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2.2. Basic Equations for Heat Exchanger Design

2.2.1. The Basic Design Equation and Overall Heat Transfer Coefficient

The basic heat exchanger equations applicable to shell and tube exchangers were developed in Chapter
1. Here, we will cite only those that are immediately useful for design in shell and tube heat exchangers
with sensible heat transfer on the shell-side. Specifically, in this case, we will limit ourselves to the case
when the overall heat transfer coefficient is constant and the other assumptions of the mean temperature
difference concept apply. Then the basic design equation becomes:

Q; =U A'F(LMTD) 2.1)

where Q; is the total heat load to be transferred, U is the overall heat transfer coefficient referred to the

area A’, A" is any convenient heat transfer area, LMTD is the logarithmic mean temperature difference for
the purely countercurrent flow configuration, and F is the configuration correction factor for multiple
tube-side and/or shell-side passes. Charts of F for the common shell and tube exchanger configuration
are discussed later.

U” is most commonly referred to A, the total outside tube heat transfer area, including fins, in which case

it is written as U and is related to the individual film coefficients, wall resistance, etc. by

1
U, = (2.2)
i+ R + R + A%, A, + Ry i+ii
ho kwp\n Ai hi Ai

where hjand hare the outside and inside film heat transfer coefficients, respectively, R,, and R, are
the outside and inside fouling resistances, AX,, and kW are the wall thickness (in the finned section) and

wall thermal conductivity, and R is the resistance to heat transfer due to the presence of the fin. Since

fin
all of the low-and medium-finned tubes manufactured by Wolverine are integral (i.e., tube and fins are all
one piece of metal), there is no need to include a contact resistance term.

Suitable correlations for h and h; will be developed later in this section. The fouling resistances are
ordinarily specified by the customer based upon experience with the streams in question, but typical

values may be found in Chapter 1, Table 1.2.

The mean wall heat transfer area A,,is given with sufficient precision as

A, =%(di +d,) (2.3)
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If it is preferred to use an overall heat transfer coefficient based upon the inside heat transfer area A; the
following relationship holds:

U A =U,A 2.

It is of the greatest importance to always identify the reference area when quoting the value of a film or
overall heat transfer coefficient.

2.2.2. Fin Efficiency and Fin Resistance

The general concept of fin efficiency and fin resistance was developed in Chapter 1. Accordingly, we will
only reiterate the major equations and concepts here.

The value of R, for use in Eq (2.2) is given by

fin

Rfin: l——CD i"'Rfo (2.5)
A’oot +®d ho

fin

where @ is the fin efficiency and is given by:

O = (2.6)

where
m=H [ 2 (2.7)
[h + RfojkWY
Also,
Aoy =7d, L(szﬂdr L N;s 2.8)
s+Y
and
A, = 2%(d02 ~d2)N, (2.9)

Typical fin efficiencies for S/T Trufin are above 0.90 for virtually all applications, often approaching 1.00
for those applications in which low-finned Trufin is most valuable.
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1
These are shown in Chapter | as a function of — + R, for the various metals out of which S/T Trufin is
0]
manufactured. Use of these figures (1.51 and 1.52) shortcuts the need to carry out the calculation of
Egns. (2.5 to 2.9) for most design cases.

2.2.3. Mean Temperature Difference, F Factors

We will use the Mean Temperature Difference (MTD) formulation for design of heat exchangers in this
Manual. The MTD is related to the Logarithmic Mean Temperature Difference (LMTD) by the equation

MTD=F(LMTD) (2.10)

where the LMTD is always defined as for the countercurrent flow arrangement shown in Fig. 2.4:

LMTD = (Tl _t2)_(T2 _tl)

(2.11) ' ' T
zn(Tl -t ] ‘ T, 1
T -1
4 t
In the rare occasion that the heat exchanger is a purely - -
cocurrent (parallel) flow arrangement, F = | and the 1

LMTD is given by

Fig. 2.4 Temperature Identification for Countercur-
LMTD = (Tl _tl)_ (Tz — tz) (2.12) rent Single Phase Flows in a Shell and

_ Tube Exchanger.
f n M
Tz - tz

where T, and t; are the shellside and tubeside inlet temperatures, respectively, and T, and t, are the
corresponding outlet temperatures.

The value of F depends upon the exact arrangement of the streams within the exchangers, the number of
ex changers in series, and two parameters defined in terms of the terminal temperatures of the two
streams:

R =T1 -T, _ Range of shell flgld (2.13)
t,—t;  Range of tube fluid

b th—t Range of tube fluid

. - (2.19)
Ty -t Maximum temperature difference

The mathematical relationships between F, R, and P have been reported in a number of places, e.g.,
Refs. (1, 2), but the graphical representations are of the greatest interest to us in this Manual. These are
shown for the most important cases in Figs. 2.5 to 2.12, inclusive.
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Once the terminal temperatures of both streams of a heat exchanger are specified or otherwise
determined, R, P, and LMTD can be calculated, F found for the heat exchanger configuration, and finally
the MTD can be calculated. Values of F below 0.8 or 0.75 at the lowest should not be used for three

reasons:
1. The charts cannot be read accurately.
2. The low value of F means that substantial additional area must be supplied in the heat exchanger

to overcome the inefficient thermal profile.

3. Design in or near the steep portion of the curves indicates that the thermodynamically limiting
configuration is being approached, even if all the assumptions are perfectly satisfied. Violation of
even one of the assumptions (e.g., excessive bypassing) by even a little bit may result in an ex-
changer that is in fact thermodynamically incapable of meeting the specified temperatures.

If the value of F determined for the proposed configuration is too low, the use of additional shells in series
will result in an improvement, as shown by the successive F charts for given values of R and P.
Alternatively, it may be possible to redesign the exchangers to permit the use of fixed tube sheet units
and purely countercurrent flow (for which F is unity.)
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