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Background and objective
Dynamic flow models are in widespread use for a large variety of oil-gas flow simulations. Two
basic schemes are applied: a mixture formulation with a slip relation and a two fluid formulation.
The two methods shall be compared for the case of flushing of one liquid by another.
The mixture formulation often assumes a relative velocity (slip) due to steady flows. A question
is then on the comparisons of the schemes for transient flows: how fast can the flushing rates be

before the two formulations depart and acceleration effects become significant.

Matlab scripts are available as basis for the work (non-iterative and implicit time integration).
A C++ program is also available, including both a two fluid and a mixture formulation.

The following tasks are to be considered:

1 A short review of the equations for two fluid and mixture models, with applications for
flushing simulations with separated flows

2 Implement numerical solver for drift flux and for two fluid model, for separated flows

3 Test for available oil-water flushing cases from the laboratory, comparing drift flux (steady
state slip relation) and two fluid models

4 Conclusions and recommendations
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Abstract

This thesis aims at modeling the separated liquid-liquid flows with application for flushing. In
the beginning, there will be a short review of the governing equations and the fundamental
concepts used in this thesis. Two models are introduced and developed based on the two PhD
dissertations [15] and [11]. The properties of the fluids in these models are based on Oil,
Exxsol D80, 1, = 1.79[cP] and tapped water, p,, = 1.11[cP]. These models will be numerically
developed for both dynamic and stationary flows. The numerical scheme used for these models
is explicit. A complete explanation about discretization is given in chapter 4.

After developing the dynamic and stationary solutions for both models, there will be two major
case studies. The first one is to understand when the dynamic and stationary solutions depart
from one another as the mixture velocity varies between low velocities to high velocities. It turns
out that The solutions look quite similar until the mixture velocity reaches the value of around
Uy = 1[m/s]. Then the solutions become more and more different especially at the oil front.
The second case study is about keeping the mixture velocity constant and varying the pipe
angle. The pipe angle variation range lies between —2.5° and +5°. For negative inclinations, the
dynamic and stationary solutions agree quite well. However when the positive slope is put to
the test and gravity is acting against the flow, the dynamic and stationary solutions differ more.
Finally there will be a discussion on where this different behavior stems from. The two fluid model
introduced at the beginning of this report is studied closely, term by term. These terms represent
the frictional forces that balance the pressure gradient in the pipe. These forces are plotted for
four different cases with mixture velocities varying from Up; = 0.25[m/s] to Up; = 5[m/s]. These
figures reveal which forces dominate the solution for relatively low and high mixture velocities.
The dominating forces are the ones that balance the pressure gradient. It turns out that the level
gradient is quite significant and a dominant term in almost all cases. However as the mixture
velocity increases, the acceleration terms grow to the same order of magnitude as the level
gradient. But for the most part, the spatial and the temporal acceleration act symmetrically,
and in effect cancel each other out. There will be a thorough discussion about this in the final
chapter.
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Nomenclature

III

Abbreviations
USO Superficial velocity of oil
USW Superficial velocity of water
Symbols
Qp Oil holdup -]
Oty Water holdup [—]
Jé) Reverse density [%]
€ Wall roughness [—]
l Normal vector [—]
ke Dynamic viscosity phase k [Pa.s]
Pm Mixture density [%]
Po Oil density [%]
Puw Water density [%]
Ti Shear stress at the oil-water interface (2]
TWo Wall shear stress on the oil side (23]
TWw Wall shear stress on the water side (23]
® Pipe inclination [rad]
A Pipe’s cross sectional area [m?]
Diameter [m]
Dy, Hydraulic diameter phase k [m]
fi Wall friction factor at the oil-water interface [—]
fo Wall friction factor on the oil side [—]
S Wall friction factor on the water side [—]
Gravitational acceleration (23]
h Line fraction (]
D Pressure (23]
Rey, Reynolds number phase k [—]



Um

Uo

Us

U

Perimeter

time

Mixture velocity

Oil phase velocity
Slip velocity oil/water
Water phase velocity
Momentum slip

Spatial coordinate

v
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1 Introduction

Multiphase flow is everywhere in petroleum industry. From reservoir, transport through pipelines
or tankers all the way to the refineries and to the final products. The better we understand the
nature of these flows, the easier it is to develop accurate prediction models for designing and
operating such systems. This study aims at developing dynamic and stationary simulation models
using separated oil-water flows with application for flushing in horizontal and near horizontal
pipes. Before diving into the details of this work, there will be a brief introduction to the
liquid-liquid flow subject, literature study followed by a short introduction to the fundamentals
concepts and definitions.

1.1 Background

Understanding the fundamentals of multiphase flow dynamics and its properties is essential
to design and operation of the multiphase transport pipelines, for both offshore and onshore
applications. Studying multiphase flow patterns is a rather new subject compared to the classical
fluid mechanics. The systematic research efforts did not appear until around 1950 [12]. Since
1950, the experiments have been conducted in order to understand the complex nature of the
multiphase flows. The produced data is used both to validate the existing models or to develop
new models or correlations. Since of the studies have been conducted on gas-liquid flows, the
amount of experimental data on the two-phase oil-water is rather limited. The existing literature
on oil-water flow takes on flow regime changes, pressure drop and hold-up measurements. Most
of the studies use the averaged properties and the phases are treated as bulk flows. The detailed
flow properties such as velocity profiles are neglected. These studies make the basis for the
different correlations used mostly as closure models in addition to the conservation laws in CFD
simulations. The averaging of the properties however reduces the accuracy of the models. It is
understood that reliable data is a crucial element for a successful prediction model of such flows.
Oil-water flows are in a way more complex compared to the gas-liquid flows. This is due to
lower density and viscosity ratios, which makes a more complex interfacial behavior between the
phases. It is then generally harder to predict flow characteristics such as pressure gradient and
slip. For instance, it is observed that for higher water hold-up values are observed for upwardly
inclined pipes. In downwardly inclined pipes, lower water hold-up values are observed compared
to the horizontal and upwardly inclined pipes [12]

1.1.1 Liquid-liquid flows

Oil-water flows have various flow patterns due to their complex rheological behavior. It is then
more challenging to predict the accurate pressure drop or holdup values according to each flow
pattern. For the mixed flow liquid regime, this problem can get even more complex since emul-
sions can form.
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Figure 1: Classification of oil water flow patterns, from [2]

Another challenging phenomenon with respect to modeling is the phase inversion, which
happens when the dispersed phase switches to the continuous phase. Phase inversion leads to
considerable pressure gradient change, for instance from oil-in-water flow to water-in-oil flow.
There have been some published results indicating that the oil-water mixture viscosity could
increase dramatically at this inversion point, It is highly recommended that the operator should
avoid operating an oil-water pipeline at these flow conditions [2].

1.2 Literature review

More research has been carried out on the two-phase oil-gas flows than oil-water flows, and due
to the different nature of the liquid-liquid flows, the research results are not directly transfer-
able. One reason is the density difference is considerably smaller for oil-water flow, which causes
smaller buoyancy force and a different interfacial dynamics. The flow regime classification has
always been subjective according to each researcher. Different techniques and methods have been
used in literature to determine the flow patterns and their transition boundaries. Oil-water flows
can be generally classified into four main categories

Stratified Flow: Simultaneous flow of two immiscible separate layers. Two continuous phases
need to be present in stratified flow.

Dispersed Flow: One phase flow is continuous while the other phase is dispersed in form of
droplets or bubbles in the continuous medium.

Annular Flow: One phase forms a film around the pipe with a certain thickness while the other



phase flows at the center of the pipe.
Plug Flow: plugs or oil bubbles follow one another above the water phase in the pipe.

1.2.1 Dynamic simulation and CFD models

When developing CFD models for multiphase flows, the conservation of mass and momentum
are solved together with other closure models. Considering the mass balance for each phase,
one mass equation is solved for each phase. To solve the mass equations, the superficial velocity
and the slip is needed. We can find these variables by solving mass and momentum conservation
simultaneously. Wall and interfacial friction models are used to close the system of equations. The
relative velocity between the phases is strongly dependent on the flow regime. In stratified flow
with phases highly separated from one another, the relative velocity is high while the dispersed
flow results in low relative velocities between the phases.

Another way to solve for the relative velocity in oil-water flows is based on pressure gradient and
mixture density [9] The simulation of dynamic one-dimensional multiphase pipe flows in the oil
and gas industry began around 1980 [10] parallel to the rising need of predicting flow properties.
This has led to the birth of OLGA (developed by IFE), the market leader among all commercial
simulators until now [10]. LEDA, another emerging commercial package that has been developed
by SINTEF, has been commercially available since 2010. Another applicable area for multiphase
flow simulations is the nuclear industry, two-phase steam-water. Many codes exist for simulating
these flows, including RAMONA, RELAP and TRAC. These are available through the software
package TRACE [11]. Several of these codes have been used as an inspiration through developing
the multiphase flow codes for the oil and gas industry. However, most nuclear safety codes are
based on the schemes explicit in time, while the oil and gas codes are based on the implicit
schemes, because the nuclear systems are much faster [11].

There exist as well transient one-dimensional codes based on the drift-flux model. TACITE
[14], and Traflow by Shell. Traflow is now replaced by COMPAS which uses the mixture momen-
tum equation of oil, gas and water. The same approach is taken for the energy equation, and the
mass equations for each phase are separately solved. FlowManager pipe simulation is the other
program which uses the drift flux model (one single momentum equation) together with the slip
models to get the relative velocities between each phases [11]

1.3 Objectives

Develop numerical models for liquid-liquid flows with application for flushing. Compare and
analyze the behavior of dynamic and stationary models for different cases of oil-water flushing
in horizontal and near horizontal pipes.

1.4 Fundamental Definitions

This section aims at defining the fundamental concepts or properties fundamental to liquid-liquid
flows. The following concepts are applied in deriving and explaining the dynamic models. Liquid
area fraction: liquid (oil or water) area fraction in the pipe cross section

Ay
= = 1.1
oy (1.1)



The subscript k represents each phase which in this case can be either water or oil. The volumetric
flow of each phase and the volumetric water fraction are

3

Qr [m?] (1.2)
_ Qu
We = oo (1.3)

In oil-water applications, the volumetric water fraction is known as the water-cut. Superficial
velocity of the phase k is defined as the volumetric flow of the phase divided by the pipe cross
section area. This velocity corresponds to the single phase flow velocity of the phase k in the

pipe.

_ @

Usk A

(1.4)
Having defined the superficial velocity, the volumetric water fraction or the water-cut can be
re-written in terms of the superficial velocities.

US’LU

W = v
USO + US’LU

(1.5)
The actual phase velocity is the volumetric flow rate of the phase k per phase area. This definition
gives the in-situ velocity of the phase. The value of phase velocity is different than the superficial
velocity since the volumetric flow rate of the phase is passing through a smaller area than the
pipe’s cross section.

875

The mixture velocity is the sum of the superficial velocities and represents the total volumetric
flux.

Um =Y Us (1.7)

The geometrical relations in stratified flows are reviewed here. They come in handy in calculating
the hydraulic diameter of each phase, and shear stress calculations. According to the figure 2:

S1=D(w—0) (1.8)

Sy = DO (1.9)

S; = Dsin# (1.10)
D

he = 5 (1 —cosb) (1.11)

mag = 60 — 0.5sin 260 (1.12)

Where 6 is called the half angle, and the above formulation is an implicit expression. Biberg has
proposed an explicit approximation where the half angle can be calculated directly from

3\ /* /3 1/3
9:m2+<2> (1205 + 05 - a}”?) (1.13)



Geometry of the stratified flow with smooth interface

ho

Figure 2: Geometry of the stratified flow

When calculating the Reynolds number in a single phase flow, the pipe diameter is used as
a characteristic length. However for stratified flow, a hydraulic diameter is the characteristic
length. In case of a stratified oil-gas flow, the gas flow is normally considered as a closed channel,
and the oil as open channel flow. The same approach is taken for the oil-water flow here.

4AC¥1

Dpp = —2L 1.14

" + 5o ( )
44

Dpo = %‘2 (1.15)
1

2 Incompressible Two-Phase Flow Models

The models developed for CFD programming in this work are based on the PHD dissertations
[15] (Model I) and [11] (Model II). The unknown variables in these models are different, however
in principle, similar results are expected. The results provided in the following sections, prove
this point.

2.1 Model I

The model based on [15], takes the incompressible two fluid model, and after eliminating the
pressure drop, reduces the model to a two parameter problem. This has done by introducing
two variables § and V and implementing them in the combined momentum equation. S is



called the reverse density and V' is the momentum slip. If we have these two variables, along
with a constant mixture velocity, we can solve the two-fluid model. In this chapter, the model
has been derived and explained. We start by writing the mass conservation equations for two
incompressible liquids, namely oil and water.

0 0

a(poao) + 8?(1000‘0“0) =0 (2.1)
0 0
%(pwaw) + %(pwawuw) =0 (2'2)

Since the densities are constant for incompressible fluids, we can cross them out from the equa-
tions (2.1) and (2.2) and then come at two volume conservation equations

0 0

g(ao) + %(aouo) =0 (2.3)
0 0
E(aw) + %(awuw) =0 (2.4)

When we combine the equations (2.3) and (2.4), the temporal derivative drops out because sum
of the volume fractions always equals unity.

gjj(aou,J + Quly) =0 (2.5)

We get the mixture velocity by integrating this equation
Qolly F Qyyllyy = U (t) (2.6)

Considering constant mixture velocity will be the basis of the simulation and solving of the
models. This adds one closure equation (an algebraic equation) to the system of equations we
are trying to solve.

O (potttto) 2 (po0i) + 0o 2L 4 g o5 p I = g, (2.7)
%(pwawuw) + %( wQlis,) + aw% + Pu 0t g s soaa% =q (2.8)
The right hand side of the momentum equations are the friction and gravity terms
o= —TW;;S" - n% — Poltogsin ¢ (2.9)
g2 = —TWZSW + Ti% — Puwlypgsing (2.10)

Taking out the phase fractions from time and space derivatives, and dividing both sides by phase
fractions, we get

0 0 1 2 ap ahf’u} q1
2 o)+ L1, @D, P _ 41 2.11
g1 (Pote) + 5o (5P0ts) + 5+ pogeosp=g = = 7= (2.11)
9 wtin) + 2 (2 pu L Pw _ &2 2.12
g (Pwtiw) + 5 (5 Pwity) + 5= + pug cos p— ~ (2.12)
Then the pressure drop is eliminated by combining equations (2.11) and (2.12).
0 0 P0U2 — pwu2 9o qu
a. oWo — PwWw — (" o — Pw hwzf—i 213
57 (Potio = puttw) + 7--( 5 + (Po = pu)g cos phy) = = — ~= (2.13)



The unknown variables of the flow are the velocities u; and us and the volume fractions «;
and as. We can solve the two-phase model equations by knowing the slip and one of the phase
fractions. Keyfitz introduced two new variables to rewrite the conservation equations [15].
Reverse density:
ﬂ = Pwlo + Poliy (214)
Momentum slip
V = potio — puwlw — (po - pw)um (2'15)
Now we can rewrite the velocities and volume fractions in terms of reverse density and momentum
slip

1%
Up = U + — Ay 2.16
3 (2.16)
%
Uy = Uy, — — 2.17
3 (2.17)
oy = D= Po (2.18)
Pw — Po
ay = D P (2.19)
Po — Pw
\%4
— = Uy — Uy 2.20
3 (2.20)

Substituting these variables into the mass conservation equations, we get the conservation of
reverse density, and substitution of the above variables into the momentum equations gives the
final slip model. Combining the two volume conservation equations (2.3) and (2.4) we get

0 0
E(pwao + poaw) + %(pwaouo + poawuw) =0 (221)
Rewriting the above equation in terms of 5 and V, the conservation of reverse density becomes
9B | Q(K(ﬂ—po)(ﬂ — Pw)
at ax ﬁ (po - pw)
By substituting the phase velocities from equations (2.16) and (2.17)into the momentum slip
balance (2.13), we get the final slip model
8l+j(ﬁﬁ2—popw
ot Oz B2 2(po — pu)

The right hand side of the above equation is the source

+ ) =0 (2.22)

+umV + (po - pw)g COs @hw(ﬁ)) = qv (223)

q1 q2 Two So TWw Sw i Si .
y = & 22 Zo Zw o = — (po — Puw)gs 2.24
a4 ap Qy a, A + a, A oty A (Po = puw)gsing ( )

The final slip velocity is solved once including the spatial and temporal derivatives on the left
hand side of the equation.

oV 9 V2 5% — popu

e ~ \ 55 < m o Fw h = quv 225
5 ax(52 00— ) + Um + (po — pw)g cos phy, (B)) = ¢ (2.25)
Temporal Spatial

Equation (2.24) is also solved at steady-state conditions by setting the temporal and spatial
derivatives equal to zero which gives the algebraic momentum slip equation

TWo SO TWw S’u} Ti Sl

- Do Pw P (5, — po)gsing = 2.2
q %A+aw 1 ool A (Po — puw)gsing =0 (2.26)




2.2 Model II

This model is partially based on [11], because we are only studying the liquid-liquid flows with-
out the presence of the gas phase. The model uses the mixture mass balance and a mixture
momentum equation. The pressure gradient is also eliminated from the equations, and we are
left with two unknown variables in this case are us; and p,,. Considering a constant mixture
velocity and solving for these two variables, we can solve the two-fluid model.

Pm = OQPw + CoPo (2.27)
U = QU + QU (228)
Us = Up — Uy (2.29)

The volume fractions and the phase velocity can be written as a function of us and p,,.

ap = Pw " Pm (2.30)
Pw — Po

Qo = Pm — Po (2.31)
Pw — Po

Uy = Uy, + QU (2.32)

Uy = U, — Opls (2.33)

To get a mixture mass conservation, we combine equations (2.1) and (2.2)
O wpw + Qopo) | O(CwPuliw + Copotio)
+
ot Ox

Rewriting the velocities in terms of the slip velocity and taking into account the above definitions,
we get

=0 (2.34)

Opm 0 _

ot + o (awpw(um — Qols) + opo(Um + awUS)) =0 (2.35)
Opm O _
W + % (pmum - (Pw - po)aoawus) =0 (236>

The volume fractions are functions of mixture velocity according to equations (2.30) and (2.31).
Similarly, the momentum equations for oil and water are combined in order to eliminate the
pressure gradient term and get the momentum slip equation, which is the second equation of the
model.

6(poaouo) 8(p005(711/o2) _ ap ahw . 7-WoSo TiSi

o + o = aoa aopogﬁ cos f — appog sin B " " (2.37)
a(pwawuw) 8(pwawuu)Q) _ 8]9 ahw . 7-Wwa TiSi

ot T an T Cwgy Cwhudy, cosBmaupugsinfm 4T (2:38)

We can re-write the acceleration terms in the momentum equations to take out the void fractions
from the temporal and spatial derivatives in the following steps

A(potiotiy)  O(pototin?)  0(poto) Ou, A(pototiy) ou,
ot T on W gp TPy TleT g Thetelen =
0(pots)  O(potrotiy) Ou, ou, Opoto (Q)%
o oo, ool = (o 2.
(50 + TG Yo ot 5t potrouo 2 = (T + =520 (2.39)

=0 (continuity)



The same procedure applies to the water momentum equation. We substitute the new accel-
eration terms and divide the momentum equations (2.37) and (2.38) by the void fractions, we
get

Opolo 3% Op Ohy, TwoSo  TiSi
= M s B pagsin - - 2.4
ot Ox or Pog ox €08 f§ = pog sin QoA QoA (2.40)
Opuwitly O p“’;i Op Ohy . TWwSw | TiSi
_ o _ pugsin § — TWwdw 2.41
ot " on gr ~ Pwdgy oSBT pegsinf——PEE Ao (24D

We eliminate the pressure gradient to get the momentum slip model including the transient terms

I(Pwtw — Potio) T aé(pwufu - pO’u’(Q)) N

ot ox -
ahw . TWOSO TWwa TiSi
— (P — po)g—2 — (P — Po — 2.42
(pw = Po)g == €08 f = (pu — po)gsin f + oA o d T aaid (2.42)

We would like to have a system of equations with two unknowns, namely the slip velocity us and
the mixture density p,,. So we write the phase velocities as functions of the mixture and slip
velocities as we derived in equations (2.32) and (2.33). We start by manipulating the temporal
derivative in the slip momentum

0 0
&(pwuw - pouo) - a ((pw - po) Um — (aopw + awpo) us)
0
- a (pm - (pw + po)) Us (243)

The time derivative of the term (p, — po)um is zero, because the mixture velocity is considered
constant in each case, and the densities are constant as well. The same procedure for the spatial
derivative

o1 01
%i(pwu?u - poug) = %5 (pw(um - aOuS)Q - po(um + aOus)Q)
0 u?, u?
= ((pw = po) 5t + (Pwad = Poayy) 5 = (Pt + potiu) usum>
o u?
~ oz ((pwag — Potsy) 36 — (Puo + pocrw) “s“m) (244)

2
The convective term (p., — po) 2 is constant with respect to z, so its derivative is zero. If we put
the expressions from equations (2.43) and (2.44)back into the momentum slip equation (2.42),
we get

0 0 u?
ot (Pm = (pw + po)) us + o ((,Ow()ég - Poa?u) o (Pwto + Potw) Ustim + (Puw — Po)ghu COSﬂ)

o TW oS0 _ TWwSw 7; S
a,A A Qo0 A

= (Pw — po)gsin B (2.45)
Where the shear stress at the interface is calculated as a function of slip velocity and oil friction

factor
TiSi o fowpoSi U2
QoA 8a,ay, A *
If we eliminate the temporal and spatial derivatives, we get the relative velocity us from the
famous holdup equation.

(2.46)

TWOSO TWw Sw
oA A

Bty A Ohy, :
ui = m (pw — Po)g e cos 3 + (pw — Po)gsin B —

(2.47)



2.3 Closure Models

Closure models regarding the friction factors apply to both models. Therefore, they are presented
here in one section. Wall and interface friction factors in the shear stress terms need to be
determined in order to close and solve the system of equations. The shear stress terms at the
wall and the interface are:

1
TWo = gpofo|uo‘uo (248)
1
TWw = gpwfw|uw|uw (249)
1
T = gpofiluo - uwl(uo - Uw) (250)

Where fi is the friction factor of the phase k and f; is the shear stress at the interface. Differ-
ent correlations have been proposed for friction factors. For laminar flows, the wall friction is
approximated as:

64
aminar — 2.51
. Rer (2.51)

The constant 64 for laminar flows is analytically obtained for flows in pipes with circular cross
sections. In stratified flow geometries, especially heavy oil simulations, laminar flow plays an
important role. However, the cross section of the oil phase is no longer circular. This might be
a source of significant error for such flows [11]. For fully turbulent flows, we use the Haaland’s
correlation, which is an explicit estimation of the Colbrook’s formula

1 6.9 e 111
———— = —1.8log(=— + 2.59
NS 8(Re, T 370) ) (2.52)

To have a smooth and continuous transition between from laminar to turbulent flow, the friction
factor for each phase is implemented in the codes similar the pseudo-code below:

if Rep < 300 — fk: = fk,laminar
else fk = max(fk,laminarv fk,turbulent)

This way, we have determined the oil and water friction factors. Russel has shown that if we
assume flat interface, the friction factor at the interface becomes

fi=Tfo (2.53)
The Reynolds number
D
Rep = PrUk Dk (2.54)
Pk

Where Dy, k is the hydraulic diameter for each liquid phase. For stratified oil-water flow, the oil
phase is modeled as closed channel and the water phase as open channel.

4Aa,
D, = 2.
T8 (25
4 A,
D = =g (2.56)
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3 Summary of The Two-Fluid Incompressible Models

3.1 Modell

Conservation of mass

K (B B po)(ﬁ B pw)
B (Po = Puw)

op 0
9t ox
Conservation of momentum
81+Q(E62—popw
ot " 9z B 2ps — pu)

( + U B) =0

+ umV 4 (po — pw)g cos phy(B)) = qu

q :TWO§+WJ&_L§_( ~ pw)gsin
v o A oy A oty A Po = Pw)g S P

Definitions and expressions

B = Pw&o + Pollyw
V= Polo — PwlUw — (po - pw)um

\%4
Up = Um + an
Ugy = Uy — Ka
w m B o
oy = B = po
Pw — Po
B = pw
w =
Po = Pw
v
=
3.1.1 Solution Strategy
impose. | Conservation of mass 1] N Qo Oy
" Conservation of Momentum 14 Uo Uy

11
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3.2 Model II

Conservation of mass

0 0
% + 87(1/' (pmu’m - (pw - po)aoawus) =0 (311)
Conservation of momentum
0 0 9 g U
2= (Pm — (pw + po)) s + == (pwao - Poaw) = = (Pwo + Poiw) Ustim + (Puw — Po)ghuw cos 3
ot ox 2
TWOSO TWwa TiSi .
= a A - a A .o A - (pw - pO)gSlnﬁ (312)
Definitions and expressions
Pm = QP + Copo (3.13)
Upy, = Ol + Qplly (3.14)
Up = Uy, + Oy Us (3.15)
Uy = Uy, — Oplls (3.16)
Qp = Pw — Pm (3.17)
Pw — Po
= 2" Po (3.18)
Pw — Po
Us = Up — Uy (3.19)
3.2.1 Solution Strategy
impose | Conservationof mass Pm ay O
Um ) = =
Conservation of Momentum Usg Uo Uy

12



4 Discretization and numerical solution

4.1 general numerical solution

By solving the derived models numerically, we will be able to find out their different behavior, and
which terms in those equations are dominating the solution. This is followed by implementing an
explicit scheme with both upwind and central discretization. The upwind scheme uses the biased
differencing based on the direction of the characteristic velocity, in this case the mixture velocity,
which is assumed positive to the right. First, a general numerical solution will be introduced
and since both models are of the same structure, and then this methodology is applied to both
models.

4.1.1 Grid

The pipe is divided by control volumes in a one dimensional uniform grid. Control volumes are
separated by the boundaries. The first cell (j = 1) and the last cell (j = imaz + 2) are virtual
cells and are reserved for boundary conditions. The first cell’s index is chosen to be 1 to be
consistent with programming in Matlab. Considering the inlet of the pipe as x = 0 and the first
actual cell inside the pipe as j = 2, the coordinates of the cell center (x;) and cell faces (x;1/2)
will be

z;=(j—1.5)Az (4.1)
Tiy12 = — 1Az (4.2)

The grid in time is also assumed uniform. The new time step is calculated from the old time
step in the following manner

byt = tn + At (4.3)

4.1.2 Discretization

The derived conservation equations in the previous sections have the general form

ou 0
U of

5 T Q (4.4)

We integrate the conservation equation within each control volume

ou af
—d —dV = d 4.
/ e V+ / E \% / QdAV (4.5)
v % 1%
First, we start integrating the above equation in space. Using Green’s theorem
0 N
e UdV + ¢ fadS = | QdV (4.6)
% s 1%

The first integral on the left hand side, and the source term integral on the right hand side are
evaluated by taking the average cell value at the cell center

~

L (080) 1 (120 + Fyajol—) = Q0 (@7)
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oU; . fiv1i2 = fi—1/2
ot Az
The advantage of using the finite volume method is that it is automatically conservative, as the

outgoing flux of the one cell is the same as the ingoing flux of the adjacent cell. Evaluating the
time derivative using Euler forward for both sources and fluxes

=Q; (4.8)

n+1 n n n
Uit - uj Ll =i
At Az

This gives at the end an Euler forward, fully explicit scheme. This discretization will be applied
to both models in the following sections.

Q7 (4.9)

4.1.3 Boundary condition

As explained earlier the first and the last cells are reserved for boundary conditions. However
since the last cell is to the right of the pipe’s outlet, the values assigned to this cell center
are based on linear extrapolation instead of just assigning zero in order to avoid sharp and
unrealistic changes in gradients. If we assume a conservative variable U; at the last cell inside
the pipe (j = imax + 1), the value assigned to the ghost-cell outside the pipe outlet becomes

Ui max +2 — 2Uz max +1 — Uz max (410)

4.2 Discretizing model I

We start by discretizing the conservation of mass equation (2.22) using the upwind finite differ-
ence scheme.

(4.11)

% E V(ﬁ_po)(ﬁ_pw)>:
8t+3x(6 (0o — pu) !
fa

In the above equation the whole spatial derivative term is called fg to be concise. In applying
the upwind scheme, all of the terms in the spatial derivative (8 and V') are evaluated using data
points 7 and j — 1 over a fixed grid distance of Ax.

n+1 n n _fn
At Az '

Where f3 at node j is evaluated at the old time step as the following

25 (B;:_% - PO)(ﬂ;:_% — Puw)

faie1 =75 (4.13)
B.i+3% 7 (Po — pu)
Where 3, 1 is calculated at the face of the cells
1
Biry = 585 + Biv1) (4.14)

Using the central discretization for the reversed density § is recommended, because it makes the
scheme stable. This is found from trial-and-error in this work, and there is also a direct reference

14



to this issue in [15]. Taking the density data from upstream and downstream avoids overfilling
the cells numerically when transition from one phase to two-phase flow happens. Therefore, the
new [ (reverse density) at the new time step is calculated from the following algebraic equation.

At
n+1l _ pn n n
Bt =6+, (fmfé - fﬁu#%) (4.15)
We move on to discretize the momentum equation (2.23) according to the same scheme

ov 0 <V2 /82 — PoPw

o, 9 " PoPw 4y, = pu)g cos oh | = @ 41
ot o \ T2 T V+(p p)gcowh> q (4.16)

n4+1 n n _fn
VP Faes ~ =q (4.17)
At Az Y '

Where the momentum flux, fy; ; is defined as

2
2 n
vnr ﬂ'+1/2 — PoPw
f$’j+% = ( (nj ) . ( J2(p0)_ ™ + U, (an) + (po — pw)g cos ¢h$7j+1/2 (4.18)
j+1/2>

The momentum flux consists of three terms. The first term ‘B/—;% which is interpreted as
transport due to mixture velocity. It plays an important role in transition from one-phase to two-
phase flow. The discretization of this term should be in a way that allows a smooth transition in
each cell filled with one phase to two phases. Wrong discretization will lead to overfilling the cell
with the same phase and negative phase fraction with the other cell, which result in exploding
the numerical scheme. Trial and error on different solutions has shown that the mixture density
(the reveres density) gives the stable solution when defined on the cell faces.

The level gradient also needs information from the upstream and downstream of the cell. So a

central discretization is also considered here
1
hajr1/2 = §(h$,j+1 + P ;) (4.19)

We get the new V' (momentum slip) form the following algebraic equation

fn i1 iy 1
‘/;n+1 _ V-]n +At( V,j 2A$ V,J+2 +qv (420)

This dynamic model calculates the new V' as a function of old values of 5 and V'
Vil =v (8", V") (4.21)

By solving the two algebraic equations (4.15) and (4.20), we can solve for § and V over the
whole grid by using the initial and boundary conditions. The first node on the grid is a ghost
point and is dedicated to the boundary condition at all the time steps. We determine also the
initial condition for all the nodes at ¢t = 0. The time step used further in this work is in most
cases dt = 0.005[s] and for high mixture velocities dt = 0.001[s]. Any bigger time step resulted
in numerical instability of the scheme. A more thorough discussion is followed in section 5.4
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4.3 Model I-steady state discretization

In the previous part we have used the momentum equation (2.23) to calculate V' and therefore
calculate the slip velocity. If we decide to neglect the acceleration terms in the momentum
equation, we get the steady state slip relation. Using the same discretization method for the
mass equation, the new [ is used in the steady state holdup equation to calculate the V at
the new time step. To sum up, we are solving one simple algebraic equation and one nonlinear
equation

At
n+l _ o n
By =87 + - (f5-1— f5) (4.22)
TWo So TWw Sw Ti Si . 8hw
" o, A, A 7~ (o~ — (Po = Puw)g—— 42
0 a, A, + oy Ay Qpuy Aj (po pw)gsmap (Po — puw)g oz cos ¢ ( 3)

We use the new ( in the equation (4.23) to calculate the new corresponding V. In other words
at each time step the variable V' is the function of £

V=Vv(p") (4.24)
At the end the effect of the dynamic and steady state slip relations on the final solution are

compared.

4.4 Discretizing model II

First the mass conservation equation (3.11) is discretized according to numerical solution ex-
plained at the beginning.

pm 0
gt + O (Pmum - (pw - Po)aoawus) =0 (4.25)
pz“jjl — pzw’ + f:,j+1/2 - f:,j71/2 —0 (4.26)
At Az :
f:,j+1/2 = Pom,jtm — (Pw — Po)ag,j+1/2az,j+1/zug,j (4.27)
n At
pmJ,rjl = P:iw' + Ax ( ;L,j—l/Q - fp",jﬂ/g) (4.28)

Fluxes at the face cells are defined as a function of average mixture density on the face cells and
the slip velocity at the cell centers. The concept of average density at the face cells is hidden
in the variables: void fractions, which are functions of the average density. This is (similar to
the first model) due to avoiding the negative phase fractions in the cells when transition from
one-phase to two-phase flow takes place.

Pw — P:’ﬁ,jﬂ/z

Ao jt1/2 = o — (4.29)
Pom, j+1/2 ~ Po
U jrjz = ) 4.30
A H1/2 Pw — Po ( )
n 1, ., n
Pm j+1/2 = Q(pm,j-&-l + Pm.j) (4.31)
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Now the momentum equation (3.12) is accordingly discretized

(Pﬁ;}l — (pw — Po)) UZT - (Pﬁl,j — (pw — Po)) U?,j I f;l,j+1/2 - fg,j71/2 .

) 4.32
At Ax 1 (4.32)
Where g5 is the abbreviation of the source term
TWOSO TWwa TiSi .
. = - — (pw — Po 4.33
9 =" oA aald (pw — po)gsing (4.33)

Moreover, the momentum flux at the cell faces consists of two terms related to mixture slip and
one term related to level gradient. Also in the momentum flux, the mixture density is calculated
at the cell face as an average value of the two adjacent cell centers.

u2

g2 = (pwai,j+1/2 - poaidfl/g) ?S — (Pwo,j+1/2 + Poltu j+1/2) Umls,j (4.34)
+(Po = Pw)Ghuw, j4+1/2 COS @ (4.35)

Finally, the slip velocity is calculated from the equation below, which is an algebraic equation.
The value of the mixture density at the new time step is calculated first from the conservation
of mass equation and then substituted in this equation

1 fizip = o j+1/2
utt = (p% = (Pw = po) u?-+At< w2 T +qs>) (4.36)
VT )\ s Ar

4.5 Model II-steady state discretization

For deriving the steady-state model, we simplify the equations by neglecting the acceleration
terms, which leaves us with the following system of equations

l)m-zl = Pmjt A ( pi—1/2 — fp7j+1/2) (4.37)
TwoSo TwwSw TiSi . Ohy
- - = (pw — = (pw — 4.
0 a,A A + QoA (Pw = po)gsing — (pw = po)g or CO8% (4.38)
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5 Validating the model and sensitivity analysis

After implementing the models numerically in Matlab, several cases have been chosen to compare
the dynamic solution with the stationary solution. We can change many parameters and conduct
this study. We have chosen horizontal pipe with varying mixture velocity for the first case study.
The second case study is about to keep the mixture velocity constant and the pipe angle changes.
If the dynamic and stationary solutions are indeed different, we are able to see these differences
in these cases, and predict under which circumstances these differences become significant.

5.1 Sensitivity analysis on mixture velocity for horizontal pipes
5.1.1 Model I

The sensitivity analysis carried out on the model I for horizontal pipe, starts from low to high
mixture velocities. The first two plots belong to the dynamic model only and depict how the
changes in the mixture velocity affect the rate of flushing and the relation between water holdup
and the watercut. The acceleration is expected not to be considerable factor for low mixture
velocity. The dominating term in the momentum equation for low mixture velocities turns out to
be the level gradient. As the mixture velocity increases, the acceleration terms begin to become
more and more significant to the same order of magnitude as the level gradient.

Horizontal pipe

Uy = 0.25 [m/s]

-_—-— Ui\[ =0.5 [m/@]
_— UE\[ =1 [m/s]
Uy =5 [m/s]

0.8f

0.7F

0.5

Water holdup [-]

0.3F

0.2

0.1F

0 50 100 150
Time [s]

Figure 3: Effect of different mixture velocities on the flushing rate of water with oil in the
dynamic model
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Horizontal pipe
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0.1p Uy =1 [m/s|
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0 0.2 0.4 0.6 0.8 1

Watercut [-]

Figure 4: Relation between water holdup and the watercut as a function of mixture velocity in
a horizontal pipe

The rest of the figures illustrate oil and water holdup, of both dynamic and stationary solu-
tions, changing with time as the mixture velocity is increasing. The dynamic and the stationary
solutions show good agreement at low mixture velocities, almost identical. However, with in-
creasing the velocity, the solutions start to deviate more. The dynamic solutions shows a sharper
oil holdup changes as opposed to the stationary solution. Two important points should men-
tioned as the main factors that cause this difference.

The acceleration is expected not to be considerable factor for low mixture velocity. The dominat-
ing term in the momentum equation for low mixture velocities turns out to be the level gradient.
To sum up

o The acceleration terms in the dynamic model are not significant for low mixture velocities.
The dominating term in the momentum equation for low mixture velocities is the level
gradient. This will be discussed in more details in chapter 6.

e As the mixture velocity increases the acceleration terms begin to become more and more
significant to the same order of magnitude as the level gradient.
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Horizontal pipe
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Figure 5: Oil and water holdups at the pipe outlet for Uy, < 1
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Figure 6: Oil and water superficial velocities at the pipe outlet for Uy < 1
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Horizontal pipe
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Figure 7: Oil and water holdups at the pipe outlet for Uy; > 1
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Figure 8: Oil and water superficial velocities at the pipe outlet for Uy < 1
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5.1.2 Model 11

The same sensitivity analysis is carried on model II for horizontal pipes. In principle, it is
expected that the two models should give the same result. We get a confirmation on this
throughout this section. Similar to the previous section, the analysis moves from the low mixture
velocities to high velocities, and the results are compared with each other. The same main two
points also apply for this model.

e The acceleration terms in the dynamic model are not significant for low mixture velocities.
The dominating term in the momentum equation for low mixture velocities turns out to
be the level gradient. This will be discussed in more details in chapter 6.

e As the mixture velocity increases the acceleration terms begin to become more and more
significant to the same order of magnitude as the level gradient.

These two models have shown similar behavior so far, as expected.

Horizontal pipe
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Figure 9: Oil and water holdups at the pipe outlet for Uy, < 1
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Figure 10: Oil and water superficial velocities at the pipe outlet for Uy,
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Figure 11: Oil and water holdups at the pipe outlet for Uy, > 1
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Horizontal pipe
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Figure 12: Oil and water superficial velocities at the pipe outlet for Uy, > 1
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Figure 13: Effect of different mixture velocities on the flushing rate of water with oil in the
dynamic model
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Horizontal pipe
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Figure 14: Relation between water holdup and the watercut as a function of mixture velocity in
a horizontal pipe

The results for both models confirm that the dynamic models introduce a sharper oil front
compared to the holdup equation. This becomes more important when the mixture velocity
increases.

5.2 Sensitivity analysis on pipe angle

The second case study looks at the differences between the dynamic and stationary solutions
that rise due the change of pipe angle. When the pipe is not horizontal anymore, the gravity
starts act on flow. Gravity influences the rate at which flushing occurs. The mixture velocity for
all the cases is set to be Uy; = 0.5[m/s] and the angle changes from +5 to -5 degrees.

5.2.1 Model I

In this section Model I is put to test by varying the inclination from 5 to -5 degrees. The
following plots confirm that the difference for positive inclinations are considerable. For negative
inclinations, the solutions are almost identical.

It should be noted that all the plots are drawn in a way, that the upper part of the plot illustrates
the oil holdup at the beginning of the pipe at = 1[m] and the lower plot shows the oil holdup
at pipe’s outlet at z = 16[m].
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Figure 15: Oil holdup at the inlet/outlet of a 5° inclined pipe

+5 degrees inclination seems to be an extreme case where the dynamic model fails to flush
out the water completely in the period that the steady state model does. This is probably a
limitation for the dynamic model at this angle that cannot flush the water completely. When
the angle is increased positively, the dynamic and holdup solutions deviate from one another at
the points where the oil front hits the water.
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Figure 16: Oil holdup at the inlet/outlet of a 2.5° inclined pipe
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Figure 17: Oil holdup at the inlet/outlet of a 1° inclined pipe
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Figure 19: Pipe inclination effect on the oil holdup for Uy; = 0.5, the dynamic model
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The reason that the continuous red line has not been drawn all the way to the point zero, is
that the dynamic model, has not managed to flush out the water completely.
If we look at the dynamic model again

vV 9 VB = popu

- + = —_— m — hw = .1
ot + 51‘(52 2(po — pu) + umV + (po — pw)g cos phy (8)) = o (5.1)

q1 q2 TWo So TWw Sw Ti Sz .
= = —_— = — — (Po — pw .2
4 QO a, A, + w Au ooy, Aj; (Po = pu)gsing (5.2)

and the holdup equation

TWo é TWw Sw Ti Sz

o A T aw A aan A, (Po = puw)gsing =0 (5.3)

,it is noteworthy to mention that the gravity term appears in both models. So the reason that
still these two solutions are not the same, is that the acceleration terms (forces) need to come
in balance with all the forces in the right hand side of the equation including the gravity terms.
The main reason is still lies in the acceleration terms, which in this case are affected by gravity
as well.

5.2.2 Model II

As in the previous sections, the very similar case study is repeated for the second models. So
far, the models have shown great agreement in behavior, and the following figures are also in
accordance with the latter conclusion.
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Figure 21: Oil holdup at the inlet/outlet of a 1° inclined pipe
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30



Oil Holdup at pipe inlet [-]

0.2 ¢ = +5° Dynamic slip model
— — = = +5°Holdup equation
0 . . .
0 50 100 150 200
Time [s]
< 1
5
08 @ ee————————=====
2
g
5 061 (7 b
= L J
e 0.4
= J
%} 0.2r ¢ = +5° Dynamic slip mdel g
j=ni | — — = = +5°Holdup equation
— 0 : : : : : : :
© 0 50 100 150 200 250 300 350 400

Time (s

Figure 23: Oil holdup at the inlet/outlet of a 5° inclined pipe

UM = 05[m/s]

= 1 T r r T
ey (d
RS r
2 0.8F [ |
& 4
‘s 0.6 )
=
a 041 E
=
= ] Co
S 0.2r ¢ = —1°Dynamic slip model
E‘ ! — — = = —1°Holdup equation
3 o . . . .

0 10 20 30 40 50

Time [s]

[y

o
©
T

o
o
T

Oil Holdup at pipe outlet [-]
o
S

0.2t » = —1°Dynamic slip model
- — — ¢ = —1°Holdup equation
0 . s s s
0 20 40 60 80 100
Time s

Figure 24: Oil holdup at the inlet/outlet of a —1° inclined pipe

31



UM = 0.5[77’1/8]

- 1 T T T
T
= 0.8 g
g
‘A 0.6 )
=
a 041 i
<
S 0.2f ¢ = —5° Dynamic slip model
E — — = ¢ = —5°Holdup equation
5 0 \ \ \ \
0 10 20 30 40 50
Time [s]
< 1 : :
ke
Z 0.8t g
5
2 o6l i
5 0.6
o 0.4
%} 0.2 ¢ = —5° Dynamic slip model
= — — —p = —=5°Holdup equation
= 0 n L I I
© 7o 20 40 60 80 100
Time (s

Figure 25: Oil holdup at the inlet/outlet of a —5° inclined pipe
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Figure 26: Pipe inclination effect on the oil holdup for Uy, = 0.5
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5.3 Model Limitations

The limitation of both models I and II lies in the source terms. There is a mathematical singu-
larity at any phase fraction equal to zero, which means either oil, or water. If we look at the
source term

o TWo So TWw Sw Ti Sz

= Ao ay Ay agag A, Po T Puwlasing

,it is obvious that neither a,, nor a,, can be absolute zero because they appear in the denominators
in the source term. So the volume fractions for the case of one phase flow should be artificially
set to zero, which means an « with order of magnitude 10~ 3 or less. Moreover, when a cell starts
to fill with a second phase and is at a transition point between one phase to two-phase flow, the
very small values of a’s at the denominators may cause the friction forces to grow nonphysically.
The example below shows these forces in case of Up; = 1[m/s], 2 meters from the pipe inlet.
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Figure 27: Oil wall shear stress changes compared to water and interface shear stress

The figures above show how the shear stress changes with respect to oil holdup changes.

5.4 Grid sensitivity in space and time

The grid study determines when the numerical solution converges as we increase the number of
cells. This study has been done with the mixture velocity of Uys = 0.5[m/s], and the results
are taken at the pipe’s outlet. From the figure below, it is obvious that the answer has already
converged for 320 cells, and the answer is almost identical to 1600 cell’s solution. Therefore, we
have chosen 320 cells as the basis for the simulations.
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Solution at 90 seconds
Number of cells | 1600 160 32 16
, 0.9963 | 0.9951 0.9869 0.9789
Relative error - 0.001204 | 0.009435 | 0.017465

The number of cells used for this case study is 320 cells, which was just discussed in the grid
study. The largest time step used here is dt = 0.005. The time step used for high mixture
velocity was reduced to dt = 0.001 with trial-and-error to overcome the instability of the scheme
at high mixture velocities. Any bigger time step made the scheme unstable. The answer is well
converged for all the time steps as shown figure 30
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Figure 30: Grid sensitivity in time
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6 Discussion

6.1 Comparison the magnitude of the terms in the momentum equa-
tions for oil and water

Due to the minor difference between the dynamic model and the holdup equations in some
cases, it is important to have a closer look at each term in the governing equations to see which
one dominates the solution. The discussion begins with equation (2.12). The two momentum
equations show the balance between the pressure drop in each layer and the rest of forces. Two
points have been chosen, one at the pipe inlet (at 2 = 1[m]) and the other one at the pipe outlet
(x = 16[m]). Rearranging the equation (2.12), we can gather pressure force on the left side, and
all the other forces on the right hand side of the equation. The result becomes

19} 1o} o1 Ohy
Ol()% =q1 — ao&(pouo) + O‘o%(i/}oug) — PoQog O COSﬂ (61)
ap o 8 3 ]. 2 8hw
Qg =62~ twg (Putin) + Qwp (5 putty) = putwg—5 = cos (6.2)
Where the source terms are
_ Twodo  TiSi
o= + 1 (6.3)
TWwSw | TiSi
_ 4

The right hand side of both equations include wall shear stress, shear stress at the interface,
temporal and spatial derivatives and the level gradient. The sum of the forces on the left hand
side balances the pressure force on the left hand side. This comparison case includes f cases
with different mixture velocities. In each case, the first plot illustrates the pressure forces on
oil and water layer, which is the left hand side of the momentum equation. The next two plots
include the other forces balancing the pressure forces that is the left hand side of the momentum
equations. Having plotted all these forces together, we can see which ones have a greater order
of magnitude and therefore, dominate the solution.
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6.1.1 CaseI: Uy =0.25

Plotting the left hand side of the momentum equations
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Figure 31: Pressure forces for oil and water layers, at © = 16[m], Uy = 0.25

Plotting all the terms on the right hand side of the momentum equations

_ TwoSo  TiSi 0 a.,1 Ohuy
= A A aoa(pouo) + ao%(?ﬁouo) poaogaix cos 3
_ Twwdw | TiSi 0 9.1 Ohuy
= - A A — Oy ot (pwuw) + Q 3x(2pwuw) PwCywg Oz COSB
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Uy = 0.25[m/s]

IS
o
=}

d1l, .2
Qo7 5PoUy

I aoipouo
puaogcos(go)% il
— 77”"0/(5014)

w

=}

=)
T

N}

o

S
T

Oil forces, inlet[N/m?|

100/\ - -—n/(54) ]
Opeies = = = = — — _ = AN
| | | | | | | | |
0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1
Oil holdup [-]

— 500 T T
& — Al 2
é\ 400 - w (fif 5 Pwlly, b
= 300 — Qy g Puwluw -
< dhy
S 200 —— PuCugcos(p) dr
£ 100 —— —Tww/(SwA)
=
£ o
5
£ -1001 1
3
5 7200 L L L L L L L L L

0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1

Oil holdup [-]

Figure 32: Oil momentum equation terms (top figure) and water (bottom figure), at = 1[m]
with Uy = 0.25
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Figure 33: Oil momentum equation terms (top figure) and water (bottom figure), at x = 16[m)]
with Uy = 0.25
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6.1.2 CaseIl: U; =0.5

Plotting the left hand side of the momentum equations
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Figure 34: Pressure forces for oil and water layers, at « = 16[m], Up; = 0.5

Plotting all the terms on the right hand side of the momentum equations
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Uy = 0.5[m/s]
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Figure 35: Oil momentum equation terms (top figure) and water (bottom figure), at = 1[m]
with Uy = 0.5
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Figure 36: Oil momentum equation terms (top figure) and water (bottom figure), at x = 16[m)]
with Uy = 0.5

For low mixture velocity it is obvious that the dominating term when the oil front hits
the water, is the level gradient in both momentum equations, namely poaogcos(w)% and
pwawgcos(go)cg‘—zw. The spatial acceleration (convective acceleration) and the temporal (local)
acceleration are relatively small and they become zero after the oil front hits the water. The
shear stress on the water layer at the pipe inlet is increasing non-physically after the oil fills the
pipe. This is due to the limitation of the model, where we can never have absolute zero holdup.

Therefore, the remaining amount of water would be almost nothing (order of magnitude le-3).
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Therefore, this increasing force belongs to a non-existing water layer and should be neglected.

6.1.3 Case IIl: Uy =1

Plotting the left hand side of the momentum equations
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Figure 37: Pressure forces for oil and water layers, at = 16[m], Upr =

Plotting all the terms on the right hand side of the momentum equations
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Uy = 1[m/s]
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Figure 38: Oil momentum equation terms (top figure) and water (bottom figure), at = 1[m]
with Uy =1
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Figure 39: Oil momentum equation terms (top figure) and water (bottom figure), at x = 16[m)]

As the velocity of the mixture has increased considerably, the level gradient, no longer plays
an important role in the two momentum equations, however in this case the temporal and spatial
derivatives dominate the solution. Later on when the pipe is almost filled with oil, it is only the
shear stress that remains to balance pressure gradient in the momentum equation.
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6.1.4 CaselV:Uy =5

Plotting the left hand side of the momentum equations
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Figure 40: Pressure forces for oil and water layers, at « = 16[m], Ups =5

Plotting all the terms on the right hand side of the momentum equations
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Figure 41: Oil momentum equation terms (top figure) and water (bottom figure), at = 1[m]
with Uy =5
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Figure 42: Oil momentum equation terms (top figure) and water (bottom figure), at @ = 16[m]
with UM =5

With increasing the mixture velocity even more, the effect of level gradient becomes no-
ticeably smaller than the acceleration terms. However, the acceleration terms act more or less
symmetrically around the x-axis. Therefore, in effect it is still important to pay attention to the
level gradient term. The resultant of all these forces will balance the pressure gradient.
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7 Conclusion

Two fluid models have been developed with application for oil-water flushing. The properties
of the fluids have been chosen based on Oil, Exxsol D80, p, = 1.79[cP] and tapped water,
ty = 1.11 [¢P]. The dynamic behavior of the models have been studied and compared with the
stationary model. Regarding the dynamic models:

e Models I and IT proved to be quite similar and have almost identical results according to
the sensitivity analysis. Therefore, the results discussed here, apply to both models.

e For both the dynamic and stationary model, the oil front gets steeper as the mixture
velocity increases.

e Considering the oil holdup diagrams, the oil front approximately the same along the pipe.

e There is a diffusion problem that needs to be addressed. The bigger the steps (dx) become,
the answer (oil/water holdup curve), looks more spread out throughout the cell length that
is the solution domain. The oil fronts are rather sharp where they hit the water, so if we
do not choose a cell length small enough according to the grid study, the answer would
look more diffused than in reality.

e The models developed in this work, have two singular points, at mathematically absolute
one phase flow, either oil (a, = 0) or water(a,, = 0). So transition from one-phase to
two-phase flows should be implemented carefully with small time steps. The absent of a
phase is modeled numerically by such a low phase fraction as a = 0.001 or less.

Regarding the different behavior of the dynamic and the stationary models:

e The flushing cases for low velocities are dominated by the level gradient. The sensitivity
analysis in chapter 5, confirms that the dynamic and stationary solutions are almost iden-
tical for low mixture velocities. therefore the acceleration terms in the dynamic model are
not significant for low velocities

e For high mixture velocities, the order of magnitude of the acceleration terms, reaches
the one of the level gradient. However, it seems that the acceleration terms, spatial and
temporal, for most of the solution, are acting symmetrically around the x-axis, in this case
they cancel each other out. This is sometimes the case, the acceleration terms might both
have the same sign, and then they would make a difference in the dynamic model.

e Modeling the level gradient accurately, turns out to be very important as it seems to be
the dominant term of both dynamic and stationary equations.

Recommendations

e The models developed in Matlab, work fine for laboratory scale pipes. For flow modeling
for long pipelines, which require longer simulation time and bigger grid, it is recommended
to move to C, which is faster.

e The time steps used can become larger by using an implicit scheme.
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Appendices

A  Model I Matlab code

% Explicit Transient Solver for Dynamic Holdup Equation
% Ahmadreza Rahbari 2013

clc;
clear;
global PROP;

PROP=Properties(); 7 globals
RHOO=PROP .RHOO;

RHOW=PROP .RHOW;
Pipe_angle=PROP. Angle;
Length=PROP.Pipe_Length;

hmmmmmmmmm s mm o mm - Boundary Conditions----------------—-——-———————————

%If one of phase-fractions (A0 or AW) is 'O' use a very small number like <
'0.0001"

%For single phase simulation => US0=0 or USW=0

A0_BC=0.999; %[-]

AW_BC=1-A0_BC; %[-]
USO_BC=A0_BC*PROP.UM_constant; %[m3/s/m2]
USW_BC=AW_BC*PROP.UM_constant; %[m3/s/m2]

%Calculating the boundary condition variables from the data above
[U0_BC,UW_BC,UM_BC,Beta_BC,V_BC] = Boundary_Conditions (USO_BC,USW_BC,A0_BC,AW_BC+

H

fhmmmmmmmmm—mmmmm o m o Initial Conditions--------------—-————————-——————~————-
%Values at t=0 inside the cells (pipe)

AO_init= 1.0000e-03;

AW_init=1-A0_init;

USO_init=A0_init*PROP.UM_constant;

USW_init=AW_init*PROP.UM_constant;

%The same function (Boundary_Conditions) is used to calculate the initial

%values in the cells (pipe) because the calculations are identical.

[UO_init ,UW_init ,UM_init ,Beta_init ,V_init] =...
Boundary_Conditions (USO_init ,USW_init ,AO0_init ,AW_init);

dt=PROP.delta_t; %Time step in the explicit solver

dx=PROP.delta_x; %Length step in the explicit solver [m]

Duration=PROP.Simulation_time; 7%[s] (How many seconds the simulation runs from <>
t=0)

imax=floor (Length/dx) ; %Calculation the dimensions of Beta and V based on time<«

step and pipe length
nmax=Duration/dt;

Beta=zeros (1,imax+2); %Each column has values for a certain time step from t=0<«
to t=nmax

V=Beta;

AO=Beta;

AW=Beta;
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UO=Beta;
UW=Beta;
USO=Beta;
USW=Beta;

%Imposing the boundary conditions in the first array in Beta and V
%matrices (ghost cells)
Beta(:,1)=Beta_BC;
V(:,1)=V_BC;
A0(:,1)=A0_BC;
AW(:,1)=AW_BC;
Us0(:,1)=USO_BC;
Usw(:,1)=USW_BC;

%added recently
Uo(:,1)=USO_BC/AO_BC;
UW(:,1)=USW_BC/AW_BC;
UM=UM_BC;

%Imposing the initial conditions in the first row of the Beta and V
Ymatrices (at t=0, n=1)
Beta(1,2:imax+1)=Beta_init;
V(1,2:imax+1)=V_init;
A0(1,2:imax+1)=A0_init;
AW(1,2:imax+1)=AW_init;
US0(1,2:imax+1)=US0_init;
USW(1,2:imax+1)=USW_init;

%added recently
U0(1,2:imax+1)=US0_init/AO_init;
UW(1,2:imax+1)=USW_init/AW_init;

Beta_new=Beta;
V_new=V;

dt_interval=0.01; %capturing the results every 0.01 [s]
NumberOfPoints=Duration/dt_interval;

AO_result=zeros (NumberOfPoints+1,imax) ;

AW_result=zeros (NumberOfPoints+1,imax);

USO_result=zeros (NumberOfPoints+1, imax) ;

USW_result=zeros (NumberOfPoints+1, imax) ;

Beta_result=zeros (NumberOfPoints+1, imax) ;

V_result=zeros (NumberOfPoints+1,imax) ;

time_result=zeros (NumberOfPoints+1,1);

AO_result(:,1)=A0_BC; % First array in every rwo= Boundary Condition= constant<
, does not change with time

AW_result (:,1)=AW_BC;

USO_result(:,1)=USO_BC;

USW_result(:,1)=USW_BC;

Beta_result(:,1)=Beta_BC;

V_result(:,1)=V_BC;

time_result (1,1)=0;

AO_result(1,2:imax+1)=A0_init;
AW_result (1,2:imax+1)=AW_init;
USO_result(1,2:imax+1)=US0_init;
USW_result(1,2:imax+1)=USW_init;
Beta_result(1,2:imax+1)=Beta_init;
V_result (1,2:imax+1)=V_init;

2;
1
0; %The begining of the time! t=0

B N o
]
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TimeRatio=floor(dt_interval/dt); %ratio of time steps for recording the data <
to the solver's time steps, this determines how many n's should count before<
we record the data.

for n=1:nmax %Time loop counter

m=m+dt ; %counts real time passing [s]
if rem(n/TimeRatio,1) == 0
z=z+1;

for j=2:imax+1
A0 _result(z,j)=A0(1,j);
AW_result(z,j)=AW(1,j);
USO_result(z,j)=U0(1,j)*A0(1,j);
USW_result(z,j)=UW(1,j)*AW(Ll,]);
Beta_result(z,j)=Beta(l,j);
V_result(z,j)=V(1,j);
time_result(z,1)=(z-1)*dt_interval;

end
end

Beta=Beta_new;
V=V_new;

for j=2:imax+1
%Updating Beta and V for the new time step
%calculating the frictions based on hold up and velocity (the
%source term in the slip momentum equation)
A0(1,j)=(Beta(l,j)-RHOO) ./ (RHOW-RHOO);
AW (1,j)=(Beta(1,j)-RHOW) ./ (RHOO-RHOW) ;
U0(1,3j)=(V(1,j)/Beta(j)).*x((Beta(l,j)-RHOW)./(RHOO-RHOW))+UM;
UW(1,j)=-(V(1,j)/Beta(1,j)).*x((Beta(1l,j)-RHOO) ./ (RHOW-RHO0))+UM;
[FO,FW,FI]=FrictionTerms (UO(1,j),UW(1,j),A0(1,j),AwW(1,j),RHOO,RHOW);
US0(1,3)=A0(1,j).*U0(1,j);
USW(1,j)=AW(1,3) . .*xUW(L,]);

C1=RHOO-RHOW ;
qv=-(F0/(A0(1,3)))+(FW/(AW(L1,3j)))-(FI/(CADC(L,]j))*(AW(L1,j))))-(C1)*9.81*<>
sin(Pipe_angle);

if any(“isreal(F0))
stop
end

Theta_3=WettedAngle (AO(1,j+1));
Theta_2=WettedAngle (AOD(1,3));
Theta_l=WettedAngle (AD(1,j-1));
h_3=0.5*PROP.Diam*(1-cos(Theta_3));
h_2=0.5%PROP.Diam*(1-cos(Theta_2));
h_1=0.5*%xPROP.Diam*(1-cos(Theta_1));

if j==imax+1
Beta(1,j+1)=2*Beta(l,j)-Beta(l,j-1);
V(1,j+1)=2%V(1,j)-V({1,j-1);
h_3=2*h_2-h_1;

end

Beta_right=0.5%(Beta(l,j)+Beta(l,j+1));
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end

end

Beta_left=0.5*%(Beta(1l,j-1)+Beta(l,j));

h_right_boundary=0.5%(h_2+h_3);
h_left_boundary=0.5*x(h_1+h_2);

Mass_Flux_out=((V(1,j))./(Beta_right)) .*((((Beta_right-RH00) .*(+
Beta_right -RHOW)) ./(C1)))+UM.*xBeta(1,j);

Mass_Flux_in=((V(1,j-1))./(Beta_left)) .*((((Beta_left-RHO0).*(Beta_left-<
RHOW)) ./(C1)))+UM.*Beta(1,j-1);

CC=1/(2+* (RHOO-RHOW) ) ;

Momentum_Flux_out=CCx(((V(1,3))) "2-((V(1,j) 2)*RHOO*RHOW) /((Beta_right)<«
"2))+UM*(V(1,j))+(C1)*9.81*cos(Pipe_angle)*h_right_boundary;

Momentum_Flux_in=CCx(((V(1,j-1)))"2-((V(1,j-1) "2)*RHOO*RHOW) /((Beta_left<«+
)"2))+UM*(V(1,j-1))+(C1)*9.81*cos(Pipe_angle)*h_left_boundary;

Beta_new (1, j)=(Beta(l,j)+(dt/dx)*(Mass_Flux_in-Mass_Flux_out));
V_new(1,j)=V(1,j)+dt*((Momentum_Flux_in-Momentum_Flux_out)/dx+qv) ;
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B Model IT Matlab code

% Explicit Transient Solver for Dynamic Holdup Equation
% Ahmadreza Rahbari 2013

clc;
clear;
global PROP;

PROP=Properties(); 7’ globals
RHOO=PROP.RHOO;
RHOW=PROP . RHOW;
Pipe_angle=PROP.Angle;
Length=PROP.Pipe_Length;

fhmmm s mmmmmmm o mmo Boundary Conditions----------------—-—-———————————

%If one of phase-fractions (A0 or AW) is 'O' use a very small number like <
'0.0001"

%For single phase simulation => US0=0 or USW=0

A0_BC=0.999; %[-]

AW_BC=1-A0_BC; %[-]
USO_BC=A0_BC*PROP.UM_constant; %[m3/s/m2]
USW_BC=AW_BC*PROP.UM_constant; % [m3/s/m2]

%Calculating the boundary condition variables from the data above
[UO_BC,UW_BC,UM_BC,RHOM_BC,Us_BC] = Boundary_Conditions (USO_BC,USW_BC,A0_BC,+
AW_BC);

hmmmmm e Initial Conditions----------—-—-------- -
%Values at t=0 inside the cells (pipe)

AO0_init= 1.0000e-03;

AW_init=1-A0_init;

USO_init=A0_init*PROP.UM_constant;

USW_init=AW_init*PROP.UM_constant;

%The same function (Boundary_Conditions) is used to calculate the initial

%values in the cells (pipe) because the calculations are identical.

[UO_init,UW_init,UM_init ,RHOM_init,Us_init] =...
Boundary_Conditions (USO_init ,USW_init ,AO_init ,AW_init);

dt=PROP.delta_t; %Time step in the explicit solver

dx=PROP.delta_x; %Length step in the explicit solver [m]

Duration=PROP.Simulation_time; %[s] (How many seconds the simulation runs from <>
t=0)

imax=floor (Length/dx); %Calculation the dimensions of Beta and V based on time<¢

step and pipe length
nmax=Duration/dt;

RHOM=zeros (1,imax+2) ; %Each column has values for a certain time step from t=0<«
to t=nmax
Us=RHOM;
AO=RHOM;
AW=RHOM;
UO=RHOM;
UW=RHOM;
USO=RHOM;
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USW=RHOM;

%Imposing the boundary conditions in the first array in Beta and V

%matrices (ghost cells)
RHOM (: ,1)=RHOM_BC;
Us(:,1)=Us_BC;
A0(:,1)=A0_BC;
AW(:,1)=AW_BC;
Us0(:,1)=USO_BC;
UswW(:,1)=USW_BC;
%added recently
U0(:,1)=USO_BC/AO0_BC;
UW(:,1)=USW_BC/AW_BC;
UM=UM_BC;

%Imposing the initial conditions in the first row of the Beta and V

Ymatrices (at t=0, n=1)
RHOM(1,2:imax+1)=RHOM_init;
Us(1,2:imax+1)=Us_init;
A0(1,2:imax+1)=A0_init;
AW(1,2:imax+1)=AW_init;
US0(1,2:imax+1)=US0_init;
USW(1,2:imax+1)=USW_init;

%added recently
U0(1,2:imax+1)=US0_init/AO_init;
UW(1,2:imax+1)=USW_init/AW_init;

% Creating the matrices used for extracting the results and generating

% figures.
RHOM_new=RHOM;
Us_new=Us;

dt_interval=0.01; %capturing the results every 0.01 [s]
NumberOfPoints=Duration/dt_interval;
AO_result=zeros (NumberOfPoints+1,imax) ; %'+1' meaning including point t=0 <

until t=Duration with intervals of length=dt_result

AW_result=zeros (NumberOfPoints+1,imax) ;
USO_result=zeros (NumberOfPoints+1, imax);
USW_result=zeros (NumberOfPoints+1,imax);
RHOM_result=zeros (NumberOfPoints+1,imax);
Us_result=zeros (NumberOfPoints+1,imax);
time_result=zeros (NumberOfPoints+1,1);

AO_result(:,1)=A0_BC; % First array in every rwo=
, does not change with time

AW_result (:,1)=AW_BC;

USO_result(:,1)=USO_BC;

USW_result (:,1)=USW_BC;

RHOM_result (:,1)=RHOM_BC;

Us_result(:,1)=Us_BC;

time_result (1,1)=0;

AO_result(1,2:imax+1)=A0_init;
AW_result (1,2:imax+1)=AW_init;
USO_result(1,2:imax+1)=US0O_init;
USW_result(1,2:imax+1)=USW_init;
RHOM_result (1,2:imax+1)=RHOM_init;
Us_result(1,2:imax+1)=Us_init;

j=2;
z=1;

3
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m=0; %The begining of the time! t=0
TimeRatio=floor (dt_interval/dt); %ratio of time steps for recording the data <
to the solver's time steps, this determines how many n's should count before<>

we record the data.

for n=1:nmax YTime loop counter

m=m+dt ; %counts real time passing [s]
if rem(n/TimeRatio,1) == 0
z=z+1;

for j=2:imax+1
AO_result(z,j)=A0(1,j);
AW_result(z,j)=AW(1,3);
USO_result(z,j)=U0(1,j)*A0(1,]);
USW_result(z,j)=UW(1,j)*AW(1l,j);
RHOM_result(z,j)=RHOM(1,j);
Us_result(z,j)=Us(1,j);
time_result(z,1)=(z-1)*dt_interval;

end

end

RHOM=RHOM_new;

Us=Us_new;

for j=2:imax+1
%#Updating Beta and V for the new time step
%calculating the frictions based on hold up and velocity (the
%source term in the slip momentum equation)
A0(1,j)=(RHOW-RHOM(1,j))./(RHOW-RHOO) ;
AW(1,j)=(RHOM(1,j)-RHOO) ./ (RHOW-RHOO);
U0(1,j)=UM+AW(1,j).*xUs(1,j);
UW(1,3j)=UM-A0(1,j).*xUs(1,]);
[FO,FW,FI]=FrictionTerms (U0O(1,j),UW(1,j),A0(1,j),AwW(1,j),RHOO,RHOW);
if any(~“isreal(F0))

stop

end
USW(1,j)=AW(1,3j).*xUW(L,j);
US0(1,j)=A0(1,j)*U0(1,3);

C1=RHOW-RHOO;
qv=(F0/(A0(1,3)))-(FW/(AW(L1,3)))+(FI/((AD(1,3))*x(AW(1,3))))-(C1)*9.81%«>
sin(Pipe_angle);

Theta_3=WettedAngle (AO(1,j+1));
Theta_2=WettedAngle (A0(1,3));
Theta_l=WettedAngle (AO(1,j-1));
h_3=0.5%PROP.Diam*(1-cos (Theta_3));
h_2=0.5%*PROP.Diam*(1-cos(Theta_2));
h_1=0.5*PROP.Diam*(1-cos(Theta_1));

if j==imax+1
RHOM (1, j+1)=2.%RHOM(1,j)-RHOM(1,j-1);
Us(1,j+1)=2.%Us(1,3)-Us(1,j-1);
h_3=2%h_2-h_1;
end
RHOM_right=0.5%(RHOM(1,j)+RHOM(1,j+1));
RHOM_left=0.5x(RHOM (1, j)+RHOM(1,j-1));
Us_right=0.5%(Us(1,j)+Us(1,j+1));
Us_left=0.5*(Us(1,j)+Us(1,j-1));
h_right_boundary=0.5*%(h_2+h_3);
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end

end

h_left_boundary=0.5*(h_1+h_2);

AO_right=(RHOW-RHOM_right)./C1;
AW_right=(RHOM_right -RH0O0)./C1;

AD_left=(RHOW-RHOM_left)./C1;
AW_left=(RHOM_left-RHO0)./C1;

Mass_Flux_out=RHOM(1,j).*UM-(C1)*AO_right*AW_right.*Us(1,j);
Mass_Flux_in=RHOM(1,j-1) .*xUM-(C1)*A0_left*AW_left.*Us(1,j-1);

RHOM_new (1, j)=RHOM(1,j)+(dt/dx)*(Mass_Flux_in-Mass_Flux_out);

Momentum_Flux_out=0.5*x (RHOW*(AO_right) . 2-RHOO*(AW_right) . 2) .*x(Us(1,j)«
."2) -(RHOW*AO_right+RHOO*AW_right) .*(UM.*Us(1,j))+(C1) .*9.81.*cos (+
Pipe_angle) .*(h_right_boundary) ;

Momentum_Flux_in=0.5% (RHOW*(AO_left) . 2-RHOO*(AW_left) . 2) .*x(Us(1,j-1)«+
."2) -(RHOW*AO_left+RHOO*AW_left) .*(UM.*Us(1,j-1))+(C1) .*9.81.*xcos (+
Pipe_angle) .*(h_left_boundary);

Us_new(1,j)=(1./(RHOM_new (1, j)-RHOW-RHOO0)) .*(((RHOM(1, j)-RHOO-RHOW) .*Us«>
(1,j)+dt*(((Momentum_Flux_in-Momentum_Flux_out)./dx)+qv)));
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C Closure models, friction Matlab code

function [FO,FW,FI]=FrictionTerms (U0O,UW,AQ,AW,RHOO,RHOW)
global PROP;
Ur=U0-UW;

theta=WettedAngle (AD);

h====== Geometry-—----------=-—-———————————
SW=theta*PROP.Diam;

SO0=pi*PROP.Diam-SW;

SI=PROP.Diam*sin(theta) ;

hmm———- Reynold-----------—--——--——-————~——-

%Water: open channel flow, 0il: closed channel flow
Dho=4*A0.*PROP.Area./(S0+SI);
Dhw=4*AW.*PROP.Area./(SW+1e-100) ;
Reo=Reynold (Dho,abs (U0) ,RHOO0, PROP.muo) ;
Rew=Reynold (Dhw,abs (UW) ,RHOW , PROP.muw) ;

h=————= Friction factor (Turbulent and Laminar)------------------
foTur=Haaland (Reo ,Dho+1e-1000) ;

fwTur=Haaland (Rew,Dhw+1e-1000) ;

folLam=64/Reo;

fwLam=64/Rew;

if Reo<300
fo=folam;
else
fo = max([folam,foTurl);
end
if Rew<300
fw=fwLam;
else
fw = max([fwLam, fwTurl);
end
fi=fo; %“Friction at the interface is taken equal to the oil layer friction
fh=———== Friction terms-------------——-——-—--

t1=8*PROP. Area;

FO=RHOO.*fo.*abs(U0) .*xU0.*S0/t1;
FW=RHOW.*fw.*abs (UW) .*xUW.*SW/t1;
FI=RHOO.*fi.*xabs(Ur) .*xUr.*SI/t1;
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