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Abstract

Introduction

The complexity of obesity and onset and susceptibility of cardio-metabolic disorders are still

poorly understood and is addressed here through studies of genetic influence on weight

gain and increased metabolic risk longitudinally.

Subjects/Methods

Twenty seven previously identified obesity, eating disorder or metabolic risk susceptibility

SNPs were tested for association with weight or metabolically related traits longitudinally in

3999 adults participating both in the HUNT2 (1995–97) and HUNT3 (2006–08) surveys.

Regression analyses were performed with changes from normal weight to overweight/obe-

sity or from metabolically healthy to adverse developments with regards to blood pressure,

glucose, HDL cholesterol, triglycerides or metabolic syndrome as outcomes. Additionally, a

sub-sample of 1380 adolescents was included for testing association of nine SNPs with lon-

gitudinal weight gain into young adulthood.

Results

The most substantial effect on BMI-based weight gain from normal to overweight/obesity in

adults was observed for the DRD2 variant (rs6277)(OR: 0.79, 95% CI: 0.69–0.90, P =

3.9x10-4, adj. P = 0.015). DRD2 was not associated with BMI on a cross-sectional level. In

the adolescent sample, FTO (rs1121980) was associated with change to overweight at

adulthood in the combined male-female sample (OR: 1.27, 95% CI: 1.09–1.49, P = 3.0x10-

3, adj. P = 0.019) and in females (OR: 1.53, 95% CI: 1.23–1.91, P = 1.8x10-4, adj. P =

0.003). When testing for association to longitudinal adverse developments with regard to

blood pressure, blood lipids and glucose, only rs964184 (ZNF259/APOA5) was significantly
associated to unfavourable triglyceride changes (OR: 1.66, 95% CI: 1.36–2.03, P = 5.7x10-

7, adj. P = 0.001). Pleiotropic effects on metabolic traits, however, were observed for several

genetic loci cross-sectionally, ZNF259/APOA5, LPL andGRB14 being the most important.
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Conclusions

DRD2 exhibits effects on weight gain from normal weight to overweight/obesity in adults,

while, FTO is associated to weight gain from adolescence to young adulthood. Unhealthy

longitudinal triglyceride development is strongly affected by ZNF259/APOA. Our main find-

ing, linking the DRD2 variant directly to the longitudinal weight gain observed, has not previ-

ously been identified. It suggests a genetic pre-disposition involving the dopaminergic

signalling pathways known to play a role in food reward and satiety linked mechanisms.

Introduction
Obesity has become a major global health burden [1] with numerous comorbidities such as
metabolic syndrome (MetS), type 2 diabetes and cardiovascular disease [2]. Globally, from
1980 to 2008, the prevalence of obese adults has almost doubled with an increase of 4.8% to
9.8% in men and from 7.9% to 13.8% in women, respectively [3]. In Norway, represented by
the HUNT study, the prevalence of BMI-based obesity has increased from 7.7% in 1984/86 to
22.1% in 2006/08 in men and from 13.3% to 23.1% in women. Likewise, abdominal obesity has
increased markedly within the same time period [4] suggesting a general increased risk of met-
abolic syndrome, type 2 diabetes and cardiovascular disease in this population.

Obesity and associated MetS are regarded as complex traits influenced by both environmen-
tal factors and additive genetic effects. Through twin and family studies obesity heritability esti-
mates for obesity range between 40 and 70% has been estimated [5]. Although GWAS studies
based on common genetic variants with small size effects have enabled the identification of
some pathologically important genetic markers and molecular pathways [6, 7], large steps for-
ward in elucidating the genetics of obesity are expected with more studies on rare and copy
number variants with larger effect sizes [8–10]. Identification of epigenetic and environment
and gene interaction (GxE) effects are further thought to contribute to unraveling the “missing
heritability”[11].

The metabolic syndrome refers to a combination of traits including increased central obe-
sity, insulin resistance, dyslipidemia and hypertension [12]. The rise in MetS prevalence is pos-
tulated to mostly be caused by changes in life style. Even so a moderate to high heritability has
been found for all underlying metabolic syndrome traits and data indicate that most of the
individual variation observed is due to genetic differences [13]. Genetic pleiotropy [14] has
been identified with common genes reported to affect clusters of MetS traits [15, 16].

The wide-ranging genetic variants shown to be implicated in common obesity, suggest that
genetic susceptibility manifested in an obesogenic environment do so through complex inter-
actions, also implicated in systems controlling food intake such as food reward and eating
behaviour [17, 18]. Several studies have shown that obese individuals behave differently with
regard to food stimuli and reward compared to normal weight individuals. Previous investiga-
tions have shown that dopamine and leptin signalling pathways may be involved in the stimu-
lation of these [19, 20]. Likewise, several recent reports discuss the common genetic grounds
for obesity and drug addiction [17, 21].

Causes that influence weight gain during adulthood are incompletely understood, but
thought to be affected by a complex pattern of interactions between genetic susceptibility and
lifestyle. Studies have focused on candidate genes’ influence on longitudinal weight change
going in both directions (ΔBMI) [22], on genetic implications on weight gain/loss in interven-
tion studies [23] or genetic pre-disposition to weight gain during antipsychotic treatment [24].
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There are indications of increased risk of unhealthy weight gain due to reduced dopamine sig-
nalling and hence weaker responsiveness to food reward [20], however, very few population
based studies address the issue of genetic pre-disposition to unhealthy weight or metabolic
change over time.

Investigations of factors influencing longitudinal adverse developments with regard to obe-
sity and cardio-metabolic disorders may provide new insight into processes of timing and sus-
ceptibility important for clinical prevention strategies. Through a longitudinal design based on
the HUNT Study, our main investigation included 3999 adult individuals in a study of whether
genetic variants previously associated with obesity, eating behaviors and metabolic traits influ-
ence both weight gain and metabolic adverse developments longitudinally over a time period
of 11 years. Our study showed that the DRD2 variant involved in the dopaminergic signalling
pathways, affects adverse weight gain in adults. The finding emphasises the importance of
molecular mechanisms pre-disposing to food reward and satiety linked processes to be
addressed in obesity management initiatives. Pleiotropic effects on metabolic traits were
observed for several genetic loci cross-sectionally although very few genetic variants seem to
influence both weight gain and adverse metabolic developments.

Materials and Methods

Study population and phenotypic measurements
In the HUNT Study [25] data have been collected in three different time waves, HUNT1
(1984–86), HUNT2 (1995–97) and HUNT3 (2006–08), comprising the entire adult population
of the Nord-Trøndelag County in Norway. Our primary study sample included 3999 adults
(47.7% men) who participated both in the HUNT2 and in the HUNT3 survey 11 years apart.
Comprehensive health data questionnaires, clinical measurements and biological material were
collected at both survey attendances. Another longitudinal sub-sample consisting of 1380 indi-
viduals was also included. This adolescent sample (Young-HUNT1, 45% males) had an average
age of 16.0 years at baseline and 27.2 years at follow-up (HUNT3), described in detail elsewhere
[26].

All examinations were done by trained nurses or technicians and weight, height and waist
circumference (WC) were measured using standardised weight scales and meter bands. Height
was measured to the nearest centimetre (cm), weight to the nearest 0.5 kilogram (kg) and body
mass index (BMI) was calculated as weight in kg/height in m2. Blood pressure (BP) was mea-
sured using a Dinamap 845XT (Critikon) based on oscillometry, automatically three times per
minute intervals. The average values of the two last measurements were used in our study.
Total cholesterol (TC), high density lipoprotein Cholesterol (HDL-C), blood glucose (GLU)
and triglycerides (TG) were measured in non-fasting serum from fresh blood samples at Levan-
ger Hospital, Norway. Details of instruments and procedures are described previously [27, 28].
Overweight and obesity in adults were defined as having a BMI� 25 or 30 kg/m2, respectively,
or a waist circumference of� 94 cm 102 cm in men and� 80 cm or� 88 cm in women. Over-
weight were assumed according to Cole et al. [29] Cases were defined as normal weight at
Young-HUNT1 and overweight (BMI�25) at HUNT3 while controls were defined as normal
weight both at Young-HUNT1 and HUNT3.

Metabolic syndrome (MetS) was defined as having at least three metabolic abnormalities for
WC, blood pressure, blood glucose, HDL-cholesterol or triglycerides. Cut-offs were based on
the original NCEP—ATP III definition [30]. However, as fasting measures were not available,
the cut-offs for glucose and triglycerides were modified to�7.0 mmol/l and�2.1 mmol/l
instead of�6.1 mmol/l and�1.7 mmol/l, respectively [2, 28]. Elevated blood pressure were
defined as systolic blood pressure (SBP)�130 mmHg or diastolic blood pressure (DBP)�85
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mmHg, or antihypertensive drug treatment and elevated blood glucose level as�7.0 mmol/l or
use of or diabetes medical treatment. Decreased HDL-C levels were defined as<1.0 mmol/l in
men or<1.3 mmol/l in women [31].

Pregnant women were excluded both at baseline and follow-up (n = 148 at HUNT2 and
n = 6 at HUNT3) in analyses using BMI or WC. Participants treated with anti-hypertensive
medication were excluded from cross-sectional and descriptive analyses where blood pressure
levels were taken into account. Treatment with blood pressure lowering medication or diabetes
medication, were classified as above cut-off respectively where the blood pressure and glucose
measurements were used in the longitudinal association analyses.

Ethics
All participants gave a written informed consent. The protocol was in accordance with the Hel-
sinki Declaration approved by the Regional Committee for Ethics in Medical Research and the
Norwegian Data inspectorate.

Genotyping
DNA was extracted from peripheral blood leukocytes from EDTA whole blood or blood clots
using the Gentra Purgene blood kit (QIAGEN Science, Maryland, USA). The procedure was
done manually or automated with an Autopure LS (QIAGEN Science, Maryland, USA) as
described by the manufacturer. To estimate associations with anthropometry (obesity/weight/
height) and metabolic traits, SNPs were selected based on the most robust findings at the time
of study design (year 2012) or on our own investigations [26, 32]. Genotyping was performed
at CIGENE using the MassARRAY and iPlex system of the Sequenome genotyping platform
(Sequenom, San Diego, CA, USA) in a SNP-multiplex design. The system uses the MALDITOF
primer extension assay according to manufacturers’ recommendations. Forty ng DNA was
used in the multiplex. Assays were optimised on 384 samples initially which resulted in five
SNPs being excluded due to poor genotyping quality (lower call rates than 95%). This left the
following 27 SNPs with their nearby gene for analyses: rs1121980 (FTO), rs17782313 (MC4R),
rs11084753 (KCTD15), rs10838738 (MTCH2), rs4074134 (BDNF), rs569356 and rs533123
(OPRD1), rs35683 and rs2075356 (GHRL), rs6277 (DRD2), rs10195252 (GRB14), rs10242595
(IL–6), rs1049353 (CNR1), rs3782905 (VDR), rs3828942 (LEP), rs4929984 (H19), rs7180942
(NTRK3), rs8179183 (LEPR), rs890 (NR2B 5073T), rs964184 (ZNF259/APOA5), rs6810075
(ADIPOQ), rs560887 (G6PC2), rs12922394 (CDH13), rs1501299 (Adipoq), rs268 (LPL),
rs782590 (SMEK2), rs1042725 (HMGA2) (S1 Table). Individuals with>10% genotype missing
were removed. Two negative controls were run per 384-well plate. Samples were run blinded to
the laboratory personnel.

Statistical analyses
SNPs were tested for deviation from Hardy Weinberg Equilibrium (HWE) in the total sample
(S1 Table). To test cross-sectional SNP effects, linear regression was performed on the cross-
sections using BMI, WC, SBP, DBP, GLU, TC, HDL-C and TG as continuous variables. Associ-
ation with WC was adjusted for height. In addition, age and sex were adjusted for in analyses
of the total sample sets and age in the sex stratified analyses. Due to departure from normal dis-
tribution by right skewness, the inverse values of glucose and the lg10 values of HDL-C and TG
were used. The regression analyses were performed assuming additive models for each SNP.
The minor allele was used as reference.

Individual changes over time from HUNT2 to HUNT3 were evaluated using ANOVA
repeated measures (SPSS, version 20). Additionally, association between SNPs and changes
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from healthy to adverse metabolic status (HUNT2 to HUNT3) in individuals with cut-offs
defined above for BP/antihypertensive medication, GLU/diabetes medication, HDL-C and TG
were tested by logistic regression. Likewise, logistic regression was employed testing associa-
tions between genes and longitudinal changes from normal weight to overweight (HUNT2 to
HUNT3). Controls were defined as participants categorized as healthy (below cut-off) with
regard to the outcome variables both at baseline and follow-up, while cases were defined as
those who displayed healthy values at baseline and above cut-off metabolically or categorized
as overweight at follow-up. Participants not categorized as cases or controls were excluded
from the analyses (study design outlined in Fig 1). PLINK Software was used for genetic analy-
ses [33]. Nominal significance was considered at P<0.05 and for defining sex-specific interac-
tions (SNP�sex). A PLINK-based permutation-based test (max(T)) with 1000 permutations
per analysis was used in order to adjust for multiple testing of the SNPs (equals stringency of
Bonferroni correction when single SNPs are tested).

Results

Study subjects and phenotypic measurements
Descriptive characterisation of the adult longitudinal sample is summarised in Table 1. The
sample consisted of 3999 individuals (48% males) with an average age of 35.6 years (HUNT2)
at baseline and 46.8 years at follow-up (HUNT3). Comparing baseline and follow-up measures
showed significant longitudinal adverse developments for most included weight and metabolic
variables, however, in men HDL-C and DBP stayed nearly unchanged, while SBP significantly
decreased. In contrast, DBP declined significantly over time in women. Overall overweight
(BMI based) changed from 60.3% to 77.2% and 39.6% to 56.7% for men and women, respec-
tively, and WC-based overweight from 28.9% to 62.5% and 35.6% to 77.8% for men and
women, respectively. Overall obesity (BMI based) changed from 9.6% to 22.0% in men and
from 10.7% to 19.4% in women. WC-based obesity changed from 7.4% to 30.5% in men and
14.7% to 51.3% in women.

Genetic associations with longitudinal change from normal weight to
overweight
To investigate whether the genetic variants included in the study were associated with longitu-
dinal changes from normal weight to overall overweight/obesity (BMI�25), a logistic regres-
sion model was employed. The sample included 740 cases (353 males, 387 females) with
normal weight at HUNT2 and overweight/obesity at HUNT3 and 1209 controls (404 males,
805 females) with normal weight at both time points (Fig 1). The DRD2 (Dopamine receptor
D2)-variant (rs6277) was highly significant where the C-allele displayed a protective effect
towards overweight development (OR: 0.79, 95% CI: 0.69–0.90, P = 3.9x10-4, adj. P = 0.015
(Table 2). Other gene variants were only significant at nominal significance levels.

To explore potential associations between the genetic variants and the change from normal
weight to overweight/obesity (men� 94 cm, women� 80 cm) and normal weight to obesity
(men� 102 cm, women� 88 cm) based onWC as outcome, logistic regression models were
used. There were 1525 individuals (678 males, 847 females) in our sample that developed over-
weight /obesity between HUNT2 and HUNT3 and 632 obese cases (202 males, 421 females)
while 1080 controls (673 males, 407 females) had WC below cut-off for overweight at both
time points (Fig 1, S2 Table). The resulting associations were not generally comparable to the
BMI-based results neither with regards to SNPs being identified nor the effect sizes displayed.
The DRD2 was on the border of significance with the same direction of effect in females as
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identified for BMI-based change to overweight. Cross-sectionally, the FTO (fat mass and obe-
sity associated) variant (rs1121980) was the only marker being significantly associated in sex
and age-adjusted linear regression models with BMI after multiple testing (S3 Table).

To address whether the DRD2 showed the same longitudinal change association pattern as
identified in the adults, we performed a nearly corresponding logistic regression analysis on
the adolescent sub-sample. This sub-sample consisted of 553 cases (300 males and 253 females)
that went from normal weight (weight categories according to Cole et al. [29]) to overweight/
obese at adulthood and 827 controls (331 males and 496 females) with normal weight at both
time points. Of the nine genetic variants that were included in this analysis (rs1121980 (FTO),
rs17782313 (MC4R, melanocortin 4 receptor), rs11084753 (KCTD15, potassium channel tetra-
merization domain containing 15), rs10838738 (MTCH2, mitochondrial carrier 2), rs4074134
(BDNF- brain-derived neurotrophic factor), rs569356 (OPRD1- opioid receptor, delta 1),

Fig 1. Flow diagram of individuals included in the adult longitudinal study.Overweight/obesity was defined as having a BMI� 25 kg/m2 or as� 94 cm
102 cm (male) and� 80 (female) with regards to waist circumference (WC). Unhealthy blood pressure (BP) was defined as systolic blood pressure�130
mmHg or diastolic blood pressure� 85 mmHg, or antihypertensive drug treatment. Unhealthy blood glucose (GLU) level was defined as�7.0 mmol/l or use
of or diabetes medical treatment and triglyceride (TG) level as�2.1 mmol/l (both cut-offs modified due to non-fasting measurements). An unhealthy HDL
cholesterol (HDL-C) level was defined below <1.0 mmol/l (male) or <1.3 mmol/l (female). Metabolic syndrome (MetS) phenotype cut-offs were based on the
original NCEP—ATP III definition taking into account WC, BP, GLU, HDL-C and TG levels. MetS-cases were those scoring below cut-off for all five measures
at baseline, but above cut-off for at least three components at follow-up. Controls scored below cut-offs for all five measures both at base-line and at follow-
up.

doi:10.1371/journal.pone.0139632.g001
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rs35683 (GHRL, ghrelin), rs6277 (DRD2) and rs10195252 (GRB14—growth factor receptor-
bound protein 14)), only the FTO variant (rs1121980) was significant after multiple testing in
the combined male-female sample (OR: 1.27, 95% CI: 1.09–1.49, P = 3.0x10-3, adj. P = 0.019).
Additionally, sex-interaction was identified with a female-only effect observed in the stratified
analyses (OR: 1.53, 95% CI: 1.23–1.91, P = 1.8x10-4, adj. P = 0.003) (Table 2).

Genetic associations with longitudinal change towards adverse
measures of blood pressure, blood glucose, HDL cholesterol and
triglycerides
In order to examine potential genetic effects with regards to change from healthy to adverse
metabolic status over time, logistic regression models were used in the same manner as for the
studies of genetic effects on disadvantaged weight developments. The four different metabolic
trait sub-samples included were each composed of stable healthy controls for the measure in
question and cases which were healthy at HUNT2, but had developed to an adverse state at
HUNT3 defined by cut-offs defined in Materials and Methods. For the blood pressure analysis
592 cases (275 males, 317 females) and 1851 (536 males, 1315 females) controls were included.
The glucose based analysis involved 250 cases (164 males, 86 females) and 3558 controls (1637
males, 1921 females), HDL cholesterol 443 cases (170 males, 273 females) and 2353 controls
(1107 males, 1246 females) and the triglyceride set-up 472 cases (299 males, 173 females) and
2712 controls (998 males, 1714 females)(Fig 1). Only one variant, rs964184 (ZNF259/APOA5,
zinc finger protein 259/apolipoprotein A-V) was significantly associated with unfavourable tri-
glyceride changes even after multiple testing (OR: 1.66, 95% CI: 1.36–2.03, P = 5.7x10-7, adj.
P = 0.001)(S4 Table).

Table 1. Descriptive characteristics of the 3999 individuals (male 48%) in the adult longitudinal study (HUNT2, 1995–97) with follow up 11 years
later (HUNT3, 2006–08).

HUNT2 (1995–97) HUNT3 (2006–08) Pc

Male Female Male Female Male Female

Subject (n) 1907 2092 1907 2092 ND ND

Age (years)a 37.34 (6.0) 33.98 (5.3) 48.5 (5.9) 45.16 (5.3) ND ND

BMI (kg/m2)a 25.96 (3.03) 24.79 (3.93) 27.56 (3.43) 26.57 (4.66) <0.001 <0.001

Waist circumferencea 89.82 (7.8) 77.57 (9.53) 97.04 (9.46) 88.98 (11.65) <0.001 <0.001

Triglycerides (mmol/L)a 1.87 (1.15) 1.21 (0.69) 1.96 (1.27) 1.28 (0.74) <0.001 <0.001

Total cholesterol (mmol/L)a 5.54 (1.05) 5.08 (0.99) 5.64 (1.02) 5.30 (0.98) <0.001 <0.001

HDL cholesterol (mmol/L)a 1.22 (0.32) 1.47 (0.35) 1.22 (0.29) 1.44 (0.33) 0.693 <0.001

Non-fasting glucose (mmol/L)a 5.18 (0.97) 4.94 (0.76) 5.64 (1.41) 5.26 (1.20) <0.001 <0.001

Systolic blood pressure (mm Hg)a 130.52 (11.68) 118.47 (11.24) 129.28 (13.75) 120.11 (14.37) <0.001 <0.001

Diastolic blood pressure (mm Hg)a 76.14 (8.72) 70.89 (8.13) 76.46 (9.61) 69.81 (9.73) 0.152 <0.001

Overweight, BMI � 25b 1150 (60.3%) 780 (39.6%) 1470 (77.2%) 1182 (56.7%)

Obesity, BMI � 30b 183 (9.6%) 211 (10.7%) 419 (22.0%) 404 (19.4%)

Overweight, WCb,d 552 (28.9%) 703 (35.6%) 1191 (62.5%) 1621 (77.8%)

Obesity, WCb 141 (7.4%) 290 (14.7%) 582 (30.5%) 1068 (51.3%)

aVariables expressed as means ± standard deviations.
bVariables expressed as number of individuals and percentages.
c P-value derived from pairwise comparisons (ANOVA). Inverse values for Glucose and Lg10 for HDL cholesterol and Triglyceride measurements in the

ANOVA analyses. Waist circumference (WC) overweight, men � 94 cm, women � 80 cm. WC obesity, men � 102 cm, women � 88 cm.
dOverweight at BMI � 25 includes overweight and obese individuals.

doi:10.1371/journal.pone.0139632.t001
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Cross-sectional linear regression analyses were performed testing associations between
SNPs and metabolic traits at the HUNT2 and HUNT3 time points separately. The markers
ZNF259/APOA5, LPL (lipoprotein lipase) and GRB14 displayed typical pleiotropic effects (S3
Table) further illustrated in Fig 2. The effects of rs964184 (ZNF259/APOA5) on TC, HDL-C
and TG were significant sex-specifically with larger effects in males than in females (S5 Table).

Table 2. Association between SNPs and the longitudinal changes from normal to overweight/obesity (BMI�25) in the adult (HUNT2 to HUNT3) and
the adolescent to adult subsamples (Young-HUNT1 to HUNT3).

HUNT2!HUNT3

cases: 740, controls: 120

Sample SNP Gene Ref. allele/ other allele OR L95 U95 P Pa

Combined rs560887 G6PC2 A/G 0.90 0.78 1.05 0.18b 1.00

Male 1.12 0.89 1.41 0.35 1.00

Female 0.78 0.65 0.96 0.01 0.36

Combined rs2075356 GHRL C/T 0.91 0.73 1.13 0.37b 1.00

Male 0.61 0.43 0.88 8.0x10-3 0.16

Female 1.13 0.86 1.49 0.37 1.00

Combined rs268 LPL G/A 1.58 1.06 2.34 0.02 0.47

Male 1.77 0.88 3.54 0.11 0.96

Female 1.49 0.92 2.42 0.11 0.95

Combined rs4929984 H19 A/C 0.86 0.75 0.98 0.02 0.41

Male 0.88 0.71 1.07 0.20 1.00

Female 0.85 0.72 1.00 0.05 0.79

Combined rs4074134 BDNF A/G 0.84 0.71 0.99 0.04 0.64

Male 0.83 0.64 1.07 0.15 0.99

Female 0.86 0.69 1.06 0.16 0.99

Combined rs10838738 MTCH2 G/A 1.17 1.02 1.34 0.03 0.56

Male 1.16 0.92 1.44 0.21 1.00

Female 1.20 1.00 1.43 0.05 0.79

Combined rs6277 DRD2 C/T 0.79 0.69 0.90 3.9x10-4 0.02

Male 0.82 0.67 1.00 0.05 0.72

Female 0.77 0.65 0.92 3.3x10-3 0.07

Young-HUNT1!HUNT3

cases: 553 controls: 827

Combined rs1121980 FTO T/C 1.27 1.09 1.49 3.0x10-3b 0.04

Male 1.06 0.84 1.32 0.63 1.00

Female 1.53 1.23 1.91 1.8x10-4 <0.01

Combined rs17782313 MC4R C/T 1.21 1.02 1.44 0.03 0.22

Male 1.16 0.91 1.49 0.22 0.89

Female 1.26 0.98 1.63 0.07 0.51

In the adult sample, cases (n = 740) were defined with normal weight at HUNT2 and overweight at HUNT3 while controls (n = 1209) were defined as

normal weight both at HUNT2 and HUNT3. Overweight at adolescents were assumed according to Cole et al (2001). Cases were defined as normal

weight at Young-HUNT1 and overweight (BMI �25) at HUNT3 while controls were defined as normal weight both at Young-HUNT1 and HUNT3. All

measures were age adjusted and combined samples were additionally sex-adjusted. Empirical P-values were corrected for multiple testing by 1000

permutations.

Pa
—P-values after multiple testing. Only results with a nominal significant P-value (P<0.05, underlined) at any of the measures included are shown.

Significant results after multiple testing are shown in bold.
bSex interaction P<0.05.

doi:10.1371/journal.pone.0139632.t002
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Genetic associations with longitudinal change from healthy to MetS
positive
To explore the possibility of genetic effects influencing the longitudinal change from a healthy
metabolic status to scoring positive for MetS, logistic regression was performed on 76 cases (32
males and 44 females) against 647 controls. Despite few cases, four variants displayed nominal
significance. The rs560887 (G6PC2) was nominally significant in the combined sample and the
rs533123 (OPRD1), rs1049353 (CNR1, cannabinoid receptor 1) and rs10242595 (IL6, interleu-
kin 6) showed associations in males (significant sex interaction identified for IL6 and nearly for
CNR1 (P = 0.06)). Tests for associations cross-sectionally, displayed significant results after
adjustment for multiple testing with rs964184 (ZNF259/APOA5) at HUNT3 (OR: 1.39, 95%
CI: 1.14–1.71, P = 1.6x10-3, adj. P = 0.031)(S6 Table).

Fig 2. Cross-sectional associations between SNPs andmetabolic syndrome (MetS) components.
MetS-components: waist circumference (WC), HDL cholesterol (HDL-C), triglycerides (TG), glucose (GLU),
systolic and diastolic blood pressure (SBP, DBP) at baseline (HUNT2) and follow-up (HUNT3). The following
markers included were all significantly (P<0.05) associated to at least one trait cross-sectionally: ZNF259/
APOA5 (rs964184),G6PC2 (glucose-6-phosphatase catalytic 2, rs560887), LPL (rs268),GRB14
(rs10195252), FTO (rs1121980),OPRD1 (rs569356 and rs533123) andNTRK3 (neurotrophic tyrosine kinase
receptor type 3, rs7180942).

doi:10.1371/journal.pone.0139632.g002
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Discussion
In this study, genetic variants near or within 24 genes previously associated with obesity, eating
behaviors and metabolic traits were used to investigate potential influence both on weight gain
and metabolic adverse development over time. The study included an adult sample of 3999 and
an adolescent sample of 1380 individuals whom all had participated in two HUNT surveys per-
formed 11 years apart. The availability of prospective data and DNA enabled us to study
genetic effects at two different time points as well as investigating genetic effects with potential
influence on the change to overweight or an impaired metabolic status.

The DRD2 variant was shown to influence BMI-based weight gain from normal to over-
weight/obesity in adults, but was not associated to BMI on a cross-sectional level. This finding
was not replicated in the adolescent sub-sample. However, FTO showed significant association
both in the combined male-female sample and in females separately. Only the ZNF259/APOA5
variant was significantly associated to impaired metabolic changes and only with regards to tri-
glyceride levels. Cross-sectionally, pleiotropic effects on metabolic traits were observed for sev-
eral genetic variants, ZNF259/APOA5, LPL and GRB14 being the most important.

An association between the dopamine receptor variant, DRD2, and overall weight change
from normal to an overweight status in adults has not been reported previously. Dopaminergic
signalling pathways are known to be involved in the regulation of food intake and energy
expenditure through pathways involved in food reward and satiety [34] and the dopamine
receptor genes (DRD2 and DRD4) that impact dopamine signaling capacity have recently
through functional resonance imaging (fMRI) been shown to moderate the predictive risk of
unhealthy weight gain [20]. In our study, other variants previously associated with eating
behavior such as GHRL and BDNF also displayed nominal significant associations to weight
gain with identified sex-interaction and effect only observed in males for the GHRL. The
observed genetic effect exerted by variants involved in neuronal pathways support the increas-
ing amount of evidence pointing towards comparable behaviors involved in food and drug
addiction as well as in reward linked mechanisms [17, 35]. As suggested by Volkow et al. [17]
“genes that modulate executive control, including self-control, may help counteract the risk for
overeating in food-rich environments”, which may well be the case also for the genes identified
in this study. Comparable association results concerning adverse abdominal change, was in our
study not significant after multiple testing. However, the same directed effect as was observed
for adverse changes in BMI-based weight measures was shown for DRD2 and another reward-
related locus, OPRD1.

The association with reward-linked variants identified in the adult longitudinal sample was
not replicated in the adolescent longitudinal sub-sample. The FTO obesity-risk allele was, how-
ever, shown to be associated with overweight development from adolescence to young adult-
hood. The different genetic effects identified in the adult and adolescent samples could be due
to cohort related dissimilarities in general or that FTOmay actually have stronger effects at a
younger age. Previously, FTO has been shown to have its peak strength at the age of 20 before
the effect weakens during adulthood [36]. The FTO gene is known for affecting appetite and
satiety [37] and very recently this gene was reported to affect neural activity in homeostatic and
brain reward regions [38] both supporting its important role in eating behavior. Interestingly,
in our study the effect of FTO on longitudinal overweight development displayed a strong sex-
interaction with the risk only being significant in females. This female-specific FTO effect has
also been reported previously related to obesity, insulin sensitivity and glucose levels in chil-
dren [39].

Recent research has shed light on how genetic variants influence combinations of compo-
nents of MetS in a pleotropic fashion [16, 40]. In our study we replicated this finding for several
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of the genetic variants included. The G-allele of rs964184 located near the APOA5-A4-C3-A1
gene complex, affected HDL-C and TG levels at both time points in a direction consistent with
an adverse metabolic development. However, the same allele displayed protective effects on
blood pressure levels with highest effects on SBP. Sex-interactions were observed for this vari-
ant when associated to TG, TC and HDL-C where the effect was male-specific in the two latter.
Male specific effects of the ZNF259/APOA5 variant on systolic blood pressure has also previ-
ously been documented [41]. Association between this variant and metabolic syndrome was
identified in our study which has also been documented in a recent meta-analysis [42]. Simi-
larly, associations between ZNF259/APOA5 and increased levels of HDL-C and TG both in
children and adults have been reported [42–45], as confirmed here at both time points in our
adult sample. An interesting finding in our study was the strong sex interaction (P = 0.004)
observed with the development from normal to abdominal obesity where the G-allele in the
rs964184 (ZNF259/APOA5) revealed a risk effect in males while the opposite was the case in
females. As mentioned, sex-interaction with regards to this locus has been observed before and
is suggested to explain sex differences in lipid levels and their heritability [46]. The overlapping
association between lipid levels and waist circumference noticed for this locus, could imply
common pathophysiology between obesity and lipids traits as hypothesized previously, [46].

Lipoprotein lipase (LPL) is a key enzyme in lipoprotein metabolism and a major candidate
gene for coronary heart disease. The previous findings of genetic association between LPL vari-
ants (here rs268) and blood lipids such as TG, HDL-C and TC [47–50], was confirmed in our
investigation. Additionally, the interrelation that seems to exist between ZNF259/APOA5 and
LPL variants reported previously [47, 49], was also verified. In agreement with what was shown
in the meta-analysis by Kristiansson and colleagues [42], the genetic association with MetS
components seems to be lipid-driven and glucose seems to be less correlated with the other
blood based MetS components.

Our main investigation comprised a population of 3999 adult individuals that could be
investigated at two time points and be followed over a time period of 11 years. This quite large
population sample strengthens the findings achieved on the cross-sections. However, most of
the longitudinal models were underpowered due to the decision of addressing only the nega-
tively developed outcomes. This may have precluded the identification of more significant find-
ings. Another possible limitation of the study is the non-fasting lipid measures which may have
had an effect on the case categorisation. However, recent investigations suggest that non-fast-
ing lipid profiles change minimally in response to food intake [31]. In addition, both triglycer-
ides and glucose cut-offs were increased according to previous investigations comparing non-
fasting and fasting levels values which should preclude potentially misclassified individuals. A
strength in this study was that anthropometric and clinical measurements were done by trained
personnel avoiding the pitfall of under- or mis-reporting weight related measures [51] and by
that underestimating the true weight gain.

The very interesting and not previously identified direct association between DRD2 and
weight gain needs to be replicated in other longitudinal studies. As large longitudinal cohorts
are difficult to find we have not been able to replicate the finding at present. However, ongoing
longitudinal studies such as the Norwegian Tromsø Study [52] and the Dutch study Lifelines
[53] may be candidates for replications at a later stage.

In summary, we report for the first time in a population based study, a significant associa-
tion between the DRD2 gene and an overall weight gain from normal weight to overweight/
obese status in adults. The same locus did not affect weight at a cross-sectional level indicating
it to influence the behaviour that affects weight gain longitudinally. Interestingly, other variants
also known to influence reward/addiction associated processes or eating related behaviour
such as OPRD1, BDNF, GHRL and CNR1, also revealed evidence of being associated with
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overweight/obesity or development to an adverse metabolic status. Several metabolically
related factors are influenced by common genes in a seemingly blood lipid-driven process
where glucose appeared to be less correlated with the other blood based MetS components.
The ZNF259/APOA5 is an important marker in this respect, because it in addition to associate
strongly to various blood lipid levels cross-sectionally at both time points investigated, also
pre-dispose to a highly significant longitudinal pre-disposition to increased triglyceride levels.
The identification of addiction/reward process related genes with regards to weight gain and
increased metabolic risk development, state the importance of better understanding the com-
plex neurobiology of body weight regulation in future prevention strategies.
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