
 

4.5. Final Design 
 
The steps for the preliminary design of an air-cooled heat exchanger were given. This procedure can be 
followed regardless of the nature of the heat transfer inside of the tubes by making a reasonable initial 
estimate of the coefficients. 
 
The next step is to calculate all the coefficients and pressure drops, using appropriate correlations, to 
verify the design meets the exchanger requirements. It is likely that some adjustments will have to be 
made in the physical arrangement but with several iterations, a suitable design is usually obtained. 
Whether the tube-side heat transfer is single-phase or two-phase, the coefficients are generally much 
larger than the air-side and do not become controlling. Thus, while some of the tube-side correlations, in 
particular the two-phase equations, are not exact, in accuracy is generally not a serious problem for 
air-cooled heat exchangers. 
 
Attention must be given to the pressure drops so that they are within design limits. This is more important 
in two-phase flow because of the large volumes of vapor and generally results in larger diameters of 
Trufin being selected. For single-phase flow, efforts should be made to keep the fluid in the turbulent flow 
regime. 
 
Correlations for the tube-side heat transfer and pressure drop are found in Chapter 2 for sensible heat 
transfer, Chapter 3 for condensing and Chapter 5 for boiling heat transfer. 
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NOMENCLATURE 
 
A Surface area for heat transfer. Ao and Ai are the corresponding values for the 

outside and inside surface, respectively, and Am denotes the logarithmic 
mean of Ao and Ai. Afin is the total heat transfer area/ft for the fins on a tube, 
and Aroot is the area/ft of the bare tube remaining between the fins. Ab is the 
bond contact area (per foot of length) in a bimetallic tube. A*HT is the total 
outsideheat transfer area of a bank of finned tubes per square foot of face 
area per row. 

ft2 

   
Aface Face area, or plain area of a finned tube heat exchanger. This is the total 

flow area of the air approaching the tube bank, (Aface)HT is the face area re-
quired in a given exchanger by purely heat transfer considerations; (Aface)T is 
the face area required by purely thermodynamic considerations. 

ft2 

   
AMTD Arithmetic mean temperature difference defined by Eq. (4.24). °F 
   
cp Specific heat of the flowing fluid. Btu/Ibm°F 
   
d Diameter of a tube. do and di are the outside and inside diameters 

respectively, and dm denotes the logarithmic mean. Dr, is the root diameter 
of a finned tube. dfin is the outside diameter of the fin. 

in. or ft. 

   
F Correction factor for the logarithmic mean temperature difference (LMTD) to 

make it applicable to heat exchangers in which the flow is not entirely 
countercurrent or cocurrent. 

dimensionless 

   
fr The friction factor for tube banks, defined by Eq. (4.14). dimensionless 
   
g Gravitational acceleration at Earth's surface. 4.17xl08 ft/hr2 
   
gc Gravitational conversion constant. 4.17xl08lbmft/lbf hr2 
   
H Fin height from root to tip. in. 
   
h Film heat transfer coefficient. ho and hi are the values for the outside and the 

inside of the heat transfer surface, respectively. hf is an equivalent heat 
transfer coefficient for any fouling that may be present, equal to the 
reciprocal of the fouling resistance. 

Btu/hr ft2°F 

   
k Thermal conductivity of a material. kw refers to the wall material, while kair, kl, 

kv, and kg refer to air, the liquid phase, the vapor, and gas, respectively. 
Btu/hr ft2(°F/ft) 

   
L Length, usually of a tube. ft. 
   
LMTD Logarithmic mean temperature difference, defined by Eq. (4.8) °F 
   
MTD True mean temperature difference, F (LMTD) °F 
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m Quantity characterizing fin geometry and properties, defined by Eq. (4.2). dimensionless 
   
Nf Number of fins per inch. (in.)-1 
   
n Number of rows of tubes in a tube bank, measured in the direction of flow. dimensionless 
   
P Parameter in MTD calculations, defined by Eq. (4.11). dimensionless 
   
P Longitudinal tube pitch: distance between adjacent tubes in different rows, 

measured along the diagonal. 
in. 

   
Pt Transverse tube pitch, distance between adjacent tubes in the same row in 

a  tube bank. 
in. 

   
Pr Prandtl number of a fluid defined as (cpμ/k). Subscripts “air",”l”,”v", and "g" 

refer to air, liquid, vapor, and gas phases, respectively. 
dimensionless 

   
p Pressure of a liquid. lbf/in2 absolute 
   
Δp Pressure drop for flow of a fluid through a given path. The subscript "air" 

refers to the pressure drop across the tube bank on the air-side. 
lbf/in.2 

   
Q heat flow rate. Btu/hr 
   
R Parameter in MTD calculations, defined by Eq. (4.12) dimensionless 
   
Rb Bond resistance based on bond contact area. hr ft2°F/Btu 
   
Rf Resistance to heat transfer due to fouling. Rfo and Rfi are fouling  resistances 

on the outside and inside of a heat transfer surface, respectively. 
hr ft2°F/Btu 

   
Rfin Resistance to heat transfer in a fin, given by Eq. (4.3). hr ft2°F/Btu 
   
Rw Resistance to heat transfer due to wall conduction. hr ft2°F/Btu 
   
r Radius of a tube. ro and ri are the outside and inside radii respectively; rm  is 

the logarithmic mean of ro and ri. r' is the outside radius of the inner tube and 
the inside radius of the outer tube in a bimetallic tube. 

in. or ft. 

   
s Distance between fins, surface to surface. in. or ft. 
   
T, t Temperatures. Both symbols (usually subscripted) are used more or less 

interchangeably and for this reason every temperature must be carefully 
defined for each particular discussion. Usually, capital letters refer to the hot 
fluid and lower case to the cold fluid, but sometimes capitals refer to the 
outside fluid and lower case to the inside. Ti and ti usually refer to the inlet 
temperatures of the two streams and To and to to the outlet temperatures. 

°F 

   
Uo Overall heat transfer coefficient for heat transfer between two fluids 

separated by a finned surface, referenced to the outside (finned) surface 
Btu/hr ft2°F 
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area Ao. U+ is the combined heat transfer coefficient for the wall and fin 
resistance, the coolant and any dirt films. U' is the combined heat transfer 
coefficient for the condensate film, tube side fouling, wall and fin resistance 
and air film coefficient. 

   
V Mean velocity of a flowing fluid. For tube banks, Vmax is calculated as the 

mean velocity at the point where the tubes are closest together. Vface is the 
air velocity approaching the face of the tube bank. 

ft/sec 

   
W, w Mass flow rates of the fluids in a heat exchanger. Ibm/hr 
   
x Usually, a length variable, especially when it appears as Δxw, the wall 

thickness of a tube. 
ft. 

   
Y Thickness of a fin. in. or ft. 
   
Greek   
   
Φ Fin efficiency: the ratio of the total heat transferred from a real fin to that  

transferred if the fin were isothermal at-its base temperature. 
dimensionless 

   
μ Viscosity of a fluid. μair refers to air. Ibm/ft3 
   
ρ  Density of a fluid. airρ  refers to air. Ibm/ft3 
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