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Summary

New technology and knowledge gives increasing confidence in investments of unconven-
tional reservoirs. In these types of reservoirs the rock and fluid parameters are often seen
to depend strongly on pressure. Conventional well testing equations do not account for
stress-sensitivity and assume all reservoir and fluid parameters to be constant. This the-
sis will suggest a new solution for transient flow by extending the diffusivity equation
where pressure dependency of permeability, viscosity, compressibility and thickness is
included.

The diffusivity equation becomes strongly non-linear when including pressure dependent
parameters. All the pressure dependent variables are assumed to vary exponentially with
pressure. Using these exponential relations the model incorporates the pressure dependent
variables into a single pressure dependent variable T

n

. The normalized transmissibility
variable, T

n

is a pressure dependent variable and a function of the combined dimensionless
elasticity modulus, ⌧

D

, used to describe the degree of stress-sensitivity. Introducing T

n

enables the equation to be solved analytically, creating a model that intends to provides
better prediction of pressure and flow behavior for stress-sensitive reservoirs.

Special attention is given to the pressure dependency of the reservoir thickness near the
well and it is found that stress-sensitivity can cause deformation here. This deformation
is found both for the case of drawdown and buildup pressures. It is observed that the de-
formation during drawdown is larger than the reversed deformation during buildup. By
increasing the degree of stress-sensitivity both these phenomenons are also found to in-
crease. From the buildup solution it can thereby be concluded that not all deformation
can be reversed by increasing pressure. Hence it indicates the importance of being able
to predict deformation early in the life of a field, so that pressure support can be applied
before deformation becomes irreversible.

The derived analytical equations are incorporated into well tests to compare against homo-
geneous solutions. A deviation from homogeneous values is found for all well test cases.
The model can also account for storage and skin by the use of Laplace space solutions.
The stress sensitivity has little effect on the early time unit slope for storage. Adding skin
causes an extra pressure increase at intermediate and late times.
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Sammendrag

Ny teknologi og kunnskap gir økt trygghet for investeringer i ukonvensjonelle reservoarer.
Formasjons- og fluidparametere i slike reservoarer er ofte sterkt trykkavhengige. Konven-
sjonelle ligninger i brønntesting tar ikke høyde for spenningsfølsomhet og ofte antas alle
reservoar- og fluidparametre konstante. Denne masteroppgaven vil foreslå en ny løsning
for transient strømning ved å utvide diffusjonsligningen slik at den inkluderer trykkavhen-
gighet av permeabilitet, viskositet, kompressibilitet og tykkelse.

Diffusjonsligningen blir sterkt ikke-lineær når trykkavhengige parametere inkluderes. Alle
trykkavhengige variablene er antatt å variere eksponentielt med trykk. Ved hjelp av disse
eksponentielle relasjonene kan modellen inkludere de trykkavhengige variablene inn i én
avhengig variabel,T

n

. Den normaliserte transmissibilitetsvariabelen, T
n

er en trykkavhen-
gig variabel, avhengig av den kombinerte dimensjonsløse elastisiteten,⌧

D

, som brukes for
å beskrive graden av spenningssensitivitet. Ved å introdusere variabelen T

n

kan ligningen
løses analytisk og en kan dermed opprette en modell som gir bedre prediksjoner av trykk
og strømningsadferd.

Det er tatt spesiellt hensyn til reservoartykkelsens trykkavhengighet nær brønnen og det
observeres at spenningsfølsomhet kan forårsake noe deformasjon her. Denne deformasjo-
nen er funnet både for tilfellet av nedsynkningstrykk og oppbyggingstrykk. Det er obser-
vert at deformasjonen ved synkende trykk er større enn den reverserte deformasjonen ved
økende trykk. Ved å øke graden av spenningsfølsomhet forsterkes også disse to fenomene-
ne. Fra oppyggningstrykkløsningen kan det derfor konkluderes med at ikke all deforma-
sjon kan reverseres ved å øke trykket. Det er altså viktig å kunne forutsi deformasjon tidlig
slik at trykkstøtte kan tilføres før deformasjonen blir irreversibel.

De utledede analytiske likningene anvendes for å uttrykke brønntestkurver og sammen-
ligne resultatene mot homogene løsninger. Avvik fra homogene verdier er funnet for alle
brønntestkurver. Modellen kan også omfatte brønnlagring og skinfaktor ved bruk av Laplace
transformasjon. For brønnlagring kan det se ut som om spenningssensitiviteten har liten
effekt på den tidlige engetshelningen. Ved å inkludere skinfaktor vil trykket ved senere tid
øke mer enn for den homogene løsningen.
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Chapter 1
Introduction

1.1 Motivation

The depletion of reservoirs and the following subsidence due to pressure decrease cause
the effective stress on the matrix to increase leading to the change in reservoir properties.
For conventional reservoirs this effect is considered small, and average properties for rock
and fluid can be assumed. For a stress-sensitive reservoir the assumption of constant prop-
erties is not valid. Properties like permeability, viscosity, fluid density and reservoir height
are believed to be highly dependent on pressure. These pressure dependencies have to be
incorporate into well test equations so that new and hopefully more accurate predictions
can be made. The model represented is appropriate for new fields, where the informa-
tion of reservoir parameters is scarce. When stress-sensitivity is known to be present in a
field, early and accurate predictions of the well performance are essential. Improving well
test models for the case of pressure dependency on rock and fluid parameters is therefor
believed to be important.

1.2 Goal

The main goal of this thesis will be to develop a new set of equations describing transient
flow in a stress-sensitive reservoir with several pressure dependent variables. The first
focus will be on building a model for the drawdown solution, before expanding to find
the buildup solution and a solution including storage and skin. Special attention will be
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Chapter 1. Introduction

paid to the change in reservoir thickness at the well, and how it may behave under pressure
reduction and increase. Several ways to obtain solutions to the suggested equations will be
investigated and presented, depending on level of accuracy and implementation difficulty
wanted.

1.3 Approach and Organization

This thesis will describe an analytical approach to solving the diffusivity equation when
several rock and fluid parameters are assumed to be pressure dependent. A new set of solu-
tions to be used for well testing in stress-sensitive reservoirs is derived. The new solutions
is used to investigate possible compaction near the well and then compared to already ex-
isting stress-sensitive and homogeneous cases. An extensive literature and theory review
is done on relevant topics.

The thesis will be organized as follows:

• Chapter 2 gives an introduction to relevant well testing theory and well testing
curves that are compared and analyzed against the new solution in the results chapter
(Chapter 6).

• Chapter 3 contains a literature review of stress-sensitive reservoirs, pressure depen-
dent variables and different approaches of obtaining transient solutions in the case
of stress-sensitivity.

• Chapter 4 gives an overview of the mathematical theory needed to solve the diffu-
sivity equation when non-linear, as for the case with pressure dependent variables.

• Chapter 5 represents the derivation of the new suggested analytical solution.

• Chapter 6 describes the results obtained investigating the deformation caused by
drawdown and buildup pressures. The sensitivity of the analytical solution is also
considered, comparing degrees of stress-sensitivity against the homogeneous case
by well tests curves.

• Chapter 7 further discusses the results obtained and represents suggestions for fur-
ther work.

• Chapter 8 concludes the thesis and summarizes findings drawn form the work.

2



Chapter 2
Basic Well Testing Theory

Figure 2.1: Illustrative pressure and
flowrate responses for a drawdown
and buildup test sequence.

The basic purpose of a well test is to create a tran-
sient pressure response that causes the formation
fluids to enter the wellbore. By monitoring pressure
and flow rate one may obtain important information
to characterize the well and reservoir, Lee (1982).
Together with geological, geophysical and petro-
physical information simulation models to predict
the reservoir behavior and the expected fluid recov-
ery can be made.

Usually pressure is recorded downhole at the well
and the flow rate measured at the surface, Bourdet
(2002). As the well is flowing the drawdown pres-
sure response is recorded and as the well is shut
in the build up pressure behavior is consequently
measured. The pressure and flow rate behavior for
flowing and shut in period are illustrated in figure
2.1.

In the ideal case, as illustrated in figure 2.1, the well
should be producing at constant rate during drawdown. In reality this is difficult to achieve
and may often lead to difficulties in analysing the pressure data from the drawdown period,
Lee (1982).

When the well is shut in and the pressure build up test is recorded, the flow rate can be
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Chapter 2. Basic Well Testing Theory

accurately controlled, as it is zero. It is important that a constant rate is achieved before
performing a build up test. The pressure increase during build up often gives more reliable
pressure data.

From the pressure data the permeability, both horizontal and vertical, reservoir hetero-
geneities, boundaries and pressures can be found. The productivity index and the geom-
etry of the well can also be found. All these parameters give important information both
for exploration, appraisal and development wells, Bourdet (2002).

2.1 Flow Regimes

The fluid flow and pressure behavior with respect to time is divided into three main types.
The different flow regimes are illustrated in figure 2.2 with their corresponding mathemat-
ical expressions.

Figure 2.2: Difference in behavior with pressure and time for the three main types of flow
regimes.

Steady state

In steady state flow the pressure does not change with time and thereby remains constant
at every location in the reservoir, Ahmed (2001). The pressure variation with time is
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2.2 The Diffusivity Equation

dependent on the reservoir properties as well as the geometry of the well.

Semi steady state

In semi steady state flow, also known as pseudo steady flow, the pressure declines at a
constant rate with respect to time. This corresponds to a closed system response.

Transient flow

In transient flow the pressure is non-zero or constant at any location in the reservoir. The
variation in pressure with time is dependent of the reservoir properties as well as the ge-
ometry of the well, Ahmed (2001). This flow regime is the most relevant for this study,
and is investigated based on the diffusivity equation.

2.2 The Diffusivity Equation

The diffusivity equation describes flow towards a well in a certain reservoir geometry by
combining Darcy’s law and the law for conservation of mass, Lee (1982). The equation
assumes single-phase isothermal flow with small and constant compressibility. For radial
flow from a circular reservoir, the diffusivity equation is expressed as follows

@

2
p

@r

2
+

1

r

@p

@r

=
�µc

k

@p

@t

(2.1)

where p represents the pressure, r the reservoir radius, � the porosity, µ the viscosity, c the
compressibility k the permeability and t the time.

The equation is an essential part of the current work and will be expanded for the purpose
of describing the stress sensitive reservoir.

Dimensionless variables

Using dimensionless variables are basically a means to ease calculations, as consideration
of units does not need to be considered. All dimensionless variables are put together
corresponding real ones, to make the functions dimensionless.

As an illustration the dimensionless diffusivity equation for radial flow is given by

@

2
p

D

@r

D

2
+

1

r

D

@p

D

@r

D

=
@p

D

@t

D

(2.2)
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Chapter 2. Basic Well Testing Theory

where index D represents the dimensionless form of variables.

2.3 Types of Well Tests

The types of well tests used to investigate the new developed solution for stress-sensitive
reservoirs include drawdown and buildup tests as well as two other typical tests curves that
are described below.

2.3.1 Interference Test

An interference test involves two or more wells and is performed by producing or injecting
from one well and monitoring the pressure response from another or several others. The
objective is to investigate if pressure communication between the two wells are present
and, if communication exists, finding estimates of the permeability, k, and storage capacity,
�c

t

, Lee (1982). If more observation wells then one is present one can also investigate
directional permeability.

Figure 2.3: Interference test type curve, Earlougher (1977).

In a simplified model with one producing and one observation well, the wells are assumed
to be a distance r between each other. The producing well starts to produce at time 0 and
after some time the pressure response is felt in the observation well. The pressure in the

6



2.3 Types of Well Tests

producing well will consequently start decreasing. The magnitude and amount of time of
the two differing pressure responses gives information about the reservoir properties close
to the two wells, Lee (1982).

The interference test is usually plotted by type curve analysis. A typical type curve for a
homogeneous reservoir is represented in figure 2.3.

For two or more wells spaced close together, a situation that might be encountered with
horizontal wells, the interference test can also be used to find the equivalent wellbore
radius r

we

. The equivalent wellbore radius may be used to represent a skin zone when
including skin in its normal form is not convenient, Jelmert (2013). Including skin in
some situations might give an unrealistic pressure jump, whereas the equivalent radius
represents the same phenomena by a mathematical identity which is often useful. For a
damaged well the equivalent radius is less than the radius of the wellbore, whereas for
a stimulated well the equivalent radius is larger than that of the well. The relationship
between the equivalent wellbore radius, r

ew

, and the wellbore radius, r
w

, can be given as
follows

r

we

= r

w

e

S (2.3)

where S is the skin factor.

2.3.2 Horner Analysis

The pressure build up analysis describes the pressure buildup behavior after the well has
been shut in. It is a useful tool in reservoir engineering to determine the reservoir behavior,
as the pressure build up usually follows a defined trend.

The analytical solution for the build up pressure is usually found by superposition in
time. The superposition solution is based on the drawdown solution and assumes one
or more fictitious wells to replace the actual well and its location. The buildup solution
is consequently the pressure sum of the fictitious well/wells and the actual well, Jelmert
(2013).

The buildup pressure response is typically analyzed by a Horner type graph. This is a
semilog plot of the well shut in pressure, p

ws

versus the Horner time, tp+�t

�t

, as illustrated
in 2.4. Where t

p

is the flowing time before shut in and �t is the shut in time. The straight
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Chapter 2. Basic Well Testing Theory

Figure 2.4: Typical Horner graph illustrating different behaviors with pressure and Horner
time, Matthews and Russell (1967).

line part of the curve can be used to find the permeability and skin from the slope of the
straight line, m, as seen in figure 2.4

2.4 Wellbore Storage and Skin

Storage and skin are two main effects that may cause pressure changes near the well-
bore.

The wellbore storage describes the wellbores capacity to store fluid. As pressure increases
more fluid is stored. Wellbore storage is basically a nuisance effect, affecting the form
of pressure transients, which must be recognized in order to make an accurate analysis of
the well flow, Grant and Bixley (2011). The effect of wellbore storage on the transient
response can be seen in figure 2.5, showing the homogeneous reservoir solution including
dimensionless storage, C

D

and skin, S. From the early time unit slope the wellbore storage
coefficient, C, can be found.

It is not unusual for the permeability near the wellbore to be reduced compared to that of
the reservoir. Mud filtrate, cement slurry or clay particles that enter the formation during

8



2.4 Wellbore Storage and Skin

well operations may cause this alteration and the region is thereby called the skin zone,
Ahmed (2001). In reservoir engineering the effect of skin is calculated as an additional
local pressure drop, �p

skin

. A positive value indicates an additional pressure drop and
hence a smaller permeability in this zone, whilst a negative skin indicates a stimulated
well which will require less pressure drawdown to produce at same rate, q, and zero skin
means that there is no reduction to the near wellbore permeability.

Figure 2.5: Typical curves for different values of wellbore storage and skin, Lee (1982).
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Chapter 3
Literature Review

The present chapter represents relevant literature on the stress-sensitive reservoir and in-
cludes modified paragraphs from the semester project, Lillehammer (2014).

3.1 The Stress-Sensitive Reservoir

Stress-sensitivity investigates the performance of reservoirs under the extortion of effective
stresses which changes the parameters of physical properties in the rock, Renpu (2011).
Reservoir depletion and subsequent subsidence as a cause of pressure decrease cause the
effective stress on the matrix to increase leading to the change in reservoir properties.
Reservoirs with such behavior are often described as unconventional.

3.2 Unconventional Reservoirs

An unconventional reservoir is by definition "fossil fuels found in a geological setting, dif-
fering from that of conventional deposits of oil or gas, and requiring specific technology to
develop", Cutler J. Morris (2009). Unconventional reservoirs have low permeability and
porosity, making them more difficult to produce. However "Only a third of worldwide oil
and gas reserves are conventional...", from Geoscience (2015), meaning that unconven-
tional reservoirs play an important role in the petroleum industry.

In the U.S. the extraction of gas from shale formations has been performed for more than a
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Chapter 3. Literature Review

decade. In later years new technology has enabled petroleum companies to develop these
resources more economically and both the interest for unconventional resources as well as
the development of such fields have grown significantly, from Geoscience (2015).

3.3 Compaction Due to Stress

In a hydrocarbon bearing formation there will be pressurized fluid in a solid framework.
Both the fluid and the solid support stresses on the material, Doornhof et al. (2006). This
is a concept described as the effective-stress principle stating that "the stress affecting
the behavior of a solid material is the applied stress minus the support from the pore-
fluid pressure"Doornhof et al. (2006). As production of fluids from a reservoir starts the
pore pressure decreases and consequently increases the vertical effective stresses acting
on the solid matrix. This phenomenon of changing stress situation in the formation results
in compaction. The degree of compaction depends on the rock properties and boundary
conditions of the formation.

3.4 Pressure Dependent Variables

From laboratory studies and observed pressure behavior in wells it is known that properties
like porosity and permeability decrease as the reservoir is depleted and the pressure de-
clines. Depletion causes the effective overburden pressure to increase which again leads to
deformation, compression and closure of rock pores, Ren and Guo (2014). It is found that
flow rates in stress-sensitive reservoirs may be much lower than the production predicted
by the use of equations with constant rock properties.

There are many studies on pressure dependent variables, especially on the pressure depen-
dency of permeability. The decrease in permeability is by many believed to be the primary
cause for early pressure decline and is consequently the main focus of research. There are
two main approaches for incorporating the pressure dependency into models. These are
the pseudo pressure approach and the permeability-stress function approach, Ren and Guo
(2014).

Hussainy et al. (1966) proposed a quasi-linear flow equation with a pressure dependent
diffusivity term as early as in 1966. The equation was reduced, by the use of a pseudo-
pressure, to a form similar to the diffusivity equation. This was an industry improvement
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3.4 Pressure Dependent Variables

for describing the flow of real gas through porous media. Earlier approximations were
only applicable for small pressure changes, which was not the case for stress-sensitive
reservoirs.

Vairogs et al. (1971) found that the reduction of permeability in tight gas reservoirs had
a significant effect on the production. The permeability was expressed as a function of
stress, which again is a function of pore pressure. By the use of numerical modelling they
found indications that the flow rate as a function of wellbore pressure was decreasing when
considering permeability varying with stress.

Many analytical solutions on the basis of what Hussainy et al. (1966) found have later de-
veloped. Chien and Caudle (1994) proposed a new gas potential where pressure dependent
variables such as viscosity, compressibility, porosity and permeability for gas reservoirs
were considered. A diffusivity equation for real gas flow with non-constant diffusivity
term and pressure dependent properties was derived from the continuity equation.

Economides et al. (1994) proposed a step-pressure test to evaluate stress sensitivity of
reservoir permeability where the pseudo-pressure was modified to include the pressure
dependent permeability. The proposed method was valid both for oil and gas flow.

Sun and Branch (2007) studied the effect of productivity and performance for the stress-
sensitive gas reservoir. Utilizing a pseudo pressure function and assuming no-Darcy turbu-
lent flow they expressed the material balance equation for an overpressured gas reservoir.
They included a permeability modulus found by expressing the permeability as an expo-
nential function of pressure.

Chen and Li (2008) and jiao Xiao et al. (2009) among others also included the assumption
of an exponential pressure-permeability reduction. Kikani and Pedrosa (1991) proposed
an approach to define stress-dependent permeability by defining a permeability modulus,
�, similar to that defined for different types of compressibility.

� =

✓
1

k

◆
@k

@p

(3.1)

The pressure dependent permeability can by 3.1 be expressed exponentially as,

k = k

ref

e

��(p�pref ) (3.2)

where k

ref

and p

ref

are the initial reference values. Equation 3.2 was based on findings
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done by Wyble (1958), who investigated the property change of cores when moved from
the ground to the laboratory. This description of pressure dependent permeability is also
referred to as the one-parameter exponential function.

The permeability can also be described as stepwise model, presented in the work of both
Zhang and Ambastha (1994) and Ambastha and Zhang (1996). This representation takes
into consideration that the permeability changes with changing net confining pressure. It
has not been widely used in the industry, as the critical pressure is difficult to determine
accurate.

Other models include the two-parameter exponential function also represented by Am-
bastha and Zhang (1996), as well as the power function model used by Ren and Guo
(2014).

This study will only consider the one-parameter exponential model of permeability and
also assume that this model can give a fair representation of other pressure dependent
parameters such as viscosity, density and porosity/thickness. Describing permeability, and
also porosity, as a one-parameter exponential function is accepted as a good approximation
by several studies, Kikani and Pedrosa (1991). Including pressure dependencies of other
parameters is not as widely done.

A study assuming pressure dependency of permeability and porosity but also reservoir
thickness and viscosity is represented by Finjord and Aadnoy (1989). The article states that
the variation in height as a function of pressure corresponds to letting the bulk volume vary
with pressure. Jelmert (2014) represented a solution to the inflow performance relationship
by considering pressure variation in permeability, viscosity and fluid density.

Jelmert (2014) described the permeability but also the viscosity and fluid density by the
same exponential relation as equation 3.2, these were put together to one composite elastic
modulus. In the semester project of Lillehammer (2014) the same relationships were used,
and also included the exponential relationship of thickness.

3.5 Transient Solutions

Several transient solutions to the diffusivity equation with stress-sensitivity have been rep-
resented in literature. Analytical approximations, numerical models or iterative solutions
represent the transient flow response.
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3.5 Transient Solutions

The study of R.Raghavan et al. (1972) introduced a pseudo-pressure function on stress sen-
sitivity which corresponds to the conventional equations of Everdingen and Hurst (1949).
The pseudo-pressure approach has some disadvantage in that the rock and fluid properties
versus pressure need to be known prior to each pressure level. The diffusivity equation
found by this approach also has a nonlinear term, which usually is approached by evaluat-
ing the pressure at initial values to make the problem tractable, Zhang (1994).

The approach of a permeability-stress function considering the pressure dependency of
permeability has been widely used in combination with pressure transient behavior. Pe-
drosa (1986) obtained a analytical solution for the pressure transient response by solving
the radial flow equation analytically with pressure dependent properties, taking into ac-
count the reduction in permeability caused by increase in effective stress. The solution is a
first order approximation for a line-source well producing at constant rate from an infinite
radial reservoir found by the use of perturbation.

Kikani and Pedrosa (1991) further developed the model, presenting also the second order
analytical perturbation solution as well as a zero-order solution including wellbore storage
and skin, to investigate the effects of these phenomenon’s on a stress-sensitive formation.
The work of both Pedrosa (1986) and Kikani and Pedrosa (1991) forms much of the basis
for the work of this report and an extended description of their work is included in chapter
4.

Zhang and Ambastha (1994) suggested a numerical solution to study pressure transient
response. Another analytical approximation was suggested by Jelmert and Selseng (1998)
who introduced normalized permeability variables to linearize the diffusivity equation.
The solution was found to match well with Kikani and Pedrosa (1991) second order per-
turbation technique.

Liehui et al. (2010) presented a analytical well test model by the concept of exponential
one parameter permeability modulus and non-uniform height. The effect of storage and
skin was also included. The model was found analytically in Laplace space and inverted to
time domain by the use of Stehfest algorithm, see section 4.1.3.3. The authors found that
the stress-sensitivity had little effect on the wellbore storage periode and started to deviate
from the homogeneous solution at intermediate to late times.

Kohlhaas and Miller (1969) represented a transient solution with pressure dependency of
permeability, porosity and thickness. The solution was transformed to obtain the form
of the diffusivity equation by the use of a transformation variable. Kohlhaas and Miller
(1969) represented a solution for vertical flow in a horizontal layer and used this to find
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the degree of shrinkage of the layer as a function of time. The shrinkage is represented as
an integral from zero to layer thickness in the z-direction. By assuming that the thickness
is constant they represented an equation for the ultimate shrinkage as a function of bulk
volume compressibility, layer thickness, density and the change in fluid head. For typical
data Kohlhaas and Miller (1969) found that the maximum amount of shrinkage was around
0.1"%" of the total thickness for a pressure drop of 1000 psi.

16



Chapter 4
Relevant Mathematical Theory

To develop a new solution for the pressure transient response of a stress sensitive reser-
voir the work of Pedrosa (1986) and Kikani and Pedrosa (1991) is studied. Their work,
together with mathematical theory represented in this chapter, forms the basis for further
development.

This chapter will first represent Kikani and Pedrosa’s analytical solution, before going into
detail on different results depending on the accuracy of the solution method used.

4.1 Analytical Solution of the Stress-Sensitive Diffusivity
Equation

Kikani and Pedrosa based their model on the the permeability modulus expressed as a
function of varying pressure, equation 4.1, and the continuity equation , equation 4.2.

� =
1

k

dk

dp

(4.1)

The diffusivity equation for single-phase liquid in an isotropic and homogeneous reservoir
with slightly compressible fluid and using Darcy’s law is expressed as
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(4.2)
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where r represents the reservoir radius, � the porosity and ⇢ the density.

In terms of a stress-sensitivity Kikani and Pedrosa (1991) expanded the equation
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where c

l

represents the liquid compressibility and c

m

the matrix compressibility.

The equation is strongly nonlinear because of the pressure gradient square term and the
permeability gradient. A common assumption is that the pressure gradient term is small.
This is not valid for a stress sensitive reservoir as the pressure gradients near the wellbore
are usually very high. The permeability modulus is also not small enough to be neglected,
Kikani and Pedrosa (1991).

By assuming constant moduli of compressibility and permeability and evaluating the dif-
fusivity at the initial pressure the equation was further linearized. Details of these calcu-
lations are not presented here, but a similar procedure is presented for the development of
the new solution in chapter 5.

Kikani and Pedrosa (1991) introduced dimensionless variables so that the equation sim-
plifies to
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Here �

D

defines the dimensionless permeability modulus.

Equation 4.4 is not convenient to solve analytically so Pedrosa (1986) introduced the fol-
lowing new dimensionless dependent variable, ⌘, which is related to the dimensionless
pressure according to
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The zero-order approximation of this solution was found to be
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where E

i

is the exponential integral function, explained in section 4.1.1

The dimensionless pressure for the zero order solution is thereby given as as
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The first order approximation was found as
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where z is equal to r

D

2�
4t

D

and the index of ⌘ represents the order of approximation.

Kikani and Pedrosa (1991) also represented a second order solution, which is not included
in this text. The different orders of solutions are found by the use of perturbation. This is
a method of calculations where a system of equations is divided into a part that is exactly
calculable and a small term, which prevents the whole system from being exactly calcu-
lable, Daintith (2010). The higher the order, the more accuracy will be achieved. Kikani
and Pedrosa found that the second order solution could be neglected and also that the zero
order solution was adequate for most purposes.

To obtain the buildup solution superposition was applied to each order of perturbation so-
lution. No direct superposition of the governing equation 4.4 can be found as this equation
is non linear, Kikani and Pedrosa (1991). The zero order buildup solution was represented
by Pedrosa (1986) as
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The dimensionless pressure can then by equation 4.5 be expressed as
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Solution and graphical representation of the behavior of the dimensionless pressure for
drawdown, equation 4.7 and buildup, equation 4.10 can be achieved by different ap-
proaches represented below.
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4.1.1 Exponential Integral Function

The dimensionless drawdown and buildup pressures can be found directly from 4.7 and
4.10, by solving the exponential integral functions. MATLAB has a built-in E

i

function,
ei(x), which returns the one-argument exponential integral, Mathworks (2015), defined
as

ei(x) =

1Z

x

e

�t

t

dt (4.11)

4.1.2 Logarithmic Approximation

For values of the argument of the exponential integral function less than 0.01 the log-
arithmic approximation to the E

i

function and thus the drawdown and buildup solution
respectively, simplifies to
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Disregarding any values that are not within the desired limit, means less accuracy to the
solution. At the same time the solution is easy to implement by the use of any computing
program, like Excel or MATLAB. These solutions were therefor used to confirm that the
extended solutions followed the same behavior.

4.1.3 Laplace Transform Solution

Equations 4.7 and 4.10 can also be written in terms of the dimensionless pressure func-
tions

For drawdown
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For buildup
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where the dimensionless pressure terms can be found by Laplace transformation.

4.1.3.1 Laplace Space Solution

The Laplace transform is an integral transform for solving physical problems, Wolfram-
Mathworld (2015). It is a means of easing complicated equations by shifting the equation
from time domain to what is called Laplace space. The integral transform can be repre-
sented as

L

t

[f(t)] (s) =

1Z

0

f(t)e�st

dt (4.16)

Where f (t) is a function defined for all values of the real variable t, L is the Laplace
operator and s is some space parameter.

Complex equations are usually easier to solve in Laplace space for example by the use of
modified Bessel functions. When the equation is solved in Laplace space it can be inverted
back to time domain to obtain the final result. An overview of the process is illustrated in
figure 4.1.

The pressure functions in equations 4.14 and 4.15 can be inverted to Laplace space by the
use of the integral transform, 4.16.

4.1.3.2 Line Source Solution in Laplace Space with the Use of Modified Bessel Func-
tions

A well-known solution to the diffusivity equation is the line source solution. This solution
has some simplifying assumptions that make it easier to handle. The solution is repre-
sented in the text as it forms the basis for understanding the Laplace solutions that are
represented by Kikani and Pedrosa (1991) and for the new solution. The line source solu-
tion is also used to investigate how a stress-sensitive solution deviates from a homogeneous
solution.
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Figure 4.1: Laplace transformation work-flow showing how to inverse a difficult equation in
time domain to Laplace space. The equation will usually be easier to solve in Laplace space,
and then need to be inversed back to time domain to get the final solution, this last step is often
the hardest.

The simplifying assumptions for the line source solution are, Stewart (2011)

• Constant flow rate, q, for t � 0

• Infinite acting reservoir p
D

(t
D

) ! 0 for r
D

! 1

• Well shaped like a line

• Well is fully penetrated

The governing equation in time domain for the line source solution in dimensionless form
is given by
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Expressed in Laplace space
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The last term of equation 4.18 on the left side is zero, found for the initial condition,
t

D

= 0, Stewart (2011).

The solution of equation 4.18 has the form of the modified Bessel equation of zero or-
der

22



4.1 Analytical Solution of the Stress-Sensitive Diffusivity Equation
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with the following solution,
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= AI0(x) +BK0(x) (4.20)

where I0 and K0 are modified Bessel functions of first and second kind with order of zero.
Modified Bessel equations are infinite series,
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that can be time consuming to solve, and polynomial approximations usually gives suffi-
cient accuracy, Jelmert (Fall 2014).

The modified Bessel functions can also be solved by built-in MATLAB functions, I =
besseli(nu,Z) and K = besselk(nu,Z). Where nu defines the order, which in this case is
zero, and Z defines the variable, for this case r

D

p
s.

From 4.20 the following modified Bessel equation expresses the line source solution
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where A and B are constants to be determined.

From the outer boundary conditions

p

D

= 0 , r

D

! 1 (4.23)

which again leads to

A = 0 ! I0 = 0 (4.24)

so that the dimensionless pressure in Laplace space is
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Taking the derivative of 4.25 with respect to the dimensionless distance and by multiplying
both sides with r
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From the inner boundary condition
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where the term on the left side, u (t), is called the heavy side unit step function. In Laplace
space this function corresponds to 1
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The modified Bessel functions have limiting forms for small arguments, where K1(x) =

� 1
x

so that
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which again means that
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(4.30)

Substituting this back to equation 4.25 the Laplace solution is obtained

p

D

=
1

s

K0

�
r

D

p
s

�
(4.31)

At the wellbore, where r

D

= 1
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To obtain the time domain solution inverse transformation of equation 4.31 needs to be
performed. This can be obtained by use of transform tables. For more complicated Laplace
solutions, as the one presented by Kikani and Pedrosa (1991) where skin and storage is
included
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it is not possible to obtain an exact inverse transformation. The use of numerical approxi-
mation as Stefhest algorithm is then utilized.

4.1.3.3 Gaver-Stehfest Algorithm

Well testing problems are often inverted and solved in the Laplace space to ease calcula-
tions. When equations become complex they may also be impossible or difficult to invert
back to the time solution. Such problems have to be solved by the use of numerical anal-
ysis, like the Stehfest algorithm, Jelmert (Fall 2014). If the Laplace space solution f(s) is
given the time domain solution f(t) may be found approximately at a specific time point
t=T.
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where N is an integer also called the Stehfest number and V

i

is a set of predetermined
coefficients that are dependent of N.

The coefficients are calculated from the following formula
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where
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L = min


i,

N

2

�
(4.36)

M =
i+ 1

2
(4.37)

The Stehfest number, N, should be even. Theoretically the approximation becomes better
with a larger value of N, Jelmert (Fall 2014). In practice the round off errors will worsen
if N is set too large. Stehfest used N=10 for 8 digit arithmetic and N=18 with double
precision arithmetic.

When the Stehfest algorithm is used to generate the dimensionless pressure solution P

D

(t)

from its Laplace transform P

D

(s), it is computed at preselected values of t
D

sufficient to
cover the range of interest.

An implementation routine for the Stehfest algorithm is readily available form MATLAB
sites, Srigutomo (2014). The MATLAB code is also included in Appendix B.

4.1.3.4 Well With Storage and Skin

What makes the Laplace solution desirable and some of the reason it is included in the
present work is that it is a convenient way to express solutions including wellbore storage
and skin effects, as shown in 4.33, found by Kikani and Pedrosa (1991). For given values
of C

D

and S this can be inverted back to time domain using the Stehfest algorithm for a
range of values of t

D

The line source solution including storage and skin can be found by equation 4.33 by
noting that as s becomes smaller the product [

p
sK1(

p
s)] approaches unity, Agarwal et al.

(1970). The resulting equation with C
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and S becomes
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4.2 Verification of Model

The solutions represented in the above sections, were implemented into MATLAB for ver-
ification on a Horner type curve, as illustrated in 4.2. The logarithmic approximation, sec-
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Figure 4.2: Horner type curve showing Kikani and Pedrosa (1991) zero order solutions for
different values of �D�D�D , compared to the EiEiEi solution and Laplace solution for �D = 0.25�D = 0.25�D = 0.25

tion 4.1.2, was plotted for �
D

values ranging from 0 to 0.35. The direct E
i

solution, section
4.1.1, and the Laplace space solution, section 4.1.3.1 was plotted for �

D

= 0.25.

The resulting curves in figure 4.2 matches those found by Kikani and Pedrosa (1991) and
gives confidence to further develop the model.
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Chapter 5
New Analytical Solution

The solution represented below is derived based on extensive research of the mathematical
theory represented in chapter 4.

The semester project, Lillehammer (2014), concluded that "The reservoir properties of
permeability, porosity, viscosity, density, compressibility and thickness can all be esti-
mated as exponential functions of pressure, and they correlate well within the accepted
error margin." The same assumptions are used in the current derivations. The elasticity
modulus, which includes all the pressure dependent parameter values, is included in the
diffusivity equation by the use of the transmissivity modulus. This means a new solu-
tion to the diffusivity equation has to be derived, with boundary values for the present
problem.

5.1 Deriving Basic Relationships Based on Elastic Mod-
uli

The pressure dependent variables permeability, density, viscosity and thickness are all
represented by exponential equations, Lillehammer (2014), found by plotting the known
values and performing exponential regression. The relationship between compressibility,
formation volume factor, B, and density can be given as

c = B
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dp

(5.1)
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This results in four exponential expressions, with their corresponding moduli. All moduli
are assumed constant.
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Here c , �, � and ⇠ denotes the constant elasticity modulus for each variable respec-
tively,(details included in Appendix A).

The combined moduli, ⌧ , can thereby be expressed by,

⌧ = � + c+ ⇠ � � (5.3)

The transmissivity, T(p) may be defined as
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(5.4)

where T(p) is related to the normalized transmissivity, T
n

(p), and the initial transmissivity,
T
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, as follows
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By this relationship T(p) can equally be expressed as
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The change in transmissivity can consequently be expressed as

�T (p) = T

i

� T (p) (5.7)
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and then equally for the normalized transmissivity, remembering the relationship given in
equation 5.5
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(p) (5.8)

The elasticity modulus can moreover be expressed in terms of transmissibility
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Integrating T

n

in equation 5.9 by assuming that the moduli ⌧ results in T

n

as an exponential
function of pressure.
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Where p is a pressure to be found, in this report the wellbore pressure, and p

ref

is the
pressure at some boundary, in this report the initial pressure.

Further details of these calculations can be found in Appendix A.

5.2 Including the Transmissivity into New Formulation
by Use of Raghavan Solution

R.Raghavan et al. (1972) obtained the following relationship for the diffusivity equation
with pressure dependent variables, R.Raghavan et al. (1972)(equation 10).
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where c

f

is the formation compressibility and c1 the initial compressibility.

By the use of the relationship of transmissivities 5.5 this can equivalently be written
as
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Next, moving the initial terms to the right hand side and by including the expression for
the dimensionless radius
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Then noting that h(p)
hi

and ⇢(p)
⇢i

can be replaced by h

n

and ⇢

n

the right hand side simplifies
slightly
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Equation 5.15 is strongly non-linear because of the pressure dependent terms. The normal
way to linearize such an equation is by evaluating it at the initial pressure. This will cancel
out the pressure dependent terms on the right hand side.
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Noting that the expression for the compressibilities on the right hand side at initial con-
dition is the initial total compressibility the dimensionless time relationship is found, ex-
pressed as
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This makes it possible to express the equation in terms of dimensionless variables
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5.3 Dimensionless Inner Boundary Condition in Terms of Dimensionless Pressure and
Transmissibility

and by dimensionless pressure which is given as

p
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So that the equation reduces to
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To further solve this equation it needs to be evaluated at the boundary conditions.

5.3 Dimensionless Inner Boundary Condition in Terms of
Dimensionless Pressure and Transmissibility

Equation 5.19 still has an unknown variable ↵ which needs to be determined. The the
inner boundary condition, expressed in terms of Darcy’s law for mass flowrate is given
as
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Including dimensionless pressure, from equation 5.19
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This equation includes the unknown ↵. Note that the volume rate is now at standard
conditions and therefor the formation volume factor is included. By moving all terms to
the right hand side
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By also noting that the normalized permeability times formation volume factor is equal to
the initial formation volume factor (see Appendix B for details) B

i

this simplifies to
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From the conventional inner boundary condition
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the inner boundary condition for this problem must be
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and hence the value of ↵ is
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That concludes the inner boundary condition calculations for p

D

but the inner bound-
ary condition for T

n

is also desired. Again starting with the extended form of Darcy’s
law
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Referring back to equation 5.9 to find the relationship
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Substitution of this equation into Darcy’s law results in
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Which can be expressed as
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which in turn simplifies and gives the relationship
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5.4 Deriving the Solution Using the Exponential Integral
Function

From 5.20 the diffusivity equation is found in terms of dimensionless pressure. To derive a
E

i

solution the diffusivity equation needs to be expressed in terms of the transmissivity. By
rearranging equation 5.20, knowing now the relationship between dimensionless pressure
and transmissivity from 5.34
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which again simplifies to
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Evaluation at initial conditions gives T
n
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i

) = 1 and results in
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With the inner boundary condition
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or for the line source solution
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The solution of 5.37 using the conditions above gives the E
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which may be converted back to pressure by (see Appendix A for details), and gives the
final result
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Equation 5.43 is the drawdown dimensionless pressure solution. A plot of p
D

versus tD
rD

2 ,
known as a plot for interference test, may be found by this solution

To obtain the build up solution the principle of superposition is applied to the expression
of �T

n

so that the buildup expression is
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5.5 Deriving the Laplace Solution for Storage and Skin
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The solution for drawdown wellbore pressure can then be found by knowing that
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resulting in
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and for build up wellbore pressure
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5.5 Deriving the Laplace Solution for Storage and Skin

A solution including storage and skin was represented by Kikani and Pedrosa (1991). For
this case the solution including storage and skin is slightly different. It is a time consuming
operation to obtain the new solution from the governing equation. By noting that the
difference between the current solution and the solution of Kikani and Pedrosa (1991) lies
in the inner boundary condition.

From Kikani and Pedrosa (1991) : r
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From current solution: r
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The relationship between the two solutions can be expressed as
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The resulting Laplace space equation for the current solution is then given as
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Which can be inverted back to time domain by use of Stefhest Algorithm, section 4.1.3.3.

The solution without storage and skin can easily be expressed in Laplace space by
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Chapter 6
Results and Evaluation

6.1 Verification of New Model

To verify the results represented above the zero-order E
i

solution of Kikani and Pedrosa
(1991) is used as a base, and implemented in MATLAB for different values of ⌧

D

. These
curves are compared against the buildup solution using the E

i

function, equation 5.47, and
the Laplace solution, equation5.54, (Chapter 5). In these solutions ⌧

D

= 0.25.

Figure 6.1: Horner type curve with comparison of Kikani and Pedrosa (1991) solution against
new developed EiEiEi and Laplace solution for ⌧D = 0.25⌧D = 0.25⌧D = 0.25
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Chapter 6. Results and Evaluation

As can be seen from figure 6.1, the E

i

build up solution match very well to the solution
of Kikani and Pedrosa (1991) and the Laplace solution also matches quite well. The
Laplace space solution is known to give the most accurate approximation, Jelmert (2015),
so this may actually indicate that the two other solutions are not as accurate. Moreover
the Laplace solution enables the inclusion of storage and skin effects, represented later in
chapter 6.

On the other hand the E
i

solution found in equation 5.47 is easier to handle and also readily
implemented in MATLAB using the built-in ei solver. Therefor this solution will be used
for investigation of thickness changes near the wellbore and to represent the interference
test curves for the stress-sensitive case.

6.2 Field Case

For the study of compressibility change effecting the height and consequently the stress
sensitivity parameter of the height change, the article of Chen and Li (2008) is used as
reference for field data. They present a field case of the Qingxi oilfield, known to be prone
for stress sensitivity.

6.2.1 Deformation Coefficient

R.Raghavan et al. (1972) express the height in terms of bulk volume and compressibility.
They define the bulk volume as �

x

�

y

h, the relative volume in x and y direction times
thickness. From the equation of porosity to volume
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(6.1)

where the pore volume can be expressed as V
P

= �

x

�

y

h�

R.Raghavan et al. (1972) assumes that compaction or expansion only occurs in the vertical
direction and express the pore volume compressibility as,
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which again can be expressed as
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From the reported Young’s modulus and Poisson’s ratio of the Qingix field, Chen and
Li (2008), one can find the bulk modulus. The formula for bulk modulus, K, is given
by

K =
E

3(1� 2⌫)
(6.4)

where E represents the Young’s modulus and ⌫ Poisson’s ratio. The bulk modulus K is
equivalent to the inverse of the compressibility, which again is dependent on height and
porosity, as shown in equation6.3. The equation of the height change due to pressure is
given by

h = h

i

e

⇠(pw�pi) (6.5)

where ⇠ is the height modulus, also represented in chapter 5 by equation 5.2d. By the
definition the compressibility in equation 6.3 it is assumed that the value of ⇠ is that of the
inverse bulk modulus compressibility, so that

K ⇡ 1

⇠

(6.6)

From the semester project, Lillehammer (2014) ⌧ was expressed as a product of the dif-
ferent pressure dependent variables modulus

⌧ = � + c+ ⇠ � ⌫ (6.7)

The value of ⌧ can be estimated when the value of ⇠ is known from the bulk modulus, and
assuming that � and ⌫ can be found by lab measurements and c by correlations or PVT
analysis. The latter is also assumed in the article of Kikani and Pedrosa (1991) and shown
in the semester project, Lillehammer (2014).

For the field case presented here, the only value available is the height modulus found from
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Chapter 6. Results and Evaluation

the inverse bulk modulus as shown equation 6.6. Assuming that ⇠ contributes to a certain
part of the total ⌧ value, an approximate value of ⌧ is achieved and can be used in further
calculations. Reservoir parameters for the Qingxi field can be found in table 6.1

Table 6.1: Reservoir parameters for Qingxi oilfield used to calculate ⇠⇠⇠ and thereby find ⌧D⌧D⌧D

Parameter Unit Value

Permeability µm

2 100 · 10�3

Formation thickness m 13.51

Reservoir pressure MPa 56.0

Bubblepoint pressure MPa 22.0

Oil viscosity under reservoir conditions mPa·s 5.73

Rw m 0.15

Re m 150

Young’s modulus MPa 689.48

Poisson’s ratio - 0.20

Formation volume factor - 1.20

Table 6.2 shows values used to solve for ⌧
D

when ⇠ is assumed to correspond to half of
the total ⌧ value. This results in ⌧

D

= 0.0073 for an assumed flow rate of 150m3
/d.

The value of ⌧
D

using the data from the Qingxi field does in other words depend on two
assumptions, the value difference between ⇠ and ⌧ and the flow rate.

Table 6.2: Illustration of approach to find value of ⌧D⌧D⌧D

Eq. with symbols Eq. with values Final value Unit
K = E

3(1�2⌫) K = 689.48
3(1�2⇤0.2) K = 383 [Mpa]

⇠ = 1
K

⇠ = 1
383⇤106 ⇠ = 2.6 ⇤ 10�9 [ 1

pa

]

⌧

D

= qscµiBi2·&
2⇡kihi

⌧

D

= 0.0017[m3
/s]·0.0057[pas]·1.2·2·2.61·10�9

2⇡,·1·10�13[m2]·13.51[m][pa] ⌧

D

= 0.0073 [-]
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6.2 Field Case

As ⌧ depends on several parameters it is reasonable to assume that ⌧ is larger than ⇠. The
size of ⌧ to ⇠ is from here on described as a "size factor", S, where S in the current example
is 2, see table 6.2.

The flow rate is determined based on the maximum flow rate for one of the wells in the
article of Chen and Li (2008)(figure 6), see also table 6.2. Typical well flowing rates can
vary greatly. Onshore fields have oil flow rates ranging from 50 to 450m3

/day while
offshore fields have oil flow rates ranging from 300 to 1000m3

/day, according to Snoeks
(2015). Gas rates are usually higher.

6.2.2 Resulting Deformation

With the given reservoir parameters an investigation of how the height is affected by the
height modulus ⇠ and the pressure change, p

w

� p

i

is done, represented by equation 6.5.
The pressure at the well can be found by equation 5.49 for the drawdown solution and 5.50
for the buildup solution, also included below for convenience.

For drawdown

p

w

= p

i

+
1
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ln(1��T

n

) (6.8)

and for build up

p

w

= p

i

+
1

⌧

ln(1��T

n,BU

) (6.9)

Note that for the drawdown and buildup solution the dimensionless radius, r
D

is assumed
to be 1 as investigation is done for the pressure at the well.

The height change expressed by equation 6.5 is found both for the drawdown and buildup
solution. This equation can be solved knowing the height modulus,⇠ and initial pressure,p

i

and assuming a value of ⌧ and thereby ⌧

D

. An illustration of the compaction of a stress
sensitive reservoir as shown in figure 6.2. Figure 6.2a represents the drawdown solution
and figure 6.2b the buildup solution. For the drawdown solution it is observed that the
predicted height decreases linearly as the reservoir is depleted and well pressure, p

w

de-
creases. For the buildup solution on the other hand the height and well bore pressure
increases linearly.This is indicated by the arrows in figure 6.2.
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Chapter 6. Results and Evaluation

(a) Drawdown solution causing reservoir height
decrease

(b) Buildup solution causing reservoir height in-
crease

Figure 6.2: Drawdown and buildup solutions showing decrease and increase in reservoir height
when ⌧D = 0.0073⌧D = 0.0073⌧D = 0.0073 and q = 150 m3/dm3/dm3/d

In this model, elastic deformation is assumed. This means that the deformation is assumed
possible in both negative and positive direction. From figure 6.2b it can be observed that
the last point in the buildup solution does not reach all the way to the initial value, but
stops below. Figure 6.3 includes both the drawdown and buildup solution, illustrating
even clearer that the two solutions do not share the exact same values. From table 6.3
it can be seen that the first values of the drawdown solution is equal to the initial values
of the Qingxi oilfield, while the last buildup values are smaller than initial pressure and
height values, indicated by red in table 6.3.

To get an even better understanding of the difference in the drawdown and buildup so-
lution from the height versus pressure plots, the change in thickness is plotted against
dimensionless time. As can be seen from figure 6.4 the deformation with time is negative
for drawdown and positive for build up pressure. This proves that a decrease in pressure
will cause compaction whilst an increase in pressure will cause a rise in the formation.
From 6.4 the initial height is marked by a blue and dotted line, illustrating again that the
buildup solution does not reach initial values at any time. The formation does not re-
vert fully back to the nitial height of 13.51 meters. This indicates that even though the
formation is assumed elastic, it can not be completely reversed in the positive thickness
direction.
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6.2 Field Case

Figure 6.3: Drawdown and buildup solutions showing decrease and increase in reservoir height
when ⌧D = 0.0073⌧D = 0.0073⌧D = 0.0073 and q = 150 m3/dm3/dm3/d

Table 6.3: Drawdown and buildup values for Qingxi oilfield when ⌧D = 0.0073⌧D = 0.0073⌧D = 0.0073 and q = 150
m3/sm3/sm3/s

Drawdown Buildup
pw [Mpa] h [m] pw [Mpa] h [m]

56.0 13.51 48.8 13.26
55.3 13.48 49.6 13.29
54.3 13.45 50.6 13.32
53.8 13.43 51.1 13.34
53.1 13.41 51.7 13.36
52.6 13.39 52.2 13.38
52.2 13.37 52.7 13.40
51.5 13.35 53.4 13.42
51.0 13.33 53.8 13.43
50.5 13.32 54.3 13.45
49.8 13.29 54.9 13.47
49.3 13.28 55.2 13.48
48.8 13.26 55.5 13.49
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Chapter 6. Results and Evaluation

Figure 6.4: Thickness change with dimensionless time for drawdown and buildup solution
when ⌧D = 0.0073⌧D = 0.0073⌧D = 0.0073 and q = 150 m3/dm3/dm3/d. The height decreases more during drawdown than it
increases during buildup

Figures 6.2 - 6.4, all assume a stress-sensitive modulus, ⌧
D

, of 0.0073. From previous
studies, Kikani and Pedrosa (1991), the stress-sensitivity can be higher than this. The
same solutions are therefor plotted for a ⌧

D

value of 0.1273, found by setting the size
factor S = 8 and the flow rate to 650 m

3
/d. The resulting deformation for drawdown and

buildup can be observed from figure 6.5 comparing the solution for a ⌧

D

value of 0.0073
against a ⌧

D

value of 0.1284. Figure 6.5a and 6.5b shows the drawdown solution and the
buildup solution respectively.

It is observed that the deformation increases as stress-sensitivity is increased, as is also
expected. The deformation for both the drawdown and buildup solution against dimen-
sionless time is illustrated in figure 6.6, for ⌧

D

= 0.1273. The plot indicates that increase
stress sensitivity causes increased compaction for the drawdown solution. For the case
of buildup on the other hand the rise is less for a larger stress-sensitivity parameter. This
can be seen even clearer when plotting the two stress-sensitive cases against each other,
illustrated in figure 6.7
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6.2 Field Case

(a) Drawdown solutions for ⌧D = 0.0073 and
⌧D = 0.1273

(b) Buildup solutions for ⌧D = 0.0073 and ⌧D =
0.1273

Figure 6.5: Drawdown and buildup solutions comparing amount of height decrease and in-
crease, respectively, for two degrees of stress-sensitivity

Figure 6.6: Thickness change with dimensionless time for drawdown and buildup solution
when⌧D = 0.1273⌧D = 0.1273⌧D = 0.1273 and q = 650 m3/dm3/dm3/d
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Table 6.4: Drawdown and buildup values for Qingxi oilfield when ⌧D = 0.1273⌧D = 0.1273⌧D = 0.1273 and q = 650
m3/sm3/sm3/s

Drawdown Buildup
pw [Mpa] h [m] pw [Mpa] h [m]

56.0 13.51 7.4 11.90
52.7 13.39 15.5 12.15
47.8 13.22 24.6 12.45
45.3 13.14 28.4 12.57
41.8 13.02 33.0 12.72
38.9 12.92 36.3 12.83
35.8 12.81 39.4 12.94
31.3 12.67 43.1 13.06
27.6 12.55 45.7 13.15
23.7 12.42 48.1 13.23
17.8 12.23 50.8 13.33
12.9 12.07 52.5 13.39

7.4 11.90 53.8 13.43

Figure 6.7: Comparison of thickness change with dimensionless time for drawdown and
buildup solutions with two degrees of stress-sensitivity
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6.3 Sensitivity Analysis

6.3 Sensitivity Analysis

6.3.1 Value of Stress-Dependent Parameter ⌧D⌧D⌧D

As mentioned earlier the value of ⌧
D

using the data from the Qingxi field depend on the
assumption of size factor for ⇠ to ⌧ and flow rate. The other variables to determine ⌧

D

is
tabulated in table 6.1.

Figure 6.8 illustrates a range of ⌧
D

values when dependent on ⇠ by a changing size factor
and different constant flow rates. The two ⌧

D

values used in section 6.2.2 are marked by
red circles in the figure. It is observed that the value of constant flow rate assumed has a
large effect on the stress-sensitive parameter ⌧

D

, as well as the size factor.

Figure 6.8: Range of values of ⌧D⌧D⌧D versus the size factor of ⇠⇠⇠ to ⌧⌧⌧ for different flow rates
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Chapter 6. Results and Evaluation

6.3.2 Interference Test

A plot for the interference test is produced from the drawdown solution

p

D

= � 1

⌧

D

ln


1 +

⌧

D

2
E

i

✓
�r

D

2

4t
D

◆�
(6.10)

plotted against the dimensionless time over dimensionless radius squared, tD
rD

2 . The inter-
ference test is commonly used to determine pressure communication between wells and
subsequently the permeability and porosity-compressibility product if communication ex-
ists. It is therefor of interest to express the interference test curve of a stress-sensitive
reservoir against that of a homogeneous reservoir. The homogeneous solution is plotted
together with the stress-sensitive solution, where the latter is plotted for several values of
⌧

D

, as seen in figure 6.9.

tD/rD
2

10-1 100 101 102 103

p D

10-2

10-1

100

101

102 Interference Test Drawdown Curve

Homogeneous =D=0
=D=0.0145
=D=0.15
=D=0.20
=D=0.25
=D=0.30

Figure 6.9: Interference test results at different values of ⌧D⌧D⌧D . Comparing the homogeneous
solution against several degrees of stress-sensitivity

From figure 6.9 it is observed that all the solutions are equal for early time behavior and
then the stress-sensitive solution deviates more the larger the ⌧

D

value becomes. The
deviation at late time is more or less constant for values of ⌧

D

between 0 to 0.20. The
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6.3 Sensitivity Analysis

interval is approximately 1 on the log log scale between the curves. However, at a ⌧

D

value of 0.25, the late time result has a greater vertical interval.

From figure 6.9 it can be noted that the curve for ⌧
D

= 0.30 does not exist for tD
rD

2 values
higher than 102. This is because the results give imaginary numbers for high ⌧

D

at large
values of time. These values are therefor disregarded by MATLAB code as they do not
give any sensible values for interpretation.

A clear trend is shown from the interference test, the larger the ⌧
D

value the more deviation
from the homogeneous solution. For this plot the value of the dimensionless radius, r

D

is
assumed to be 10.

In figure 6.9 the dimensionless radius is assumed constant. For this study it is also of in-
terest to plot the dimensionless radius for different values and compare the stress-sensitive
and homogeneous solution. This type of plot can be used to find the equivalent well-
bore radius, r

we

, used to represent the skin factor mathematically instead of as a pressure
drop.

t
D

/r
D
2

10-1 100 101 102 103 104 105

p
D

10-2

10-1

100

101

102

r
D

 = 1

r
D

 = 10

r
D

 = 50

Interference Test Drawdown Curve, changing r
D

Homogeneous solutions Stress-sensitive solutions

Figure 6.10: Interference test results at different values of rDrDrD

Figure 6.10 illustrates the interference solution for three cases of dimensionless wellbore
radius. At early times the homogeneous and stress-sensitive solutions increase at the same
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Chapter 6. Results and Evaluation

rate. As time increases the stress-sensitive solution deviates more and more. Indicating
that the resulting equivalent wellbore radius will differ in the case of stress-sensitivity
compared to assuming homogeneous conditions. The three r

D

values marked on the figure
are each at the maximum value of x- and y-coordinates. This is true both for the stress-
sensitive and the homogeneous case. This again shows that for a dimensionless radius of
r

D

= 50 the solution is only valid for short times, while it is valid for longer time intervals
for r

D

= 1. For values of r
D

larger than 50 the solution becomes inconsistent, and does
not show any clear trend. The plot in figure 6.10 is therefor best fitted for wells spaced
close together where a short radial distance is expected.

6.3.3 Including Wellbore Storage and Skin

The solution including wellbore storage and skin is represented in chapter 5 by equation
5.53. This solution is compared against the line source solution with storage and skin,
represented in chapter 4 by equation 4.38. When ⌧

D

is very small the two solutions are
equal.

The effect of storage is seen on the early time data, as illustrated in figures 6.11 and
6.12. The effect of skin is seen on the late time data, as illustrated in figures 6.13 and
6.14.

t
D

102 103 104 105 106 107 108

p
D

10-1

100

101

102
Drawdown with Wellbore storage and Skin

Homogeneous solution
Stress-sensitive solution, τ

D
=0.1

Stress-sensitive solution, τ
D

=0.15

r
D

 = 1

C
D

=0, S=0 

C
D

=100, S=0

Figure 6.11: Comparison of homogeneous and stress-sensitive solution for CD = 0CD = 0CD = 0 versus
CD = 100CD = 100CD = 100 for two values of ⌧D⌧D⌧D

52



6.3 Sensitivity Analysis

From figure 6.11 it is observed that including stress-sensitivity causes a higher increase
in pressure. This pressure increase is enhanced by the increase of ⌧

D

. For the case of no
storage, the pressure increase is seen also for the early time data. By including storage
the homogeneous and stress sensitive solutions are similar at early times but deviates at
intermediate and late times. The pressure increase from intermediate times and late times
is the same for no storage and storage solutions.

t
D

102 103 104 105 106 107 108

p
D

10-2

10-1

100

101

102
Drawdown with Wellbore storage and Skin

Homogeneous solution
Stress-sensitive solution, τ

D
=0.1

Stress-sensitive solution, τ
D

=0.15

S = 0
r
D

 = 1

C
D

 = 100

C
D

 = 1000

Figure 6.12: Comparison of homogeneous and stress-sensitive solution for CD = 100CD = 100CD = 100 versus
CD = 1000CD = 1000CD = 1000 for two values of ⌧D⌧D⌧D

Figure 6.12 shows much of the same effects as 6.11. For a wellbore storage constant,
C

D

= 1000, it is observed that the early time unit slope line is not affected by stress-
sensitivity. For ⌧

D

= 0.15 the solution is only valid for early and intermediate times.
After this the solution becomes imaginary, as it does not give any reliable data. The latter
part is neglected in MATLAB.

Figure 6.13 illustrates solutions including skin and storage. At a value of skin of only
five, the plot is similar to that of figure 6.12. It should be noted that the degree of stress-
sensitivity has to be lowered to get sensible values in the model.

Including only skin will produce almost horizontal lines that will be shifted downwards
or upwards depending on whether the solution is homogeneous or stress-sensitive, and
depending on degree of stress-sensitivity.
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Figure 6.13: Comparison of homogeneous and stress-sensitive solution forCD = 100CD = 100CD = 100 and S= 5
versus CD = 1000CD = 1000CD = 1000 and S = 5 for two values of ⌧D⌧D⌧D

By increasing the value of skin to 20, as illustrated in figure 6.14 the effect of skin is
clearly visible. This produces two curves that do not meet at any point in time, unlike the
other examples above. The stress-sensitivity parameter, ⌧

D

has to be decreased even more
to produce sensible values. For the stress-sensitive solution, ⌧

D

= 0.03 the dimensionless
pressure reaches a value close to 100 at late times.
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Figure 6.14: Comparison of homogeneous and stress-sensitive solution forCD = 100CD = 100CD = 100 and S= 5
versus CD = 10000CD = 10000CD = 10000 and S = 20 for two values of ⌧D⌧D⌧D

54



Chapter 7
Further Discussion and
Evaluation

In the new stress-sensitive model all pressure dependent moduli are assumed constant and
the combined variable T

n

are assumed to vary exponentially. This is an approximation,
and thus will not give an exact result, which is important to keep in mind.

In the literature review several other ways to estimate the permeability as a function of
pressure where mentioned. Describing the permeability, and possibly other variables, by
the stepwise of two-parameter exponential function, might give more precise results, but
would also further complicate the calculation to linearize the diffusivity equation.

The deformation model represented in chapter 6 is used to predict the possible compaction
thus also depend upon several assumptions. The resulting plotted data therefor only shows
predictions of theoretical behavior.

The drawdown and buildup deformation for a ⌧

D

value of 0.1273 also results a large
wellbore pressure change over the reservoir height change range. If ⌧

D

is further increased,
the model will predict negative wellbore pressures at lower heights, and thus it is no longer
reliable.

Compaction in reservoirs can benefit the recovery of hydrocarbons by providing extra en-
ergy, but more often than not compaction causes field-operating problems. Casing collapse
is a known problem in fields with large amounts of compaction. As the formation moves
it may pull the cemented casing with it, causing compression in this part of the casing.
Above the formation compacting the casing will be elongated creating stretch in the cas-
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Chapter 7. Further Discussion and Evaluation

ing Doornhof et al. (2006)

When doing sensitivity analysis on the new developed solutions it is found that for large
values of the stress-sensitivity parameter, ⌧

D

, the results are not always reliable. At in-
termediate and late times the values become partly imaginary numbers, which cannot be
used to get any valuable data. This is a limiting feature of the model.

7.1 further work

• The new solution can be investigate to an even wider extent, looking at the behavior
of the solution for a constant pressure test. The dimensionless flowrate has to be
found by Laplace transformation or convolution.

• For the model including storage and skin the solution could also be expressed by a
Gringarten type curve. This is a plot of p

D

versus tD
CD

and is extensively used in the
petroleum industry.

• The model for deformation could be tested for a stress-sensitive reservoir where
compaction close to the well has occurred. This could be used to further confirm
if the theoretical behavior found here resembles real field results and thus giving
confidence for further development.

• If solutions for the pressure derivatives can be found the solutions can also be ex-
pressed by diagnostic plots. A major application of diagnostic plots is to determine
different flow regimes in a buildup or flow test.

• A similar equation for fracture flow in Cartesian coordinates can also be developed,
and with some modification put into the same MATLAB scrip’s, as much of the
implementation will be similar.
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Chapter 8
Conclusion

• A new form of the diffusivity equation including the pressure dependency of perme-
ability, viscosity, fluid density and thickness is derived. The model gives sensible
results both for drawdown and buildup solution, according to previous similar work.

• The new form of the diffusivity equation is solved by the use of the exponential
integral, and also by Laplace transformation when including storage and skin.

• The solution is best fit for new wells, giving an early prediction of the expected
productivity before additional reservoir information is available.

• The deformation thickness for drawdown and buildup is found as a straight line. The
difference between the two solutions shows that deformation cannot be completely
reversed in the case of build up pressure.

• The deformation model also shown that by increasing stress-sensitivity the defor-
mation during drawdown is increased while the reverse deformation during buildup
is further decreased.

• Interference test for the drawdown solution shows that an increase in ⌧

D

cases an
increased deviation from the homogeneous solution.

• An interference test for varying r

D

results in a continuous line, as long as the di-
mensionless radius is not larger then approximately 50. This plot can be used to find
the equivalent wellbore radius.

• The model can also be used for wells with storage and skin, by updating the Laplace
space solution of Kikani and Pedrosa (1991) to fit the new boundary conditions. The
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Chapter 8. Conclusion

solution in time domain can be found by the use of Stefhest algorithm.

• The graphical representations including storage and skin shows that the stress-sensitivity
does not effect the early time unit slope for wellbore storage. This has also been
found from other studies and gives greater confidence that the storage coefficient C
can still be found by the unit slope in a stress sensitive formation.

• At intermediate and late times stress sensitivity effects both the solution for only
storage and also the solution with storage and skin combined.

• The pressure predictions given by the current model are believed to give more reli-
able values than the use of a homogeneous solution when encountered with a stress
sensitive reservoir.
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Nomenclature

Symbol Units Description
B � Formation volume factor
c 1/Pa Compressibility
c

f

1/Pa Formation compressibility
c

i

1/Pa Initial compressibility
c

t

1/Pa Total compressibility
E Pa Young’s modulus
C

D

� Dimensionless wellbore storage constant
E

i

(z) � Exponential integral function
h m Formation thickness
h

i

m Initial formation thickness
I0 � Modified Bessel function of first kind, zero order
k m2 Permeability
k

i

m2 Initial permeability
K Pa Bulk modulus
K0 � Modified Bessel function of second kind, zero or-

der
K1 � Modified Bessel function of second kind, first or-

der
p Pa Pressure
p

D

� Dimensionless pressure
p

e

Pa Pressure at outer boundary
p

i

Pa Initial pressure
p

wf

Pa Well flowing pressure
p

ws

Pa Well shut-in pressure
q m3/s Flowrate
q

sc

m3/s Sandface Flowrate
r m Radial distance
r

D

� Dimensionless radial distance
r

e

m Reservoir outer boundary radial distance
r

w

m Wellbore radius
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r

we

m Equivalent wellbore radius
S � Skin
t s Time
t

D

� Dimensionless time
t

pD

� Dimensionless producing time
T

i

� Initial Transmissivity
T

n

� Normalized Transmissivity
T (p) � Transmissivity

Greek Symbols

Symbol Units Description
↵ 1/Pa Porosity modulus
� 1/Pa Permeability modulus
�

D

1/Pa Dimensionless
�t s Shut-in time
�t

D

� Dimensionless shut-in time
�T

i

� Initial Transmissivity
�T

n

� Normalized Transmissivity
�T (p) � Transmissivity
⌘ 1/Pa Pressure dependent variable
µ Pa s Viscosity
⌫ � Poisson ratio
⇠ 1/Pa Thickness modulus
⇢ kg/m3 Density
⌧ 1/Pa Combined pressure dependent modulus
⌧

D

1/Pa Dimensionless combined pressure dependent
modulus

� 1/Pa Viscosity Modulus
� � Porosity
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Appendix A
Additional calculations

Pressure dependent parameter relations
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Deriving the basic relationship based on elasticity modulus
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Dimensionless inner boundary conditions in terms of p
D

q

sc

B (p) = q

sf

(A.5a)

V

osc

t

V

ores

(p)

V

osc

=
V

ores

(p)

t

(A.5b)

⇢

nsf

(p) =
M/V

ores

(p)

M/V

ores

(p
i

)
=

V

ores

(p
i

)

V

ores

(p)
(A.5c)

⇢

nsf

(p)B(p) =
V

ores

(p
i

)

V

ores

(p)

V

ores

(p)

V

osc

=
V

ores

(p
i

)

V

osc

= B

i

(A.5d)

Deriving the E

i

solution

From the relationship given by equation A.4f
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From the relationship given by equation A.4d
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Appendix B
MATLAB code

This appendix includes a few of the MATLAB codes used for the given study. All so-
lutions and plots have been found using the codes presented below or similar ones with
modifications to fit the problem.

Build up solution for Horner plot for Kikani and Petrosa solution, the new solution using
the build in Ei function and the new solution using Laplace transform. The latter calls
for the Gaver Stehfest algorithm (MATLAB code listed below this one) which again find
the Laplace equation expressed by Bessel function (MATLAB code further below -Bessel
solution for stress-sensitive case) assuming no storage and skin.

1 %% %Ei s o l u t i o n from Ki ka n i and P e d r o s a wi th s e v e r a l t d v a l u e s
2 c l e a r a l l
3 c l o s e a l l
4

5 tpD =10000;
6 yD = [ 0 . 0 1 0 . 1 5 0 . 2 0 0 . 2 5 0 . 3 0 0 . 3 5 ] ;
7 D e l t a = [10 25 50 100 250 500 1000 2500 5000 1 0 0 0 0 ] ;
8

9 f o r i = 1 : l e n g t h ( yD )
10 f o r j =1 : l e n g t h ( D e l t a ) ;
11 t i me ax ( j ) =( tpD+ D e l t a ( j ) ) / D e l t a ( j ) ;
12 pds ( i , j ) = �1/yD ( i ) ⇤ l o g (1�(yD ( i ) / 2 ) ⇤ e x p i n t ( 1 / ( 4 ⇤ ( tpD+ D e l t a ( j ) ) ) ) +(

yD ( i ) / 2 ) ⇤ e x p i n t ( 1 / ( 4 ⇤ D e l t a ( j ) ) ) ) ;
13 i f imag ( pds ( i , j ) ) ~=0;
14 pds ( i , j ) =NaN ;
15 end
16 end
17 end
18
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19 %% Ei s o l u t i o n f o r new d e r i v e d model
20 t p d = 10000 ;
21 tauD = 0 . 2 5 ;
22 rd =1;
23 D e l t a = [10 25 50 100 250 500 1000 2500 5000 1 0 0 0 0 ] ;
24

25 f o r j =1 : l e n g t h ( D e l t a ) ;
26 t ime ( j ) =( t p d + D e l t a ( j ) ) / D e l t a ( j ) ;
27 z1 ( j ) = rd ^ 2 / ( 4⇤ ( t p d + D e l t a ( j ) ) ) ;
28 z2 ( j ) = rd ^ 2 / ( 4⇤ ( D e l t a ( j ) ) ) ;
29 DTn1 ( j ) = �( tauD / 2 )⇤�e i (�z1 ( j ) ) ;
30 DTn2 ( j ) = �( tauD / 2 )⇤�e i (�z2 ( j ) ) ;
31 DTnT( j ) =DTn1 ( j )�DTn2 ( j ) ;
32 pDBU( j ) =�(1/ tauD ) ⇤ l o g (1+DTnT( j ) ) ;
33 i f imag (pDBU( j ) ) ~=0;
34 pDBU( j ) =NaN
35 end
36 end
37

38

39 %%L a p l a c e s o l u t i o n f o r new d e r i v e d model
40

41 L=10;
42 tauDD = 0 . 2 5 ;
43 tpD2 =10000;
44

45 Dt = [10 25 50 100 250 500 1000 2500 5000 1 0 0 0 0 ] ;
46

47 f o r l =1 : l e n g t h ( Dt )
48 P_BU1 ( l ) = g a v s t e h ( ’ f u n b e s s e l ’ , tpD2+Dt ( l ) ,L ) ;
49 P_BU2 ( l ) = g a v s t e h ( ’ f u n b e s s e l ’ , Dt ( l ) ,L ) ;
50 t i m e a x i ( l ) =( tpD2+Dt ( l ) ) / Dt ( l ) ;
51 pDD( l ) =(�1/ tauDD ) ⇤ l o g (1�( tauDD ) ⇤P_BU1 ( l ) +( tauDD ) ⇤P_BU2 ( l ) ) ;
52 end

The Gaver-Stehfest algorithm giving an approximate solution to inverse Laplace trans-
forms back to time domain, Srigutomo (2014).

1 % i l t = g a v s t e h ( funname , t , L )
2 %
3 % funname The name of t h e f u n c t i o n t o be t r a n s f o r m e d .
4 % t The t r a n s f o r m argument ( u s u a l l y a s n a p s h o t o f t ime ) .
5 % i l t The v a l u e o f t h e i n v e r s e t r a n s f o r m
6 % L number o f c o e f f i c i e n t ���> depends on compute r word

l e n g t h used
7 % ( examples : L=8 , 10 , 12 , 14 , 16 , so on . . )

68



8 %
9 % Wahyu Sr igu tomo

10 % P h y s i c s Depar tment , Bandung I n s t i t u t e o f Tech . , I n d o n e s i a , 2006
11 % Numer ica l I n v e r s e L a p l a c e Trans fo rm u s i n g Gaver�S t e h f e s t method
12 %
13 %R e f f e r e n c e s :
14 % 1 . V i l l i n g e r , H. , 1985 , S o l v i n g c y l i n d r i c a l g e o t h e r m a l p rob lems u s i n g
15 % Gaver�S t e h f e s t i n v e r s e L a p l a c e t r a n s f o r m , Geophys ics , v o l . 50 no . 10 p

.
16 % 1581�1587
17 % 2 . S t e h f e s t , H . , 1970 , Algo r i t hm 368 : Numer ica l i n v e r s i o n o f L a p l a c e

t r a n s f o r m ,
18 % Communicat ion o f t h e ACM, v o l . 13 no . 1 p . 47�49
19 %
20 % Simple ( and y e t r u s h ) examples i n c l u d e d i n f u n c t i o n s fun1 and fun2 wi th
21 % t h e i r c o m p a r i s o n s t o t h e e x a c t v a l u e ( use t e s t g s .m t o run t h e examples )
22 f u n c t i o n i l t = g a v s t e h ( funname , t , L )
23 nn2 = L / 2 ;
24 nn21= nn2 +1;
25

26 f o r n = 1 : L
27 z = 0 . 0 ;
28 f o r k = f l o o r ( ( n + 1 ) / 2 ) : min ( n , nn2 )
29 z = z + ( ( k^ nn2 ) ⇤ f a c t o r i a l (2⇤ k ) ) / . . .
30 ( f a c t o r i a l ( nn2�k ) ⇤ f a c t o r i a l ( k ) ⇤ f a c t o r i a l ( k�1)⇤ . . .
31 f a c t o r i a l ( n�k ) ⇤ f a c t o r i a l (2⇤ k � n ) ) ;
32 end
33 v ( n ) =(�1) ^ ( n+nn2 ) ⇤z ;
34 end
35

36 sum = 0 . 0 ;
37 l n 2 _ o n _ t = l o g ( 2 . 0 ) / t ;
38 f o r n = 1 : L
39 p = n ⇤ l n 2 _ o n _ t ;
40 sum = sum + v ( n ) ⇤ f e v a l ( funname , p ) ;
41 end
42 i l t = sum ⇤ l n 2 _ o n _ t ;

The Bessel expression in Laplace space for the line source solution. C

D

and S can be
changed as desired.

1 f u n c t i o n f = l i n e s o u r c e b e s s e l ( p )
2

3 Cd =100;
4 S =0;
5 a= s q r t ( p ) ;
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6 % Line s o u r c e s o l u t i o n
7 f =( b e s s e l k ( 0 , a ) +S ) . / ( p⇤(1+Cd .⇤ a ⇤ ( b e s s e l k ( 0 , a ) ) +S .⇤Cd .⇤ a ) ) ;

The Bessel expression in Laplace space for the stress-sensitive solution. C
D

and S can be
changed as desired.

1 f u n c t i o n f = f u n b e s s e l C S ( p )
2

3 Cd =100;
4 S =0;
5 a= s q r t ( p ) ;
6 %S t r e s s �s e n s i t i v e s o l u t i o n
7 f =( b e s s e l k ( 0 , a ) +S⇤a⇤ b e s s e l k ( 1 , a ) ) . / ( p ⇤ ( a⇤ b e s s e l k ( 1 , a ) +a⇤Cd⇤ ( b e s s e l k ( 0 , a ) +S

⇤a⇤ b e s s e l k ( 1 , a ) ) ) ) ;

The time domain solution, which runs the Bessel expression solutions through the Stefhest
algorithm and thereby retrieves time domain values.The time domain solutions are found
and can be plotted against desired ⌧

D

value/values.

1 %S o l u t i o n i n c l u d i n g s t o r a g e and s k i n f o r bo th l i n e s o u r c e s o l u t i o n and
2 %a n a l y t i c a l s t r e s s �s e n s i t i v e s o l u t i o n . Using Gaver�S t e h f e s t i n v e r s e

L a p l a c e
3 %t r a n s f o r m a l g o r i t h e m t o g e t s o l u t i o n i n t ime domain .
4 c l e a r a l l
5 c l o s e a l l
6

7 L=10;
8

9 tauD= [ 0 . 1 0 . 2 ] ;
10 tD = [10 100 250 500 1000 2500 5000 10000 100000 10000000 100000000 ] ;
11

12

13 f o r l =1 : l e n g t h ( tD )
14 % S t o r a g e 0 s k i n 0
15 pD1 ( l ) = g a v s t e h ( ’ l i n e s o u r c e b e s s e l 1 ’ , tD ( l ) ,L ) ;
16 i f imag ( pD1 ( l ) ) ~=0;
17 pD1 ( l ) =NaN ;
18 end
19 dTnCS1 ( l ) = g a v s t e h ( ’ f u n b e s s e l C S 1 ’ , tD ( l ) ,L ) ;
20 f o r k =1: l e n g t h ( tauD )
21 pDCS1 ( l , k ) =�1/ tauD ( k ) ⇤ l o g (1� tauD ( k ) ⇤dTnCS1 ( l ) ) ;
22 i f imag ( pDCS1 ( l , k ) ) ~=0;
23 pDCS1 ( l , k ) =NaN ;
24 end
25 end
26 %S t o r a g e 100 s k i n 20
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27 pD ( l ) = g a v s t e h ( ’ l i n e s o u r c e b e s s e l ’ , tD ( l ) ,L ) ;
28 i f imag ( pD ( l ) ) ~=0;
29 pD ( l ) =NaN ;
30 end
31 dTnCS ( l ) = g a v s t e h ( ’ f u n b e s s e l C S ’ , tD ( l ) ,L ) ;
32 f o r k =1: l e n g t h ( tauD )
33 pDCS( l , k ) =�1/ tauD ( k ) ⇤ l o g (1� tauD ( k ) ⇤dTnCS ( l ) ) ;
34 i f imag (pDCS( l , k ) ) ~=0;
35 pDCS( l , k ) =NaN ;
36 end
37 end
38

39 end
40

41 d a t a c h e c k = [ pD’ dTnCS ’ pD1 ’ dTnCS1 ’ ]
42

43 p l o t 1 = l o g l o g ( tD , pD1 , ’ r ’ , ’ LineWidth ’ , 1 . 5 ) ;
44 ho ld on
45 p l o t 2 = l o g l o g ( tD , pDCS1 , ’ b ’ , ’ LineWidth ’ , 1 . 5 ) ;
46 ho ld on
47 p l o t 3 = l o g l o g ( tD , pD , ’�⇤r ’ , ’ LineWidth ’ , 1 . 5 ) ;
48 ho ld on
49 p l o t 4 = l o g l o g ( tD , pDCS , ’�⇤b ’ , ’ LineWidth ’ , 1 . 5 ) ;
50 ho ld on
51

52

53 t i t l e ( ’ Drawdown wi th Wel lbo re s t o r a g e and Skin ’ , ’ F o n t S i z e ’ ,24 )
54 g r i d on
55 x l a b e l ( ’ t_D ’ , ’ F o n t S i z e ’ , 1 8 )
56 y l a b e l ( ’p_D ’ , ’ F o n t S i z e ’ , 1 8 )
57 s e t ( gca , ’ F o n t S i z e ’ , 1 8 )
58 l e g e n d ( ’ Homogeneous s o l u t i o n s , C_D = 0 , S = 0 ’ , ’ S t r e s s �s e n s i t i v e

s o l u t i o n s , C_D = 0 , S = 0 ’ , ’ Homogeneous s o l u t i o n s , C_D = 100 , S = 0 ’ ,
’ S t r e s s �s e n s i t i v e s o l u t i o n s , C_D = 100 , S = 0 ’ ) ;

59

60 s t r = { ’ \ tau_D = 0 ’ , ’ r_D = 1 ’ } ;
61 a n n o t a t i o n ( ’ t e x t b o x ’ , [ . 1 5 . 8 , . 1 , . 1 ] , ’ S t r i n g ’ , s t r , ’ F o n t S i z e ’ , 1 8 , ’

BackgroundColor ’ , [ 0 . 9 0 . 9 0 . 9 ] ) ;
62 ho ld a l l
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