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ABSTRACT

Efficient resource utilization is critical in the viability of geo-
thermal projects. Novel thermodynamic energy conversion cycles 
exist that are superior to the traditional organic Rankine cycle. 
Two new turbines have been developed that enable the economic 
and efficient implementation of these cycles that maximize the 
geothermal resource utilization. The turbines, the Euler Turbine 
and the Variable Phase Turbine, can increase power production by 
as much as 30-50% from low temperature resources and enhanced 
geothermal resources when compared to commercially available 
organic Rankine cycles.

The Euler Turbine is a radial outflow turbine originally devel-
oped for energy recovery in steam systems. Commercial units of 
275 kWe capacity are operating on steam, some with isentropic 
efficiencies above 80%. The Euler Turbine is also currently being 
implemented in a 600 kW Kalina cycle in Bruchsal, Germany.

The Variable Phase Turbine uses axial impulse turbine technol-
ogy that is well adapted to the expansion of transcritical or flashing 
liquid flow. The high isentropic efficiency, typically greater than 
80%, enables a liquid heat exchanger cycle1 to be used, avoiding 
the pinch point limitations of the evaporator in an organic Rank-
ine cycle. Because this cycle can use a significantly lower exit 
temperature, significantly more energy can be extracted from a 
given resource. The resulting power advantage of 30-50%, lever-
ages the total development cost of the geothermal project. A 40% 
increase in power production from a given geothermal resource 
lowers the total capital cost—including exploration, drilling, and 
surface plan— by 29%.

Results of analytical models for cycles utilizing the Euler 
Turbine and Variable Phase Turbine will be presented along with 
geothermal power plant designs for both. Additionally, experi-

mental results of operating the first two-phase closed cycle power 
system with a Variable Phase Turbine will be presented.

Introduction
Low temperature geothermal resources, enhanced geothermal 

resources and separated brine from flash plants, are huge sources 
of energy. However, because of their characteristically low tem-
perature, these projects and power systems have a high cost per 
installed kilowatt of power. To produce power from these resources 
the energy conversion system must maximize the conversion of 
available energy to power. 
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Figure 1. ORC temperature profile.
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A common characteristic of these energy sources is that as 
heat is transferred to the power conversion system, the tempera-
ture decreases nearly linearly (sensible heat). This behavior can 
be contrasted to evaporating flows, which absorb heat at a nearly 
constant temperature, accompanied by a phase change (latent 
heat). This is characteristic of organic Rankine cycles. 

Figure 1 shows an example ORC operating with R134a. The 
geothermal heat source enters the vaporizer at 220 °F and exits at 
155 °F. Liquid R134a exits the refrigerant pump (1) and is heated 
to boiling (1a) and then entirely boils in the vaporizer (1b) and the 
vapor is subsequently superheated (2). The superheated vapor is 
expanded through a turbine (3) and is then condensed (3a and 3b) 
and subcooled (4), at which point it is pressurized in the refrigerant 
pump to close the cycle.

The ORC creates a pinch point between (1a) and the cooling 
geothermal flow that limits the geothermal water return temperature. 
The ideal thermodynamic cycle would eliminate this boiling pinch 
point to recover more heat from the geothermal resource while ef-
ficiently converting the recovered heat into electricity. Until now, 
turbine technology has been a barrier to usage of improved cycles.

Euler Turbine
Pressure reducing valve (PRV) stations are a large source of 

wasted potential energy in steam systems, converting pressure 
energy into heat produced by frictional dissipation. The Euler 
Turbine was designed to capture this energy in an efficient, com-
pact package (Figure 2) which can be applied under a wide range 
of conditions to steam and gas expansions. Commercial units are 
operating with some reaching isentropic efficiencies above 80%. 
Previous state-of-the-art commercial steam turbines of comparable 
power have isentropic efficiencies of 50% or less.

The Euler Turbine is a radial outflow reaction turbine consist-
ing of a nozzle row, blade row, and diffuser. Figure 3 shows the 
flow-path through the turbine. Vapor enters axially and is turned 

radially outward before entering the nozzle row. The flow is ac-
celerated as the pressure drops to an intermediate pressure at the 
entrance to the rotor. In the rotor, the flow continues to accelerate 
as it moves radially outward and is directed tangentially in the 
direction opposite rotation prior to exiting the rotor. A vaneless 
diffuser recovers the remaining kinetic energy in the flow before 
it exits the turbine.

The Euler Turbine was designed to handle saturated steam 
at the turbine inlet, which can result in as high as 10% moisture 
at the rotor exit. Unlike radial inflow turbines, centrifugal forces 
in the Euler Turbine pull moisture and contaminants away from 
the nozzle-rotor interface. Thus the design is inherently erosion 
resistant, enabling its wide use with expansions that drop into the 
wet region. The Euler Turbine utilizes two-dimensional vane and 
blade profiles, giving stout, strong blades and simple, low-cost 
construction (Figure 4). Another benefit of the radial outflow de-
sign is a reduction in operating speed to approximately half that of 
comparable radial inflow machines, reducing the size and losses 

Figure 2. Euler Turbine package in parallel with a PRV station.

Figure 3. Euler Turbine flow-path.

Figure 4. Euler Turbine rotor.
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of a gearbox while also improving rotordynamics. In radial-inflow 
turbines, pressure ratios higher than 4:1 result in designs that 
require multiple expanders and greatly increased complexity and 
size. A two-stage version of the Euler Turbine has been designed 
and tested. Both rows of blades are machined onto a single blisk, 
resulting in a compact machine with a pressure ratio up to 10:1. 

Euler Turbine: Application to the Kalina Cycle
The Kalina cycle was developed as in improvement to the 

organic Rankine cycle for sensible heat sources. Operating with 
a multiple component fluid—typically ammonia and water—the 
Kalina cycle employs variable temperature boiling in the evapo-
rator. The variable composition during the boiling produces a 
“glide” effect which reduces the pinch point limitation when 
compared to an ORC.

Upon leaving the evaporator, the mixture is not entirely boiled 
and so a separator is required. The vapor stream coming from 
the top of the separator is expanded through a turbine. Moisture 
forms as the saturated vapor mixture is expanded. The presence 
of moisture makes the Euler Turbine desirable because of its rug-
ged design. The liquid stream from the bottom of the separator 
goes through a heat exchanger, boiling a fraction of the incoming 
refrigerant and then rejoins the turbine exhaust. The exhaust flow 
is then condensed and subcooled. The multiple component fluid 
also undergoes variable temperature condensation in the con-
denser. Overall, the Kalina cycle offers an efficiency advantage 
as compared to the standard ORC2.

An Euler Turbine was chosen for a Kalina cycle plant in 
Bruchsal, Germany. Based on the design point data (Table 1), the 
shaft power is 610.5 kW and the electrical power is 557.4 kWe 
for a shaft efficiency of 82.4% and electrical efficiency of 75.3%. 
These efficiencies include the energy loss in the control valve. The 
exit vapor quality from the turbine is 96%.

The turbine rotor is made of titanium and weighs 13 lb with a 
10” outer diameter. It spins at 28,000 rpm and is connected to an 

induction generation by a gearbox (Figure 5). The turbine, lube oil 
system, and junction box with cables were assembled on a single 
skid to minimize on-site installation and wiring. The turbine-
generator assembly was tested and synchronized at the Energent 

factory. Figure 5 shows the unit installed at the 
geothermal site. This unit is scheduled for 

startup in July 2009.
Another Kalina cycle application 

is for use in a planned mini-geother-
mal plant in Otari, Japan. This Eu-
ler Turbine will be equipped with 
a high speed generator (56,000 

rpm, 65 kW) supported by magnetic 
bearings in lieu of a gearbox and 
synchronous generator (Figure 6). 
The high speed generator will both 
increase efficiency and allow for 

Table 1. Euler Turbine for Kalina cycle.

Ammonia Content Mass % 92.7
Mass flow kg/s 4.83
Inlet temperature °C 115.3
Inlet pressure bar a 20
Outlet pressure bar a 7.81

Figure 5. Model (top) and Installation (bottom) of the Euler Turbine skid for 
Kalina cycle geothermal power plant.

Figure 6. High-speed Euler Turbine for Kalina cycle application in geothermal power plant.
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speed variation to maximize performance over a large range of 
operating conditions. 

The Euler Turbine can also be incorporated into ORC designs 
in place of a radial inflow turbine. For a waste heat application 
studied, the use of a two-stage Euler wheel in an ORC enabled 
direct drive of a 300 kW, 3,000 rpm induction generator, elimi-
nating the gearbox. The proposed design would incorporate a 
hermetic generator submerged in the refrigerant working fluid. 
This would allow for removal of the dynamic seals that are often 
troublesome.

Variable Phase Turbine
The Variable Phase Turbine (VPT) is comprised of a set of 

individual, fixed nozzles and an axial impulse rotor. The two-phase 
nozzle (Figure 7) is the thermodynamic energy conversion element 
of the VPT. Enthalpy is converted to two-phase kinetic energy in 
a near isentropic expansion. Expanding gas breaks up the liquid 
phase into small droplets. Momentum is transferred from the gas 
to the droplets by pressure and shear forces. The small diameter 
of the droplets results in a close coupling of the gas and liquid, 
producing efficient acceleration of both phases. The inlet to the 
nozzle can be liquid, two-phase, supercritical, or vapor.

Two-phase kinetic energy is efficiently converted to shaft 
power by reversing the direction of the tangential component of 
the flow velocity in an axial impulse turbine. The turbine is de-
signed with a special blade contour to minimize momentum and 
friction losses of the liquid impinging on the surface and flowing 
over the surface (Figure 8). A true impulse turbine with no reac-
tion or pressure drop in the rotor, the runaway speed is limited to 
no more than the two-phase jet velocity and axial thrust on the 
rotor is minimized. Maximum droplet impact velocity for typi-
cal expansion conditions is 300-500 feet per second. No erosion 
results, as the threshold impact velocity for erosion of the titanium 
alloy wheel is in excess of 1,000 feet per second.

The arrangement 
of the VPT (Figure 
9) is similar to a con-
ventional axial im-
pulse turbine. The 
nozzles are inclined 
at a tangential angle 
to the rotor. The two-
phase impulse wheel 
is a blisk—that is, 

an integrally bladed 
rotor—which has low 
stress and incorporates 
a shroud to control the 
location of any stray 
liquid. Liquid leaving 
the rotor separates 
onto the duct walls.

Two-phase nozzle 
efficiency is typically 
between 90% and 
97% and is influenced 
strongly by the sur-
face tension of the 
working fluid and the 
vapor density at the 
condensing pressure. Standard refrigerants that are used in low 
temperature geothermal are ideal in these aspects because of their 
low surface tension and high vapor density.

Rotor efficiency is typically between 78% and 85% and is in-
fluenced strongly by the vapor quality at the exit of the nozzle.

Variable Phase Turbine: Experience

Refrigeration

The two-phase impulse turbine of the type de-
scribed is the only two-phase turbine with extensive 
commercial experience. Two-phase axial impulse 

turbines designed by Energent staff have been in refrigeration 
service for many years. Over 75 units have been installed in 
Carrier commercial chillers. The earliest units have operated 
for 10 years with no required turbine maintenance. One of these 
500 Ton chillers (the 19 XRT model) is shown in Figure 10. In 
this application, the two-phase turbine replaces the two-phase 
expansion valve and generates 15 kW from the flashing refrig-
erant. The result is a 7-8% improvement in the chiller system 
efficiency3.

High Pressure Liquid
Or Two-Phase Flow

High Velocity
Two-Phase Jet

Liquid Film

Two-Phase Jet
From Nozzle

Figure 7. Schematic of two-phase VPT nozzle.

Figure 8. Schematic of 
flow path in two-phase 
VPT blades.

Figure 9. Variable Phase Turbine nozzle and 
rotor arrangement.

Two-Phase Turbine

Figure 10. Carrier 19 XRT chiller with two-phase turbine.
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Figure 11 is a photograph of the two-phase impulse wheel 
and nozzle assembly from a larger refrigeration installation. The 
nozzles are removable inserts. The turbine wheel, to the right, has 
blisk construction.

Figure 11. Two-phase refrigeration nozzle assembly and rotor.

Low Temperature Testing
Figure 12 is a photograph of a Variable Phase Turbine system 

pilot plant. This is the world’s first closed cycle two-phase power 
plant. The VPT shown in the figure has a vertical axis and oper-
ates with flashing refrigerants. Testing with flashing R227ea and 
R245fa refrigerants at the 7 kW level verified the design codes 
utilized for predicting performance. R134a has not yet been tested 
in the pilot plant. Refrigerant temperatures exiting the heater have 
been tested as high as 250 °F (limited by the heater capacity). In 
addition to performance testing, the unit has been operated for 
150 hours to determine whether incipient erosion or cavitation 
would occur. The wheel showed no signs of either erosion or 
cavitation. 

Figure 12. Variable Phase Turbine operating in pilot plant.

Variable Phase Cycle

The Variable Phase cycle (VPC), also called the triangular or 
trilateral cycle, is the ideal thermodynamic cycle for low tempera-

ture sensible heat recovery4. Liquid working fluid is pressurized 
and then heated in the heat exchanger with no vaporization. The 
heated, pressurized liquid leaving the heat exchanger is directly 
expanded in a two-phase expander. The low pressure fluid is 
condensed, closing the cycle.

Consisting of a pump, liquid heat exchanger, turbine, and 
condenser the VPC is a simple system with lower cost elements 
than most ORC systems. A significant advantage of this energy 
conversion system is the heat exchanger. Instead of a heat recovery 
boiler (which has a large separator drum and extensive operating 
and maintenance labor), a counter-current compact liquid heat 
exchanger is used to recover the geothermal energy. The boiling 
“pinch point” restriction is eliminated (Figure 13).

In the scenario shown, the ORC only 
captures 59% of the heat that is extracted 
by the VPC from the resource. This analy-
sis assumed an adiabatic pump efficiency 
of 77%, an adiabatic turbine efficiency of 
85% for the ORC turbine and 80% for the 
VPC turbine, and a gearbox efficiency of 
98% for the ORC. The VPC generated 
35% more net electricity than the ORC.

The lack of an efficient, reliable two-
phase turbine has prevented prior use of 
the VPC. 

Variable Phase Cycle:  
Analytical Comparison to ORC

A study was conducted to com-
pare the VPC to the ORC. The fluid 
chosen for the study was R134a, as its 
low critical temperature (214 °F) and 
widespread use are conducive to its use 
in low temperature geothermal. The 
component efficiencies were selected by 

an independent party familiar with typical ORC performance 
(Table 2, overleaf). VPT efficiencies were calculated for the 
VPC expander model. 

Results are shown in Figures 14a, 14b, and 14c (overleaf) 
for 250 °F, 300 °F, and 350 °F geothermal inlet temperature, 
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respectively. Net electrical power is shown without taking into 
account the parasitic cooling load which will be site dependent 
and identical for an ORC or VPC at a given return temperature. 
Clearly, the power increases at the geothermal return temperature 
is reduced. The VPC is able to produce more power than the ORC 
under almost all conditions and shows strong benefits as the return 
temperature is lowered.

As with all geothermal installations, the minimum return 
temperature—which is dependant on water chemistry—must be 
determined. Novel heat exchanger designs and cleaning tech-
niques have been developed which reduce the minimum return 

temperature and should be considered when designing the plant. 
Also, the availability of direct uses of the warm return water will 
affect the optimum design point.

Variable Phase Turbine: Application  
to the Variable Phase Cycle

Designed for two-phase expansions, the Variable Phase Tur-
bine allows for efficient utilization of the VPC. The VPT is also 
suitable for supercritical versions of the VPC.

Figure 15 is a schematic of the Variable Phase cycle applied 
to geothermal power generation. 

Geothermal fluid enters the heat exchanger where the avail-
able heat energy is transferred into the energy conversion working 
fluid. After heating in the heat exchanger the liquid is flashed in 
two-phase nozzles which are integral parts of the hermetic Vari-
able Phase Turbine assembly. The high momentum, low velocity 
two-phase stream drives the turbine rotor at synchronous speed to 
the generator. This eliminates the need for the expensive gearbox 
required for ORC vapor turbine systems and thereby improves 
reliability and reduces maintenance.

The use of refrigerant working fluids in the VPC enables 
lubrication and cooling of the generator by the working fluid. 
The lube oil system required for ORC systems is eliminated, 
as are seals. The result is a zero emissions hermetic assembly 

Table 2. Component efficiencies and parameters for VPC/ORC study.

Heat Exchanger Pinch Point 10 °F
Heat Input (@ 160 °F return) 100 MMBTU/hr
ORC expander shaft efficiency 82%
VPT nozzle efficiency 92-97% Calculated
VPT rotor efficiency 78-85% Calculated
Pump shaft efficiency 77%
Generator Efficiency 97%
Gearbox Efficiency (ORC) 98%
Recuperator (optional) pinch 60 °F
Pump Motor Efficiency 95%

R134a Performance vs Outlet Fluid Temperature
97% Gen, 98% Gear, 77% Pump, 95% Motor, 80 degF Tcond, 100 MMBTU/hr @ 250F inlet, 160 F outlet
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Figure 14c. VPC vs. ORC for R134a - 350 °F geothermal inlet temperature.

Figure 14b. VPC vs. ORC for R134a - 300 °F geothermal inlet temperature.

Figure 14a. VPC vs. ORC for R134a - 250 °F geothermal inlet temperature.

Figure 15. Variable Phase cycle process flow diagram.
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without the expense and reliability problems of those compo-
nents for an ORC.

The exhaust from the turbine is condensed in a compact con-
denser. Standard refrigerant condensers are used, enabling low 
cost and compact size. The condensate is then pressurized by a 
hermetic pump and circulated through the liquid heat exchanger 
to close the cycle.

The lack of a phase change in the heat exchanger makes the 
VPC stable and simple to control.

Variable Phase Cycle: Application  
to the Commercial Geothermal Market

Figure 16 is a compact waste heat recovery system designed 
under a DOE study for recovery of heat from a brine stream at 
245 °F. The unit was designed to be factory assembled and tested 
followed by shipping to the site and installation on pre-poured 
foundations. 

The cost was determined for a 1 megawatt system. Turnkey 
price for the system, including factory assembly and checkout, 
site work and electrical interconnection was estimated to be 
$1,278,915 or $1,279/kWe. These costs are based upon the first 
article system. The cost can be compared with typical installed 
costs for ORC systems in this size range which are in the range 
$2,300 to $2,500/kW. Costs are reduced due to the elimination of 
the gearbox, lube oil system, seals and the use of a simpler heat 
exchanger. We believe the heat exchanger costs in particular will 
be further reduced via economies of scale.

The VPT has the additional advantage of being able to accom-
modate widely varying power levels for a single given rotor and 
housing design. Because the nozzles inserts are discrete, they can 
be blanked off or changed out for nozzles with different profiles. 
Discrete nozzles allow for variations in resource production 
without bypassing flow or operating at part-load efficiency. The 

range of conditions that can be accomplished with a particular 
turbine and rotor design is thus quite large and a set of modular 
power skids can be developed that are quickly deployable with 
lower cost. Factory assembly and checkout would be performed 
to reduce on-site startup time and costs. 

The VPC utilizing a VPT is simple and stable which are two 
critical factors in achieving a quick, successful start-up of a geo-
thermal power plant. The elimination of the gearbox increases 
efficiency and reliability, reduces complexity and capital cost, 
and eliminates the associated lube-oil subsystem present in typical 
organic Rankine cycle systems. 

The Variable Phase cycle is able to generate more electricity 
from a given geothermal well. Increased electrical production 
decreases all other costs on a per kW basis. Consider a potential 
project where the exploration, drilling and surface plant costs of a 
project were $6,000,000. An organic Rankine cycle may produce 
1500 kWe whereas a Variable Phase cycle could produce 2000 
kWe with the same resource, thus bringing the cost per kW down 

from $4,000/kWe to $3,000/kWe. This cost reduction 
might enable an otherwise economically nonviable 
project.

Summary
Two novel turbines have been developed that 

enable the economic and efficient implementation 
of novel thermodynamic cycles that maximize the 
geothermal resource utilization: the Euler Turbine 
and the Variable Phase Turbine. These turbines 
improve resource utilization through a combination 
of increased system efficiency, increased robustness 
and reliability, reduced maintenance requirements, 
leveraging better $/kW ratios by reducing system 
component count and complexity, and increasing 
the amount of energy that can be extracted from a 
given resource.

Experience in the steam pressure let-down sys-
tems as well as application to the Kalina cycle have 
proven the performance and versatility of the Euler 
Turbine.

Use of the Euler Turbine with the Kalina cycle or 
ORC provides:

Moisture and contaminant resistance with no erosion.•	
Two-dimensional vane and blade profiles, giving stout, •	
strong blades and simple, low-cost construction.
Reduction in operating speed to approximately half that •	
of comparable radial inflow machines, reducing the size 
and losses of a gearbox while also improving rotordy-
namics. 
Multiple stages on a single, compact blisk for high pres-•	
sure ratios.

Based on analytical and experimental test results, the power 
advantages and performance of the Variable Phase cycle have 
been validated.

The advantageous features of the Variable Phase cycle utilizing 
the Variable Phase Turbine are:

Brine Heat Exchanger

Condenser

Variable Phase Turbine

Variable Phase Turbine
Power Plant

Figure 16. VPC 1 MW geothermal power plant with plate-and-frame heat exchangers.
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Efficient conversion of liquid, two-phase, supercritical, •	
or vapor pressure energy.

Increased power recovery from a given geothermal re-•	
source.

Reduced cost by the simplification and elimination of •	
components required in an ORC.

Increased reliability through the elimination of high main-•	
tenance items required by an ORC such as the waste heat 
boiler, gearbox, seals and lube oil system.

A compact, modular design resulting from the use of •	
compact heat exchangers,      enabling factory assembly 
and checkout and reduced installation costs at the site. 
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