
 

5.10. Example of Design Problems for Trufin in Boiling Heat 
Transfer 

 
5.10.1. Design Example - Kettle Reboiler 
 
Size a kettle reboiler to transfer 43.3(106) Btu/hr to vaporize a hydrocarbon mixture at 170 psia using 
steam available at 395°F. The critical pressure of this liquid is 434 psia and it has a boiling range of 60°F. 
The boiling temperature is 330°F. 
 
Design the reboiler using 3/4-in. OD tubes on 1.125-in square pitch. We will estimate the latent heat as 
144 Btu/Ibm and liquid density as 41 lbm/ft3. 
 
Step 1. Calculate or estimate heating medium, tube wall, and fouling coefficients. 
 
For this example (and in order to compare to a test unit) the steam coefficient is 2000 and the tube wall is 
4800. This reboiler was claimed to be clean; hence, 
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Ro = 1/2000 + 1/4800 = 0.000708 

 
Step 2. Calculate the mixture correction factor, Fm from eq. 5.38. 
 

Fm = exp(– 00.015 x 60) = 0.41 
 
Step 3. Calculate B and RoB and find q. From eqns. 5.8a, 5.10 and 5.62. 
 

A* = 0.00658(434).69 = 0.435 
 

F(P)2 = 1.8 ( ) 17.
434
170 = 1.535 

 
B = [(0.435)(1.535)]3.33 = 0.26 

 
Correcting B for the mixture, use fig. 5.29 at BR of 60°F, 
 

B = 0.26 x 0.41 = 0.1066 
 
hence 
 

RoB = 0. 1066 x 0.000708 = 7.5(10-5) 
 
At ΔT=65 Figure 5.33 gives q/B=280,000 hence 
 

q = 0.1066 x 280,000 = 29,848 Btu/hr ft2 

 
Step 4. Calculate single tube maximum q1, eq. 5.5 
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q1max  =  803(434)(170/434).35 (1 – 170/434).9 = 160,488 Btu/hr ft2 

 
Step 5. Preliminary estimate of bundle size 
 
For a bundle 
 

qb = q1max Φb 
 
where 
 

Φb = 2.2(πDBL/AB s). 
 
If we approximate 
 

Φ = 2.2Ψ 
 
by letting Ψ be (for square pitch) 
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As the above approximation ignores the additional effect of circulation on the boiling coefficient, DB = 2 ft. B

 
Step 6. Calculate bundle maximum flux, eqn, 5.23 
 
For U-tube on this pitch a total of 180 U-tubes or 360 ends will form a 2 foot diameter. 
 
For one foot of bundle length 
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Φb = 2.2Ψ = (2.2)(0.0889) = .1956 

 
maximum bundle flux 
 

q = Φbq1max 

285 



 

 
q = 0. 1956 x 160,488 = 31,392 Btu/hr ft2

 
Step 7 Calculate the bundle heat transfer 
 
For a 2 ft bundle assume q = 28,600 Btu/hr ft2 and calculate heat transfer coefficients based on this flux 
and the values obtained in steps 3 and 5. 
 
From eqn. 5.8 calculate hnbl 
 

hnbl = (0.435)(1.535)(28,600)0.7 = 878.3 Btu/hr ft2°F 
 
Step 8. Calculate natural convection coefficient, eqn 5.7 
 
We have insufficient information to calculate this coefficient but we will assume it is 40 Btu/hr ft2°F. 
 
Step 9. Calculate bundle coefficient, eqn. 5.22 
 

hb = 878.3 x 0.41 x 1.5 + 40 = 580.1 Btu/hr ft2°F 
 

U = 1/(115 80.1 + 0.000708) = 411.2 Btu/hr ft2°F 
 

q=UΔT 
 

q = 411.2 x 65 = 26,730 Btu/hr ft2°F 
 
The measured coefficient for this reboiler (72) was 440 Btu/hr ft2°F or 7% higher. 
 
Step 10. Check bundle design. 
 
Step 9 heat flux (26,730) is less than the maximum allowed bundle flux of step 6 (31,392) hence OK. 
Since Φb in step 6 is greater than 0. 1 no vapor lanes or larger pitches are required; therefore, bundle is 
OK. 
 
Step 11. Size the bundle. 
 

Required length = 1963.360730,26
61043
××

×  = 22.8 ft 

 
This length checks with the test unit length of 23 ft. 
 
Step 12. Check for entrainment. 
 
Number of vapor nozzles per eqn. 5.64 
 

Nn = 25
23
×  = 2.3 round up to 3 

 
Vapor per nozzle 
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Wn = 3144
000,300,43
×  = 100,231 lbm/hr 

 
Entrainment limit, eq. 5.63  
 

VL = 2290 X 1.725
5.

725.141
5

⎥⎦
⎤

⎢⎣
⎡

−
 = 1409 lbm/hr ft3 

 
(Note dynes/cm = [Ibf/ft] / 6.86 x 10-5) 
 
Therefore the vapor volume/nozzle = 100,231/1409 = 71.1 ft3. If the shell is 25 ft long then the cross 
section area for vapor above the liquid level is 71.1/8.33 = 8.537 ft2. The shell diameter is then 
determined from tables of segmental areas; however, for first approximation assume a liquid level at the 
center line then 
 

Ds = (2 x 8.537 x 4/π)0.5 = 4.66 ft 
 
This is a large shell compared to the bundle diameter; therefore, consider the use of entrainment 
separation devices. 
 
5.10.2. In-Tube Thermosyphon - Example Problem 
 
Size a vertical thermosyphon vaporizer to transfer 1,483,000 Btu/hr to an organic liquid with the following 
properties: boiling point @ 17 psia = 185.5°F, = 0.45, latent heat= 154.8 Btu/lb, lpc lμ  = 0.96 lb/ft. hr, μ v 

= 0.0208 lb/ft. hr, k = 0.086 Btu/hr ft. °F, and densities lb/ft3 liquid = 44.8, vapor = 0. 18 1, cP  = 593.9 
psia. Heating medium is steam at 217.4°F. Use 1-in. 12 BWG carbon steel tubes 8 ft. long. For this 
problem assumes no other fouling is present. This example is based on a test by Johnson (73). Boiling 
point elevation for 8 ft static head is 9°F. The heat source is steam condensing on the outside of the 
tubes with a coefficient of 1000. 
 
Step 1. 
 
Calculate Ro 
 

Rw = )891)(.30(
)1)(12/109.0(  = 0.00035 

 
Ro = 1000

1 + 0.00034 = 0.00135 

 
Step 2 
 
Calculate the maximum limiting flux using eqn. 5.37 
 

qmax = 16066 ( )
35.2

8
12/782.

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
(593.9).61

25.

9.593
17

⎟
⎠
⎞

⎜
⎝
⎛

(1 – .0286) = 22,548 Btu/hr ft2 
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This is a high flux and would require a 22548 x.00135 = 30.4 temperature drop across the steam tube 
wall. As only 217.4 – 185.5 = 31.9°F is available it is obvious the operation is well below the maximum. 
 
Step 3. Determining a boiling flux 
 
Calculate a nucleate boiling flux using Figure 5.33 
 
Here 
 

B = [0.00658(593.9).69(1.8)(17 / 593.9).17]3.33  = 0.1214     (5.62) 
 
hence 
 

RoB = 0.00135 x 0.1214 = 0.00016 
 
For ΔT = 31.9° from the figure we should calculate 
 

q = 44,000 x 0.1214 = 5342 Btu/hr ft2 

 
This flux represents only the nucleate boiling coefficient and this is a lower limit. To include a two-phase 
convective effect assume a 50% increase in the boiling side. Hence, from the above flux and ΔT get U 
(167.4), subtract the Ro (.00135) resistances to get the boiling coefficient (216.4) increase the nucleate 
coefficient by the assumed ratio (= 324.6), then recalculate the new overall coefficient (225.7) and heat 
flux (7200). 
 
Step 4. Determining the recirculation rate. 
 

Vapor per tube = 8 x 0.2618 x 7200 / 154.8 = 97.4 lb/hr 
 
Now one has to assume the fraction vaporized. We will short cut this trial and error by assuming the 
experimental value of 9%. Therefore, the feed rate/tube = 97.4/.09 = 1082 lb/hr. 
 
Step 5. Calculate basic values needed to check pressure drop, circulation rate, and preheat zone. 
 

Gt = 1082 / (π x (.782)2 / [4 x 1441) = 324,404 lb/ft2 hr 
 

V = 324,404 / (3600 x 44.8) = 2.01 ft/sec 
 

Re = .782 x 324,404 / (12 x .96) = 22,021 
 
From friction factor charts f = 0.0075 
 
Hence in the liquid zone the head loss per foot of tube is by eqn. 5.51 
 

ΔH = (4 x .0075 x 12 / .782) x 2.012 / 64.4 = 0.029 ft/ft 
 
Using an average vaporization of 9/2 = 4.5% we can calculate Xtt, (eqn. 5.29) 
 

398.1
0208.0
96.0
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Next get  (eqn. 5.55) 2

ttΦl

 
2
ttΦl  = 1 + 20 / 1.398 + (1 / 1.398)2 = 15.82 

 
The two-phase AH based on average liquid content of 0.955 is 
 

ΔH = 15.82 x .029 (0.955)2 = 0.42 ft/ft 
 
The two-phase density due to slip is (eqn. 5.48 and 5.49) 
 

Rv = 82.15/11−  = 0. 749 
 

ρtp = (.749 x .181) + [(1 – .749) x 44.8] = 11.38 lb/ft3 

 
The boiling zone static head loss is 
 

ΔH = 11.38/44.8 = 0.254 ft/ft 
 
Using eqn. 5.50 for PΔm 
 

Gt = 324,404/3600 = 90.11 lb/ft2 sec 
 

( ) ( ) ( ) ft751.0lb/ft64.33
749.181.

09.
251.8.44

09.1
2.32

11.90ΔP 2
222

m ==⎟
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×
+

×
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Heat transfer in preheat zone; eqn. 5.25 
 

( ) ⎟
⎠
⎞

⎜
⎝
⎛ ××

⎟
⎠
⎞

⎜
⎝
⎛ ×

=
782.

782.12086.
086.

96.45.22021023.0h
3/1

8.  = 121.1 Btu/hr ft2 °F on outside area 

 
Therefore 
 

U = 1 / (1 / 121.1 + .00135) = 104. 1 Btu/hr ft2 °F 
 
Using a ΔT = 31°F the temperature rise in preheat zone is 
 

45.1012
312618.1.104

×
××

 = 1.86 °F/ft 

 
Step 6. Estimating preheat and boiling lengths. 
 
Assume preheat zone = 3 ft 
 
Friction loss in preheat zone = 3 x .029 = 0.087 ft 
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Effective submergence at this point = total head (8) – friction loss (.087) – preheat zone (3) = 4.91 ft liquid 
 
which is equivalent to a boiling point elevation of 
 

(4.91/8) x 9 = 5.53 °F 
 
Length required for this temperature rise is 5.53/1.74 = 3.18 ft. Close enough. 
 
Check on circulation and pressure drops 
 
Available head = 8 ft liquid neglecting liquid line losses 
 
Overall momentum loss =      .751 ft 
 
Friction losses 
 

boiling zone 5 x .42   2.100 
preheat zone       .087 

 
Static heads 
 

boiling zone 5 x .254   1.270 
preheat zone    3.000

      7.21ft 
 
Considering there is some losses in the liquid recirculating line the above agreement is close enough. 
 
Step 7. Calculate heat transfer in boiling zone 
 
From eqn. 5.8 
 

hnbl = 0.00658(593.9).69(7200).7[1.8(17 / 593.9).17  
      = 266.2 x .782 / 1 = 208. 1 Btu/hr ft2 °F on OD area 

 
From eqn. 5.28 
 

226.2213.0
398.1
135.2F

73.0

ch =⎟
⎠
⎞

⎜
⎝
⎛ +=  

 
Determines from eqn. 5.31 
 

Retp = 22,021 x 2.2261.25 = 59,874 
 

s = 1 / {1 + [2.53(10-6) x (59,874)1.17]} = 0.504 
 
From eqn. 5.27 
 

hcb = 121.1 x 2.226 = 269.6 Btu/hr ft2 °F on an outside area basis 
 
From eqn. 5.26 

291 



 

 
hb = (.504)(208.1) + 268.6 = 374.5 

 
Adding the steam and wall resistance to obtain U for the boiling section 
 

U = 1 / [(1 / 374.5) + 0.00135] = 249 
 
Step 8. Calculate average coefficient for tube and area 
 
An average coefficient for the preheat and boiling zone is 
 

Uav = (3 x 104.1 + 5 x 249.0)/8 = 194.5 Btu/hr ft2 °F 
 
Required area = 1,483,000/194.5 x 31.9 = 239 ft2 vs. 201 ft2 in the test vaporizer. 
 
Thus, this simplified calculation came within 19% of predicting the test results which is acceptable. In 
design case after calculating the required area (239 ft2) a safety factor should be added to allow for the 
error spread in all the involved equations. Also fouling should be considered and should be included in 
the term Ro term. We did not include fouling in this example since we were trying to compare the 
calculation method with data obtained in a clean vaporizer. 
 
5.10.3. Boiling Outside Trufin Tubes - Example Problem 
 
To illustrate the value of and methods of calculation for Trufin tubes in boiling, a comparison of the 
performance of a plain surface and finned surface tube will be made. The plain tube is 0.75 and o.d., 18 
B.W.G. wall and 90/10 Cu-Ni. The Trufin is Wolverine Cat. No. 65-265049-53. This tube has a surface 
area of 0.640 ft2/ft with an Ao/Ai ratio of 4.61, a fin height of 0.057 and width of 0.012 inches. There are 26 
fins per inch. The tubes are heated with steam having a coefficient of 2000. A pure hydrocarbon having a 
critical pressure of 489 psia will be boiled at 100 psia with an overall temperature difference of 10'F. The 
bundle factor, Fb, is 1.5 and the surface factor, Fs, for this temperature is 1.0 for the plain tube and 1.5 for 
the Trufin tube. 
 
Evaluation of the Plain Tube Performance 
 
1. Calculate Ro. 

where Ro = wall resistance + tube-side resistance 
 

( )( )
( ) 000162.
652.29

75.12/049.R wall ==  

 
hwall = 6174 

 

( ) 00074.
652.2000

75.
6174

1R ο =+=  

 
 
2. Calculate the single tube boiling coefficient using eq. 5.32 
 

hnbl = (5.43)(10-8)(489)2.3[1.8(100 / 489)0.17]3.33 ΔT2.3 = 0.24 ΔT2.3
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assuming the maximum possible ΔT of 10°F 
 

hnbl = (0.24)(10)2.3 = 47.9 
 

3. Calculate the bundle boiling coefficient, overall U, and the heat flux then check the assumed ΔT. 
Assume a natural convection coefficient, hnv = 40, and using the bundle factor of 1.5 in eq. 5.22. 

 
hb = (47.9)(1.5) + 40 = 111. 8 

 
U0 = 1 / (1 / 111.8 + .00074) = 103.2 

 
 the available boiling ΔT is then 
 

ΔTb = 10 – (10)(.00074)(103.2) = 9.2°F 
 

This is not close enough to the assumed value of 10 so repeat steps 2 and 3. 
 
2’   Assume ΔTb = 9.2 
 

hnbI = (0.24)(9.2)2.33 = 42.25 
 
 
3'  hb = (42.25)(1.5) + 40 = 103.4 
 

U0 = 1 / [(1 / 103.4) + .00074] = 96 
 
4. Calculate available boiling ΔT. 
 

ΔTb = 10 – (10)(.00074)(96) = 9.29°F 
 

q = UΔT = (96)(10) = 960 Btu/hr ft2 (outside area) 
 
Evaluation of the Trufin Tube Performance 
 
1. Calculate Ro 

The inside area basis will be used 
 

( )( )
( )( ) 0.00013 

579.29
53.12/049.R wall ==  

 
Ro (wall + steam resistance) = 0.00013 + 1/2000 = 0.00063 

 
2. Calculate the boiling coefficient using eq. 5.32 with a surface factor of 1.5 
 

hnbl = (1.5)(0.24) ΔT2.33 = 0.36 ΔT2.33

 
assume a boiling ΔT of 8°F 

 
hnbl = (0.36)(8)2.33 = 45.8 
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using eq. 5.22 with Fb = 1.5 and hc =30 
 

hb = (45.8)(1.5) + 30 = 98.7 
 
3. Adjust for fin efficiency. 

Figure 5.37 is used. This was derived for the case boiling liquids on fins where h = bΔT2. 
 

using the assumed ΔT of 8 and hb = 98.7 
 

b = 98.7 / (8)2 = 1.542 
 

the abscissa for fig 5.37 is then 
 

( )( )
( )( ) 320.812/018.029

542.12
12
057. =×  

 
an efficiency of 87% is read and 

 
hb = (98.7)(.87) = 85.9 on an outside area basis 

 
On an inside area basis; 

 
hb (85.9)(4.61) = 396 

 
U = 1/ (1/396 + .00063) = 317 

 
q = UΔT = (317)(10) = 3170 Btu/hr ft2 (inside basis) 

 
Check assumed value of boiling ΔT of 8°F. 

 
ΔT (wall + steam) = (0.00063)(3170) = 2.0 

 
ΔTboiling = 10 – 2 = 8°F 

 
This checks with assumed value. If not then, repeat steps 2 and 3 with a new value. 

 
Comparison of Performance 
 
Since the area per foot of the two tubes are different, comparison will be made on a per foot of length 
basis. 
 
1. For plain tube 
 

q/foot = (960)(.1963) = 188.5 Btu/hr-foot length 
 
2. For Trufin 
 

q/foot =(3170)(.640/4.61) = 440.1 Btu/hr-foot length 
 

Therefore the performance ratio of Trufin to plain is: 440.1 / 188.5 = 2.3 
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Table 5.1 

 
Simple dimensional equation for nucleate pooling boiling heat transfer (after Borishanski) 

 
Liquid Pressure 

range atm. 
A*

from exp 
A*

Eqn 5.9 
Critical 

pressure atm. 
No. in 

Fig 5.18 
 

Water 
Water 
Water 
Water 
Water 
Water 

 
Pentane 

Heptane (80%) 
n-heptane 
Benzene 
Benzene 
Diphenyl 

 
Methanol 
Ethanol 
Ethanol 
Butanol 

 
R11 
R12 
R12 
R13 

R13B1 
R22 
R113 
R115 

 
RC318 

Methylene 
chloride 

Ammonia 
Methane 

 
1 – 70 

1 – 196 
0.09 – 1 
1 – 72.5 
1 – 170 
1 – 5.25 

 
1 – 28.6 

0.45 – 14.8 
0.45 – 14.8 

1 – 44.4 
0.9 – 20.7 

0.9 – 8 
 

0.08 – 1.39 
1 – 20.7 
1 – 59 

0.17 – 1.38 
 

1 – 3 
1 – 4.9 

6 – 40.5 
2.8 – 10.5 
17 – 39 

0.4 – 2.15 
1 – 3 
8 – 31 

 
3.6 – 27 

 
1 – 4.5 
1 – 8 
1 – 42 

 
1.61 
1.58 
2.28 
1.76 
1.75 
2.26 

 
.429 
.464 
.642 
.417 
.520 
.441 

 
(.272) 
.720 
1.019 
(.173) 

 
.768 [.681] 

.956 
1.37 [1.01] 

.705 
1.744 [.976] 
          [.941] 

.488 
1.49 [.934] 

 
1.23 [.984] 

 
(.752) 
1.54 
1.06 

 
1.66 
1.66 
1.66 
1.66 
1.66 
1.66 

 
.449 
.381 
.381 
.588 
.583 
.425 

 
.815 
.701 
.701 
.547 

 
.539 
.516 
.516 
.496 
.508 
.586 
.453 
.425 

 
.394 

 
.677 
1.039 
.563 

 
216.9 
216.9 
216.9 
216.9 
216.9 
216.9 

 
32.8 
25.9 
25.9 
48.1 
48.1 
30.4 

 
78.0 
62.6 
62.6 
43.8 

 
42.9 
40.3 
40.3 
37.9 
39.1 
48.4 
33.4 
30.6 

 
27.3 

 
59.6 
110.8 
45.6 

 
1 
2 
3 
4 
5 
6 
 

7 
8 
9 
11 
-- 
-- 
 

13 
10 
12 
14 

 
-- 
15 
-- 
-- 
-- 
-- 
-- 
-- 
 

-- 
 

-- 
-- 
-- 
 

 
Values shown in round brackets ( ) are uncertain. 
 
Values shown in brackets [ ] relate to the use of Equations 5.11 for F(P). 
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NOMENCLATURE 
 
A* Constant defined in equation 5.9. dimensionless 
   
As Surface area. ft2
   
B Constant defined in equation 5.62. dimensionless 
   
BR Boiling range, dew point-bubble point. °F 
   
cp Specific heat,  for liquid and clpc pv, for vapor Btu/lbm °F 

   
d Tube diameter, do for outside and di for inside. ft. 
   
Dp Diameter of tube bundle. ft. 
   
Ds Shell diameter. ft. 
   
Fb Tube bundle correction factor. dimensionless 
   
Fcb Chen Factor. dimensionless 
   
Fm Mixture correction factor. dimensionless 
   
f Friction factor. dimensionless 
   
G Mass velocity. Ibm/ft2 hr 
   
Gt Mass velocity based on total flow. Ibm/ft2 hr 
   
Gtmax Total mass velocity based on minimum cross flow area. Ibm/ft2 hr 
   
Gmm Mass velocity at beginning of mist flow. Ibm/ft2 hr 
   
g Gravitational constant. ft/hr2

   
gc Conversion constant. Ibm ft/lbf hr2

   
H Height. ft 
   
Hl

Height of liquid zone. ft 
   
ΔH Head loss per foot of tube. ft/ft 
   
h Film heat transfer coefficient; hb = boiling, hc = convective, hf film,  = 

liquid, h
lh

r = radiation, hcb = convective boiling, hft = film total, hnb = nucleate 
boiling, hnbl = single tube nucleate boiling. 

Btu/hr ft2 °F 
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K Constant in equation 5.23. dimensionless 
   
k Thermal conductivity. Btu/hr ft2 °F 
   
L Length. ft 
   
Lc Minimum unstable wave length. ft 
   
m Exponent. dimensionless 
   
N Number of tube rows. dimensionless 
   
Nn Number of vapor nozzles. dimensionless 
   
Nu Nusselt number. dimensionless 
   
P Pressure. lbf/ft2
   

cP  Critical pressure. lbf/in2

   
Pr Reduced pressure = P/PC. dimensionless 
   
Pr Prandtl number. dimensionless 
   
Psat Saturation pressure at plane interface. lbf/ft2
   
pt Transverse tube pitch. ft 
   
ΔP Pressure drop;  ΔPT = total, ΔPs =static, ΔPm = momcntum, ΔPf = friction. lbf/ft2

   
q Heat flux; qmax = maximum, qmf = minimum film, qnc = natural convection, qcr 

= critical. 
Btu/hr ft2

   
Re Reynolds number. dimensionless 
   
Rl, Rv Volume fraction of liquid, vapor. dimensionless 
   
Ro Sum of thermal resistances other than the boiling resistance. hr ft2 °F/Btu 
   
rc Radius of bubble. ft 
   
s Chen suppression factor.  
   
T Temperature; Ts = steam, Tw = wall, Tsat = saturation. °F 
   
ΔT Temperature difference; ΔTb = tube wall-saturation, ΔTc = critical, ΔTO = tube 

waIl-bulk liquid, ΔTmin = difference at minimum film boiling coefficient. 
°F 

   
V Velocity. ft/hr 
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V∞ Velocity approaching tube. ft/hr 
   
VL Vapor load. lbm/hr ft3
   
Xtt Martinelli parameter, equation 5.29.  
   
x Weight fraction of vapor.  
   
y Mole fraction low boiling component in liquid.  
   
GREEK   
   
β Coefficient of thermal expansion. 1/°R 
   
Γ Flow rate per unit length. Ibm/hr ft 
   
λ Latent heat; λe, λ’  = effective latent heats see eqn. 5.17, 5.19. Btu/Ibm

   
μ Dynamic viscosity; lμ  = liquid, vμ  = vapor lb./ft hr 

   
ρ Density; ρl = liquid, ρv = vapor, ρb = bulk average, ρtp = two-phase.  
   
σ Surface tension. lbf/ft 
   
v Specific volume change liquid-vapor. ft3/lbm
   
Φb Bundle maximum flux correction factor. dimensionless 
   

2
vtt

2
tt Φ,Φl  Martinelli two phase factors. dimensionless 
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