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Summary

Getting the most out of a hydrocarbon reservoir is not a trivial task. It takes plenty of inter-
woven decisions to make. There are many forms of tools that support engineers to make
correct decisions. The simplest ones would only display measurements in a suitable way,
and appoint the rest of the decision making process to human knowledge and experience.
Complex decision support tools may implement model-based estimation and optimization.
This work targets methods for optimization-based decision support, namely implementing
artificial neural networks.

The objective of the thesis proposed is to investigate the potential of DAS (Distributed
Acoustic Sensing) for flow regime classification. A relatively simple and cost effective
experiment has been conducted in this study.

Using the results from the experiments, several artificial neural networks has been created
to recognize the pattern in the one third octave band data. The results has shown a neural
network is a promising tool which serves the purpose of this study.
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Chapter 1
Introduction

Well intervention is referred to any operation carried out in a well during or after the
productive life of the well. It has various missions including modification of the state or
geometry of a well, providing well diagnostics and well production management.

One of the methods for well intervention, involves pushing down a carbon rod to total
depth of the well, in order to obtain accurate temperature and acoustic measurements of
the entire well length while parked downhole. This intervention method has been advanced
for fiber-optic logging purposes.

Developed by Ziebel AS, Z-System is one the intervention technologies based on a semi
stiff carbon rod containing fiber optic cables. Optical fibers inside the carbon rod act as
an array of sensors providing live and simultaneous temperature and acoustic data from
almost every 1 meter. The system has a spool containing the rod, an injector head, well
control equipment on surface and a bottom hole assembly (bullnose) containing termina-
tion points for the fiber optic cables. The stiffness and light weight of the rod allows access
to highly deviated, and horizontal wells in which limited depth reach is an inevitable issue.

The Z-System has significant advantages over conventional logging systems such as coiled
tubing (CT) or wireline and tractor conveyed (WL) systems:

• Senses all the well all the time; Dynamic reservoir management optimization

• Ability to access horizontal wells by pushing it from surface with no need to tractor

• Very high tensile strength

• Ability to access wells with restrictions because of its slick system and small O.D
(1.5 inches)

• Negligible choking effect during flowing
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Chapter 1. Introduction

• Less deferred production during intervention work since it can be run in hole while
producing

• Reliability of technology because of no electronics downhole (only fiber optics)

• No up and down movement during operation (no need for multiple passes) since
the fiber is parked during the entire operation, and the entire rod acts as an array of
sensors

• Broadband information delivered “Live" and in real time

• Multiple applications solved in one single run

This work aims at suggesting a proper method for interpreting data obtained using the
Z-System. This project specifically focuses on the Distributed Acoustic Sensing feature
embedded within this technology.
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Chapter 2
Fundamentals of Optical Fiber
Sensing

2.1 History and Statistics

Optical fiber technology has been used by oil and gas industry over the last 20 years.
Originally this technology was used within space and military applications. It was found
out later that oil and gas industry could also benefit from employment of this technology.

The first downhole installation of optical fiber sensing system was performed in 1993. Its
only mission was to act as a simple point pressure and temperature sensor in a land well
in the Netherlands. Although the first steps in the development of optical fiber technology
was made in the mid 1980Šs, the significant success came only in the mid-1990s. The
first application of Distributed Acoustic Sensing (DAS) optical fiber technology was im-
plemented by Shell Canada during the completion of a tight gas well in February 2009
(Molenaar et al., 2011). Since the technology inception in the 1980Šs, optical fiber sens-
ing has been introduced in a wide range of applications, focusing on implementation in
extreme operating environments with physical space limitations, and unique measurement
requirements (Johannessen and Drakeley, 2012).

In conclusion, it is necessary to state that optical fiber technology implementation has
found more and more applications to be introduced. Since the technology posesses a
number of significant advantages over the conventional systems for monitoring and data
acquisition, there is a tendency to use the technology on a permanent basis bringing as a
part of completion component for smart wells.
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Chapter 2. Fundamentals of Optical Fiber Sensing

2.2 Advantages of Fiber Optic Monitoring

It is evident that utilization of optical fiber technology has many proven by field experience
advantages over conventional systems for data acquisition and monitoring.

The first advantage of optical fiber technology is its immunity to electromagnetic inter-
ference. The reason is that this system does not incorporate any downhole electronics.
Several mesurements are made in the well, however, there is no need to have any elec-
tronic transducers or circuit boards inside te well. In other words, there is no need for
electrical power. Measurements are simply made with the help of optical fiber.

Another advantage is the resistance to high temperatures. Once optical fibers are installed,
they tend to work for a long time. There is some evidence that other existing technolo-
gies such as electrical and quartz sensing systems have a temperature limitation. Usually,
this limitation is around 150 ◦C, meaning that the working period in extreme temperature
conditions is short.

Finally, the optical fiber tecnology has a capability of multiplexing and making distributed
measurements. These optical fiber methods provide real time monitoring, because they
give such parameters as temperature, strain and acoustics. The measurement could be
made over the entire length of the well, as optical fiber sensing system allows signals to
be sent and received over a long distance. The system acts as an array of sensors, which is
able to monitor several parameters at the same time (Carnahan et al., 1999).

2.3 Principles of Distributed Temperature Sensing

Distributed Temperature Sensing relies upon optical time-domain reflectometry. The sens-
ing element is represented by the optical fiber, which is attached to a laser source emitting
laser pulses. The light is shot down through the optical fiber and light returns back to the
instrument that pulsed the light down. This returned light contains information that de-
scribes the conditions inside the well. Figure 2.1 illustrates the working principle of DTS.
The actual fiber itself is very thin, about the width of a human hair. The pulse length is
typically estimated from 1 to 2 meters.

The reflection points, which cause the light to backscatter and carry information, are
minute imperfections or very small density variations distributed continuously along the
core of the glass fiber. In the optimal case, the intensity of the backscattered light dimin-
ishes exponentially with time. Since the light speed within the optic fiber is known, it is
possible to estimate the distance that the light pulse has moved based on the time. Under
normal operational conditions, the package of light that is transmitted down reaches the far
end and comes back. Only after this pulse has returned another pulse will be sent down.

At each of the imperfections there is a backscatter event called a Rayleigh backscatter.
This light then returns to the detector and carries with it information. Of the very small
portions of the light that will be reflected back (maybe one photon in a million photons), a
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2.3 Principles of Distributed Temperature Sensing

Figure 2.1: Principles of Distributed Temperature Sensing, (Carnahan et al., 1999)

small quantity undergoes a spectroscopic shift.

Figure 2.2 illustrates the full backscatter light spectrum. The returning light contains sev-
eral different spectral components in terms of frequency: Rayleigh, Brillouin and Raman
bands. The central peak in the figure is called the Rayleigh peak. It has the exact same
waveleng as the incident light (the light pulse that is pumped down the fiber). A small por-
tion of the backscattered light undergoes a Brillouin shift and another portion undergoes a
Raman shift. There are two components to each of these: the stokes and the anti-stokes.

For the Raman peaks, it is observed that the anti-stokes component is strongly temperature
dependent, while the stokes component is virtually unaffected by changes in temperature.
Taking this into consideration, the Raman components can be used for obtaining informa-
tion about temperature distribution along the optical fiber.

In the case of Brillouin peaks, the temperature affects both of the stokes and anti-stokes
components. The effect will not change the amplitude but rather make a change in wave-
length. As the temperature increases, the Brillouin peaks will spread outward from the
center.

Using the Raman peaks, it is possible to determine the absolute temperature by analyzing
the ratios of the amplitudes (intensities) of the anti-stokes to stokes components, which is
done in the detector. The location along the optical fiber is determined by the time period
from the pulse launch until the return of the pulse to the detector.

Brillouin peaks usually provide information about distributed temperature and distributed
strain, since both temperature and strain affect the wavelength shift and those can then
be deconvolved into individual temperature and strain measurements. As with the Raman
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Chapter 2. Fundamentals of Optical Fiber Sensing

Figure 2.2: Backscattert light spectrum, (Carnahan et al., 1999)

components, the location of a particular measurement on the fiber is determined by the
two way travel time of the pulse of light (Carnahan et al., 1999; Dria, 2014).

The accuracy of the measurements with the help of distributed temperature sensing tech-
nology should be incorporated into its description in order to be comprehensive. For DTS
system the temperature can be determine at every meter along the whole length of deployed
optical fiber. The surface component of equipment is sending 8ns pulses of 1064nm wave-
length laser light down the fiber and provide analysis of backscattering light for each meter
of the distance of interest. The intensity of the backscattering light is strongly proportional
to the temperature of the optical fiber. Result of analysis of backscattering spectra directly
depends on the temperature of optical fiber at the point of interest. Typical resolution for
obtained measurements is 0.1 Degrees Centigrade (Brown et al., 2000).

2.4 Application of Distributed Temperature Sensing

DTS technology is considered to be well-known and proven by comprehensive field trials.
The area of implementation for this system has covered a wide range of applications.

2.4.1 Conducting reservoir surveillance

One of the priorities for DTS utilization is an acquisition of reservoir surveillance data.
Totally new approach for data collecting has become available to implement using of the
optical fiber technology. The real-time monitoring of reservoir and well performance is
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2.4 Application of Distributed Temperature Sensing

usually viable by running production log on the end of the coiled tubing. Sometimes the
condition makes impossible to use conventional techniques for monitoring and data acqui-
sition, hence the new methods must be found. Permanent placement of optical fiber behind
the casing enables to recognize the flow behind the casing and presence of flow during
shut-in periods. Furthermore, it was made possible to identify water finger encroachment.

The accuracy of obtained measurements is dependent on many factors such as steady state
thermal conditions, thermal properties of flowing fluids and assumptions. There is a num-
ber of specialized software for making comparison and interpretation of the acquired data.
Consequently, data analysis is split into two parts. One of them is visual interpretation
of the obtined real-time measurements and another one corresponds to utilization of fluid
flow and heat transfer simulators, which provides theoretical preditions and evaluation of
production scenarios.

It is obvious that only continuous temperature monitoring of the well will not resolve all
the problems related to well exploitation but in combination with comprehensive thermal
models and other acquired data, it is possible to develop a significant understanding of
reservoir performance without frequent production logging (Brown et al., 2000).

2.4.2 Water injection monitoring and gas lift system optimization

One of the earliest sphere of DTS technology implementation is presumably considered to
be monitoring of water injection and gas lift system optimization. Historically, DTS was
used since 1930Šs for evaluation of water injection profile, flow contribution calculations
and estimation of effectiveness of fracture jobs, etc.

The key to comprehension of temperature measurement challenges in the well is to under-
stand the fluid flow behaviour and ways of heat transfer occurs taking into account Joule
Thomson effect and influence of geothermal gradient. The merger of these effects gener-
ate a characteristic thermal profile, which is time dependent. It is possible to record it by
using DTS system whereupon analysis of the results can be interpreted.

There are two basic concepts for water injection analysis. The first one is the technique
called warm back. The main idea of it is to obtain the lower limit of injected fluid. The per-
meable intervals will be cooled by the fluid with greater radius than impermeable intervals.
The second approach used in water injection analysis is hot slug velocity measurements.
In case of well shut-in, the water inside the tubing above the reservoir will have higher
temperature after sometime than underlying volume of fluid. When injection is renewed,
the formed hot slug propagation can be tracked by optical fiber technology. It is also possi-
ble to estimate the velocity of the propagated slug for visual representation of flow profile
into reservoir.

Regarding the gas lift optimization, the optical fiber technology is used to monitor the
effectiveness of functioning of wellŠs Gas Lift Mandrels (GLMŠS). Using results of Joule
Thomson effect of gas going through the mandrel, identification of the mandrel location
becomes possible. This process provide a qualitative estimation of mandrels performance.
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It became feasible to identify the slug flow through the mandrel using DTS system.

For injection profiling and gas lift system optimization problems, obtained results with the
help of DTS technology is normally compared to utilization of wireline radioactive tracer
tools and Production Logging Tool (PLT). It is worth noticing that the main challenge for
PTL utilization comprise the fact that one running of the tool corresponds to obtaining of
one temperature profile that makes analysis more difficult. In addition to this, it might
be impossible to access the wellbore because of any obstruction such as scale build-ups,
casing deformation, etc.

In contrast to traditional methods of data acquisition, the fiber optic system is able to gen-
erate multiple temperature profiles during the life of the well. The main advantage of DTS
for all cases related to monitoring is capability to obtain the temperature measurements si-
multaneously through entire length of the well during a long period of time. This enables
to perform monitoring of the work for all gas lift valves in the same time, but in case of
PLT utilization, it is impossible to acquire. Indeed, the optical fiber is flexible enough to
pass through tubing bends and dog-legs. Also, when the fiber is permanently installed, it
is immune to subsequent casig deformation and scale formation. However, permanent in-
stallation of the optical fiber is associated with high-rate and high-cost fields mostly found
off-shore.

In view of these advantages of DTS technology, it is important to mention that the results
of acquired data analysis are also dependent on methods used for interpretation such as
stabilized injection, thermal resolution and thermal tracer. According to field trials, it
was concluded that thermal tracer or velocity tracing methodologies to be the most robust
solutions, since other techniques provide questionable outcome without long period of
data recording.

In other words, continuous monitoring of water injection procedure and performance of
gas lift equipment using optical fiber technology provide opportunity to take corrective
actions and optimize the solution for the problems based on understanding the processes
occurred inside the well and reservoir. Simultaneous monitoring throughout the interior
well with the help of DTS gave reliable and real-time data, which ensure robustness of
technology with cost effective way of data acquisition (Brown et al., 2005; Rahman et al.,
2011).

2.4.3 Real-time monitoring of acid stimulation

As a rule, DTS system is used for continuous monitoring purposes during different stages
of well exploitation. Controlling the acid stimulation requires precise understanding of
near wellbore dynamics and conditions. The acid treatment creates harsh environment,
hence absence of downhole electronics and moving parts in the optical fiber system makes
it suitable and reliable for utilization. In case of acid treatment stimulation, the optical
fiber is used to perform monitoring of multiple non-isolated intervals.

With the help of DTS, it is attainable to collect valuable information that enables identifi-
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2.4 Application of Distributed Temperature Sensing

cation the zones which were taking the acid. With conventional technology for monitoring
the acid stimulation, it was impossible to obtain the information about acid placement and
to know whether it was effective. The information about amount of the acid consumed
by each zone relatively to other can be also acquired with the DTS implementation. Ob-
tained data allow to make on-the-fly changes for the purpose of adjusting pumping rate
and make-up of the acid treatment. Furthermore, utilization of DTS system permits to de-
velop a systematic approach for improvement in the acid treatment predictability in order
to maximize efficiency of stimulation. The contrast between injection profiles before and
during acid treatment helps to limit the amount of pumping fluid and prevent formation
damage, thus wise enables to diminish environmental impact.

To collude, it is appropriate to state that utilization of the optical fiber technology drives
industry towards smart acid placement rather than using broad brush approach (Clanton
et al., 2006).

2.4.4 Tracking and surveillance during production and shut-in peri-
ods

One of the latest and advanced areas of implementation for DTS system is utilization dur-
ing production and shut-in periods for well performance monitoring and evaluation. The
technology is used to obtain a better comprehension of flow allocation in a complex reser-
voir structure, since possessing precise information at earlier stages of production will be
a decisive foundation for further field development. Acquired data with the help of DTS
enable quantitative analysis of gained fluids to be performed at any desirable time within
the necessary period. Utilization of this technology will allow wells to de completed with
smaller sizes because of limiting requirements for production logging. Obtained infor-
mation yields improved reservoir characterization and provides opportunity to predict the
dynamics of reservoir behaviour. On basis of data analysis results, it is possible to see the
trend of zones depletion over time represented by pressure changes and etc. Combination
of data acquired by logging operations and from DTS survey can be used in generating
accurate reservoir models. These models are employed in converting temperature data to
valuable flow information. Available opportunity to perform monitoring over time, started
from the beginning of production period, helps to identify the main parameters that has
strongest influence on the flow profile and controlling the flow.

In order to produce a fluid from a reservoir in the optimum way, there is a strong need to
determine the reservoir properties such as permeability or skin since commencement of
production. Changes in the parameters will inevitably occur during the production when
depletion in pressure takes place. That is why reservoir models must be kept updated
by input information from continuous monitoring, enabling calculation of reservoir zones
contribution whenever it is required. Especially for the long-term reservoir management,
it is claimed that combination of DTS measurements and other data about reservoir can
be used as a foundation for realistic model of permeability and reservoir fluid dynamics
(Fryer et al., 2005).
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2.4.5 Downhole Leak detection

DTS system has increasing amount of applications. Since this technology proved its ro-
bustness in many field trials, it was also decided to use the optical fiber for leak detection
and compare with conventional methods such as leak detection logs (LDLŠs). Traditional
leak detection technics employed an operational diagnostic tools deployed on wireline
if the annular communication is detected. However, ultrasonic leak detection logging is
proved to be more effective in pinpointing the leaks under 1bpm. On the other hand, taking
into account the fact that the ultrasonic tool can be attached to DTS line and it is mostly
used for small leaks, it is common to use DTS for narrowing the potential intervals and
ultrasonic tool for conformation the precise location of the leak.

It is claimed that the optical fiber technology is considered to be able to detect all types
of leaks (small, multiple and large). In case of large leaks detection, utilization of DTS
technology allows to save time for operation and required amount of injected fluid is sig-
nificantly smaller than in conventional technology implementation. In case of multiple
leaks detection, it is a challenge to identify small leaks in a presence of large. It is vital to
provide as high a differential pressure as possible across the leaks area. When differential
pressure is maintained enough high, secondary leaks will emerge and be identified. In case
of small leaks detection, the question of resolution for identification technics is arisen. The
leak is considered to be small when it is < 0.1 barrels per minute. This rate is often below
the limit of resolution for conventional methods that is why the temperature anomalies can
be ŞsmearedŤ. DTS makes possible to eliminate this unpleasant effect because once it is
installed there is no need to move the optical fiber.

It will be appropriate to say a few words about temperature resolution of DTS for the
specific area of application like leaks detection. Since the intensity of each backscattered
pulse is weak, a huge amount of pulses has to be done before a complete temperature
profile could be obtained. The required time for detection can be from a few seconds up
to some hours, which depends on the necessary resolution to be achieved. In practice, the
time of recording is an equilibrium between estimated rates of temperature change and
necessary temperature resolution. To be able to detect especially small leaks, it is vital
to have this balance. However, it is important to correlate acquired data with the well
completion to be able accurately determine the leak point (J.Y. Julian and et al., 2007).

2.5 Principles of Distributed Acoustic Sensing

Distributed Acoustic Sensing (DAS) has caused immense advancement in the monitoring
business, since it has provided the ability to listen to the acoustic field along the whole
length of the optical fiber cable deployed into the well. DAS system allows to obtain a
full-spectrum acoustic signal with a spatial resolution of almost every 1 meter. Figure 2.3
illustrates the principle of the DAS system.

A novel digital technique for storing obtained information is implemented in the DAS
system. Traditionally the measuring tool consists of two main elements: the interroga-
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Figure 2.3: Principles of Distributed Acoustic Sensor, (Johannessen and Drakeley, 2012)

tor system at the surface and the downhole-deployed optical fiber. DAS system applies a
technique called Coherent Optical Time Domain Reflectometry (C-OTDR). The DAS is
sensitive to vibro-acoustic disturbance around the optical fiber. The disturbance occurs on
a microscopic level. In contrast to DTS, which measures Raman components of backscat-
tered light with utilization of a 50 micron core multi-mode fibre, DAS works with a 9
micron core single-mode optical fiber. The fact that DAS system uses single-mode cable
allows obtaining better special resolution and reducing noise. Each small segment of the
optical fiber acts as an interferometer1. Association of all the backscatter photons forms an
interference pattern. The intensity of this pattern is determined by the localized changes in
the optical fiber segment length. The microscopic change in the length of a small portion
of the fiber will cause a change in the intensity of the Rayleigh backscattered laser sig-
nal. These changes in length are due to mechanical strain effects on the fiber at that point
(e.g., the very small strain effect that occurs when the pressure pulse of an acoustic wave
strikes the fiber). Comparing both, Rayleigh scattering is much stronger that Raman scat-
tering. Important to mention is that the interpretable modification in backscattered light
are analysed at the interrogation component of DAS. The digital optoelectronic technic
implemented in the DAS system enables to record the instantaneous phase (or frequency)
of light rather than the amplitude.

It is relevant to mention that this type of measurement provides at a spatial resolution as
small as 1 meter a full recording possibly as high as 50 kHz over the length of the fiber.
Each time fragment contains a snap shot of the acoustic field, which is averaged over the
1 meter segment of optical fiber cable at that particular fragment section.

Obtained raw data of acoustic field pass from the interrogator unit to the processing com-

1Interferometry is a family of techniques in which waves, usually electromagnetic, are superimposed in orde
to extract information about the waves (source: Wikipedia).
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ponent of DAS where the interpretation and visualization are made (Johannessen and
Drakeley, 2012; Dria, 2014; Molenaar et al., 2011).

2.6 Processing of Acoustic Signal

One of the challenges of the DAS system utilization is processing a large volume of data
collected at field conditions. As an example, it would be appropriate to consider an interval
in 10 km of optical fiber, each meter of which working at 10 kHz. This can generate the
minimum data rate equal to 100 MSamples/s. Some Software with implemented special
signal processing techniques have been recently developed. They enable comparably fast
analysis of the signal acoustic spectra along the entire length of the optical fiber. Those
techniques have also the ability of identification of flow characteristics along the well.

One of the current processing techniques called coherent phase array processing tech-
nique, enables to trace the propagation of the acoustic energy along the well. This is
applied in analysis implementing space-frequency domain for the speed of sound valida-
tion, and consequently, to measurements of fluid composition and velocities (Johannessen
and Drakeley, 2012).

2.7 Applications of Distributed Acoustic Sensing

DAS system is regarded as immature technology in comparison with DTS, which has been
utilized during the last 20 years. Taking this into consideration, the implementation of the
DAS system in the oil and gas industry causes a lot of excitement and creates a necessity
for further investigation because the technology possesses wide potential application areas.
The spectrum of DAS envisages applications consists of distributed flow measurements,
sand detection, smart well completion monitoring, gas breakthrough and etc.

2.7.1 Monitoring in-well activities and hydraulic fracturing treatment

One of the initial spheres of implementation was the utilization as a monitoring tool for
in-well activities and hydraulic fracturing stimulation. The technology proved itself as
sensitive and robust. Traditional diagnostic techniques such as radioactive tracers, come
with certain limitation concerning shallow depth investigation.

Real-time in-well monitoring with the help of DAS demonstrated that the optical fiber
technology to be able to detect precisely enough activities caused by placement of down-
hole tools, etc. In-well activities can be observed due to acoustic signature followed up
the processes. Moreover, DAS made evident the ability of producing measurements that
enables to capture the dynamic changes during the hydraulic fracturing treatment. Since
the recordings are made in a broad frequency range, it allows to differentiate perforation
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clusters being active during acidation stage and perforation clusters taking most of propant
and fluid during stimulation process. Possessing this kind of information gives opportunity
to optimize the volume placement design and make improvements in the treatment. The
figure below illustrates the monitoring process of hydraulic fracturing treatment.

Figure 2.4: Monitoring process of hydraulic fracturing stimulation, (Molenaar et al., 2011)

Also, worth repeating is that passive nature and long-term reliability of DAS extend the
area of applicability of this system, creating the persuasive foundation for further enhance-
ments. The fidelity of recordings acquired during hydraulic fracturing stimulation enables
to perform post-job diagnostics. The results of surveillance analyses can be further used
in optimizing simulation of propant and fluid placement. In addition to this, the acquired
information can enforce cost savings in real-time during the stimulation (Molenaar et al.,
2011).

2.7.2 Advances in Distributed Acoustic Sensing for Vertical Seismic
Profiling

Another area of DAS application is vertical seismic profiling (VSP)acquisition. In this
sphere of implementation, DAS works as a seismic receiver array. The conventional func-
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tions of DAS can be represented by completion tasks such as checkshots, imaging and
time-lapse monitoring.

To begin with, the acquired seismic data with the help of DAS possess sufficient degree
of quality to be compared with traditional VSP methods such as 1C geophones. Since
this is not common area of implementation for optical fiber technology, improvements in
quality of acquired data went gradually. Nowadays tremendous increase in the signal-to-
noise ratio is observed. Under most circumstances, the higher the signal-to-noise ratio
in measurements, the more detailed picture can be obtained. Beside this, it is noticed
increase in seismic signal coherence. Moreover, the new datasets possess denser receiver
spacing (channel with the length of 8 meters versus 10 meters therefore). It is also claimed
that DAS method in VSP acquisition gives more detailed checkshots than conventional
checkshots with the help of geophones. There is absence of necessity for moving receivers
and repeating shots as it was done previously.

Taking into account the fact that DAS technology does not require well interventio and
measurements can be made while producing, it can be concluded that DAS will become
a more popular method in VSP data acquisition and cover the type of wells previously
assumed to be inaccessible (Mateeva et al., 2012).

2.7.3 Leaks detection with the help of Distributed Acoustic Sensing

According to the field experience, DAS is also appropriate for evaluation of abandoned gas
wells condition. To be more specific, DAS was used for leak detection (small continuous
leaks and large outburst). The optical fiber technology makes possible continuous full-well
coverage for monitoring without necessity of moving tools in the well, which diminishes
interfering with measurements. It is also important to mention that there is no need for
rig-up/rig-down for data acquisition that helps save time of operation and correspondingly
introduce DAS as cost-effective method for making informed decision how to detect and
handle leaks.

Nowadays not enough information about acoustic signature and characteristics of various
leaks types exists. More field trials and laboratory research is necessary to conduct in order
to form complete database. In addition to this, data acquisition parameters and modes are
required to be examined for determination of optimum framework for leak detection. It
is worth noticing that there is demand for further improvement in the construction area
of optical fiber, for instance, elimination of vertical striping noise by developing proper
insulation (Boone et al., 2014).

2.7.4 Application of Distributed Acoustic Sensing for Improved Well-
bore Production Surveillance

It is proved that DAS can be used for monitoring the performance of individual perforated
zones during production or injection for a long period without need for well intervention.
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2.8 Distributed Temperature Sensing and Distributed Acoustic Sensing integration

The optical fiber can be deployed and can be left permanently behind casing due to oc-
currence of necessity for data acquisition at any convenient time. In addition to this, DAS
system allows to track the injected fluid distribution during smart injection, and conse-
quently to control the process by utilization of flow control valve.

In anticipation of all what was said above, it is possible to state that the advantage of DAS
technology permits introducing new areas of applicability for the system. Acquired data
is normally used for optimization purposes, the main objective of which is to ensure that
standards of governmental regulations are met with cost-effective planning.

Due to the fact that the DAS technology is being applied to a few new fields, necessary
software has been developed to properly visualize the acquired data. Further research must
be conducted to make standard interpretation of the graphs available. The interpretations
could then be used to perform flow regime characterization for different types of wells
(van der Horst et al., 2014).

2.8 Distributed Temperature Sensing and Distributed Acous-
tic Sensing integration

Integrating the various measurements of anything to monitor the in-well conditions offers
the best advantage and highest use of that information.

The idea that has been presented by several groups in the last several years is the utilization
of the optical fiber for monitoring. That highlights the fact that one cable can provide the
opportunity to obtain many measurements simultaneously. Combination of DTS and DAS
permit the use of unique monitoring options during the whole life of the well.

For example, for an unconventional well starting from the pre-fracturing period, DTS is
used for geothermal acquisition, cement monitoring (finding the top of the cement) and
perforation monitoring. During this period, DAS can be used to monitor offset wells that
are being fracked and to obtain vertical seismic profiling (VSP) information. For instance,
fracturing operations are considered the time for the most concentrated data acquisition
for both DTS and DAS. Everything from using DTS as a thermal tracer to identifying
injection profile, and augmenting the temperature profiles obtained by DTS with those
from the DAS.

2.8.1 State-of-the- art technology combined with brilliant ideas

The optical fiber technology is used worldwide for less than 30 years, and the number
of applications of this technology is constantly increasing. Ziebel AS has created a new
technical solution for well intervention based on utilization of the optical fiber technology.
This engineering proposal is called Z-system represented by semi stiff composite carbon
rod sensing with the outer diameter of 15 mm.
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Figure 2.5: Z-System Sensing, (Ziebel, 2014).

As in all previously mentioned cases the optical fiber works as a sensing device itself but
the difference of Z-system from conventional optical fiber systems is that proposed tech-
nical solution is a combination of sensing fibers. This system includes Distributed Tem-
perature Sensing, Distributed Acoustic Sensing, Point Pressure in Bottom Hole Assembly
(BHA), Point Temperature in the BHA and vibration sensor in BHA.

The acquired data are transmitted to the onshore center where the technical experts can
visualise and interpret the data. Since Z-system is a combination of several sensing fibers
inside one carbon rob, it provides unique opportunity to obtain more detailed information
about fluid behaviour and changes in the reservoir conditions.
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Chapter 3
Experimental Setup

Despite being used in many areas including the oil and gas industry, the optical fiber tech-
nology still has a few spheres of implementation that require further laboratory research
and field trials. Some of the common problems with this technology for well intervention
service in the industry are lack of a complete database for aquatic signature of downhole
events (e.g., during leak detection), and absence of standardized ways of interpreting the
obtained graphs in order to determine integrity issues.

The objective of the laboratory experiments of this work is to investigate the potential of
DAS system for flow regime classification in order to improve data analysis and interpre-
tation processes. These tests are practical by nature and the results will be further used in
the neural nets designed at Ziebel AS.

This chapter will be devoted to a description of the laboratory apparatus used in experi-
mental investigation. It will contain a detailed description of every individual component
in the experimental setup. The procedural sequence of the experiment will also be de-
scribed later in the chapter.

3.1 Components of Experimental Setup

The experimental setup contains two groups of apparatus. The first part consists of plastic
see-through vertical tubes with a manifold at the bottom, as illustrated in Figure 3.1. The
second part includes components of the optical fiber system as shown in Figure 3.2.
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Figure 3.1: Vertical pipe with manifold for air bubble experiment, (Ziebel, 2014).

3.1.1 Vertical tube

The proposed vertical tube is intended to simulate a production tubing. The vertical section
of the tube consists of four segments, each of length 2.05 m, summing to a total height
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Figure 3.2: DAS system components, (Ziebel, 2014)

equal to 8.20 m. The diameter of the tube is �110/104 mm, corresponding to the outer
and inner measures, respectively.

The bottom part of the vertical tube is equipped with a manifold, which is assembled with
the following connections and valves (numbers as indicated in Figure 3.1):

• #1 connection for air supply via air quick coupling pin;

• #2 connection for water supply via garden hose coupling;

• #3 pressure gauge;

• #4 ball valve;

• #5 ball valve.

In order to monitor different flow regimes, a see-through vertical tube made of polycar-
bonate was used. Perfectly matching the goal of this experiment, the segments from this
material are easily joined together using PVT coupling with rubber seals. Since the tube
is made of plastic, it possesses high tensile and impact strengths. The vertical tube has
sufficient length compared to the size of laboratory room. To avoid unnecessary move-
ments, it is required for the tube to be fixed to a metal frame. The connections are settled
by means of clamps for the tube with M10 female threads. Notwithstanding the fact that
the tube consists of several segments, it acts as one solid pipe due to the employed method
for joining the sections. This mechanism of installation allows for creating flow regimes
characterized by significant turbulence.

3.1.2 DAS system

In this section, the components of the DAS system within the experimental unit and pro-
cedure of its installation will be described. Figure 3.2 illustrates the order in which the
elements need to be connected:

• #1 terminal end or metal tube in order to add weight to the bottom part of the Z-line;

• #2 Z-line;
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• #3 plastic tube in order to protect the top terminal end of Z-line and make available
access to single cables;

• #4 yellow cables;

• #5 yellow coated fiber representing Dead Zone Eliminator;

• #6 Helios or laser source.

The DAS system unit was assembled according to provided instructions from Ziebel AS.
It is worth noticing the fact that the optical fiber is made of very fragile material. That is
why the cables and especially the connections to the cables must be handled with extra
care and not be pulled or bent severely.

The procedure for installation of the components of the DAS system is as follows. First,
the Z-line was transferred inside the vertical polycarbonate tube until the terminatal end
(#1) was placed at the bottom of the tube. Since the length of Z-line was 7.90 m, the Z-line
was placed inside the vertical pipe so that the level of the plastic part (#3) matched the rim
of the vertical tube. The purpose of the plastic part between the Z-line and cables was to
protect the fiber splices. Precautions were taken regarding the yellow cables, which stuck
out of the plastic tube at the top end of Z-line.

According to the experimental setup, the Z-line was provided with two cables sticking out
of it, namely the “primary” and “secondary" cables. The secondary cable was placed as a
backup, in case the primary cable was damaged.

The yellow coated fiber represented Dead Zone Eliminator that had to be connected in
between Z-line and Helios. The coil consisted of around 460 m of the optical fiber cable.
Checking whether the connectors were still intact with the fiber, was an important part of
the installation procedure.

Before utilizing any of the connectors, it was necessary to clean the connectors with iso-
propyl alcohol only and not other cleaning agents. The cleaning procedure is as follows:

1. pour some isopropyl alcohol on the wipe;

2. open the black cap of the connector and push it down without forcing it to avoid
being broken;

3. rub the wipe on the tip of the connector;

4. close the cap.

It is important to keep the connectors clean, since dust will cause power loss. After clean-
ing the connectors, one of the yellow cables (Primary) was connected to the end labelled
as “Connect to Z-line”. Another cable was connected to Helios and labelled as “Connect
to Helios”.

After connecting every part of the system as shown in the Figure 3.2, the DAS system was
ready to use for experiments. Figure 3.3 illustrates the setup of the pipe and the DAS box
connected together.
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Figure 3.3: Z-line inside the pipe and connected to the DAS box.

3.2 Experimental fluids

It is common for experimental investigation to vary initial conditions and compare the
results. For current studies were chosen two types fluids to create multiphase flow in the
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vertical pipe:

1. “water + gas”

2. “water+ pine oil+ gas”

The main purpose of adding pine oil was to decrease the size of the bubbles formed.

Pine oil (Figure 3.4) is a type of oil obtained by steam distillation of various parts of pine
trees. The composition of pine oil depends on many factors. The main factors are type of
the tree, place of production and source of raw material. Pine oil has the following phisical
properties:

Figure 3.4: Pine oil

• density 950 kg/m3;

• insoluble in water;

• colorless to pale yellow liquid.

3.3 Experimental procedure

Using verified program settings in the Helios software, it is appropriate to start the experi-
mental investigation.

Two different experiments will be conducted. The first part of experimental work is based
on using the fluid consisting of only water and air. In contrast with the first setup, the
fluid for the second part includes pine oil to make multiphase flow more similar to what
happens in production tubing.

The sequence for conducting the experiments is as follows:

1. Connect hose to the manifold through connectors #1 and #2.
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2. Turn on water and gas supply.

3. Open valve #5 to allow water to fill in the tube up to the desired level. This level is
determined by safety conditions described by Ziebel’s instructions. The plastic tube
between the top end of Z-line and yellow cable must not be submerged in the water.
For this reason, it is important to fill the tube with water only until 3/4 of the tube
length to ensure liquid droplets will not reach plastic tube on the top of Z-line.

4. Close valve #5 and start using pressure gauge #3 to obtain the necessary size of
bubbles from gas supply.

Using variuos gas flowrates, different multiphase flow conditions where created. The flow
regimes mostly consisted of bubble flows with different bubble conditions, i.e. bubble
flows with low gas rates and high gas rates. Another flow regime was a slug flow that was
generated whose data was also used in the process of generating neural networks. Figure
3.5 illustrates some of the various types of flow generated.

(a) (b) (c) (d) (e)

Figure 3.5: Different types of generated multiphase flows. (a) bubble flow with low gas rate,
(b)bubble flow with medium gas rate, (c) bubble flow with high gas rate, (d) bubble flow with pine
oil, (e) slug flow.

In the second experiment, where pine oil is one of the liquids in the system, a few millilitres
of pine oil is placed inside the water hose before starting the water to fill the tube. This
guarantees good mixing of pine oil with water solution and equal distribution throughout
the height of the water column. The purpose for pine oil addition is to decrease the size of
the bubble that will form.
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Another important aspect of experimental setup is the tensioned or relaxed condition of Z-
line. Figure 3.6 illustrates additional equipment used to change the Z-line condition from
relaxed to tensioned. It could be seen that Z-line was hanged from the top part and fixed
in the bottom part in order prevent movements by centralizing it. Prevention of excess
movements of Z-line helps to reduce the unnecessary noise while acquiring data.

(a) Top section (b) Bottom section

Figure 3.6: Equipment setup at the top and bottom parts of the pipe
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Artificial Neural Network

4.1 Introduction

Artificial neural network (Beale and Jackson, 1969; Mohaghegh, 2000; Shokir, 2001; Zu-
rada, 1995) is the technology that started development from the challenge to obtain a full
understanding of some ideas and aspects about how biological systems work, especially
the human brain. A Neural system consists of a basic element called the artificial neu-
ron, or simply the neuron. This neuron receives some input signals from other neurons,
each signal is multiplied by a certain value called weight, and then the resulting sum of the
weighted signals is activated through a non-linear function to determine the neuron output.
This basic element, with its features, repeats itself vertically designing the layer, which in
turn designs the whole network as it is repeated horizontally many times with only three
types: input layer (only one layer), hidden layer (could be more than one layer), and finally
output layer (only one layer).

The vast majority of applications performed by artificial neural network have been trained
by supervised training technique. In this technique, both input data and corresponding
desired output data are given to the network. As the network starts training, the input
layer receives the input signals, then processing the data through the hidden layers until
reaching the output layer yielding the resulted outputs. These outputs are then compared
with the desired outputs to compute the error, which is back-propagated through the system
causing it to adjust the weights, which control the network. The weights are randomly
given small values at the beginning of training the network. The process of training is
repeated, stopping only when the system has attained the desired accuracy.

One of the problems that occurs during neural network training is called “overfitting”. In
this case, the error on the training set gets to a very small value, but when the network is
exposed to new data, leads to unacceptably large errors. In other words, the network has
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memorized the training examples, but it has not learned to generalize. In order to let the
network to get trained with sufficient generalizability, the available data should be divided
into three subsets. The first subset is the training set, which is used to train the network
(i.e., determination of the optimum values of synaptic weight and biases). The second
subset is the validation set; the error on the validation is monitored during the training
process. The validation error will normally decrease during the initial phase of training
and so does the error corresponding to training set. However, when the network begins
to overfit the data, the error on the validation set will typically begin to rise. When the
validation error increases for specified number of iterations, the training is stopped, and
the weights and biases at which the validation error and training error were minimum are
considered as the optimum values of the synaptic weights and biases. The third subset is
the testing set; this set of data, which is not used during the training, is used to obtain the
overall accuracy of the network and compare performance of various network structures.

4.2 Setting Up a Neural Network within MATLAB

This section is intended to illustrate the steps for setting up a neural network using MAT-
LAB, with the purpose of predicting the type of fluid flow in a vertical pipe. Neural
network models attempt to simulate the information processing that occurs in the brain
and are widely used in a variety of applications, including automated pattern recognition.

Pattern recognition is nearly synonymous with machine learning (Bishop, 2006). This
branch of artificial intelligence focuses on the recognition of patterns and regularities in
data. In many cases, these patterns are learned from labeled "training" data (supervised
learning), but when no labeled data are available other algorithms can be used to discover
previously unknown patterns (unsupervised learning).

We will build a supervised neural network to learn the structural pattern of one third octave
data throughout a pipe in a given flow condition, based on the structural patterns observed
during a training phase.

4.2.1 Defining the Network Architecture

For the current problem we define a neural network with one input layer, one hidden layer
and one output layer. The input layer encodes the one third octave band data for 37 bands
(from band #0 to band #36) on the discretized length of the pipe. For our problem the
length of the pipe has been discretized into a grid of 35 nodes. Therefore, each input
sample is a vector of 37× 35 = 1295 elements.

The number of samples in the input layer depends on the length of time at which the data
for each flow condition was acquired. For this problem, data was obtained for each flow
type for approximately 15 minutes. Since the temporal resolution of the measurement
system was 3.3 seconds, this amounts to 273 samples per flow condition. All the samples
from different flow types were put together in a matrix of 1295 rows whose number of
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columns is equal to the sum of number of samples for all flow types.

The output layer of our neural network consists of eleven units, one for each of the consid-
ered flow states (or classes). Of the eleven units, five correspond to the experiments with
pure water, and the remaining six pertain to the experiments where pine oil was added to
water. The output units are encoded using a binary scheme. To create the target matrix for
the neural network, we transform each flow class using the following binary encoding:

1 0 0 0 0 0 0 0 0 0 0 for flow class #1
0 1 0 0 0 0 0 0 0 0 0 for flow class #2
...
0 0 0 0 0 0 0 0 0 0 1 for flow class #11

Thus, each flow class is described by a vector of 11 elements. For each sample in the input
layer, one such output vector is used. All these vectors are put together as the columns
of a matrix. This matrix will have 11 rows, and its number of columns is the same as the
number of samples.

4.2.2 Creating the Neural Network

The problem of flow condition prediction can be thought of as a pattern recognition prob-
lem, where the network is trained to recognize the flow class most likely to occur when
specific one third octave band data are observed. We create a pattern recognition neural
network using the input and target matrices defined above and specifying a hidden layer
of size 20. A schematic of the structure of the network is illustrated in Figure 4.1.

Figure 4.1: The structure of the resulting neural network. Letters “W” and “b” represent “weights”
and “biases”, respectively.

4.2.3 Training the Neural Network

The pattern recognition network uses the default Scaled Conjugate Gradient algorithm for
training. At each training cycle, the training sequences are presented to the network, one
sample at a time. Each hidden unit transforms the signals received from the input layer
by using a transfer function logsig to produce an output signal that is between and close
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to either 0 or 1. Weights are adjusted so that the error between the observed output from
each unit and the desired output specified by the target matrix is minimized.

When using the MATLAB function train we divide the data randomly so that 70% of
the samples are assigned to the training set, 15% to the validation set, and 15% to the
test set. The training process stops when one of several conditions is met. For example,
in the training considered, the training process stops when the validation error increases
for a specified number of iterations (6) or the maximum number of allowed iterations is
reached (1000). The MATLAB code used to generate and train the network is included in
the Appendix.
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Results and Discussion

Neural nets were trained to classify flow states with 3 sets of data. The first set was the
one third octave band data acquired from experiments with pure water. The second set was
the data from experiments with water plus pine oil. The third set included all data from
the first and second sets. The different classes of flow generated and experimented on are
listed in Table 5.1.

No. Liquid Phase Flow Regime Description
1 water single phase Water filling up the pipe (no air inflow)
2 water bubble flow air flow rate: 0.07 m3/hour
3 water bubble flow air flow rate: 1.34 m3/hour
4 water bubble flow air flow rate: 4.39 m3/hour
5 water bubble flow air flow rate: 9.16 m3/hour
6 water+pine oil bubble flow air flow rate: 0.05 m3/hour
7 water+pine oil bubble flow air flow rate: 0.81 m3/hour
8 water+pine oil bubble flow air flow rate: 2.67 m3/hour
9 water+pine oil bubble flow air flow rate: 5.52 m3/hour
10 water+pine oil bubble flow air flow rate: 10.23 m3/hour
11 water+pine oil slug flow –

Table 5.1: List of conducted experiments.

As seen in Table 5.1, the main flow regime considered in the experiments were bubble
flow. Thus, the primary objective is to find out whether neural networks are able to classify
bubbleflows of different air flow rates. Nevertheless, one slug flow experiment was also
carried out in order to enhance the versatility of the trained neural nets to various flow
regimes.

29



Chapter 5. Results and Discussion

The first, second and third neural networks were trained with experiments (1 to 5), (6 to
11), and (1 to 11), respectively (see Table 5.1).

5.1 One Third Octave Band Results

The trained neural networks could correctly identify the flow class in almost all the cases.
This performance implies that neural networks can be used with a high certainty to distin-
guish between different states of flow in the pipe. The results are presented through a few
types of plots.

5.1.1 Confusion Plots

A confusion matrix in the area of machine learning is referred to a specific table system
that illustrates the performance of a supervised learning algorithm. The columns of this
matrix represent the instances of the predicted outcomes (in the case of our neural network
system, the outputs). The rows of the matrix, on the other hand, represent the instances of
the actual outcomes (the targets).

The confusion matrices are plotted for the three neural networks and illustrated in Figures
5.1 through 5.3.

Figure 5.1: Confusion plot for neural network trained with water experiments. Experiments 1
through 5 in Table 5.1 are included.
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Figure 5.2: Confusion plot for neural network trained with water plus pine oil experiments. Exper-
iments 6 through 11 in Table 5.1 are included.

The confusion plots show how many flow conditions were classified correctly in the green
squares. It also shows how many flow conditions were classified incorrectly in the red
squares. The total percentage of the correct and incorrect classifications are shown in the
blue square. Also the total percentages for each row and column are shown in grey squares.

Figures 5.1 through 5.3 illustrate the confusion matrix for the Test set, a subset of the data
which was not used during the training of the network. The plots clearly show the high
efficiency of the trained neural networks in classifying the flow types. In the case of the
first two networks (Figures 5.1 and 5.2), the networks perform the classification flawlessly.
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Figure 5.3: Confusion plot for neural network trained with all experiments. Experiments 1 through
11 in Table 5.1 are included.

The third network (Figure 5.3), however, showed some incorrect classifications. The rea-
son can be the fact that the data used for training this network was based on two different
fluids, namely pure water and water plus pine oil.

5.1.2 Performance Plots

The performance plot shows how the network converged on a lower error solution. As
shown in Figures 5.4 through 5.6, these plots show the profile of mean squared error,
which has a deacreasing trend while training the network.
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Figure 5.4: Performance plot for neural network trained with water experiments. Experiments 1
through 5 in Table 5.1 are included.

Figure 5.5: Performance plot for neural network trained with water plus pine oil experiments. Ex-
periments 6 through 11 in Table 5.1 are included.
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Figure 5.6: Performance plot for neural network trained with all experiments. Experiments 1
through 11 in Table 5.1 are included.

The overall errors for the first two networks (Figures 5.4 and 5.5) are of lower orders than
the errors for the last neural network (Figure 5.6). This can also be owing to the fact that
training of the last network is more complex due to data coming from experiments with
various fluids.

5.1.3 Receiver Operating Characteristic Plots

The Receiver Operating Characteristic (ROC) plot shows the percentage of true positive
class predictions we get as a function of how many false positive classifications we are
willing to accept. The closer the lines follow the left and top sides of the plot, the better.

The ROC plots for the three neural networks are presented in Figures 5.7 through 5.9. All
the plots show satisfactory profiles. This, again, confirms high the capability of neural
networks to classify flow conditions in the pipe.
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Figure 5.7: ROC plot for neural network trained with water experiments. Experiments 1 through 5
in Table 5.1 are included.

Figure 5.8: ROC plot for neural network trained with water plus pine oil experiments. Experiments
6 through 11 in Table 5.1 are included.
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Figure 5.9: ROC plot for neural network trained with all experiments. Experiments 1 through 11 in
Table 5.1 are included.
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Chapter 6
Conclusions and Recommendations

This work consisted of a series of experiments, processing the data from the experiments
and interpreting the processed data using artificial neural networks. The objective was
to interpret the one third octave band data obtained from experiments to classify flow
conditions/regimes in a reasonable way. The follwoing are the conclusions drawn from
this study.

• The generated and obtained neural networks could correctly identify the flow con-
ditions with almost 100% accuracy. The only inaccuracy was caused during the
training of the network with data from all experiments which included pure water
and water plus pine oil.

• The generated neural networks not only classify flow regimes, but also different
flow rates within the same flow regime. This property of the networks give them the
ability to outperform human being if asked to classify the flow conditions/regimes.

• From the confusion plots, it is concluded that neural networks can classify flow
conditions without a bias toward any one particular condition.

• It remains to be proven that neural networks trained in the laboratory conditions (low
pressure, specific fluids, etc.) can actually be used to classify data from downhole
conditions.

Further work can be done by using more flow regimes other than bubble and slug flow
to develop a neural network. This will require modifications in the current experimental
setup. Moreover, other types of fluids can be used to simulate the well conditions more
precisely. Also, in order to find out whether the neural networks created in the laboratory
conditions will work in the field conditions, data from real fields can be used to test the
accuracy of the neural networks.
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Appendix
MATLAB Code for Generating the Neural Network

1 function net = create_pr_net(inputs,targets)
%CREATE_PR_NET Creates and trains a pattern recognition neural network.

3 %
% NET = CREATE_PR_NET(INPUTS,TARGETS) takes these arguments:

5 % INPUTS - RxQ matrix of Q R-element input samples
% TARGETS - SxQ matrix of Q S-element associated target samples, where

7 % each column contains a single 1, with all other elements set to 0.
% and returns these results:

9 % NET - The trained neural network
%

11 % For example, to solve the Iris dataset problem with this function:
%

13 % load iris_dataset
% net = create_pr_net(irisInputs,irisTargets);

15 % irisOutputs = sim(net,irisInputs);
%

17 % To reproduce the results you obtained in NPRTOOL:
%

19 % net = create_pr_net(Pw’,Tw’);

21 % Create Network
numHiddenNeurons = 20; % Adjust as desired

23 net = newpr(inputs,targets,numHiddenNeurons);
net.divideParam.trainRatio = 70/100; % Adjust as desired

25 net.divideParam.valRatio = 15/100; % Adjust as desired
net.divideParam.testRatio = 15/100; % Adjust as desired

27

% Train and Apply Network
29 [net,tr] = train(net,inputs,targets);

outputs = sim(net,inputs);
31

% Plot
33 plotperf(tr)

plotconfusion(targets,outputs)

code/neural.m
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