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Abstract: This paper describes an experimental investigation of formation damage in a 

fractured carbonate core sample under underbalanced drilling (UBD) conditions. A major 

portion of this study has concentrated on problems which are often associated with UBD 

and the development of a detailed protocol for proper design and execution of an UBD 

program. Formation damage effects, which may occur even if the underbalanced pressure 

condition is maintained 100% of the time during drilling operation, have been studied. One 

major concern for formation damage during UBD operations is the loss of the under-

balanced pressure condition. Hence, it becomes vital to evaluate the sensitivity of the 

formation to the effect of an overbalanced pulse situation. The paper investigates the effect 

of short pulse overbalance pressure during underbalanced conditions in a fractured chalk 

core sample. Special core tests using a specially designed core holder are conducted on the 

subject reservoir core. Both overbalance and underbalanced tests were conducted with four 

UBD drilling fluids. Core testing includes measurements of the initial permeability and 

return permeability under two different pressure conditions (underbalanced and 

overbalanced). Then the procedure is followed by applying a differential pressure on the 

core samples to mimic the drawdown effect to determine the return permeability capacity. 

In both UBD and short pulse OBP four mud formulations are used which are: lab oil, brine 

(3% KCL), water-based mud (bentonite with XC polymer) and fresh water. The return 

permeability measurements show that a lab oil system performed fairly well during UBD 

and short OB conditions. The results indicate that a short overbalance pressure provides a 
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significant reduction in permeability of the fractured formations. In most tests, even 

application of a high drawdown pressure during production cannot restore the initial 

permeability by more than 40%. 

Keywords: fractured reservoir; formation damage; core flood testing; underbalanced 

drilling; short overbalance pressure; drilling fluid 

 

1. Introduction  

Minimizing formation damage that occurs during conventional drilling is a critical point for 

optimizing an oil field development, especially in fractured carbonate reservoirs that often exhibit low 

matrix permeability. Drilling fluid invasion into the fractured formation can create severe formation 

damage around the wellbore and reduce the productivity of the well and ultimate recovery of the field, 

therefore minimizing fluid invasion is very important in this type of reservoirs. The drilling operation 

where the drilling fluid pressure in the borehole is maintained below the pressure in the formation in 

the open-hole section is called underbalanced drilling (UBD). The productivity benefits of 

underbalanced drilling are well known in the industry. When UBD is implemented correctly, it may 

considerably reduce or eliminate mud invasion into the fracture systems. Even though UBD has many 

advantages over OBD, quantification of possible formation damage effects by comprehensive reservoir 

characterization and feasibility studies is central to judge the feasibility of UBD [1]. 

Underbalanced technology may be very successful in reducing or eliminating formation damage if 

properly executed, but a major portion of this study has centered on problems which are often 

associated with UBD and the development of detailed protocols for proper design and execution of 

UBD programs. Two main goals are evaluated this study, namely improving the productivity of a 

fractured reservoir by using UBD and reducing formation damage during UBD. 

Possible formation damage effects may occur even if an underbalanced pressure condition is 

maintained 100% of the time during drilling operation. Another one of the major areas of sensitivity  

to formation damage during UBD operations is the loss of the underbalanced pressure condition.  

Hence, it becomes vital to evaluate the sensitivity of the formation to the effect of an overbalanced  

pulse situation [1]. 

The best way to evaluate damage potential is to test representative field fluids and core  

samples under simulated down-hole conditions, as is possible with dynamic formation damage (DFD)  

test apparatus. Unfortunately, there is very little work reported in the literature investigating formation 

damage in fractured reservoirs. 

Jiao et al. [2] described the use of two different bridging agents, CaCO3 and acid soluble fibers, to 

reduce solids and invasion into a fractured Berea core sample. Their results show that the uses of 

fibrous additives are much more effective than granular additives such as CaCO3. 

Ali et al. [3] reported successful field application of a mixture of different sizes of fiber particles to 

prevent lost circulation in severely depleted unconsolidated reservoirs. 

Leopakke et al. [4] studied single and two particle bridging at a fracture face. They found that if the 

particle size is not compatible with the fracture width, a stable bridge cannot be formed and a tailored 
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particle size distribution has the best plugging capabilities. Their experimental results show that a 

mixture of granular particles provides the best plug at fracture entrances. 

The main objective of this work is the experimental study of fluid invasion in fractured carbonate 

reservoirs during underbalanced drilling conditions. For this purpose, chalk samples are selected as a 

representative of very fine-grained limestone formations to simulate in core flood testing. Mud 

invasion behavior under different conditions is measured. The invasion behavior of invaded fluids is 

influenced of many key parameters, such as overbalanced pressure and bridging additives and mud 

composition (polymer content), fracture size, and pore size distribution of the carbonate rock. 

2. Description of the Problem 

The high productivity of wells in naturally fractured formations is due to the presence of large and 

continuous fracture networks [5]. Most of the drilling mud invasion in naturally fractured reservoirs 

occurs in the fractures, and the invasion radius is large (rd >> rw) because the fracture porosity is a 

small component of total rock porosity. Thus, filling the natural fractures with mud solids can impair 

the productivity. Therefore minimizing fluid invasion is very important in this type of reservoirs. The 

productivity benefits of underbalanced drilling are well known in the industry. When UBD is 

implemented correctly, it may considerably reduce or even eliminate mud invasion into the fracture 

systems. Even though UBD has many advantages over OBD, possible formation damage during UBD 

is crucial to judge the proper application of UBD.  

Two main problems during UBD may cause severe damage around a well drilled with UBD [6]: 

1. Temporary overbalanced condition. 

2. Capillary imbibition. 

In the first damage category, an overbalance pressure can be applied on the formation during short 

periods of time for various reasons like bit tripping or pipe jointing. Due to the lack of external 

protection cake, high filtration and mud invasion into the fracture and formation can occur, which 

decreases the fracture conductivity and plugs it. Mud invasion changes the relative permeability and 

wettability in the near wellbore region as phase trapping and solid retention in the fracture occurs. 

When the capillary force is important, counter-current imbibition occurs, with flow of reservoir fluid 

toward the well while the mud filtrate invades the formation [6]. 

This study focuses on the short overbalance conditions and time effects during UBD. The short 

overbalanced condition may cause deep invasion into the fracture system and result in a reduction of 

well productivity and reservoir recovery in the fractured formations.  

3. Experimental Procedure  

3.1. Experimental Set-up  

Figure 1 shows a schematic of the apparatus used to study formation damage at NTNU. A Hassler 

type core holder was used in the experiment. This stainless steel core holder can accommodate up to 

12 cm-long and 3.8-cm-diameter cores. The core is mounted in a rubber sleeve and subjected to 

overburden (confining) pressure. One end piece of the core holder was fabricated to have two inflow 



Energies 2011, 4                 

 

 

1731

ports and referred to as “invasion end”. These ports were used to circulate the drilling fluids across the 

face of the core and to inject oil and brine as well. The other end piece, known as “production end”, 

had only one inflow port to collect the filtrate/oil/brine, pumped from the invasion end. 

Figure 1. The lay-out of experimental set-up for formation damage test. 

 

A stainless steel spacer-ring 1 cm in length was placed between the core face and the injection end 

to allow the mud to circulate and form cake on the core face. A transfer cylinder is employed to deliver 

mud, oil and brine to the core holder. 

A Quizix pump, which could deliver fluids (mud, oil, brine) at a maximum flow rate of 50 mL/min 

and maximum pressure of 10,000 psia, was connected to the transfer cylinder to deliver the fluids at 

the desired flow rate and pressure. Differential pressure meters were installed on both side of the core 

holder to measure differential pressure across the core. Back pressure regulators (BPR were installed at 

each end to control and maintain the desired pressure in the system by means of pressurized nitrogen 

gas. An electronic balance was used to collect the produced fluids. All the transducers and electronic 

balance were connected to a data acquisition card. This card sends all signals to the Labview software 

used for processing and plotting the data. 

3.2. Core Preparation 

Core samples from the Faxe outcrop in Denmark, which has similar rock properties to North Sea 

fractured reservoir have been used. The core samples 5–8 cm long and 3.8 cm in diameter were cut. 

The average lab oil permeability of the non-fractured cores is 3.9 mD and the average porosity is  

44% (±5%). To create the fracture in the sample, it was cut along the core and a uniform fracture was 

thus created along the entire sample, giving a matrix and a small fracture along the core (Figure 2). 

Then the sample was mounted in the Hassler cell and confining pressure is applied to keep the two 

fracture faces together. This study is a research-based work and no reservoir temperature conditions 

were applied for the samples. 
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Figure 2. The configuration of the fractured core sample. 

 

In the presence of two systems (matrix and fracture), permeability may be defined as matrix 

permeability, fracture permeability and system (fracture-matrix) permeability. Van Golf-Racht [7] has 

defined that the permeability of a fracture-matrix system may be represented by the simple addition of 

the permeabilities of matrix km and fracture keff:  

effmmf kkk     (1) 

where: kmf = permeability of matrix and fracture, cm2; 

km = permeability of matrix, cm2; 

keff = permeability of fracture associated with rock-bulk, cm2. 

Nevertheless, it must be redefined that the permeability of the single fracture is associated to the 

conductivity measured during the flow of fluid through a single fracture and independent of the matrix. 

This permeability, kff, is presented as: 

12
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where: kff = the permeability of the fracture, cm2; 

wf = width of the fracture, cm. 

The relation between keff and kff will be described in the following equation. By substituting 
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in which: keff = the effective permeability of the fracture, cm2; 

wf = the fracture width, cm; 

D = the diameter of the sample, cm. 

Fracture dimensions and properties of samples used in this experiment are shown below (Table 1).  
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Table 1. Fracture properties for formation damage test. 

Sample No. Wf (cm) Wf (μm) Kfm (mD) Kff (mD) 

UBD#A 0.001547 15.5 15.23 20,988 
UBD#B 0.0009337 9.3 6.22 7358 
UBD#C 0.0008079 8.1 5.39 5512 
UBD#D 0.000962 9.6 6.45 7829 

3.3. Mud Circulation 

In a formation damage study with a specific task, for example, determine the impact of overbalance 

and underbalanced pressure on the invasion rate that is vital to keep the parameter numbers of the tests 

as low as possible. The number of variable parameters during the test may result in difficulties in the 

interpretation of the test results Therefore, the mud formulation was selected as simple as possible to 

avoid uncertainty in the results. This facilitates the interpretation of test results for the case of OBP and 

UBD conditions. 

Drilling fluid was circulated across the saturated core at a constant flow rate of 0.5 mL/min under 

different overbalance pressure conditions. A backpressure regulator was used to keep the core pressure 

at the desired level. When mud circulation starts, a mud cake begins to form on the face of the core and 

the filtrate starts invading the core. The core is allowed to develop a pressure gradient equal to the 

degree of overbalanced pressure expected during conventional drilling. Mudflow was regulated to 

simulate rates expected while drilling. The brine or lab oil was displaced by mud filtrate and the 

effluent was collected from the production end at desired time intervals (1 min). 

The filtrate was passed through a 0–15 bar backpressure valve (as pore pressure) before 

accumulating in the collector. The drilling fluid was circulated under different overbalance pressures. 

The cumulative fluid loss was monitored and recorded during the test. 

3.4. Production Simulation-Back Flooding and Return Permeability Test 

After the placement of drilling fluid, it is important to simulate a return to production by flooding of 

fluid from formation side to wellbore side. A return permeability test consists in measuring 

permeability before and after exposing a rock core sample to the fluid. Once the leak-off has been 

completed, the permeability to oil, gas or brine is re-determined in the reverse flow direction to 

simulate production back out of the reservoir after the treatment. The permeability is determined after 

either of these methods. 

1. Determination of flow rate at constant pressure (drawdown). Drawdown was performed by 

decreasing the pressure at the wellbore end of the plug and maintaining the formation end 

pressure at pore pressure allowing flow through the plug, mud cake and mud. The pressure drop 

was simulated to be that used in the reservoir. Drawdown was continued until a constant flow 

rate is achieved. Pressure and flow rate were measured by this procedure. 
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2. Determination of differential pressure at constant flow rate. This procedure differs from the 

above by using a constant flow rate and measuring the corresponding differential pressures 

across the core. The flow rate was representative of the flux at the wellbore face. Flow was 

continued until constant pressure is achieved. The pressure required for the initiation of flow was 

recorded. Comparison between oil, gas or brine permeability, before and after fluid injection, 

make possible evaluation of the permeability reduction. The parameter Residual Permeability 

“return permeability” can be used to quantify the reduction caused by the tested fluid: 

RP = kd/ki (4) 

where: kd = oil or gas or brine permeability after leak-off test; 

ki = initial oil or gas or brine permeability before leak-off test. 

3.5. Test Procedure 

A series of core-flood measurements were conducted on four fractured chalk-samples in an 

underbalanced leak-off test. After measuring the initial permeability, the drilling fluids were circulated 

at the wellbore face of the core holder under pressure conditions below core pressure. Then a series of 

return permeability measurements of lab oil were conducted at drawdown pressures ranging from 1 bar 

to the maximum 16 bar. This process represents the possible formation damage due to imbibition 

effects. The effect of an overbalanced “pulse” for 20 min is another measurement which was 

performed for all samples. This test is followed by a post overbalanced return permeability test at 

drawdown pressure the same as in the underbalanced core test. In both UBD and short pulse OBP four 

mud formulations are used, namely lab oil, brine (3% KCl), water-based mud (bentonite with XC 

polymer) and fresh water. The following tables and figures illustrate the results of an underbalanced 

leak-off test and an overbalanced pulse during UBD core test. 

The fracture apertures of the core samples were calculated to be in the 8–16 μm range by Equations (2) 

and (3). This means the fracture is a micro-fracture and its size is a little bigger than the pore size of the 

chalk sample, which is reported as less than 6 μm. 

4. Experimental Results  

A set of experiments were carried out on four chalk-samples using different conditions. The results 

of all samples are included in the Discussion section of this paper. 

4.1. Chalk-Sample A 

Sample A. Tables 2 and 3 illustrate the results of an underbalanced leak-off test, combined with an 

overbalanced pulse using the lab oil as drilling fluid (the same as the saturation fluid). 
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Table 2. UBD leak-off test with lab oil; Sample A. 

Length  
Diameter 
Bulk Volume 
Porosity 
Matrix Permeability  
Fracture width  
Circulation Rate 
Test Temperature 
Confining Pressure 
Underbalanced Pressure (UBD) 
Overbalanced Pressure (OBP) 
Injected Fluid 
Mud Type 
Initial Permeability to Oil 
Fixed Initial Water Saturation 
Overbalanced Pulse Duration 

6.85 (cm) 
3.8 (cm) 
77.65 (cc) 
0.44 
3.86 (mD) 
15.9 (μm) 
0.5 (cc/min) 
Room Conditions 
24 (bar) 
2.24 (bar) 
2.04 (bar) 
Lab oil 
Lab oil 
15.23 (mD) 
0 % 
20 (min) 

Table 3. UBD leak-off test with lab oil; Sample A, Permeability Summary. 

Test Phase 
Return 
Perm. (mD) 

Return 
Permeability (%) 

Underbalanced Mud Leak-off 
Post UBD Return permeability (imbibition) @ 
1 bar Drawdown 
1.55 bar Drawdown 
2.8 bar Drawdown 
9.2 bar Drawdown 
14.1 bar Drawdown 
Overbalanced Pulse 
Post OB Return permeability @ 
1 bar Drawdown 
1.5 bar Drawdown 
2.7 bar Drawdown 
9.15 bar Drawdown 
13.9 bar Drawdown 

- 
 
15 
15.21 
15.61 
17.5 
21.9 
- 
 
16.8 
16.7 
17.64 
18.75 
21.7 

- 
 
98 
100 
102 
115 
144 
 
 
110 
110 
116 
123 
142 

 

The permeability data of the Table 2 have been plotted and appear as seen in Figure 3. 
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Figure 3. Permeability & Drawdown in post UBD and OBP-sample A.  
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Examination of the data indicates that lab oil performed well as a drilling fluid during the test. At 

any drawdown pressure level under the UBD condition, full return permeability was attained. An 

overbalanced pulse of 6 bar for a 20–min period shows no reduction in permeability of the sample, as 

shown in Figure 3. This indicates that using the reservoir hydrocarbon as drilling fluid will result in 

minimum impairment of the formation. 

4.2. Chalk-Sample B 

Sample B. Tables 4 and 5 summarize the results from a second underbalanced leak-off test. Brine  

(water + 3% KCl) has been used as drilling fluid and circulated at underbalanced pressure conditions 

of approx. 2.1 bar. The permeability data of the Table 4 have been plotted and appear in Figure 4. 

Table 4. UBD leak-off test with brine; Sample B. 

Length 
Diameter 
Bulk Volume 
Porosity 
Matrix Permeability  
Fracture width 
Circulation Rate 
Test Temperature 
Confining Pressure 
Underbalanced Pressure (UBD) 
Overbalanced Pressure (OB) 
Injected Fluid 
Mud Type 
Initial Permeability to Oil 
Fixed Initial Water Saturation 
Overbalanced Pulse Duration 

8.28 (cm) 
3.8 (cm) 
93.86 (cc) 
0.44 
3.86 (mD) 
9.4 (μm)  
0.5 (cc/min) 
Room Conditions 
22.5 (bar) 
2.1 (bar) 
6.24 (bar) 
Lab oil 
Brine (water + 3% KCL) 
6.22 (mD) 
0 % 
20 (min) 
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Table 5. UBD leak-off test with brine; Sample B, Permeability Summary. 

Test Phase 
Return 
Perm. (mD) 

Return 
Permeability (%) 

Underbalanced Mud Leak-off 
Post UBD Return permeability (imbibition) @ 
0.85 bar Drawdown 
1.5 bar Drawdown 
2.9 bar Drawdown 
9.2 bar Drawdown 
14.05 bar Drawdown 
Overbalanced Pulse 
Post OB Return permeability @ 
1 bar Drawdown 
1.5 bar Drawdown 
2.85 bar Drawdown 
9.05 bar Drawdown 
13.9 bar Drawdown 

- 
 
5.96 
5.81 
6.01 
5.99 
6.17 
- 
 
0.35 
0.59 
0.94 
1.67 
2.43 

 
 
96 
93 
96 
96 
99 
 
 
6 
9 
15 
27 
39 

Figure 4. Permeability & Drawdown in post UBD and OBP-sample B. 
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As shown in Figure 4, after exposure to the underbalanced condition the return permeability is 

about 96% of initial permeability, and by increasing the drawdown to 14 bar, 100% return permeability 

could been achieved. The effect of an overbalanced pulse incident is clearly illustrated by the 

application of a relatively moderate overbalance pulse for a period of only 20 min at 6.24 bar of 

overbalance pressure. A reduction of permeability up to about 95% has been observed. By increasing 

the drawdown pressure, the permeability of the sample improves. The highest drawdown of 14 bar 

gives the permeability of 2.4 (mD), which is 38% of the initial permeability. 
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A slight reduction in permeability to oil from 6.2 mD before mud exposure to 5.9 mD of observed, 

thus indicating that a small amount of counter-current imbibition of the mud has occurred (which may 

be attributed to the water-wet nature of the pore system). This reduction after UBD condition has been 

observed to be of up to 5%. This damage could be avoided if the drawdown pressure were increased 

(14 bar drawdown gives 99% return permeability). The main mechanism of damage in this case is 

migration of fines and it can reduce the permeability of the core significantly (by up to 95%). As 

mentioned previously, the chalk-sample is water-wet and fines migration may occur in carbonate 

formations by migration of limestone grains. Fines migration will only occur when the wetting phase 

saturation becomes high enough. Here a high water saturation occurred due to invasion of water-phase 

in the drilling mud. It can be observed that if the velocity of the water phase becomes high enough, 

fines can migrate and be transported to blocking positions where significant reduction in permeability 

will occur. 

4.3. Chalk-Sample C 

Sample C. Tables 6 and 7 provide the results for an underbalanced/overbalanced comparative test 

conducted on a fractured carbonate (chalk) core sample containing lab oil. The drilling fluid which has 

been used during the test, was “water-based mud” (water, bentonite and XC polymer). The 

permeability data of Table 6 have been plotted and are shown in Figure 5. 

Table 6. UBD leak-off test with water-based mud; Sample C. 

Length 
Diameter 
Bulk Volume 
Porosity 
Matrix Permeability  
Fracture width 
Circulation Rate 
Test Temperature 
Confining Pressure 
Underbalanced Pressure (UBD)  
Overbalanced Pressure 
Injected Fluid 
Mud Type 
Initial Permeability to Oil 
Fixed Initial Water Saturation 
Overbalanced Pulse Duration 

6.23 (cm) 
3.81 (cm) 
71 (cc) 
0.44 
3.86 (mD) 
8.15 (μm) 
0.5 (cc/min) 
Room Conditions 
22.5 (bar) 
10.95-4.7 (bar) 
0.5 (bar) 
Lab oil 
Base Mud + XC 
5.39 (mD) 
0% 
20 (min) 
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Table 7. UBD leak-off test with water-based; Sample C, Permeability Summary. 

Test Phase 
Return 
Perm. (mD) 

Return 
Permeability (%) 

Underbalanced Mud Leak-off 
Post UBD Return permeability (imbibition) @ 
0.66 bar Drawdown 
1.33 bar Drawdown 
2.77 bar Drawdown 
9.25 bar Drawdown 
14.15 bar Drawdown 
Overbalanced Pulse 
Post OB Return permeability @ 
0.61 bar Drawdown 
1.43 bar Drawdown 
2.35 bar Drawdown 
9.27 bar Drawdown 
14 bar Drawdown 

- 
 
4.49 
4.72 
4.79 
4.70 
4.65 
- 
 
1.16 
1.16 
1.26 
3.45 
4.02 

- 
 
83 
88 
89 
87 
86 
 
- 
22 
22 
23 
64 
75 

Figure 5. Permeability & Drawdown in post UBD and OBP-sample C. 
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In this test during the UBD condition, the permeability under underbalanced and overbalanced 

conditions was monitored. Figure 6 provides a good indication of where the counter-current imbibition 

effects are expected to be problematic during the UBD process. The imbibition effects are apparent 

and cause a reduction in permeability when underbalanced pressure is reduced. This figure also 

illustrates that if imbibition effects are going to be problematic, how much underbalanced pressure 

gradient must be maintained to minimize their effect. In this test an underbalanced pressure gradient of 

about 5 bar is observed to be the optimal pressure condition for the UBD process. 
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Figure 6. Monitoring of Permeability during UBD leak-off test on sample C. 
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0.5 bar overbalanced pressure pulse leads to 50% reduction of the permeability. This may happen 

because of solid and mud filtrate invasion due to the absence of mud cake. Examination of the data 

indicates some impairment of the permeability after application of the UBD conditions. The 

permeability is reduced to 4.45 (mD) by a drawdown of 0.7 bar, which means that the permeability 

impairment is 18% of the initial permeability. Increasing the drawdown at first gives some 

permeability improvement, whereby a 3 bar drawdown pressure results in the highest return 

permeability (4.8 mD), however after this drawdown the permeability decreases when the drawdown 

goes up. At 14 bar drawdown pressure (the highest drawdown pressure value), the return permeability 

is about 4.65 (mD). The permeability reduction up to about 18% thus seems to be attributable to 

spontaneous imbibition.  

An overbalanced pulse of 6.2 bar for a 20-min period shows about 80% impairment of permeability 

compared to the UBD conditions. Again, drawdown pressure has been applied to see the effect of 

drawdown on return permeability. As shown in Figure 8 the permeability remained constant until the 

drawdown exceed 2 bar, but after this drawdown the permeability started to increase with  

more drawdown pressure. The rate of improvement of permeability is much more from 2 bar to 10 bar 

drawdown pressure than from 10 to 14 bar. Ten (10) bar drawdown improved permeability to 67% of 

the initial permeability, and 14 bar drawdown results in just 7% improvement, compared to 10 bar  

drawdown pressure. 

After 14 bar drawdown pressure has been applied, any drawdown pressure less than this pressure 

shows almost the same (or more) permeability compared to 14 bar drawdown pressure. It means that 

once a high drawdown pressure is applied, lower drawdown pressures will have no effect on 

the permeability. 

Another interesting result from Figure 7 is that a final permeability of approximately 4.2 mD is 

measured. In this test, the drawdown pressure is reduced after post OB test, but the permeability 

remains constant at the same value as in the post OBD test. This means the drawdown pressure cannot 

change the permeability and it is the permanent permeability of the core. 
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Figure 7. Hysteresis Effect –sample UBD_C. 
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4.4. Chalk-Sample D 

Sample D. Tables 8 and 9 summarize the results of combination of underbalanced/overbalanced 

fluid leak-off tests conducted on fractured carbonate (chalk) core samples. In this situation, fresh water 

has been used as drilling fluid for UBD and OBD and the effect of a loss of the underbalanced pressure 

condition during the drilling operations has been examined. 

Table 8. UBD leak-off test with fresh water; on Sample D. 

Length 
Diameter 
Bulk Volume 
Porosity 
Matrix Permeability  
Fracture Width  
Circulation Rate 
Test Temperature 
Confining Pressure 
Underbalanced Pressure (UBD) 
Overbalanced Pressure (OBP) 
Injected Fluid 
Mud Type 
Initial Permeability to Oil 
Fixed Initial Water Saturation 
Overbalanced Pulse Duration 

6.25 (cm) 
3.7 (cm) 
67.17 (cc) 
0.45 
3.86 (mD) 
11.2 (μm) 
0.5 (cc/min) 
Room Conditions 
20 (bar) 
11–2.6 (bar) 
6.2 (bar) 
Lab oil 
Fresh Water 
6.45 (mD) 
0% 
20 (min) 
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Table 9. Leak-off test with fresh water; sample D, Permeability Summary. 

Test Phase 
Return 
Perm. (mD) 

Return 
Permeability (%) 

Underbalanced Mud Leak-off 
Post UBD Return permeability (imbibition) @ 
0.66 bar Drawdown 
1.36 bar Drawdown 
2.83 bar Drawdown 
9.03 bar Drawdown 
13.75 bar Drawdown 
Overbalanced Pulse 
Post OB Return permeability @ 
0.36 bar Drawdown 
0.81 bar Drawdown 
2.1 bar Drawdown 
9.05 bar Drawdown 
13.36 bar Drawdown 

- 
 
4.85 
4.79 
4.65 
4.34 
4.80 
- 
 
0.33 
0.34 
0.56 
1.05 
1.53 

- 
 
75 
74 
72 
67 
74 
 
 
5 
5 
9 
16 
24 

 

Figure 8 presents the permeability profile during different UBD conditions. The permeability under 

some UBD conditions is increased in comparison with the initial permeability. This may be because 

water is unable to imbibe the core and flow is only controlled by the oil phase. A slight reduction in 

permeability can be seen even when a short overbalanced pressure of 0.64 bar is applied to the core. 

After this time, the reduction in permeability can be seen again, due to imbibition effects. 

Figure 8. Monitoring of permeability during UBD leak-off test on sample D. 
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A series of permeability measurements were conducted at drawdown pressures ranging from 0.7 bar 

to the maximum drawdown pressure level of 13.8 bar after applying the UBD conditions. The results 

are summarized in Table 9 and Figure 8 and can be seen to vary from 4.3 mD to 4.9 mD. A reduction 

in permeability with increasing drawdown pressure can be seen up to a drawdown level of 9 bar, and 
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after this pressure, the permeability increases with increasing drawdown pressure. At 13.8 bar 

drawdown pressure, the permeability is almost equal to the one for 0.7 bar drawdown pressure. At 

these two drawdown pressures, the permeability is around 4.9 mD. A reduction in permeability from 

initial permeability of 6.07 to 4.9 (mD) after UBD, indicates that some amount of spontaneous 

imbibition of water filtrate has occurred. 

The effect of an overbalanced pulse was illustrated by the application of overbalanced pulse for a 

period of 20 min at 6.2 bar of overbalance pressure. The results of the post UBD return permeability 

test and also post OB are given in Table 9 and plotted in Figure 6. This Figure shows that permeability 

is significantly reduced when a relatively small period of overbalanced pressure is applied to the 

fractured core sample. It can be seen that a 95% reduction in permeability has been observed up to 

1 bar of drawdown pressure. Even at the maximum applied drawdown, pressure of 13.35 bar, only 

about 25% of the original permeability is returned. 

In the end of the post OB drawdown test, the drawdown is decreased and the corresponding 

permeability is shown in Figure 9. This test was performed mainly to observe any hysteresis effects 

during production back flooding. It clearly demonstrates that drawdown effect can stimulate the core 

and permeability is increased, but not significantly. 

Figure 9. Hysteresis effect on sample D. 
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5. Discussion of Results 

5.1. Fracture Aperture Issues with UBD 

The presence of high permeability features in a formation, such as large naturally occurring 

fractures or extensive interconnected vugular porosity systems, represent a significant challenge for 

overbalanced drilling operations with respect to rapid and deep invasion and often significant 

permeability impairment. In some cases, if these fractures lead to overlying gas or underlying water 

and the majority of the production is expected to be associated with matrix production from the 

formation directly adjacent to the wellbore, then this may be advantageous. However, in most 

situations, we rely on the high permeability of these fracture and vug systems to act as conduits to feed 

 Post-OBD, sample D 

 Reverse Drawdown, sample D 
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gas or oil from a tight producing source matrix to the wellbore for production. This being the case, the 

preservation of the high permeability fractures and vugs is of prime importance. 

These types of reservoirs may also be considered the prime potential candidates for UBD 

operations. However, if UBD is poorly designed, a short pulse OB pressure may cause invasion of 

large amounts of filtrate and potentially damaging solids into the near wellbore region, resulting in 

significant near wellbore damage. This deep damage is due to absence of any protective filter cake and 

bridging agent material during UBD operations. In this study the permeabilities of the fracture were 

measured in the 7000–20,000 mD range and the opening fractures were 8–15.5 µm in size. Therefore, 

any overbalance condition will show more invasion and change in formation permeability during  

back-flood production. All cases except case sample A show very a low return permeability after a 

short pulse of OB conditions. This may be disadvantage of a UBD operation when is compared to a 

condition of overbalance pressure. In case A, a low viscosity hydrocarbon was used as drilling fluid to 

facilitate this problem, and no change in return permeability after short OBD was observed. 

5.2. Optimized Underbalanced Pressure Gradient  

The screening of the permeability versus underbalanced pressure gradient provides a good 

indication if countercurrent imbibition effect could be problematic. It also indicates that an amount of 

underbalanced pressure must be maintained to minimize the formation damage. This is a very useful 

test as it allows the operator to conduct a risk assessment for evaluating the use of UBD technology in 

a given situation. Figures 6 and 8 present the results of the permeability profile where the UBD 

gradient is changing for samples C and D, respectively. The capillary pressure curve for the chalk 

sample is given in Figure 13. In the cases where the capillary force between drilling fluid and oil phase 

is higher than UBD gradient, countercurrent flow from wellbore face to core occurs. This capillary 

effect has shown a reduction in the formation permeability and it was deceased as capillary force 

became high and underbalanced pressure was decreased. After the OB pulse, a cleanup process at 

underbalanced drawdown was performed and in the case C, most of damage was removed, but in case, 

D the damage removal was poor. 

5.3. UBD Fluid Selection 

Four different fluids were used as UBD fluids, namely: Case A: lab oil (as the same fluid for 

saturation of the core); Case B: 3% KCl brine; Case C: water-based mud (bentonite and XC polymer); 

Case D: fresh water. Figure 10 shows the results of different UBD fluids and impact on return 

permeability. The lab oil, which was compatible with reservoir oil, shows the best performance during 

underbalanced conditions and no damage potential was determined. Low return permeability was 

measured when fresh water was used as UBD fluid. For scaling fresh water may be a good UBD fluid 

from a cost and general chemical compatibility point of view. The disadvantages of this fluid include 

potential for damage by contact with reactive clays and capillary imbibitions of fresh water to the 

formation. Oil produced from reservoirs by the UBD technique has many advantages with respect to 

compatibility with reservoir oil and costs. Viscosifiers such as silicones should be used to improve the 

poor rheology of this UBD fluid and to improve cutting transport. The UBD fluids selection results 

illustrate that proper selection of fluids is essential for successful underbalanced operation.  
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Figure 10. UBD fluid selection. 
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5.4. Short Overbalanced Pressure Effect  

Figure 11 indicates that the significant formation damage appears when even short overbalanced 

pressure occurs. The magnitude of the damage depends on the type of fluid used and the 

fracture properties.  

Figure 11. Return permeability results during short OB pressure. 
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After the overbalanced pulse, three samples showed large reductions in permeability at low 

drawdown pressures and upon increasing the drawdown pressure return permeability values were not 

improved and permanent formation damage presented. The results show the effect of a loss of 

underbalanced pressure conditions on reduction of formation permeability. It describes how much the 

maintenance of underbalanced pressure in the fractured formation affects fluid invasion into the 

fracture and reduction of the productivity. 

6. Conclusions 

 Short overbalanced pressure during UBD conditions significantly reduced the formation permeability. 

 Experimental results show that the minimum reduction in return permeability was observed when 

oil is used as drilling fluid. 

 The screening of the permeability versus underbalanced pressure gradient provides a good 

indication of whether countercurrent imbibition effects could be problematic. 

 The experimental results indicate to what degree the maintenance of underbalanced pressure in the 

fractured formation is important to avoid a large fluid invasion into the fracture. 

 The results show that significant low return permeability was seen after a short pulse of OB 

conditions. This may be a disadvantage of a UBD operation when compared to overbalance 

pressure conditions. 
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