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Abstract 

Manufacturers of plate and frame heat exchangers nowadays mainly offer plates with chevron (or herringbone) corrugation 
patterns. The inclination angle 99 of the crests and furrows of that sinusoidal pattern relative to the main flow direction has been 
shown to be the most important design parameter with respect to fluid friction and heat transfer. Two kinds of flow may exist 
in the gap between two plates (pressed together with the chevron pattern of the second plate turned into the opposite direction): 
the crossing flow of small substreams following the furrows of the first and the second plate, respectively, over the whole width 
of the corrugation pattern, dominating at lower inclination angles (lower pressure drop); and the wavy longitudinal flow between 
two vertical rows of contact points, prevailing at high 99 angles (high pressure drop). The combined effects of the longer flow paths 
along the furrows, the crossing of the substreams, flow reversal at the edges of the chevron pattern, and the competition between 
crossing and longitudinal flow are taken into account to derive a relatively simple but physically reasonable equation for the 
friction factor ~ as a function of the angle 99 and the Reynolds number Re. Heat-transfer coefficients are then obtained from a 
theoretical equation for developing thermal boundary layers in fully developed laminar or turbulent channel flow - -  the 
generalized L6v~que equation - -  predicting heat-transfer coefficients as being proportional to (~'Re2) ~/3. It is shown, by 
comparison, that this prediction is in good agreement with experimental observations quoted in the literature. 

Keywords: Theoretical approach; Chevron-type plate heat exchangers; Performance prediction; Heat-transfer coefficients; Developing thermal 
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1. Introduction 

Plate and frame heat exchangers are offered by a 
large number of manufacturers as standard series pro- 
duction equipment over a wide range of sizes. They 
consist of a number of gasketed metal plates clamped 
between a stationary head and a follower plate by tie 
bolts. The principle, application and design characteris- 
tics of this very successful type of heat exchanger is 
explained in detail in relevant texts and handbooks 
[1-3]. Due to the great variety of possible corrugation 
patterns, and to the proprietory nature of the details of 
each particular design, the aim to provide users with 
reliable design equations for thermal and hydraulic 
performance of such equipment seemed to be hopeless. 
The fact, however, that during the last decades the 
chevron wave pattern had proved to be the most suc- 
cessful design offered in rather similar shapes by the 
majority of manufacturers has partly changed this situ- 

ation. In the meantime, a number of detailed experi- 
mental studies, some of a more fundamental nature 
[4-7], using model corrugation patterns and systemati- 
cally varying parameters like amplitude, wavelength, 
inclination angle and flow rate, and others with real 
industrial series heat exchangers [8-10], have produced 
a relatively large amount of interesting facts about heat 
transfer and pressure drop in plate heat exchangers. 
This wealth of detailed knowledge, however, has not 
yet been properly exploited to build up a generalized 
thermal and hydraulic design method for plate heat 
exchangers, comparable to the well-established methods 
for shell-and-tube heat exchangers. The following pre- 
sents an entirely new approach to this problem: based 
on the very detailed experimental observations of 
Focke et al. [6] and Gaiser [7], the flow behaviour as 
known qualitatively from these sources is used to de- 
velop a relatively simple model to describe the effect of 
the inclination angle and the Reynolds number of fluid 
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friction. In turn, the heat transfer is calculated from a 
purely theoretical asymptotic equation for developing 
thermal boundary layers in fully developed laminar 
and turbulent channel flow - -  the generalized L6v~- 
que equation - -  which so far has only been applied 
for laminar duct flow. 

~ = 0  
~ phase: 

(~P,o)o,.= 5o 

~ ptmse: 0 

({R*)o,o-- 90 

2. Fluid friction 

The friction factor is defined as 

2.zxp 
¢: - - -  (1)  

p .u2.Lp 

(~ = 4f, where f is the Fanning friction factor, is also 
often used in the literature), where the hydraulic di- 
ameter dh is defined as four times the fluid volume 
divided by the surface area, resulting in 

dh = 4 a l ~  (2) 

where d is the amplitude of the sinusoidal corrugation 
(see Fig. 1), 2d is the average gap width and the plate 
width between the gaskets ( = 4 B  in Fig. 1) is as- 
sumed to be much larger than 2d. The area enlarge- 
ment factor ¢ is the ratio of the developed surface 
area to the projected area and depends on the ratio 
of amplitude d to the wavelength (or pitch) A. 

Using the dimensionless corrugation parameter 

y = 2 ~ a / a  (3) 

it can be calculated approximately for a sinusoidal 
corrugation from a three-point integration formula 
that 

1 
#(X) m ~ (1 + x/1 + Y 2 + 4x/1 + X2/2) (4) 

For A/d=2~r, X =  1, q~ ~ 1.22, a typical value of 
for technical corrugation patterns. To reach a surface 
enlargement of • = 2, the ratio of wavelength to am- 
plitude must be as small as A/A = 2.46. 

chevron type 
corrugation 

crossing longitudinal 
flow wavy flow 

- B.p 

NIl : t / x  x x  

Fig. I. Chevron-type heat exchanger plate, the angle p and the two 
flow patterns. 

Fig, 2. Limiting cross-sections for ¢p = 0 °, i.e. straight longitudinal 
duct flow, with the approximate values of the friction constants 
(~.Re) for laminar flow, (limiting longitudinal sections for ~o = 900 
corresponds to wavy longitudinal flow). 

The vertical length of a plate, Lp, is usually mea- 
sured between the centres of the upper and lower 
port holes (see Fig. 1), and u is the superficial veloc- 
ity defined as the volumetric flow rate divided by the 
average flow cross-section (number of gaps of one 
side x plate width between the gaskets x 2d). 

It should be mentioned that some authors use 
other definitions of hydraulic, or equivalent diameters, 
so, for example, the definition using the projection 
area rather then the developed area is often called the 
equivalent diameter 

de = 4d (5) 

The two definitions are therefore simply related by 
de = q)d h. 

From the experimental observations of Focke et al. 
[6] and Gaiser [7], it has become obvious that two 
kinds of flow do occur in the multiply connected 
channels formed by the gap between two corrugated 
plates (see Fig. 1): the crossing flow of small sub- 
streams following the furrows of the first and the 
second plate respectively over the whole width of the 
corrugation pattern dominating at lower inclination 
angles, and the longitudinal wavy flow between two 
vertical rows of contact points, prevailing at high ~o 
angles. 

The limiting case, i.e. (p = 0, is the straight longitu- 
dinal flow in a number of parallel channels of sinu- 
soidal cross-section (see Fig. 2, top), where the 
corrugations of the two plates are phase shifted by n 
so that the plates have line contact along the crests. 
If the corrugations are in phase, the plates have no 
contact and the cross-section is a long 'rectangle' with 
the longer sides sinusoidally waved (Fig. 2, bottom). 
The latter is mechanically unstable and would require 
additional constructive measures to prevent the walls 
from bending under differential pressure. To calculate 
the pressure drop in this limiting case, one can use 
the theoretical law of Poiseuille for laminar flow and 
the semi-empirical law of Prandtl, or any equivalent 
empirical approximation of it, for turbulent flow: 
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No 
CO=Re 

~o = (1.8 lg R e -  1.5)-2 

Re < 2000 (laminar, Poiseuille) 

(sin (p = 0, ~o = 0 °, straight longitudinal flow) 

Re/> 2000 (turbulent, Konakov) 

(6) 

(7) 

The constant Bo = ~o'Re depends on the shape of the 
cross-section; thus Bo = 64 for a circular tube. Focke et 
al. [6] have undertaken a numerical calculation to ob- 
tain Bo for the ducts of sine cross-section (Fig. 2, top) 
and obtained (Eq. (A3) in [6]) Bo,~ = 53.39 (which is 
only valid for A/d = 4). Numerical values for other 
values of A/d, as well as for the other limit Bo,o, are not 
known to date, although one might expect a value of 
magnitude in the order of 90 (the long rectangular 
cross-section would give B0 = 96). For practical appli- 
cations, a mean value between these two is recom- 
mended for use in Eq. (6). That for a circular tube may 
be chosen since no better calculations are available, 
hence: 

B0 = 64 (8) 

For turbulent flow Prandtl's well-known semi-empiri- 
cal law, i.e. 1 /x /~ - -2  lg(Rex/-~ ) - 0 . 8 ,  implicit in ~, 
may be very well approximated by an explicit expres- 
sion of the type 1/,,f~ = (2 - n) lg Re + const., where 
the 'constant' is lg(~ " R e " ) -  0.8. Konakovs equation 
[Eq. (7)] is one of the simplest, and best, of these 
approximations. It is to be recommended for turbulent 
pipe flow in place of the similar Filonenko equation, i.e. 
1/,,/~ = 1.82 lg R e -  1.64, in the next edition of VDI- 
Wiirmeatlas. 

The other limiting case, i.e. (p = 7r/2( = 90°), is the 
longitudinal wavy flow in a duct of  rectangular cross- 
section. In this case, the shapes shown as cross-sections 
in Fig. 2 are longitudinal sections. If the corrugations 
were phase shifted by ~z so that the plates would have 
line contacts along the crests, the flow would be 
blocked [ ~ , ~  0o]. If the corrugations are in phase, the 
plates have no contact (Fig. 2, bottom) and the wavy 
duct has a friction factor ~1,0, i.e. much larger than for 
a straight duct. It is known that when flow separation 
occurs at Re > 20, vortices rotate in the vicinity of the 
outer extrerria of the duct walls and the main flow 
follows a sinusoidal path with the same wavelength, but 
with a much smaller amplitude. Focke et al. [6] corre- 
lated their experimental data for this case as 

B~ 
~t,0 = Ree + C1 Re < 2000 (laminar, with vortices) (9) 

(sin ~o = 1, cp = 90 °, wavy 
longitudinal flow) 

K~ Re ~> 2000 (fully turbulent) (10) ~1,o = Re n 

The constants in Ref. [6] were given for ~e and Ree 
with de as the characteristic length and hence have to be 
recalculated here (with (I) = 1.464 as given in Ref. [6] for 

the plates used with A = 10 mm and d = 2.5 mm). Thus 
with B~e = 1280, Cte = 5.63, Kt¢ = 63.8, n = 0.289, from 
Eqs. (14,15) in Ref. [6], one obtains: B~ = BiJrba, CI = 
CI~/(~, Ks = Kl~/q ~1 +% i.e. B1 = 597, C1 = 3.85, K1 = 39, 
and n = 0.289. 

The critical Reynolds number (with de) was given as 
Ree=3000  in Ref. [6],  comparable to R e = 2 0 4 9  
rounded off in Eqs. (9,10) to 2000. These empirical 
equations are only valid for the geometrical parameters 
used in Ref. [6], i.e. A/d = 4. They will certainly depend 
on d/A, as may readily be seen from the fact that for 
ci/A ~ 0, the straight rectangular duct would have B~ = 
96, C1 = 0 and Eq. (7) for turbulent flow. The friction 
factor ~1 will certainly depend very sensitively on slight 
changes in phase between the two plates, and on slight 
changes in the plate distance caused by pressure differ- 
ences. With the present state of knowledge, the calcula- 
tion of ~1,0 from Eqs. (9,10) can only be regarded as a 
rough estimate and will always be rather uncertain. In 
practice, the constants B~, C1, K~ and n might be used 
as fitting parameters if experimental data are available. 

The range of inclination angles between these two 
limits, i.e. 0 ° < (p < 90 °, may be modelled in the follow- 
ing way. The flow path along the furrows relative to the 
vertical increases proportional to 1/cos p, and hence 
the Reynolds-dependent friction factor ~o has to be 
replaced by ~o/COS (p. Additional friction losses occur 
due to flow reversal at the edges of the corrugation 
pattern and to crossing of the substreams. These two 
effects may be taken approximately into account by 
constant friction coefficients multiplied by the number 
of flow reversals, or the number of crossing points, 
respectively. 

The number of flow reversals (or Back turns) is: 

Lp. dh tan (p (11) nb=Th 
where B is the width of the corrugation pattern (see 
Fig. 1). The number n b is thus proportional to Lp/dh, so 
that the additional friction due to back turning of the 
flow may be simply added to .~o/COS q) as 

~b = b tan ~ (12) 

where 

b ~-- ~'b -~ (13) 

The number of crossing points in a vertical line is: 

no = Lp. 2dh. sin ~ (14) 
dh a 
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where A is the wavelength of the corrugation pattern 
(see Fig. 1). The number no is also proportional to 
Lp/dh, so that the additional friction due to crossing 
may be added to ~'o/COS (p (and @b) tOO, as 

~o = c sin #9 (15) 

where 

2dh (16) 
c = ( o  A 

The total friction factor for crossing flow is therefore 
given by 

~crossing = b tan ~o + c sin (p + @o(Re)/cos (p (17) 

The corresponding friction factor for longitudinal 
wavy flow, ¢~(Re), has to be somewhere between 
@l,0(Re) from Eqs. (9,10) and ¢~,=(= oo) and may be 
taken as ~ = a '  ¢,,o(Re) with the factor a/> 1. The flow 
rates of the two kinds of flow, driven by a common 
pressure gradient, are proportional to their respective 
cross-sectional fractions: cos ~ for the crossing flow 
and ( 1 -  cos ~o) for the longitudinal wavy flow. To a 
first approximation, they are inversely proportional to 
the square roots of their respective friction factors, 
which leads to the relatively simply model equation for 

= f(~o, ~o(Re), ~i(Re), b, c) with ~l(Re) ~ a '~l,o(Re) 
as: 

100 

10 

0,1 

0,01 

0 15 30 45 60 75 90 

qo 

Fig. 3. Effect of the corrugation inclination angle (p on the pressure 
drop in plate heat exchangers. The friction factor ~(Re = 2000, q)) as 
a function of corrugation inclincation angle ~o is as follows: (open 
diamond): Okada et al. [4] (1972): model plates: ~o = 30 °, 45 °, 60 °, 75 ° 
(here ~' = ~ m o d e l ( 4 5 0 )  ' Ap(~o)/Ap(45°), ~ could not be calculated from 
kp as in Ref. [4]; (cross): Focke et al. [6] (1985): model plates: g, = 0 °, 
30 °, 45 °, 60 °, 72 °, 80 °, 90°; (star) Gaiser [7] (1990): model plates: 
~o= 18 °, 28 °, 45 °, 58 °, 69 °, 77°; (triangle): Bassiouny [9] (1985): 
industrial plates (Schmidt, Bretten): ~o = 29.75 °, (29.75 ° and 71°), 7I°; 
(square): Bond [8] (I98I): diagram for industrial plates: (o = 25 °, 30 °, 
40 °, 45 °, 60 °, and HEDH [3] (Taborek, 1988): diagram for industrial 
plates: <o = 30 °, 40 °, 50 °, 60°; (filled diamond): Heavner et al. [10] 
(1993): industrial plates (APV): (p = 23 °, (23 ° and 45°), 45 °, (23 and 
90°), (45 o and 90°). Curves: model equation (18) for ~(¢o, Re) with the 
friction parameters ('standard set') (a, b, c ) =  (3.8, 0.18, 0.36): upper 
curve, 2. ~; lower curve, 0.5. ~. 
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68 ° 
570 
45 ° 
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Fig. 4. Plots of the friction factor ~ versus Reynolds number Re with 
the inclination angle <o as a parameter. Curves calculated from the 
model equation (18) with (a, b, c) with (1.6, 0,40, 0.36), Symbols: 
empirical correlations by Heavner et al. (1993) representing their data 
for technical plates (the values for Re = 2000 are also shown in Fig. 
3 as full diamonds). 

i cos (/9 I -- cos ~o 
= + 

, f~  x/b tan ~o + c sin q) + ~o(Re)/cos (o x/~l(Re) 

(18) 

Fig. 3 shows a comparison of experimentally ob- 
tained friction factors for a constant Reynolds number 
of 2000 (turbulent flow in nearly all cases) as taken 
from seven different sources with curves calculated 
from Eq. (18) using Eqs. (6,7) for ~o(Re) and Eqs. 
(9,10) for ~t.0(Re), while the friction parameters a, b 
and c have been used to fit the data. From these data it 
can be seen that a variation of the inclination angle ~o 
from 0 ° to about 80 o results in a change in the pressure 
drop over about 2.5 decades, i.e. a factor of 300 
( ~ 10zs). Focke's experimental data for 90 °, where the 
corrugation patterns of the two plates are exactly in 
phase, are considerably lower than the maximum. The 
curve from the model equation does not show this 
behaviour because ~t in the model equation cannot 
necessarily be identified with this special case, i.e. ~:1,o. 
To fit the data over the range of inclination angles from 
0 ° to 80 °, a ratio of ~'1 to ~:~.0 (i.e. the parameter a) of 
about 3.8 had to be chosen. The choice of a, however, 
does not significantly change the values of ~ for angles 
below 70 ° . With the exception of the special case of 90 ° , 
the model gives the correct trend for ~((p). The rela- 
tively large individual deviation - -  the thinner lines 
show one-half and twice the values, respectively, of the 
mean correlation - -  are certainly due to the fact that 
the ratio of the corrugation parameters A/d (which was 
3.56, 4 and 5 for the model plates of Gaiser, Focke and 
Okada, respectively) will probably have been about 
twice as large as for the industrial plates used in the 
other investigations [3,8-10]. Only one source, i.e. Ref. 
[9], gives values of c/ and A of 1.8 mm and 13.78 
mm, respectively, i.e. A/d=7.66. Since the friction 
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parameters a, b and c will clearly depend on the indi- 
vidual geometrical data for the corrugation patterns 
[see Eqs. (13), (16) and the text following Eqs. (9,10)], a 
fit to individual sets of data may lead to better agree- 
ment. As an example, Fig. 4 shows a comparison 
between the curves from Eq. (18) and the friction 
factors ~ obtained from empirical correlations of the 
type f - -  K/Re" by Heavner et al. [10], representing their 
data for industrial plates (the constants K and n for 
each angle ~ from Ref. [10] are also given in Table 1, 
second and third columns. The authors used corruga- 
tions with cp = 23 °, 45 ° and 90 °, the angles labelled 34 °, 
57 ° and 68 ° being obtained as the arithmetic mean of 
the combinations (23 ° and 45°), (23 ° and 90 ° ) and (45 ° 
and 90°). Measurements with (90 ° and 90 ° ) were not 
reported. Flow channels for such combinations would 
be mechanically unstable due to the lack of contact 
points between the corrugations. The set of friction 
parameters (a, b, c)=(1.6,  0.40, 0.36) used in this 
individual comparison employs the same value for c as 
the overall comparison of ~((p) for Re = 2000 in Fig. 3 
[the standard set of parameters (a, b, c), while the 
parameter a has been decreased from 3.8 to 1.6 and b 
has been increased from 0.18 to 0.401 . The individual 

Table 1 
Constants for the empirical equations by Heavner et aI. (1993) [10]: 
K, n, % m as given in Ref. [10]; q, c x, Cq calculated from the following 
equations: Heavner et al.: f =  K/Re'; Nu* = c,,Re'"; Nu* = Nu/[Pr ~/3 
(rl/~l,v)l/6]. Eq. (28): Nu* =Cq[~. Re2sin(2cp)]q; q = m / ( 2 - n ) ,  c~= 
(4K/I.I72) sin(2~o); Cq = c,,/(c~, q) 

l j 5  - -  

C(. "~' 1 

0,5 

o 
5 

r - - - " - - - -  

0 45 60 75 90 

qo 

Fig. 5. Effect of the corrugation inclination angle ~o on the heat 
transfer in plate heat exchangers, e.* =c~(~o)/c~(45°), employing a 
normalized heat-tranfer coefficient at Re = 2000. Symbols as in Fig. 
3, and (circles): Rosenblad and Kullendorff [5] (I975): (mass-transfer 
data, small model plate, Re = 1880) ~o = 15 °, 30 °, 45 °, 55 °, 60 °, 65 °, 
70 °, 75 °, 80 °, 85 °. Curves: generalized L6v6que equation (19) + 20%, 
with the standard set of friction parameters (a, b, c) used for ~ from 
Eq. (18) as in Fig. 3. 

empirical correlations in Ref. [10] need two parameters 
(K, n) for each of the five angles, i.e. a total of 10 
parameters, while the new model equation needs only a 
total number of three friction parameters (a, b, c) for 
the set of five curves, and furthermore allows for easy 
interpolation or even extrapolation for other inclination 
angles. 

(o) K 17 C n tn q C~: Cq 

67.5 1 .715  0.084 0 .278 0.683 0.356 4.139 0.I68 
56.5 1 .645  0.I35 0 .308  0.667 0 . 3 5 8  5 .168  0.171 
45 0.810 0.I41 0 .195  0.692 0.372 2 .765  0.134 
34 0.649 0.I56 0 .118  0.720 0.390 2.054 0.089 
23 0.571 0 .181 0.089 0 .718 0 . 3 9 5  1 .402  0.078 

0.3742 0.122 b 

a Arithmetic mean value. 
b Geometric mean value. 

Note added in proof 
My decision to divide the values of  K from Heavner et al. 
[I0] in Table 1 by the factor I.I72 (see Eq. for cx h~ 
Table 1 and the text at the end of  section 2) was 
essentially confirmed in the meantime by Richard L. 
Heavner, who kindly sent a list of  correct values of  these 
coefficients, which indeed are lower than the ones given in 
[10] by about 17+.2%: 

~o wrong correct 

67.5 ° 1.715 1.458 
56.5 ° 1.645 1.441 
45 ° 0.810 0.687 
34 ° 0.649 0.545 
23 ° 0.57I 0.490 

3. Heat or mass transfer 

Fig. 5 shows the corresponding heat- or mass-trans- 
fer data taken from the same seven sources as used in 
Fig. 3 for Re--2000, with the mass transfer data (at 
Re = 1880) of Rosenblad and Kullendorff [5] added 
(these authors did not measure the pressure drop). In 
an attempt to eliminate the effects of other parameters, 
the values are shown in a normalized manner as c~*= 
e,(~o)/e,(45°)=Nu(cp)/Nu(45 °) or =j(cp)/j(45°), where 
the corresponding ratio of the mass-transfer coefficients 
p(q))/p(45 °) is also included. The data from all the 
sources mentioned show essentially the same behaviour, 
with an increase in heat transfer from a value of about 

t It should be mentioned that the empirical correlations [10] given 
in Table 1 result in (Fanning) friction factors f which are I7.2% 
higher than the corresponding lines through the data (see Ref. [10], in 
Fig. 3). The possible reason for this systematic discrepancy between 
the figure and the table might be the effect of not dividing the values 
in the table by the area enhancement factor ~, leading to a friction 
factor defined with d e according to Eq. (5) in place of d h. The value 
of q~ is not given in Ref. [10], but 1.172 might well be a reasonable 
value for ¢ for an industrial plate. The values shown as symbols in 
Fig. 4 (and in Fig. 3) have been calculated from the empirical 
correlations f o r f  (with ~ = 47") of Heavner et al. [10] divided by 1.172 
in order to represent the data correctly. 
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~* ~ 0.25 at ~o = 0 ° to a maximum of about 1.7 at 80 °. 
The ratio of the maximum to the minimum heat trans- 
fer is gmax/~min ~ 7. Compared to the ratio of the maxi- 
mum to minimum momentum transfer of 2.5 orders of 
magnitude, or gn,~x/gmi~ = 10 =s~  300, these ratios are 
obviously related to each other by C~m~x/C%i ~ = (~max/ 
~min) 1/3, i.e. (300) 1/3-- 6.7. 

The curves shown in Fig. 5 have been calculated 
from a purely theoretical equation, which may be called 
the generalized L~v~que equation [11,12], with {(Re, (p) 
from Eq. (18) and (a, b, c) as used in Fig. 3: 

Nu = 0.40377(2' Re 2' Pr. d/k) I/3 (19) 

(the constant is 0.40377454 . . . .  34/3/[4.F(1/3)], where 
F(x) = 5C e - ~ ' t ~ - I  dt is the Gamma function with 
F(x = 1/3)= 2.6789385...). The length L in this case is 
taken as the distance between two crossings (see Fig. 1): 

L = A/sin(2~o) d/L = (dh/A). sin(2~o) (20) 

The L4v~que equation is a well known equation for the 
heat transfer through developing thermal boundary lay- 
ers in a hydrodynamically developed laminar duct flow. 
It had also been used for laminar flow and for (p--0 ° 
alone, with L = Lp (the whole plate length) by Focke et 
al. [6]. 

For a circular tube, with (.~ "Re)lam~n~ tub~ ~ow = 64, 
Eq. (19) takes the form which is found in most text- 
books on heat transfer, i.e. 

Nu = 1.615(Re' Pr' d/L) 1/3 (21) 

To date, it does not seem to have been really applied to 
turbulent flow, although there is no reason to restrict its 
application to the laminar range. It has, in fact, been 
mentioned in a paper on 'The Historical Development 
and Present State of the Scientific Theory of Heat 
Transfer' published in German in 1971 by Schlfinder 
[12], p. 8: 
". . .  und es dfirfte vermutlich nur einen einzigen Fall des 
turbulenten WS.rmefiberganges geben, ffir den man aus 
den klassischen Differentialgleichungen der viskosen 
StrSmung eine Gleichung*) herleiten kann, die an keine 
irgendwie geartete Modellvorstellung fiber den Mecha- 
nismus der turbulenten Str6mung gebunden ist und 
daher als streng im ktassischen Sinne gelten daft. Sie 
gilt jedoch nut ffir extrem kurze beheizte Rohrstrecken, 
die yon ausgebildeter turbulenter StrSmung durchspfilt 
werden, und ist daher mehr von akademischer als yon 
praktischer Bedeutung." ("... and there might probably 
be one single case of turbulent heat transfer only, for 
which an equation* can be derived from the classical 
differential equations for viscous flow which are bound 
to no modelling concept, whatsoever, on the meCha- 
nism for turbulent flow, and therefore may be taken as 
rigorous in the classical sense. It is only valid, however, 
for extremely short heated lengths of tube with a devel- 
oped turbulent flow, and therefore it is more of an 

academic than of a practical value.") Eq. (19) is given 
in the footnote* on p. 8 of Ref. [12]. As L has been 
taken here as the distance between two crossings, which 
tends to infinity for the limiting cases q) = 0 ° and ~o = 
90 °, the formula cannot be applied in these two cases. 

Obviously, this theoretical equation (19) [with Eq. 
(20)], combined with the model equation (18) or used 
directly with the measured friction factors {(q)), agrees 
very well with the experimentally observed variation of 
heat- or mass-transfer coefficients with the corrugation 
inclination angle. The upper and lower thinner lines in 
Fig. 5 are the theoretical result _+ 20%. The good agree- 
ment between the theoretical prediction and experimen- 
tal observation, however, may be partly due to the 
normalization with respect to the corresponding data 
for (p = 45 °, which has been used in order to eliminate 
the effects of other parameters. 

To check whether the effects of other variables such 
as the flow rate (Re) or length scales of the corrugation 
will also be reasonably represented by this strikingly 
simple theory, the comparison shown in Fig. 5 is not 
sufficient. Fig. 6 therefore shows a plot of the exponents 
m for empirical equations of the type (see Table I, 
columns 4 and 5 for values of c,, and m taken fi'om Ref. 
[10]): 

Nu* = c,," Re" (22) 

which have been used by many authors to correlate 
their experimental data in the turbulent range. Nu* is a 
group containing the Nusselt number divided by Pr 1/3 

m 

1 

< 
0,8 

0,6 

0,4 

0,2 

0 

o 15 30 45 

q) 

," "~" .N"  

J 

60 75 9O 

Fig. 6. The exponents m in Nu* = c,,. Re'" (or Sh*) as a function of 
the inclination angle (p. Broken lines: m = 0.72, m = 0.55, Full line: 
m = 2/3 (L~v~que theory for { = const.). The points indicated are as 
follows: (cross): Focke et al. [6] (1985): model plates: ~o = 0 °, 30 °, 45 °, 
60 °, 72 °, 80 °, 90°; (circle) theoretical values of m = (2-n)/3 from 
generalized L~v~que equation, where n is the exponent in g = K/Re" 
taken from Focke et al. (i985); (open diamond): Okada et al. [4] 
(I972): model plates: ~o = 30 °, 45 °, 60 °, 75°; (triangle) Bassiouny [9] 
(1985): industrial plates (Schmidt, Bretten): rp = 29.75 °, (29.75 ° and 
71°), 71°; (square): HEDH [3] (Taborek, 1988): diagram for industrial 
plates: ~o = 30 °, 40 °, 50 °, 60°; (filled diamond): Heavner et al. [10] 
(1993): industrial plates (APV): (p = 23 °, (23 ° and 45°), 45 °, (23 ° and 
90°), (45 ° and 90°). 
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100 

Nu* " / y'~ 

68°-4  

,ooo  oooo 

Re 
Fig. 7. Nu* = Nu. P r -  ( ~ / 3 ) O 1 / ~ l w )  - (~/6)  versus Re with the inclination 
angle ~ as a parameter. Full lines calculated from the theoretical 
L6v~que equation (i9) with Eq. (20), and ~' from Eq. (18) using the 
standard set of friction parameters (a, b, c )=  (3.8, 0.I8, 0.36) and 
(dh/A) = 0.21. Symbols: empirical correlations by Heavner et al. [10] 
(1993) representing their data for technical plates (see Table I); dotted 
lines: calculated from Eq. (28) (based on the L6v6que analogy, 
adapted to the experimental results) with { as above. 

[3,5,6,8,10] or by Pr °'4 [4,9] and, partly, by a viscosity 
ratio correction term (rl/rlw) °'17 [3,8,10]. [Some of the 
authors used the Colburn j-factor ( j = N u ' R e  -~' 
Pr -(I/3), j =  cj. Re-P) or related groups in place of 
Nu; in these cases the exponent m is obtained as 
m = 1 -p) ] .  All the m values which were taken, as far 
as possible, from the same sources as used in the 
previous figures, were found to be between 0.55 and 
0.72 (shown by the broken horizontal lines in Fig. 6) 
with the exception of a single much higher value m = 
0.868 ( =  1-0.132) obtained for straight longitudinal 
turbulent flow (~o = 0 °) by analogy to a tube flow 
equation in the paper by Focke et al. [6]. The circles 
indicate values mL = ( 2 -  n)/3, with n being the expo- 
nents in the friction factor formula of the same type 
as Eq. (10) taken from the empirical correlations of 
Focke et al. in the tubulent range. These values of mL 
would be the theoretical value of m which follow 
from the generalized L6v~que equation. Except for 
~0 = 0 °, they are indeed not far away from the empiri- 
cally obtained values of m by the same authors 
(shown as the crosses X in Fig. 6). The full horizon- 
tal line is m--2/3, i.e. the L6v~que exponent for a 
friction factor which does not depend on Re (mL for 
n = 0). The average value of all the exponents is not 
far from 2/3. Values above 2/3, which would only be 
consistent with the L6v~que theory for negative values 
of n (or friction factors increasing with Re, which 
may indeeed be sometimes found in small ranges of 
Reynolds numbers between laminar and turbulent 
flow) are mainly found for technical heat exchanger 
plates. There seems to be a slight trend to larger 

values of m with lower inclination angles ~o. This 
might be interpreted as the start of a transition from 
a thermally developing to a more and more devel- 
oped heat transfer, finally leading to higher exponents 
between 0.8 and 0.9 for turbulent flow in straight 
ducts (¢o = 0°). 

A more direct comparison between theory and ex- 
periment is shown in Fig. 7. Curves obtained from 
Eqs. (19) and (20) for Nu*=  Nu/Pr 1/3 (the full lines), 
with the friction factors ~ as calculated from Eq. (18) 
using the friction parameters (a, b, c) as in Fig. 3, are 
compared with correlation equations (the various 
symbols) representing the experimental data of 
Heavner et al. [10] for Nu* =Nu/[prl/3(rl/rlw) °'17] as 
functions of the Reynolds number with the inclination 
angle as a parameter (see Table 1, columns 4 and 5 
for the values of cn and m from Ref. [10]). As the 
geometrical details of the plates used by these authors 
were not given in Ref. [10], the parameter dh/A in Eq. 
(20) has been used to fit the theoretical curves to the 
experimental data. The resulting value (dh/A)n t = 0.21 
is probably lower than the actual geometric one. A 
typical value of dh/A for technical plates may be ob- 
tained from Bassiouny [9] for example: thus with A/ 
4 =  7.66, ¢5 = 1.16, dh/A=0.45 is obtained. Assuming 
that Heavner's plates had similar geometrical parame- 
ters, the ratio (0.45/0.21)1/3m 1.29 would mean that 
the theoretical prediction (without fitting) might be 
about 30% higher in this case then the experimental 
result. Simple application of the L6v~que theory does 
indeed give the correct order of magnitude for the 
heat- or mass-transfer coefficients in chevron-type 
plate heat exchangers. (The dotted lines in this figure 
have been calculated from Eq. (28) as explained be- 
low in Section 5.) 

4. On the analogy between heat, mass and momentum 
transfer 

The generalized L~v~que equation (19) may be seen 
as a special form of the analogy between heat, mass 
and momentum transfer. The classical analogy has 
been established for fully developed temperature, con- 
centration and velocity profiles in turbulent flow by 
Osborne Reynolds, Ludwig Prandtl and - -  following 
their routes - -  by many others. In general, the anal- 
ogy in its various forms provides practically useful 
interrelations between the transport phenomena. 

For ideal gases, the Reynolds analogy predicts a 
linear relationship between the heat- and the mass- 
transfer coefficient and the friction factor: 

Nu Sh 
-~ (Pr ,.~ Sc ~ 1) (23) 

Re' Pr Re' Sc ~5 
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The Prandtl analogy in its original or more refined 
modern versions shows that this simple proportionality 
[for Pr (Sc) va 1] has to be replaced by expressions such 
as: 

Nu (~/S) 
; 

Re.Pr 1 +%/(~/8)(Pr 1) 

Sh (~/8) (24) 
Re" Sc 1 + c,,/~/8)(Sc" - 1) 

The linear proportionality between Nu (Sh) and ~ is 
therefore replaced by a proportionality to ~b, with the 
exponent varying between b = 1 [for Pr (Sc)= 1] and 
b = 0.5 [for Pr (Sc) -~ co]. 

From the preceding sections [see Eq. (19)], it may 
follow that for the case of developing thermal (or 
diffusional) boundary layers in a developed velocity 
profile, the interrelation between Nu (Sh) and { may be 
even weaker, i.e. b--0.333. It is suggested that this 
special case of the interrelation between heat, mass and 
momentum transfer be called the L~vaque analogy: 

Nu Sh 
prl/3 Scl/3 = 0.404.(d/L)~/3'(~ .Re2) 1/3 (25) 

This may be easily adapted to correlate experimental 
data for plate heat exchangers by replacing the theoret- 
ical constant [including the geometrical parameter dh/A 
from Eq. (20)] and the theoretical exponent 1/3 if 
necessary by appropriate values obtained from experi- 
mental results. 

5. Practical application of the L6v~que analogy 

The most striking consequence of the fact that the 
'L6v~que analogy' applies so nicely to plate heat ex- 
changers may be seen from the dependency of the heat- 
and mass-transfer coefficients on the product ~.Re 2, 
which is directly proportional to the pressure drop kp 
[see Eq. (1)]: 

~. Re 2 - 2kpdh 3 p (26) Lp/] 2 

This indicates that the heat- and mass-transfer co- 
efficients are independent (or virtually independent) of 
the individual values of the flow rate (Re) and inclina- 
tion angle ~o. The term (d/L) ~/3 in Eq. (20) is propor- 
tional to [sin(2cp)] t/3, which is unity for ~o =45 ° and 
deviates from this maximum value by less than 10% over 
the range of inclination angles from 25°<~ (p ~<65 °, 
resulting in a rather weak individual dependency on ~o. 
A plate heat exchanger with ('soft') 'low phi' plates (say 
with ~o = 30 °) will have the same heat-transfer coefficient 
as a one with ('hard') 'high phi' plates (~o = 60 °, for 
example) if both are operated with the same pressure 
difference Ap! The flow rates will differ, however, by 

more than a factor of two. So the 'high phi' plates, 
with a given pressure drop, will produce higher numbers 
of transfer units (NTU) or higher temperature changes. 
This is a well known fact and the (nearly) 'universal' 
relationship between the heat-transfer coefficient and the 
pressure drop for plate heat exchangers has been empir- 
ically observed and documented, for example, in a figure 
showing the heat-transfer coefficient c~ versus pressure 
drop Ap for a water-to-water (313 K) application by 
Cooper and Usher [3] (see Fig. 2 in Section 3.7.10 of 
their report). This figure, which is said to show an "c~/Jp 
curve representative of plates in general, where c~ in this 
case is equal to 2U, thereby incorporating an approxi- 
mate allowance for metal resistance", is an essentially 
straight line in a log-log plot from cq,.c~m(A p = 0.1 
bar)v6300 W m -2 K -~ via ~o,~,,n(Ap= 1.0 bar )v  
12600 W m -2 K -I (water, 313 K) to ~ov~,,n(Ap = 1.6 
bar) v 14500 W m -2 K -1. In the form of an equa- 
tion, this curve may be expressed approximately as 
( 100.30 = 2): 

~ove~n ~ 12 600 W m -2 K -  1 x (Ap/1 bar) °'3° 

(water, 313 K) (27) 

(The subscript 'overall' here means: ~o,.cr~u = 2/(2/c~ + 
(S/)0metal), i.e. this 'c~' is twice the overall heat-transfer 
coeffÉcient U as stated by Cooper and Usher [3], see 
above). 

The L~v~que analogy would predict an exponent of 
0.333 for ~ as a function of @. Empirical evidence 
from various sources with technical plates would lead 
to a slightly higher exponent (see Figs. 6 and 7). Using 
the empirical equations of Heavner et al. [10] for the 
friction factors ( f =  K' Re- '9  and the Nusselt numbers 
(Nu* = c,, .Re '~) respectively (see Table 1), covering in- 
clination angles from 23 ° to 68 °, one obtains an average 
exponent of q = Ira/(2-  n)],,,.~r,,g c = 0.374 (with maxi- 
mum deviations o f - 4 . 7 %  to + 5.6%) in place of q = 
0.333 from the direct application of the L6v~que theory. 
A good semi-empirical equation, representing the heat- 
transfer data by Heavner et al. [10] together with their 
data on pressure drop [or with Eq. (18)] is obtained 
from replacing Re in N u * =  c,,.Re'" by the value ob- 
tained from solving the equation ~ .Re 2 s in(2(o)=x= 
c~'Re 2-" for the Reynolds number on the right-hand 
side, i.e. Re=(x /cx)  l/c2-'°. So, finally, the empirical 
equations of Heavner et al. are rewritten in the from 
N u * =  cq[~ .Re 2 sin(2ep)] q, with the adapted exponents 
q and constants Cq obtained from the corresponding 
friction factor correlations as listed in Table 1. Taking 
the arithmetic mean of the five values of q and the 
geometric mean of the five constants cq (which is the 
appropriate averaging for a set of power laws), one 
finally obtains a practically useful semi-empirical equa- 
tion for heat transfer in technical plates, based on the 
L~v~que analogy and on experimental evidence: 
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Nu = 0.122PrI/3(r//r/w)l/6' [~' Re 2 sin(2~)] °'374 (28) 

This equation when used with the model equation (18) 
for 4(Re,~o) and the standard set of friction parameters 
(a, b, c ) =  (3.8, 0.18, 0.36) in fact represents the heat 
transfer data by Heavner et al. [10] somewhat better than 
the original L6v~que equation. This is shown by the 
dotted curves in Fig. 7. 

Eq. (28) may easily be rewritten in troThS of Ap, with 
Eq. (26). Using the physical properties of water at 313 
K, as given by Cooper and Usher [3], i.e. p = 1000 kg 
m -g,  @ = 4 . 2  x 10 3 J kg -1 K -~, t7 =0.65 x 10 -3 Pa s 
and 2 = 0.63 W K - ~  m -  1, together with Lp = 1 m (or 
rather Ap replaced by a pressure gradient Ap/Lp in bar 
m -  ~), dh = 4 mm (the value of dh has a weak influence 
here, with a power of only 0.122) and the property ratio 
correction (r//r/w) 1/6 put equal to one, finally gives: 

ber Re, or alternatively as a function of the pressure 
drop (~" Re 2) [see Eq. (26)]. 

More detailed comparison with the original data 
should be carried out within the near future in order to 
test and further improve this practically useful design 
method based on a physically reasonable flow model for 
~(~o, Re) and on a special form of analogy between 
momentum, heat and mass transfer found from general- 
izing the L6v~que theory for turbulent flow. The latter 
idea has been discussed earlier [12] as a more or less 
academic example of  a rigorous theoretical equation 
that may be applied for turbulent heat transfer. It has 
been shown, at least for chevron-type plate heat ex- 
changers, that this theory is not only of academic value 
but is in fact directly applicable for solving practical 
engineering problems. 

0Jwater,313 K 

= 19 677[(@/1 bar)sin(2q))] °'374 W m -2  K - i  (29) 

Using angles of  ~o = 30 ° and 60 ° for example [sin(2 x 
30 °) -- sin(2 x 60 °) --0.866], one obtains ~water.313 K : 
18646(Ap/1 bar) °'374 W m -2 K -1 and allowing for a 
typical stainless-steel wall resistance with a conductivity 
ofA,v = 15 W K -  i m -  ~ and a wall thickness OfSw = 0.75 
mm, i.e. (1/20 000) mZK W - 1 ,  gives C~overaH = 2/[2/C~ + 

(s/;0w]: 

~o~er~ll(AP = 0.1 b a r ) =  6590 W m -2 K -1 

. . . . .  n(Ap= 1.0 b a r ) =  12700 W m -2 K - I  

~ Z o v e r a l l ( A p  ~-- 1.6 b a r ) =  14 300 W m -2 K - 1  

[water, 313 K, from Eq. (28)] 

which are indeed pretty close to the values of 6300, 
12600 and 14500 W m -2 K -1 respectively from the 
above-mentioned "c~/Ap curve representative of  plates in 
general" from the Heat Exchanger Desigh Handbook [3]. 

The practically important result that heat- and mass- 
transfer coefficients in plate heat exchangers depend 
essentially on the pressure gradient (or on the product 
~.Re2), but not separately on both the friction factor 
~(cp, Re) and the flow rate (Re), seems to date to have 
been based only on experience. It may now be under- 
stood from the application of theory. 

6. Conc lus ions  

On the basis of present knowledge, Eq. (18) and (28) 
may be recommended for obtaining the friction factors 

and the heat-transfer coefficients c¢ typically found in 
technical plate heat exchangers directly as a function of 
the corrugation inclination angle cp, the Reynolds hum- 

7. N o m e n c l a t u r e  

a, b, c 

d 
B 

Bo, B1 
Cn, Cq, C x 

Cp 

de 
dh 
f 
J 

K 
L 

Lp 

m 

n 

N u  

Nu* 

Pr  

q 

Re 
S 

U 

U 

X 

c~ 
c(* 

friction parameters in Eq. (18), 'standard 
set': (3.8, 0.18, 0.36), - 
amplitude of corrugation (see Fig. 1), m 
width of corrugation pattern (see Fig. 1), 
m 
constants in Eq. (6) and (9), - 
constants defined in Table 1, - 
specific heat capacity at constant 
pressure, J kg -1 K -1 
equivalent diameter, Eq. (5), de = 4d, m 
hydraulic diameter, Eq. (2), dh = 4d/C~, m 
Fanning friction factor, f - -  4/4, - 
Colburn j-factor, j = Nu" R e -  1. pr-O/3), 

constant in Eq. (10), - 
length between two crossing points, Eq. 
(20), m 
plate length (see Fig. 1), m 
exponent in Eq. (22), - 
exponents in Eqs. (10) and (24), 
numbers, - 
Nusselt number = C~dh/2, - 
Nusselt group = Nu '  Pr-(1/3)' (r//r/w)- (1/67, 

Prandtl number = r/Cp/2, - 
exponent in generalized L~v~que analogy 
(Table 1), - 
Reynolds number = pUdh/r/, - 
thickness, m 
flow velocity, m s -~ 
overall heat-transfer coefficient, W m -a 
K - 1  

corrugation parameter = 2zrd/A, - 
heat-transfer coefficient, W m -2 K -  
normalized heat- (or mass-) transfer 
coefficient -- ~ (~o)/c~ (45°), - 
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~o 

r/ 
A 
2 

P 

( 

Subscripts 

0,Tr 

1 
1,0 

b 
c 
e 

w 

corrugation inclination angle (see Fig. 1), 

area enlargement factor--developed 
area/projected area, - 
viscosity, Pa s 
wavelength (see Fig. 1), m 
thermal conductivity, W m-~ K -  
density, kg m -3 
friction factor, defined in Eq. (1)= 4f, - 
friction coefficients, Eqs. (13) and (16), - 

at the angle go = 0, phase = 7c (between 
the corrugations of two plates) 
at the angle cp -- 90 ° (sin (p = 1) 
at the angle ~0--90 °, p h a s e -  0 (between 
the corrugations of two plates) 
back turns, i.e. flow reversals 
crossings 
defined with de, Eq. (5), in place of C/h, 
Eq. (1) 
at wall temperature, wall 
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