
 

2.2. Basic Equations for Heat Exchanger Design 
 
2.2.1. The Basic Design Equation and Overall Heat Transfer Coefficient 
 
The basic heat exchanger equations applicable to shell and tube exchangers were developed in Chapter 
1. Here, we will cite only those that are immediately useful for design in shell and tube heat exchangers 
with sensible heat transfer on the shell-side. Specifically, in this case, we will limit ourselves to the case 
when the overall heat transfer coefficient is constant and the other assumptions of the mean temperature 
difference concept apply. Then the basic design equation becomes: 
  

         (2.1) )(** LMTDFAUQT =
 
where  is the total heat load to be transferred, UTQ * is the overall heat transfer coefficient referred to the 
area A*, A* is any convenient heat transfer area, LMTD is the logarithmic mean temperature difference for 
the purely countercurrent flow configuration, and F is the configuration correction factor for multiple 
tube-side and/or shell-side passes. Charts of F for the common shell and tube exchanger configuration 
are discussed later. 
 
U* is most commonly referred to  the total outside tube heat transfer area, including fins, in which case 

it is written as and is related to the individual film coefficients, wall resistance, etc. by 
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where and are the outside and inside film heat transfer coefficients, respectively,  and  are 

the outside and inside fouling resistances, 
oh ih foR fiR

wxΔ , and  are the wall thickness (in the finned section) and 

wall thermal conductivity, and is the resistance to heat transfer due to the presence of the fin. Since 
all of the low-and medium-finned tubes manufactured by Wolverine are integral (i.e., tube and fins are all 
one piece of metal), there is no need to include a contact resistance term. 
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Suitable correlations for and  will be developed later in this section. The fouling resistances are 
ordinarily specified by the customer based upon experience with the streams in question, but typical 
values may be found in Chapter 1, Table 1.2. 

oh ih

 
The mean wall heat transfer area is given with sufficient precision as mA

 ( rim ddLA +=
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If it is preferred to use an overall heat transfer coefficient based upon the inside heat transfer area  the 
following relationship holds: 

iA

 
           (2.4) iioo AUAU =

 
It is of the greatest importance to always identify the reference area when quoting the value of a film or 
overall heat transfer coefficient. 
 
2.2.2. Fin Efficiency and Fin Resistance 
 
The general concept of fin efficiency and fin resistance was developed in Chapter 1. Accordingly, we will 
only reiterate the major equations and concepts here. 
 
The value of  for use in Eq (2.2) is given by finR
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where Φ  is the fin efficiency and is given by: 
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Also, 
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Typical fin efficiencies for S/T Trufin are above 0.90 for virtually all applications, often approaching 1.00 
for those applications in which low-finned Trufin is most valuable. 
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These are shown in Chapter I as a function of fo
o

R
h

+
1

 for the various metals out of which S/T Trufin is 

manufactured. Use of these figures (1.51 and 1.52) shortcuts the need to carry out the calculation of 
Eqns. (2.5 to 2.9) for most design cases. 
 
2.2.3. Mean Temperature Difference, F Factors 
 
We will use the Mean Temperature Difference (MTD) formulation for design of heat exchangers in this 
Manual. The MTD is related to the Logarithmic Mean Temperature Difference (LMTD) by the equation 
 

MTD=F(LMTD)          (2.10) 
 
where the LMTD is always defined as for the countercurrent flow arrangement shown in Fig. 2.4: 
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In the rare occasion that the heat exchanger is a purely 
cocurrent (parallel) flow arrangement, F = I and the 
LMTD is given by 
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where T  and  are the shellside and tubeside inlet temperatures, respectively, and T  and  are the 
corresponding outlet temperatures. 

1 1t 2 2t

 
The value of F depends upon the exact arrangement of the streams within the exchangers, the number of 
ex changers in series, and two parameters defined in terms of the terminal temperatures of the two 
streams: 
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The mathematical relationships between F, R, and P have been reported in a number of places, e.g., 
Refs. (1, 2), but the graphical representations are of the greatest interest to us in this Manual. These are 
shown for the most important cases in Figs. 2.5 to 2.12, inclusive. 
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Once the terminal temperatures of both streams of a heat exchanger are specified or otherwise 
determined, R, P, and LMTD can be calculated, F found for the heat exchanger configuration, and finally 
the MTD can be calculated. Values of F below 0.8 or 0.75 at the lowest should not be used for three 
reasons: 
 
1.  The charts cannot be read accurately. 
 
2.  The low value of F means that substantial additional area must be supplied in the heat exchanger 

to overcome the inefficient thermal profile. 
 
3.  Design in or near the steep portion of the curves indicates that the thermodynamically limiting 

configuration is being approached, even if all the assumptions are perfectly satisfied. Violation of 
even one of the assumptions (e.g., excessive bypassing) by even a little bit may result in an ex-
changer that is in fact thermodynamically incapable of meeting the specified temperatures. 

 
If the value of F determined for the proposed configuration is too low, the use of additional shells in series 
will result in an improvement, as shown by the successive F charts for given values of R and P. 
Alternatively, it may be possible to redesign the exchangers to permit the use of fixed tube sheet units 
and purely countercurrent flow (for which F is unity.) 
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