
Applying Learning Analytics in the course
TDT4100 at NTNU

Stein Kjetil Sørhus

Master of Science in Computer Science

Supervisor: Hallvard Trætteberg, IDI

Department of Computer and Information Science

Submission date: June 2015

Norwegian University of Science and Technology

Abstract

In the Object Oriented Programming course TD4100 at NTNU there is a need to get an
improved overview of the learning challenges of the students. A better understanding of
how the students work, and how they handle the weekly programming exercises, could
enable further improvements of both the exercises and the course.

A design science approach was used to implement a Learning Analytics system to
be used in TDT4100 and similar courses. The aim was to create a visualisation of the
students’ progress through exercises, by collecting snapshots of the source code being
written. Several metrics were extracted from the snapshots to enable an expression for
progress to be created. An experiment was conducted with voluntary students in TDT4100
to assess the proposed progress metric.

The results indicated that the progress of students when completing exercises can be
measured. The results also indicate that visualising the progress metric over time enables
identification of areas of breakdowns. Inspecting the students’ source code at these areas
was shown to aid in identifying the challenges of the students.

The implemented system worked according to specifications and enabled research into
how students progressed through exercises. The system was flexible and several extensions
were successfully made through iterations of development and evaluation. The results of
the thesis is seen as a starting point for further research into the challenges of the students
in TDT4100.

i

ii

Sammendrag

I faget "Objektorientert programmering med Java"(TD4100) ved NTNU er det et behov
for å få en bedre oversikt over læringsutfordringer til studentene. En bedre forståelse av
hvordan elevene arbeider, og hvordan de håndterer de ukentlige programmeringsøvingene,
kan muliggjøre forbedringer av både øvelser og faget.

Design science ble brukt som metode for å implementere et Learning Analytics sys-
tem som kan brukes i TDT4100 og tilsvarende fag. Målet var å lage en visualisering av
studentenes progresjon gjennom programmeringsoppgaver, ved å lagre flere versjoner av
kildekoden som ble skrevet. Flere parametrer ble innhentet fra kildekoden for å mulig-
gjøre sammensettning av et uttrykk for progresjon. Et eksperiment ble gjennomført med
frivillige studenter i TDT4100, for å evaluere det foreslåtte uttrykket.

Resultatene indikerte at progresjonen til studenter som jobber med øvinger kan måles.
Resultatene tyder også på at visualisering av progresjonsmålet over tid, gjør det mulig
å identifisere områder med "breakdowns". Ved å inspisere studentenes kildekode i disse
områdene er det mulig å identifisere studentenes læringsutfordringer.

Systemet som ble implementert fungerte i henhold til spesifikasjonene og muliggjorde
forskning på elevenes progresjon i øvinger. Systemet var fleksibelt og flere utvidelser
ble implementert gjennom flere iterasjoner av utvikling og evaluering. Resultatene fra
avhandlingen regnes som et utgangspunkt for videre forskning på læringsutfordringene til
elevene i TDT4100.

iii

iv

Acronyms

API Application Program Interface. 24, 25

HTTP Hypertext Transfer Protocol. 23, 25

IDE Integrated Development Environment. 3, 7, 8, 20, 21, 38, 56

IPC Inter-Process Communication. 23, 24

JSON JavaScript Object Notation. 25

LMS Learning Management System. 10, 20

MQTT MQ Telemetry Transport. 23

REST Representational State Transfer. 25

VM Virtual Machine. 22

v

Acronyms

vi

Contents

1 Introduction 3
1.1 Problem Identification & Motivation . 3
1.2 Problem definition . 4
1.3 Thesis Structure . 4

2 Literature Review 7
2.1 Challenges of Novice Programmers . 7
2.2 Learning Analytics . 8
2.3 Code Evolution . 8
2.4 Research Grounding . 9

3 Objectives of a Solution 11
3.1 Research Questions . 12
3.2 Methodology . 13
3.3 Hypothesis Development . 14

3.3.1 Progress . 14
3.3.2 Breakdowns . 16

3.4 Objectives of the Artifact . 17
3.4.1 Functional Objectives . 17
3.4.2 Non-functional Objectives . 17

4 Design and Development 19
4.1 Context - details of the course . 19
4.2 Specifications . 20

4.2.1 Data Collection . 20
4.3 Data Analysis . 22
4.4 Contextual Constraints . 22

4.4.1 Time limit . 22
4.4.2 Technical . 22

4.5 Application Architecture . 23
4.5.1 Microservices . 23
4.5.2 Event Sourcing . 25
4.5.3 Data Structure . 25

4.6 Data Collection . 26

vii

CONTENTS

4.6.1 Collected information . 26
4.6.2 Eclipse plugin . 26
4.6.3 Data Processing . 28

4.7 Analysis and Experimentation . 29
4.7.1 Development Iterations . 29
4.7.2 Explore View . 30
4.7.3 Participant comparison . 32
4.7.4 Snapshot browser . 32
4.7.5 Client Inspector . 35

5 Demonstration 37
5.1 Student Experiment & Context . 37
5.2 Data Collection . 37

5.2.1 Ethics . 37
5.2.2 Participants . 38
5.2.3 Collected data . 39

5.3 Data Analysis . 39
5.4 Experiment with course assistants . 42

6 Results 45
6.1 Progress . 45
6.2 Breakdowns . 47
6.3 Experiment with course assistants . 48

7 Discussion & Evaluation 51
7.1 Discussion . 51

7.1.1 Progress . 51
7.1.2 Breakdown . 55
7.1.3 Incorrectly identified breakdowns 57
7.1.4 Work flow . 58
7.1.5 Experiment with course assistants 58
7.1.6 Significance of results . 60

7.2 Evaluation of Data Collection & Processing 61
7.2.1 Assignment classification . 61
7.2.2 Manual testing . 61
7.2.3 Collected information . 62
7.2.4 Frequency of collection . 62

7.3 Evaluation of Data Analysis and Exploration 62

8 Conclusion 63
8.1 Research questions . 63
8.2 Implemented system . 64
8.3 Suggestions for future work . 64

viii

CONTENTS

Appendix A System Implementation 71
A.1 Architecture Overview . 71

A.1.1 Application Services . 71
A.1.2 LA Helper - Client . 71
A.1.3 LA Helper Server . 73
A.1.4 Storage Service . 73
A.1.5 Processing Service . 74
A.1.6 Analysis Projection . 74

A.2 Analysis and Experimentation . 75

Appendix B Experiment Details 77

Appendix C Source Code 79

ix

CONTENTS

x

List of Figures

4.1 Architecture overview in the context of microservices 24
4.2 Architecture overview in the context of event sourcing 26
4.3 Relational structure of the data . 27
4.4 Settings page for the Eclipse plugin . 27
4.5 Screenshot of adding a new expression 31
4.6 Screenshot of the explore view of the application 31
4.7 Comparison of including and removing idle time 32
4.8 Screenshot of the participant comparison view of the application 33
4.9 Screenshot of the snapshot browser of the application 34
4.10 Overview of some of the features in the snapshot browser 34
4.11 View available to participants to inspect the data collected from them and

increase motivation . 36

5.1 General statistics over the sample set . 39
5.2 Initial expression for progress . 40
5.3 Second expression for progress . 41
5.4 Final expression for progress . 42

6.1 Progress curves following relatively linear progress 46
6.2 Progress curves following non-linear progress 47
6.3 Breakdown identified after 70 minutes 48
6.4 Breakdown identified after 10 minutes 48
6.5 Overview of the progress curves of the assistants while working through

one of the exercises in the course . 49

7.1 Comparison of exercise with many tests, and exercise with few tests . . . 52
7.2 Exercise where code had to be re-written to pass later tests 53
7.3 Incorrectly identified breakdown, with a linear plot that shows the esti-

mated linear progress of the student . 57

A.1 Overview of the artifact architecture . 72
A.2 Relational structure of the data . 75

B.1 Number of participants that have done each exercise 78

1

LIST OF FIGURES

2

Chapter 1

Introduction

1.1 Problem Identification & Motivation

In the Object Oriented Programming course TD4100 at NTNU there is a need to get an
improved overview of the knowledge of the students, and how they progress through the
course. There are over 450 enrolled students each semester, and due to varying level of pre-
vious programming experience among the students, it is difficult to get an understanding
of their expectation and needs of the course. This makes it difficult to assess the perceived
difficulty of both the course and the assignments. A further understanding of how the stu-
dents work and how they handle the weekly exercises could enable further improvements
of both the exercises and the course.

A pre-study to this thesis was completed to determine ways of improving the educational
environment for the students who struggle the most in TDT4100 [1]. The aim was to iden-
tify ways to extend their programming tool to provide guidance and prevent students from
getting stuck. The pre-study was a literature review, that examined research into common
errors made by novice programmers, editors in use and their implemented functionality to
aid programmers, and existing tools in use to aid novices.

The pre-study concluded that more research had to be done to determine the specific chal-
lenges of the students in the course, as the evolution of the modern Integrated Development
Environment (IDE) had implemented several of the findings in early research. The pre-
study suggested that collecting data regarding the specific learning activities of the students
could enable further understanding about their specific challenges.

The students in the course are required to complete weekly programming assignments,
which provide an opportunity to study the process of the students while programming.
Due to the large number of students in the course, an automatic analysis is required to

3

CHAPTER 1. INTRODUCTION

monitor and examine the students work flow.

The aim of this project is to follow up on the pre-study and use Learning Analytics to ex-
amine if it is possible to reason about the students progress through exercises and identify
if and when they are stuck. This knowledge could enable further research into why they
are getting stuck, and will give the lecturer a better understanding of both the level of the
students and what they find most challenging.

1.2 Problem definition

The main objective of the project is to learn more about how the students in TDT4100
work through assignments, and what they find challenging. The pre-study of the thesis
concluded that analysis of the evolution of the source code the students write when com-
pleting assignments, could be a way to approach this research [1].

Therefore the aim of the project is to collect data about the activities of the students while
completing assignments, and create a flexible platform that can be used to analyse this
information. The aim is for the platform to aid in the analysis of the students in the course
TDT4100 specifically, but also enable extension of the platform for use in other courses
and as an overview dashboard to aid lecturers.

1.3 Thesis Structure

This section provides a reading guide for the reader to enable navigation to relevant parts
of the document.

The thesis begins with problem identification and concretisation, and follows on to solution
specification and architecture of the software created. Then the final software is described,
as well as the process of extending the software and performing the research. After this the
results and discussion of the research is presented, as well as an evaluation of the software
solution. The final chapter contains a conclusion and suggestions for future work.

Even though a design science approach was used throughout this project, the results and
the discussion of the experiment is presented using a traditional scientific empirical model.
This been done to highlight the results of the research in a traditional and to the point
manner. The process of arriving at the results and discussion regarding the process used is
found in chapter 5.

Chapter 1 Introduction.

Chapter 2 Detailed overview of the background theory, with an emphasis on Learning
Analytics.

4

CHAPTER 1. INTRODUCTION

Chapter 3 Narrows down and specifies the objectives of the project and the software
developed.

Chapter 4 Technical overview of the system, including overview of the software archi-
tecture and explanation of the different parts of the system.

Chapter 5 Demonstrates the use of the application by detailing how the experiment with
students in TDT4100 was performed, and the design science approach of developing
the analysis software.

Chapter 6 Results of the experiment.

Chapter 7 Discussion of the results of the experiment and evaluation of the software and
research in relation to the objectives and research questions.

Chapter 8 Conclusion and suggestions for future work.

5

CHAPTER 1. INTRODUCTION

6

Chapter 2

Literature Review

The project started with a literature review to examine if there has been any research on
similar problems, and to examine the results that has been found.

2.1 Challenges of Novice Programmers

This project was preceded by a literature review[1] intended to identify how the Eclipse
IDE could be extended to aid novice programmers. The motivation for this study was to
improve the learning environment for the students struggling the most in TDT4100.

The study examined topics such as common errors made, the challenges, and the tools
used by novice programmers. The study identified many common errors and challenges
encountered by novices in general. However, due to the development of modern IDEs and
the lack of recent and specific research on the particular programming language and IDE
used by the students, the relevance of the data was questionable.

Even though several suggestions were made to improve the aid provided to students by
Eclipse, the data was not adequately reliable. This lead to a conclusion that more research
had to be conducted to specifically identify the challenges of the students in TD4100.

A suggestion was made to automatically monitor how the students work through assign-
ments by continuous logging of the written source code. The project also developed a
proof of concept logging plugin to demonstrate how it might be done.

This study serves as the foundation for this project. The aim of this project is to use the
data collected through such a plugin to perform analysis that can aid in improving the
educational environment for the students in TDT4100.

7

CHAPTER 2. LITERATURE REVIEW

2.2 Learning Analytics

Learning Analytics is a relatively new field of study with roots in several fields including
Educational Data Mining, Business Intelligence and Psychology [2]. Learning Analyics
uses learner produced data as a foundation for further inference about the situation of
learners with the goal of improving the learner environment. The aim is to create analysis
models and discover information from the data collected from learner activities that can
give further insight into the learners situation [2].

Educational Data Mining has a significant relation to Learning Analytics [3]. Even though
there are many overlaps, the most prominent difference is the overall aim of the research.
Educational Data Mining is more focused on creating inferences through automatic sys-
tems with no human intervention. The aim is often to decrease the workload of the teacher
through automatic assessment of students, or outcome prediction.

Learning Analytics on the other hand puts the learner in focus. The aim is to inform and
empower learners and educators to improve learning. In previous research this has been
done through creating tools that contribute to learning and give insight into the learning
environment and state of the students [3].

Since Learning Analytics has roots in several fields, there are many different approaches
used in the research. This includes automatic analysis such as machine learning [4], statis-
tics, as well as manual approaches where an abstraction of the data is inspected directly
by the researcher[5]. The current tools resulting from Learning Analytics include early
warning systems, automatic tutors and recommender systems [2].

The field of Learning Analytics is still developing. Researchers are currently exploring
the potential of Learning Analytics for the future, and the tools currently made are only
of the first generation. This means that there are minimal experience and frameworks to
build from, however it also means that there are many discoveries to be made. Siemens
[2] argues that Learning Analytics has a potential for a significant impact in the education
systems today, and could transform the system on all levels.

2.3 Code Evolution

Many researchers have looked into ways of gathering code snapshots or inspecting them
over time. This includes plugins for various IDEs made for collecting snapshots, and tools
created for the specific purpose of analysing the snapshots. However, few have ventured
into automatic analysis and metric extraction of the data.

Marmoset[6] was a system developed for automatic submission and testing of student
assignments. The data collection was added as a plugin to the Eclipse IDE, and the system
also enabled optional snapshots of the students code whenever they saved a file.

8

CHAPTER 2. LITERATURE REVIEW

Spacco et al. [7] used Marmoset to collect data from 73 students to examine how students
learn to develop software. This research however was focused on the correlation between
errors reported and error exceptions encountered. The aim of the study was to find new
ways of static code analysis to identify errors.

CodeBrowser is a tool for comparing snapshots of code over time[8]. It was created to
inspect the work flow of students as they work through assignments. The tool includes a
timeline that is used to step through each snapshot of the code.

The usage of CodeBrowser requires manual interaction and does not include any automatic
analysis. The purpose is to give instructors and researchers a tool for stepping through the
programming process of learners, and manually reason about the work flow.

Analysing snapshots of code has also been done to examine the edit-compile cycle of
students [9]. A plugin to jBlue was developed together with a snapshot browser to enable
research into how students respond to syntactical errors in the code. Part of the aim of this
research was to identify if there was a correlation between the final grade of the student,
and how the student dealt with syntactical errors.

There is also some research into visualising metrics from snapshots. SnapViz [10] was
created as an online tool to view snapshots metric in the browser. It was made as a proof of
concept to show what is possible and only visualised the time of compilation and whether
the build failed for several snapshots.

Blikstein [5] used learning analytics to assess the behaviour of 9 students in open-ended
programming tasks. The students’ source code was collected in snapshots while they per-
formed an open ended assignment of creating a program to model a scientific phenomenon
of their own choice. Some metrics were extracted from the snapshots, including size of
the code, code compilations as well as error messages and types.

The metrics from the snapshots were then plotted over time to allow the researchers to
identify areas of the curve that deviated from the norm. The inspections resulted in the
researchers suggesting three coding profiles: "copy and pasters", "mixed mode", and "self-
sufficient". These profiles take into account how the students work by looking at how often
code is copy pasted in from other places, and how much time is seemingly spent thinking
of a solution rather than looking it up.

2.4 Research Grounding

The project shares both the aim and the means of Learning Analytics. The aim is to gain a
further understanding of how students work, and the means is through collecting data about
their coding activities. The aim is not to make an automatic assessment of the students
performance, but to use human interference to analyse the data and find information about
the challenges of the students. This information can be used by the course instructors to

9

CHAPTER 2. LITERATURE REVIEW

gain a better understanding of the needs of the students.

Siemens and Baker [3] advocates usage of diverse data in Learning Analytics. Most of the
current tools developed through Learning Analytics research rely solely on data collected
from Learning Management System (LMS)s. The reason for this is that it is one of the few
platforms where the activity of learners are already monitored and collected. This data
usually only measures student participation and engagement in the course, and does not
directly measure actions performed in the learning environment.

Programming education provides a unique ability to collect data about the specific learning
activity of students. This is possible since all work to complete the mandatory program-
ming exercises is being done on the computer. This provides a more detailed and "closer to
the source" view on the learning experience, and has the potential to give a more specific
and accurate depiction of the learners process, compared to the data collected from LMSs.

Since Learning Analytics is still a new field, the research conducted thus far are of variable
relevance for this project. Many studies have been conducted with a focus on collecting
data regarding students activity while programming, however the aims of the research are
differing. Few studies are directly related to examining the work flow of students, however
the methods used in similar studies may still be relevant.

10

Chapter 3

Objectives of a Solution

Even though few studies are directly related to using Learning Analytics to examine the
work flow of novice programmers , the studies identified has provided a grounding for
further research. Both Spacco et al. [7] and Blikstein [5] collected snapshot of students
code over time and developed ways to gain significant insight by analysing certain metrics
in the code.

The approach used by Blikstein [5] was a significant inspiration for this project. The results
show that extracting relevant metrics and plotting them over time can give considerable
insights into how students work.

The study only looked at 9 students, which gave the researchers the possibility to examine
each of the plots carefully. In this project however, there are more than 450 students, each
completing many exercises through the semester. Therefore the exact same method cannot
be used as it is not feasible to individually examine the graphs of all students.

The optimal solution would be to find a metric that would give similar insights into how
students work, without the need for time consuming examination of each plot. This metric
should allow comparisons of students working through the same exercise, to easily identify
patterns that indicate the students who are struggling.

The other difference to the study is the aim of the research. Since the aim of the project
is to identify the challenges of the students, the metric would need to provide information
regarding when students are having issues progressing in the exercise. This was not part
of the objective of the study, and only plotting the size of the code over time might not
provide the necessary information.

Therefore the goal of the research is to find a visualisation for the progress of students
through exercises. Since progress is a general measure that is independent of the type
of exercise, visualising progress would allow easy comparison of students, as well as ex-

11

CHAPTER 3. OBJECTIVES OF A SOLUTION

ercises. The progress metric would also provide identification of challenging parts of
exercises, where the progress over time would be low relative to the other parts.

3.1 Research Questions

Due to the broad scope of the project, it was necessary to narrow down the research goal
of the project to a manageable level. Through several iterations the research goals were
condensed to only a few research questions that encompass the essence of the wanted
information about the work of the students.

Q1: How can data collected from students working through programming exercises
be used to reason about their progress through the exercises?

As detailed earlier, the progress of the students was found to be a metric that could be
used to infer information about how the students work. In this project a students progress
through an exercise is meant to show how close the student is to completing the exercise
at any given time.

The assumption is that progress over time is linear through an exercise in ideal condi-
tions. This implies that for each unit of time spent working on the exercise, the student
will progress an equal amount through the task. Due to the context of the project, it is not
expected that students will have a linear progress curve. As they are in a learning environ-
ment it is natural for them to spend more time on some parts of exercises while learning,
this deviation is going to be the most interesting aspect of the progress.

This metric will give insight into differences among students, and the relative difficulty
of exercises depending on the slope of the progress curve. Exercises where a significant
amount of students have a non-linear progress curve could be specifically challenging, and
warrant further inspection.

Q2: How can data collected from students working through programming exercises
be used to identify breakdowns?

A breakdown is a point in an exercise where a student is stuck or spends a long time
progressing relative to the rest of the task. The reasons for breakdowns do not include a
lack of effort, rather it is a lack of knowledge of the subject, a misunderstanding, or similar.
The goal is to identify situations where students need help, so that these instances can be
inspected further. This could include individual breakdowns, or instances where groups of
students are seen to have similar breakdowns.

Knowledge of these breakdowns can enable help to be given both individually and on a
higher level through course adaptation.

12

CHAPTER 3. OBJECTIVES OF A SOLUTION

3.2 Methodology

Design Science was used as the methodology in the design and development of the system
and the research. Design Science is distinguished from natural science in the goal of the
research. Natural science is concerned with understanding and explaining reality, while
design science is concerned with the creation of artifacts that serve specified goals[11].

March and Smith [11] argues that there are two essential activities in design science; build
and evaluate. These activities reflect the creation of the artifact, and an evaluation of the
artifact to ensure it meet the intended goals.

The research model used in this project is a design science research model developed
specifically for information systems research [12]. It was developed to have a standardized
conceptual model that Information Systems researchers can use when performing design
science. This also benefits the readers as it creates a mental model that can act as a template
defining what to expect when reviewing the literature.

The model includes 6 steps:

• Problem identification and motivation
Identifying the problem and justifying the relevance of the solution

• Objectives of a solution
Identifying the objectives of a solution to the problem.

• Design and development
Designing the artifact, including specifications and architecture, as well as the cre-
ation of the artifact.

• Demonstration
Demonstration of how the artifact solves the problem.

• Evaluation
Evaluate to which degree the artifact solves the problem according to the objectives.

• Communication
Communicate the value of the problem and the resulting artifact or research.

These steps are followed both in the project and this written thesis. The thesis includes all
steps except communication, which is omitted as it is manifested as the thesis itself.

Design science is an iterative process, and often iterates through design and development,
demonstration and evaluation. The project went through many iterations of these steps,
especially in the process of developing the analytics application. This stage of the devel-
opment required consistent evaluation of the application according to the objectives and
research questions to ensure advances in the research.

13

CHAPTER 3. OBJECTIVES OF A SOLUTION

3.3 Hypothesis Development

3.3.1 Progress

Progress as a metric

The progress of an activity is an abstract metric. It portrays something about the current
state of the activity in relation to the goal. An example of a simple progress metric is the
distance remaining for a runner in a race. At any given time, the position of the runner
along the track can be used to find the progress of the runner by comparing it to the position
of the goal.

By plotting the progress over time, information about both the runner and the track can be
identified. The slope of the progress curve in relation to other runners, will identify the
relative skill of the runner. A great runner, will run faster than the others, and will progress
more rapidly resulting in a steeper progress curve.

If some parts of the track are more challenging than other parts, this can also be seen on
the progress curve as a decrease in the rate of change of the progress. If a hill is located
along the track, the runners will most likely have a lower average speed when running up
the hill, resulting in a lower average progress over time. A hill can then be identified when
several runners are showing the same signs of a lower rate of change at the same progress
position in the race.

The progress curve can also be used to identify breakdowns, or portions of a race where a
runner is seen to stagnate in progress. This can happen if a runner is exhausted and stops
running to take a break. The breakdown will then manifest on the progress curve as a
portion with a low increase in progress over time.

Identifying progress in programming exercises

Finding the current progress of writing a program is difficult. A program is by definition
complete when it fulfills the required functionality. The problem is that there are an infinite
number of programs that can be created to fulfill the exact same specifications. This means
that there is no given sequence of states to reach the goal when writing a program, as there
is when completing a marathon.

Each marathon has a specified track, and deviations from the track are not allowed. This
makes it easy to compare the state of the runners to the goal. However, programming can
be seen as only giving each runner a starting position and a goal position, and letting them
choose their own track. Knowing the position of the runner at any point is not useful, as it
is not possible to know how the runner will progress further.

14

CHAPTER 3. OBJECTIVES OF A SOLUTION

However, if the program specification is accompanied with several tests that ensure the
partial working of the program, it makes it possible to estimate partial progress. Each
test can be seen as a milestone that has to be reached. If there is a sufficient amount of
milestones, the progress can be estimated by the number of remaining milestones.

Code metrics to identify progress

Size of the code
The most crude way of determining the progress of a program is through the size of the
code. This metric provides information about the effort made by the student to complete a
task, and also that the student has an intention of progress.

However, due to the nature of programming, the size of the source code is a symptom
rather than a cause of a working program. This means that the measure cannot accurately
predict the current progress of the program, in the same way that the number of pages
written cannot determine the current progress of writing a book.

The other issue is that people are different. Depending on how the problem is solved, the
size of the code will change. A simple but elegant solution may require a small amount of
code, but often the same problem can be solved quicker in a less elegant way with more
code. Some people also prefer to have longer variable names, or use more methods. All
these issues makes the size of the code an uncertain measure of progress.

However, the common factor in all these issues is that an increase in size of code usually
means an increase in progress. The act of writing code is a proof that the student is trying to
progress in the exercise. The problem is just that it cannot accurately predict the progress
relative to the finished program.

When refactoring code this assumption does not hold. The programmer may simplify parts
of the code, reducing the size while keeping the functionality. This means that progress
can increase while the size of the code decrease.

However, the assumption is that refactoring is rare in these small student exercises as there
is relatively small amounts of code involved. Therefore the hypothesis is that the size
of the code is an accurate metric for gauging relative increase in progress and intention of
progress, but it does not determine the overall level of progress through an exercise relative
to the final progress measure.

Failed tests
There is no way of determining if a program is complete without knowing the function
the program is supposed to perform. Therefore a finished program must fulfill all required
specifications. This leads to a measure of progress depending on the number of require-
ments that are fulfilled at any given time.

Several tests are provided for the students to check whether their solution satisfies the

15

CHAPTER 3. OBJECTIVES OF A SOLUTION

specified requirements of the exercise. The assumption is that if all tests are passed, the
program is working according to specifications and the exercise must be finished. This
gives a measure of progress of the exercise based on the number of tests that are still left to
pass. Once a student starts an exercise, the number of tests left to pass will be the amount
of tests accompanying the exercise, and when the student finished the exercise, all the tests
will be passed.

The tests do not always account for all the requirements, however most exercises include
several tests, and the aim of the tests is to provide near complete coverage of the code.
This is possible as the students are not graded on the correctness of the exercises, and
are supposed to use the tests to verify that their solution is satisfactory. This leads to the
assumption that the tests can be used as milestones most exercises.

An issue with using the number failed tests as a metric for progress, is that it is a discrete
measure with few states. This is due to the relatively low number of tests for each exercise.
As the goal is for the optimal progress curve to be relatively linear over time, this metric is
not sufficient. Therefore the hypothesis is that failed tests over time will track the overall
progress of the student through the exercise, but will not give the sufficient detail of the
progress over time required to reason about the challenges of the student.

Hypothesis
The resulting hypothesis is that progress through an exercise can be identified by a com-
bination of the number of failed tests and the size of the code written. The failed tests will
provide the milestones towards to goal, while the size of the code will provide detail in
progress between the milestones.

3.3.2 Breakdowns

Breakdowns are situations where a student needs help to progress further. This means that
breakdowns, as defined in this project, is a significant lack of progress over time. This
implies that on a graph showing progress over time, a breakdown should be identifiable as
a part of the curve where the rate of change of progress is significantly lower than other
parts.

Error markers
To aid in the validation of identified breakdowns, the error markers of the code should be
collected. This information would help in understanding why the student is struggling,
and can provide further research into the common errors and challenges that are effecting
the students.

Hypothesis
Breakdowns can be identified on a progress over time graph as a significantly reduced rate
of change in progress.

16

CHAPTER 3. OBJECTIVES OF A SOLUTION

3.4 Objectives of the Artifact

Given the objectives of the research, it is possible to determine more specific objectives of
the required software application. These objectives specifies what is expected of a working
solution and will be used to evaluate the final artifact.

The aim of the system is to provide a flexible platform for Learning Analytics that can
be used in courses like TDT4100. To evaluate and demonstrate the system, the research
into identifying the progress of students will be performed using the system. The goal is
for the system to allow extensions such as dashboards for course instructors to use to get
an overview of the students in the course, and to find other types of measures that can be
relevant for Learning Analytics in programming courses.

3.4.1 Functional Objectives

Collecting Data
The system must be able to log the data required to reason about the metrics specified in
section 3.3.1. Since there is an experimentation element in the project, the aim is to have a
flexible data collection. This means that it is important to keep the original data intact, so
that new metrics can be gathered if required by later analysis. The data collected must be
as elaborate as possible and should not be processed or abstracted before storage.

Storage of Data
The data must be correctly transfered and stored in a central location where it can be
further analyzed. The data must be stored with no modifications or abstractions to prevent
loss of potentially important information.

Analysis
The system must process the collected data and extract the identified metrics. It must
provide an interface for visualising the metrics in relation to each other.

Experimentation and Exploration
The artifact must allow experimenting with relations of metrics to allow new visualisations
based on different combinations. It must also provide interfaces for further experimenting
with the data to compare and contrast different visualisations with different levels of detail
in the data set.

3.4.2 Non-functional Objectives

Scalability
An important aspect of the solution is the scalability of the system. As part of the project
aim is to determine the feasibility of the program in use in a university course, it must be

17

CHAPTER 3. OBJECTIVES OF A SOLUTION

able to accommodate the requirements imposed by this. This means it must be written to
handle large and unspecified amounts of users completing many exercises throughout the
semester.

Flexibility
The analysis process and the experimentation tools must be flexible to allow for rapid
iterations of growing the application to allow new metrics to be added, and new ways of
exploring and analyzing the data set. The application should also allow extensions that
can enable the system to be used in other courses, with potentially different programming
languages and tools.

Performance
The analysis of the whole data set must be in a relatively timely manner in relation to
the size of the data set. There is no real-time requirement for the data processing due
to the performance required to keeping a flexible experimentation possible. However the
architecture should facilitate expansion to enable continuous monitoring and reporting for
future use cases.

18

Chapter 4

Design and Development

This chapter presents the design of the application, including the major architectural deci-
sions and the workings of the end product. The usage of design science as the methodology
requires several iterations between design, development,demonstration and evaluation. In
this project the methodology has been key to ensure rigour both in the research and the
development of the system.

The iterations in the development where major design elements were changed will be
discussed in this chapter, to give an impression of the process and explain reasoning behind
trade-offs and major decisions.

4.1 Context - details of the course

The aim of the system is to be a platform for learning analytics that can be used in several
courses. However, the current usage for this project will be in the course TDT4100 at
NTNU, and therefore the system will be customized for this context while remaining as
flexible as possible to allow for integration in other courses.

The course is an introduction to object oriented programming and is the part of the second
semester of the first year of the computer engineering degree at NTNU. The aim of the
course is to teach students about object oriented programming principles and to teach how
to program in Java.

The students in the course are required to complete a given number of assignments to be
eligible for examination. The assignments consist of multiple exercises of which a given
number has to be completed. The student is usually free to choose which exercises to
complete among several possibilities.

19

CHAPTER 4. DESIGN AND DEVELOPMENT

Some of the exercises are open-ended and require the student to create custom classes and
logic, however most of the exercises follow a specific structure. The exercise specifies
several classes to be created, and also specifies which methods should be implemented
and their expected input and output. The student is then expected to implement the classes
according to the specifications.

The exercises are accompanied by several tests that the student can use to evaluate if their
program is working according to the specifications in the exercise. The number of tests,
and the code coverage the tests provide vary between exercises. It is also optional for the
students to take advantage of the tests, as long as the programs are working as expected
when they hand in the assignments. The students deliver the finished assignments on line
through an LMS.

In this project the exercises that the students complete will be used as the basis for the anal-
ysis. Since the exercises are mandatory, the assumption is that all students will complete
the exercises, given enough time. This means that all students should end up with reaching
the progress goal. Since the exercises are given with strict specifications, an assumption of
the progress through the exercises can be made by examining the current number of failed
tests.

4.2 Specifications

Due to the design science approach used in the process of development, the full and de-
tailed specifications of the system are not known in advance. However the aim and some of
the required functionality is known and will serve as a starting point for further evaluation
and development.

4.2.1 Data Collection

To enable sufficient collection of all required data, the implementation must be tailored
for the context of the participants. The students use the Eclipse IDE as a general tool for
Java programming. This means that they use it both to complete exercises, as well as any
other Java programming they might do. The students choose when to start the assignment,
how to structure their work environment and how to finish the exercises. The files are only
classified as an assignment at the time of delivery on the LMS. This makes specific data
collection regarding the exercises difficult, as it is difficult to determine which files are
related to which exercise.

This presents a challenge for the system. The aim of the system is to require as little work
as possible from the students, to lower the barrier for participation in the voluntary exper-
iment. Therefore manual classification of exercise files is unwanted as it will require extra
work from the participant. Therefore the only way to classify exercises is by identifying

20

CHAPTER 4. DESIGN AND DEVELOPMENT

the contents of the .java files, and relate the content to the exercises.

Since the exercises generally have a mandatory structure, where certain classes are re-
quired, the contents of files can be used as an identification for exercises. The tests run in
Eclipse will also contain a reference to the class files being tested, allowing the test runs
to be collected as well.

To enable data collection of test runs and markers from the work, the utility must be
implemented as a plugin to the IDE in use. The tests are run by the students through
the IDE, which also provides them with the results of the tests.

The Eclipse IDE integrates markers into the gutter next to the code to convey information
regarding errors and warnings. These markers stem from the results of the compilation and
static analysis of the code, and show where problems are found and includes a message to
describe the problem. Collecting these markers can enable reasoning about errors in the
code, in relation to the challenges and breakdowns of students.

This means that the data collection plugin must be able to collect:

• File content of all .java files edited, for later classification

• Test results from the tests that were run for relevant files

• All program markers related to the currently edited file

The data must be collected on an interval that gives the sufficient level of detail needed
for the analysis. There is a trade-off between the detail of the collected data, and the
performance and processing required. Collecting each key-stroke gives incredible detail
into how the students work, but results in significant processing overhead. For the purposes
of this project, the trade-off favors a lower level of detail due to the time span of each
assignment which is in the order of hours.

To get a necessary level of detail with an acceptable level of processing, the data should
be collected each time the current file is changed on disk, i.e when the student saves.
This allows an assumption to be made that reduces the complexity of state processing; the
student assumes the program is in a sufficient working order to warrant a save. Meaning
that they are not in the middle of a small change.

The Eclipse IDE will automatically perform a build and generate program markers that can
be collected with the state every time a save occurs. This means that the data collection is
simplified as program marker will always be up to date.

21

CHAPTER 4. DESIGN AND DEVELOPMENT

4.3 Data Analysis

To make the analysis interface as flexible as possible for future use cases, it will be im-
plemented with a browser based front-end. This will allow the application to be used on
any platform, at any time. It also makes it easier to create extensions that depend on other
editors, as the front-end and server for analysis will be independent.

The data analysis must allow extraction of key metrics from the snapshots collected, and
provide the possibility to change the extracted metrics at any time without loss of data.
The metric that should be extracted include:

• Size of the code

• Number of failed tests

• Time spent

• Associated markers

The application must provide an interface that can enable researchers to create visuali-
sations of expressions based on the collected metrics. The software must also be easily
modifiable and extendible to allow extensions to be made based on the requirements of the
research.

4.4 Contextual Constraints

4.4.1 Time limit

Due to the time limit of 20 weeks for finishing the master thesis, there were some conse-
quences affecting the project. The length of the project was short, so the development and
progress had to be rapid.

The course TDT4100 began at the same time the master project was started, this made it
crucial to start the data collection as early as possible to collect as much data as possible
in the time frame available.

4.4.2 Technical

The application had to run on a Virtual Machine (VM) provided by the technical admin-
istration at NTNU. This put some limitations on the performance of the application as the
VM was given limited computational power.

22

CHAPTER 4. DESIGN AND DEVELOPMENT

4.5 Application Architecture

This section will detail the major architectural patterns used in the application, and give
overviews of the system in different architectural contexts.

The system uses the microservices architectural pattern to divide the application into sev-
eral stand-alone services to increase the flexibility of the system, and enable horizontal
scalability to accommodate increasing number of students.

The data collected is stored using the event sourcing pattern, to retain a full representation
of all events entered in the system. This makes it easy to change the way metrics are
extracted and even allow new metrics to be extracted from all collected data at a later time.

More details regarding the architecture of the implementation can be found in appendix A.

4.5.1 Microservices

Microservice architecture is a relatively new architectural pattern that specifies a way to
structure large applications as a collection of smaller services [13]. Instead of creating
one single monolithic application, each service is itself a small application and by com-
municating together they form the complete system. The purpose is for one service to be a
stand alone entity where the responsible team can freely choose the software and hardware
solutions that fits the service, without being constrained by the rest of the application.

Microservice architecture is often compared to componentization, where an application
is divided into separate components with limited responsibility. The practical difference
between these architectures, is the means of communication between the modules. In a
monolithic component based application, the difference components communicate in an
inter-process manner using language specific features. In a microservice architecture, the
services communicate using Inter-Process Communication (IPC), typically using messag-
ing protocols such as Hypertext Transfer Protocol (HTTP) or MQ Telemetry Transport
(MQTT)[14].

The convention is to have smart endpoints and dumb pipes. This means that communi-
cation between services should be easy and not rely on a complex message bus, and the
services themselves should handle the different types of data structures or requests.

The benefit of microservices is the increased freedom of each service to independently
choose architecture and run-time environments. This makes the applications more flexible,
and allows for more tailored services. This also makes the application more flexible as
services can be swapped out or re-written without changing the other parts of the system.

Scalability is another great benefit of microservices. By ensuring that each service is
created as an independent part of the application, the application can be horizontally scaled

23

CHAPTER 4. DESIGN AND DEVELOPMENT

by replicating services that require more performance.

A disadvantage of microservices is the communication overhead. Since all communication
uses IPC and does not utilize smart message buses, the data often has to be serialized
or processed before sending. This can result in decreased performance required if the
messages are of significant size.

Another disadvantage is re-factoring across module boundaries. Re-factoring inside mod-
ule boundaries is simple with micro services, as each service should have a defined respon-
sibility. However, if a re-factor requires changing the responsibilities of the services, the
work involved can be significant if it results in changing responsibility from one service to
another.

The microservice architecture is applicable to this project to increase the flexibility and
scalability of the application. Since the required performance of use is unknown due to
factors such as the number participants and the number of assignments, it is necessary to be
able to appropriately scale the application if the need arises. By separating major compo-
nents of the application into services, the potential bottleneck services can be replicated.
The architecture also increases the flexibility as services can be more easily changed or
replaced as long as the communication Application Program Interface (API) is consistent.

The architecture was used in the application to separate major components into services,
see figure 4.1 for an overview. The separation was made to allow replication of the per-
formance critical services in the future. Data storage was separated into a separate service
to allow for scalability. Replication could for example be implemented by limiting the
number of students stored on each instance, this would allow the storage to scale with the
number of students in the system. Processing and metric extraction from the data was
also separated into a separate service to enable scalable analysis with high performance
requirements.

Storage

Processing

Collection

Analysis

Figure 4.1: Architecture overview in the context of microservices

24

CHAPTER 4. DESIGN AND DEVELOPMENT

Communication
The communication between services uses standard protocols and data representations to
allow for easy integration and communication with other services. The services communi-
cate through the HTTP protocol via simple Representational State Transfer (REST) APIs
to enable standardized interaction, and the requests and responses follow a JavaScript Ob-
ject Notation (JSON)data structure.

4.5.2 Event Sourcing

Event Sourcing is a pattern concerned with recording action events in an application [15].
The patterns specifies an append-only store to collect operations being performed on a
system. The operations are described using events that specify which operation has been
performed instead of specifying the resulting state of the event. The store acts as a contin-
uous stack of all events that have happened in the system, and can be used to replicate the
current state of the system by playing the events off from the beginning.

Due to the flexibility requirement of the project, it is important that the metrics extracted
from the collected data can change at a later time. This requires the system to store all the
original data, and not just rely on the current state of the metrics when new data arrives.
Event sourcing can enable the collection and storage of the original data, and allow for
replaying the file changes if new metrics are to be extracted.

Event sourcing was used to store all the snapshots of the code that was collected. This
made the full history of the files available at all times, and allowed the metric specifications
and extractions to be changed without impacting the research. When a metric had to be
added, the current metric database could be deleted, and rebuilt by running through all
snapshots again from the beginning.

Projections were created to keep state for the data processing. The implemented projection
was used to store the extracted metrics from the snapshots in a flexible manner. The
structure used can be seen in section 4.5.3.

4.5.3 Data Structure

The relational structure of the extracted data can be seen in figure 4.3. The overview makes
it easy to reason about specific relations in the data, and shows how each user can be seen
as the root of a rooted tree.

25

CHAPTER 4. DESIGN AND DEVELOPMENT

Event StoreEclipse Plugin

Raw Data

Analysis front-end

ProcessorAnalysis
projection

Analyzed Data

Extracted metrics

Figure 4.2: Architecture overview in the context of event sourcing

4.6 Data Collection

4.6.1 Collected information

• File content of all .java files edited in a logging enabled directory

• Test results from jUnit tests that were run

• All markers added by Eclipse related to the currently edited file

• Participation status and specified nickname

4.6.2 Eclipse plugin

The core functionality of the plugin is to collect data. The currently edited file and associ-
ated markers are collected whenever file change on disk (ie. when the user saves), and test
results are collected after tests are run. To install the plugin it has to be downloaded from
a plugin repository through the Eclipse plugin installer.

26

CHAPTER 4. DESIGN AND DEVELOPMENT

Figure 4.3: Relational structure of the data

Once the plugin is installed a pop-up will notify the user of a successful installation, and
present a disclaimer that can be agreed or denied. If the user does not agree to the dis-
claimer, the plugin will not collect any data and will remain disabled. It can be re-enabled
by accepting the disclaimer on the settings page.

Figure 4.4: Settings page for the Eclipse plugin

The disclaimer is retrieved from the server to allow for changes in the disclaimer and to
keep it up to date. If the disclaimer is changed, logging is immediately disabled and a new
pop-up will be presented to the user with the updated disclaimer for them to accept again.

On the first install of the plugin a unique client id will be created for the user to keep the
participant anonymous. This is the only identification used when transferring the collected

27

CHAPTER 4. DESIGN AND DEVELOPMENT

data.

Users also have the option to only allow data collection from specific directories. These
directories can be specified on the settings page by writing a comma separated list of
regular expressions that validates directory paths.

The user can specify an optional nickname in the settings page that will be stored on the
server and associated with the given client id. This allows the user to identify themselves
to the server in cases where this could be wanted, such as gaining insight into what has
been logged about them. The nickname can be changed or removed at any time.

4.6.3 Data Processing

The file snapshots were stored in an event store, and then processed to extract metrics.
The metrics were stored as a projection to the event store to enable a flexible storage of the
metrics that could be destroyed and rebuilt if any changes to the processing was made.

Several metrics were extracted from the collected files.

Line count
To extract the size of the code, the number of lines was used. This decision was made to
make it easy to process, and because the variability in number of lines is assumed to be
lower than the variability in total size of the code.

To count the lines, a primitive count of line break characters was used. The consequence
is that lines that do not influence the program is preserved in the count. This includes
comments, empty lines and unreachable code. The reason for including this is that even
though it is not indicative of a change in the program, it is indicative of a progress in
the assignment. The assumption is that any typing, even typing that has no direct impact
on the running of the code (such as writing comments), is an intention of progress in the
assignment.

Assignment classification
Most of the assignments requires specific classes and interfaces to be created so that the
included test cases would run. This enabled the classification of files into assignments.
The classification was made based on the name of the class or interface contained in the
file, as well as the package name specified in the file. This way of classifying was based
on the structure provided in the exercise description where certain class names were re-
quired. The package name was included in the associated tests, and the assumption was
that students would not change the package name when running the tests.

Number of failed tests
The number of failed tests related to a given snapshot of a file was counted based on the
last known test run by the student. The initial number of failed tests, before any tests were
run, was assumed to be the total of all later tests run.

28

CHAPTER 4. DESIGN AND DEVELOPMENT

Working time
The students were not required to complete each assignment in one continuous session.
Therefore idle time had to be accounted for when measuring time between states and
the total time spent on an assignment. To account for this, any time step between two
adjacent snapshots that was greater than 10 minutes, was assumed to be idle time and was
normalized to 2 minutes.

This means that if the student spent more than 10 minutes searching for a solution without
saving any files, this would be visualised as a working time of 2 minutes. However, when-
ever idle time occurred a flag would be set and the length of the idle time was recorded to
enable visual cues to be displayed in the visualizations.

4.7 Analysis and Experimentation

The analysis application is a browser-based interface that enables visualisation of metrics
in graphs. The expressions for the curves can be created through an interface and can
be any combination of the available metrics. This allows experimentation with different
expressions for similar metrics, or comparison of different expressions. The application
also offers several levels of detail in the data set for different purposes.

Initially the aim was to create an interface that allowed visualizing several expressions for
progress based on the metrics collected. The expressions should be created and edited
using the interface to support the experimental research. However, since the initial speci-
fications were unknown and dependant on the needs of the research, the development was
reliant on several development and evaluation iterations.

4.7.1 Development Iterations

Wieringa [16] argues that design science can be thought of as nested problem solving,
where one knowledge question is followed by a practical questions, which is followed by
a knowledge question, and so on.

Knowledge questions in this sense are questions with answers that change our knowledge
of the world, while practical questions require answers that change the world according to
some goal.

This approach was specifically used in the development of the analysis tool. The tool
followed several iterations as the design and implementation was changed and expanded.
Each change gave rise to new knowledge that lead the research closer to a solution, but
also lead to new practical problems in the evaluation. These problems were grounded in
the need to further explore the findings and increase the understanding of the data set.

29

CHAPTER 4. DESIGN AND DEVELOPMENT

This explorative approach was essential to the work flow as the problem domain was
loosely specified due to the pioneering approach used. This meant that the end result
was not known in advance, and an incremental process of exploration was needed.

These iterations are specified in this section, where each new view gave rise to new knowl-
edge, that required new views to be created to gain further knowledge.

4.7.2 Explore View

The overview provided by the explore view, was aimed at comparing expressions. The
view enabled the user to create custom expressions based on the metrics collected from the
snapshots. The expressions were created by specifying an expression for the x and y axis
on a graph. The expressions were parsed and allowed for any mathematical combinations.
The expression creation dialog can be seen in figure 4.5.

The explore view created a way to visualise several expressions across a select represen-
tative of the data set. This allowed initial comparisons to be made, and made it easier to
determine which expressions warranted further inspection and validation. A screenshot of
the explore view can be seen in figure 4.6.

Each expression was visualised for a selected participant and exercise, but also for a subset
of random users, and an aggregation of all users in a subset of the exercises. This was done
to examine how the expression was visualised for different contexts.

As the view provided only limited view of how the expressions could be used to compare
students, a need arose to be able to examine in more detail how a given expression effected
participants in the same exercise. This view would enable more inferences regarding the
ability of the expression to compare different participants under the same context.

Iterations

The initial iteration of the explore view revealed the need to remove idle time in the data
set. The initial graphs that were visualized were rendered including all the time between
each state. This meant that if a student had a couple of days break between each coding
session, the idle time would represent almost all of the graph.

This lead to creating of a new metric, working time, that was normalized to the start of the
exercise, and removed any idle time of more than 5 minutes. See section 4.6.3 for details.
The idle time was visualised on the graph as a marker that displayed details of the length
of the idle time on mouse over. A comparison between the visualisations of idle time can
be seen in figure 4.7.

30

CHAPTER 4. DESIGN AND DEVELOPMENT

Figure 4.5: Screenshot of adding a new expression

Figure 4.6: Screenshot of the explore view of the application

31

CHAPTER 4. DESIGN AND DEVELOPMENT

Figure 4.7: Comparison of including and removing idle time

4.7.3 Participant comparison

The broad overview of the explore view lead to a new practical problem of creating a
more detailed view that could compare more users in the same exercise. At this point in
the research, some expressions had been found that showed potential, but a more detailed
examination of how they effected students in the same context was needed. This would
also allow easier identification of breakdowns, both in individual students and breakdown
trends in exercises.

The view should still be able to display several expressions at a time to determine the
differences between the visualisations, but the focus should lie on examining the effect of
each expression on students in a single context.

The solution was a view where an exercise was chosen, and each expression was visualised
for each participant that had worked on the exercise. The expression was also visualised
for the average of all participants. This gave an overview that allowed comparisons to be
made between participants, as well as comparisons between individual participants and
the average of everyone. A screenshot of the view can be seen in figure 4.8.

This made it easier to spot participants that deviated from the norm, and to identify trends
in each exercise. The view also made it easier to spot breakdowns as several participants
were displayed at the same time.

4.7.4 Snapshot browser

After having started to spot breakdowns in the progress visualisations of the participants,
it was necessary to examine if the identified breakdowns were representative of a student

32

CHAPTER 4. DESIGN AND DEVELOPMENT

Figure 4.8: Screenshot of the participant comparison view of the application

getting stuck. Initially this was done manually by inspecting the snapshots in a Git snap-
shot browser, however finding the exact state of the breakdown became an issue since the
browsing was not linked to the visualizations.

To aid this need, a snapshot browser was created, inspired by Heinonen et al. [8]. The
browser enabled a researcher to chose an assignment and a participant, and would allow
the researcher to easily progress through snapshots with a slider bar. The view showed the
syntax highlighted code in each file for the current state, the tests results for each file, and
showed the visualizations of the created expressions for the participant. A screenshot of
the view can be seen on figure 4.9.

When the slider was dragged, the contents of the files were updated, and a marker on the
graphs gave an indication of the location of the state according to the curve. The visuali-
sations included a red marker on the graph each time a test was run by the participant. An
overview of the most important features can be seen on figure 4.10.

This allowed for much easier inspection of breakdowns as one could immediately identify
which snapshot was the start and end of the breakdown. Since the test results were also
displayed it was easy to see which tests were currently passing or failing, to identify the
result of each change the participant made.

Iterations

The initial iteration of the snapshot browser only included the files and the visualisations
with the slider bar. The initial need was only to make it easier to identify the position of

33

CHAPTER 4. DESIGN AND DEVELOPMENT

Figure 4.9: Screenshot of the snapshot browser of the application

Figure 4.10: Overview of some of the features in the snapshot browser

the current state on the progress graph.

After using the snapshot browser for a while it was apparent that knowing the current state
of the tests would be interesting, to make it easier to identify which part of the exercise
that the student was completing at any given time. This lead to the inclusion of the test
results for each of the displayed files.

34

CHAPTER 4. DESIGN AND DEVELOPMENT

Some breakdowns suggested that participants managed to suddenly pass multiple tests at
the same point in time. The assumption was that these students did not perform tests
frequently through the exercise, and therefore the failed tests metric was inaccurate in the
time leading up to the passing tests.

To ensure that the assumption was correct, it was necessary to add red indication on the
graph to display when a participant ran a test. This lead to a conclusion that these cases
were usually a result of participants running tests infrequently.

4.7.5 Client Inspector

Due to low participation numbers in the beginning of the study, a need to increase the
participation arose.

To increase the number of participants an application was developed that enabled more
information to be given to the participants regarding the data collected about them. With
inspiration from motivation theory, the application was intended as an incentive for the
students to participate in the study. The aim of the application was to increase the students
motivation for completing the weekly assignments by improving intrinsic motivation.

Self-determination Theory is a theory detailing factors which influence human motivation.
The theory is centered around the concepts of intrinsic and extrinsic motivation. Extrinsic
motivation is motivation to perform a task because it is a step towards a greater goal, while
intrinsic motivation is motivation to perform a task due to the apparent reward of the task
itself.

The theory identifies three important psychological needs that influence intrinsic motiva-
tion; competence, autonomy and relatedness [17].

Competence is the feeling of responsibility for the progress made, and makes the person
feel that time has been well spent. Autonomy is the need for freedom to chose when and
how to perform the task. Relatedness is the need to feel part of a group and have close
relations with others.

Endomondo [18] is an exercise application for smart-phones with the goal of increasing
motivation for exercising. The application tracks the users position and elevation during
running laps and displays the information in a graph over time. This visualization works as
a concretization of the progress made by the user, which improves the intrinsic motivation
of the exercise.

This directly relates to the users need for competence to increase the intrinsic motivation
for each run, as opposed to the extrinsic motivation of running to get fit.

Inspired by applications such as Endomondo, the goal was to satisfy the students need
for competence to increase their motivation for completing the weekly exercises. Even

35

CHAPTER 4. DESIGN AND DEVELOPMENT

though the extrinsic motivation was to pass the course, the aim was to increase the intrinsic
motivation to of each exercise.

The application developed gave each participant an overview of the completed exercises
registered, and showed a graph of their lines of code in the exercise over time. This acted
as a visualization of their progress over time of each exercise, and gave an impression of
the work done. It also allowed them to compete with themselves in the time spent on each
exercise and the amount code written over time.

Figure 4.11 shows the application available to the participants. By entering their nickname
they got access to the visualisation of data collected from them. The application presents a
list of the exercises classified, and allows the participant to visualise the lines of code over
time for each exercise. The number of tests failed is also visualised as a red area to show
how it decreases over time. The number of markers are also visualised as a yellow area.

The optimal solution would have been to show students their progress over time based on
the progress metric created, however at the time the application was developed the research
was not yet completed.

Figure 4.11: View available to participants to inspect the data collected from them and
increase motivation

36

Chapter 5

Demonstration

This chapter provides a demonstration of the usage of the software, to enable further eval-
uation of the implemented software.

5.1 Student Experiment & Context

To demonstrate the use of the software application, as well as to answer the research
questions, an experiment was conducted throughout the project.The aim of the experiment
was to answer the research questions given a data set from students in TDT4100. The
students were asked to participate in class, and the ones who wanted to take part had to
download the Eclipse plugin used to collect data. This section demonstrates the use of the
application in the experiment.

5.2 Data Collection

5.2.1 Ethics

Learning Analytics is seen as a benefit for students and instructors alike, however it also
comes with a challenge of ethics to ensure that the data collection does not have negative
impacts on the students. Several researchers have examined the current ethical challenges
of Learning Analytics to ensure that the research is conducted with care towards the pri-
vacy of the participants[19, 20].

37

CHAPTER 5. DEMONSTRATION

Slade and Prinsloo [19] highlights three overlapping categories of issues surrounding eth-
ical considerations in Learning Analytics; the location of the data, privacy and informed
consent, and classification and management of data

In this experiment several measures have been used to ensure the privacy of the partici-
pants. This section will elaborate on these measures in relation to the categories presented.

The location of the data
The collected data was stored on a virtual machine on the NTNU campus. This ensured
that there were no issues with 3rd parties using different conflicting regulations, or having
access to the data.

Privacy and informed consent
The experiment was opt-in and students in the course TDT4100 that were willing to par-
ticipate had to manually download the plugin needed. Before any data was collected the
participants had to agree to the terms of the experiment. The terms explained the purpose
of the experiment, how the data would be used, and what data would be logged.

To ensure that the collected data was anonymous, the participants were given a unique
random id for identification purposes when they installed the plugin. No information was
stored regarding each participant other than the random id.

To ensure transparency of the experiment, participants could access a list of files that
had been collected. Since each participant was anonymous, a separate solution had to be
developed to allow this.

Each participant could provide an optional nickname that was paired with the unique id
and allowed a temporary identification token that could be used to show the list of files.
The nickname could be changed or removed at any time.

Classification and management of data
The students were not categorised based on the results of the data. Only the individual
progress of assignments were inspected. This means that no labels were given to the
participants in the experiment.

5.2.2 Participants

The data was collected from students in TDT4100 that volunteered to participate in the
experiment. The students agreed and downloaded the data collection plugin that was in-
stalled to Eclipse; the IDE they use while working on assignments.

Initially only 16 students volunteered to participate in the experiment. This lead to the
development of a web-based interface where the participants could get more information
about their data, including a visualisation of the lines of code they had written over time
through an assignment (see section 4.7.5). This application was developed to create an

38

CHAPTER 5. DEMONSTRATION

Sample Count
Participants 34
Number of students in course 450
Exercises 29
Exercise files 517
Exercise snapshots 6696
Exercise tests run 3130

Figure 5.1: General statistics over the sample set

incentive for students to participate by giving them motivational value from the collected
data. This lead to a significant increase in participation and the final number of participants
was 34.

5.2.3 Collected data

Data was collected each time the participants changed, created or deleted a relevant file on
disk, as well as any time a test was run. A summary of the collected data can be seen in
section 4.2.1.

Summary statistics about the experiment and collected data can be seen in figure 5.1.

5.3 Data Analysis

The data analysis began by creating an expression that could be used as a starting point
for further experimentation, and to validate that the metrics in use were relevant. The aim
was to start broad by examining how the expression was visualised in several different
contexts, including different students working through different exercises, and aggregate
data about all users in a given exercise. This was done to get a broad look of how the
expression affected different scenarios and how and if these could be compared using the
expression.

The initial expression created was used to examine if the hypothesis that progress could
be measured from failed tests over time had any merit. The expression was inspired by
Blikstein [5] where the size of the code was plotted over time to reveal the work flow of
students. The expression used was to plot the number of lines in the code divided by the
number of failed tests. The aim was to use the number of lines to get a detailed curve of
the changes made by the student, while retaining the metric of progress from the number
of failed tests.

39

CHAPTER 5. DEMONSTRATION

TotalNumberOfLines

NumberOfFailedTests + 1 (5.1)

As seen in figure 5.2 this expression cause non linear progress curves in most instances.
This is due to the division by the number of failed tests which cause a rapid increase as it
goes towards zero. In instances where the student did not perform any tests, the curve just
visualised the lines of code over time, and often results in a more linear curve.

The advantage of the expression is that it does show that the student is progressing through
the exercise, and that the identifies metrics can be used, at least to some extent, to indicate
the progress.

The disadvantage of the expression is that it is not linear, and makes it difficult to assess
the details in the progress of the student. It also makes it difficult to compare students. As
the curve is not linear, the time taken to pass each test has a significant impact on the shape
of the curve and makes it difficult to asses the detailed progress.

Figure 5.2: Initial expression for progress

To create a linear expression, the number of failed tests had to be moved from the divisor.
By moving the term out and replacing it with the percentage of the passed test, it could
be used as a scale from 0 to 1 (eqn. 5.2). This would make the progress component more
linear and easier to compare to the lines of code.

TotalNumberOfLines∗ TotalNumberOfTests − NumberOfFailedTests

TotalNumberOfTests
(5.2)

This expression gave a significant increase in the linearity of the provided graphs. How-
ever, the problem was still how the lines of code could be used without using it as a base
term for the progress. In this expression, the progress is still increasing more rapidly

40

CHAPTER 5. DEMONSTRATION

as both components of the multiplication are increasing. This can easily be seen in the
progress curves in figure 5.3 as the rate of change of the progress is rapidly increasing
towards the end of the exercise.

Figure 5.3: Second expression for progress

The other issue is that the progress is not normalized. The range of each participant is
different, resulting in progress values that are difficult to compare. If the progress was
normalized between 0-1, the progress output would easily translate to the percentage of
progress through an assignment.

The problem with creating an expression that is normalized, is that the number of lines of
code is unknown until the assignment is finished. One approach would be to only support
progress after the assignment is finished, by using percentage of lines compared to the
total line count in the finished exercise. However, the problem with this approach is that
breakdowns could not be identified until after a student had completed the assignment.
This means that future uses such as real-time analysis and guidance is not possible.

To solve the issue it was decided to try to use the total line count in the exercise solution
created by the course instructors. This introduces a variability in the expression, as it is
unlikely that the students will write the exact same amount of lines. However, due to the
size and structure of the exercises, it was assumed that the variations would be relatively
small.

Expression 5.3 shows the resulting, and final expression. The expression consists of two
weighted components; the percentage of lines written relative to the total in the proposed
solutions, and the number of tests passed relative to the total tests ran.

The components are weighted differently, with the test percentage weighted at 60% vs.
40% for the lines of code. This has been done due to the variability in the percentage of
lines of code, but also due to the reasons mentioned in section 3.3.1 that the percentage of
total tests provide a better measure for the total progress through the exercise.

41

CHAPTER 5. DEMONSTRATION

TotalNumberOfLines

NumberOfLinesInSolution
∗0.4+TotalNumberOfTests − NumberOfFailedTests

TotalNumberOfTests
∗0.6

(5.3)

Figure 5.4: Final expression for progress

Breakdowns

When identifying breakdowns, the participant comparison view was used (see section
4.7.3). The assignments with the most participants were examined to identify progress
curves that had a significantly low increase in progress over an extended period of time.

When these curves were identified it was necessary to validate that these were in fact
breakdowns. This process began as a manual process of looking at each snapshot of the
student code and trying to identify the relevant snapshots. This was difficult and lead to
the creation of the snapshot browser (see section 4.7.4) which was inspired by the Code-
Browser created by Heinonen et al. [8].

This allowed a more detailed analysis of the snapshots exactly at the point in time they
were identified on the progress curve. The browser made it significantly easier to deter-
mine the validity of each instance, as the reason for the low progress was easier to identify.

5.4 Experiment with course assistants

To perform a more controlled experiment, where the experience and skill of the partici-
pants was known, another experiment was conducted with some of the course assistants.

42

CHAPTER 5. DEMONSTRATION

The course assistants were students that had previously been enrolled in the course, and
were hired to help the current students with the weekly exercises.

Since the assistants had already completed the course, the assumption was that their ex-
perience level would provide a more controlled environment, where the progress metric
could be used as a standard to compare the students with. The aim was also to demon-
strate and validate the usage of the progress metric in a different environment.

The experiment was conducted by choosing an exercise to be completed by the assistants
while snapshots were collected of their work. The exercise was one of the optional exer-
cises for the students, which allowed a direct comparison to the results of the students.

The participating assistants were instructed to download the plugin, and complete the given
exercise at their leisure. Another instance of the Learning Analytics platform was created
to store the data for the experiment to ensure that it would not be mixed in with the students.
The data was collected anonymously, to preserve the privacy of the assistants.

Three assistants participated in the experiment, and they all completed the same exercise.

43

CHAPTER 5. DEMONSTRATION

44

Chapter 6

Results

The progress curves are presented together with a curve of number of failed tests over time
to highlight the relation between progress and number of failed tests. The red markers on
the curves represents tests run by the participant, and the gray circle is used to highlight
areas of interest on the curve that are referenced in the text.

6.1 Progress

The final expression found to determine the current progress of a student in an assignment
was:

TotalNumberOfLines

NumberOfLinesInSolution
∗0.4+TotalNumberOfTests − NumberOfFailedTests

TotalNumberOfTests
∗0.6

(6.1)

This expression is normalized to be in the range of 0-1 making the progress easy to com-
pare as a percentage. The expression consists of two weighted components; the number
of lines written relative to the number of lines in the solution to the assignment, and the
number of failed tests in relation to the total number of tests ran by the student.

Figure 6.1 and 6.2 shows some of the progress curves of the participants in the same
exercise. These curves are a representative selection of the observed progress curves in the
exercise.

Figure 6.1 shows two students with a relatively linear progress over time through the ex-
ercise. Both participants perform tests frequently through the exercise, with participant a
running the most tests. Participant a spends about 150 minutes on the exercise and the last
progress is measured as 1.2. Participant b spends about 100 minutes on the exercise, with

45

CHAPTER 6. RESULTS

Figure 6.1: Progress curves following relatively linear progress

the last progress measured at 1.2.

Figure 6.2 shows two students with a non-linear progress over time through the exercise.
Both participants perform tests infrequently through the exercise. Participant c spends
about 50 minutes on the exercise and the last progress is measured as 0.8. Participant d
spends about 40 minutes on the exercise, with the last progress measured at 1.1.

Participant c only ran tests once in the assignment. After running the test the progress met-
ric increased by 60%. Participant d ran tests 5 times throughout the assignment, however
the last test run resulted in an increased progress of about 30%.

46

CHAPTER 6. RESULTS

Figure 6.2: Progress curves following non-linear progress

6.2 Breakdowns

On figure 6.3 a possible breakdown is present after 70 minutes, when the rate of change
of the progress is dramatically decreased. 30 minutes after this, the progress increases
instantaneously by 30% indicating a resolution of the breakdown.

On figure 6.4 a possible breakdown is present after only 10 minutes. In the following 50
minutes the increase in progress is fluctuating, however the overall increase is negative
until the exercise is finally solved after a total of 60 minutes.

47

CHAPTER 6. RESULTS

Figure 6.3: Breakdown identified after 70 minutes

Figure 6.4: Breakdown identified after 10 minutes

6.3 Experiment with course assistants

Figure 6.5 shows the progress curves of the experiment conducted with the some of the
course assistants. There is a significant variation in the progress curves between the assis-
tants, with increasingly linear curves.

Assistant a spends 25 minutes, and only run tests twice. In total only 1 distinct test is
run and passed, out of a total of 6 for the assignment. Assistant b spends 35 minutes, and
performs tests three times. In total all 6 of the exercise tests are run, and 5 of them are
passed at the last state. Assistant c spends 45 minutes and performs tests frequently. In
total 8 out of a possible 6 are run, of which only 3 are passed at the end state.

48

CHAPTER 6. RESULTS

Figure 6.5: Overview of the progress curves of the assistants while working through one
of the exercises in the course

49

CHAPTER 6. RESULTS

50

Chapter 7

Discussion & Evaluation

7.1 Discussion

7.1.1 Progress

The results indicate that the hypothesis is correct, progress through an assignment can be
estimated through a combination of the lines of code written and the number of failed
tests. All curves have an increasing progress over time, with most ending at a progress
measure of 1 +- .2% which was expected due to the variability of the number of lines of
code compared to the solution.

The results have provided several interesting observation regarding the progress measure,
and the activity of students.

Number of tests

The results indicate that the total number of tests in an exercises impacts how accurate the
progress can be measured. A low number of tests result in more significant instances of
instantaneous progress, however these instances decrease with a higher number of tests in
the exercise.

This can be seen on figure 7.1, where participant a is working through an exercise with
many tests, and participant b is working through an exercise with fewer tests. The differ-
ence in the magnitude of instantaneous progress is significant between the two, where the
instantaneous progress of participant a is 8.5%, while participant b has an instantaneous
progress of 15%.

51

CHAPTER 7. DISCUSSION & EVALUATION

Figure 7.1: Comparison of exercise with many tests, and exercise with few tests

This indicates that the initial assumption is correct; increasing the number of milestones
in the exercise will increase the accuracy of the progress measure.

The reason behind this is the weighted expression used to calculate progress. Since pass-
ing all tests always impact the progress by 60%, each test passed impact the progress with
a given percentage. Increasing the total tests accompanying the exercise, results in a de-
crease in the percentage of progress gained per test. This is necessary as discussed in
section 3.3.1 due to each test representing a milestone towards the end goal.

Type of tests

In exercises where the tests covers overlapping methods or logic, the progress is seen
to be fluctuating, and often contains sections of decreasing progress. This is prominent
in assignments where a single method is incrementally improved to handle increasingly

52

CHAPTER 7. DISCUSSION & EVALUATION

specific and complex inputs. The result is that previously passed tests may fail when code
is re-written or extended to make new tests pass. This results in a decrease in progress, as
the program no longer functions according to the requirements of the previous test.

Figure 7.2: Exercise where code had to be re-written to pass later tests

An example of this scenario is seen in figure 7.2 where the exercise was focused around
one specific method, and the test cases were testing increasingly complex input to the
method. The result was that to pass the later tests, the student had to re-write code that the
previous tests covered. The change in the program resulted in the earlier tests no longer
passing. The impact on the progress curve can be seen after 60 minutes when the progress
starts to decrease.

Even though the progress curves resulting from these types of tests show decreasing
progress, it does not necessarily mean that they portray incorrect information. Since the
only way of determining the correctness of a program is through testing functionality, it
could be argued that since the tests previously passed are starting to fail it must mean that
progress is decreasing. This is because required functionality of the program has been
removed, or is not working as it should, even though it was working previously.

One can also argue that the progress should still be positive as the student is still progress-
ing through the assignment, however that must mean a redefinition of the progress metric
and would possibly rely on different metrics, such as time spent or effort made.

Therefore it is debatable if these issues should be corrected through a change in exercise
design, or if it is an accurate representation of the progress.

Structure of exercise

It is also seen that the structure of the exercise has an impact in the progress portrayed. If
the exercise is structured as several independent steps towards a final solution, the progress
is seen as more linear.

53

CHAPTER 7. DISCUSSION & EVALUATION

This is especially noticeable when the exercise is divided into several files that can be
completed one at a time. In these cases it is seen that the progress is more linear, and
students are testing more regularly.

The observation indicates that the forced structure and modularity is effecting how the
student work with the assignment. One possible reason is that the exercise is seen as a
combination of several small independent steps, and therefore it is natural for the student
to test that each step is correct after each part is finished.

Frequency of test runs

The frequency of test runs by the participants is seen to have a major impact on the accu-
racy and representation of the progress metric. Fewer test runs are seen to lead to more
variability in the progress metric, with significant instances of instantaneous progress.
When the frequency of test runs increase, the progress visualisation is seen to be more
linear and with a lower variability in the rate of increase in progress.

The most problematic instance happens when multiple tests pass at the same time. This
produces an instantaneous and significant increase in the perceived progress of the student.
This reported progress is often not an accurate reflective of the progress of the student, as
inspection of the code has shown that the students are having a more linear progress before
the tests are run.

An example of this can be seen in figure 6.1 and 6.2 where participant a is running tests
frequently through the assignment, while participant d is only running tests a few times.
The effect is that participant d gets an instantaneous 34% increase in progress the last time
the tests are run, when four tests are passed at the same time.

The underlying issue seems to be that the tests are manually run by the students at their
discretion. This means that the metric for number of failed tests will be increasingly
inaccurate the more time passes between test runs. This results in the inability to rely on
the number of failed tests as a measure for the correctness of the program, which leads to
an unknown progress state.

An ideal solution to this problem would be to run the tests automatically for each snapshot
in the exercise. This would ensure that the metric would always be accurate, and as a result
the progress metric will more accurately reflect the state of the program.

Relative number of lines

The results indicate that the relative number of lines is a decent metric to estimate an
increase in progress in the exercise. The argument against using the total number of lines
in the solution as a target for the students is centered around variability. Since there are an

54

CHAPTER 7. DISCUSSION & EVALUATION

infinite number of ways to create a program, it is assumed that relating the students work
to the solution would be very inaccurate.

However, the results show that the number of lines of most of the students program are
within 50% of the solution. This seems like a high value, however it is still low enough to
use this measure as an increase in progress as it only has a maximum effect of 20%, due
to the weight of the expression component.

The negative aspect of this measure is that the progress metric will have an error element.
If the student writes less code than the solution, the progress will never reach 100%, and
if the student write more code than the solution, the progress will surpass 100%. In the
experiment it was seen that most students completed their exercises with a progress metric
of 100% +- 20%.

For the purposes of this experiment this error measure is acceptable, as the benefits of
the incremental progress outweighs the disadvantage. The exact progress metric is not
required as the aim is to examine the progress over time. If the error measure was higher
it might have been an issue as it would have a significant impact on the progress caused by
passing tests, and would potentially render the passing tests negligible.

7.1.2 Breakdown

Several instances of low increase in progress over time were identified, and further in-
spection showed that in most of the cases these situations were in fact breakdowns. This
suggests that it is possible to identify breakdowns by inspecting the progress curve of the
students through exercises.

This section will provide further details of the breakdowns identified in the results, to
further validate the presence of a breakdowns.

Correctly identified breakdowns

Incorrectly scoped variables

Figure 6.3 shows a possible breakdown after 60 minutes. On closer inspection of the
participants code it is seen that this is a correctly identified breakdown. The student is
struggling to correctly implement a function that counts all the passengers, as well as a
function that counts the weight of all the cargo in a train.

Through inspection it is seen that the source of the error is the scope of the total count
variable. The student has defined the variable in the class scope and does not reset the
count each time the function is called. This results in the count increasing each time the
counting function is called.

55

CHAPTER 7. DISCUSSION & EVALUATION

Instead of repeatedly running the test cases given by the assignment, the student is produc-
ing a custom output to verify the correctness of the code. For several minutes the students
is changing the output and possibly trying to identify the location of the error through
manually verifying the output of each command. This can be seen in the code as the stu-
dent writes comments containing the additions made, ex: totalWeight = 2000 + 800*80 =
18000

After this the student tries to change the variable names of the counting variables. The
variable names are now identical to the ones used in the assignment solutions given to
students. However, this still does not work.

The next state is recorded the next day, after a 20 hour long break. After one minute a state
containing an update that changes the scope of the variables is posted, and results in the
30% increase in the progress. After another minute the final state is recorded, correcting
a reference to one of the counting variables, and resulting in a completed assignment with
∼100% progress.

This is a logic problem that is difficult to automatically identify and provide automatic aid
for the student. Whether the issue lies in the students understanding of object oriented
principles, or if it is a simple oversight is difficult to determine.

The fact that the final state includes an immediate solution to the problem, and is recorded
a day after the initial breakdown, could suggest that the student had to seek help to solve
the problem. This is a further validation that a significant breakdown was identified.

Misspelled method name
On figure 6.4, a breakdown is identified after about 10 minutes due to the overall low
progress for the next 50 minutes. Even though there are peaks in the progress curve in this
area, the overall progress is low over a significant length of time.

Inspecting the code in the snapshot browser reveals that the source of the breakdown was
a misspelled method name. The student was implementing an interface that required one
method. The issue was that the student had misspelled the method name of the interface
in the class. This resulted in a failed test case.

The peaks seen in the progress curve, represents the student commenting out significant
parts of the program, possibly to try to isolate the problem.

After 50 minutes, it is seen that the student has found the error as the name of the method
in the interface is corrected. This resulted in the resolution of the breakdown, and the
completion of the exercise.

This particular breakdown is interesting, as one would think that the Eclipse IDE provides
aid in circumstances like this. However, the markers accompanying the files suggests that
there was no aid being given as to the misspelled method name. However, through further
inspection, no errors were found in the logic of the students’ code. The problem was that
the student had misspelled the name according to the required name in the exercise. This

56

CHAPTER 7. DISCUSSION & EVALUATION

resulted in the test calling an undefined method, and thus resulting in an error.

The test was requiring a specific name for the method, as defined in the exercise text, how-
ever the student had misspelled the name when implementing the interface. The classes
implementing the interface were all using the misspelled name, therefore no markers were
displayed since the logic of the program was correct.

The results show that the student has spent a significant amount of time trying to solve a
problem that is in essence non-existent. The issue was not in the students logic, the issue
was in the naming of the required methods in the exercise, causing the program to not
meet the required specifications. These errors are impossible for Eclipse to find as the
specifications of the exercise are not known to Eclipse.

7.1.3 Incorrectly identified breakdowns

Figure 7.3: Incorrectly identified breakdown, with a linear plot that shows the estimated
linear progress of the student

A case where a breakdown was incorrectly identified is shown in figure 7.3. The student
has several areas of low progress leading up to an instantaneous progress of 30%. Since
the student has performed tests relatively frequently, it suggests that the progress measure
is accurate in the time leading up to the sudden increase.

Inspection of the code however, shows the reason for the sudden increase. The student
seem to be progressing evenly, although at a relatively low rate compared to other students.
However, the reason for the instantaneous progress is that several tests are being completed
at the same time. Inspection of the tests reveal that even though they all test different
aspect of the program, they are all relying on one specific method to be implemented.
The student delays the implementation of this method to the end of the exercise, thus
completing several tests at the same time.

The student also starts out with already completed code. The first state of the exercise
shows that the student start with 30% progress. This increase in progress at the beginning,
coupled with the increase in progress at the end, makes the curve appear less linear. How-
ever, by manually adding a regression line that ignores the instantaneous progress, it is

57

CHAPTER 7. DISCUSSION & EVALUATION

seen that the student does in fact have a linear progression through the exercise. This can
be inspected on curve b in figure 7.3.

Reasons for the initial progress may be that the student did not enable the data collection
plugin until the exercise was already started.

7.1.4 Work flow

The result of the experiment have given a significant insight into the different work flows
of the students. The shape of the progress curves and the number of tests run have been
seen to give an indication of how the students work.

Manual testing

Inspection of the code at identified breakdowns reveal that some students use the tests as a
way to debug when they encounter errors. Instead of performing custom debugging, they
are seen repeatedly running tests until it works. This is not an advocated work flow as it
implies that the reason for the error is unknown. Tests should be used as a verification of
the program, and other types of debugging should be done to locate errors.

Frequency of testing

The results indicate a significant variation in the frequency of running tests. Some students
are running tests frequently throughout the exercise, and some are only running tests at the
end of the exercise when they believe they are finished.

The advocated work flow should be to run tests on each intermediate milestone in the
exercise. The tests should be used as a way of verifying that the current solution is on
track to become a fully working solution. By only testing at the end, the students risk that
the whole program has to be changed if they misunderstood the exercise text.

Due to the way the data is collected and categorised, it is not possible in the view to inspect
supplementary files used by the students when completing the exercises. This makes it
difficult to assess whether the students that only test at the end of the exercise use custom
debugging and error reports when working.

7.1.5 Experiment with course assistants

The three assistants participating are seen to have very different progress curves. The
reasons for the changes, and the relevance to the progress metric will be discussed in this

58

CHAPTER 7. DISCUSSION & EVALUATION

section.

Difference in total number of tests

The assistants are seen to run a different number of total tests. Assistant a only had a total
of one test, while assistant c had a total of 8 tests.

The number of test are seen to have a significant impact on the progress metric, with
participant a gaining an instantaneous 60% progress after completing the one test, while
participant c only gains 7.5% per completed test.

Through inspection of assistant c’s code the explanation for the 8 total tests was seen to be
that the assistant had started an optional part of the exercise after finishing the mandatory
part. This made the progress metrics for this assistant difficult to directly compare with the
others, as the mandatory part is finished after around 25 minutes out of a total 50 minutes
spent on the exercise.

The reason for assistant a to only run one test is unknown, however a potential reason
could be that the assistant was certain that the program was functioning according to the
specifications and did not care to run all the tests.

The differences in the total number of tests is seen to be reflected in the accuracy of the
progress metric, which is the same result as the student experiment discussed in section
7.1.1.

Not passing all tests

Only one of the assistants passed all the tests, however this was assistant a which only had
a total of one test to pass.

Assistant c was seen to start on an optional part, and inspection of the code suggests
that the optional part was not completed. This rendered many of the tests incomplete as
modifications to the mandatory part of the exercise was needed to complete the optional
part.

Assistant b was the only one that ran all tests for the exercise, however on the last state
one test was still failing. The reason for this is unknown however it is possible that the last
state of the exercise was never saved and therefore not recorded in the system.

By not passing all the tests, the progress metric never reaches the end progress state. This
indicates that none of the exercises were finished according to the progress visualised.
This was a different result from the student experiment where most participants completed
all tests. The most likely difference is the motivation for the exercise, the students are
required to complete the exercise according to the specifications, while the assistants did

59

CHAPTER 7. DISCUSSION & EVALUATION

not have any extrinsic motivation to ensure the correctness of the program.

Differences in frequency of test runs

The assistants are seen to have a varying frequency of test runs. This indicates that the
assistants are not following the advocated work flow of running tests after each step is
completed.

A reason for this could also be that the assistants find the exercises trivial, and do not see
the need to test their program frequently. The time spent on the mandatory exercise is
about 30 minutes for all assistants, which may also explain the infrequent testing as the
duration over all is short.

The effect of the different frequency of test runs is the seen to be the same as discussed in
section 7.1.1, where infrequent testing leads to an inaccurate measure of progress.

Relation to progress metric

The findings of the experiment suggests that the progress metric of more experienced pro-
grammers are effected by the same factors as the students. However, due to the variation in
frequency and number of tests for each assistant it is difficult to make direct comparisons
to the students.

The assumption that the progress curves could be used as a standard to measure students
progress does not seem to be true, however the most significant reason for this is due to the
inconsistent testing done by the assistants. If the assistants had frequently performed all
given tests, the results might have been able to provide a better measure for comparison.

7.1.6 Significance of results

The student experiment had a low sample size compared to the population of students in
the course. As seen on figure 5.1, only 34 out of more than 450 student participated. This
means the participation rate was only 7.5%. Although a higher participation rate would be
preferred, the results still provide significant insight into how it is possible to reason about
the progress of students. Due to the low participation rate, it is difficult to use the results
to reason about the population in the course, however the methods and techniques show
significant potential to be used for these purposes.

60

CHAPTER 7. DISCUSSION & EVALUATION

7.2 Evaluation of Data Collection & Processing

The system created has been seen to work according to the specifications, and has enabled
significant research into how Learning Analytics can be used in courses such as TDT4100.

Due to the low participation rates, there was no need to increase the performance of the
system by scaling, however this also suggests that the performance of the system is on par
with expectations and that the system can be used for the intended purposes.

7.2.1 Assignment classification

Even though the system collects data according to the specifications. It is seen a problem
with classification of files into assignments. The results indicate that students are not
following the suggested structure of the exercises, leading to issues with classification of
files into exercises.

By further enforcing the project structures of the students the data collection could be
improved and the accuracy of the classification would increase.

The most prominent problem seemed to be that students choose to change the package
name. A common pattern is to change it to an identification of the current assignment e.g
"assignment9". Since the system relies on the package name to identify the exercises, it
is difficult to accurately determine their correct classification. Therefore, some files were
not correctly classified into an exercise, and were not registered in the application.

7.2.2 Manual testing

The system implemented relies on the students manual test results as the basis of the
number of failed tests metric. This was seen to be an issue as it results in inaccurate state
metrics when the students do not test frequently. The test results are used to assess how
well the program behaves according to the exercise specification, and is thus a measure
of how near completion the program is. Therefore relying on student tests, means that
snapshots where tests are not run might not show an accurate representation of the total
progress in the exercise.

This is a problem as it makes the progress curves dependent on the work flow of the
student. It also makes it more difficult to spot breakdowns, as false positives may be found
if a student does not test frequently.

Another problem with this approach is that the number of tests is not constant for all stu-
dents. The results indicate that many students do not run all tests given for each exercise,
this makes the total number of test count differ between students in each exercise.

61

CHAPTER 7. DISCUSSION & EVALUATION

As discussed in section 7.1.1; increasing the number of tests run is beneficial, as it results
in a more linear progress curve, as more milestones are recorded. This means that the
progress for students not running all given tests are not as accurate as it could be.

7.2.3 Collected information

The information collected was on par with the specifications presented. All .java files,
including the relevant markers, as well as test runs were stored. The storage solution
allowed for complete reproduction of all events coming in to the system, which enabled
a very flexible solution that made it possible to re-create the metric database when new
metrics were required.

Even though the data collection was implemented according to specifications, it is seen that
more information would be beneficial. Information regarding idle time activities, such as
if the application focus is still on Eclipse, or if there is still mouse movement or other
interactions. This information would allow more detailed representation of idle time, and
allow researchers to distinguish between a student spending time trying to solve a problem,
and a student having a break.

7.2.4 Frequency of collection

The frequency of collection was sufficient for the analysis that was done, however during
breakdown inspection it was noted that some students would have long intervals between
saves. This resulted in several changes being made from one state to the next, making it
more difficult to follow the work flow of the student.

This was not an issue in this project, but more detailed analysis of breakdowns could
benefit from a higher frequency of data collection to ensure a more detailed event log.

7.3 Evaluation of Data Analysis and Exploration

Even though the specifications of the data analysis and exploration part of the system were
vague due to the experimentation aspect of the project, the resulting application was suc-
cessful. The aim was to make a flexible system that could create and compare expression
and allow for further extension.

The demonstration in section 5 clearly shows that the system accommodated to the ex-
perimentation, and resulted in several extensions to the application to allow more detailed
exploration.

62

Chapter 8

Conclusion

8.1 Research questions

Q1: How can data collected from students working through programming exercises
be used to reason about their progress through the exercises?

A metric for the current progress was found and evaluated. The results indicate that the
initial hypothesis were correct, however further concretization of the metric was required
to arrive at an adequate expression.

It is indicated that the students progress through exercises can be seen through a combina-
tion of the failed tests relative to the total tests, and the line count relative to the line count
in the exercise solution.

The results are however inconclusive due to the low participation rate (7.5%) as well as
the wide spread in participants on each exercise, leaving 13 students as the highest number
of participants in the same exercise (see appendix B).

The circumstances of the data collection also impacted the value of the results. The inac-
curacy of the failed tests metric made the progress for some students inaccurate, due to the
metric relying on students manual testing. Also the difficulty in classification of the files
made some students assignments unable to be classified, resulting in less amounts of data.

Therefore the results can only be used as an indication and starting point for further re-
search, however the results show significant potential.

Q2: How can data collected from students working through programming exercises
be used to identify breakdowns?

63

CHAPTER 8. CONCLUSION

The results indicate that the progress curves can be used to identify breakdowns. Break-
downs can be identified by examining areas of significant lack of progress over time.

The results also suggest that there are some false positives using this technique. The
reasons for this seems to result from the lack of automatic testing, and the resulting inac-
curacy of the progress metric. This is especially problematic for breakdown identification
as passing test are seen as significant progress in the exercises. By delaying the inclusion
of passing tests, the progress is reported as lower than reality, resulting in the visualisation
of breakdowns that are non-existent.

Overall, there is a significant indication that progress curves can be used to identify break-
downs in exercises, and these can be further inspected to gain detailed knowledge about
the challenges of students. However, no conclusive statements can be made due to the low
sample sizes as reported in the previous section. There is however a strong indication that
this is a possible method of identifying breakdowns.

8.2 Implemented system

The system implemented has served its purpose . The functionality was satisfactory ac-
cording to the initial specifications, and research was conducted as a result of the system.
The experimentation and comparison of expression based on collected metrics was satis-
factory and allowed for easy extension and iterations of improvement.

The results indicate some areas that could be improved, however these improvement sug-
gestions came as a result of the usage of the application, and can be seen as the next
iteration in a larger design science approach.

The architecture of the application was created to make it flexible and allow easy scaling
and extensions. Even though there was no need to scale the system for this project, imple-
menting replication of the services should be straight forward. Extending the application
was done several times through the various iterations of development and evaluation, and
demonstrated the flexibility of the application.

8.3 Suggestions for future work

The results from the experiment were only able to provide an indication of the validity of
the hypothesis due to the small sample size. Future work should focus on performing a
similar experiment with a higher and more varied sample of students. Future experiments
should also validate the data through closer interaction with students.

Future work could also look into automatic identification of breakdowns based on the
analysis data, to provide potential automatic guidance to students.

64

CHAPTER 8. CONCLUSION

Further utilization of the collected markers would be beneficial. A closer look into the
errors of the students to get an overview of the reasons for breakdowns be done. This
information could be used to find common challenges for the students, both on an individ-
ual level and collectively. Further uses of this information is to identify exercises that are
particularly challenging, or contain tricky parts.

Further metrics

Collecting further metrics from the code could provide an even greater overview of the
work flow of the students. By examining metrics of the code unrelated to progress, such
as metrics for code quality, further expressions could be created that complements the
progress expression to provide more detail.

This could for example give further insight into reasons for a decrease in progress by
indicating if the decrease was accompanied by an increase in the code quality. This would
suggest that the student merely re-factored parts of the code.

65

CHAPTER 8. CONCLUSION

66

Bibliography

[1] S. K. Sørhus, “Aiding novice programmers by extending Eclipse,” Dec. 2014.

[2] G. Siemens, “Learning Analytics The Emergence of a Discipline,” American
Behavioral Scientist, vol. 57, no. 10, pp. 1380–1400, Oct. 2013, 00036. [Online].
Available: http://abs.sagepub.com/content/57/10/1380

[3] G. Siemens and R. S. J. d. Baker, “Learning Analytics and Educational Data
Mining: Towards Communication and Collaboration,” in Proceedings of the 2Nd
International Conference on Learning Analytics and Knowledge, ser. LAK ’12.
New York, NY, USA: ACM, 2012, pp. 252–254, 00128. [Online]. Available:
http://doi.acm.org/10.1145/2330601.2330661

[4] C. Piech, M. Sahami, D. Koller, S. Cooper, and P. Blikstein, “Modeling
How Students Learn to Program,” in Proceedings of the 43rd ACM Technical
Symposium on Computer Science Education, ser. SIGCSE ’12. New York,
NY, USA: ACM, 2012, pp. 153–160, 00053. [Online]. Available: http:
//doi.acm.org/10.1145/2157136.2157182

[5] P. Blikstein, “Using Learning Analytics to Assess Students’ Behavior in
Open-ended Programming Tasks,” in Proceedings of the 1st International
Conference on Learning Analytics and Knowledge, ser. LAK ’11. New
York, NY, USA: ACM, 2011, pp. 110–116, 00070. [Online]. Available:
http://doi.acm.org/10.1145/2090116.2090132

[6] J. Spacco, D. Hovemeyer, W. Pugh, F. Emad, J. K. Hollingsworth, and N. Padua-
Perez, “Experiences with Marmoset: Designing and Using an Advanced Submission
and Testing System for Programming Courses,” in Proceedings of the 11th Annual
SIGCSE Conference on Innovation and Technology in Computer Science Education,
ser. ITICSE ’06. New York, NY, USA: ACM, 2006, pp. 13–17, 00067. [Online].
Available: http://doi.acm.org/10.1145/1140124.1140131

[7] J. Spacco, J. Strecker, D. Hovemeyer, and W. Pugh, “Software Repository
Mining with Marmoset: An Automated Programming Project Snapshot and Testing
System,” in Proceedings of the 2005 International Workshop on Mining Software
Repositories, ser. MSR ’05. New York, NY, USA: ACM, 2005, pp. 1–5, 00044.
[Online]. Available: http://doi.acm.org/10.1145/1082983.1083149

67

http://abs.sagepub.com/content/57/10/1380
http://doi.acm.org/10.1145/2330601.2330661
http://doi.acm.org/10.1145/2157136.2157182
http://doi.acm.org/10.1145/2157136.2157182
http://doi.acm.org/10.1145/2090116.2090132
http://doi.acm.org/10.1145/1140124.1140131
http://doi.acm.org/10.1145/1082983.1083149

BIBLIOGRAPHY

[8] K. Heinonen, K. Hirvikoski, M. Luukkainen, and A. Vihavainen, “Using
CodeBrowser to Seek Differences Between Novice Programmers,” in Proceedings
of the 45th ACM Technical Symposium on Computer Science Education, ser.
SIGCSE ’14. New York, NY, USA: ACM, 2014, pp. 229–234, 00004. [Online].
Available: http://doi.acm.org/10.1145/2538862.2538981

[9] M. C. Jadud, “Methods and Tools for Exploring Novice Compilation Behaviour,”
in Proceedings of the Second International Workshop on Computing Education
Research, ser. ICER ’06. New York, NY, USA: ACM, 2006, pp. 73–84, 00072.
[Online]. Available: http://doi.acm.org/10.1145/1151588.1151600

[10] E. Balzuweit and J. Spacco, “SnapViz: Visualizing Programming Assignment
Snapshots,” in Proceedings of the 18th ACM Conference on Innovation
and Technology in Computer Science Education, ser. ITiCSE ’13. New
York, NY, USA: ACM, 2013, pp. 350–350, 00002. [Online]. Available:
http://doi.acm.org/10.1145/2462476.2465615

[11] S. T. March and G. F. Smith, “Design and natural science research on information
technology,” Decision Support Systems, vol. 15, no. 4, pp. 251–266, Dec.
1995, 02444. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
0167923694000412

[12] K. Peffers, T. Tuunanen, C. E. Gengler, M. Rossi, W. Hui, V. Virtanen, and J. Bragge,
“The design science research process: a model for producing and presenting infor-
mation systems research,” 2006, 00231.

[13] “Microservices,” http://martinfowler.com/articles/microservices.html, accessed:
2015-06-06.

[14] “Mqtt,” http://mqtt.org/, accessed: 2015-06-06.

[15] “Event sourcing pattern,” https://msdn.microsoft.com/en-us/library/dn589792.aspx,
accessed: 2015-06-06.

[16] R. Wieringa, “Design Science As Nested Problem Solving,” in Proceedings of the
4th International Conference on Design Science Research in Information Systems
and Technology, ser. DESRIST ’09. New York, NY, USA: ACM, 2009, pp.
8:1–8:12, 00141. [Online]. Available: http://doi.acm.org/10.1145/1555619.1555630

[17] R. M. Ryan and E. L. Deci, “Self-determination theory and the facilitation of intrinsic
motivation, social development, and well-being,” American Psychologist, vol. 55,
no. 1, pp. 68–78, 2000, 13429.

[18] “Endomondo personal training application,” https://www.endomondo.com/, ac-
cessed: 2015-06-06.

[19] S. Slade and P. Prinsloo, “Learning Analytics Ethical Issues and Dilemmas,”
American Behavioral Scientist, vol. 57, no. 10, pp. 1510–1529, Oct. 2013, 00050.
[Online]. Available: http://abs.sagepub.com/content/57/10/1510

68

http://doi.acm.org/10.1145/2538862.2538981
http://doi.acm.org/10.1145/1151588.1151600
http://doi.acm.org/10.1145/2462476.2465615
http://www.sciencedirect.com/science/article/pii/0167923694000412
http://www.sciencedirect.com/science/article/pii/0167923694000412
http://martinfowler.com/articles/microservices.html
http://mqtt.org/
https://msdn.microsoft.com/en-us/library/dn589792.aspx
http://doi.acm.org/10.1145/1555619.1555630
https://www.endomondo.com/
http://abs.sagepub.com/content/57/10/1510

BIBLIOGRAPHY

[20] A. Pardo and G. Siemens, “Ethical and privacy principles for learning analytics,”
British Journal of Educational Technology, vol. 45, no. 3, pp. 438–450, May 2014,
00012. [Online]. Available: http://onlinelibrary.wiley.com/doi/10.1111/bjet.12152/
abstract

69

http://onlinelibrary.wiley.com/doi/10.1111/bjet.12152/abstract
http://onlinelibrary.wiley.com/doi/10.1111/bjet.12152/abstract

BIBLIOGRAPHY

70

Appendix A

System Implementation

A.1 Architecture Overview

The overall architecture of the application follows the micro services architecture. The
application is partitioned into small self-sustaining services that communicate to form the
complete application. This allows for a more flexible and easily expandable application
as services can be extended or changed with little effort. The architecture also offers
increased scalability through designing services in a way that enables several instances of
performance critical modules. This means that the application can be scaled according
to demand simply by running more instances of the services where performance must be
increased.

A.1.1 Application Services

All services were written in JavaScript and are ran with Node.js. This solution was chosen
due to JavaScripts dynamic typing and functional aspects that results in rapid development
and flexibility for change. Node.js was chosen for the server application due to its asyn-
chronous nature, making it easy to accommodate the variable responss times needed due
to I/O actions. Express.js was used for defining the API due to the simple and flexible
solution it provided.

A.1.2 LA Helper - Client

The Eclipse plugin is written in Java as a standard Eclipse plugin and is downloaded from
a plugin repository site through a plugin interface in Eclipse.

71

APPENDIX A. SYSTEM IMPLEMENTATION

LA Helper
(Eclipse plugin)

LA Report
(Web-app)

LA Report
(Server)

LA Helper
(Server)

LA Store

SQLite DB
(Nicknames)

Event store
(File and
state)

LA Research

Graph DB

Query API

<<Json REST API>>

<<Json REST API>>

<<Json REST API>>

Projection

Query API

LA Processor

Figure A.1: Overview of the artifact architecture

The core functionality of the plugin is to collect data. The plugin listens for file changes
on the file system, ie. when the user saves. Whenever a file is changed it is checked if
it is eligible for collection. The user can specify in the settings page which directories
in the project to enable data collection. All .java files in the specified directories will be
monitored.

When a change happens to an eligible file the contents of the file is logged together with
all the markers that Eclipse has associated with the file. These include both error markers
and information markers. The marker information is serialized to a meta file and both files
are transfered to the server for storage.

The plugin also sends information about the change that occurred, detailing if the change
was in file content, file creation, moving or deleting.

The plugin subscribes as a listener to jUnit which enables it to log the results of tests that
are run by the user. Whenever a test is performed, the result is immediately transfered to
the server in a .tests file, to signify the running of the test.

In the event of an error exception firing in the plugin the error message is recorded and sent

72

APPENDIX A. SYSTEM IMPLEMENTATION

to the server. This is done to monitor for faults in the plugin partly due to the anonymous
collection which makes bug reporting problematic, but also to ensure bug reports.

The plugin checks the server if a new disclaimer is present based on the timejtamp of the
latest downloaded disclaimer. If a new disclaimer is found, logging is stopped and the
disclaimer is presented to the user for acceptance or denial.

Retrieving the disclaimer from the server allows for changes in the disclaimer without
requiring the participants to download a new version of the plugin. This makes it easier to
ensure that ethics are followed and that any updated to the disclaimer is presented to the
user, who can chose to not agree to the new terms.

On the first install of the plugin a unique client id will be created for the user. The plugin
requests a new user from the server, and is given a unique id. This is the only identification
used when transferring collected files.

A.1.3 LA Helper Server

LA Helper Server is a server-side service that handles the data coming from the Eclipse
plugin. It can be seen as an entry-point for the data collection and processing. The ser-
vice communicates with the storage service to enable data collection, as well as setting
nicknames and creating new users.

The communication with the service is done through an API relying on JSON data struc-
tures. For future scalability uses, this service could be a broker between multiple storage
service instances to decrease the performance requirement of each storage service.

The service accepts a list of files together with the unique id of the user for data collec-
tion. It also has API points for setting nicknames, updating participation status and error
logging.

The disclaimer popup text is also handled by the service. This allows the users to be
notified when the disclaimer is changed.

A.1.4 Storage Service

The storage service stores the collected data in an event store, and uses projections to allow
storage of processed information from the store.

Event Store
The event store uses the Git version control system. Git enables fast and easy storage of
several versions of a file. It is space efficient and stores only the differences between each
revision of a file. This reduces the space requirement while keeping a simple interface to
extract different versions.

73

APPENDIX A. SYSTEM IMPLEMENTATION

Git is used due to the space efficiency and due to previous experience with the software.
Since the file snapshots collected often shares a significant amount of information with the
previous snapshot, only storing the difference is a significant storage benefit.

When a new participant is registered, a new folder is created with an empty git repository
initialised. Whenever a file is received for collection, the file is saved in the directory
in the location it had in the project path on the client. This ensures that each time the
same file is collected it will overwrite the previous snapshot and always keep an up to date
representation of the state of the file.

When a collection request is saved all files are added to the git repository and an automatic
commit is performed. This ensures that marker information is added in the same commit
as the file changes.

A.1.5 Processing Service

The processing service handles extracting metrics from the collected data. It is separated
from the store to allow for performance demanding operations on the data. The service
exposes an API that can be used to send data for processing.

A.1.6 Analysis Projection

The first projection from the event store to be made was the analysis projection. The aim
of this projection was to have a flexible representation of the metrics that were relevant for
analysis. After files had been processed the resulting metrics were stored in this projection.

Due to the relational structure of the data set, and the flexibility requirement, a graph
database was used to store the metrics. The graph database used was Neo4j which is
schema less, meaning that additional fields and relations could easily be added on demand

The benefit of this was apparent already after one iteration of design and implementation,
as it was seen that the complexity of the data structure could be reduced by removing some
relations.

Another benefit was the querying language used which allowed for a simple and declara-
tive interface to extract wanted data from the database. This made it easy to examine new
ways of querying the data set.

74

APPENDIX A. SYSTEM IMPLEMENTATION

Figure A.2: Relational structure of the data

A.2 Analysis and Experimentation

The analysis and experimentation part of the application was developed with a client server
pattern. It consists of a browser based client that requests the collected metrics information
from the server. The client is used to visualise the collected data. The client also allows
experimentation with different combinations of metrics used in the visualisations.

The client was created in Javascript and HTML5, with React.js as the framework for ren-
dering the user interface. React was chosen due to the de-coupling with the model and the
ability to create re-usable components.

The graphs were visualised using d3.js, as it enables a very flexible library for visualis-
ing information. This allowed completely customised visualisations that included several
different data sources.

75

APPENDIX A. SYSTEM IMPLEMENTATION

76

Appendix B

Experiment Details

77

APPENDIX B. EXPERIMENT DETAILS

Figure B.1: Number of participants that have done each exercise

Assignment Type Participants
Card Objektstrukturer 13
Train Arv 13
Logger Delegering 13
StockListener Observatør-teknikken 12
CardComparison Interface 12
Named Interface 11
CardContainer Interface 10
StringGrid Interface 9
SavingsAccount Arv 8
CardContainerImpl Arv 7
Twitter Objektstrukturer 7
Partner Objektstrukturer 7
LineEditor Tilstand og oppførsel 5
Account Innkapsling 5
Person Objektstrukturer 5
Person Innkapsling 5
Sortering av TwitterAccount Interface 4
UpOrDownCounter Tilstand og oppførsel 4
TicTacToe Innkapsling 3
Asteroids Arv 3
TheOffice Delegering 3
Nim Innkapsling 3
Rectangle Tilstand og oppførsel 3
Account Tilstand og oppførsel 2
RPN-Kalkulator Innkapsling 2
HighscoreList Observatør-teknikken 2
Location Tilstand og oppførsel 1
Kalkulator Arv 1
Sudoku Innkapsling 1

78

Appendix C

Source Code

The source code is divided into 5 git repositories. One for each of the services in the
system, as well as one for the Eclipse plugin. The tag used for the current state of the
project is v.0.3.0.

The source code can be found on the following urls:

• LAHelper Plugin: https://github.com/steinso/LAHelperPlugin

• LAHelper Server: https://github.com/steinso/LAHelperServer

• LAStore: https://github.com/steinso/LAStore

• LAProcessor: https://github.com/steinso/LAProcessor

• LAReport: https://github.com/steinso/LAReport

79

	Introduction
	Problem Identification & Motivation
	Problem definition
	Thesis Structure

	Literature Review
	Challenges of Novice Programmers
	Learning Analytics
	Code Evolution
	Research Grounding

	Objectives of a Solution
	Research Questions
	Methodology
	Hypothesis Development
	Progress
	Breakdowns

	Objectives of the Artifact
	Functional Objectives
	Non-functional Objectives

	Design and Development
	Context - details of the course
	Specifications
	Data Collection

	Data Analysis
	Contextual Constraints
	Time limit
	Technical

	Application Architecture
	Microservices
	Event Sourcing
	Data Structure

	Data Collection
	Collected information
	Eclipse plugin
	Data Processing

	Analysis and Experimentation
	Development Iterations
	Explore View
	Participant comparison
	Snapshot browser
	Client Inspector

	Demonstration
	Student Experiment & Context
	Data Collection
	Ethics
	Participants
	Collected data

	Data Analysis
	Experiment with course assistants

	Results
	Progress
	Breakdowns
	Experiment with course assistants

	Discussion & Evaluation
	Discussion
	Progress
	Breakdown
	Incorrectly identified breakdowns
	Work flow
	Experiment with course assistants
	Significance of results

	Evaluation of Data Collection & Processing
	Assignment classification
	Manual testing
	Collected information
	Frequency of collection

	Evaluation of Data Analysis and Exploration

	Conclusion
	Research questions
	Implemented system
	Suggestions for future work

	Appendix System Implementation
	Architecture Overview
	Application Services
	LA Helper - Client
	LA Helper Server
	Storage Service
	Processing Service
	Analysis Projection

	Analysis and Experimentation

	Appendix Experiment Details
	Appendix Source Code

