukt i beregningene av påliteligheten. Ved å oppdatere påliteligheten til kabelen, kan broens 

estimerte livsløp forlenges, og store kostnader kan bli spart for samfunnet.  
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Notations 

Pf                              Probability of failure 

E                              Modulus of elasticity 

PDF                         Probability density function 

CDF                        Cumulative density function 

LHS                     Latin Hypercube sampling 

µ                              Mean value 

σ                              Standard deviation 

E(X)                        Expected value 

Var(X)                    Variance 

ε                              lognormal variance 

λ                             Aging factor 

Lρ                           Correlation length 

b                            Scale parameter (Weibull distribution) 

c                            Shape parameter (Weibull distribution) 

( )                        Gamma distribution 

En                          Mean value 

Dn                         Variance 

x0                           maximizing term 

( )L                        Likelihood function 

( )l                         log-likelihood function 

β                           Reliability 
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βt                          Target reliability 

mx                          mean, destructive testing 

sx                           standard deviation, destructive testing 

θ                            Parameters 

f’(∙)                        Prior PDF 

F’(∙)                       Prior CDF 

F’’(∙)                      Posterior PDF 

F’’(∙)                      Posterior CDF 

q*                           Proof load 

Log                        Natural logarithm  

 ‘                            Prior information 

‘’                           Posterior information 

ρ                           Correlation 
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1 INTRODUCTION 

Today people rarely view bridges as something spectacular, unless they break some kind of 

record or affect different landmarks in one way or the other. They simply see it as a tool made to 

simplify the travel from A to B. For engineers and designer the story is somewhat different. 

Questions concerning location, design, cost, safety etc. have to be considered, and answered 

satisfactory.  

Bridges have always played an important part throughout history. Whether they were viewed as a 

way of making the transportation of goods easier and more effective or to be a display of power 

and technological superiority. The need to build bridges is nonetheless as vital today in ways of 

connecting remote islands and different parts of a country as it was a 100 years ago. The 

evolution of bridges reflects the type of technology at the given time. From the first heaps of 

stone across small streams and riverbeds in ancient times, to the arch bridges and aqueducts built 

by the romans, and the modern cable bridges built today.  

 

 GENERAL BACKGROUND 

In countries like Norway, bridges play a vital role in securing the connection between remote 

islands and the mainland. While the focus on building new infrastructure played an important role 

during the late 1960s, many of the bridges built around this time have already reached or will 

soon reach their estimated lifetime. Replacing all the old bridges with new ones, will lead to 

immense economical cost. If a framework for assessing and updating the reliability of these 

bridges due to testing or inspection can give a more accurate value of the bridge remaining load 

bearing capacity and reliability, decisions can be taken based on more precise information.  

 

 OBJECTIVE OF STUDY 

This study focus on the steel cables of cable bridges. The primary goal of this thesis is to create a 

framework for updating the capacity and the reliability of the steel cables. To reach the primary 

goals, some secondary goals were set: 

- Present typical issues regarding steel cables (design layout, manufacturing process, 

protection methods etc.) 
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- Present and discuss several factors that can reduce the capacity of the cable (e.g. Daniels 

effect and initial strain.) 

- Find an updating process for the strength distribution of the cable, based on different test 

methods 
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2 METHODLOGY 

 RESEARCH TYPE 

The main purpose of this thesis is to create a working MATLAB script that updates the reliability 

of the wires/cables, based on new observation and information. The script will also include some 

system effects related to the capacity, such as Daniels effect and length effect. Fulfilling these 

purposes requires an evaluation of existing literature and extensive knowledge of the MATLAB 

program.  

A quantitative research method is used in this report. Earlier publications concerning the effects 

mentioned above will be examined both quantitatively and deductively in order to establish the 

scope and reach of this thesis. By examining the literature deductively, it is possible to examine 

the conclusions of these earlier publications and verify if the calculations are correct. The 

verifications of these results will be done quantitatively by evaluating the original data from the 

publications, and create a verifiable statistical foundation that the updating scheme can be based 

upon.  

 RESEARCH METHOD 

Initially, the work done by Faber et al. [1] will be examined to understand the basic concepts and 

calculations used in reliability assessment. By using BIBSYS scientific database (ORIA) and 

Google scholar searches, an extensive literature review will be conducted on the relevant topics. 

Finally, using MATLAB, an updating scheme based on the numerical observations found in 

Faber et al. [1] are created and discussed. The main focus of this paper is not the values 

themselves, but how the different parameters and system effects change the capacity and 

reliability of the cable.  
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 REPORT STRUCTURE 

The thesis consists of 11 chapters, a simple explanation of the content in each chapter is given 

below. 

Chapter 1 contains a short introduction about the background and different goals of the thesis. 

Chapter 2 explains the methods used to achieve the goals set in chapter 1.  

Chapter 3 gives a short introduction to the basic terminology and history of cable bridges. It also 

explains how a cable is modelled. 

Chapter 4 contains the methods and theory used in the estimations regarding the following 

system effects: Daniels effect and initial strain.  

Chapter 5 is dedicated to the updating of the wires using both analytical and numerical solutions. 

Chapter 6 calculates the changes in the partial safety factor and the reliability due to the 

updating scheme found in chapter 5. 

Chapter 7 shows the results found using the framework created in MATLAB, from chapter 4-6 

Chapter 8 discuss the results and assumptions made in the paper. 

Chapter 9 concludes the work and recommends areas that should be further studied. 

Chapter 10 includes the sources used in the paper. 

Chapter 11 contains the list of appendixes. 
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3 A SHORT INTRODUCTION TO CABLES  

This chapter is meant to familiarize the reader with the basic concepts and terminology regarding 

cable bridges. The following chapters explain the main difference between the main bridge types, 

different cable systems, basic protection schemes and how a cable is modelled using parallel and 

series systems. If the reader is already well versed in the basic concepts of bridge engineering, it 

is possible to skip chapters 3.1 – 3.3. 

 

 THE MAIN CABLE 

The main cables make up the loadbearing part of the bridge, their integrity is therefore vital for 

both the safety and the load bearing capacity of the bridge. This chapter focuses on some of the 

main aspects on the modelling of the cables, different types of strands in the cables and ways of 

testing the strength of the cable.  

Although modern cable bridges are a relative new construction form, they have existed for quite 

some time. Originally made up of vines, plank or even trees, they have transported people across 

rivers, streams and canyons for centuries. Despite several accounts of temporary cable bridges 

being built, the first permanent modern cable bridge was not built until 1823 in Geneva [2]. The 

use of cables instead of chains, gave rise to a new set of problems concerning the durability. At 

the time, there was no effective protection methods against corrosion of the thin wires in the 

cables. Many British engineers therefore favored the use of pin-connected iron chains instead of 

cables [2]. Despite these initial problems concerning corrosion, a number of bridges on the 

European mainland used cables instead of chains. 

The first major bridge to make use of air-spun cables, i.e. “The air spinning method”, was the 

“Niagara Bridge”. Constructed between 1851 and 1855, using this new method the cables could 

be made in situ and spun between the anchoring points with the use of a spinning wheel [2]. In 

previous construction methods, the cables had to be uplifted from the ground, which was 

considered as a rather cumbersome and dangerous task. This new method allowed the spinning of 

several cables simultaneously and removed the need for transportation of large cables. Today, 

two in situ methods are mainly used: the high- and low-tension method. The high-tension method 

use counterweights to simulate the stress of a freely hanging wire when they are dragged between 

the anchoring points during the construction. One of the main advantages of this method is that 

each wire carries its own weight and the stresses in the wires are easily controlled during the 

erection process. The low-tension method on the other hand allows a lower stress in the wires, 

usually around 50 % of the self-weight [2]. Since the counterweight only carries about half of the 
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self-weight, the remaining stresses have to be carried by the existing wires. This will in the 

beginning give rise to large strains in the existing wires, but as more wires are assembled these 

strains are reduced [2]. 

Although much more efficient than the original methods, there were still some drawbacks. The 

spinning process is both time-consuming and vulnerable to climate effects. The main concern 

using this method is the accumulation of water on the wires during the erection process. Naturally 

this is not favorable concerning corrosion later in the cables life. As a response to this problem, 

the pre-fabricated parallel wire strand method (PPWS) was developed. The wires are 

prefabricated in large bundles consisting of a 100 or more wires. The main advantage of this 

method lies in the use of a controlled environment that both significantly reduces the chance of 

water being accumulated inside the cable and the construction time [2]. 

For cable bridges, the load bearing capacity lies in its cables. Opposed to conventional bridges 

using pillars, the cables carry the load solemnly as a tension force transferred to the anchors and 

the pylons [2]. Cable bridges are categorized into three main categories as seen in Figure 1. 

a) Suspension system 

b) Fan system 

c) Harp system  

a)  

b)  

c)  

Figure 1 Cable bridges  [3] 

For suspension system, the load is transferred from the deck to the cables by vertical hangers 

connecting the cable to the deck. Suspension bridges usually consist of three spans, two side 

spans and one main span. The main cable is supported at four points; at the two anchoring blocks 

and at the two pylons. Well known suspension bridges using this system include 

“Hardangerbrua” and “George Washington bridge”.  
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The fan system can be applied either as a semi fan system with several different anchoring points 

spread over a certain height of the pylon, or as a pure fan system with all cables at a single 

anchoring point. Normally the anchoring points of a semi fan system are spread over a relative 

small height of the pylon, this result in similar behavior of both semi- and a pure fan system. This 

again simplifies the preliminary analysis. The anchoring cable connecting the pylon top to the 

end supports are vital for the stability of the system, for the efficiency. It is therefore imperative 

that this cable is in tension for all load combinations [2]. 

The harp system will be an unstable system. Much like the fan system, the flexural stiffness of the 

deck and pylons must therefore be taken into account to achieve equilibrium. Unlike the fan 

system, the upper cable is stabilized by its connection to the end support. Here, the lower cable 

must be inspected to secure stability in the system [2]. 

 

 STRANDS 

As mentioned earlier the wires are bundled together forming individual strands. Depending on 

the type of strands, the number of wires vary from only a handful to several hundred. The wires 

usually have a diameter ranging from 5-7 mm made of high strength steel. 

Helical strands consist of several layers of wire, where each successive layer is spun in the 

opposite direction of the helix. Due to the twisting effect, the modulus of elasticity decreases with 

a factor of 15 – 25 % and the design stress is chosen as 0.9fcbd, where fcbd denotes the design 

stress of a straight wire [2]. When the twisting occurs it gives a contribution to elongation. 

Luckily this only happens when the strands are loaded for the first time, making the contribution 

to elongation irreversible. To make sure that there is no contribution to elongation at a later stage 

the cables are pre-tensioned with an overloading of 10 – 20 % [2]. When the cables twist, they 

also self-compact, which omits the need for bands or wraps to hold the strands together.  

Locked-coil strands are made up of wires arranged in a normal helical strand where the outer 

layers are made of special wires with a Z-shape. Much like the helical strands, the locked-coil is 

self-compacting and more compact than any other types of strand. The strands are always 

prefabricated with both full length and cross section and delivered on sockets. The modulus of 

elasticity for locked-coil are slightly higher than the one found in helical strands, and results in a 

reduction of axial stiffness. Although the cross section has to be increased about 10% in order to 

compensate for the lower breaking strength, this only slightly increases the elongation compared 

to the parallel wire strands [2]. 
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Parallel-wire strands do not suffer a reduction in breaking strength or stiffness due to twisting, 

however, the void ratio for pure parallel-wire strands are the highest of all the strand types [2]. 

Due to problems related to unacceptable stresses in the reeling process, other strands types were 

favored until these problems were solved in the 1960s. There are several types of sub-categories 

for parallel-wire strand, they are all similar in that wires are spun in a hexagonal pattern and 

bound together by bands or wraps. New PWS cable let the wire bundle twist itself in order to ease 

the unreeling; this also makes the cable self-compacting, without any reduction to the axial 

stiffness or tensile strength [2].  

 

 PROTECTION 

The load capacity of a cable bridge relies solemnly on the integrity of the wires. Preventing 

deterioration of the wires has therefore always been a source of concern for engineers. The thin 

wires are extremely vulnerable to surface corrosion, and many of the wires will be inaccessible in 

later inspections. The standard procedure today is coating the wires with several layers of zinc 

and different products of polyester, glass fiber and acrylic resin. An outer layer consisting of 

plastic or steel then protects the load bearing cable [2]. 

A newer method introduces dehumidification of the cable by injecting dry air through the cable. 

In these cases the protectoral zinc layer can be omitted to secure air flow through the voids 

between the wires. Since changing the cables is costly, significantly amounts of research is based 

upon the effort of providing good enough protection against corrosion, fatigue etc. [2]. 

 

 SYSTEM MODEL 

The cables in modern bridges are usually modelled using two basic concepts; the parallel system 

and the series system. Cables consist of several hundred wires, and as long as the integrity of 

these wires are intact, the cable will not fail. Failure of the system occurs when all the wires 

break, which follows the simple reasoning: as long as one wire is intact, the cable still carries 

some load. It is important to note that failure of the wires can happen within a very small 

timespan, but they will break individually and not at the exact same time. This way of 

considering a system is called a parallel system (see Figure 2).  
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Figure 2 Parallel system 

Since the probability of failure for a parallel system requires failure in all its members, the failure 

of the system is given as the intersection of the failure events of all wires. Being the intersection 

dependent on the correlation, first order bounds can be found considering full and no correlation 

[4]. 

1

min
n

fi f fi

i

p P p


       (3.1) 

Where fip  is the probability of failure of the i-th wire. The left part assumes no correlation and 

the right part assumes full correlation, i.e. a high capacity in one wire, corresponds to a high 

capacity in the rest. It is worth noting that assuming full correlation is regarded as a conservative 

estimate, and for negative correlations the right part of equation (3.1) becomes zero [4].  

The system above can be seen as an idealization of the cable. If all the wires were perfect with no 

defects of any kind, the system in Figure 2 would be a true representation of reality with each 

wire representing link 1, 2…, n. Defects are created both during the production and accumulated 

during the lifespan of the cable [4]. These defects are included by modelling each wire as a series 

system. The easiest way to explain such a system is considering a chain. If one of the links in a 

chain breaks, the entire chain breaks, it is the same way with the wires. If the wire breaks at one 

point, it will no longer retain its load bearing capacity. Although not entirely true with the 

modern cable types, where a broken wire regain some of its load bearing capacity, the main 

concept still holds.  
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Figure 3 Series system 

The number of elements in such a system depends on the strength correlation length; a shorter 

correlation length yields a higher number of elements in the series. For such a system, the 

probability of failure is equal to the union of the failure events of all elements [4]. The capacity of 

the system is equal to its weakest element, this is also known as the “weakest link effect” [4].  

11

max( ) 1 (1 )
n n

fi f fi fi

ii

P P p p


       (3.2) 
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4 CABLE CAPACITY 

One of the main aspects of this thesis is the investigation of different system effects on a cable, 

the effects investigated in this chapter are: Daniels and length. The chapter consist of three main 

parts: The initial capacity are estimated using a Weibull distribution, the capacity reduction due 

to Daniels effect are investigated and finally, the reduction in capacity when wires are subjected 

to initial strain. All numerical values for prior and additional information are taken from 

Appendix A - Numerical input values.  

 

 INITIAL INVESTIGATION OF THE CABLE CAPACITY 

The initial strength of a wire is based on prior information given by test data provided by the 

manufacturer or performed in-situ. Based on this information, the strength distribution of the 

wires are found by fitting the data to a Weibull distribution. The parameters of the distribution are 

estimated using the method of Maximum likelihood. The theory presented in chapter 4.1 is 

implemented directly in the script given in Appendix D –MATLAB script. 

 

4.1.1 WEIBULL DISTRIBUTION 

The Weibull distribution is named after the Swedish engineer Waloddi Weibull who studied the 

strength of materials and their distributions. The general Weibull distribution is a 3-parameter 

distribution, depending on the three parameters a, b and c [5]. In this case it is possible to omit 

the location parameter, a, which reduce the distribution to a 2-parameter Weibull, from now on 

simply called the Weibull distribution. The probability density function and cumulative 

distribution function are given in equation (4.1) and (4.2), from now on denoted PDF and CDF 

[5]. 

1

|B,C  

cc

X

c x x
f exp

b b b

     
     

     
  (4.1) 

 |B,C 1 

c

X

x
F exp

b

  
    

   
  (4.2) 
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Where x is the load level on the wire, b is the scale parameter and c is the shape parameter. The 

scale parameter, b, governs the height of the PDF. Reducing the shape parameter, c, compresses 

the distribution, i.e. reducing the width of the PDF as seen in Figure 5. Different books use 

different notations for the scale and shape parameters. Faber et al. [1] denotes these parameters as 

u and k. In this paper the notations b and c are used, since this is the notation used in most 

mathematical textbooks. The CDF and PDF of the Weibull distribution are plotted in Figure 4 

and Figure 5. The effects of changes in the scale and shape parameters are seen here.  

 

Figure 4 CDF of the Weibull distribution 

 

Figure 5 PDF of the Weibull distribution 
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Aging factor 

 is in this case seen as an aging factor of the wire, taking into account different defects due to 

initial cracking, corrosion fatigue etc.  

0

 
L L

L lL

     (4.3) 

pL is the correlation length of the wire, L the length of wire, L0 is the length of test specimen, and 

l represents the aging correlation factor. For new wires, the correlation length is equal to or larger 

than the actual length of the wire [1]. During the lifetime this length decreases as the wire 

accumulates more defects due to corrosion, fatigue cracks etc. As the wire reaches its expected 

lifespan, the correlation length could be reduced to a value around the diameter of the wire, e.g. 

5-7 mm [1].  

More specific, when the wire is new,  has the value one to three, meaning that the wire is 

divided into one to three links. During its lifetime, the wire accumulates defects, which increase 

the value of  over time. This results in an increasing number of links in the series system (see 

Figure 3). The series system will have uncorrelated and identically Weibull distributed links. The 

capacity of each link is represented by the Weibull CDF given in equation (4.2). The capacity of 

the system can now be derived by inserting the probability of failure for one link into equation 

(3.2). The CDF of the system is derived in equation (4.4). 

   1 (1 ) 1 1 1 1

c c

X fi

i

F x p exp
x x

b
x

b
e p




 
        
                               

   (4.4) 

The PDF dependent on   is found by differentiating equation (4.4) [1]. 

 
1

(x)
 

c

i i
X

c
x xF c

f x e
b b b

xp
x




      
      

      

  (4.5) 

The mean value and the variance dependent on   are given in equation (4.6) and (4.7) [1]. 

  1/c 1
Γ 1E Z b

c
  

  
 

  (4.6) 

  2 2/ 22 1
Γ 1 Γ 1kV Z b

c c
     

       
    

  (4.7) 
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Where equation (4.4) and (4.5) represent the CDF and PDF respectively. xi is the capacities for 

the different test specimen [5]. Γ is the gamma distribution given by the “Euler integral of the 

second kind” in equation (4.8) [5].  

  1

0

v kk e v dv



      (4.8) 

For more detailed information about the Gamma distribution, the authors refer to section 2.9 in 

Weibull: A handbook [5]. 

 

4.1.2 MAXIMUM LIKELIHOOD 

The maximum likelihood method (ML) has proven to be both versatile and robust in the 

calculation of the maximum likelihood estimations (MLE). Dating back as far as the 1700s it is 

now a widespread tool due to its ability to cope with all types of samples, independent of the 

samples distribution type. The key feature of MLE is that it estimates the uncertainties of the 

estimated parameters [5].  

The concept of MLE is to find the vector 𝜽̂ which maximimes the likelihood function  | iL x , 

i.g. the highest chance of having realized the data (observations), where 𝜽̂ are the parameters b 

and c. For a Weibull distribution, the vector 𝜽̂ denotes the estimation of the shape and scale 

parameters of the distribution. In cases where the MLE cannot be given in a closed form the 

vector is the solution of a system of non-linear equations. When this is the case iterative methods 

have to be used [5].  

The likelihood functions 

The likelihood estimates is a function of the distributional parameters given in the vector θ based 

on the sampled data. E.g. if the sample data consists of N independent elements, the likelihood is 

simply the product of N factors, termed likelihood elements (Li) [5]. The independent likelihood 

function given in equation (4.9). 

   
1

|
n

i i

i

L x L 


   (4.9) 

In cases where the gradient method is used (partial derivatives), the log-likelihood function makes 

the process of performing these derivations easier [5]. As seen in equation (4.10) the log-

likelihood function is now taken as the sum of the terms, not the product. This minimizes the 
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error in the function; the error is now contained to one subsection of the sum, instead of being 

multiplied as it is in the likelihood function. 

     
1

ln ( )
n

i i

i

l L l  


    (4.10) 

Maximizing the likelihood function 

One of the methods used to find the set of values in the vector θ that maximizes our likelihood 

function is the “Nelder-Mead simplex method”. The method utilizes a direct search method 

instead of a set of derivatives.  “A simplex is the most elementary figure that can be formed in 

dimension N with N + 1 sides” [6]. A triangle in the 2D-plane and a pyramid with a triangular 

base in the 3D-space are both examples of simplexes.  

The method operates by moving the simplex around the function until it surrounds the minimum 

before contracting the simplex until it reaches a predetermined acceptable error [6]. Modifying 

the method in such a way so that the function is maximized instead of minimized, is quite easily 

done by setting a negative sign in front of the log likelihood function. This is shown in equation 

(4.11).  

 ( | )min il x


  (4.11) 

Uncertainties of Maximum likelihood estimates 

Since the Maximum likelihood estimations themselves are an estimation, some uncertainties 

related to their true value exist. By invoking the the central limit theorem, i.e. when n   the 

maximum likelihood estimations will be normally distributed with a mean that converge towards 

the parameters true value.  

The covariance matrix yields the variance and the covariance of the parameters θi, as showed in 

equation (4.13). The square root of the diagonal elements denotes the standard deviation of the 

parameters. By inverting the Fisher information matrix, the covariance matrix is found. As seen 

in equation (4.12) the Fisher matrix is the double derivative of the log likelihood function, more 

easily explained, the Fisher matrix is derived using the following steps: If we derivate the 

Jacobian matrix, a well-known matrix in Finite Element Method analysis, we get the Hessian 

matrix. The information matrix is simply the negative of the Hessian matrix [7]. We can therefore 

conclude that the Fisher matrix is simply the negative derivation of the Jacobian.  

The Weibull distribution yields a 2-dimentional multivariate normal, when n  . This means 

that the covariance matrix will be a 2x2 matrix. 
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11 12

2 2
21 22

( | ) ( | )

F= Fisher matrix
( | ) ( | )
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j j j

l x l x

F F

F Fl x l x

i

 

   

 

   

  
  

             
  
     

   (4.12) 

11 12

21 22

C=Covariance matrix ( )
C C

inv F
C C

 
   

 
  (4.13) 

 

4.1.3 SUMMARY 

Now that both the Weibull distribution and the method of maximum likelihood are described, it is 

possible to calculate the strength of a wire. The mean strength of a wire is given by equation (4.6) 

which take into account the length effect. The values for b and c are found by using the method 

of maximum likelihood on the given tests data. The capacity of the entire cable can then be 

modeled as the sum of all the wires, where the strength is distributed using Weibull, as shown in 

equation (4.14). 

1

2
1/c 1
Γ 1

4
 capacity 

n

i

Cable
d

b
c






  


 
 
 

 
 

   (4.14) 

 The resulting cable capacity is shown as a function of  in Figure 6.  
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Figure 6 Cable capacity as the sum of wires 

From Figure 6 it can be seen that the length effect will reduce the capacity with approximate 

9.8% during the lifetime of the wire. In general, the reduction due to length effect is set to 10% 

[1]. 

 

 DANIELS SIZE EFFECT 

The method for calculating the capacity outlined in chapter 4.1 overestimates the cable capacity 

when the number of wires exceeds 150 [1]. By including Daniels size effect, the overestimation is 

accounted for. The main assumption in Daniels theory is that the strength of the wires are 

normally distributed [8], a short introduction to the normal distribution and its properties is 

therefore given below. This is implemented in a MATLAB script in Appendix D –MATLAB 

script. 

 

4.2.1 NORMAL DISTRIBUTION 

One of the most known and used distribution is the Normal, or Gaussian distribution. One of the 

main reasons for this is the so called Central limit theorem which states: If a set of random 

samples, n, is selected from a population the samples will be normally distributed as n increases 
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without bounds [9]. Simply explained; if we have a finite number of sampling points with a given 

distribution, e.g. ten strength tests fitted to a Weibull distribution. As we add more tests, the 

shape will gradually change and resemble that of a normal distribution. 

The normal PDF and CDF are given by the following equations:  

2

2
( )

1 ( )

22
x

x
expPDF f x



 


 
 
 

 (4.15) 

    

x

X XCDF F x f x dx


   (4.16) 

In most practical cases the mean and variance has to be calculated using estimates based on a 

finite number of observation. The most used way of doing this is the so-called “method of 

moments” where µ is equal to the sample mean, and σ2 is the sample variance [9]. 

1

1
( )

n

x i

i

E X x
n




     (4.17) 

  2 2

1

1
  ( )

1

n

i i

i

Var X x
n

 


  

   (4.18) 

 

4.2.2 DANIELS THEORY 

Named after the mathematician who discovered it, its original purpose was to estimate the 

strength of wool fibers in the textile industry. Engineers have later adapted the theory to calculate 

the strength in cables with large bundles of wires [8]. A cable composed of a large number of 

wires is modelled as a parallel system with elements having identically distributed capacities. The 

capacity of a system tends to be normally distributed, when the number of wires are large. The 

main assumption in Daniels theory is that the probability that a wire breaks under a given load, z, 

is such that 1 ( )ZF z   zeros faster than 
1

z
  [8]. More practically, Daniels effect will be valid if 

the number of wires are smaller than 150 [1]. In bridge cables the number of wires are relatively 

high. By invoking the central limit theorem it can be shown that the strength of the wires are 

normally distributed if we make the assumption that the number of wires, n → ∞ [10]. The mean 

and standard deviation of the normal distribution are given by Faber et al. [1]. 
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 0 01 ][n z nE nx F x c       (4.19) 

    
1

2

0 0 01n z zD x nF x F x      (4.20) 

1
3 0.966nc n a   (4.21) 

2 4
3 0 0

'

0 0 0

( )

2 ( ) ( )

Z

Z Z

f x x
a

f x x f x



  (4.22) 

   0 1 Zx max x F x    (4.23) 

Where ZF  is the Weibull CDF, nc  a correction term and 0x a term that maximize the Weibull 

distribution, as seen in Figure 7. 

 

Figure 7 Graph showing how x0 is found 

Figure 7 shows how the value of x0 found. The red curve is the function  1 ( )Zx F z , seen in 

equation (4.23). The value of x that maximize equation (4.23), is described by the black line. The 

value of the found x0, is then used to maximize the mean and standard deviation in equation 

(4.19) and (4.20) [10].  
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 CAPACITY WITH INITIAL STRAIN 

In this paper, the origin of initial wire strains are assumed to originate from the manufacturing 

process or during the erection phase. The initial strains are modelled as random numbers and the 

impact of the wire strains on the cable-capacity are investigated. The yield and failure strength of 

the wires, including Daniels, are assumed log-normally distributed and simulated using random 

numbers with a given mean, standard deviation and correlation. Due to the use of random 

numbers in the simulations for the initial wire strain and wire capacity, Monte Carlo simulations 

have to be performed to get an accurate picture of the actual cable capacity. The calculations of 

the cable capacity due to initial strains are performed in a MATLAB script presented in  

Appendix D –MATLAB script. 

Strain 

The yield strain is calculated using Hooke’s law, which denotes the relationship between stress-

strain using the modulus of elasticity. The general law is only valid when the material behaves 

elastically, i.e. the material goes back to its original form after deformation, and the relationship 

between stress-strain is linear [11]. The general formula of Hooke’s law is: 

     (4.24) 

Where E is the modulus of elasticity,   is the stress and  is the strain [11]. 

Figure 8 Stress-strain curve [12] 

As mentioned above, the general Hooke’s law is only valid for the elastic area of the stress-strain 

curve, up to point 2 in Figure 8. Point two is the yield strength of the material. After this, the 

relationship between stress-strain is no longer linear. The behavior of a material is highly 

dependent on whether it is categorized as a brittle or ductile material. A brittle material (e.g. 

carbon) will have a small plastic elongation zone before breaking, simply put; failure occurs 
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suddenly, with very small deformations beforehand [11]. A ductile material, like steel, will have 

large deformations before failing and displays a long plastic elongation zone [11]. 

The general Hooke’s law can be modified, so that the stress can be calculated over the entire 

stress-strain curve. A modified stress strain relationship is shown in equation (4.25) [1].   

,

, , ,
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 

 


  




  (4.25) 

Where Ɛi, Ɛy and Ɛu is acting strain, yield strain limit and failure strain limit.  The total stress in the 

cable can then be found using equation (4.26) [1]. 

1

1
( )

n

i i

iGN
  



    (4.26) 

NG takes into account that the wires can come from different batches. For small cables, it can be 

assumed that all the wires are from the same batch.  

Initial wire strain 

Initial wire strain is implemented in the calculations by assuming that the initial wire strain can 

be represented as uniformly distributed random numbers over a certain domain. The strain used 

to calculate the stress in each wire in equation (4.25) can then be found by using equation (4.27), 

which takes into account the initial strain (Ɛ0) in the wires.  

 0 i      (4.27) 

The stress in the cable can then be found by using equation (4.26). 

 

4.3.1 RANDOM NUMBERS 

The initial strains are modelled using random numbers, these random number generators are 

divided into two main categories. 

True random number generators (TRNG) are generated by observing natural phenomena, such as 

atmospheric noise, occurrence of lightning etc. However, due to the nature of these 

measurements, gathering enough information (numbers) to use in the simulations can take several 
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months or even years [13]. Modern computer programs therefore use so-called pseudo random 

numbers generators (PRNG). These are not random in the sense that they can be reproduced 

knowing the seed of the sequence. Although this may initially seem like a bad thing, the return 

period of good PRNGs is so long that for all practical purposes they may be considered 

random[14]. Unlike TRNGs, pseudo random numbers are deterministic, and is therefore well 

suited for simulations where the results needs to be reproduced later [14].  

As seen in chapter 3.4, the wires are modelled as a parallel system, making the assumption that 

the stresses are equally distributed between the wires. The initial strains are therefore modelled 

using a uniformly random numbers, as seen in Figure 9. In a uniform distribution the numbers 

have equal density, meaning that there is no single value that tends to cluster, and the numbers 

are equally distributed over the given domain as seen in Figure 9. 

  

Figure 9 Uniformly distributed random numbers 

 

4.3.2 CORRELATION BETWEEN YIELD AND FAILURE STRAIN 

The correlation between two variables, e.g. between yield and failure strains shows the tendency 

two variables have of varying together. A positive correlation indicates that a higher value than 

the mean of X relates to a higher value of Y, and vice versa.  

Correlation (4.28) indicates how two variables are connected. The value varies in [-1 1], where

1  , denotes full correlation, e.g. if the variable 1X  , then the variable 1Y  . For  a linear 

correlation, a positive covariance indicates that the maxima of two variables is in the same 

interval, while a negative covariance indicates that the maxima of one variable corresponds with 

the minima of the other [15]. 
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[( [ ])( [ ])]

X Y

E X E X Y E Y


 

 
   (4.28) 

A linear correlation implies that changing one variable affects the other. However, this is not 

always the case; Spurious correlation can display a strong correlation, e.g.   = 1, despite having 

no real connection between the variables. Even though changing one, will have a mathematical 

effect on the other, they are not connected in any real sense [1, 16].  

 

Figure 10 Correlation 

In many cases, we wish to simulate a system using random numbers, e.g. initial strain in wires. In 

such a case, the correlation is usually already given and the random variables are initially 

uncorrelated. Correlated values may be found by rotating the coordinate system using the 

following equations [17]. 

 ' cos( sin(x x y        (4.29) 

' sin( cos(y x y         (4.30) 

 cos( )    (4.31) 

     
2' x 1x y        (4.32) 
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2' 1y x y        (4.33) 

Where [x y] are the initially uncorrelated random numbers and equation (4.32) and (4.33) yields 

the correlated pair of random numbers [x x’] and [y y’].   

Correlation between yield strain and failure strain 

The correlation factor between yield- and failure strain is not given directly in model codes. The 

correlation factor can be found by looking at the correlation between yield stress and failure 

strain, because the correlation between the modulus of elasticity and both yield stress and failure 

stress are zero [15]. This makes it possible to use the correlation between yield stress and failure 

stress directly by assuming that the plastic elongation zone is flat. The correlation between failure 

strain and yield strain can then be taken directly from the JCSS model code as the correlation 

between yield stress and failure strain [15]. As seen from Table 1, the correlation factor is -0.45.  

1.0 0.75 0 0 0.45

0.75 1.0 0 0 0.60

0 0 1.0 0 0

0 0 0 1.0 0

0.45 0.60 0 0 1.0

y u u

y

u

u

f f E

f

f

E

 









 

 

Table 1 Correlation Matrix [15] 

Now that the correlation between yield- and failure strain is known, two correlated values are 

found using equation (4.32). The correlated values will now have a large scatter, and since the 

inverse lognormal distribution is used to calculate the values for yield and failure they have to be 

in the domain zero to one. This is done by taking the normal CDF with the found correlated 

values, mean equal to zero and the standard deviation equal to one as arguments.  

 

4.3.3 LOGNORMAL DISTRIBUTION 

To find the stress in equation (4.25) the values for yield- and failure strain are needed. When the 

assumption that Daniel’s effect is valid, the distribution for yield strain and failure strain can be 

modeled as a lognormal distribution. This is due to that the lognormal distribution is defined over 

the positive real space [1]. The distribution is therefore immensely useful when describing natural 
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variables such as the strength of wires. By definition, x is log normally distributed if ln( )y x is 

normally distributed.  

The result are similar CDF and PDF for the normal and lognormal distributions [18]. 

 
2

2

1 (ln( ) )
   

22
X

x
f x exp

x



 

 
  

 
  (4.34) 

    

x

X XF x f x dx


    (4.35) 

Where   and   are the mean and variance of ln( )y x [18]. 

  ln( )ln( ) xE x     (4.36) 

2 2

ln( )X    (4.37) 

Hence, the moments can be found [18] 

 2( ) exp 0.5XE X        (4.38) 

  2 2( ) exp 1X Xstd X        (4.39) 

The correlated values for the yield and failure strain is then found using the inverted lognormal 

distribution, with the mean and standard deviation found in equation (4.38) and (4.39).  

 

4.3.4 MONTE CARLO SIMULATIONS 

Since only a certain number of random numbers are generated, the values for yield- and failure 

strain are only approximated values. To be certain that the found values are correct, this process 

should be simulated until the value converge. This can be done using Monte Carlo simulations. 

Monte Carlo is one of the basic and most used methods for calculating probability of failures and 

probability density functions [14]. Much because the method in itself is very simple and easy to 

understand, it can handle all kind of distributions, limit state functions and is correct at the limit. 

The method had little use in the past, because the simulations process is very demanding for the 

computer, but with today’s modern computer’s it has become more used. Monte Carlo simulation 
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works by producing a large amount of uniformly distributed pseudo-random numbers between 

the values zero and one.  

For each simulation, each basic variable is sampled and the limit state function evaluated. 

Sampling is performed by evaluating the inverse normal CDF, with the random generated 

number as an argument. The probability of failure is then given in equation (4.40).  

0
f

N
p

N
   (4.40) 

Where N0 is number of failures and N is the total number of simulations [4]. 

 

Figure 11 Normal cumulative distribution for Monte Carlo  

One of the main drawbacks with crude Monte Carlo sampling is that it often displays a slow 

convergence rate, especially for rare events such as the failure of a wire. For complex 

simulations, this is a time consuming operation. By introducing different variance reduction 

techniques the number of simulations needed are significantly reduced, by making the operation 

more efficient [19]. The technique used in this paper is called Latin hypercube sampling (LHS) 

and is a subgroup of the Importance sampling method. 

Latin hypercube sampling 

Whereas many of the existing sampling methods are deterministic, one of the advantages of LHS 

is that the process is random [3]. The method samples the points from the MC simulation in an n-



Master Thesis 2015 
 

27 

 

dimensional hypercube so that “only the marginal distribution is stratified” [3]. Perhaps a bit 

technical, the process is explained by Huynh et al.[19] with the following three steps. 

1) Divide each dimension of our space in N sections. 

2) Generate a discrete random variable uniformly distributed in the section. 

3) Repeat the previous steps for all the sections. 

These steps are explained in the following example: The stratified sample vectors [Θ1 Θ2] is 

found by choosing a random number in each interval, ui and dividing the Y-axis into N sections 

Figure 12 has five such intervals, where e.g. interval 1 has a range of 4 – 5. The randomly 

selected value u1 is now in the interval between 4 and 5, u2 between 3 – 4 etc.   

 

Figure 12 Stratification of two random variables 
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The stratified samples are now presented in column 4 in Table 2. The values in the table does not 

represent any real life data, but is just a simple example intended to show the main aspects of the 

Latin hypercube. The following assumptions is made in Figure 12: 

1) Y – axis range,  [0 1] divided into 5 equal intervals 

2) X – axis range, [a b] = [0 10] 

3) Create the random number (min,max)iu U   

4) ( (0,1) ( ))i U b a a       

5) Randomize the order that the values of θi are inserted into the Latin Hypercube 

By creating a new set of random numbers in columns 6 (Shuffle), without considering the 

different stratum intervals. These random numbers decide the rank the different numbers in 

column 5 will have, the highest shuffle number have rank 1, and the lowest rank 5. By doing 

so, the order in which the numbers are inserted into the Latin Hypercube are randomized in 

the sense that the lowest value of Θ1 does not correspond to the lowest value of Θ2. 

 Strat Min (value) Max (value) θi Shuffle rank 

Θ1 1 

2 

3 

4 

5 

0.40 

0.30 

0.20 

0.10 

0.00 

0.50 

0.40 

0.30 

0.20 

0.10 

0.45 

0.38 

0.25 

0.14 

0.06 

0.98 

0.65 

0.12 

0.87 

0.55 

1 

3 

5 

2 

4 

Θ2 1 

2 

3 

4 

5 

0.40 

0.30 

0.20 

0.10 

0.00 

0.50 

0.40 

0.30 

0.20 

0.10 

0.42 

0.33 

0.21 

0.17 

0.05 

0.36 

0.86 

0.23 

0.99 

0.47 

4 

2 

5 

1 

3 

Table 2 Calculating the Rank used in the Latin Hypercube matrix 

Inserting the values of the two variables by their respective rank yields the Latin Hypercube 

matrix in Table 3. 
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  Variables 

Rank 

Θ1 Θ2 

1 0.45 0.17 

2 0.14 0.33 

3 0.38 0.05 

4 0.06 0.42 

5 0.25 0.21 

Table 3 Latin Hypercube matrix 

As seen in Table 3, there is no immediate correlation between the values, meaning that a higher 

value of Θ1 does not correspond with a higher value of Θ2. To get correlated values of the Latin 

hypercube matrix, the method shown in chapter 4.3.2 must be implemented. It is important to 

note again that these values does not represent any real values or simulation, such as the ones 

shown in Figure 13 and Figure 14 below.  
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Figure 13 Convergence of Crude Monte Carlo  

 

Figure 14 Convergence of Monte Carlo with Latin hypercube sampling  

As seen in Figure 13 and Figure 14, implementing the LHS greatly reduces the number of 

simulations required. As an effect, the standard deviation will only be approximately 1/10 

compared to the one found using crude Monte Carlo simulation [20].  
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5 UPDATING  

The main scope of this thesis is the updating of wire strength based on additional information. 

This chapter contains the different aspects in this process. The first two chapters contain a short 

introduction regarding the two main aspects of statistical thinking and the different test methods 

used to gather new information. Chapter 5.3 and 5.4 is a more hands-on approach to the actual 

updating, and compares and explains the difference between choosing an analytical and a 

numerical approach in the updating scheme. The last chapters contain the different integration 

methods used in MATLAB and the updated fitted distribution.  

 

 CLASSICAL OR BAYESIAN STATISTICS 

In the world of statistics, there are three ways of thinking. Two of the cases are considered 

classical, and the third is the Bayesian approach. Classical statistic use the principle of 

indifference, this is more simply put that all possible events is assigned the same probability. 

Commonly used examples is a coin toss or a dice toss where all outcomes has the same chance of 

occurring, and the chances of observing the next outcome is not based on the previous. I.e. the 

parameters are given a fixed value, in classical statistics the prior information is therefore 

considered as an unknown constant [21].      

Bayesian statistic will summarize all the known information of the unknown parameter(s). To 

find the best estimations of the parameter(s), data is used from prior information and additional 

tests combined to find an updated estimation. This estimation will take into account the 

uncertainties of the given data [22]. The possibility of combining earlier information with new 

ones offer a great advantage compared to the classical approach.  

 

 TEST METHODS 

Updating of the reliability for existing structures are usually done by performing different tests of 

vital load bearing components. The two test methods that are considered are destructive testing 

and non-destructive testing, also denoted proof load testing.  
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5.2.1 DESTRUCTIVE TESTING 

Performing a destructive test, e.g. loading a wire until failure, yields high-quality information in 

the sense that we can deduct the failure load of the wire with relatively small uncertainties.  

While destructive testing is the only way to determine the exact failure load of an element, it has 

its drawbacks. The element is destroyed in the process and cannot be reused. Performing several 

tests requires several elements, which in many cases is considered a rather expensive way of 

gathering information. Some practical issues also arise; Destructive testing is impractical for 

estimating the capacity for existing cables, because only a few wires can be removed from the 

cable before the load bearing capacity is reduced. This greatly limits the use of destructive testing 

on existing cables. The obtained parameters of the result (i.e. failure capacities of all the wires) 

can be estimated with sample mean and standard deviation found using equation (5.1) and (5.2). 

 
1

1 n

X i

i

m X
n 

    (5.1)                    2

1

1
( )

1

n

X i x

i

s X m
n 

  

   (5.2) 

 

5.2.2 NONDESTRUCTIVE TESTING 

With nondestructive testing, the elements are tested for a specific load level. If the wire survives, 

the strength is equal or greater than the specified load. This kind of testing yield inequality type 

of information [23]. It should be pointed out that the proof load level has to be set reasonably 

high. If not, the test will not yield much information regarding the strength of the wire [18]. Prior 

data from failure test or material data should therefore be considered beforehand.   

In this paper, two methods for updating the capacity due to proof loading are considered. A series 

of proof loading tests or a single proof load test on an existing cable.  The updated PDF and CDF 

with a single proof load test for an existing component are given in equation (5.3) and equation 

(5.4) [24].   

''

*

( )
(x)

1 ( )

R
R

R

f x
f

F q



  (5.3) 

 
**

'' *
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(x) F ( )Pr(R x R )
( ) |

Pr(R ) 1 ( )

R R
R r

R

F qq
F x P R x R q

q F q

 
    

 
  (5.4) 

Where q* is the proof load, fR the PDF and FR the CDF of the material resistance. 
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Equation (5.3) and (5.4) is only valid for x > q*, or else the value will be zero. The effect of this is 

called a truncated model, and is seen in Figure 15 and Figure 16.  

 

Figure 15 Updated PDF due to proof load 

  

Figure 16 Updated CDF due to proof load 

If the proof load testing of several elements are to have a meaning, the correlation between the 

tested elements must be reasonably high. If the correlations are low, the uncertainties dominates 
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the results, gaining little information. In the paper Probabilistic models for proof load testing [25] 

it is shown that the required number of proof tests are low, because the shape and values of the 

functions remain similar. This is because the information that is gained from proof load testing 

has a limited content [25]. 

 

 UPDATING WITH ANALYTICAL SOLUTION 

Analytical solutions are based on the conjugate prior function [26], which gives a closed form 

solution of the distribution. Although the method is simpler, the results are not as accurate as in 

with the numerical solution. If the exact solution is needed, then a numerical solution must be 

used. An analytical solution lets the user see the effect between prior information and new 

information much clearer than in the numerical solution. The updating process is described in 

detail below. 

The analytical solution for a normal distribution is presented below. When the shape and scale 

parameters of the Weibull distribution is unknown, the prior natural conjugate does not exist [22]. 

An approximate solution of the analytical solution for a Weibull can be found in “A compendium 

of conjugate priors” [27], but a solution for the analytical Weibull distribution will not be 

presented here. Two analytical normal solutions presented. The two cases are: 

1. unknown mean and known standard deviation 

2. unknown mean and standard deviation 

The calculations of case 1 and 2 are presented in Appendix E – MATLAB script for analytical 

updating. 

 

5.3.1 UNKNOWN MEAN AND KNOWN STANDARD DEVIATION 

The normal distributed variable X~N (Mx, σx) is considered where the standard deviation σx has a 

known value and the mean is considered as a random variable described as a normal distribution. 

Mx~N (μ’, σ’). The normal conjugate prior is used to find the analytical solution. 

Equation (5.5) describe the posterior distribution of Mx, with updated parameters μ’’ and σ’’ in 

equation (5.6).  
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Where 

 σx, μ’, σ’ and n’ are respectively the known standard deviation, the prior mean, prior 

standard deviation of Mx and number of tests. 

 x  and n are respectively the mean value of the additional tests and number of additional 

tests.    

The predicted analytical solution found in equation (5.10) then gives the updated strength 

distribution, due to the load level x. Equation (5.11) is the predictive standard deviation.   

2
^ 1 ''

( | ) exp 0.5
'''2 '''

x
f x x





  
      

  (5.10) 

2 2''' '' X      (5.11) 

In contrast to the numerical solution, it is easier to weigh the prior information with the additional 

information from new tests in the analytical solution. This weighting factor is shown in equation 

(5.9), where the uncertainty of the prior mean is calculated based on the known standard 

deviation of the prior distribution and number of prior tests. The predictive posterior distribution 

with varying number of tests are given in Figure 17 [28]. 
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Figure 17 Weighted predictive distribution due to number of prior tests  

 

5.3.2 UNKNOWN MEAN AND STANDARD DEVIATION 

A normal distribution of the variable X has the parameters (Mx, ∑x), where both the mean and the 

standard variation is considered as random variables. The analytical solution is found by using 

the natural conjugate prior for the distribution of the parameters. In this case the conjugate prior 

is the Normal-Inverse-Gamma-2 distribution, see Raiffa and Schlaifer [29] and Rackwitz [30]. 
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 Where m, s2, n and v is based on additional tests of xi. 
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By changing out m’, s’, n’ and v’ in equation (5.12) with m’’, s’’, n’’ and v’’, it gives the 

predictive posterior distribution. The influence of different numbers of prior tests on the 

predictive posterior distribution are shown in Figure 18.  

 

Figure 18 Weighted predictive distribution based on number of prior tests  
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 UPDATING WITH NUMERICAL SOLUTION 

The numerical solution is based on finding a numerical answer, for the problem at hand. By 

finding the solution of the integration, the exact answer is found. Different integration methods 

for solving the integrals for the numerical solution will later be presented in chapter 5.5. 

To find an answer numerically is both time consuming and often difficult, so an approximate 

solution is found by using the analytical solution presented in chapter 5.3. The steps for a 

numerical updating scheme is presented below. The theory below is implemented in a MATLAB 

script shown in Appendix D –MATLAB script. 

 

5.4.1 BAYE’S RULE, BAYE’S THEOREM AND THE LAW OF TOTAL PROBABILITY 

Baye’s rule is valid in cases where current or future probabilities relates to the probabilities found 

in earlier observations. When considering the behavior of a structure this will often be a valid 

point. The densities and strengths found in previous or similar cases will be correlated in one way 

or another. The mathematical formula describing “Baye`s rule” finds the probability of event A 

occurring, given that event B has already happened or is true. 

(B | A) ( )
( | )

( )

P P A
P A B

P B


   (5.21) 

(A) (A | B) (B)P P P


    (5.22) 

Where 

 P(A) is the probability of event A occurring 

 P(B) is the probability of event B occurring 

 P(B|A) is the probability of event B occurring, when event A has occurred 

 P(A|B) is the probability of event A occurring, when event B has occurred 

Equation (5.21) is Baye’s rule or Baye’s theorem [5]. 

In its original form, the theorem states that P(A) and P(B) are independent of each other, i.e. 

uncorrelated. Naturally, this will not hold true for many practical cases. For instance: the failure 

probability of a structure depends on many variables, including fatigue, corrosion, deterioration 

etc. These variables will usually correlate in some way; we therefore need to introduce a way to 
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express this correlation when Baye’s theorem is valid [24]. The law of total probability is 

described in equation (5.22), finds the unconditional probability estimate.  

 

5.4.2 LIKELIHOOD FUNCTION 

The likelihood function and the log likelihood function for destructive testing are given below 

[7]. 
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 Equation (5.23) and (5.24) does not consider the proof load, and requires modification. This is 

done by adding a term that describe probability of failure for the elements that fail the proof 

loading test. This term is then raised to the power of the number of tests that pass the proof load 

test. The modified likelihood- and log likelihood function for proof load testing are given in 

equation (5.25) and (5.26) [31]. 

1

( | x ) ( | ) (1 (q* | ))
k

n k

i i

i

L f x F   



 
     

 
    (5.25) 

1

( | log ( | ) (n k)log(1 F(q* | ))
n

i

i

l x f x  


 
     

 
   (5.26) 

 

5.4.3 BIVARIATE NORMAL DISTRIBUTION 

The covariance matrix include the parameters uncertainties and correlation. As seen in equation 

(5.27) the elements in the matrix are expressed by the variance on the diagonal, and the standard 

deviation multiplied with the correlation factor  [32]. 

By including the correlation between the parameters in the C matrix and the mean values of the 

parameters in the vector µ, it can be shown that the general PDF for a multivariate normal 

distribution is given by equation (5.28). 
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Where n is the rank of the covariance matrix, for a 2x2 matrix the rank n = two [32]. For the 

bivariate 2-dimentional case, the multivariate jointly normal distribution can be rewritten as:
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 (5.29) 

The multivariate jointly normal distribution will now take the uncertainties of the estimated 

parameters into account. A 3D plot of the bivariate jointly normal distribution can be seen in 

Figure 19. 

 

Figure 19 Prior multivariate normal distribution of θ1 and θ2 
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5.4.4 POSTERIOR DISTRIBUTION 

The posterior distribution of the parameters is found by combining the equation for Baye’s rule  

(5.21), the multivariate jointly normal distribution  (5.29)  and the likelihood function (5.25). The 

posterior distribution is written as [18].  
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The updated information regarding the values of the parameter(s) θ, is now included in the 

posterior distribution (5.30). To make sure that the area under the graph is one, a normalizing 

constant C is introduced in equation (5.30). The normalizing constant (equation (5.31)), is in 

general found by integrating between the limits ±∞. An approximation of the integration limits is 

often used to save computing time.  

A general procedure for finding the integration limits can be found by plotting the density 

function of the normalizing factor dependent on the parameters θ1 and θ2 (see Figure 20). The 

integration limits is deducted by implementing a stopping criterion. This stopping criterion is 

given by the following equation: 
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  (5.32) 

I.e. when the difference between the maxima (red area) and an arbitrary point is equal to the 

maxima. Outside the black square showed in Figure 20, the values of θ1 and θ2 are below the 

bounds of interest, meaning values of order 10-22. Simplified, the integration limits are found by 

invoking 10-4-10-22
10-4. By implementing this, the integration limits are shown as the black 

square in Figure 20.  
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Figure 20 Normalizing factor dependent on θ1 and θ2 

 

5.4.5 PREDICTIVE DISTRIBUTION 

The dependent predictive distribution is now defined as the product between a given PDF for a 

certain distribution and the posterior distribution found in equation (5.30). 

'''(X | ) ( | ''(f f X f        (5.33) 

A predictive distribution that is dependent on the parameter θ is not interesting from an engineer’s 

point of view. The unconditional predictive distribution is found by utilizing the law of total 

probability given in equation (5.22).  

( ) ( | ''(Xf X f X f d  




     (5.34) 

The predictive probability density function will now be unconditional with respect to the 

parameter θ, and is now a function with respect to the variable x. From an engineer’s point of 

view, this part is interesting due to that is gives the updated distribution as a function of the load 

[18].   
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 INTEGRATION METHOD 

In cases where the exact solution to an integral is unknown, or uncertain, adaptive methods are 

used. Computer programs utilize numerical integration in order to estimate the integrals. 

Although modern computer programs yields a high degree of accuracy, some error will always 

occur. The origin of this error lies in the way the programs evaluates the integral by invoking 

different quadrature rules. Simply explained, these quadrature rules divide the domain into 

different parts and approximates the area in each part. Two different methods of numerical 

integration are used in the paper, where both are based on the Newton-Cotes method. 

Newton-Cotes method 

Newton-Cotes method evaluates an integral by assuming that the values of the function is known 

at equally spaced points [30]. As seen in Figure 21, if we increase the number of integration 

points between the limits, the numerical solution converge toward the exact solution.  

 

 

Figure 21 Newton-Cotes formula for n = 2 [30] 

There are two ways to express the Newton-Cotes formula, the closed and open type. While the 

closed type uses all points in the function, the open type does not use the values at the endpoints 

of the function. Equation (5.35) denotes the open form of the integral, where wi is a weighting 

factor. 
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5.5.1 RECTANGULAR INTEGRATION 

One of the basic open Newton-Cotes formula is the so-called rectangle method, or midpoint rule. 

As the name might suggest the integration is simplified by dividing the function into different 

rectangular sections, as seen in Figure 22. 

 

Figure 22 Midpoint approximation [33] 

Using simple logical reasoning, the numerical integration can now be simplified as the sum given 

in equation (5.36). Where h denotes the width of the rectangles, and n the number of rectangles.  
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  (5.36) 

One of the main advantages using the rectangular method is that it is relatively easy to calculate 

the area of the rectangular sections, making the method an efficient one. As the number of 

rectangles increases, the numerical estimation goes towards the exact solution (n→∞).  

 

5.5.2 TRAPEZOIDAL INTEGRATION 

As seen in Figure 23, trapezoidal integration estimates the integral by approximating the function 

as a linearization between the endpoints a and b. The source of error is greatly reduced, since the 

linearization is a better fit than the rectangular method.  
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Figure 23 Linear approximation [34] 

The definite integral is now approximated using equation (5.37). 
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Compared to the rectangular method, a trapezoidal estimate both converges faster and reduces the 

source of error greatly. Figure 24 compares the estimated linearization (red line) to that of the 

function (blue line). The trapezoidal rule is exact for all functions with polynomial degree of one 

or less [34]. 

 

Figure 24 Trapezoidal integration [34] 

The source of error in the numerical integration is given as the difference between the exact 

solution and the numerical integration.  



Master Thesis 2015 
 

46 

 

 ESTIMATED PARAMETERS OF THE PREDICTIVE DISTRIBUTION 

The predictive graph is of no use as it is now, because the parameters of the distribution are 

unknown. To make it possible to compare the updated posterior distribution with the prior 

distribution, a distribution must be fitted to the predictive posterior distribution. Method of least 

square is one way of doing this.  

 

5.6.1 METHOD OF LEAST SQUARE 

The method of least square is used to find the value of parameters that minimize the sum of a 

series of differences are shown in equation (5.38) [35]. 
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Where 

 it  are known values 

 (p )i ja  is a function with values for parameters p j
 

Least square method is used in both linear and non-linear equations. When the equation is non-

linear, Gauss-Newton method can be employed. This method is based on the same method as the 

maximum likelihood. By finding the Hessian matrix, Fisher matrix or the gradients of the sum, an 

estimation of the parameters can be deduced with an optimization process [36], [35]. The method 

of least squares is often used to find an approximated distribution for a given data set.  

 

5.6.2 LOWER TAIL LIMIT 

An approximated distribution for the entire predictive graph is not of interest, because the 

characteristic resistance of a material is described by the 5% fractile [37]. Therefore, only a 

certain range of the predictive distribution should have a close as possible fit. This range can be 

set at a certain level, either by calculating, or by simply setting the value as a constant. An 

approximated fit of the lower tail up to a chosen value of the predictive distribution. Here the 

value is set to 1550 MPa, and shown in Figure 25. 
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Figure 25 Approximated Weibull distribution fitted for lower tail  

Some considerations should be taken when performing approximations using least square 

method. The function will only find the first minima, so if the function contains more than one 

minimum point, it can lead to errors. Some caution is therefore recommended.  
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6 RELIABILITY AND PROBABILITY OF FAILURE 

The methods in which the probability of failure and the reliability of the system are updated are 

given in this chapter. By utilizing the updated strength distribution, the reliability of the system is 

updated accordingly. Some of the main concepts regarding target reliability is given in chapter 

6.1, where the first part also explains how it is possible to estimate the reliability assessment over 

time. How the probability of failure of the wires are calculated, is explained in chapter 6.2.  

 

 RELIABILITY 

The inhabitant or users of a bridge are always concerned about the safety of the bridge. If a 

bridge feels unsafe, no one will use it. In engineering terms, the word “Safety” is a rather 

inadequate term, since it is a highly subjective word, where the exact meaning differs from one 

person to another [4]. Instead, the concept of reliability is introduced; this defines the probability 

of failure for a component and yields a quantifiable answer of how safe the component is [4]. 

This must not be confused with objectivity. Probability of failure can rather be seen as a result 

where we assume a certain degree of confidence based upon the amount of information available. 

A high amount of information corresponds with a high degree of confidence [4]. Reliability is 

evaluated based on three criterion: 

 Cost effectiveness of the component 

 Danger to environment 

 Safety of people  

For structures the reliability is determined by the design equations which is governed by the 

relationship between the resistance (load capacity) and the load, as given in (6.1) [4]. 

   Resistance Load

R S




  (6.1) 

The probability of failure is given as the probability that the total load exceeds the resistance, the 

reliability, PS can then be expressed as [4]: 

 Pr( );P 0,1f fP R S     (6.2) 

1s fP P    (6.3) 
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It is important to note that the following yields the probability that the object will serve its 

intended purpose for a specific period only when the defined conditions are in play. 

Understanding limitations of these conditions is vital when interpreting the results of equation 

(6.3) [4]. This is perhaps more simply explained if a cable with a designated lifetime, e.g. 100 

years is considered. If the effects of corrosion is omit, or neglected due to new production 

methods, construction methods etc. the estimated probability of failure is only valid if there is no 

corrosion.  

The target reliability index can be seen as a ‘safety margin’ where we introduce a desired safety 

index (βt), usually ranging from 3 – 5 [37]. To calculate the reliability of a structure the basic 

design equation is often used. 

M R S    (6.4) 

Equation (6.4) yields the following mean and variance [4]: 

     ME M E R E S     (6.5) 

     2

MVar M Var R Var S     (6.6) 

If R and S are normal distributed, and using only the mean and standard deviation of the variables 

  is given as [4]:  

M

M





   (6.7) 

Failure occurs when 0M  , i.e. when R S . For normal distributed variables, the failure 

probability is then given as [4]: 

 
0

Pr( ) (0) M
M

M

F F





 
     

 

  (6.8) 

By rewriting equation (6.8), the reliability can be described by the probability of failure. 

1( )fP    (6.9) 

Values for the target reliability index are given in codes e.g. Eurocode [37] or JCSS [38], for 

different levels of consequence of failure and cost of reducing the probability of failure. The 

index consider the effect of failure and the cost of reducing the chance of such a failure. ‘Effect 
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of failure’ include not only economic loss, but also social, loss of human life and environmental 

consequences.  

Time dependent reliability 

The reliability of the cable will change its lifetime. For predicting the reliability over time, two 

different ways are considered. 

The reliability can be considered as time invariant. Simply put; the probability of failure over a 

given period is independent from the probability of failure of the previous period. For elements 

that is not subjected to wear or degradation, this method is used. The time invariant reliability 

distribution is expressed in equation (6.10) [18]. 

  Timedependent reliability norminv 1 1
n

fP      (6.10) 

Where the probability of failure is constant and n is the number of years. For a series system, 

considering the reliability as time invariant will be a conservative assumption [18]. The 

distribution of time dependent reliability over a hundred years, when considering a yearly 

probability of failure equal to 1∙10-7 is seen in Figure 26.  

 

Figure 26 Time invariant reliability distribution 

The reliability can also be considered as time variant. This means that the probability of failure 

for a given period is dependent on the probability of failure of the previous periods. The length of 
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these periods can be, e.g. days, weeks, months, years etc. A year is often used for this period [18]. 

An example for time variant method is how the probability of failure for a cable increases over 

time, due to corrosion and wear. The expression for the time variant reliability is given in 

equation (6.11) [18].  

1

Time variant reliability norminv 1 1
n

f n

i

P


 
    

 
   (6.11) 

 

 PROBABILITY OF FAILURE 

The probability of failure given in equation (6.8) is only valid when both the load and the 

resistance are described by a normal distribution. This holds true for some problems, but not 

generally. Instead the probability of failure can be found more generally by using e.g. First Order 

Reliability Method, Monte Carlo simulations, integral etc. How the probability of failure is 

derived using Monte Carlo and integration is presented next. The presented methods are based on 

that the parameters of the load distribution are unknown, but with an assumed value for the 

coefficient of variation. The parameters of the resistance are presumed known.   

 

6.2.1 PROBABILITY OF FAILURE USING MONTE CARLO SIMULATIONS 

Monte Carlo can calculate the probability of failure by running simulations of the basic design 

equation (6.4), and counting how many of the simulations that get a negative value. The 

probability of failure for a Monte Carlo simulation is defined in equation (4.40). How a Monte 

Carlo simulation works was described in detail in chapter 4.3.4, and will therefore not be 

presented here. Monte Carlo simulations will only give the approximated answer, but provided 

that enough simulations are performed it will converge towards the exact answer. The exact 

answer is found using the integral presented below. 
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6.2.2 PROBABILITY OF FAILURE USING INTEGRAL 

The probability of failure can also be calculated directly using equation (6.12). 

  
0 0 0

( ) ( ) (r) ( ) 1 ( ) ( )

s

f r s r s s r

R S

P f r f s dsdr f dr f s ds F r f r dr

 



 
    

 
      (6.12) 

Both Monte Carlo and the integral require a load distribution. The parameters of the load 

distribution are found by combining two equations, where the first equation is found by rewriting 

equation (6.4) so that the resistance is equals the load. This maximizes the probability of failure 

and the rewritten design equation is shown in equation (6.13).  

k
k s

m

r
s 


   (6.13) 

Where kr  and ks  are described as the inverse cumulative distribution for the resistance and the 

load respectively. m is the partial safety factor for the resistance and s  is the partial safety 

factor for the load. The second equation is found by combining the equation for mean and 

standard deviation of the load distribution, with the given coefficient of variation. An often-used 

distribution for load is the Gumbel distribution.  

 

6.2.3 GUMBEL DISTRIBUTION 

The Gumbel distribution is used to model e.g. the maximum load on a wire. It is also applied in 

modeling loads on structures. The PDF and CDF are given in equation (6.14) and (6.15) [39]. 

1
( ) exp exp

x x
f x

 

  

      
         

     
  (6.14) 

F(x) exp exp
x 



   
      

   
  (6.15) 

Where μ is the location factor and β is the scale parameter. The mean and standard deviation of 

the Gumbel distribution are given as: 

  E X      (6.16) 



Master Thesis 2015 
 

53 

 

Standard deviation
6


   (6.17) 

Where   is the Euler’s constant equal to 0.577215 [40].  

 

6.2.4 PARTIAL SAFETY FACTOR 

The partial safety factor for bridge cables depend on four main factors [1]. 

1. Target reliability 

2. Damage allowance 

3. Daniel’s effect 

4. Length effect  

The partial safety factor calculated due to the four main factors above is presented in equation 

(6.18), which is adopted from Faber et al.[1]. 

 
(1 )(1 )

k
x

L D x x t x all

x

V


     


 
  (6.18) 

Where: 

 L  take into account the reduction due to length effect (weakest link effect of a series 

system) 

 D  take into account the reduction due to Daniels effect 

 all  take into account broken wires in a cable 

 kx  is the characteristic value 

 , , ,X X X XV    is respectively the mean, the FORM sensitivity factor, target reliability 

and coefficient of variation.  

The partial safety factor for a single wire is calculated by omitting the factors that consider the 

system effects. The reduction factors for Daniels effect and length effect are set to one, while the 

damage accumulation (number of broken wires) is set to zero. The partial safety factor for a 

single wire is found in equation (6.19)  

(1 )

k
x

x x t x

x

V


  



  (6.19) 
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6.2.5 LOAD PARAMETER 

All the parameters that’s needed for finding the load distribution are now known. The parameters 

of the Gumbel load distribution are found in equation (6.20) and (6.21). 

1

resistance

load

(x )

ln( ln(x ))
cov 6

R

m s

s

F



  




 

   
 

  (6.20) 

  
1

resistance(x )
ln lnR

load

m s

F
x 

 



     (6.21) 

Where  

 resistancex  and loadx  are the lower and upper percent fractile. For resistance the 5% fractile is 

used, and the 95% - fractile is used for the load [37].  
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7 RESULTS 

The results are mainly presented as graphs taken from MATLAB followed by a short summary 

explaining each graph or table. The results are presented in the same order as the theory chapters, 

meaning that Daniels effect are presented first, initial strain second etc. The meaning of these 

results and their validity is discussed in chapter 8. 

 

 DANIELS EFFECT 

 

Figure 27 Reduction factor due to Daniels effect  

As seen in Figure 27 above, the largest capacity reduction occurs when the number of wires range 

from 100 – 1000. If the number of wires are greater than 1000, the reduction factor is (more or 

less) constant.   
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 INITIAL STRAIN IN CABLE 

Two cases with different initial strain for brittle and ductile wire behavior are presented. Values 

for the mean and standard deviation for the yield- and plastic elongation zone are taken from 

Faber et al. [1]. Figure 28 shows the capacity without initial strain, while Figure 29 shows the 

capacity if the initial strain of the wires lies between 0.0 – 1.0%.  

 

Figure 28 Average cable capacity, no initial strain  

 

Figure 29 Average cable capacity, with initial wire strain between 0-1% 
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The capacities for a cable, with a given initial strain are shown in Table 4 below.   

Initial strain [%] Max capacity [MN] 

0.0 – 0.0 11.8229 

0.0 – 1.0 11.1887 

1.0 – 2.0 11.1886 

Table 4 Maximum cable capacity due to different initial strain  

These results show a reduction around 0.6 MN, in both cases where the initial strains are 

relatively large 0-1% and 1-2%. 

 

 INTEGRATION 

Three different integration limits for the normalizing factor in equation (5.31) are presented in 

Table 5 using the following integration limits: μ±4σ, μ±8σ and the stopping criterion given in 

chapter 5.4.4. 

Proof load (q*) 

and number of 

Failed/Passed 

tests 

Adaptive quadrature integration Trapezoidal integration 

With calculation step 0.5 

q*(MPa) Failed/

Passed  

Stopping 

criterion 

μ±4σ μ±8σ Stopping 

criterion  

μ±4σ μ±8σ 

1700 8/0 0.9982 1.0078 1.0015 1.0000 1.0000 1.0000 

1680 7/1 1.0002 1.0068 1.0091 1.0000 0.9999 1.0000 

1660 6/2 0.9982 1.0158 1.1753 1.0000 0.9995 0.9999 

1640 2/6 0.9976 0.8659 0.5958 1.0000 0.9999 1.0000 

1620 0/8 1.0000 NAN NAN 1.0000 NAN NAN 

Table 5 Area under the normalized distribution  
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Table 5 above, shows the area of the normalized predictive distribution given by the methods 

explained in chapter 5.4.4 and the integration methods in chapter 0, shortly summarized, the area 

of the predictive function should be 1. As seen above, the adaptive quadrature integration will not 

yield a satisfactory accuracy. The trapezoidal integration on the other hand, offers a stable 

normalized area independent of the proof load and whether the wires pass or fail the proof load.  

 

 PREDICTIVE DISTRIBUTION 

 

Figure 30 Updated strength of wire with proof level at 1620 MPa 

 

Figure 31 Updated strength of wire performing failure test 
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As seen in Figure 30, a proof load around 90% of the failure load yields little information, under 

the assumption that the wires are new. The effects on the predictive distribution if a wire fails is 

larger, as seen in Figure 31. As it can be seen from Figure 30 the updated probability now take 

into account the uncertainties of the parameters deduced from the maximum likelihood 

estimation of both the prior and the additional tests. The effect of this can be seen in that the 

predictive distribution curve is wider than the prior distribution. The reason is that the 

uncertainties of the parameters are now included in the distribution. 
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 UPDATED CABLE CAPACITY 

 

Figure 32 Cable capacity when all test pass the proof load test  

 

Figure 33 Cable capacity when one test fails the proof load test 

The effects of the information gathered from proof load test and failure tests shown in chapter 5.2 

becomes apparent in Figure 32 and Figure 33. Here the difference between the amounts of 

information gathered when none wire fails the proof load test, compared to when one test fail.  
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 RELIABILITY 

 Target 

reliability 

Prior safety factor 

 

Posterior safety factor 

Proof load 1620 MPa 

Posterior safety factor 

Proof load 1660 MPa 

3 1,0212 1,0221 1,0412 

4 1,0405 1,0423 1,0802 

5 1,0606 1,0633 1,1223 

Table 6 Partial safety factor for a single wire 

As seen in Table 6 above, increasing the failure load from 1620 MPa to 1660 also increase the 

safety factor of the system. While a proof load of 1620 MPa have small impact on the safety 

factor, about 0.25% if βt = 5, increasing the proof load to 1660 MPa result in an increase of 5.5% 

if βt = 5.  

 Proof load level 1620 MPa 

Target 

reliability 

Prior 

probability of 

failure  

Prior 

reliability  

Posterior 

probability of 

failure  

Posterior 

reliability  

3 1,0076∙10-16 8,2212 4,0625∙10-16 8,0523 

4 8,4745∙10-17 8,2419 3,3893∙10-16 8,0744 

5 7,0766∙10-17 8,2634 2,8057∙10-16 8,0975 

Table 7 Probability of failure and reliability of a wire, using proof load level, q* = 1620 MPa 

The effects of updating the posterior distribution with a proof load q* is shown in Table 7. Given 

the wire samples shown in Appendix B - Partial safety factor, probability of failure and reliability 

, the effects of performing a proof test on the posterior changes the reliability of about 2% 

compared to the prior reliability. The validity of the presented values are discussed in chapter 8.5. 
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Figure 34 Time invariant reliability update, with values from row 3 in Table 6 

Using the time invariant reliability updating method in equation (6.10) the time invariant 

reliability of a wire is shown in Figure 34. It is here seen that the updated reliability of  the wire is 

smaller than the original reliability. The validity of this is discussed in chapter 8.5. 
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8  DISCUSSION 

This chapter discusses the results and their validity. Issues that arose during the calculations or 

during the theoretical focus, is also mentioned. The chapter is built up like the rest of the thesis, 

where the first part focuses on the initial goals concerning Daniels effect and the effects of initial 

strain.  

 

 DANIELS EFFECT 

One of the main issues during the investigation of Daniels effect was trying to understand the 

underlying construct of the theory. The theory, at least the one we were able to find, seemed to 

separate themselves into two groups. The first mainly consist of the paper Daniels wrote himself, 

which focuses on the mathematical aspect and not so much the practical. Although the basic 

concepts are clear, most papers and books simply state the formulas used in the calculation, with 

reference to the original paper. This a field the authors should have given more time and 

devotion. Perhaps some deeper knowledge of the construct and mechanics of the theory could 

have been gained by studying the original paper further. The main reason was, however, that 

there were not enough time. The results, at least as far as the authors can discern, seems to be 

correct. The graph resembles the one given in Faber et al. [1], the difference between the two are 

(most likely) due to differences in the software, different methods used in the calculations etc.  

 

 INITIAL STRAIN IN CABLE 

Figure 28 and Figure 29 shows the average distribution for ductile and brittle behavior of steel 

cables. Both distributions is presented to give a picture of the difference in strength between the 

ductile and brittle case. In reality, it is the same if the wires have brittle or ductile behavior, since 

the cable’s behavior in general always displays brittle characteristic.    

Table 4 shows the maximum average strength of steel cables. Here it’s seen that the maximum 

capacity will vary with approximately 0.6 mega Newton from the case with no initial wire strain 

to the case with 0-1% initial wire strain. There are several reasons for why the steel cables should 

be modeled with different initial wire strain. The assumption that there exist no initial strain in 

the cable is very unlikely, because there will always be factors such as climate, manufacturing 

error, assembly error etc. that affect the wires. 
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The distribution of the initial wire strain found using a random number generator over a certain 

domain. The random number generator in MATLAB is as previously stated based on a uniform 

distribution. When enough random numbers has been generated this will mean that every value in 

the domain will have equally chance to occur, as seen in Figure 9. In reality, the initial wire strain 

will most likely not be a uniform distribution, but instead be more like a normal distribution. This 

can come from that the wires in a cable mostly come from the same batch, so the manufacturing 

error will therefore be relatively the same throughout the entire cable. Climate and assembly error 

will therefore be the factors that contributes to differences of strain in the wires. In most cases, 

these errors will led to small changes in the initial wire strain. Since there is no data for a good fit 

of the mean and standard deviation of a normal distribution, the uniformly distribution is used 

instead. The uniform distribution make it possible to show an approximation of the strength, 

when the initial wire strain is in a certain domain. It should immediately be pointed out that this 

assumption can lead to errors when the average cable capacity is found.  

 

 INTEGRATION 

In reliability updating the probabilities used in the distribution functions are low compared to 

other engineering fields, often operating with values lower than 10-16. This requires a high degree 

of accuracy from the software, and approximation errors in MATLAB have a great effect on the 

final results. As seen by the scales in Figure 35, small inaccuracies in the integration limits will 

have a great impact on the accuracy of the integration. 

 

Figure 35 Likelihood distribution of θ1 and θ2, performing failure test 
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Initial estimations proved that the default accuracy in MATLAB were far too inaccurate for the 

demands in this report. This problem were overcome by manually modifying the number of digits 

MATLAB used in the estimations. However, some errors may still occur due to inaccuracies in 

the integration boundaries for the normalizing factor used in the predictive distribution. As far as 

the authors have discerned, invoking trapezoidal integration with optimized boundaries yields an 

accurate estimate of the normalizing factor, in the sense that the area of the predictive distribution 

equals one, cf. Table 5. If the integration limits are set as μ±4σ and μ±8σ the solution becomes 

unstable when only a few or none of the wires fails during the proof load. This is connected to the 

uncertainties of the parameters when all wires pass the proof test, the standard deviation of 

 1 2   are now  140.2027 2.8959 10 . In this case, an integration limit of μ±8σ is far too 

inaccurate.  

Integration methods 

Two different integration methods is used in the integration of the normalizing factor and the 

predictive distribution, these are: 

 Trapezoidal integration 

 Global adaptive quadrature rule 

Appendix C – Integration accuracy show the result of how the area under the predictive graph 

vary for these two integration methods over a certain domain. Generally, the results using a 

trapezoidal integration is more consistent and correct than the ones found using the adaptive 

method. Since both θ1 and θ2 are squared in the bivariate prior distribution (equation(5.29)), the 

trapezoidal method will in general not give the exact answer for all functions. By decreasing the 

time step in the integration from 1.0 to 0.5 the numerical solution with a trapezoidal integration is 

exact.  

 

 UPDATED STRENGTH 

A question regarding the effect of proof load testing on the strength distribution, was raised in 

chapter 5.2. Figure 32 and Figure 33 shows the updated strength of a cable, as a function of . In 

Figure 32 all test pass the proof load test, while in Figure 33 the updated strength of the cable, 

when one test fail the proof load test shown. It’s here seen that the change in strength now is 

much larger than in Figure 32. Therefore, its arguable that removing a few wires from the 

existing cable and perform failure testing on these tests will give a better estimate of the strength 

rather than performing proof loading.  
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From Figure 32 and Figure 33 it’s seen that the updated strength will have a steeper curve than 

the prior strength. This difference will increase when the proof load level is set higher. The 

reason for this can be seen in Figure 30 and Figure 31. Since the predictive distribution takes into 

account the uncertainties of the estimated parameters, its distribution will be lower and wider 

than the posterior. This makes the scale factor c, of the Weibull distribution smaller. In equation 

(4.6) it’s seen that the capacity of the cable uses 
1/c 

  as part of the equation. This will lead to an 

increasing error of the mean value as the value of   increase. 

 

 RELIABILITY 

In Figure 34 the reliability was shown using time invariant reliability method. It was here seen 

that the reliability of the wire was very large. This comes from that the calculated probability of 

failure was very small, as seen in Table 7. An attempt of recalculating the probability of failure 

was attempted using Monte Carlo simulations with Latin hypercube sampling. We were 

immediately not able to calculate the probability of failure with the computers at hand, because 

the probability is so small. This means that a very large number of simulations are needed for the 

probability of failure to converge, which created a memory problem on our computers. Therefore, 

the calculated probability of failure is found using the integral method, even if the answer seems 

incorrect.  

 It is also seen that the values for the updated reliability of the wire are less than the original 

estimate. In general, the updated reliability should be higher than the prior reliability at the 

inspection time, or else the entire procedure wasted with respect to prolonging the lifetime of the 

cable. The authors can think of two reasons why the reliability is lower after the updating. 

1. The time invariant reliability method is used for calculating the reliability distribution. 

This approximation is very ruff, since the probability of failure will increase over time, 

instead of being a constant value as it was assumed in Figure 34. A better way of 

calculating the reliability is to use the time variant reliability method. This method will 

take into account the periodically changes in the probability of failure, but due to time 

issues, the time invariant method was used instead.  

2. An error occurred during the calculations of the predictive posterior distribution and/or in 

the calculation of the posterior distribution. As seen in Table 7 the difference between the 

prior and posterior probability of failure is too large. This may lead to that the updated 

reliability always will have smaller values than the original. One remedy to this can be to 

calculate the probability of failure with Monte Carlo, First Order Reliability Method, etc. 



Master Thesis 2015 
 

67 

 

9 CONCLUSION 

One of the main goals of this thesis has been the creation of a working MATLAB script that asses 

the reliability of a bridge cable. The group was also tasked with implementing and examining 

both the effects of initial strain in the wires, reduction due to length effect and the reduction in 

strength due to Daniels effects. The predictive strength distribution were found simulating both 

failure load and proof load.  

Daniels effect 

The reduction factor due to Daniels effect are shown in Figure 27, chapter 7.1. Although the 

figure shows a reduction in capacity for the first 150 wires, Daniels theory is not valid until the 

number of wires are higher than 150. This is not an immediate problem, since the number of 

wires in a cable are higher than this.  

Number of Wires 100 – 1000 1000 – 10 000 

Capacity reduction (%) 0.946 – 0.939 0.939 – 0.937 

Table 8 Daniels reduction factor 

As seen in Table 8 Daniels reduction factor above, a reduction of about 6% is expected for a 

cable consisting of 1000 wires or less. This is also the area where the number of wires have the 

greatest impact on the reduction factor. If the number of wires exceed 1000, the reduction factor 

is relatively constant, the difference between the reduction when the cable has 1000 wires 

compared to 10 000 are only 0.2%. Usually, a conservative estimate around 8 % is used in the 

design process, as seen from Table 8, this is a conservative estimate. However, this is under the 

assumption that the wires are all new, and the number of system defects are low, i.e. the value of 

λ is low. Therefore, if the number of wires are between 100 – 1000, the effect of Daniels should 

be investigated further. 

Initial strain 

Investigating the effects of the initial stress showed that a reduction of about 0.63 MN occurs 

when the initial strain is in the range of 0 – 1% (see Table 4). This corresponds to a reduction of 

5.36% compared to the original capacity. Since this has a large impact on the load bearing 

capacity of the cable, initial strain should therefore be accounted for in the design process, 

especially at critical design points where the concentration of stresses are high.  
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Reliability updating 

The reliability of the system was calculated using two different proof load levels. A load level of 

1620 MPa corresponds to 90% of estimated prior mean breaking load and 1660 MPa correspond 

to 92.8% of mean breaking load. Although the load level is higher than the one used in practical 

cases, the main aspects of the updating process still holds. Even when the proof load is greater 

than 90% of the breaking load, failing a test still gives more information with respect to the 

capacity of the wires, as seen in Figure 32 and Figure 33. The results of the probability of failures 

are rather low compared to what we expected to find, with the results that the target reliability is 

high and the exact results are inconclusive using the wire test data given in this paper. 

 

 FURTHER WORK 

A functioning script has been made, several simplifications and assumptions were made. 

Although it is possible to deduct how accurate these assumptions are using simple reasoning, the 

effects should be investigated further. The group wish to propose the following areas for further 

study. 

Daniels effect 

Although the calculation of Daniels effect is based on the previous work in Faber et al. [1], the 

group was unable to gain a deeper understanding of the underlying construct of the theory. The 

exact effect should be investigated more thoroughly, with the goal of gaining extensive 

understanding of the theory and its background. Within this work, the exact long term effects of λ 

and its variables should be investigated further, e.g. being able to omit or reduce corrosion 

damage due to newer protection methods will have a great impact on λ and Daniels reduction 

factor. 

Initial strains 

In this paper the initial strains were modelled using a uniform distribution, this may not represent 

the real distribution and should be investigated further. The exact values and their origin is also of 

interest, since these are not investigated here. Especially the size and origin of these strains in 

older bridges and construction methods requires further investigation, e.g. through studying older 

Codes and papers. 
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Reliability updating 

The reliability of the cable was calculated by finding the probability of failure, by integration of 

the load and resistance distributions. It is also possible to calculate the probability of failure using 

First Order Reliability Method (FORM), Second Order Reliability Method (SORM), Monte 

Carlo, etc. Implementing one of these methods in the script may give a better estimate of the 

probability of failure. Another aspect is that the wires are subjected to a relatively high proof 

load, usually around 70 – 90% of the estimated breaking strength. For older wires with several 

defects, this could give rise to some irreversible strains that affect the capacity. 
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11 APPENDIX 

APPENDIX A - NUMERICAL INPUT VALUES 

Prior Information from Faber et al. [1]. 

Test Strength 

[kN] (MPa) 

Test Strength 

[kN] (MPa) 

Test Strength [kN] 

(MPa) 

Test Strength 

[kN] 

(MPa) 

1 69.0 

(1793) 

9 70.1 

(1821) 

17 68.7 

(1785) 

25 67.2 

(1746) 

2 67.3 

(1749) 

10 68.7 

(1785) 

18 68.9 

(1790) 

26 68.5 

(1780) 

3 67.5 

(1754) 

11 67.0 

(1741) 

19 69.8 

(1814) 

27 67.2 

(1746) 

4 68.5 

(1780) 

12 69.7 

(1811) 

20 66.9 

(1738) 

28 68.6 

(1783) 

5 67.2 

(1746) 

13 70.3 

(1827) 

21 68.1 

(1770) 

29 69.7 

(1811) 

6 68.7 

(1785) 

14 68.7 

(1785) 

22 66.9 

(1738) 

30 68.2 

(1772) 

7 68.0 

(1767) 

15 69.0 

(1793) 

23 66.5 

(1728) 

  

8 69.0 16 67.5 24 68.0   
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(1793) (1754) (1767) 

 

Additional information  

Tests 1 2 3 4 5 6 7 8 

Strength [kN] 

(MPa) 

65.0 

(1690) 

63.5 

(1650) 

62.3 

(1620) 

63.1 

(1640) 

63.8 

(1657) 

63.0 

(1638) 

64.3 

(1672) 

63.3 

(1646) 
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APPENDIX B - PARTIAL SAFETY FACTOR, PROBABILITY OF FAILURE AND 

RELIABILITY RESULTS 

Partial safety factor for a cable 

Target 

reliability 

Prior safety 

factor 

 

Posterior safety factor 

Proof load 1620 MPa 

Posterior safety factor 

Proof load 1660 MPa 

3 1,7618 1,7634 1,7965 

4 1,7952 1,7983 1,8637 

5 1,8299 1,8346 1,9363 

 

 

Probability of failure and reliability for proof load 1620 MPa in wire 

Target 

reliability 

Prior 

probability of 

failure proof 

load level 1620 

MPa 

Prior 

reliability 

proof load 

level 1620 

MPa 

Posterior 

probability of 

failure proof 

load level 1620 

MPa 

Posterior 

reliability 

proof load 

level 1620 

MPa 

3 1,0076*10^-16 8,2212 4,0625*10^-16 8,0523 

4 8,4745*10^-17 8,2419 3,3893*10^-16 8,0744 

5 7,0766*10^-17 8,2634 2,8057*10^-16 8,0975 
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Probability of failure and reliability for proof load 1620 MPa in cable 

Target 

reliability 

Prior 

probability of 

failure proof 

load level 1620 

MPa 

Prior 

reliability 

proof load 

level 1620 

MPa 

Posterior 

probability of 

failure proof 

load level 1620 

MPa 

Posterior 

reliability 

proof load 

level 1620 

MPa 

3 1,2305*10^-19 8,9905 4,8712*10^-19 8,838 

4 9,0869*10^-20 9,0868 3,5474*10^-19 8,8734 

5 6,6321*10^-20 9,0582 2,5504*10^-19 8,9100 

 

 

Probability of failure and reliability for proof load 1660 MPa in wire 

Target 

reliability 

Prior 

probability of 

failure proof 

load level 1660 

MPa 

Prior 

reliability 

proof load 

level 1660 

MPa 

Posterior 

probability of 

failure proof 

load level 1660 

MPa 

Posterior 

reliability 

proof load 

level 1660 

MPa 

3 1,0076*10^-16 8,2212 3,7847*10^-5 3,9576 

4 8,4745*10^-17 8,2419 2,0946*10^-5 4,0968 

5 7,0766*10^-17 8,2634 1,108*10^-5 4,2419 
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Probability of failure and reliability for proof load 1660 MPA in cable 

Target 

reliability 

Prior 

probability of 

failure proof 

load level 1660 

MPa 

Prior 

reliability 

proof load 

level 1660 

MPa 

Posterior 

probability of 

failure proof 

load level 1660 

MPa 

Posterior 

reliability 

proof load 

level 1660 

MPa 

3 1,2305*10^-19 8,9905 9,3431*10^-13 7,0450 

4 9,0867*10^-20 9,0237 4,9461*10^-13 7,1320 

5 6,632*10^-20 9,0582 2,4919*10^-13 7,2257 
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APPENDIX C – INTEGRATION ACCURACY 

Different integration methods 

Proof 
 load 

Adaptive 
quadrature  
integration 

Absolute error: 1e-
12 

Relative error: 1e-
12 

Adaptive 
quadrature 
 integration 

Absolute error: 1e-
8 

Relative error: 1e-
13 

Trapezoidal 
 integration 

calculation step: 
1 

Trapezoidal  
integration 

calculation step: 
1/2 

1610     1.0000     1.0000     1.0000     1.0000 
1611     1.0000     1.0000     1.0000     1.0000 
1612     1.0000     1.0000     1.0000     1.0000 
1613     1.0000     1.0000     1.0000     1.0000 
1614     1.0000     1.0000     1.0000     1.0000 
1615     1.0000     1.0000     1.0000     1.0000 
1616     1.0000     1.0000     1.0000     1.0000 
1617     1.0000     1.0000     1.0000     1.0000 
1618     1.0000     1.0000     1.0000     1.0000 
1619     1.0000     1.0000     1.0000     1.0000 
1620     1.0000     1.0000     1.0000     1.0000 
1621     1.0000     1.0000     0.8300     1.0000 
1622     1.0000     1.0000     0.8845     1.0000 
1623     1.0000     1.0000     0.9331     1.0000 
1624     1.0000     1.0000     0.9687     1.0000 
1625     1.0000     1.0000     0.9886     1.0000 
1626     1.0000     1.0000     0.9967     1.0000 
1627     1.0000     1.0000     0.9993     1.0000 
1628     1.0000     1.0000     0.9999     1.0000 
1629     1.0000     1.0000     1.0000     1.0000 
1630     1.0000     1.0000     1.0000     1.0000 
1631     1.0000     1.0000     1.0000     1.0000 
1632     1.0000     1.0000     1.0000     1.0000 
1633     1.0000     1.0000     1.0000     1.0000 
1634     1.0000     1.0000     1.0000     1.0000 
1635     1.0000     1.0000     1.0000     1.0000 
1636     1.0000     1.0000     1.0000     1.0000 
1637     1.0000     1.0000     1.0000     1.0000 
1638     1.0000     1.0000     1.0000     1.0000 
1639     1.0000     1.0008     0.9991     1.0000 
1640     1.0000     1.0008     0.9996     1.0000 
1641     0.9999     0.9988     0.9947     1.0000 
1642     0.9999     0.9988     0.9963     1.0000 
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1643     1.0008     0.9995     0.9974     1.0000 
1644     1.0008     0.9995     0.9980     1.0000 
1645     1.0009     0.9996     0.9987     1.0000 
1646     1.0009     0.9996     0.9991     1.0000 
1647     1.0004     1.0004     0.9976     1.0000 
1648     1.0004     1.0004     0.9980     1.0000 
1649     1.0004     1.0004     0.9984     1.0000 
1650     1.0004     1.0004     0.9988     1.0000 
1651     1.0014     1.0014     0.9985     1.0000 
1652     1.0014     1.0014     0.9987     1.0000 
1653     1.0014     1.0014     0.9988     1.0000 
1654     1.0014     1.0014     0.9990     1.0000 
1655     1.0014     1.0014     0.9991     1.0000 
1656     1.0014     1.0014     0.9993     1.0000 
1657     1.0014     1.0014     0.9994     1.0000 
1658     0.9984     0.9984     0.9994     1.0000 
1659     0.9982     0.9982     0.9994     1.0000 
1660     0.9982     0.9982     0.9995     1.0000 
1661     0.9982     0.9982     0.9995     1.0000 
1662     0.9982     0.9982     0.9996     1.0000 
1663     0.9982     0.9982     0.9996     1.0000 
1664     0.9982     0.9982     0.9997     1.0000 
1665     0.9982     0.9982     0.9997     1.0000 
1666     0.9982     0.9982     0.9997     1.0000 
1667     1.0021     1.0021     0.9997     1.0000 
1668     1.0021     1.0021     0.9998     1.0000 
1669     1.0021     1.0021     0.9998     1.0000 
1670     1.0021     1.0021     0.9998     1.0000 
1671     1.0022     1.0022     0.9998     1.0000 
1672     1.0022     1.0022     0.9999     1.0000 
1673     1.0002     1.0002     0.9999     1.0000 
1674     1.0002     1.0002     0.9999     1.0000 
1675     1.0002     1.0002     0.9999     1.0000 
1676     1.0002     1.0002     0.9999     1.0000 
1677     1.0002     1.0002     0.9999     1.0000 
1678     1.0002     1.0002     0.9999     1.0000 
1679     1.0002     1.0002     0.9999     1.0000 
1680     1.0002     1.0002     0.9999     1.0000 
1681     1.0002     1.0002     0.9999     1.0000 
1682     1.0002     1.0002     0.9999     1.0000 
1683     1.0002     1.0002     0.9999     1.0000 
1684     1.0002     1.0002     0.9999     1.0000 
1685     1.0002     1.0002     0.9999     1.0000 
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1686     1.0003     1.0003     0.9999     1.0000 
1687     1.0004     1.0004     0.9999     1.0000 
1688     1.0004     1.0004     0.9999     1.0000 
1689     1.0002     1.0002     0.9999     1.0000 
1690     1.0002     1.0002     0.9999     1.0000 
1691     0.9982     0.9982     1.0000     1.0000 
1692     0.9982     0.9982     1.0000     1.0000 
1693     0.9982     0.9982     1.0000     1.0000 
1694     0.9982     0.9982     1.0000     1.0000 
1695     0.9982     0.9982     1.0000     1.0000 
1696     0.9982     0.9982     1.0000     1.0000 
1697     0.9982     0.9982     1.0000     1.0000 
1698     0.9982     0.9982     1.0000     1.0000 
1699     0.9982     0.9982     1.0000     1.0000 
1700     0.9982     0.9982     1.0000     1.0000 
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APPENDIX D –MATLAB SCRIPT 

Geometrical input, sample data and load limits 

This chapter contains geometrical data, such as wirelengths, Area, E-moduls etc. Information 

concerning the old and new sample data are also shown here and finally information regarding 

the proof load limits. 

clc; clear all;close all; 

tic; 

set(0,'DefaultFigureVisible','off') 

format long g 

n = Total number of wires in the cable 
E = Modulus of elasticity 
L0 = Length of test speciment 
L = Total length of wires 
d = Wire diameter 
Area = Wire cross sectional area 
l = Aging correlation factor 
Lp = Correlation length 
T = Testdata 

n = 200; 

E = 7.75e4; 

L0 = 500; 

L = 100e3; 

d = 7; 

Area=pi*d^2/4; 

l = L/L0; 

Lp = l*L0; 

 

T_old=sort([69 67.3 67.5 68.5 67.2 68.7 68 69 70.1 68.7 67 ... 

   69.7 70.3 68.7 69 67.5 68.7 68.9 69.8 66.9 68.1 ... 

   66.9 66.5 68 67.2 68.5 67.2 68.6 69.7 ... 

   68.2])*1e3/Area; 

T_new = [1690 1650 1620 1640 1657 1638 1672 1646]; 

The proof load and load limits are shown below, these limits decide the 
stress range used in the figures. They're mainly used to simplify the 
calcluations in the sense that the wirestrengths are distributed around 
1600 - 1800 MPa (by default). 

proof_load = 1620; 

step2 = 0.1; 

load_limit_bot = 1500; 

load_limit_top = 2000; 
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load_limit= load_limit_bot:step2:load_limit_top; 

load_limit_bot2 = 1500; 

load_limit_top2 = 1550; 

load_limit2= load_limit_bot2:step2:load_limit_top2; 

Prior distribution - Parameters 

The following chapter contains information regarding the prior 
distribution based on new test data given in the vector T_new. 

parmhat estimates the shape and scale parameter in the prior Weibull 
distribution. Phat collects these parametres in a vector. 

parmhat=wblfit(T_old); 

u_old=parmhat(1,1); 

k_old=parmhat(1,2); 

phat=[u_old k_old]; 

Calculates the covariance matrix using the script 'wblpdf', where the diagonal are the 

uncertainties (standard deviation) of the parameters. 

covmatrix_prior=mlecov(phat,T_old,'pdf',@wblpdf); 

uncertanties_prior = sqrt(diag(covmatrix_prior)); 

sigma_Uprior = uncertanties_prior(1,1); 

sigma_Kprior = uncertanties_prior(2,1); 

MEAN and VARIANCE of a Weibull distribution, A_old and B_old 
respectively. And the correlation between the shape and scale parameter, 
later used in the multivariate normal distribution. 
Finally the prior weibullPDF are calculated with a range equal to 
'load_limit' and shape and scale parameter 'u_old' and 'k_old'. 

mu1 = [u_old k_old]; 

[A_old,B_old]=wblstat(u_old,k_old); 

sigma3=sqrt(B_old); 

rho_prior = covmatrix_prior(1,2)/(sigma_Uprior*sigma_Kprior); 

 

prior_distribution = wblpdf(load_limit,u_old,k_old); 

Multivariate normal density function and integration limits 

In this case, it is a Bivariate density function given as: 
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priorMVN = @(d1,d2) (1./(2.*pi.*sigma_Uprior.*sigma_Kprior... 

    *sqrt(1-rho_prior.^2))).*exp((-0.5./sqrt(1-rho_prior.^2)).*... 

    ((((d1-u_old).^2)./sigma_Uprior.^2)+(((d2-k_old).^2)./... 

    sigma_Kprior.^2)-(((2.*rho_prior.*(d1-u_old).*(d2-k_old))./... 

    (sigma_Uprior.*sigma_Kprior))))); 

Limits used in the triangular integration, this is simply done by 
creating a meshgrid using a built in function. More information: 
http://se.mathworks.com/help/matlab/ref/trapz.html?refresh=true 

D1_prior_bot = u_old-4*uncertanties_prior(1,1); 

D1_prior_top = u_old+4*uncertanties_prior(1,1); 

D2_prior_bot = k_old-4*uncertanties_prior(2,1); 

D2_prior_top = k_old+4*uncertanties_prior(2,1); 

 

steps_prior = 0.5; 

D1_prior = D1_prior_bot:steps_prior:D1_prior_top; 

D2_prior = D2_prior_bot:steps_prior:D2_prior_top; 

[d1,d2] = meshgrid(D1_prior,D2_prior); 

Prior predictive distribution 

The prior predictive distribution is found by multiplying the bivariate 
normal distribution and the prior weibull distribution. 

n_limits calculates the number of values in the vector 'load_limit' 
n_limits2 are used in the lower tail fitting. 

n_limits = numel(load_limit); 

n_limits2 = numel(load_limit2); 

 

predictive_prior3 = @(x) ((d2./d1).*(x./d1).^(d2-1).*exp(-(x./d1).^d2))... 

    .*(1./(2.*pi.*sigma_Uprior.*sigma_Kprior... 

    .*sqrt(1-rho_prior.^2))).*exp((-0.5./sqrt(1-rho_prior.^2)).*... 

    ((((d1-u_old).^2)./sigma_Uprior.^2)+(((d2-k_old).^2)./... 

    sigma_Kprior.^2)-(((2.*rho_prior.*(d1-u_old).*(d2-k_old))./... 

    (sigma_Uprior.*sigma_Kprior))))); 

predictive_prior2 =@(x) trapz(D2_prior,trapz(D1_prior,predictive_prior3(x),2)); 

 

predictive_distribution_prior = zeros(n_limits,1); 

 

for aa = 1:n_limits; 

   mellom4 = predictive_prior2(load_limit(aa)); 

   predictive_distribution_prior(aa) = mellom4; 

end 

predictive_distribution_prior2 = zeros(n_limits2,1); 

for bb = 1:n_limits2; 

   mellom42 = predictive_prior2(load_limit2(bb)); 
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   predictive_distribution_prior2(bb) = mellom42; 

end 

maxi3 estimates the shape and scale parameter of the predictive weibull 
distribution using the combination of the two tha minimize the 
predictive distribution, i.e. the combination that gives the lowest 
strength. 

u and k denotes the scale and shape parameters respectively, while A and 
B denotes the mean and variance. 

[maxi3] = fminsearch(@(x) sum((predictive_distribution_prior'-... 

    ((x(2)./x(1)).*((load_limit./x(1)).^(x(2)-1)).... 

    .*exp(-((load_limit./x(1)).^x(2))))).^2),[1780,70]); 

 

u_old_pred = maxi3(1,1); 

k_old_pred = maxi3(1,2); 

[A_old_pred,B_old_pred] = wblstat(u_old_pred,k_old_pred); 

Figure 1: Prior predictive distribution 

Figure 1 compares the predictive prior with the approximated prior 
distribution, where the load limit are set as x-axis. 

figure 

hold on; 

plot(load_limit,predictive_distribution_prior,'r','Linewidth',1.5); 

plot(load_limit,wblpdf(load_limit,u_old_pred,k_old_pred),'k','Linewidth',1.5); 

legend('Predictive prior','approximated prior'); 

xlabel('load level'); 

ylabel('PDF') 

hold off; 

Proof loading 

This chapter cheks wheter or not a wire pass the proof load, if a wire 
fails it is considered broken and collected in the vector 
'failed_tests' where the failure strengths are sampled. 

tom = Samples the VALUE for the broken (failed) wires, if a wire pass 
the proof load, the strength of the wire are set = proof load 

tom2 = Sampling vector for the NUMBER of passed/failed tests, passed 
tests are given a value = 1 and failed a value = 0. 

n_new = Number of new test samples 
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n_new = numel(T_new); 

tom = zeros(n_new,1); 

tom2 = zeros(n_new,1); 

The loop carries out the steps explained above. 

for ii =1:n_new; 

   if T_new(ii)>= proof_load; 

       har = proof_load; 

   elseif T_new(ii)<proof_load; 

       har = T_new(ii); 

   end 

   tom(ii) = har; 

 

   if T_new(ii)>= proof_load; 

       har2 = 1; 

   elseif T_new(ii)<proof_load; 

       har2 = 0; 

   end 

   tom2(ii) = har2; 

 

end 

h = Collects the NUMBER of tests that have passed the proof load 
failed_tests = Collects the VALUE of the failed wires 
m = NUMBER of failed wires 

h = sum(tom2); 

failed_tests = tom(tom<proof_load); 

m = numel(failed_tests); 

 

Fisher information matrix 

This chapter calculates the Fisher matrix for the given Weibull 
distribution. The first part estimates the Fisher matrix with respect to 
the PDF, and the last part with respect to the CDF. 
The Fisher matrix consists of the double derivatives on the diagonal, 
and the partial derivatives of u and k. 
In this case Fisher  is a 2x2 matrix. 

Fisher with respect to log-Weibull CDF: 

syms u k p w 

f1 = w.*log(1-(1-exp(-(p./u).^k))); 
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Elements in Fisher matrix: 
b12 = Fisher(1,1) 
c12 = Fisher(2,2) 
e12 = Fisher(1,2) 
h12 = Fisher(2,1) 

b12(u,k,p,w) =  diff(f1,u,2); 

c12(u,k,p,w) =  diff(f1,k,2); 

d12(u,k,p,w) =  diff(f1,u); 

e12(u,k,p,w) =  diff(d12,k); 

g12(u,k,p,w) =  diff(f1,k); 

h12(u,k,p,w) =  diff(g12,u); 

This simply allows MATLAB to recongnize the elements calculated above as 
functions with specified variables, which again allows 'partij' to be 
the content of the Fisher Matrix with the given set of variables u,k,p 
and w. 

pst11 = matlabFunction(b12); 

pst21 = matlabFunction(e12); 

pst31 = matlabFunction(h12); 

pst41 = matlabFunction(c12); 

 

part11 = @(u,k,p,w) pst11(u,k,p,w); 

part21 = @(u,k,p,w) pst21(u,k,p,w); 

part31 = @(u,k,p,w) pst31(u,k,p,w); 

part41 = @(u,k,p,w) pst41(u,k,p,w); 

Fisher with respect to log-Weibull PDF: 

syms x u k 

f3 = log((k./u).*(x./u).^(k-1).*exp(-(x./u).^k)); 

Elements in Fisher matrix: 
b3 = Fisher(1,1) 
c3 = Fisher(2,2) 
e3 = Fisher(1,2) 
h3 = Fisher(2,1) 

b3(x,u,k) = diff(f3,u,2); 

c3(x,u,k) = diff(f3,k,2); 

d3(x,u,k) = diff(f3,u); 

e3(x,u,k) = diff(d3,k); 

g3(x,u,k) = diff(f3,k); 

h3(x,u,k) = diff(g3,u); 
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This simply allows MATLAB to recongnize the elements calculated above as 
functions with specified variables, which again allows 'partij' to be 
the content of the Fisher Matrix with the given set of variables u,k,p 
and w. 

pst13 = matlabFunction(b3); 

pst23 = matlabFunction(e3); 

pst33 = matlabFunction(h3); 

pst43 = matlabFunction(c3); 

 

 

part13 = @(x,u,k) pst13(x,u,k); 

part23 = @(x,u,k) pst23(x,u,k); 

part33 = @(x,u,k) pst33(x,u,k); 

part43 = @(x,u,k) pst43(x,u,k); 

Updating process 

The calculation steps are identical with the following difference: 
*1. part assume that all wire fails* 
*2. part that one wire fail* 
*3. part that all wires pass the proof load* 

If all wires fail 

The calculation steps in this chapter are given in the following order: 
1) Nelder-Mead simplex to optimize the values of Theta (shape and scale 
facor) 
2) Estimating the Fisher- and Covariance Matrix based on these values 
3) The likelihood function 
4) Normalizing factor 
5) Predictive distribution 

if m==n_new; 

1) Initially, the Nelder-Mead simplex optimize the values in the variables 
Theta in the log-likehood function. These variables are denoted theta1 
and theta2 and maximize the log-likelihood function. 

[maxi] = fminsearch(@(x) -(sum(log(wblpdf(failed_tests,x(1),... 

                            x(2))))),[1600,50]); 

 

theta1 = maxi(1,1); 

theta2 = maxi(1,2); 

%  2) Fisher- and Covariance-matrix 
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elementij express the different elements in the Fisher matrix using the 
parameters without any numerical values. 

element11 = @(x,u,k) part13(x,u,k); 

element12 = @(x,u,k) part23(x,u,k); 

element21 = @(x,u,k) part33(x,u,k); 

element22 = @(x,u,k) part43(x,u,k); 

leddij calculates the numerical values in the Fisher matrix as a sum 
based on elementij given above and the following parameters: 

x = strength of the failed tests = failed_tests 
u = scale factor = theta1 
k = shape factor = theta2 

ledd11 = -sum(element11(failed_tests,theta1,theta2)); 

ledd12 = -sum(element12(failed_tests,theta1,theta2)); 

ledd21 = -sum(element21(failed_tests,theta1,theta2)); 

ledd22 = -sum(element22(failed_tests,theta1,theta2)); 

The covariancematrix is defined as the inverse Fisher matrix and 
uncertainties_new is the standard deviation of the parameters theta1 and 
theta2 which describe the scale and shape parameters of a Weibull 
distribution. 

Fisher_matrix = [ledd11 ledd12; ledd21 ledd22]; 

covmatrix_new = inv((Fisher_matrix)); 

uncertanties_new = sqrt(diag(covmatrix_new)); 

%  3) The log-likekilhood function given with the following parameters: 

x = Wirestrength = failed_tests 
d1 = scale factor = theta1 above 
d2 = shape factor = theta2 above 

The parameters d1 and d2 denotes the same scale and shape parameters as 
earlier, but requires a different annotation here due to the calculation 
methods used in the posterior distribution. 

syms d1 d2 

pdf_part_of_log_likelihood = @(x) (log((d2./d1).*... 

    (x./d1).^(d2-1).*exp(-(x./d1).^d2))); 

sum_of_the_pdf_part(d1,d2) = sum(pdf_part_of_log_likelihood(failed_tests)); 

ht simply creates a function that MATLAB recognizes, here with the 
variables d1 and d2. Simply known as the shape and scale parameters. 
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ht = matlabFunction(sum_of_the_pdf_part); 

best = ht(d1,d2); 

The final log-likelihood and the likelihood functions 

log_likelihood = @(d1,d2) ht(d1,d2); 

likelihood = @(d1,d2) exp(log_likelihood(d1,d2)); 

4) Normalizing factor  Using Nelder-Mead simplex to calculate the theta1 and theta2 that  

maximize the probability of failure, where theta1 and 2 are denoted  midd1 and 2. 

fun_normalizing = @(d1,d2) priorMVN(d1,d2).*likelihood(d1,d2); 

maximizing_normalizing = @(x)-fun_normalizing(x(1),x(2)); 

[maxi2] = fminsearch(maximizing_normalizing,[1780,50]); 

 

midd_1 = maxi2(1,1); 

midd_2 = maxi2(1,2); 

Assuming that the curve isn't wider than +/- 500 to the center value, 
the preliminary integration boundaries are found. The If sentece below 
secures that the boundaries are positive. 

new_theta1bot = midd_1-500; 

new_theta1top = midd_1+500; 

new_theta2bot = midd_2-500; 

new_theta2top = midd_2+500; 

if new_theta2bot<=0; 

    new_theta2bot=1; 

elseif new_theta2bot>0; 

    new_theta2bot = midd_2-500; 

end 

Following the assumptions above, the integration range for theta1 and 
theta2 are found. 

range_theta1 =new_theta1bot:new_theta1top; 

steps_theta1 = numel(range_theta1); 

range_theta2 =new_theta2bot:new_theta2top; 

steps_theta2 = numel(range_theta2); 

The integration boundaries are estimated with a given stopping 
criterion found in the loop below. 
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jobb = zeros(steps_theta2,steps_theta1); 

for aa = 1:steps_theta1; 

    for bb=1:steps_theta2; 

        fa = fun_normalizing(midd_1,midd_2)-... 

             fun_normalizing(range_theta1(aa),range_theta2(bb)); 

        jobb(bb,aa) = fa; 

    end 

end 

sa = jobb; 

The row and column containing the minimum (first) and maximum (last) 
values for theta1 and 2 are found using the built in function in MATLAB. 

[row1,col1] = find(sa<fun_normalizing(midd_1,midd_2),1,'first'); 

[row2,col2] = find(sa<fun_normalizing(midd_1,midd_2),1,'last'); 

The final integration boundaries for theta1 and 2 are given as a square, 
where the slope of the 3D plot of theta1 and 2 decides the upper and 
lower boundaries. 

D1_bot = new_theta1bot+col1-3; 

if D1_bot<0; 

    D1_bot = 0; 

elseif D1_bot>=0; 

    D1_bot = new_theta1bot+col1-3; 

end 

D1_top = new_theta1bot+col2+3; 

D2_bot = new_theta2bot+row1-3; 

if D2_bot <0; 

    D2_bot = 0; 

elseif D2_bot>=0; 

    D2_bot = new_theta2bot+row1-3; 

end 

D2_top = new_theta2bot+row2+3; 

The boundaries found above are implemented in MATLAB as a meshgrid using 
the values for D1 and D2. 

step = 1/2; 

D1 = D1_bot:step:D1_top; 

D2 = D2_bot:step:D2_top; 

[d1,d2] = meshgrid(D1,D2); 

Tass is the log-likelihood function with parameters d1 and d2 used to 
calculate the normalizing factor (P) for the posterior and predictive 
distribution. The normalizing factor (P) is given by the folliwing 
equation: 
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tass = ht(d1,d2); 

normalizing = exp(tass).*... 

    (1./(2.*pi.*sigma_Uprior.*sigma_Kprior... 

    *sqrt(1-rho_prior.^2))).*exp((-0.5./sqrt(1-rho_prior.^2)).*... 

    ((((d1-u_old).^2)./sigma_Uprior.^2)+(((d2-k_old).^2)./... 

    sigma_Kprior.^2)-(((2.*rho_prior.*(d1-u_old).*(d2-k_old))./... 

    (sigma_Uprior.*sigma_Kprior))))); 

normalizing_factor2 = trapz(D2,trapz(D1,normalizing,2)); 

P = 1/normalizing_factor2; 

Predictive 

5) predictive distribution  The predictive distribution is given by the following equaiton: 

 

By using the integration boundaries above, the predictive distribution 
is estimated (predictive2), running a loop from 1 to n_limits numerical 
values are found and inserted into the predictive distribution. 

predictive3 =@(x) ((d2./d1).*(x./d1).^(d2-1).*exp(-(x./d1).^d2)).*P.*... 

    exp(tass).*(1./(2.*pi.*sigma_Uprior.*sigma_Kprior... 

    *sqrt(1-rho_prior.^2))).*exp((-0.5./sqrt(1-rho_prior.^2)).*... 

    ((((d1-u_old).^2)./sigma_Uprior.^2)+(((d2-k_old).^2)./... 

    sigma_Kprior.^2)-(((2.*rho_prior.*(d1-u_old).*(d2-k_old))./... 

    (sigma_Uprior.*sigma_Kprior))))); 

 

predictive2 =@(x) trapz(D2,trapz(D1,predictive3(x),2)); 

predictive_distribution = zeros(n_limits,1); 

for ee = 1:n_limits; 

   mellom = predictive2(load_limit(ee)); 

   predictive_distribution(ee) = mellom; 

end 

When 1 test fail 

The calculation steps in this chapter are given in the following order: 
1) Nelder-Mead simplex to optimize the values of Theta (shape and scale 
facor) 
2) Estimating the Fisher- and Covariance Matrix based on these values 
3) The likelihood function 
4) Normalizing factor 
5) Predictive distribution 
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Altough it may look a bit more messy than the steps done abovem the 
steps are exactly the same, execpt that one test fail while the rest 
pass in this chapter. 

elseif m>=1 && m<n_new; 

1) Initially, the Nelder-Mead simplex optimize the values in the variables 
Theta in the log-likehood function. These variables are denoted theta1 
and theta2 and maximize the log-likelihood function. 

[maxi] = fminsearch(@(x) -(sum(log(wblpdf(failed_tests,x(1),x(2))))+... 

         h*log(1-wblcdf(proof_load,x(1),x(2)))),[1600,50]); 

theta1 = maxi(1,1); 

theta2 = maxi(1,2); 

%  2) Fisher- and Covariance-matrix 

leddij calculates the numerical values in the Fisher matrix as a sum 
based on elementij given above and the following parameters: 

x = strength of the failed tests = failed_tests 
u = scale factor = theta1 
k = shape factor = theta2 

element11_pdf = @(x,u,k) part13(x,u,k); 

element12_pdf = @(x,u,k) part23(x,u,k); 

element21_pdf = @(x,u,k) part33(x,u,k); 

element22_pdf = @(x,u,k) part43(x,u,k); 

 

element11_cdf = @(u,k,p,w) part11(u,k,p,w); 

element12_cdf = @(u,k,p,w) part21(u,k,p,w); 

element21_cdf = @(u,k,p,w) part31(u,k,p,w); 

element22_cdf = @(u,k,p,w) part41(u,k,p,w); 

 

ledd11 = -(sum(element11_pdf(failed_tests,theta1,theta2))... 

    +element11_cdf(theta1,theta2,proof_load,h)); 

ledd12 = -(sum(element12_pdf(failed_tests,theta1,theta2))+... 

    element12_cdf(theta1,theta2,proof_load,h)); 

ledd21 = -(sum(element21_pdf(failed_tests,theta1,theta2))+... 

    element21_cdf(theta1,theta2,proof_load,h)); 

ledd22 = -(sum(element22_pdf(failed_tests,theta1,theta2))+... 

    element22_cdf(theta1,theta2,proof_load,h)); 

The covariancematrix is defined as the inverse Fisher matrix and 
uncertainties_new is the standard deviation of the parameters theta1 and 
theta2 which describe the scale and shape parameters of a Weibull 
distribution. 
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Fisher_matrix = [ledd11 ledd12; ledd21 ledd22]; 

covmatrix_new = inv((Fisher_matrix)); 

uncertanties_new = sqrt(diag(covmatrix_new)); 

%  3) The log-likekilhood function given with the following parameters: 

x = Wirestrength = failed_tests 
d1 = scale factor = theta1 above 
d2 = shape factor = theta2 above 

The parameters d1 and d2 denotes the same scale and shape parameters as 
earlier, but requires a different annotation here due to the calculation 
methods used in the posterior distribution. 

syms d1 d2 

pdf_part_of_log_likelihood = @(x) (log((d2./d1).*... 

    (x./d1).^(d2-1).*exp(-(x./d1).^d2))); 

sum_of_the_pdf_part(d1,d2) = sum(pdf_part_of_log_likelihood(failed_tests)); 

ht simply creates a function that MATLAB recognizes, here with the 
variables d1 and d2. Simply known as the shape and scale parameters. 

ht = matlabFunction(sum_of_the_pdf_part); 

cdf_part_of_log_likelihood = @(d1,d2) h.*log(exp(-(proof_load./d1).^d2)); 

The final log-likelihood and the likelihood functions 

log_likelihood = @(d1,d2) (ht(d1,d2)+cdf_part_of_log_likelihood(d1,d2)); 

likelihood = @(d1,d2) exp(log_likelihood(d1,d2)); 

4) Normalizing factor  Using Nelder-Mead simplex to calculate the theta1 and theta2 that  

maximize the probability of failure, where theta1 and 2 are denoted  midd1 and 2. 

fun_normalizing = @(d1,d2) priorMVN(d1,d2).*likelihood(d1,d2); 

maximizing_normalizing = @(x)-fun_normalizing(x(1),x(2)); 

[maxi2] = fminsearch(maximizing_normalizing,[1780,50]); 

 

midd_1 = maxi2(1,1); 

midd_2 = maxi2(1,2); 

Assuming that the curve isn't wider than +/- 500 to the center value, 
the preliminary integration boundaries are found. The If sentece below 
secures that the boundaries are positive. 
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new_theta1bot = midd_1-500; 

new_theta1top = midd_1+500; 

new_theta2bot = midd_2-500; 

new_theta2top = midd_2+500; 

 

if new_theta2bot<=0; 

    new_theta2bot=1; 

elseif new_theta2bot>0; 

    new_theta2bot = midd_2-500; 

end 

Following the assumptions above, the integration range for theta1 and 
theta2 are found. 

range_theta1 =new_theta1bot:new_theta1top; 

steps_theta1 = numel(range_theta1); 

range_theta2 =new_theta2bot:new_theta2top; 

steps_theta2 = numel(range_theta2); 

The integration boundaries are estimated with a given stopping 
criterion found in the loop below. 

jobb = zeros(steps_theta2,steps_theta1); 

for aa = 1:steps_theta1; 

    for bb=1:steps_theta2; 

        fa = fun_normalizing(midd_1,midd_2)-... 

             fun_normalizing(range_theta1(aa),range_theta2(bb)); 

        jobb(bb,aa) = fa; 

    end 

end 

sa = jobb; 

The row and column containing the minimum (first) and maximum (last) 
values for theta1 and 2 are found using the built in function in MATLAB. 

[row1,col1] = find(sa<fun_normalizing(midd_1,midd_2),1,'first'); 

[row2,col2] = find(sa<fun_normalizing(midd_1,midd_2),1,'last'); 

The final integration boundaries for theta1 and 2 are given as a square, 
where the slope of the 3D plot of theta1 and 2 decides the upper and 
lower boundaries. 

D1_bot = new_theta1bot+col1-3; 

if D1_bot<0; 

    D1_bot = 0; 

elseif D1_bot>=0; 
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    D1_bot = new_theta1bot+col1-3; 

end 

D1_top = new_theta1bot+col2+3; 

D2_bot = new_theta2bot+row1-3; 

if D2_bot <0; 

    D2_bot = 0; 

elseif D2_bot>=0; 

    D2_bot = new_theta2bot+row1-3; 

end 

D2_top = new_theta2bot+row2+3; 

The boundaries found above are implemented in MATLAB as a meshgrid using 
the values for D1 and D2. 

step = 1/2; 

D1 = D1_bot:step:D1_top; 

D2 = D2_bot:step:D2_top; 

[d1,d2] = meshgrid(D1,D2); 

Tass is the log-likelihood function with parameters d1 and d2 used to 
calculate the normalizing factor (P) for the posterior and predictive 
distribution. The normalizing factor (P) is given by the folliwing 
equation: 

 

tass = ht(d1,d2); 

normalizing = exp(h.*log(exp(-(proof_load./d1).^d2))+tass).*... 

    (1./(2.*pi.*sigma_Uprior.*sigma_Kprior... 

    *sqrt(1-rho_prior.^2))).*exp((-0.5./sqrt(1-rho_prior.^2)).*... 

    ((((d1-u_old).^2)./sigma_Uprior.^2)+(((d2-k_old).^2)./... 

    sigma_Kprior.^2)-(((2.*rho_prior.*(d1-u_old).*(d2-k_old))./... 

    (sigma_Uprior.*sigma_Kprior))))); 

normalizing_factor2 = trapz(D2,trapz(D1,normalizing,2)); 

P = 1/normalizing_factor2; 

Predictive 

5) predictive distribution  The predictive distribution is given by the following equaiton: 

 

By using the integration boundaries above, the predictive distribution 
is estimated (predictive2), running a loop from 1 to n_limits numerical 
values are found and inserted into the predictive distribution. 
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predictive3 =@(x) ((d2./d1).*(x./d1).^(d2-1).*exp(-(x./d1).^d2)).*P.*... 

    exp(h.*log(exp(-(proof_load./d1).^d2))+tass).*... 

    (1./(2.*pi.*sigma_Uprior.*sigma_Kprior... 

    *sqrt(1-rho_prior.^2))).*exp((-0.5./sqrt(1-rho_prior.^2)).*... 

    ((((d1-u_old).^2)./sigma_Uprior.^2)+(((d2-k_old).^2)./... 

    sigma_Kprior.^2)-(((2.*rho_prior.*(d1-u_old).*(d2-k_old))./... 

    (sigma_Uprior.*sigma_Kprior))))); 

predictive2 =@(x) trapz(D2,trapz(D1,predictive3(x),2)); 

predictive_distribution = zeros(n_limits,1); 

for ee = 1:n_limits; 

   mellom = predictive2(load_limit(ee)); 

   predictive_distribution(ee) = mellom; 

end 

When all wires pass the proof load 

The calculation steps in this chapter are given in the following order: 
1) Nelder-Mead simplex to optimize the values of Theta (shape and scale 
facor) 
2) Estimating the Fisher- and Covariance Matrix based on these values 
3) The likelihood function 
4) Normalizing factor 
5) Predictive distribution 

elseif m<1; 

1) Initially, the Nelder-Mead simplex optimize the values in the variables 
Theta in the log-likehood function. These variables are denoted theta1 
and theta2 and maximize the log-likelihood function. 

[maxi] = fminsearch(@(x) -(h*log(1-(1-exp(-(proof_load./x(1)).^x(2))))),... 

                    [1620,1200]); 

 

theta1 = maxi(1,1); 

theta2 = maxi(1,2); 

%  2) Fisher- and Covariance-matrix 

elementij express the different elements in the Fisher matrix using the 
parameters without any numerical values. 

element11 = @(u,k,p,w) part11(u,k,p,w); 

element12 = @(u,k,p,w) part21(u,k,p,w); 

element21 = @(u,k,p,w) part31(u,k,p,w); 

element22 = @(u,k,p,w) part41(u,k,p,w); 
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leddij calculates the numerical values in the Fisher matrix as a sum 
based on elementij given above and the following parameters: 

x = strength of the failed tests = failed_tests 
u = scale factor = theta1 
k = shape factor = theta2 

ledd11 = -element11(theta1,theta2,proof_load,h); 

ledd12 = -element12(theta1,theta2,proof_load,h); 

ledd21 = -element21(theta1,theta2,proof_load,h); 

ledd22 = -element22(theta1,theta2,proof_load,h); 

The covariancematrix is defined as the inverse Fisher matrix and 
uncertainties_new is the standard deviation of the parameters theta1 and 
theta2 which describe the scale and shape parameters of a Weibull 
distribution. 

Fisher_matrix = [ledd11 ledd12; ledd21 ledd22]; 

covmatrix_new = (inv((Fisher_matrix))); 

uncertanties_new = sqrt(diag(covmatrix_new)); 

%  3) The log-likekilhood function given with the following parameters: 

x = Wirestrength = failed_tests 
d1 = scale factor = theta1 above 
d2 = shape factor = theta2 above 

The parameters d1 and d2 denotes the same scale and shape parameters as 
earlier, but requires a different annotation here due to the calculation 
methods used in the posterior distribution. 

log_likelihood = @(d1,d2) h*log(1-(1-exp(-(proof_load./d1).^d2))); 

likelihood = @(d1,d2) exp(log_likelihood(d1,d2)); 

4) Normalizing factor  Using Nelder-Mead simplex to calculate the theta1 and theta2 that  

maximize the probability of failure, where theta1 and 2 are denoted  midd1 and 2. 

fun_normalizing = @(d1,d2) priorMVN(d1,d2).*likelihood(d1,d2); 

maximizing_normalizing = @(x)-fun_normalizing(x(1),x(2)); 

[maxi2] = fminsearch(maximizing_normalizing,[1780,50]); 

 

midd_1 = maxi2(1,1); 

midd_2 = maxi2(1,2); 
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Assuming that the curve isn't wider than +/- 500 to the center value, 
the preliminary integration boundaries are found. The If sentece below 
secures that the boundaries are positive. 

new_theta1bot = midd_1-500; 

new_theta1top = midd_1+500; 

new_theta2bot = midd_2-500; 

new_theta2top = midd_2+500; 

if new_theta2bot<=0; 

    new_theta2bot=1; 

elseif new_theta2bot>0; 

    new_theta2bot = midd_2-500; 

end 

Following the assumptions above, the integration range for theta1 and 
theta2 are found. 

range_theta1 =new_theta1bot:new_theta1top; 

steps_theta1 = numel(range_theta1); 

range_theta2 =new_theta2bot:new_theta2top; 

steps_theta2 = numel(range_theta2); 

The integration boundaries are estimated with a given stopping 
criterion found in the loop below. 

jobb = zeros(steps_theta2,steps_theta1); 

for aa = 1:steps_theta1; 

    for bb=1:steps_theta2; 

        fa = fun_normalizing(midd_1,midd_2)-... 

             fun_normalizing(range_theta1(aa),range_theta2(bb)); 

        jobb(bb,aa) = fa; 

    end 

end 

sa = jobb; 

The row and column containing the minimum (first) and maximum (last) 
values for theta1 and 2 are found using the built in function in MATLAB. 

[row1,col1] = find(sa<fun_normalizing(midd_1,midd_2),1,'first'); 

[row2,col2] = find(sa<fun_normalizing(midd_1,midd_2),1,'last'); 

The final integration boundaries for theta1 and 2 are given as a square, 
where the slope of the 3D plot of theta1 and 2 decides the upper and 
lower boundaries. 
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D1_bot = new_theta1bot+col1-3; 

if D1_bot<0; 

    D1_bot = 0; 

elseif D1_bot>=0; 

    D1_bot = new_theta1bot+col1-3; 

end 

D1_top = new_theta1bot+col2+3; 

D2_bot = new_theta2bot+row1-3; 

if D2_bot <0; 

    D2_bot = 0; 

elseif D2_bot>=0; 

    D2_bot = new_theta2bot+row1-3; 

end 

D2_top = new_theta2bot+row2+3; 

The boundaries found above are implemented in MATLAB as a meshgrid using 
the values for D1 and D2. 

step = 1/2; 

D1 = D1_bot:step:D1_top; 

D2 = D2_bot:step:D2_top; 

[d1,d2] = meshgrid(D1,D2); 

Tass is the log-likelihood function with parameters d1 and d2 used to 
calculate the normalizing factor (P) for the posterior and predictive 
distribution. The normalizing factor (P) is given by the folliwing 
equation: 

 

normalizing = exp(h*log(1-(1-exp(-(proof_load./d1).^d2)))).*... 

    (1./(2.*pi.*sigma_Uprior.*sigma_Kprior... 

    *sqrt(1-rho_prior.^2))).*exp((-0.5./sqrt(1-rho_prior.^2)).*... 

    ((((d1-u_old).^2)./sigma_Uprior.^2)+(((d2-k_old).^2)./... 

    sigma_Kprior.^2)-(((2.*rho_prior.*(d1-u_old).*(d2-k_old))./... 

    (sigma_Uprior.*sigma_Kprior))))); 

normalizing_factor2 = trapz(D2,trapz(D1,normalizing,2)); 

P = 1/normalizing_factor2; 

Predictive 

5) predictive distribution  The predictive distribution is given by the following equaiton: 
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By using the integration boundaries above, the predictive distribution 
is estimated (predictive2), running a loop from 1 to n_limits numerical 
values are found and inserted into the predictive distribution. 

predictive3 =@(x) ((d2./d1).*(x./d1).^(d2-1).*exp(-(x./d1).^d2)).*P.*... 

    exp(h*log(1-(1-exp(-(proof_load./d1).^d2)))).*... 

    (1./(2.*pi.*sigma_Uprior.*sigma_Kprior... 

    *sqrt(1-rho_prior.^2))).*exp((-0.5./sqrt(1-rho_prior.^2)).*... 

    ((((d1-u_old).^2)./sigma_Uprior.^2)+(((d2-k_old).^2)./... 

    sigma_Kprior.^2)-(((2.*rho_prior.*(d1-u_old).*(d2-k_old))./... 

    (sigma_Uprior.*sigma_Kprior))))); 

predictive2 =@(x) trapz(D2,trapz(D1,predictive3(x),2)); 

predictive_distribution = zeros(n_limits,1); 

for ee = 1:n_limits; 

   mellom = predictive2(load_limit(ee)); 

   predictive_distribution(ee) = mellom; 

end 

end 

sa = sum(predictive_distribution); 

Mean and Standard deviation of likelihood function 

The mean, standard deviation and correlation between the updated 
parameters are given below: 

mu_U_new = theta1; 

mu_K_new = theta2; 

mu_new = [mu_U_new mu_K_new]; 

 

sigmaU2 = uncertanties_new(1,1); 

sigmaK2 = uncertanties_new(2,1); 

 

rho2 = covmatrix_new(1,2)/(sigmaU2*sigmaK2); 

Updated Weibull parameters 

The updated scale and shape parameters (u_new and k_new) are found using 
Nelder-Mead Simplex. Utilizing wblstat the mean and variance of the 
updated distribution are shown in A_new and B_new. 

[maxi4] = fminsearch(@(x) sum(((predictive_distribution'-((x(2)./x(1))... 

    .*((load_limit./x(1)).^(x(2)-1)).*exp(-((load_limit./x(1)).^x(2)))))... 

    .^2)),[1780,70]); 

u_new = maxi4(1,1); 

k_new = maxi4(1,2); 

[A_new,B_new] = wblstat(u_new,k_new); 
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Figure 1: Prior and predictive distribution 

Figure 1 shows the difference between the prior and predictive 
distribution, where the predictive contains new test information. 

figure 

hold on; 

plot(load_limit,predictive_distribution,'r','Linewidth',1.5) 

plot(load_limit,prior_distribution,'b','Linewidth',1.5); 

legend('Predictive distribution','Prior distribution'); 

xlabel('Load level'); 

ylabel('PDF'); 

hold off; 

Figure 2: Prior, predictive and approximated predictive distribution 

figure 

hold on; 

plot(load_limit,predictive_distribution,'r'); 

plot(load_limit,wblpdf(load_limit,u_new,k_new),'b'); 

plot(load_limit,wblpdf(load_limit,u_old_pred,k_old_pred),'g'); 

legend('Predictive distribution','approximated distribution','prior distribution'); 

xlabel('Load level') 

ylabel('PDF') 

hold off; 

Input values - Reliability updating 

The input values used in the reliability updating are presented here. 

reliability_target = Target reliability 
sensitivity = FORM sensitivity factor, conservatively = 1 

reliability_target = 5; 

sensitivity_factor = 1; 

failed_wires = number of wires that fail the test 
length_effect = 1, meaning that there is no reduction due to corrosion 
or damage in the wires 
daniels_effect = 1, no reduction due to Daniels effect 

failed_wires = 0; 

length_effect = 1; 

daniels_effect = 1; 
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euler_constant = Eulers constant 
cov_load = Coefficient of variation for the load distribution 
safety_load = partial safety factor load 

euler_constant = 0.577215; 

cov_load = 0.3; 

safety_load = 1.5; 

year_of_testing decides how many years from the structure is new to the 
tests are preformed, default this is 30 years. 

step_rel = 0.01; 

year_of_testing = 30; 

Partial safety factor 

The partial safety factor for the prior and posterior strength 
distribution, the load is distributed using a Beta-distribution and the 
strength using Weibull. 

The characteristic values are given using the lower 5% fractile, with 
parameters taken from the prior predictive distribution (uncertainties 
from MLE are included). 

characteristic_value_prior = wblinv(0.05,u_old_pred,k_old_pred); 

characteristic_value_posterior = wblinv(0.05,u_new,k_new); 

safety_res_prior and _posterior are the partial safety factors for the 
cable, with the general equation: 

 

Where: 
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safety_res_prior = characteristic_value_prior./(daniels_effect.*... 

    length_effect.*A_old_pred.*(1-reliability_target.... 

    *sensitivity_factor.*(sqrt(B_old_pred)./A_old_pred)).... 

    *(1-failed_wires)); 

 

safety_res_posterior = characteristic_value_posterior./... 

    (daniels_effect.*length_effect.*A_new.*(1-reliability_target.... 

    *sensitivity_factor.*(sqrt(B_new)./A_new)).*(1-failed_wires)); 

Prior and Posterior reliability 

*Prior mean and standard deviation* 
beta_prior = Scale parameter in Gumbell distribution, NOT related to 
reliability. 

 

beta_prior = wblinv(0.05,u_old_pred,k_old_pred)/(safety_res_prior*... 

    safety_load*(((pi)/(cov_load.*sqrt(6)))-euler_constant-log(-log(0.98)))); 

Mean and standard deviation of the prior distribution. With the 
following equation: 

 

mu_prior = (wblinv(0.05,u_old_pred,k_old_pred)/... 

    (safety_res_prior*safety_load))+beta_prior*log(-log(0.98)); 

sigma_prior = (pi/sqrt(6))*beta_prior; 

mean_prior = mu_prior+euler_constant*beta_prior; 

*Posterior mean and standard deviation* 
beta_posterior = Scale parameter in Gumbell distribution, NOT related to 
reliability 

beta_posterior = wblinv(0.05,u_new,k_new)/(safety_res_posterior... 

    *safety_load*(((pi)/(cov_load.*sqrt(6)))-euler_constant-log(-log(0.98)))); 

Mean and standard deviation of the prior distribution. 
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mu_posterior = (wblinv(0.05,u_new,k_new)/(safety_res_posterior... 

    *safety_load))+beta_posterior*log(-log(0.98)); 

sigma_posterior = (pi/sqrt(6))*beta_posterior; 

mean_posterior = mu_posterior+euler_constant*beta_posterior; 

*Prior reliability* 
The design equation (design_eq...) given below estimates when M = 0, 
i.e. when Resistance = Load. 

fun_prior = Probability of failure given as a function of the variable 
x. 
The reliability of the prior distribution is found in reliability_prior2 

design_equation_difference_prior = (wblinv(0.05,u_old_pred,k_old_pred)... 

    /(safety_res_prior*safety_load))-(mu_prior-beta_prior... 

    *log(-log(0.98))); 

fun_prior = @(x) (1-exp(-exp(-((x-mu_prior)./beta_prior))))... 

    .*wblpdf(x,u_old_pred,k_old_pred); 

 

P_fail_prior = integral(@(x) fun_prior(x),0,Inf); 

reliability_prior2 = -norminv(P_fail_prior,0,1); 

*Posterior reliability* 
The design equation (design_eq...) given below estimates when M = 0, 
i.e. when Resistance = Load. 

fun_prior = Probability of failure given as a function of the variable 
x. 
The reliability of the posterior distribution is found in reliability_prior2 

design_equation_difference_posterior = (wblinv(0.05,u_new,k_new)/... 

    (safety_res_posterior*safety_load))-(mu_posterior-beta_posterior... 

    *log(-log(0.98))); 

fun_posterior = @(x) (1-exp(-exp(-((x-mu_posterior)./... 

    beta_posterior)))).*wblpdf(x,u_new,k_new); 

 

P_fail_posterior = integral(@(x) fun_posterior(x),0,Inf); 

reliability_posterior2 = -norminv(P_fail_posterior,0,1); 

Reliability 

Using the time-invariant method, the reliability of the system is 
plotted. n_rel denotes number of years. 

n_rel = 1:step_rel:100; 

n2_rel = 1:step_rel:year_of_testing; 

n3_rel = year_of_testing+step_rel:step_rel:100; 
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The probability of failure is given by the following equation: 

 

probability_of_failur_old_over_time = (1-(1-P_fail_prior).^n_rel); 

probability_of_failur_new_over_time2 = (1-(1-P_fail_prior).^n2_rel); 

probability_of_failur_new_over_time3 = (1-(1-P_fail_posterior).^n3_rel); 

 

 

probability_of_failur_new_over_time = 

[probability_of_failur_new_over_time2';probability_of_failur_new_over_time3']; 

reliability_over_time_prior = (-norminv(probability_of_failur_old_over_time)); 

reliability_over_time_posterior = (-norminv(probability_of_failur_new_over_time)); 

Figure 3: Time invariant reliability updating. 

figure 

hold on; 

plot(n_rel,reliability_over_time_prior,'k','Linewidth',1.5); 

plot(n_rel,reliability_over_time_posterior,'r','Linewidth',1.5) 

xlabel('Lifetime in years'); 

ylabel('Reliability  \beta'); 

title('Time-invariant reliability distribution'); 

legend('Old reliability','updated reliability'); 

hold off; 

Part 3 initial cable capacity 

Lambda = Scale factor (NOT in relation to Daniels effect) 
Wirestrength3 = Mean value of the strength 

lambda = 1:1000; 

Wirestrength_old = u_old_pred.*lambda.^(-1./k_old_pred).*... 

    gamma(1+(1./k_old_pred)); 

Wirestrength_new = u_new.*lambda.^(-1./k_new).*gamma(1+(1./k_new)); 

cov3 = (sigma3./Wirestrength_old)*100; 

fig1= figure(1); 

set(fig1, 'visible', 'on') 

title('Cable strength as a function of \lambda using Weibull',... 

    'Color', 'k','Fontweight','bold','FontSize',11); 

h=semilogx(lambda,(Wirestrength_old*n*Area)/1e6,'r',lambda,... 

    (Wirestrength_new*n*Area)/1e6,'b'); 

New_XTickLabel = get(gca,'xtick'); 

set(gca,'XTickLabel',New_XTickLabel); 

set(h(1),'linewidth',2); set(h(2),'linewidth',2); 

title('Cable capacity over time'); 

xlabel('Scale factor, \lambda','Fontweight','bold'); 
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ylabel('Cable strength [MN]','Fontweight','bold'); 

legend('\mu prior','\mu updated'); 

grid on; 

 

Part 5 Calculation of strength of cable with Daniel's effect 

For large bundles of wires, the strength of a cable is not seen as the 
sum of each wire, if the number of wires exceed 150 - 200, a reduction 
factor of the strength occurs. This effect is called the Daniels size 
effect. 

w = Max range of x (Strength range) 
j = Range for possible values for lambda 
En5 = Mean strength value 
Dn5 = Standard deviation of cable strength 
The Weibull mean and variance are given by the following equations: 

 

 

w = 2000; 

j = 1000; 
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En5 = zeros(j,1); 

Dn5 = zeros(j,1); 

Each iteration calculates the mean (En5) and standard deviation (Dn5), 
considering lambda as a variable. 

x5 = x value range 
Fz = Weibull cummulative distribution (CDF) 
fz = Weibull density distribution (PDF) 
dfz = Derivative of Weibull PDF 

 

 

dummy = Equation 14 in faber, localizing x0 
x05 = Calculates where the greatest x0 value for each lambda value 
a5 = Correction term found in Faber et al. 
cn5 = Correction term found in Faber et al. 

 

 

 

for lambda5 = 1:j; 

 

x5 = 1:w; 

Fz = (1-exp(-(lambda5.*(x5/u_old_pred).^k_old_pred))); 

dummy = (x5.*(1-Fz)); 

dummy1 = max(dummy); 

x05= x5(dummy == dummy1); 

 

Fz5 = (1-exp(-(lambda5.*(x05/u_old_pred).^k_old_pred))); 

fz5 = (((lambda5.*k_old_pred)/u_old_pred).*(x05/u_old_pred).... 

    ^(k_old_pred-1).*exp(-lambda5.*(x05/u_old_pred).^k_old_pred)); 

 

dfz5 = ((lambda5.*k_old_pred.*exp(-lambda5.*(x05/u_old_pred).... 

    ^k_old_pred))/k_old_pred.^2).*((k_old_pred-1).*(x05/u_old_pred).... 

    ^(k_old_pred-2)-lambda5.*k_old_pred.*(x05/u_old_pred).... 

    ^(2.*k_old_pred-2)); 

 

a5 = ((fz5.^2.*x05.^4)/(2.*fz5+x05.*dfz5)); 

cn5 = (0.966.*(n.^(1/3)).*a5.^(1/3)); 

Dn5(lambda5) = (x05.*sqrt(n.*Fz5.*(1-Fz5))).*(Area/1e6); 

En5(lambda5) = (n.*x05.*(1-Fz5)+cn5).*(Area/1e6); 
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end 

 

% In this plot, the strength is considered as a function of the aging 

% factor, lamda. 

 

figure 

lambda = 1:1:1000; 

z=semilogx(lambda,En5,'k'); 

axis([1 1000 11 13.5]); 

New_XTickLabel = get(gca,'xtick'); 

set(gca,'XTickLabel',New_XTickLabel); 

set(z(1),'linewidth',2) 

xlabel('Scale factor, \lambda','Fontweight','bold'); 

ylabel('Cable capacity [MN]','Fontweight','bold'); 

legend('\mu'); 

title('Cable capacity with Daniels effect',... 

    'Color', 'k','Fontweight','bold','FontSize',11); 

grid on 

Part 6 Reduction factor due to Daniels effekt as a function of the number wires 

5) Daniels effect as a function of the number of wires 

The calculations are preformed as earlier, see part 3) for more 
information. 
While lambda was a variable in part 3), the number of wires is now 
considered as a variable. Otherwise, both parameters and variables are 
the same as in earlier calculations. 

x6 = x value range 
Fz = Weibull cummulative distribution (CDF) 
fz = Weibull density distribution (PDF) 
dfz = Derivative of Weibull PDF 

dummy = Equation 14 in faber, localizing x0 
x05 = Calculates where the greatest x0 value for each lambda value 
a6 = Correction term found in Faber et al. 
cn6 = Correction term found in Faber et al. 

w = 2000; 

lambda6 = 100; 

 

x6 = 1:1:w; 

Fz = (1-exp(-(lambda6.*(x6/u_old_pred).^k_old_pred))); 

dummy = (x6.*(1-Fz)); 

dummy1 = max(dummy); 

x06= x6(dummy == dummy1); 

 

Fz6 = (1-exp(-(lambda6.*(x06/u_old_pred).^k_old_pred))); 

fz6 = (((lambda6.*k_old_pred)/u_old_pred).*(x06/u_old_pred).... 
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    ^(k_old_pred-1).*exp(-lambda6.*(x06/u_old_pred).^k_old_pred)); 

dfz6 = ((lambda6.*k_old_pred.*exp(-lambda6.*(x06/u_old_pred).... 

    ^k_old_pred))/u_old_pred.^2).*((k_old_pred-1).*(x06/u_old_pred).... 

    ^(k_old_pred-2)-lambda6.*k_old_pred.*(x06/u_old_pred).... 

    ^(2.*k_old_pred-2)); 

a6 = ((fz6.^2.*x06.^4)/(2.*fz6+x06.*dfz6)); 

f6 = vector ranging from 1 - l6 number of wires 
N6 = Reduction of capacity due to Daniels effect 

l6 = 10000; 

f6 = 1:l6; 

N6 = zeros(1,l6); 

Calculating the reduction factor due to Daniels effect, where each iteration represent a number of 

wires, ranging from 1 - l6 

for number = 1:l6; 

 

En6 = (number.*x06.*(1-Fz6)... 

    +(0.966.*(number.^(1/3)).*a6.^(1/3))).*(Area/1e6); 

wirecapacity6 = ((lambda6.^-(1/k_old_pred))*u_old_pred).*number.*(Area/1e6); 

reduction = En6/wirecapacity6; 

N6(number) = reduction; 

 

end 

 

% Considering number of wires as the variable 

 

figure 

semilogx(f6,N6); 

axis([10 l6 0.93 0.99]); 

New_XTickLabel = get(gca,'xtick'); 

set(gca,'XTickLabel',New_XTickLabel); 

xlabel('Number of wires','Fontweight','bold'); 

ylabel('Reduction factor due to Daniels effect','Fontweight','bold'); 

legend('Cable strength reduction factor'); 

title('Reduction factor due to Daniels effect (\lambda=constant)'... 

    ,'Color', 'k','Fontweight','bold','FontSize',11); 

grid on 

Part 7 Stress strain 

Stress-strain related input values 

This chapter contains input values regarding the stress-strain simulation with the following input 

values: 
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mu_u7 = Mean yield strain 
sigma_y7 = Standard deviation yield strain 
mu_u7 = Mean failure strain (Ductile) 
sigma_u7 = Standard deviation failure strain (Ductile) 
mu_u72 = Brittle failure strain 
sigma_u72 = Brittle standard deviation 

mu_y7 = 2; 

sigma_y7 = 0.2; 

mu_u7 = 2.5; 

sigma_u7 = 1.0; 

mu_u72 = 1.0; 

sigma_u72 = 0.5; 

ro = Correlation factor between 
max_epsilon = Strain range used in the calculation and plotting of the 
cable strength. 
a7 = Iteration step used in the loops (see "Inner loop") 
N7 = Number of simulations (see "outer loop") 

ro = -0.45; 

max_epsilon = 4; 

a7 = 0.01; 

N7 = 500; 

a_7 = Lower bound for initial strain 
b_7 = Upper bound for initial strain 

a_7 = 0; 

b_7 = 1; 

Log-normally distributed strength 

Both the yield and failure strength is assumed log-normally distributed 
with the following parameters: 

 

 

my7 = Yield mean 
sy7 = Yield standard deviation 
mu7 = Ductile failure mean 
su7 = Ductile failure SD 
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mu72 = Brittle failure mean 
su72 = Brittle failure SD 

my7 = log(((mu_y7)^2)/sqrt(sigma_y7^2 + (mu_y7^2))); 

sy7 = sqrt(log((sigma_y7^2/mu_y7^2)+1)); 

 

mu7 = log(mu_u7^2/(sqrt(sigma_u7^2 + mu_u7^2))); 

su7 = sqrt(log((sigma_u7^2/mu_u7^2)+1)); 

 

mu72 = log(mu_u72^2/(sqrt(sigma_u72^2 + mu_u72^2))); 

su72 = sqrt(log((sigma_u72^2/mu_u72^2)+1)); 

j7 = Range of strain calculations o7 = Number of calculations, see "inner loop" further down 

j7 = 0:a7:max_epsilon; 

o7 = length(j7); 

Empty vectors collecting loop values 

1) The following vectors collect the strength and strain when the cable 
behave ductile 

jobb101 = Cable strengths for each strain value after each simulation 
jobb102 = Collecting cable strength for each strain value 
jobb103 = Collecting maximum cable strength in each simulation 
indexe1 = Collecting the strain at the point with the highest capacity 

jobb101 = zeros(o7,N7); 

jobb102 = zeros(o7,1); 

jobb103 = zeros(N7,1); 

indexe1 = zeros(N7,1); 

2) The following vectors collect the strength and strain when the cable 
behave brittle 
jobb104 = Cable strengths for each strain value after each simulation 
jobb105 = Collecting cable strength for each strain value 
jobb106 = Collecting maximum cable strength in each simulation 
indexe2 = Collecting the strain at the point with the highest capacity 

jobb104 = zeros(o7,N7); 

jobb105 = zeros(o7,1); 

jobb106 = zeros(N7,1); 

indexe2 = zeros(N7,1); 

An empty vector for collecting average initial strain for each simulation 



Master Thesis 2015 
 

XL 

 

average_initial_epsilon = zeros(N7,1); 

Total number of simulations (Outer for-loop) 

The outer loop contains initial assumptions and caluclations regarding 
the initial stress range, correlation factors and values for yield 
strain. 

As seen from the simulation range, the outer loop decides the number of 
simulations preformed in the Monte Carlo method. 

for simulation = 1:N7; 

R7 = Random number generator (default: Uniform distributed), with range a_7-
b_7. 
Initial_epsilon = R7 = Used to normalize the vector length 'epsilon_value' 
average_initial_epsilon(simulation) = Average initial strain 

    R7 = (b_7-a_7)*rand(n,1)+a_7; 

    initial_epsilon = R7; 

    average_initial_epsilon(simulation) = ((sum(R7))/n); 

While the initial strain is uniformly distributed, the strength of the 
wire is lognormally distributed with mean and variance as given above. 
The simulated strength are calculated using the following steps: 

c71 = Latin hybercube sample from a normal distribution 
c72 = Latin hybercube sample from a normal distribution 
X71 = Correlated variable pair [x71 X71] 
rn71 = Normally distributed random numbers 
rn72 = Normally distributed random numbers, with a correlation = ro with rn71 

    c71 = lhsnorm(0,1,n); 

    c72 = lhsnorm(0,1,n); 

    X71 = c71*ro+c72*sqrt(1-ro^2); 

    rn71 = normcdf(c71,0,1); 

    rn72 = normcdf(X71,0,1); 

In order to simulate the yield and failure strain of the cable, the 
normally random numbers calculated above are used. These simulate the 
strain capacity of the wires. This capacity can be shown to be lognormally 
distributed for a large number of wires. 
In these calculations, the function logninv is used: 
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By invoking the inverse lognormal function above, the yield and failure strain is found. Both 

brittle and ductile cases are considered. 

 

    epsilon_yield = logninv(rn71,my7,sy7); 

    epsilon_elongation_ductile = logninv(rn72,mu7,su7); 

    epsilon_failure_ductile = epsilon_elongation_ductile + epsilon_yield; 

 

    epsilon_elongation_brittle = logninv(rn72,mu72,su72); 

    epsilon_failure_brittle = epsilon_elongation_brittle + epsilon_yield; 

Q7 decides the length of the vectors model100 and model101, these are 
vectors containing the stress values in each wire. 
model100 = Ductile behavior 
model101 = Brittle behavior 

    Q7 = numel(c71); 

    model100 = zeros(Q7,1); 

    model101 = zeros(Q7,1); 

Loop for each strain value (inner loop) 

The inner loop simulates the strain in each wire, where the number of 
simulations is decideb by the vector o7, i.e. with the strain range is 0 
- o7 (default = 4%). 

for jj = 1:o7; 

Q7 denotes the number of wires in the cable (Q7), where the strain 
values are calculated c.f. Faber et al. [1] 

    for ii = 1:Q7; 

epsilon_value = Assignes each wire with an initial strain an make sure 
that the vector for each wire is the same length as length in each 
simulation. 
Shortly explained: The strains are simulated randomly, meaning that the 
length of the vector changes for each simulation, since the values 
change after each simulation. In order to sample these values, 
MATLAB demands that the length of the vectors are the same. 
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   epsilon_value = initial_epsilon(ii):a7:max_epsilon+initial_epsilon(ii); 

The if sentences given below calculates the strain according to the 
equation 17 in Faber et al [1]. Shortly summarized the strain in a wire 
are given as three possibilites (Too short time to implement in Latex): 
1) Strain < than yield strain = The strain in the wire 
2) Strain between yield an failure strain = Strain in the wire are given 
as the yield strain 
3) Strain in the wire > failure strain = The wire is 
considered broken. 

The upper part calculates the strain if the wires behave ductile and the 
lower if the wires behave brittle. 

    if epsilon_yield(ii) >= epsilon_value(jj); 

        epsilon1 = epsilon_value(jj); 

    elseif epsilon_yield(ii) < epsilon_value(jj)... 

           && epsilon_value(jj) < epsilon_failure_ductile(ii); 

        epsilon1 = epsilon_yield(ii); 

    elseif epsilon_failure_ductile(ii) <= epsilon_value(jj); 

        epsilon1 = 0; 

    end 

 

    if epsilon_yield(ii) >= epsilon_value(jj); 

        epsilon2 = epsilon_value(jj); 

    elseif epsilon_yield(ii) < epsilon_value(jj)... 

           && epsilon_value(jj) < epsilon_failure_brittle(ii); 

        epsilon2 = epsilon_yield(ii); 

    elseif epsilon_failure_brittle(ii) <= epsilon_value(jj); 

        epsilon2 = 0; 

    end 

model100(ii) = Sampling stress for each wire (Ductile) 
model101(ii) = Sampling stress for each wire (Brittle) 
The strain values are given in %, dividing by 100 to compensate 

    model100(ii) = ((epsilon1/100)*E); 

    model101(ii) = ((epsilon2/100)*E); 

 

    end 

p7 = The capacity of the cable given as a sum of each wire (Ductile) 
p72 = The capacity of the cable given as a sum of each wire (brittle) 

    p7 = sum(model100)*Area; 

    p72 = sum(model101)*Area; 
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The calculations below are identical, with the only difference that one 
estimates the maximum capacity (jobb103) in the ductile case and the 
other for brittle behavior (jobb106) 

jobb101(jj,simulation) = Capacity of the cable after each strain 
simulation (outer loop), see Figure 1 
jobb102(jj) = Capacity of the cable (inner loop) 
[MaxValue,linearIndexOfMaxes] = Locates the maximum capacity in each 
simulation 
max_capacity1 = The maximum capacity 
indexe1(simulation) = Location of the maximum capacity 
jobb103(simulation) = Maximum capacity value for each simulation 

    jobb101(jj,simulation) = p7; 

    jobb102(jj) = p7; 

    [MaxValue,linearIndexOfMaxes] = max(jobb102(:)); 

    pst1 = [MaxValue,linearIndexOfMaxes]; 

    max_capacity1 = pst1(1,1); 

    indexe1(simulation) = pst1(1,2); 

    jobb103(simulation) = max_capacity1; 

 

    jobb104(jj,simulation) = p72; 

    jobb105(jj) = p72; 

    [MaxValue,linearIndexOfMaxes] = max(jobb105(:)); 

    pst2 = [MaxValue,linearIndexOfMaxes]; 

    max_capacity2 = pst2(1,1); 

    indexe2(simulation) = pst2(1,2); 

    jobb106(simulation) = max_capacity2; 

 

end 

meanjobb1(simulation) = Average cable strength after each simulation 
(Ductile) 
meanjobb2(simulation) = Average cable strength after each simulation 
(Brittle) 

meanjobb1(simulation) = mean(jobb103); 

meanjobb2(simulation) = mean(jobb106); 

end 

Final calculation 

This chapter contains the final calculations, where the strength of a 
cable are estimated, based on the simulations above. 

q7 = Vector with values going from 1 to total number of simulations, 
mainly used in the plots and as a "normalizing" factor 
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q7 = 1:N7; 

Ductile behavior 

The strength of a cable when the behavior is ductile 

A7(72) finds the mean value for each "external" epsilon step by summing the values in each row, 

and dividing by total number of simulations. 

M7 = A matrix containing the sum of each step 
mean7 = Average mean value for each simulation 
A7 = Mean value of all the simulations for each value of epsilon 
epsilon_external_at_max_cap1 = The strain values at the maximum 
capacity after each simulation 
epsilon_at_max_cap1 = Total strain value at maximum capacity 

The mean function is multiplied by the total number of simulations (N7), 
to compensate for this, the vector q7 = [1 2 ... N7] are multiplied so 
that the number of simulations are taken into account. 

epsilon_external_at_max_cap finds at what external strain the maximum 
capacity is after each simulations. These maximum values are used in the 
histogram plots (Figure 6 and 7) 

M7 = (meanjobb1'.*N7); 

mean7 = M7./q7'; 

A7 = (sum(jobb101,2))/N7; 

epsilon_external_at_max_cap1 = j7(indexe1)'; 

epsilon_at_max_cap1 = epsilon_external_at_max_cap1... 

                      + average_initial_epsilon; 

meanvalue71 = Mean value 
standardvalue71 = Standard deviation 
cov71 = Coefficient of variation 

meanvalue71 = mean(jobb103)/1e6; 

standardvalue71 = std(jobb103)/1e6; 

cov71 = (standardvalue71/meanvalue71)*100; 

cap71 = [meanvalue71 standardvalue71 cov71]; 

Brittle behavior 

The calculations are exactly the same as the one given above 

M72 = (meanjobb2'.*N7); 

mean72 = M72./q7'; 
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A72 = (sum(jobb104,2))/N7; 

epsilon_external_at_max_cap2 = j7(indexe2)'; 

epsilon_at_max_cap2 = epsilon_external_at_max_cap2... 

                      + average_initial_epsilon; 

 

meanvalue72 = mean(jobb106)/1e6; 

standardvalue72 = std(jobb106)/1e6; 

cov72 = (standardvalue72/meanvalue72)*100; 

cap72 = [meanvalue72 standardvalue72 cov72]; 

Maximum mean value, standard deviation and coefficient of variation of 
ductile and britle wires 

cap7 = [cap71;cap72]; 

Figure 1: Individual cable capacity for each simulation (Ductile) 

The capacity for each simulation are shown here, as we see, the 
capacities are relatively similiar in the elastic range, where the main 
difference between the simulations occur in the plastic range 

figure 

hold on; 

plot(j7,jobb101); 

ylabel('Force [N]','Fontweight','bold'); 

xlabel('Strain external, \epsilon (%)','Fontweight','bold'); 

title('Individual cable, ductile behaviour','Color', 'k',... 

      'Fontweight','bold','FontSize',11); 

grid on; 

hold off; 

Figure 2: Individual cable capacity for each simulation (Ductile) 

The capacity for each simulation are shown here, as we see, the 
capacities are relatively similiar in the elastic range, where the main 
difference between the simulations occur in the plastic range. 
The main difference from Figure 1 is the plastic plateau, which is 
smaller when we assume that the cable behaves brittle. 

figure 

hold on; 

plot(j7,jobb104); 

ylabel('Force [N]','Fontweight','bold'); 

xlabel('Strain external, \epsilon (%)','Fontweight','bold'); 

title('Individual cable, brittle behaviour',... 

       'Color', 'k','Fontweight','bold','FontSize',11); 
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grid on; 

hold off; 

Figure 3: Convergence rate based on the number of simulations (Ductile) 

The capacity converge towards the exact solution roughly after 300 - 500 
simulations 

figure 

hold on; 

plot(q7,mean7); 

xlabel('Number of simulations, N7','Fontweight','bold'); 

ylabel('Average force [N]','Fontweight','bold'); 

title('Convergance of number of simulations','Color', 'k',... 

      'Fontweight','bold','FontSize',11); 

legend('ductile'); 

hold off; 

Figure 4: Convergence rate based on the number of simulations (Brittle) 

The capacity converge towards the exact solution roughly after 250 - 300 
simulations 

figure 

hold on; 

plot(q7,mean72); 

xlabel('Number of simulations, N7','Fontweight','bold'); 

ylabel('Average force [N]','Fontweight','bold'); 

title('Convergance of number of simulations','Color', 'k',... 

      'Fontweight','bold','FontSize',11); 

legend('brittle'); 

hold off; 

Figure 5: Brittle and Ductile cable capacity as an average 

The capacities shown here are an average of the capacities found in 
Figure 1 and 2 

figure 

hold on; 

h7 = plot(j7,A7,'k',j7,A72,'b'); 

set(h7(1),'linewidth',2,'linestyle','-.') 

xlabel('External strain, \epsilon (%)','Fontweight','bold'); 

ylabel('Force [N]','Fontweight','bold'); 

legend('Ductile behaviour','brittle behaviour') 

title('Stress-strain relationship','Color', 'k',... 

      'Fontweight','bold','FontSize',11); 
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grid on 

hold off; 

Figure 6: Histogram showing the maximum capacity at different strains (Ductile) 

As seen in the figure, most of the simulations show a maximum capacity 
around an 2.7% elongation 

figure 

hold on; 

hist(epsilon_at_max_cap1); 

xlabel('Epsilon'); 

ylabel('Number of simulations'); 

title('For what epsilon value that give the highest capacity, ductile'); 

grid on; 

hold off; 

Figure 7: Histogram showing the maximum capacity at different strains (Brittle) 

As seen in the figure, most of the simulations show a maximum capacity 
around an 2.15% elongation 

figure 

hold on; 

hist(epsilon_at_max_cap2); 

xlabel('Epsilon'); 

ylabel('Number of simulations'); 

title('For what epsilon value that give the highest capacity, Brittle'); 

grid on; 

hold off; 

 

toc; 
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APPENDIX E – MATLAB SCRIPT FOR ANALYTICAL UPDATING 

Uncertain mean and known standard deviation 

Normal Distribution with known Standard deviation and unknown mean 

clc; clear all; 

x_hat = New information (observations) 

X = stress range 

tic; 

step = 0.01; 

X = 1760:step:1800; 

x_hat = log([1750 1760 1770 1780 1790]); 

Initial Assumptions 

A normally distributed variable X, whith parameters Theta = $(Mx,sigma_x)$ is 

considered. The standard deviation sigma_x is known, and the mean value (M_x) is 

considered a random variable. 

The prior distribution has an uncertain mean and the following 

parameters: 

 

Where the mean M_x has the following properties: 

 

mu_prior = mean of Mx 

sigma_x = Standard deviation of theta 

sigma_x = 0.5; 

mu_prior = 7.5; 

New tests (observations) are made with the following 

mean and number of new test samples 
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n_new = numel(x_hat); 

mu_new = mean(x_hat); 

The loop below simply allows the plotting of three different graphs, 

where P is the number of tests (n_prior), i.e. the loop plots the PDF 

when we have 1 test, 3 tests and 5 tests. 

jobb_mean = Sampling vector for the mean 

jobb_std = Sampling vector for standard deviation 

P = 1:2:5; 

k = numel(P); 

jobb_mean = zeros(k,1); 

jobb_std = zeros(k,1); 

 

for ii = 1:k; 

n_prior = number of prior tests 

sigma_prior_dot = standard deviation of Mx 

sigma_prior = Standard deviation of the prior distribution 

 

 

n_prior = P(ii); 

sigma_prior_dot = sqrt(sigma_x.^2./n_prior); 

sigma_prior = sqrt(sigma_x.^2+sigma_prior_dot.^2); 

mu_posterior = Mean of posterior distribution 

sigma_posterior = Standard deviation of posterior distribution 

sigma_predictive = Standard deviation of predictive distribution 
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mu_posterior = (((mu_prior/n_new)+(mu_new/n_prior))/((1/n_new)+(1/n_prior))); 

sigma_posterior = sqrt(((sigma_x*sigma_prior)/(n_new*n_prior))... 

    /((sigma_x^2/n_new)+(sigma_x^2/n_prior))); 

sigma_predictive = sqrt(sigma_posterior^2+sigma_x^2); 

Trasnferring the mean and standard deviation from lognormal to normal 

distribution 

mu = exp(mu_posterior); 

sigma = exp(sigma_predictive); 

mu2 = exp(mu_prior); 

sigma2 = exp(sigma_prior); 

The normally distributed PDF for the prior and predictive distribution. 

predictive_distribution_pdf = normpdf(X,mu,sigma); 

prior_distribution_pdf = normpdf(X,mu2,sigma2); 

jobb_mean(ii) = mu; 

jobb_std(ii) = sigma; 

end 

Figure 1: Predictive distribution 

How different number of tests affect the predictive distribution are 

shown below. 

figure 

hold on; 

plot(X,normpdf(X,jobb_mean(1,1),jobb_std(1,1)).*step,'g','Linewidth',1.5); 

plot(X,normpdf(X,jobb_mean(2,1),jobb_std(2,1)).*step,'r','Linewidth',1.5); 

plot(X,normpdf(X,jobb_mean(3,1),jobb_std(3,1)).*step,'k','Linewidth',1.5) 

legend('n=1','n=3','n=5'); 

title('Predictive distribution weighted on number of prior tests'); 

xlabel('Load level'); 

ylabel('PDF'); 

hold off; 

toc; 

Elapsed time is 1.239221 seconds. 
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Published with MATLAB® R2013a 

 

 

 

 

 

 

 

Uncertain mean and standard deviation 

Normal Distribution with unknown Standard deviation and unknown mean 

The following example is based of an example in Annex A in the 
dissertation written by our supervisor Jochen Koehler. 

http://www.mathworks.com/products/matlab
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clc; clear all; 

Stress range and number of test samples 

X = stress range 
fa = number of new tests, used to demonstrate the effect in the 
predictive distribution. 
l = number of new tests 

step = 0.01; 

X = 1760:step:1810; 

b = numel(X); 

fa = 1:2:5; 

l = numel(fa); 

Prior information: 

mu_prior = Prior mean 
sigma_prior = Prior standard deviation 
dn_prior = 
tom = Samples the predictive distribution for different number of new 
tests (fa), see 'inner loop' 

mu_prior = 7.5; 

sigma_prior = 1.5; 

dn_prior = 1; 

tom = zeros(b,fa); 

Warning: Size inputs must be scalar. This will error in a future release.  

New information 

z = new test samples 
mu_new and mu_new2 is the log-mean and mean respectively 
sigma_new and sigma_new2 is the log-SD and standard deviation 

z = log([1750 1760 1770 1780 1790]); 

mu_new = mean(z); 

mu_new2 = exp(mu_new); 

sigma_new = std(z); 

sigma_new2 = exp(sigma_new); 

n_new = Number of new test samples 
dn_new = ?? 
v_new = Degrees of freedom (DOF) in the new test sample (students 
t-distribution) 
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n_new = numel(z); 

dn_new = 1; 

v_new = n_new-1; 

Outer loop 

The outer loop runs 3 iterations (default) 

for ff = 1:l; 

mu_prior2 and sigma_prior2 transforms the prior standard deviation and 
mean from a lognormal distribution to normal. 

mu_prior2 = exp(mu_prior); 

sigma_prior2 = exp(sigma_prior); 

n_prior = Number of new tests, where the the number in the first 
(default) are 1, then 3 and finally 5. 
v_prior = number of DOF 

n_prior = fa(ff); 

v_prior = n_prior+1; 

Posterior mean, standard deviation and DOF 

 

 

 

 

mu_posterior = ((n_prior*mu_prior+n_new*mu_new)/(n_prior+n_new)); 

mu_posterior2 = exp(mu_posterior); 

n_posterior = n_new+n_prior; 

dn_posterior = 1; 

sigma_posterior = sqrt(((v_prior*sigma_prior^2+n_prior*mu_prior^2)+... 

    (v_new*sigma_new^2+n_new*mu_new^2)-n_posterior*mu_posterior^2)/... 

    ((v_prior+dn_prior)+(v_new+dn_new)-dn_posterior)); 
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sigma_posterior2 = exp(sigma_posterior); 

v_posterior = v_prior+dn_prior+v_new+dn_new-dn_posterior; 

fungamma_prior = @(v) exp(-v).*v.^(v_prior./2); 

gamma_prior = integral(@(v)fungamma_prior(v),0,Inf); 

fungamma_posterior = @(v) exp(-v).*v.^(v_posterior./2); 

gamma_posterior = integral(@(v)fungamma_posterior(v),0,Inf); 

Prior and posterior distribution 

The prior and posterior distribution are given as the Normal-Inverse-Gamma-2 
given below 

 

 

 

 

Where the prior is based on the prior information and posterior the 
updated. Both follow the Normal-Inverse-Gamma-2 distribution given 
above. 

prior =@(mu,sigma) (sqrt((1./sigma.^2).*n_prior)./sqrt(2.*pi)).*... 

    exp(-0.5.*(((mu-mu_prior2)./(1./sqrt((1./sigma.^2).*... 

    n_prior))).^2)).*(1./(gamma_prior.*2)).*(0.5.*v_prior.*... 

    sigma_prior2.^2.*(1./sigma.^2)).^(0.5.*v_prior-1).*exp(-0.5.*... 

    v_prior.*sigma_prior2.^2.*(1./sigma.^2)).*v_prior.*sigma_prior2.^2; 

posterior = @(mu,sigma)(sqrt((1./sigma.^2).*n_posterior)./sqrt(2.*pi)).*... 

    exp(-0.5.*(((mu-mu_posterior2)./(1./sqrt((1./sigma.^2).*... 

    n_posterior))).^2)).*(1./(gamma_posterior.*2)).*(0.5.*v_posterior.*... 

    sigma_posterior2.^2.*(1./sigma.^2)).^(0.5.*v_posterior-1).*... 

    exp(-0.5.*v_posterior.*sigma_posterior2.^2.*(1./sigma.^2)).*... 

    v_posterior.*sigma_posterior2.^2; 

Predictive distribution 

The predictive distribution is found by integrating the mean and 
standard deviation. 

fun_pred = normalPDF multiplied with the posterior distribution yields 
the predictive distribution as a function of mean and standard 
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deviation. 
predictive2 = Integrating the unknowns yields the predictive function, 
where the variable 'x' is the wirestrength. 
predictive = Arrayfun inserts different values for 'x' directly. 

normalpdf = @(x,mu,sigma) normpdf(x,mu,sigma); 

fun_pred = @(x,mu,sigma) normalpdf(x,mu,sigma).*posterior(mu,sigma); 

 

predictive2 =@(x) integral2(@(mu,sigma)fun_pred(x,mu,sigma),0,2000,0,1000); 

predictive = @(x) arrayfun(predictive2,x); 

 

for ss = 1:b; 

    sa = predictive(X(ss))*step; 

    tom (ss,ff) = sa; 

end 

end 
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Normalization 

a1 - a3 calculates the normalization factor so that the area of the 
predictive distribution = 1. 

a1 = 1/sum(tom(:,1)); 

a2 = 1/sum(tom(:,2)); 

a3 = 1/sum(tom(:,3)); 

Figure 1: Predictive distribution 

Figure 1 shows the effects of different prior test numbers. 

figure 

hold on; 

plot(X,tom(:,1)*a1,'g','Linewidth',1.5); 

plot(X,tom(:,2)*a2,'r','Linewidth',1.5); 

plot(X,tom(:,3)*a3,'k','Linewidth',1.5); 

legend('n = 1','n = 3','n = 5'); 

title('Predictive distribution weighted on number of prior tests'); 

xlabel('Load level'); 

ylabel('PDF'); 

hold off; 
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APPENDIX F – MATLAB SCRIPT FOR WEIBULL PDF 

function newpdf=wblpdf(x,A,B) 

% The weibullpdf based on the shape and scale parameteres A and 

B. Where 

% 'x' is  

newpdf = B/A.*(x/A).^(B-1).*exp(-(x/A).^B); 

 

 


