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5.6. Pressure Drop

The total pressure, APy, across a system consists of three components: (a) a static pressure difference,
APs, due to the density and elevation of the fluid, (b) a pressure differential, AP,,, due to the change of
momentum, and (c) a pressure differential due to frictional losses, AP;. That is

APy = APg + AP, + AP (5.46)

In a boiling system we are dealing with a vapor-liquid mixture and, in the evaporating zone, the relative
guantity of liquid and vapor are changing. Therefore, these component pressure differentials must be
determined for the two-phase mixture existing at each point and then integrated over the system.

The two-phase flow adds many complications to the calculation of pressure drop. As shown in Figure 5.6
the flow pattern can vary substantially from inlet to outlet. Although both the liquid and vapor are traveling
together in the same direction they usually travel at different speeds as a result of slippage between
them. The local flow pattern and flow rates can fluctuate resulting in a fluctuating pressure drop. Thus the
ability to calculate the pressure drop is much poorer than for a single phase system. In spite of hundreds
of researches on two-phase flows a + 30% accuracy of a predicted pressure drop is considered excellent,
a + 50% a very good prediction, and a = 100% error is very probable. Therefore, any vaporizer design

should incorporate enough of a safety factor to allow for the uncertainties in calculating pressure drops
and the corresponding flow rates as well as the potential effect on heat transfer coefficients.

5.6.1. Tube-Side Pressure Drop
The method of calculations given below is based on the Lockhart-Martinelli analysis which is a separated
flow model; i.e., the flow rates of the vapor and liquid are based on the same pressure gradient. This

seems to be the best current general model in the literature, although proprietary improvements have
been made.

(a) Static Head Loss.

The static head loss is very important in vertical units when the heat flux is low and when in the bubble
flow regime. Here

AP, = ijptde sin @ (5.47)
Jc

for vertical units sin 6 = 1. py, can vary with height, H, and is also affected by slip. Here

Pp =Rvpy, +(1-R)p, (5.48)
and where the volume fraction of vapor is based on the Martinelli relationship
Ry=1-104=1-R, (5.49)

where gy, is defined in (c).
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(b) Momentum Head Loss.

The momentum loss is easily determined from the inlet and outlet conditions for either each incremental
step or on the overall system.

2 2 2
PSS (5.50)
gc || pr@=Ry)  pyRy 2 pr-Ry)  pyRy 1

where X is local weight fraction of vapor.

(c) Friction Head Loss.

The friction head loss equations are in two forms either liquid or vapor based. Both will give the same
result (both phases turbulent) but the liquid form is better when Re, > 4000 and vapor form for Re, <

4000. The single phase pressure drops are
AP, =4f,(L1d;)GE (L-X)? L/ 29 py) (5.51)
AP, =41, (L/d;)GZx? (1129, py) (5.52)

and the two-phase pressure drops are

APt = D7 AP, (5.53)

AP¢ =2, AP, (5.54)
Here

D2y =1+20/ x4 +1/(xy)? (5.55)

D2y =1+20%y +1/(xy )2 (5.56)
where

1 057 011
Xit 2(;XJ v A (5.29)
X P Hy

All of the above equations are applied in a stepwise manner along the tube and the final overall pressure
drop is the sum of the drops across each step.

In a thermosyphon reboiler the above calculated pressure drop must match the available driving head

which is total available head minus the sum of the recirculating liquid line frictional and momentum
losses.
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5.6.2. Shell-Side Pressure Drop

The calculation of pressure drop for 2:
two-phase flow across the tube bundles is
done about the same as for flow inside tubes.
However, there is much less data for these
flows especially in the high liquid fraction
ratios en countered in boiling. Most of the
experimental data is in the high vapor fraction
region as in condensers.

2
1

I

%>

Ishihara et al. (56) reviewed the available data
and correlations (57, 58, 59, 60) for shell-side
flow and concluded that these correlations
well represented the author's data but

occasionally failed when compared against all
the data. Ishihara et al. proposed that the 102} E
Martinelli separated flow method be used and 5 i ]

these equations are given below. Figure 5.32
shows the data compared to this method. The
agreement is good in the high vapor fraction 10
region but scatters more in the low vapor 55

TWO-PHASE FRICTION MULTIPLIER, ¢

fraction region. Further improvements are [
claimed by the authors but are proprietary and 2}
unpublished. 1.0 . il

1032 51022 5102 5102 5102 5 10°
The static head and momentum losses are
calculated as in the above equations; MARTINELLI PARAMETER,
howe_ver, the mass velp (.:Ity’ G In equation Fig. 5.32 Martinelli parameters for shell-side pressure
5.50 is based on the minimum flow area bet-

drop data [56].

ween the tubes.

The friction head loss equations are those for flow across tube banks where the maximum mass velocity
is based on the minimum flow area between the tubes, hence

AP, = 45N Ginax (1= %)% (1129 ¢ ) (5.58)

AR, =4f,N Ginax X 1/ 29 py ) (5.59)
and

DZ =1+8/ Xy + (X )? (5.60)

D2y =1+8xy + (X )2 (5.61)

Equations 5.53, 5.54, and 5.29 are unchanged.
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The above equations can be used to develop circulation models for shell-side boiling. In a kettle reboiler
with a cylindrical tube bundle, additional problems arise as to how to consider the flow through the bundle
as both the height and flow area varies as one proceeds vertically through the bundle. There are also
problems in how to calculate the downleg flow in the area between the shell and bundle outside diameter.
A further complication is an allowance for a lower density due to some bubble entrainment in the
recirculation stream. All these problems need further investigation plus some data on low vapor fraction
two-phase flow pressure drops before shell-side circulation prediction methods can be useful.

Fair and Klip (61) proposed a shell-side circulation model and included the effect of flow across bundles
of varying width and depth. They used the Grant and Chisholm (62) correlation equations. The analysis
appears promising but needs to be compared to a wider range of reboiler designs together with a need
for specific experiments to attempt circulation measurements in kettle reboilers.
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