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V. Gnielinski

FEDERAL REPUBLIC OF GERMANY

New equations for heat and
mass transfer in turbulent
pipe and channel flow

Experimental data for lavge Reynolds numbers and high Prandtl
numbers are used to develop an equation which incorporates both
the transition region and the region of fully developed flow in pipes

and channels.

1. Introduction

IN the revision of the ‘¢ VDI-Wirmeatlas’ [1] it was
desirable to test whether the equations in this refer-
ence work represent the present state of research.
For calculation of heat transfer coefficients in turbu-
lent flow through pipes and channels, this heat atlas
has hitherto contained an equation by H. Hausen [2],
the final modified form of which (1959) reads

Nu = 0.037 (Ro® 75 — 180) Pr0.42 [ 1)
+ (d/L)23) (qefnw)Ote L L L L L L L

Here Nu = ad ‘) is the Nusselt number, Re = wd/v is
the Reynolds number, Pr = y/a is the Prandtl num-
ber, d is the equivalent diameter, L the length and w
the velocity of the fluid in the pipe or channel. The
thermal conductivity A, the kinematic viscosity v, the
thermal diffusivity a and the average dynamic vis-
cosity ngp of the flowing medium are to be inserted at
the average temperature 4y, = (4 + #5)/2, where §;
and ¢, are the temperatures of the fluid at the inlet
and outlet of the tube. In addition, n, denotes the
dynamic viscosity of the fluid at the wall tempera-
ture Sy -

The average heat transfer coefficient o for a pipe
is defined in terms of the heat flux density q by the
equation

d=altn . . .. (2)
where A p is the logarithmic-mean temperature
difference:

B\ — Og
A"ln: l—ﬂm) ........... (3)
n(ﬂw — B

Hausen developed Equation (1) from the experimental
values collected by E. N. Sieder and G. E. Tate [3]
for heat transfer in the turbulent pipe flow of liquids.
These values are plotted against Equation (1) [2] in
Figure 1.
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The range of validity of Hausen’s equation is
given in the ‘* VDI Heat Atlas’’ [1] as

0<d/L<1!, 06<Pr< 109 2300 < Ro < 10°¢

On examining the more recent literature two papers
were found which provided a further opportunity to
test the validity of Equation (1).

W. Hufschmidt et al. [9] reported in 1966 that their
experimental values for high Reynolds numbers devi-
ated considerably from the heat transfer coefficients
calculated by the Hausen equation. Figure 2 com-
pares their experimental values for water flowing
through electrically heated pipes with Equation (1).

In 1969 H. Reinicke [10] published experimental
values for heat transfer in the flow of viscous liquids
having different Prandtl numbers through short pipes
for small temperature differences. The average
Nusselt numbers measured by Reinicke for short
tubes and water at Pr = 9 are plotted in Figure 3.

It is seen that the experimental values for short
pipes, and therefore for large values of the ratio d/L
and for relatively small values of the Reynolds num-
ber, i.e. in the region between laminar and turbulent
flow do not follow the Hausen equation at all, but
rather the following theoretically derived equation
by E. Pohlhausen [11] for heat transfer in laminar
flow in the hydrodynamic and thermal inlet region:

Nu = 0.864 'VﬁVRe %

E. U. Schliinder [12] has also indicated (1970) that it
is necessary to limit the range of applicability of the
Hausen equation in the transition region. Figure 3
also contains his equation for heat transfer for ther-
mal development in hydrodynamically developed
laminar flow

........ (4)

N“=V3.663+1.613R9Pr%. e (5)

This equation provides higher values for the Nusselt
number than Equation (4), depending on the Prandtl
number and the d/L ratio.
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2, Evaluation of experimental data

The above findings provided the motive to as-
semble as many as possible of the recent experi-
mental results for heat transfer in turbulent flow and
compare them with each other.

In Figure 4 the experimental values reported by
several investigators are plotted as suggested by
Hausen [2] together with Equation (1). It can be seen
that the isothermal Nusselt numbers deviate appre-
ciably from Equation (1) at high Reynolds numbers.
The slope of the smooth line drawn through the ex-
perimental values is 0.87. The Nusselt numbers in
the region below Re = 10¢ differ no more from Equa-
tion (1) than do the experimental values of Sieder and
Tate [3] plotted in Figure 1. In this region, owing to
the effect of inlet effects one must accept a greater
scattering of the experimental values. On the other
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Reynolds number

Fig. 3. Nusselt numbers calculated from Equations (1), (4),
and (5) for different values of the relative diameter d/L and
those measured by Reinicke [10] for Pr = 9. a) Equation (1);
b) Equation (4); ¢} Equation (5); d = pipe diameter; L = pipe
length.

hand, the heat transfer coefficients for gases in
turbulent flow, which are plotted in Fig. 5, do not de-
viate as much at high Reynolds numbers from Equa~
tion (1). The slope of the smooth curve drawn
through the experimental points for gases is 0.8.
This means that at high Reynolds numbers the de-
pendence of the exponent of the Reynolds number on
the Prandtl number is very noticeable. It must
further be noted that the heat transfer coefficients
measured for gases in the transition region Re < 10*
do not show the same large decrease as the heat
transfer coefficients for liguids plotted in Figure 4.
On comparing the experimental results plotted in
Figures 4 and 5 it is apparent that to reproduce all
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the experimental values in the literature satisfactorily
an equation has to be sought which, like Equation (1)
from Hausen [2], correctly describes the decrease

in the heat transfer coefficient in the transition re-
gion between laminar and turbulent flow in the region
Re < 10%, and which, for large Reynolds numbers
takes account of the dependence of the exponent of the
Reynolds number on the Prandtl number.
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3. Derivation of a new equation

A dependence of the exponent of the Reynolds num-
ber on the Prandtl number is produced by the equa-
tions for heat transfer which are based on the pres-
sure drop. L. Prandtl [32] presented the first re-
lationship of this type, which reads

Nu _ ¢/8
RePr 14 B.7}/(48)(Pr—1) ®)
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Fig. 6. Nusselt numbers calculated from Equations (7) to (9),
(11), (12), (13), and (1) versus the Reynolds numer Re for
various Prandtl numbers Pr. & = drag coefficient, k = function
from Equation (8).

where ¢ is the drag coefficient of the tube through
which flow is taking place. Since then the Prandtl
equation has been further improved.
B. S. Petukhov et al. [33) gave the relationship
(£/8) Re Pr
Srr ey een—g )

for heat transfer in fully developed turbulent flow in
long pipes, where

N

k = 1.07 + (900/Re) — [0.83/(1 + 10 Pr)] . (8)

The drag coefficient ¢ can be calculated from the
equation given by G. K. Filonenko [34] for isother-
mal flows in smooth tubes

&= (1.82lgRe — 1.84)-2 . . . . ... . 9)

This equation also satisfactorily produces the drag
coefficient in the range of applicability of the Blasius
equation

=03164/}JRe. . . . . . . . . . ... (10)

W. Hufschmidt et al. [9] used a similar equation by
B. 8. Petukhov and V. N. Popov [35] to represent
their experimental values for Nu.

In Figure 6, Equation (7) is plotted with Equation
(1) for various Prandtl numbers. In the region of
large Reynolds numbers Equation (7) corresponds
exactly to the previously formulated requirement,
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i.e., irrespective of the Prandtl number Pr, Equation
(7) provides higher Nusselt numbers than Equa-
tion (1). By modifying Equation (7) correct repre-
sentation of the experimental values can also be ob-
tained in the range 2300 < Re < 10%. The modified
equation
Nu — (£/8) (Re — 1000) Pr
L+ 12,7)/(¢/8) (Praa—yq) © = © * - (11)

is also plotted in Figure 6. For high Reynolds num-
bers the modified equation (11) is identical with
Equation (7); in the transition region 2300 < Re < 104
Equation (11) also satisfactorily reproduces the de-
crease in the heat transfer coefficient with decreas-
ing Re, which was represented satisfactorily by
Equation (1). It is also to be noted that over the
transition region Re < 10*, Equation (1) does not
show the same large decrease for gases (Pr = 0.7)
as for liquids (Pr = 7 etc.), as was required earlier.

Using Equation (11), as is also seen, the experi-
mental heat transfer values for turbulent flow in pipes
collected so far from the literature can be reproduced
over a wide range of Prandtl numbers. However, for
approximate calculations, such as the engineer must
frequently adopt, Equation (11) is not very conveni-
ent. For this purpose the curve from Equation (11)
can be reproduced with good accuracy over the
technically important range of Prandtl numbers by
two equations of the Hausen type. We can use the
equation

Nu = 0.0214 (Re0®-8 — 100) Pr0.4 _ , . . . (12)

over the range 0.5 < Pr < 1.5 (and thus for gases),
and the equation

Nu = 0.012 (Re%-87 — 280) Pro-4 ., ., . . . (13)

over the range 1.5 < Pr < 500 (i.e. for liquids). The
behavior of Nu from Equations (12) and (13) is re-
produced in Figure 6. Good agreement is found over
the cited ranges of validity.

Figure 7 shows the experimental Nusselt numbers
collected from the more recent literature for
liquids, as compared with the Nusselt numbers
calculated from Equation (11). Here Equation (11)
was modified further by the correction

1+ (d/Lys3
given by Hausen [2] for the effect of pipe length, and
by the ratio
(Pr/Pry)o-11

of the Prandtl number Pr at the average liquid tem-
perature $y and the Prandtl number Pry at the wall
temperature $y, introduced inter alia by Hufschmidt
and Burck [21] and by V. V. Yakovlev [36] to take ac-
count of the temperature dependence of the proper-
ties in Equation (11). Then Equation (11) reads

INTERNATIONAL CHEMICAL ENGINEERING
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2300 < Re < 10%. Therefore, the largest value given
where by Equations (4), (5), and (14) was entered in Figure
7 as the calculated Nusselt number. Nearly 90 pct of
the approximately 800 experimental values in Figure
As was found from the discussion on the experimental 7 differ by less than £20 pct from the calculated
results of Reinicke [10] plotted in Figure 3, Equations values.

K (14)

K = (Pr/Praw)tt . . L L0 o 0 (15)

(4) and (5) give larger Nusselt numbers than Equa- Furthermore, the experimental values of Sieder
0= Authore Pr d/L
vl RW Allenand ERG Eckert  [1v4]] 7 t0 8 [ 0001
5 H Krausseld fi5j | 80 to 85 | 0ooes
3| JP Stone etal.  fer f5]| ¥ to 25 | ooot -
A Eagle and A M Fergusan  [17] 5 0001 P
M N lvanovski ]| 5 0 7 001
’ 1T Alad'jev etal. {9 | 09t0 12| dor
T K. Sherwood et al, {20} 50 toa0 | 000v o016
W Hufschmua! and £ Burck  {21] | 81 10790 | 0.026
W Hufschmid! et al, [9]| 2 to & | gook7ton0®
107 a| M A Mikheyev £2| 310 8 | 0o
| # Remicks {19/] 2510775 {01 totg
B
. - E
Fig. 7. Comparison of Nusselt numbers calculated from 2
Equation (4), (5) or (14) (each incorporating Equation {15}) FE p
with the Nusselt numbers measured for liquids. Pr = Prandti 2 o s
number, d = pipe tube diameter, L = pipe length, a = line for E
Nucalc = Nuexp. Es ¥
g
3 4
w o
2
d’,' -]
10
o N
s #3
A4
e
H / : d
0° ? 5 10! 2 5 10? 2 J 0 H . 5 x*
FIRT Calculated Nusselt number/Nuca|¢.
107 /
/]
¢ 7
A /
H >
7
KR
z -~ 4
5
g’ Z
2 <
El = ~
; s
A
«© 10’ a ’
€
a 5
g 4 I Coid
g o
w A
2
K]
o3
10 pv/d
a- /
5 E Authors Pr d/L
N2 o |MH. Clapp and 0.F, Fitzsimmans [#] | 1.7 t0 125 | 8,001
0.5 Kisevil 151 |48 10 201 | goor
o - |4..Lowrence and Tk Starwood 8] § t09 | domswisar
? vd o |£. M.Morris and W.0.Whilman [7) | 28 to 72¢ | Qoosy 1
/ v | T.X.Sherwood and J.M Pelrie [8] | 2 to 28 | 8010
T I I T I | I |
0° ? 3 0’ 2 5 »! H 5 » H & Fad

s - Calculated Nusselt number, Nugg|

INTERNATIONAL CHEMICAL ENGINEERING (Vol. 16, No. 2} April 1976 363




and Tate [3] in Figure 8, which Hausen used to with small differences between the average gas

formulate Equation (1), differ no more from the temperature and the wall temperature against the
values calculated from Equation (14) than from the Nusselt numbers calculated from Equation (14).
values determined from the Equation (1). This is Here also good agreement is shown between experi-
proven by comparing Figures 8 and 9; the Nusselt ment and calculation.
numbers calculated from Equation (1) were entered For heat transfer between liquids and solid wallg
in Figure 9. Figure 10 compares the Nusselt num- it is possible to consider the dependence of the
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Prandtl numbers in Equation (15) at the average
liquid temperature and the wall temperature, be-
cause only the viscosity of the liquid depends very
much on temperature, and large temperature dif-
ferences are not usual for convective heat transfer.
This is not true for gases because all properties
affecting heat transfer depend greatly on tempera-
ture and large temperature differences frequently
occur between the gas and the wall. In the literature
it has often been proposed that the temperature de-
pendence of the materials properties be taken account
of by the ratio of the average absolute temperature
Tm of the flowing gas to the average absolute tem-
perature Ty, of the pipe wall.

An evaluation of the heat transfer coefficient
of gases collected from the literature, which were
measured for large temperature differences, showed
that these experimental values can also be repro-
duced by Equation (14) if instead of the correction
factor K = (Pr/Pry,)*!! from Equation (15), we sub-
stitute the factor

K = (Tm/Tw)®$5 . . . .. ... ...

(186)

into Equation (14) for 0.5 < T, /Tw < 1.5.

The experimental results of various investigators
so evaluated are plotted in Figure 11. Here also good
agreement is obtained between the measured and
calculated Nusselt numbers. R. Gregorig [45] has
constructed a nomogram by means of which account
can be taken of the effect of the temperature depend-
ence of the properties of gases on heat transfer
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Fig. 12. Comparison of the Sherwood numbers calculated
from Equation (14), rewritten for mass transfer (without the
correction factor (Sc/Csy)®!!), and the experimental
Sherwood numbers of Harriot and Hamilton [46] a = line for

Shexp = She¢alc where
d\ v
+(2)")

gho _ (48) (Re — 100080
1 + 12,7 /(&/8) (Se¥3 — 1)

corresponding to Equation {11) for the Nusselt number (with

& as the drag coefficient, Re as the Reynolds number, and Sc

or Scy as the Schmidt number at the average liquid tempera-

ture respectively).

both for very large and very small temperature
ratios Ty /Tw-

The analogy between heat and mass transfer can
be used to calculate the heat transfer coefficients
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from Equation (14). Here the Sherwood number

Sh = pd/s replaces the Nusselt number Nu in Equa-
tion (14) and the Schmidt number Sc = v/5 replaces
the Prandt! number Pr (with p as the mass transfer
coefficient and § as the diffusion coefficient). P,
Harriott and R. M. Hamilton [46] determined the mass
transfer between a tube made from benzoic acid and
a glycerol solution flowing therein. The measured
Sherwood numbers reported by them are plotted in
Figure 12 against the Sherwood numbers calculated
from Equation (14). Although the Schmidt numbers
were varied between 430 and 98,000, the experi-
mental Sherwood numbers do not differ by more than
+15 pct from the Sherwood numbers calculated from
Equation (14).

Summaeary

Using the numerous experimental values from
the literature it has been shown that the average heat
and mass transfer coefficients for the turbulent flow
of gases and liquids in smooth pipes and channels
can be calculated by means of Equation (14) (by re-
placing Nu and Pr by Sh and Sc for mass transfer).
Using the correction factor K = (Pr/Prw)° 1 for
liquids (0.05 < Pr/Pry < 20) and K’ = (T /Tw)*" *® for
gases (0.5 < Tyy /Ty < 1.5) the dependence of the
properties on temperature is taken into account.

The range of validity of Equation (14), illustrated
by comparison with experimental values, covers 2300
<Re <10%and 0.6 < Pr <105, Over the range of ap-
plication 0.6 < Pr < 1.5 the experimental Nusselt
numbers for gases are reproduced with the same ac-
curacy by the relationship

Nu = 0,0214 (Re.8 — 100)Pr°-4[1 + (%)m](i_m)o.u
W,

(15)

and over the range of application 1.5 < Pr < 500 the
experimental Nusselt numbers for gases are re-
produced by the relationship
/8 0,11
Nu = 0.012 (Re0-87 —280) Pro-¢ [l +(%) ](PI:_—I;V)

(16)

For short pipes and channels the equation for the
thermal development for hydrodynamically developed
laminar flow (Equation (5)) or the equation for the
thermal and hydrogynamic development for laminar
flow (Equation (4)) occasionally provides higher
Nusselt numbers than Equation (14), (15), or (16) for
turbulent flow over the transition range 2300 < Re
< 104, depending on the Prandtl number. The high-
eat value obtained for the Nusselt number is then al-
ways valid.

It is essential to recognize that a generally valid
heat transfer equation in the form of products from
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characteristic qualities and powers proposed by
Nusselt [23] cannot be formulated. On the other hand,
it has been shown that a generally valid equation can
be formulated if we commence from the basic form
already developed by L. Prandtl [32] .
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SOVIET UNION 1. T. Mirzaev
A. M. Kutepov

Kh. R. Rustamov

The critical heat flux during the
boiling of aqueous solutions at
low pressures

An experimental study is reported of the critical heat flux during the
boiling of aqueous solutions of sodium chloride, oxalic acid, boric
acid and glycevol at pressures of 0.1 to 1.0 atm. Non-dimensional
equations are presented to summarize the vesulls.

INVESTIGATIONS have been made of the critical
heat flux during the boiling of pure liquids on heating
surfaces under conditions of natural convection at
low pressures [1-5]. These established that there

is an increase in the diameter of the vapor bubbles
at separation and a decrease in the number of centers
of vapor formation as the pressure is reduced, an
explosive nature of the bubble growth [1], an effect
of the heater dimensions, and a fall in ger as the
pressure is reduced [6]. The effect of vacuum be-
comes particularly marked at pressures below 0.3—
0.4 atm. abs. [7].

The determination of gop for agqueous solutions at
atmospheric pressure showed [8, 9]that ger is a
function of the molar concentration, the boiling point
and the boiling point elevation of the solution. There
is no information in the literature on the determina-
tion or calculation of qgy for aqueous solutions under
vacuum.

The purpose of the present work was to study
the relationships governing the critical heat flux
during the boiling of aqueous solutions of NacCl,
oxalic acid, boric acid and glycerol under vacuum.

The experiments were carried out in an apparatus
having automatic recording of the boiling crisis

This paper was first published in Akademiya Nauk Uzbekskoi
SSR, Uzbekskii Khimicheskii Zhurnal (Academy of Sciences
of the Uzbek SSR, Uzbek Chemical Journal), No. 6. pp. 65-
68 (1974). L. T. Mirzaev, A. M. Kutepov and Kh. R. Rustamov
are associated with the Abu Raikhan Beruna Polytechnic In-
stitute in Tashkent.
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with an electronic device. Boiling was studied in an
apparatus with a working volume of solution of
about 5 liters on the surface of a heating element
in the form of a stainless steel wire of diameter 2
mm. placed horizontally.

In order to prevent leakage of the solution and to
provide electrical insulation, the copper rods serv-
ing as external leads to the heater passed through
gaskets and were tightened by means of ebonite and
rubber. The heater wire, which formed part of an
alternating current circuit produced by two trans-
formers connected in series.

The automatic boiling crisis recorder shut off the
heating element, in order to prevent burn-out; ten
experiments were carried out on one heating wire.

The volume of solution was maintained constant by
use of a reflux condenser. The experiments were
carried out at pressures of 0.1, 0.25, 0.5, 0.75 and
1.0 atm. abs.

One of the main parameters determining the state
of a boiling salt solution is the temperature factor
AT/T [9]. The experimental results were therefore
described by using the dimensionless quantities
Qer(AT/T) and X, where X is the molar concentra-
tion of the solution. AT and T are the boiling point
elevation and boiling point of the solution.

The experimental data are shown graphically
in double logarithmic coordinates in Figures 1 and
2 in terms of the relationships

90 (9};) = f(X) andq,, (%T—) - f(P)
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