
 

5.7. Fouling 
 
The contamination of a surface (fouling) on which a liquid is boiling can produce unexpected results. For 
instance, on smooth surfaces having few nucleation sites the initial surface contamination can increase 
the number of nucleation sites and increase the boiling coefficient sufficiently to overcome the thermal 
resistance of the fouling layer. However, this effect is dependent upon a number of special conditions and 
exists only during the initial stages of fouling. Later as the fouling layer builds up, its thermal resistance 
will reduce the overall coefficient and heat flux. 
 
The strong dependence of the nucleate boiling coefficient on the film temperature difference can magnify 
the influence of a fouling coefficient when the overall temperature difference is fixed. This effect is the 
same regardless of the source of the increased resistance, be it fouling, change in tube wall coefficient 
due to change in thickness or thermal conductivity, or changes in the heating medium coefficient. 
However, at constant flux the increase in overall temperature difference due to an increased resistance is 
the normal expected value of just an additional ΔT of the fouling layer. 
 
At a constant overall temperature difference any change in fouling, wall, or heating medium resistances 
will change the temperature distribution and result in a change in the boiling coefficient. Usually a trial and 
error calculation is required; however, in Figure 5.33 we have a generalized graphical solution. Here 
equation 5.8 is rearranged to 
 

q = [A* F(P)]3.33 ΔT3.33 = B ΔT3.33         (5.62) 
 
In Figure 5.33 we plot q/B versus ΔT with curves of RoB as parameters where Ro is the total of all 
resistances other than the boiling resistance. The curve RoB = 0 represents the boiling curve. The 
following examples illustrate the use of this figure. For the examples we will use B = 2 and ΔT = 15. 
 
(a) If there are no other resistances then RoB = 0 and the flux is q = 8250 x 2 = 16,500 and hb = 1100. 
 
(b) If a resistance of 0.001 were added then RoB = 0.001 x 2 = 0.002 and at ΔT = 15, q = 2250 x 2 = 
4500. At this flux, q/B = 2250, we find from curve RoB = 0 that the boiling film ΔT is 10 thus the boiling 
coefficient, hb, was reduced to 450. To have maintained the same flux as in (a), that is q/B = 8250, we 
find from curve RoB = 0.002 that the temperature difference would have to be 31.5. 
 
(c) Suppose the resistance of 0.001 in (b) represented the wall and heating medium resistances in the 
clean condition. Now suppose an additional resistance of 0.001 was added due to fouling, change of tube 
material, or a different heating medium coefficient. Now RoB = (0.001+ 0.001) x 2 = 0.004. From the 
figure at ΔT = 15 we find the flux would now be q = 1500 x 2 = 3000 and that the boiling film ΔT = 9 (from 
RoB = 0 curve). 
 
Fouling coefficients as currently used are vague and unreliable. The purpose of a fouling coefficient is to 
permit operation of the equipment for a reasonable length of time before shutting down and cleaning. 
However, the time interval associated with a fouling coefficient is unspecified and the term reasonable 
depends upon circumstances. For instance, in crystallizing evaporators a shut down once a shift or once 
a day for washing out the evaporators is reasonable but in a reboiler where polymerization fouls the tubes 
and requires a physical cleaning such cycles are unreasonable while a several month cleaning cycle 
should include evaluating the costs of cleaning, lost production, and cost of exchanger surface to 
determine the optimum cycle. Unfortunately present knowledge of fouling is insufficient to permit a 
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prediction of fouling rates and even a basic understanding of the effect of velocity, temperatures, or 
compositions on fouling rates is lacking. For additional information see references (63) through (67). 

 
 
Fouling under boiling conditions could be different than fouling under convective heat transfer and 
depends upon the type of boiling. For instance, in the early transition and film boiling regimes, B-C portion 
of the boiling curve in Figure 5. 1, fouling can be very rapid due to the alternate wetting and drying of the 
surface. There is little published data on fouling in vaporizers and most values lack documentation as to 
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the operating conditions and cycle time. However, the following values can be used as a guide to making 
a guess of the values to use in your designs. 
 
Boiling Side 
 

Cl-C8 normal hydrocarbons    0 - 0.001 °F ft2 hr/Btu 
 

Heavier normal hydrocarbons    0.001-0.003 
 
Diolefins and polymerizing hydrocarbons   0.003-0.005 
 

Heating Side 
 
Condensing steam      0-0.0005 
 

Condensing organics     0.0005-0.001 
 

Sensible heating, organic liquids    0.0005-0.002 
 
Also the TEMA standards (68) can be consulted for further values. 
 
Excessive conservatism for fouling allowances may result in oversizing the reboiler such that under clean 
or initial operation problems may arise in control of the boil up, problems in condensate removal because 
of low pressure, economic penalties for unnecessary surface, the possibility that reduced circulation may 
permit more rapid fouling, and for a fixed ΔT that the film boiling region might be reached. 
 
Therefore, it is best to make realistic estimates of the fouling avoiding over-conservatism and to evaluate 
the performance of the reboiler under the full range of operating conditions (from reduced production 
when clean to full production when fouled). 
 
Fouling rates are affected by the type of boiling surface. For instance, low-finned tubes have performed 
well in fouling conditions (69, 70). These articles report instances where the substitution of low-finned 
tubes for plain tubes resulted in lower rates of fouling and reduced cleaning times. 
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