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Abstract

A convolutional two-level Markov model is studied in this thesis. The bottom level con-
tains a latent Markov chain, and given the variables, the middle contains a latent Gaussian
random field. We observe the second level through a convolution with additive Gaussian
noise. Previously studied models are extended by including additional spatial correlation
in the middle layer.

We propose two different approximations of the likelihood function, namely the truncation
and projection approximation, of varying order. These approximate models are exactly
assessed by the Forward-Backward algorithm.

Properties of various predictors are studied in different approximate posterior models.
The predictors are seen to be stable with respect to an increase of the spatial correlation
in the response model. An increase of k, being the approximation order, is not seen to
have a great effect on the predictors.

The approximate posterior models are used as proposal densities in a Metropolis-Hastings
algorithm to assess the correct posterior model, and we quantify the quality of each
approximation by the acceptance rate. The acceptance rate is observed to be an increasing
function of k. We observed higher acceptance rates when the proportion of the acquisition
convolution was high, relative to the spatial correlation. A high class response variance
also increased the acceptance rate.

Estimation of the transition matrix, using the EM-algorithm and simulation based infer-
ence, is found to be feasible under certain conditions. A univariate maximum marginal
likelihood estimation of the model parameter in the Ricker acquisition convolution kernel
is considered.
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Samandrag

I denne masteroppgåva studerer me ein konvolvert to-nivå Markov modell. Det første
nivået er ei ikkje-observerbar Markovkjede, som definerer eit ikkje-observerbart Gaussisk
stokastisk felt. Me observerer dette feltet gjennom ein konvolusjon, saman med Gaussiske
feil. Modellen vår utvidar tidlegare studerte modellar ved å inkludere romleg korrelasjon
på det midterste nivået.

Me føreslår to ulike approksimasjonar for likelihoodfunksjonen. Dei er baserte på høve-
vis trunkering og projeksjon. Dei approksimative modellane kan evaluerast eksakt med
framlengs-baklengs algoritmen.

Ulike prediktorar for den approksimative posteriorifordelinga er samanlikna, og me stud-
erer eigenskapane deira under ulike modellføresetnader. Prediktorane er observert å vere
nær uavhengig av romleg korrelasjon i responsmodellen, samt nær uavhengig av approksi-
masjonsordenen, k.

Dei approksimative modellane er nytta som forslagsfordelingar i ein Metropolis-Hastings
algoritme til å generere realisasjonar frå den sanne posteriorifordelinga. Akseptanse-
sannsynet er nytta som eit mål for å kvantifisere approksimasjonen. Akseptansesannsynet
er observert å auke saman med k. Approksimasjonane er sett å vere gode når konvolusjon
i observasjonsmodellen er stor, samanlikna med den romlege korrelasjonsfunksjonen. Ak-
septansesannsynet er observert å auke dersom variansen i responsklassane vert auka.

Parameterestimering av overgangsmatrisa ved hjelp av EM-algoritmen og simulering, er
studert under visse føresetnader. Estimatet er sett å samsvare med den sanne overgangs-
matrisa i gitte tilfelle. A priori kjennskap er sett å vere naudsynt, særskilt dersom dei ulike
klassane overlappar kvarandre. Univariat optimalisering av marginal likelihoodfunksjonen
er studert for ein Rickerfunksjon.
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Chapter 1

Introduction
This chapter introduces the necessary notation and defines the variables of interest. We
relate our variables of interest to seismic inversion, and introduce briefly the concepts of
Bayesian inversion. A short introduction to point predictors and parameter inference is
given.

1.1 Outline of Notation

A generic vector of length t is denoted by a = (a1, . . . , at)
>, and we define a−k =

(a1, . . . , ak−1, ak+1, . . . , at)
>. We denote a generic (t× s)-matrix by A, where the identity

matrix is denoted by I. Element (i, j) in A is denoted by [A]ij. The indicator function,
1{A}, is defined to be equal to 1 if A is true, and 0 otherwise.

A random variable x with sample space Ωx, is assumed to be distributed according to a
generic probability distribution p(x). If x is discrete we refer to p(x) as a probability mass
function, and if x is continuous we refer to it as a probability density function. Relevant
probability distributions are given in Appendix A.

1.2 Problem Description

We consider a random field defined on D ∈ R, discretized onto a lattice LD : {1, . . . , N}.
This can for example represent a vertical profile through a geological unit, such as a
seismic profile penetrating the subsurface.

Our variable of interest is a vector κ = (κ1, . . . , κNκ)>, where we for notational ease
let Nκ = N . For n = 1, . . . , N , each κn represents a nominal or ordinal class with
κn ∈ Ωκ : {1, . . . , K}. This could for example represent the lithology/fluid-characteristics,
such as {shale, sand/brine, sand/oil, sand/gas}. The set ΩN

κ is defined to be the KN

possible configurations of κ, which in practice usually is an extremely large set.

We observe a continuous vector d = (d1, . . . dNd)
>, whereNd ≤ N in most situations. In for

example reservoir modelling, the observations may contain information from seismic data,
well-logs or production history data. We only consider one-dimensional observations, i.e.
dn ∈ R for n = 1, . . . , Nd, but it is possible to extend to multivariate observations. Buland
and Omre (2003) discuss how the latter can be modeled with seismic amplitude versus
offset (AVO) data. The elastic properties P-wave velocity, S-wave velocity and density are
modeled utilizing the fact that the seismic reflection amplitude depends on the contrast
of the material properties and reflection angles at each point of reflection.
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4 CHAPTER 1. INTRODUCTION

Our goal is to assess [κ|d], i.e. classify the latent categorical vector based on the obser-
vations. We operate in a probabilistic framework,

[κ|d] ∼ p(κ|d), (1.1)

where the random variable [κ|d] is distributed according to the probability mass function
p(κ|d). A major benefit with assessing Eq. (1.1) in a probabilistic framework is that we
can provide point predictions with uncertainty statements.

We assess Eq. (1.1) in a Bayesian framework, where we assign a prior model, p(κ), to
κ. The prior model represents a priori knowledge of κ, for example the expected waiting
time in each class. Correspondingly, we define an observation model, [d|κ] ∼ p(d|κ).
Since d is given, and κ is the unknown variable, p(d|κ) is in fact a likelihood function as
it need not be normalized with respect to κ. The posterior model for [κ|d] is assessed by
using Bayes’ theorem,

p(κ|d) =
p(d|κ)p(κ)

p (d)
. (1.2)

The posterior model p(κ|d) is referred to as the solution to a Bayesian inversion problem.
Being a function of κ, the posterior is seen to be proportional to the likelihood times the
prior. The probabilistic characteristics of [κ|d] are captured in the posterior. We may
generate realizations from the posterior model.

We operate in a predictive setting, and want to make predictions with the associated un-
certainty statements. We choose the maximum a posteriori probability (MAP) predictor
as our predictor since the predictor is contained in the discrete sample space. This need
not be true for the posterior mean or median. The MAP predictor is defined as

κ̂ = arg max
κ

{p(κ|d)} . (1.3)

Assessment of the MAP predictor constitutes a hard problem since it requires evaluation
of KN possible configurations of κ. An alternative is therefore to consider the marginal
MAP (MMAP) predictor,

ˆ̂κ =

{
κ̂n = arg max

κn

{p(κn|d)} ;n ∈ LD
}
. (1.4)

Uncertainty statements can be made by computing the marginal probabilities for each
class. In practice the predictors differ from the posterior median, which is dependent on
the labeling of κ.

Both the prior and likelihood models are dependent on unknown model parameters. We
denote them θ = (θp,θl), where respectively θp and θl are the prior and likelihood model
parameters. To make the dependence on model parameters clear, we may rewrite Eq. (1.2)
as

p(κ|d;θ) =
p(d|κ;θl)p(κ;θp)

p (d;θ)
. (1.5)

The maximum marginal likelihood estimator, θ̂, and the normalization constant p(d;θ)
are closely related since

θ̂ = arg max
θ

{p(d;θ)} . (1.6)
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Eq. (1.6) can for example be maximized using the expectation-maximization (EM) algo-
rithm. Due to the spatial dependency and possible local optima, the optimization might
be complex to perform.

It is also possible to impose prior knowledge on θ, by assuming θ ∼ p(θ). The assessment
of θ is then cast into a Bayesian inference setting. Then we are able to generate poste-
rior realizations from p(θ|d). The latter can be done using Markov chain Monte Carlo
simulation.

In Chapter 2 we introduce the current model in greater detail. We specify a convolu-
tional Markov model through a prior, response and acquisition model, and deduce the
posterior model. We study various k-th order approximations of the posterior model in
Chapter 3, which can be assessed by the Forward-Backward algorithm. In Chapter 4 we
study various model parameter estimation techniques, and discuss how the various model
parameters can be assessed efficiently. Chapter 5 contains a thorough study of MAP
predictors for various likelihood approximations. We compare various distance measures
between the correct posterior model and the approximate posterior model. In Chapter 6
we have included two case studies where we estimate the transition matrix. In Chapter 7
a synthetic seismic test study is included. Finally, a summary of our findings are given in
Chapter 8.



6 CHAPTER 1. INTRODUCTION



Chapter 2

Probabilistic Model
The posterior model,

p(κ|d;θ) =
p(d|κ;θl)p(κ;θp)

p (d;θ)
, (2.1)

is proportional to the likelihood model times the prior model. These models are presented
in greater details in the following chapter. The prior is assumed to follow a first order
Markov chain, and we assume that each observation, dn, depends on κ. We relate the
model assumptions to a hidden Markov model, as defined in Cappe et al. (2005), and
Frühwirth-Schnatter (2006). We specify a Gauss-linear acquisition likelihood model, and
introduce a latent response likelihood model. The response likelihood model can for exam-
ple represent the log-physics response in well-log data. From the acquisition and response
likelihoods we define the gross likelihood, and study the apparent convolution kernel. In
the following chapter we omit the model parameter dependence to ease notation.

2.1 Prior Model

Let κ = (κ1, . . . , κN) be a first order Markov chain, i.e. it satisfies

p(κn|κn−1, . . . , κ1) = p(κn|κn−1) (2.2)

for n = 2, . . . , N . The transition (K × K)-matrix is defined as Pκ = [pij]i,j∈Ωκ
, where

pij = p(κn = j|κn−1 = i), is identical for all n. We assume a stationary Markov chain, i.e.
the transition probabilities are independent of n, and has a stationary distribution given
by

ps(κ) = Pκ ps(κ). (2.3)

Since κ1 ∼ ps(κ1), it follows that κ2 ∼ Pκ ps(κ1), κ3 ∼ P2
κ ps(κ1) an so on. Hence,

Eq. (2.3) gives the marginal distributions as

p(κn) = ps(κn). (2.4)

Thus, the marginal probability mass functions are identical for n = 1, . . . , N . We define
the prior model as

p(κ) =
N∏
n=1

p(κn|κn−1), (2.5)

7
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where p(κ1|κ0) = ps(κ1) for notational ease. Since

p (κn|κ−n) =
p (κ)

p (κ−n)

=
ps(κ1)p(κ2|κ1) · · · p(κN |κN−1)

ps(κ1)p(κ2|κ1) · · · p(κn+1|κn−1) · · · p(κN |κN−1)

=
p(κn|κn−1)p(κn+1|κn)

p(κn+1|κn−1)

=
p(κn−1)p(κn|κn−1)p(κn+1|κn)

p(κn−1)p(κn+1|κn−1)

=
p (κn−1, κn, κn+1)

p (κn−1, κn+1)

= p (κn|κn−1, κn+1)

, (2.6)

each κn is conditionally independent of κ1, . . . , κn−2, κn+2, . . . , κN given κn−1 and κn+1.
In Fig. 2.1 the correlation structure of a first order Markov chain is given. Indeed, the
first order Markov chain is a simple one dimensional Markov random field. Informally,
the latter is defined for a random variable x on a lattice S, with a neighbouhood system
δs, if for all s ∈ S

p (xs|x−s) = p (xs|xt; t ∈ δs) . (2.7)

In our case, S is one dimensional and identical to LD, where for each s ∈ S, δs = (s −
1, s+ 1), except at the boundary.

κ1 κ2 . . . κN−1 κN

Figure 2.1: Graphical model of the correlation structure of a first order Markov chain.

The first order Markov assumption ensures a forward spatial coupling in the prior model,
however also the time-reversed chain defined by

p (κ) = p(κN)p(κN−1|κN)p(κN−2|κN−1, κN) . . . p(κ1|κ2, . . . , κN), (2.8)

is a first order Markov chain since

p(κn|κn+1, . . . , κN) =
p(κn)×

∏N
i=n+1 p(κi|κi+1)

p(κn+1)×
∏N

i=n+2 p(κi|κi+1)

=
p(κn)p(κn+1|κn)

p(κn+1)

= p(κn|κn+1)

. (2.9)

The prior model for the time-reversed Markov chain is given as

p (κ) = ps(κN)×
N−1∏
n=1

p(κn|κn+1). (2.10)
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If the stationary distribution is uniform, then the time-reversed Markov chain and original
Markov chain are identically distributed.

The stationary, first-order Markov chain assumption is not critical in our approach, in
fact any non-homogeneous higher order Markov chain can be used.

The prior model is completely specified by the transition matrix, Pκ, thus the prior model
parameters are given as θp = {Pκ}. There are K × (K − 1) unknown model parameters
in the prior model since each row has to sum to unity.

2.2 Likelihood Model

We assume a gross likelihood model by introducing a latent continuous random field
r = (r1, . . . , rN)>, where rn ∈ R for n = 1, . . . , N , as in Rimstad and Omre (2013), and
Lindberg and Omre (2014a). We assume [d,κ] to be conditionally independent given
r, i.e. r can be thought of as a bridge between κ and d, since we assume p (d, r|κ) =
p(d|r)p(r|κ). The likelihood models are referred to as the response model, [r|κ], and the
acquisition model, [d|r]. The gross likelihood model is given as

p(d|κ) =

∫
RN
p(d|r)p(r|κ) dr. (2.11)

The latent field r can for example represent the logarithm of the elastic material properties,
such as pressure wave velocity, shear wave velocity and density. Experience from seismic
profiles indicates that r is a smooth field with spatial correlation. Therefore, we do not
assume the elements of r to be conditionally independent given κ, as studied in Rimstad
and Omre (2013), and Lindberg and Omre (2014a).

We consider only so called Gauss-linear likelihood models, i.e. likelihood models that are
linear in the modeling variable with additive Gaussian errors.

The gross likelihood depends on a vector of model parameters θl = (θlr ,θla), where θlr and
θla are respectively the model parameters in the response and acquisition likelihood.

2.2.1 Response Likelihood

We define the following response model,

[r|κ] = µr|κ + er|κ, (2.12)

where µr|κ is a N -vector with the mean and er|κ is a N -vector with errors. The error-
vector er|κ is assumed to be Gaussian with zero mean and covariance (N × N)-matrix
Σr|κ. The response likelihood is thus given as

p(r|κ) = φN
(
r;µr|κ,Σr|κ

)
. (2.13)

We assume the response likelihood to be stationary having mean and variance equal
to

µrn|κn =
∑

κ′∈Ωκ
µr|κ′ × 1{κ′ = κn}

σ2
rn|κn =

∑
κ′∈Ωκ

σ2
r|κ′ × 1{κ′ = κn}

for n = 1, . . . , N, (2.14)
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where µr|κ′ =
(
µr|κ′1 , . . . , µr|κ′K

)> and σ2
r|κ′ =

(
σ2
r|κ′1

, . . . , σ2
r|κ′K

)>
. That is, µr|κ =(

µr1|κ1 , . . . , µrN |κN
)>. The covariance matrix is decomposed as

Σr|κ = Σσ
r|κΣρ

r|κΣσ
r|κ, (2.15)

where Σσ
r|κ = diag(σr1|κ1 , . . . , σrN |κN ) is a diagonal standard deviation (N × N)-matrix.

The (N × N)-matrix with correlations, Σρ
r|κ, is defined from the correlation function,

ρr|κ(h). We propose a correlation model for the random field, r, with a dependent mode
process. The dependent mode process represents a common spatial correlation function
for all mode processes,

[Σρ
r]n,n+h = ρr(h). (2.16)

With a dependent mode process the residuals in the Gauss mode processes are correlated.
More complicated spatial correlation functions are possible, and include among others
a switching process between different independent mode processes defined through an
indicator function.

The marginal density of r is studied in greater detail, since its distributional properties
are used to propose an approximation to the response likelihood. Indeed,

p(r) =
∑
κ∈ΩNκ

φN(r|κ)p(κ) (2.17)

is a multivariate Gaussian mixture with marginal distributions,

p(rn) =
∑
κ∈Ωκ

φ1(rn|κ)ps(κ) for n = 1, . . . , N, (2.18)

being identical Gaussian mixtures.

A graphical representation of the current response model is given in Fig. 2.2, where the
arrows show the correlation structure in the prior and response models.

κ1 κ2 . . . κN−1 κN

r1 r2 . . . rN−1 rN

Figure 2.2: Graphical model of the current response likelihood with the spatial correlation
structure.

We assume the correlation function, ρr(h), to be parametrized by a truncation range, aρ,
and ψρ, being the functional representation of ρr(h). Therefore, Σρ

r is a band-diagonal
matrix with bandwidth 2aρ + 1. The response likelihood depends on model parameters
θlr =

(
µr|κ′ ,σ

2
r|κ′ , aρ,ψρ

)
. Indeed, the marginal Gaussian mixtures in Eq. (2.18) are

defined by the conditional their respective conditional mean and variance.
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2.2.2 Acquisition Likelihood

The acquisition model represents the observational procedure, describing the data collec-
tion procedure. This can for example be either local averages, some exact observations,
or relative contrasts. We define the acquisition model to be a linear model,

[d|r] = Hr + ed|r, (2.19)

where H is a general acquisition (Nd×N)-matrix, and ed|r is a Nd-vector with independent
error. The acquisition matrix may have Nd smaller, larger, or equal to N , but in most
cases Nd ≤ N .

The acquisition likelihood is specified to be Gauss-linear, i.e. we assume ed|r to be additive,
independent of r and Gaussian, more specifically with zero mean and covariance (Nd×Nd)-
matrix Σd|r = σ2

d|rI. Hence,

p(d|r) = φNd
(
d; Hr, σ2

d|rI
)
. (2.20)

For a fixed observational matrix H, the acquisition likelihood is assumed to only depend
on a parameter σ2

d|r, being the observational error for each observation. The observational
matrix, H, is completely general, and may be a convolution, selection, or mixed operator.
We will, however, consider only convolution operators.

A convolution arises naturally as a result of the dispersion of, for example, a physical
wavelet. A convolution is a local smoothness operator which makes dn not only dependent
on rn, but also the neighbours of rn. In signal processing a convolution kernel is often
used, since it can represent smooth functions in an efficient way.

We denote our acquisition convolution (N ×N)-matrix by H = W, where the acquisition
convolution kernel w is centered at the diagonal in W. We only consider symmetric and
stationary kernels, i.e. acquisition convolution kernels which are identical for all n, except
at the boundary. As Lindberg and Omre (2014a), we propose to truncate every element.
Thus, each internal-node can be written as a sum,

dn =
aw∑

i=−aw

wirn+i + en for n = 1, . . . , N. (2.21)

Popular choices of acquisition convolution kernels are the Gaussian, the powered expo-
nential, and Ricker wavelet, which we discretize and truncate on a grid. The truncation
reduces W to a band-diagonal matrix with bandwidth 2aw + 1.

A graphical representation of the convolved acquisition likelihood, together with the
prior and response models, is given in Fig. 2.3. We assume the acquisition convolu-
tion kernel to be parametrized by ψw. Thus, the acquisition likelihood is defined by
θla =

(
aw,ψw, σ

2
d|r

)
.

In for example seismic inversion the convolutional matrix W can be used together with
a differential matrix, D, and a matrix A with the angle-dependent weak Aki-Richards
coefficients creating a mixed model, H = WAD. We refer to Buland and Omre (2003)
for a study of such models.
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κ1 κ2 . . . κN−1 κN

r1 r2 . . . rN−1 rN

d1 d2
. . . dN−1 dN

Figure 2.3: Graphical model of the current convolved model.

2.2.3 Gross Likelihood

We study the gross likelihood model, [d|κ], in Eq. (2.11) in greater detail. As both
our response and acquisition likelihood models are assumed to be Gauss-linear, the gross
model

[d|κ] = W
(
µr|κ + er|κ

)
+ ed|r, (2.22)

is also Gauss-linear. Thus, the gross likelihood is

p(d|κ) = φNd

(
d; Wµr|κ,WΣr|κW> + σ2

d|rI
)

= φNd
(
d;µd|κ,Σd|κ

) . (2.23)

As seen in Eq. (2.23), µd|κ is only dependent on the acquisition convolution kernel and
not the spatial correlation function ρr(h). Since each dn appear as a weighted sum of
r, a short range acquisition convolution kernel ensures each dn to be a good read of rn.
We denote this the ’shoulder effect’, since a small aw ensures that each observation dn,
determined by rn and its neighbours, appears as a distinct shoulder in d.

In general, the covariance matrix depends on the band matrices W and Σρ
r. Therefore,

also WΣr|κW> + σ2
d|rI is a band matrix. It can be verified that WΣr|κW> in general

results in coloured noise. We introduce the concept of an apparent convolution kernel,
being the observed convolutional effect. Clearly, it is possible to fix the covariance matrix,
Σd|κ, and vary W and Σρ

r accordingly. Therefore, the effect is either from the spatial
correlation in the response model, or the from the acquisition convolution kernel, or both.
Since

WΣr|κW> = Σσ
r|κWΣρ

rW
>Σσ

r|κ, (2.24)

we define the apparent convolution kernel as

WA = WΣρ
r

1/2. (2.25)

The name apparent convolution refers to the observed convolution effect through the data.
If Σρ

r
1/2 and W are parametrized by second order exponentials, then also the apparent

convolution kernel can be parametrized by a second order exponential.
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In Fig. 2.4 we have simulated a latent field, κ, and generated two set of observations
from posterior models with identical posterior covariance matrix. If WA = Σρ

r
1/2, the

observation appears to have distinct shoulders. On the other hand, if WA = W the
observations are smoothed, and the small-scale variability is lost. We have therefore
reason to expect that classification of the reference profile is an easier problem if most of
the apparent convolution kernel results from the spatial correlation function.
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Figure 2.4: Comparison of observed data with fixed apparent convolution. Left: Reference
profile. Middle: Apparent convolution kernel equals correlation function, Σρ

r = WA.
Right: Apparent convolution kernel equals acquisition convolution kernel, W = WA.

Finally, the gross likelihood model is defined by the joint set of model parameters,
θl = (θlr ,θla) =

(
µr|κ′ ,σ

2
r|κ′ , aρ,ψρ, σ

2
d|r, aw,ψw

)
.

2.3 Posterior Model

As we have seen in Eq. (1.2), the posterior model is given as

p(κ|d) = const× φNd
(
d; Wµr|κ,WΣr|κW> + σ2

d|rI
)
×

N∏
n=1

p(κn|κn−1), (2.26)

where the normalizing constant is given as

const =

 ∑
κ′∈ΩNκ

φNd

(
d; Wµr|κ′ ,WΣr|κ′W

> + σ2
d|rI
)
×

N∏
n=1

p(κ′n|κ′n−1)

−1

. (2.27)



14 CHAPTER 2. PROBABILISTIC MODEL

Calculating the normalization constant, p(d), requires evaluating a sum including KN

permutations of κ. It is therefore computationally infeasible to evaluate Eq. (2.26) in
general. In practice the covariance matrix, WΣr|κW> + σ2

d|rI, is a band matrix with
band width at most 4aw + 2aρ + 1. Note that if W and Σr|κ are diagonal, then also the
covariance matrix in Eq. (2.26) is diagonal.

A r-th order factorial form function is defined to be

f (x1, . . . , xn) =
n∏

i=r+1

fi (xi−r, . . . , xi) , (2.28)

which we denote a lag-r model for r < n. In practice f could be a likelihood function, such
that f is a product of fi-s, being likelihood approximations. The factorial form model
is related to the conditional independence structure in a model. A lag-r model defines a
Markov random field with the neighbourhood determined by δi = {i − r, . . . , i + r} for
node i. Independent xi-s corresponds to a lag-0 model, where one of the most studied
lag-0 models is the hidden Markov model.

Our aim is to propose an approximation such that our posterior model, p(κ|d), is on
a lower order factorial form, and therefore a Markov random field. The approximate
posterior model can then be exactly assessed, using the Forward-Backward algorithm.
We need not approximate our prior model since it is already on factorial form. Our
approximation extends previously studied models.

2.3.1 Related Models

The spatial coupling in [r|κ] makes our response likelihood model different from the one
studied in Rimstad and Omre (2013), and Lindberg and Omre (2014a). They assumed a
hidden Markov model for [r|κ], hence their response likelihood is on factorial form

p(r|κ) =
N∏
n=1

φ1

(
rn;µr|κ′n , σ

2
r|κ′n

)
. (2.29)

The response model studied in Rimstad and Omre (2013) is presented in Fig. 2.5, and
should be compared with the current response model in Fig. 2.2. We observe that the
current response model also includes spatial coupling. Their model is identical to our if
ρr(h) = 0 for all h = 1, . . . , N − 1.

κ1 κ2 . . . κN−1 κN

r1 r2 . . . rN−1 rN

Figure 2.5: Graphical model of the response model presented in Rimstad and Omre (2013).
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The current model also extends the Bernoulli-Gaussian model presented in Cheng et al.
(1996), which only allows one-sided convolution. Compared to the current model, no
spatial dependence is assumed in their prior and response models. A graphical model of
the Bernoulli-Gaussian model is given in Fig. 2.6. In the Bernoulli-Gaussian model we
can not enforce any prior spatial dependence in κ.

κ1 κ2 . . . κN−1 κN

r1 r2 . . . rN−1 rN

d1 d2
. . . dN−1 dN

Figure 2.6: Graphical model of the Bernoulli-Gaussian model presented in Cheng et al.
(1996).

Finally, we present the Gaussian mixture model by Grana and Della Rossa (2010), and
later formalized by Amaliksen (2014). Instead of focusing on κ, they studied the poste-
rior p(r|d) by assigning a prior p(r) to r. They studied the continuous elastic material
properties, not the hidden categorical field, κ, representing the lithofacies. A graphical
model of their model is shown in Fig. 2.7. Note that they included no spatial dependence
in κ.

κ1 κ2 . . . κN−1 κN

r1 r2 . . . rN−1 rN

d1 d2
. . . dN−1 dN

Figure 2.7: Graphical model of the Gaussian mixture model presented in Grana and
Della Rossa (2010).

The imposed spatial correlation and multimodality are observed features from drilled
vertical wells, see Grana and Della Rossa (2010). As we have seen in Eq. (2.17), r is a
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multivariate Gaussian mixture model in the current model. Moreover, since

p(r|d) = [p(d)]−1 p(d|r)p(r)

= [p(d)]−1 ×
∑
κ

p(d|r)p(r|κ)p(κ)

=
∑
κ∈ΩNκ

p(d|r,κ)p(r|κ)p(κ) [p(κ,d)]−1 p(κ,d) [p(d)]−1

=
∑
κ∈ΩNκ

p(r|d,κ)p(κ|d)

, (2.30)

also the posterior [r|d] is a multivariate Gaussian mixture model. In fact, Eq. (2.30) is a
mixture in general for arbitrary densities p(κ), p(r|κ) and p(d|r). If we use known results
for Gaussian models, it follows that

p(r|d,κ) = φN
(
r;µr|d,κ,Σr|d,κ

)
, (2.31)

where
µr|d,κ = µr|κ + Σr|κW>

(
WΣr|κW> + σ2

d|rI
)−1 (

d−Wµr|κ
)

Σr|d,κ = Σr|κ −Σr|κW>
(
WΣr|κW> + σ2

d|rI
)−1

WΣr|κ

. (2.32)

If we have the posterior p(κ|d), then we also have the posterior p(r|d). We therefore only
focus on assessing p(κ|d).

As we have seen, our current model generalizes the models presented here. It is possible to
extend our model by assuming coloured noise in the acquisition likelihood. However, the
convolution impose coloured noise in the posterior covariance matrix. Therefore, we do
not choose to assume a more complicated acquisition likelihood model. The prior model,
p(κ), may also be extended to a higher order Markov chain or a non-stationary Markov
chain.



Chapter 3

Posterior Assessment
The posterior model,

p(κ|d) =
p(d|κ)p(κ)

p(d)
, (3.1)

is computationally infeasible because of the normalization constant, p (d). We propose to
approximate the posterior model such that it can be written on factorial form, and hence
be efficiently evaluated by the Forward-Backward algorithm. The simplest factorial form
approximation of Eq. (3.1), corresponding to k = 1, is

p (κ|d) =

∏N
n=1 p (d|κn) p (κn|κn−1)

p (d)
, (3.2)

where the likelihood is factorized into single-site dependent factors. If we rewrite Eq. (3.2),
we have

p (κ|d) = p (κ1|d)×
N∏
n=2

p (κn|κn−1, . . . , κ1,d) = p(κ1|d)×
N∏
i=2

p (κn|κn−1,d) . (3.3)

Indeed, the last equality in Eq. (3.3) holds since

p (κn|κn−1, . . . , κ1,d) ∝ p(κ1, . . . , κn|d)

∝
n∏
i=1

p(d|κi)p(κi|κi−1)

∝ p(d, κn|κn−1)

∝ p(κn|κn−1,d)

. (3.4)

Hence, κn depend only on d, κ1, . . . , κn−1 through κn−1 and d. Therefore, Eq. (3.3)
constitutes a first order non-stationary Markov chain. The posterior transition proba-
bilites being conditional on the observations are however no longer a homogenous Markov
chain.

For higher order k approximations, let κ(k)
n = (κn−k+1, . . . , κn) be the k-th order state. Our

previous first order Markov chain is now rephrased as a k-th order Markov chain,

κ(k) =
(
(κ1, . . . , κk), . . . , (κN−k+1, . . . , κN)

)
, (3.5)

with a transition (Kk ×Kk)-matrix, P(k)
κ . The elements are given as

p
(
κ(k)
n |κ̃

(k)
n−1

)
= p (κn|κ̃n−1)×

k−1∏
i=1

1 {κn−k+i = κ̃n−k+i} . (3.6)

17
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In order for the model to be consistent, the (k − 1) top mode labels in κ(k)
n−1 must equal

the (k − 1) bottom mode labels in κ(k)
n . Therefore, we need not store the full transition

matrix Pκ(k) . Similarly,

p
(
κn|κ̃(k)

n−1

)
=
∑

κ
(k−1)
n−1

p
(
κ(k)
n |κ̃

(k−1)
n−1

)

= p (κn|κ̃n−1)
∑

κ
(k−1)
n−1

k−1∏
i=1

1 {κn−k+i = κ̃n−k+i}

= p (κn|κ̃n−1)

, (3.7)

since there is only one κ(k−1)
n−1 such that

∏k−1
i=1 1 {κn−k+i = κ̃n−k+i} = 1. Indeed, the

prior

p
(
κ(k)

)
=

N∏
n=k

p
(
κ(k)
n |κ̃

(k)
n−1

)
=

N∏
n=k

(
k−1∏
i=1

1{κn−k+i = κ̃n−k+i}

)
× p (κn|κ̃n−1) , (3.8)

is still defined by the transition matrix Pκ.

Our likelihood approximation is inspired by Rimstad and Omre (2013), i.e. we seek a
likelihood approximation on factorial form,

p(k)
(
d|κ(k)

)
=

N∏
n=k

p(k)
(
d|κ(k)

n

)
. (3.9)

This is of the same form as for k = 1, hence the likelihood approximations presented later
are valid for all k. If we combine Eq. (3.8) and Eq. (3.9), we can approximate Eq. (3.1)
with

p(k)
(
κ(k)|d

)
= const×

N∏
n=k

p(k)
(
d|κ(k)

n

)
p
(
κ(k)
n |κ

(k)
n−1

)
, (3.10)

where p
(
κ

(k)
k |κ

(k)
k−1

)
= ps

(
κ

(k)
k

)
for notational ease. Thus, Eq. (3.10) is a k-th order

Markov chain with respect to κ(k)
n . The approximate posterior model in Eq. (3.10) is on

lag-(k − 1) factorial form. The approximate posterior model is given as

p(k) (κ|d) = const×
N∏
n=k

p(k)
(
d|κ(k)

n

)
p
(
κ(k)
n |κ

(k)
n−1

)
, (3.11)

and is a factorial form model of lag-(k − 1) for k ≥ 2.

We present two different likelihood approximations to p(k)
(
d|κ(k)

n

)
, namely the truncation

and projection approximation. The Forward-Backward algorithm is derived in Section 3.2.
In Section 3.3 the correct posterior model, p(κ|d), is assessed using the approximate
posterior model, p(k) (κ|d), in an iterative McMC MH-algorithm.
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3.1 Likelihood Approximations

We define two different likelihood approximations to Eq. (3.9), namely the truncation and
projection based approximations. Define the k-th order truncations r

(k)
t = (rt−k+1, . . . , rt)

>

and d
(k)
t = (dt−k+1, . . . , dt)

> for n = k, . . . , N . In both approximations we need the
marginal versions of p(r|κ), and we approximate the acquisition likelihood, p(d|r), by
either truncation or projection. We present the marginal response likelihoods, since they
are identical for both approximations.

The response model, [r|κ], is Gaussian by assumption, hence from marginalization also
[r

(k)
n |κ] for n = k, . . . , N are Gaussian. The mean, µ

r
(k)
n |κ

, and covariance matrix, Σ
r
(k)
n |κ

,
are found by extracting the appropriate rows and columns from µr|κ and Σr|κ. By con-
ditional independence it follows that

p
(
r(k)
n |κ

)
= p

(
r(k)
n |κ(k)

n , κ1, . . . , κn−k, κn, . . . , κN
)

= p
(
r(k)
n |κ(k)

n

)
, (3.12)

see Section 2.2.1, which is an exact expression.

3.1.1 Truncation

We present the truncation approximation for a convolutional acquisition likelihood model.
It is, however, possible to generalize our approach to a general acquisition likelihood
model. Since

p(d|r) =
N∏
n=1

p(dn|r), (3.13)

we define wn to be the n-th row of W. Then,

p(dn|r) = φ1

(
dn; wnr, σ

2
d|r
)
, (3.14)

for n = 1, . . . , N . For k = 2k′ + 1 and k′ = 0, . . . , N − 1, we define the band diagonal
matrix W(k) as the truncation of W, where every element more than k′ away from the
diagonal element is truncated to zero. Let w

(k)
n be the n-th row in W(k). Indeed,

p(k)(dn|r) = φ1

(
dn; w(k)

n r, σ2
d|r
)

= p(k)
(
dn|r(k)

n

)
(3.15)

for n = k + 1, . . . , N − 1. Define w
(k)
nn to be the subvector of length k in w

(k)
n that not

being truncated, then

p(k)
(
dn|r(k)

n

)
= φ1

(
dn; w(k)

nnr(k)
n , σ2

d|r
)
, (3.16)

for n = k+ 1, . . . , N − 1, with the additional boundary terms for n = k and n = N ,

p(k)
(
d

(k)
k |r

(k)
k

)
= φk

(
d

(k)
k ; W

(k)
k r

(k)
k , σ2

d|rI
)

p(k)
(
d

(k)
N |r

(k)
N

)
= φk

(
d

(k)
N ; W

(k)
N r

(k)
N , σ2

d|rI
) . (3.17)
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where the matrices W
(k)
k and W

(k)
N are respectively the upper left ((k′ + 1)× (2k′ + 1))-

block matrix and lower right ((k′ + 1)× (2k′ + 1))-block matrix in W(k).

Moreover, as shown in Eq. (3.12), p
(
r

(k)
n |κ(k)

n

)
is Gaussian with mean µ

r
(k)
n |κ

(k)
n

and co-
variance matrix Σ

r
(k)
n |κ

(k)
n

for n = k, . . . , N . Combined with Eq. (3.15), the k-th order
marginal truncation approximation is given as

p(k)
(
dn|κ(k)

n

)
= φ1

(
dn; w(k)

nnµr
(k)
n |κ

(k)
n
,w(k)

nnΣ
r
(k)
n |κ

(k)
n

w(k)
nn

>
+ σ2

d|r

)
(3.18)

for n = k + 1, . . . , N − 1. At the boundary it can be verified that

p(k)
(
d

(k)
k |κ

(k)
k

)
= φk

(
W

(k)
k µr

(k)
k |κ

(k)
k
,W

(k)
k Σ

r
(k)
k |κ

(k)
k

W
(k)
k

>
+ σ2

d|rI
)
, (3.19)

and similar for p(k)
(
d

(k)
N |κ

(k)
N

)
. The k-th order truncation is then formally defined as

p(k)
(
d|κ(k)

)
= p(k)

(
d

(k)
k |κ

(k)
k

)
×

N−1∏
n=k+1

p(k)
(
dn|κ(k)

n

)
× p(k)

(
d

(k)
N |κ

(k)
N

)
. (3.20)

If p(d|κ) =
∏N

n=1 p(dn|κn), i.e. W and Σr|κ are diagonal matrices, the method is exact
for k = 1 since Eq. (3.20) equals p(k) (d|κ) =

∏N
n=1 p(dn|κn). In fact the truncation

approximation is exact if W = W(k) and Σr|κ = Σ
(k)
r|κ, where the latter is the k-band

truncation of Σr|κ. It is possible to extend the truncation approximation discussed here
by introducing a sliding window based on W(k)

n , and then compute p(k)
(
d(k)
n |κ

(k)
n

)
for

n = k, . . . , N . The latter densities are then multivariate Gaussian, however they have to
be scaled to ensure that the observations are used only once.

3.1.2 Projection

Consider r, which is a multivariate Gaussian mixture,

p(r) =
∑
κ∈Ωnκ

φN
(
r;µr|κ,Σr|κ

)
p(κ). (3.21)

We propose a Gaussian approximation to r. From the law of total expectation we
have

µr =
∑
κ′∈Ωκ

µr|κ′ ps(κ
′), (3.22)

and we define µr = (µr, . . . , µr)
>. The covariance matrix, Σr, for a dependent mode

process is given as

[Σr]m,m+h =
∑

κ′m∈Ωκ

∑
κ′m+h∈Ωκ

[
σr|κ′mσr|κ′m+h

× ρr(h)

+
(
µr|κ′m − µr

) (
µr|κ′m+h

− µr
)]
p(κ′m+h|κ′m)

. (3.23)
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for m,m+h ∈ {1, . . . , N}. Thus, we propose p∗(r) = φN (r;µr,Σr), where µr and Σr are
as given above. Since our acquisition likelihood, p(d|r), is assumed to be Gauss-linear,
the approximate joint density is given as

p∗(d, r) = p(d|r)p∗(r), (3.24)

which is also Gaussian with

p∗

((
d
r

))
= φNd+N

((
d
r

)
;

(
Wµr

µr

)
,

(
WΣrW

> + σ2
d|rI WΣr

ΣrW
> Σr

))

= φNd+N

((
d
r

)
;

(
µd

µr

)
,

(
Σd,d Γd,r

Γ
>
d,r Σr,r

)) . (3.25)

The marginal distributions [d, r
(k)
n ] are also Gaussian, and can be found by marginaliza-

tion. That is, by extracting the appropriate columns and rows from the mean vector and
covariance matrix in Eq. (3.25), defining µ

r
(k)
n
, Σ

r
(k)
n

and Γ
d,r

(k)
n
. By conditioning on r

(k)
n ,

we obtain the Gaussian density

p∗
(
d|r(k)

n

)
= φNd

(
d;µ

d|r(k)n
,Σ

d|r(k)n

)
, (3.26)

where

µ
d|r(k)n

= µd + Γ
d,r

(k)
n

Σ−1

r
(k)
n

(
r(k)
n − µr(k)n

)
Σ

d|r(k)n
= Σd,d − Γ

d,r
(k)
n

Σ−1

r
(k)
n

Γ
>

d,r
(k)
n

. (3.27)

Moreover, p
(
r

(k)
n |κ(k)

n

)
is Gaussian with mean and covariance as discussed before. We

have
p∗
(
d, r(k)

n |κ(k)
n

)
= p∗

(
d|r(k)

n

)
p
(
r(k)
n |κ(k)

n

)
. (3.28)

Hence, by integrating out r
(k)
n , we obtain that p∗

(
d|κ(k)

n

)
is Gaussian with

µ
d|κ(k)

n
= µd + Γ

d,r
(k)
n

Σ−1

r
(k)
n

(
µ

r
(k)
n |κ

(k)
n
− µ

r
(k)
t

)
Σ

d|κ(k)
n

= Σ
d|r(k)t

+ Γ
d,r

(k)
n

Σ−1

r
(k)
n

Σ
r
(k)
n |κ

(k)
n

(
Γ

d,r
(k)
n

Σ−1

r
(k)
n

)> . (3.29)

We therefore propose the following likelihood approximation to Eq. (3.9),

p(k)
(
d|κ(k)

n

)
def
=



[
p∗

(
d|κ(k)

k

)]1/k
×
∏k−1

i=1

[
p∗

(
d|κ(k−i)

k−i

)]1/k
if n = k[

p∗

(
d|κ(k)

n

)]1/k
if n = k + 1, . . . , N − 1[

p∗

(
d|κ(k)

N

)]1/k
×
∏k−1

i=1

[
p∗

(
d|κ(k−i)

N

)]1/k
if n = N

. (3.30)

The k-th root in Eq. (3.30) ensures that all observations are used once, and the second
terms are boundary corrections. Because of the Gaussian approximation, the projection
approximation is not exact, even if p(d|κ) =

∏N
n=1 p(dn|κn).
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3.1.3 Comparison of Approximations

The truncation based approximation is extremely fast for convolutional acquisition like-
lihood models. Indeed, it only has to extract rows from W and multiply matrices of
low dimension. We have reason to believe that the truncation approximation is poor if a
significant part of the weight in wn is not covered by w

(k)
n . Ideally the truncation should

be of order k = 4aw + 2aρ + 1 in order to capture the information in the likelihood, but
then the assessment of the posterior model is usually computationally infeasible.

Compared to the truncation approximation discussed in Rimstad and Omre (2013), our
truncation approximation is valid for models where the class response variances are de-
pendent on κ. That is, the various classes can be separated by both a change in the
conditional variance and a shift in the conditional mean. They studied a truncation of
the precision matrix in the gross likelihood,

p(d|κ) ∝ exp

(
−1

2

(
µ
>
r|κAµr|κ + µ

>
r|κb

))
, (3.31)

where A = W>
(
WΣr|κW> + σ2

d|rI
)−1

W and b = −2W>
(
WΣr|κW> + σ2

d|rI
)−1

d.

They truncated A to a matrix A(k) having band width k, and obtained a model on
factorial form. Indeed, p(k)(d|κ) =

∏N
n=k p

(
d|κ(k)

n

)
in their model.

The projection method is inspired by Rimstad and Omre (2013). For lower order k we
expect the projection approximation to be superior to the truncation approximation if the
Gaussian approximation to r is good. This follows since more of the correlation structure
is preserved in the approximated likelihood. However, the Gaussian approximation, p∗(r),
may be poor if the there is a high average or maximum discrepancy between the Gaussian
mixture and Gaussian approximation.

3.2 Assessment of the Approximate Posterior Model

We present the Forward-Backward algorithm for a hidden Markov model, inspired by
Künsch (2001). These recursions have been applied to switching Gaussian process, see
for example Scott (2002), and Frühwirth-Schnatter (2006). Baum et al. (1970) studied
parameter inference in a hidden Markov model.

We derive the Forward-Backward algorithm for a hidden Markov model, which correspond
to a lag-0 model, with observations y = (y1, . . . , yM) and a latent variable x = (1, . . . , xM).
We assume that xm ∈ Ωx = {1, . . . , C} for m = 1, . . . ,M , and assume x to satisfy the
first order Markov property. Each observation ym is dependent only on xm, thus each pair
of observations in y is assumed to be conditionally independent given x. The likelihood
model is on factorial form,

p(y|x) =
M∏
m=1

p(ym|xm). (3.32)

A directed acyclic graph of a hidden Markov model is given in Fig. 3.1.
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x1 x2 . . . xM−1 xM

y1 y2 . . . yM−1 yM

Figure 3.1: Directed acyclic graph of a hidden Markov model.

We refer to p(xm|ym, . . . , y1), p(xm+s|ym, . . . , y1) and p(xm|yM , . . . , y1) as respectively the
filtering, s-step prediction and smoothing density. At the initial step, the filtering density
is given as

p(x1|y1) ∝ p(y1|x1)p(x1). (3.33)

For m = 2,

p(x2|y2, y1) ∝
∑
x1

p(x2, x1, y2, y1)

=
∑
x1

p(x1)p(y1|x1)p(x2|x1)p(y2|x2)

∝
∑
x1

p(x1|y1)p(x2|x1)p(y2|x2)

, (3.34)

which depends on the previous filtering density, likelihood and transition probabilities. In
general

p(xm|ym, . . . , y1) ∝
∑
xm−1

p(xm−1|ym−1, . . . , y1)p(xm|xm−1)p(ym|xm), (3.35)

for m = 2, . . . ,M . Eq. (3.35) only depends on the previous filtering, likelihood and the
transition probabilities, hence we can compute it recursively. Since we have to loop over all
observations M , and for each m = 1, . . . ,M calculate C2 sums, the computational cost is
O(M×C2). Compared to the brute-force approach, where we sum over CN permutations,
the Forward-Backward algorithm provides a significant improvement.

The one step prediction is derived as following for m = 2,

p(x2|y1) ∝
∑
x1

p(x2, x1|y1)

=
∑
x1

p(x1|y1)p(x2|x1, y1)

=
∑
x1

p(x1|y1)p(x2|x1)

, (3.36)

which depends on the filtering density and transition probabilities. The s-step prediction
is computed recursively,

p(xm+s|ym, . . . , y1) ∝
∑

xm+s−1

p(xm+s−1|ym, . . . , y1)p(xm+s|xm+s−1), (3.37)
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for s ≥ 2. The s-step prediction depends on the (s − 1)-step prediction and transition
probabilities. Evaluation of the (s − 1)-step predictions has a computational cost of
O(s×C2). A forward step, which includes computing the filtering and prediction densities,
has a computational cost of O ((M + s)× C2).

The smoothing density, or backward probabilities, are given as

p(xm|yM , . . . , y1) =
∑
xm+1

p(xm, xm+1|yM , . . . , y1)

=
∑
xm+1

p(xm|xm+1, yM , . . . , y1)p(xm+1|yM , . . . , y1)

=
∑
xm+1

p(xm|xm+1, ym, . . . , y1)p(xm+1|yM , . . . , y1)

=
∑
xm+1

p(xm, xm+1|ym, . . . , y1)

p(xm+1|ym, . . . , y1)
p(xm+1|yM , . . . , y1)

=
∑
xm+1

p(xm|ym, . . . , y1)p(xm+1|xm, ym, . . . , y1)

p(xm+1|ym, . . . , y1)
p(xm+1|yM , . . . , y1)

=
∑
xm+1

p(xm|ym, . . . , y1)p(xm+1|xm)
p(xm+1|ym, . . . , y1)

p(xm+1|yM , . . . , y1)

, (3.38)

for m = 1, . . . ,M . Eq. (3.38) depends on the transition probabilities, filtering, one-
step prediction and previous smoothing densities. The smoothing probabilities can be
computed recursively at a cost of O(M × C2). Thus, the total cost for the Forward-
Backward algorithm is O(M × C2). In practice C << M , thus the Forward-Backward
algorithm is linear in the number of observations. An immediate consequence of Eq. (3.38)
is that we can compute the joint density, p (xm, xm+1|yM , . . . , y1), as

p (xm, xm+1|yM , . . . , y1) =
p(xm|ym, . . . , y1)p(xm+1|xm)

p(xm+1|ym, . . . , y1)
p(xm+1|yM , . . . , y1), (3.39)

for m = 1, . . . ,M − 1. Indeed, Eq. (3.39) depends only on the filtering density, transition
probabilities, one-step prediction density and previous backward probabilities.

Since,

p (xM , . . . , x1|yM , . . . , y1) = p (xM |yM , . . . , y1)× p (xM−1|xM , yM , . . . , y1)

× · · · × p (x1|xM , . . . , x2, yM , . . . , y1)
, (3.40)

we can simulate sequentially from the posterior [x|y]. We compute

p (xm|xM , . . . , xm+1, yM , . . . , y1) ∝ p (xm|xM , . . . , xm+1, ym, . . . , y1)

= p (xm|xm+1, ym, . . . , y1)

∝ p (xm, xm+1|ym, . . . , y1)

= p (xm|ym, . . . , y1) p (xm+1|xm, ym, . . . y1)

= p (xm|ym, . . . , y1) p (xm+1|xm)

, (3.41)

in reverse index order, i.e. by iterating from m = M−1 down to m = 1. The simulation is
initialized by simulating from the last filtering density, p (xM |yM , . . . , y1). Since Eq. (3.41)
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only depends on the filtering density and the transition probabilities, we need not compute
the smoothing density. Similarly, we can find the mode

x̂ = arg max
x

{p (x1, . . . , xM |y1, . . . , yM)} , (3.42)

sequentially by maximizing

x̂M = arg max
xM

{p (xM |y1, . . . , yM)}

...
x̂1 = arg max

x1

{p (x1|x̂M , . . . , x̂2, yM , . . . , y1)}

. (3.43)

This global maximization procedure is often called the Viterbi algorithm, and utilizes
dynamic programming. Similar, it is possible to define a local maximization procedure,
where we maximize the marginal smoothing density,

ˆ̂x =

{
ˆ̂xm = arg max

xm

{p(xm|y1, . . . , yM)} ;m = 1, . . . ,M

}
. (3.44)

Compared to the Viterbi algorithm, only the marginal MAP (MMAP) predictor is ob-
tained by Eq. (3.44).

We have presented the Forward-Backward algorithm for a hidden Markov model, which
can adopted to our model. As discussed earlier, p(κ|d) is approximated by a non-
stationary first-order Markov chain. Therefore, we only have to use the approximated
likelihood instead of the exact likelihood, i.e. we use p(d|κn) instead of p(ym|xm) in the
Forward-Backward algorithm. The transition probabilities are given as p(κn|κn−1). For
the first order approximation of the likelihood we can evaluate the approximate posterior
model in O (N ×K2) operations.

To assess higher order likelihood approximations we redefine the state space, i.e. let
(x1, . . . , xM) =

(
κ

(k)
k , . . . ,κ

(k)
N

)
be a first order Markov chain of length M = N − k + 1.

The Forward-Backward algorithm is extended to higher order likelihood approximations
by increasing the state space. If we have two different classes, c1 and c2, the second order
approximation contains four classes, being the four different permutations of c1 and c2

of length two. In Appendix B the Forward-Backward algorithm is derived formally for
higher order factorial form models.

3.3 Assessment of the Correct Posterior Model

So far we have only assessed the approximate posterior model, p(k) (κ|d), as defined
in Eq. (3.11). Our goal is to assess the correct posterior model, p(κ|d). We propose to
assess p(κ|d) through Markov chain Monte Carlo (McMC) sampling, using the Metropolis-
Hastings (MH) algorithm. In general it is a hard problem to find a good proposal density
in the McMC MH-algorithm. We propose to use the k-th order approximate posterior
density as the proposal density. Since the proposal density is independent of the previous
iteration, we use a so-called independent proposal McMC MH-algorithm. This have been
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studied in Rimstad and Omre (2013) for a convolutional model with no spatial correlation
in the response model.

The iterative procedure for generating realizations, κ(burn−in), . . . ,κ(B), from the correct
posterior model is given in Alg. 1. The proposal density has to be assessed through the
Forward-Backward algorithm, discussed in Section 3.2. We discard the initial realizations
as the burn-in period. Indeed, after the Markov chain generated by Alg. 1 has reached
convergence, the realizations are from the correct posterior model. The normalization
constant, p(d), which until now has made the correct posterior model computational
infeasible, cancels in the first fraction of the acceptance probability. We propose to use
the MAP predictor for the approximate posterior model as the initial value in Alg. 1 to
reduce the burn-in period.

Algorithm 1: Independent proposal McMC MH-algorithm
Result: Realizations κ from the exact posterior p (κ|d).
Initialize κ(0) with p

(
κ(0)|d

)
> 0

for b = 1 to B do
Propose: κprop ∼ p(k) (κ|d)
Accept/reject step:

κ(i) =

κprop with probability min

{
1, p(κprop|d)

p(κ(b−1)|d)
× p(k)(κ(b−1)|d)

p(k)(κprop|d)

}
κ(b−1) otherwise

end
return

(
κ(burn−in), . . . ,κ(B)

)
Robert and Casella (2005) show certain convergence properties of the chain, κ(1), . . . ,κ(B),
from the correct posterior model, p(κ|d). The chain is irreducible and aperiodic, hence
ergodic and independent of initial conditions, if and only if p(k) (κ|d) is almost every-
where positive on the support of p (κ|d). Since both p(κ|d) and p(k) (κ|d) are probability
mass functions, the set of κ where p(k) (κ|d) = 0 has measure zero. Therefore, p(k) (κ|d)
is almost everywhere positive on the support of p(κ|d). Compared to a rejection sam-
pler, the independent proposal is more efficient in general since it on average accepts
more realizations when the chain has reached its stationary distribution, see Robert and
Casella (2005). Unfortunately, this comes at cost of not having independent realizations
from the posterior model, since the acceptance probability is dependent on the previous
realization.

We define the MMAP predictor for the correct posterior model as

κ̂MMAP =

{
κ̂MH
n = arg max

κn

{
B∑
i=1

1
(
κ(i)n

= κn
)}

; n = 1, . . . , N

}
, (3.45)

where, κ(i)n
is the i-th realizations at location n for n = 1, . . . , N . The marginal proba-

bilities are given as

p̂n(j) =

{
Prob{κn = j} =

1

B

B∑
i=1

1
{
κn(i)

= κn

}
; j ∈ Ωκ

}
, (3.46)



3.3. ASSESSMENT OF THE CORRECT POSTERIOR MODEL 27

for n = 1, . . . , N . Given the approximate posterior model, generating realizations from
the correct posterior model can be done extremely fast.

We introduce various distance measures to quantify the similarities between the approxi-
mate posterior model and the correct posterior model. The acceptance rate in the McMC
MH-algorithm, as suggested in Rimstad and Omre (2013), is studied. If the proposal dis-
tribution, p(k) (κ|d), is close to the target distribution, p (κ|d), the acceptance probability
is close to unity. The acceptance rate is formally defined as

α = E

{
min

{
1,
p (κprop|d)

p (κprev|d)
× p(k) (κprev|d)

p(k) (κprop|d)

}}
=
∑
κprop

∑
κprev

min

{
1,
p(k) (κprev|d)

p (κprev|d)
× p (κprop|d)

p(k) (κprop|d)

}
p (κprev|d) p(k) (κprop|d)

. (3.47)

If p (κ|d) = p(k) (κ|d), then the acceptance rate is always 1. An approximation is said to
be good if the acceptance rate is close to unity.

We compare the α measure to an approximate distance measure D[p(k) (κ|d) , p(κ|d)],
being a criterion to compare p(k) (κ|d) against p(κ|d). The approximate distance measure
is defined as

D
[
p(k)(κ|d), p(κ|d)

]
= max

κ

{∣∣p(k)(κ|d)− p(κ|d)
∣∣} , (3.48)

being the maximum difference between the approximate posterior model and the correct
posterior model. If our approximation is exact, D

[
p(k)(κ|d), p(κ|d)

]
= 0. The approx-

imate distance measure is often referred to as the total variation distance. An approxi-
mation is said to be good, with respect to the total variation measure, if it is close to 0.
A priori we have reason to believe that a high acceptance rate, α, corresponds to a small
distance. However, we find the maximum difference to be a poor measure of difference
since we explicitly approximate the normalization constant, which we could have used in
a rejection sampler instead. Indeed, the rejection sampler gives independent realizations
whereas the independent proposal McMC MH-algorithm produces correlated samples at
the cost of a lower acceptance rate.

The Kullback–Leibler divergence (KLD) is defined as

DKL

[
p(k)(κ|d), p(κ|d)

]
= Ep(k)

{
log

p(k)(κ|d)

p(κ|d)

}
=
∑
κ

p(k)(κ|d)× log
p(k)(κ|d)

p(κ|d)
, (3.49)

and is a distance measure often used in probability and information theory to compare
distributions. The KLD measures the information lost when p(k)(κ|d) is used to approx-
imate p(κ|d). Note that the KLD is defined only when p(κ|d) = 0 implies p(k)(κ|d) = 0,
which in our case always holds. It can be proven that the KLD is non-negative with
value 0 if and only p(κ|d) = p(k)(κ|d), however the KLD is not a true metric since it is
not symmetric. We have to evaluate both Eq. (3.48) and Eq. (3.49) by sampling, since
they require to evaluate a sum over KN elements. As for the total variation measure, we
find the KLD measure to be poor since we explicitly estimate the normalization constant.
We refer to Levin et al. (2008) for a discussion of different distance measures and their
properties.

If the posterior model [r|d] is of interest, it is straightforward to generate posterior real-
izations. Realizations from [r|d] can be generated by Alg. 2, where µr|d,κ and Σr|d,κ are
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given in Eq. (2.32). Given realizations from [κ|d], we can generate realizations from [r|d]
almost for free.

Algorithm 2: Generate realizations from p (r|d)

Result: Generate realizations from the correct posterior response model p (r|d)
zs ∼ φN (0, I)
Generate κs ∼ p (κ|d)

rs = µr|d,κs + Σ
1/2
r|d,κsz

s

return rs

We propose the weighted Viterbi MMAP, given as

̂[r|d] =
r̂n = argmax

rn

 ∑
κ′∈Ωκ

φ1

(
rn;µrn|d,κ′ , σ

2
rn|d,κ′

)
× p(κ′|d)

 ;n = 1, . . . , N

 . (3.50)

This entails N univariate optimizations, which may be done by evaluating the K modes.
Similar, the confidence (1−α) confidence limits, [Qn,1−α/2, Qn,α/2], may be found pointwise
by numerical integration. They are given are given as

Prob
{
Qn,1−α/2 ≤ rn ≤ Qn,α/2|d

}
= 1− α, (3.51)

for n = 1, . . . , N .



Chapter 4

Parameter Inference

The approximate and correct posterior models are dependent on a vector of model param-
eters θ = (θp,θlr ,θla), respectively denoting the model parameters in the prior, response
and acquisition models. We present various techniques to estimate these model parame-
ters.

4.1 Marginal Likelihood

The maximum marginal likelihood (MML) estimates the model parameters which are
most likely to have generated the observations. From Bayes’ rule we have

p (κ|d;θ) =
p (d|κ;θ) p (κ;θ)

p (d;θ)
. (4.1)

The marginal likelihood, being the normalization constant, is given as

p (d;θ) =
∑
κ

p (d|κ;θ) p (κ;θ) . (4.2)

Such marginal likelihoods are usually hard to evaluate, and often have to be assessed
through numerical methods. These methods include simulation based on McMC or opti-
mization through the expectation-maximization algorithm.

4.1.1 Approximate Maximum Marginal Likelihood

We consider optimization of the marginal likelihood as in Lindberg and Omre (2014a).
The maximum marginal likelihood estimate (MMLE) is the model parameter vector, θ,
maximizing the likelihood function, randomized over (κ, r). The correct posterior model
has MMLE given as

θ̂mml = arg max
θ

{− log p (d;θ)} . (4.3)

In log-scale, the k-th order approximate marginal likelihood is

log p(k) (d;θ) = − log
∑

κN−k+2

· · ·
∑
κN

zN+k−1

(
κ

(k−1)
N

)
= − log z

(k)
d , (4.4)

29
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where the normalization constant is computed in the forward recursion, see Section 3.2.
The k-th order approximate MMLE is

θ̂
(k)
mml = arg max

θ

{
− log p(k) (d;θ)

}
, (4.5)

which is exact with respect to the approximate likelihood model. Optimization of Eq. (4.5)
is in practice a hard problem, and dependent on the unknown model parameters. The idea
is to tailor a maximization scheme such that for a sequence of model parameters, {θ̂i},
the sequence of log-likelihoods, log p(k)

(
d; θ̂i

)
, is decreasing. If the number of unknown

model parameters is small, a possible procedure is to discretize each model parameter
on to a grid. Eq. (4.5) is first maximized on a coarse grid, before we decrease the step
size on a smaller grid. The approach is presented in Lindberg (2010), but without any
constraints it is infeasible if the number of unknown model parameters is high.

Our workflow is the same as in Lindberg and Omre (2014a), and is given in Fig. 4.1.
We start by initiating the unknown model parameters, θ, and then compute p(k) (d;θ)
using the Forward-Backward algorithm. If the current marginal likelihood is not a maxi-
mum value, we update θ. After convergence, we fix θ(k)

mml equal to the θ that maximizes
p(k) (d;θ). The MAP and MMAP predictors are found based on θ̂(k)

mml.

4.1.2 Approximate Maximum Marginal A Posterior

We present a Bayesian alternative to the approximate MMLE in Section. 4.1.1. A prior
distribution, p (θ), is assigned to the vector of unknown model parameters, θ. The pos-
terior model is then

p(θ|d) ∝ p(d|θ)p(θ). (4.6)

The mode of Eq. (4.6) is the MAP estimate, θ̂(k)
map. The marginal likelihood, p(d;θ),

is given in Eq. 4.2, but now θ is a random variable. Hence, the posterior p(θ|d) is
proportional to the likelihood, p(d|θ), times the prior of θ. The k-th order approximate
MAP estimate is hence given as

θ̂(k)
map = arg max

θ

{
p(k) (θ|d)

}
= arg max

θ

{
log p(k) (d|θ) + log p(θ)

)
= arg max

θ

{
log p(θ)− log p(k)(d;θ)

} (4.7)

Optimization of the approximate marginal likelihood and approximate marginal a poste-
rior are therefore similar problems. The approximate maximum MAP estimate should be
evaluated similar as the approximate MMLE. The prior, p(θ), may depend on a set of
hyperparameter, τ = (η, τ lr , τ la). These could be known, or dependent on another layer
of hyperparameters.
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Input: (d, k,θfixed)

Initialize: θ

Compute p(k) (d;θ)

Is p(k) (d;θ)
maximum?

Update θ

Compute p(k)
(
d; θ̂

(k)
mml

)

Compute κ̂

Return:
(
κ̂, θ̂

(k)
mml

)

no

yes, set θ̂(k)
mml = θ

MML parameter estimation

MAP prediction

Figure 4.1: Workflow diagram of the MML parameter estimation procedure.
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4.2 The Expectation-Maximization Algorithm

In the following chapter we specify densities dependent on a parameter θ as p(x|θ) instead
of p(x;θ), to clarify the dependence on the parameter. The approximate MML given in
Eq. (4.5), or equivalently the maximum MAP in Eq. (4.7), can be optimized by the
expectation-maximization (EM) algorithm. The EM-algorithm was first introduced by
Dempster et al. (1977) to overcome difficulties in maximizing likelihoods by introducing
latent variables. A thorough introduction to the EM-algorithm is found in Hastie et al.
(2001), and Robert and Casella (2005). We present the EM-algorithm in general for a
univariate parameter ν.

We observe x independent and identically distributed from g(x|ν). Assessment of the
maximum likelihood estimator ν̂ = arg maxL(ν|x) is often a hard problem. We introduce
an augmented, or latent, variable, z. Let the joint density be denoted by f(x, z|ν). Define
the conditional density of the augmented variable, given the observations, as

h(z|x, ν) =
f(x, z|ν)

g(x|ν)
. (4.8)

If we rewrite Eq. (4.8) and take the logarithm on both sides, we obtain

log g(x|ν) = log f(x, z|ν)− log h(z|x, ν). (4.9)

We take the expectation on both sides with respect to h(z|x, ν0) for an arbitrary ν0, and
write the conditional densities in terms of log-likelihoods, then,

l(ν|x) = Eν0{l(ν|x, z)} − Eν0{l(z|x,ν)}
= Q(ν|ν0)−R(ν0, ν)

. (4.10)

In the E-step we compute Q(ν|ν0, ) = Eν0{l(ν|x, z)}, followed by the M-step where
Q(ν|ν0) is maximized with respect to ν. We iterate between the E- and M-step until
convergence. The sequence of estimators {ν̂i} satisfies

l(ν̂i+1|x) ≥ l(ν̂i|x), (4.11)

with equality if and only if Q(ν̂i+1|ν̂i) = Q(ν̂i|ν̂i). By definition, Q(ν̂i+1|ν̂i) ≥ Q(ν̂i|ν̂i),
since ν̂i+1 is defined as the value ν maximizing Q(ν|ν̂i). Jensen’s inequality implies
that

Eνi

{
log

(
l(z|ν̂i+1,x)

l(z|ν̂i,x)

)}
≤ log Eνi

{
p(z|ν̂i+1,x)

p(z|ν̂i,x)

}
= 0. (4.12)

Therefore, we need only to optimize Q(ν|ν0), not R(ν0, ν).

The EM-algorithm provides an increasing sequence of likelihood-values. However, we are
not able to conclude that ν̂i converges to the maximum likelihood estimator. In practice
it is necessary to run the EM-algorithm multiple times with different initial values to
ensure that the global maximum is found. The EM-algorithm is given in Alg. 3. Cappe
et al. (2005) discuss the EM-algorithm and its convergence properties for a hidden Markov
model.

In practice the E-step requires calculating the expected log-likelihood, which may consti-
tute a hard problem. This can be overcome by estimating the expectation with a Monte
Carlo step, see Wei and Tanner (1990). Their method is often referred to as Monte Carlo
Expectation Maximization (MCEM).
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Algorithm 3: Expectation-Maximization algorithm
Result: Maximum likelihood estimate ν̂
Initialize ν̂0, i = 1
repeat

E-step: Q(ν|ν̂i−1) = Eν̂i−1
{l(ν|x, z)}

M-step: ν̂i = arg maxν Q(ν|ν̂i−1)
i = i+ 1

until convergence;
return ν̂

4.3 Model Parameters

Assessment of the model parameters are in general a hard problem. We present various
optimization techniques for the prior, response and acquisition model parameters sepa-
rately. We refer to Chapter 3 for an introduction of the model parameters. We assign
independent hyperparameters, η, τ lr and τ la , to the prior, response and acquisition model
parameters, respectively. In Fig. 4.2 the hierarchical structure of the convolutional model
is given.

Pκ

µr|κ′

σ2
r|κ′

ψρ

aρ

σ2
d|r

ψw

aw

η

τ lr

τ la

µr|κ

Σσ
r|κ

Σρ
r

W

p(κ)

p(r|κ)

p(d|r)

p(κ|d)

Figure 4.2: Hierarchical structure of the model parameters in the current convolutional
model.

4.3.1 Prior Model Parameters

In this section we assume the likelihood model parameters, (θlr ,θla), to be known, and
that the only unknown quantity is Pκ, where its dimension is fixed and known. If the
dimension is unknown an extension of the reversible jump McMC algorithm by Green
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(1995) or a Bayesian variable dimension model as defined in Robert and Casella (2005)
may be used. We refer to Scott (2002), and references therein, for a discussion of the
various approaches. We define the transition matrix to be

Pκ =

p11 . . . p1K
... . . . ...
pK1 . . . pKK

 , (4.13)

where the stationary distribution depends on Pκ. Each row in Pκ must sum to unity,
thus we have K × (K − 1) unknown model parameters.

The k-th order approximate MMLE, presented in Section. 4.1.1, is given as

θ̂
(k)
mml = arg max

θp

{
− log p(k) (d;θp)

}
. (4.14)

The EM-algorithm is suitable since maximization of p(d;θ) is infeasible, whereas max-
imization of the joint, p(d,κ;θ), is feasible. The EM algorithm is given with an E-
step

Q (Pκ|Pprev
κ ) = Ep(κ|d;Pprev

κ )
{

log p(k) (κ|d; Pκ)
}
, (4.15)

followed by a M-step
Pκ = arg max

Pκ

{Q (Pκ|Pprev
κ )} . (4.16)

It can be shown, see Cappe et al. (2005), that the transition matrix, P̂κ, with ele-
ments

P̂κ =

{
pij =

∑N
n=2 p (κn−1 = i, κn = j|d; Pprev

κ )∑N
n=1 p (κn = i|d; Pprev

κ )
; i, j = 1, . . . , K

}
, (4.17)

where Pprev
κ is the previous estimator, maximizes the Q-function in Eq. (4.16).

We consider the transition matrix through sampling, and we assign a prior distribution to
the transition matrix, Pκ. A symmetric Dirichlet prior with identical hyperparameters,
η ≥ 0, is assumed, following the idea of Eidsvik et al. (2004). The Dirichlet distribution is
given in Appendix A. In each iteration i we generate a realization, κ(i) ∼ p

(
κ|d,P(i−1)

κ

)
,

and then generate a new transition matrix P(i)
κ ∼ p

(
Pκ|κ(i),d

)
. After the burn-in period,

the joint realizations {κ(i),P(i)
κ } have the correct distribution. The posterior, p(Pκ|κ,d),

depends only on κ since

p (Pκ|κ,d) ∝ p(d|κ)p (κ|Pκ) p (Pκ) ∝ p (κ|Pκ) p (Pκ) . (4.18)

Each row in Pκ has a prior defined by

p(Pi
κ; η) =

Γ(Kη)

Γ(η)K
×

K∏
j=1

pη−1
ij , (4.19)

where p(Pi
κ) = p (pi1, . . . , piK) and

∑
j pij = 1 for all i = 1, . . . , K. Since the Dirichlet

distribution is a conjugate prior, we have

p (Pκ|κ; η) =
Γ
(
Kη +

∑K
j=1 nij

)
∏K

j=1 Γ (η + nij)
×

K∏
j=1

p
η+nij−1
ij , (4.20)
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where nij is the number of transitions from class i to class j in κ.

Since the posterior p (Pκ|κ,d) is a Dirichlet distribution it is straightforward to gen-
erate realizations from p(Pκ|κ,d). The McMC algorithm is given in Alg. 4, inspired
by Lindberg and Omre (2014b). The computational cost of each step in Alg. 4 is
O
(
T × (n− k + 2)×Kk

)
, where T represents the computational cost of generating a

realization κ. Indeed, T may vary with the transition matrix. The computational cost of
the McMC approach is infeasible if a large number of iterations are required to obtain real-
izations from the posterior p (κ|d; P). From the posterior realizations P(burn−in)

κ , . . . ,P(B)
κ ,

we are able to assess the uncertainty in the estimates. We propose to use the mode of
each pij and not the mean, since the latter is a poor estimator close to zero and one.

Algorithm 4: McMC for Pκ

Result: Realizations
(
P(burn−in)

κ , . . . ,P(B)
κ

)
∼ p (Pκ|κ,d)

Initialize P(0)
κ with p

(
P(0)

κ |κ,d
)
> 0

for i = 1 to B do
Generate κ ∼ p

(
κ|d; P(i−1)

κ

)
Generate P(i)

κ ∼ p (Pκ|κ; η) according to Eq. (4.20)
end

return
(
P(burn−in)

κ , . . . ,P(B)
κ

)
The k-th order MAP estimate given in Eq. (4.7) is

θ̂(k)
map = arg max

κ

{
log p (Pκ|κ; η)− log p(k)(d;θ)

}
. (4.21)

4.3.2 Response Model Parameters

In the following section we assume the prior and acquisition likelihood model parameters to
be fixed and known. The class response models are Gaussian with in total 2K parameters
describing the means and variances. The response model, [r|κ], depends on aρ and ψρ.
They describe respectively the truncation width, and model parameters in the spatial
correlation function. We assume ρr to be parametrized by a powered exponential,

ρr(h; ξ, ζ) = exp

(
−
(
h

ξ

)ζ)
, (4.22)

where ξ and ζ are the range and smoothness parameter, respectively. Hence, the response
likelihood model is defined by 2K + 3 parameters. The MMLE is given as

θ̂
(k)
lr,mml = arg max

θlr

{
− log p(k) (d;θlr)

}
, (4.23)

and similarly for the MAP estimate. The MAP estimate is dependent on hyperparameters
τ lr . If a difference operator D is included in the acquisition operator, i.e. we observe
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relative contrasts, only the variation and change in magnitude is possible to assess. That
is, we can not assess the various means, only their relative difference.

We present optimization of Eq. (4.23) for a univariate parameter θlr , but it extends to
higher dimensions. The parameter is discretized on a lattice, Lθlr

, with stepsize hθlr .
In practice, Lθlr

is often restricted by the parameters itself, for example in Eq. (4.22)
we restrict ourselves to δ ∈ [1, 2]. The optimization procedure is given in Alg. 5. The
maximum MAP estimate is evaluated similarly.

Algorithm 5: MMLE θlr
Result: Maximum marginal likelihood estimate θlr .
for θ̃ ∈ Lθlr

do
Run the Forward-Backward algorithm with model parameters θ̃
Evaluate the marginal likelihood l̂(d; θ̃) = − log p(d; θ̃)

end

return θlr = arg maxθ̃

{
l̂(d; θ̃)

}

4.3.3 Parameters in the Acquisition Model

Finally, we assume (θp,θlr) to be known. The vector of unknown model parameters is
given as θla =

(
aw,ψw, σ

2
d|r

)
. In general, the dimension of θla is dim (ψw) + 2. As for

the response likelihood model, the dimension of ψw is in general unknown, however we
assume a parametric acquisition convolution kernel. We assume the convolution kernel to
be defined by a normalized powered exponential,

w(h;χ, δ) ∝ exp

{
−
(
h

χ

)δ}
. (4.24)

In Eq. (4.24), χ and δ are respectively the range and shape parameter. By assuming a
parametric acquisition convolution kernel we reduce the dimensionality of the approximate
likelihood function, which entails an optimization of a lower dimension

The k-th order MMLE is given as

θ̂
(k)
la,mml = arg max

θla

{
− log p(k) (d;θla)

}
, (4.25)

and similar for the MAP estimate. The MAP estimate depends on a vector of hyperpa-
rameters, τ la . Eq. (4.25) constitues a hard optimization problem, but in can be evaluated
as in Section 4.3.2. A study of parametric acquisition convolution kernels is found in
Lindberg and Omre (2014a).



Chapter 5

MAP Case Studies

We compare the truncation and projection based likelihood approximations for various
orders of k. The one dimensional reference profile, κ is displayed in Fig. 5.1, and it is
assumed to be of length n = 100. It contains three different classes, {light-grey, dark-
grey, black}. From our reference profile we generate various response models r, given κ.
Conditioned on r, we generate observations, d, through the acquisition model. We study
different response and acquisition models. In particular, we vary the spatial correlation
function and class response variance in the response model. The apparent convolution
kernel is assumed to be either a powered exponential, second order exponential, or Ricker
function with different kernel widths.

We compare the MAP and MMAP predictors for the likelihood approximations for var-
ious k, and estimate the similarity measure, α. The similarity measure is a measure of
similarity between the approximate and exact posterior models, see Section 3.3. Higher
values of α indicate that the approximate posterior, p(k) (κ|d), is a good approxima-
tion of the correct posterior, p (κ|d). The distance measures, D[p(k) (κ|d) , p (κ|d)] and
DKL[p(k) (κ|d) , p (κ|d)] are also estimated.

Sequences of 100,000 realizations from the correct posterior models, p(κ|d), are gener-
ated, using an independent proposal McMC MH-algorithm. We discard the 10,000 first
realizations as a burn-in period. The McMC MH-algorithm is initiated with the MAP
predictor of the approximate posterior model.

The model parameters are assumed to be fixed and known in this case study.

5

Figure 5.1: Reference profile, κ.

37
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5.1 Model Specification

The reference profile, κ, with K = 3, is generated from a prior with the symmetric
transition matrix

Pκ =

0.8 0.2 0.0
0.2 0.6 0.2
0.0 0.2 0.8

 , (5.1)

having stationary distribution 1/3× (1, 1, 1)>. We see that the light-grey class and black
class are not allowed to be neighbours. The time-reversed Markov chain is distributed
identically to the original Markov chain since the marginal distribution is uniform, see
Eq. (2.8).

The class response means are fixed to µr|κ′ = (−1, 0, 1)>, and remain unchanged through-
out this chapter. The variances, σ2

r|κ′ , are varied throughout this chapter. The test cases
are defined from a spatial correlation function, ρr(h; ξ), and either an apparent convolution
kernel, wA, or an acquisition convolution kernel, w.

We sort the various test cases by name dependent on their apparent convolution kernel,
apparent kernel width, response model variances, and spatial correlation range. The name
conventions are listed in Tab. 5.1. Each test case is uniquely defined by its name, and we
define SE/MK/MV/MC to be the reference case. That is, the case with a second order
exponential acquisition kernel, medium kernel width, medium variances in the response
model, and a medium spatial correlation range.

Table 5.1: Name conventions for the MAP test case studies.

Name Abbreviation

Apparent convolution
kernel type

Powered exponential PE
Second order exponential SE
Ricker exponential RE

Apparent convolution
kernel width

Short kernel SK
Medium kernel MK
Long kernel LK

Class response variance
Low variance LV
Medium variance MV
High variance HV

Spatial correlation
range

Short correlation SC
Medium correlation MC
Long correlation LC

The observational error is assumed to be σ2
d|r = 10−4 throughout this chapter. Since the

observational error is assumed to be fixed, we define the associated signal-to-noise ratio
to be

S/N
def
=

Tr
(
WA

)
N ×

∑
κ′∈Ωκ

σ2
r|κ′ps(κ

′)
, (5.2)

where Tr(·) denotes the trace of a matrix. A high signal-to-noise ratio assures the obser-
vations to be a good read off from the response profile. For each i = 1, . . . , K, we define
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the misclassification rates as in Lindberg (2010),

li =

∑N
n=1 1{κr

n = i}p(k) (κn = i|d)∑N
n=1 1{κr

n = i}

ui =

∑N
n=1 p

(k) (κn = i|d)∑N
n=1 1{κr

n = i}

, (5.3)

where κr
n is n-th value of the reference profile. We refer to li as the lower part, and

it represents the ability for the approximate posterior model to correctly predict the
reference profile. Similarly, ui is the upper part, and it is defined to be the ratio between
how much the posterior favors class i, compared to the reference model. Indeed, we have
li ≤ ui. If a predictor is good, both li and ui are close to unity.

5.1.1 Reference Case

The reference case, SE/MK/MV/MC, is studied in detail, and is later compared with
the other test cases. The class response standard deviation vector is given as σr|κ′ =
(0.7, 0.7, 0.7)>. In Fig. 5.2a the class response densities are displayed with solid lines.
We observe that the class response densities are overlapping. In specific, the dark-grey
class is partly masked by the two other classes. We have therefore reason to believe
that we underestimate the proportion of the dark-grey class. The Gaussian mixture
is displayed with a dashed line, and the Gaussian approximation with a dotted line.
Indeed, the multimodality of the Gaussian mixture is hard to observe. Since the Gaussian
approximation is close to the Gaussian mixture, we expect the projection approximation
to perform well.

The apparent convolution kernel is defined to be a second order exponential function,

wA(h) = const× exp

{
−1

2
×
(
h

4

)2
}
, (5.4)

which we normalize. It is displayed in Fig. 5.2b. Each observation is dependent on roughly
its 35 closest neighbours in the response model.

The spatial correlation function, ρr(h), is defined to be a powered exponential,

ρr(h) = exp

{
−1

2
×
(
h

2

)2
}
. (5.5)

Together, WA and Σρ
r define the acquisition convolution operator, W, since WA =

WΣρ
r

1/2. The spatial correlation function is given together with the acquisition convo-
lution kernel in Fig. 5.3. The correlation function has an effective range of 5, and the
effective width of the acquisition convolution kernel is close to 35, but the values are
reduced relative to the apparent convolution kernel.
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Figure 5.2: Left (a): Class response densities with solid lines, Gaussian mixture is dis-
played with dashed line, and the Gaussian approximation with a dotted line. Right (b):
Apparent convolution kernel, wA.
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Figure 5.3: SE/MK/MV/MC: From left to right: Spatial correlation function, ρr(h), and
acquisition convolution kernel, w.

The signal-to-noise ratio is S/N ≈ 0.204. The response profile, r, is shown together with
the observations, d, in Fig. 5.4. Indeed, d is smooth with a poor signal-to-noise ratio, and
the mode jumps in κ are only partly identifiable through visual inspection. Therefore, we
expect only to capture the main characteristics of κ.
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Figure 5.4: SE/MK/MV/MC: From left to right: Response profile, r, and observations,
d.

We compare the MAP predictors for the approximate posterior models, p(k) (κ|d). The
MAP predictors are given in Fig. 5.5. The projection based approximation identifies
slightly more of the small-scale variability in the reference profile than the truncation
based approximation. Indeed, the MAP predictors are smooth compared to the reference
profile, as they will be due to a poor signal-to-noise ratio. Both approximations have
fairly stable MAP predictors for increasing values of k. A lower order approximation is
observed to be sufficient if assessment of the MAP predictors is of interest.
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Figure 5.5: SE/MK/MV/MC: MAP predictors for the truncation (top) and projection
(bottom) approximations for various order of k, together with the reference profile.
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The marginal probabilities and MMAP predictors for the approximate posterior mod-
els, p(k) (κ|d), are compared in Fig. 5.6. We see that the marginal probabilities based
on the projection approximation captures more of the heterogeneity than the marginal
probabilities based on the truncation approximation. The MMAP predictors share the
main characteristics with the MAP predictors. We find the projection approximation to
perform better, since it captures rapid transitions in κ better than the truncation approx-
imation. Since the MMAP predictor is a pointwise property, it is not guaranteed that the
MMAP predictor provides a legal predictor. That is, the MMAP predictor can predict
the light-grey and black classes to be neighbours, which has zero probability in the prior
model, and hence in the approximate posterior model. This will not occur in the MAP
predictor.
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Figure 5.6: SE/MK/MV/MC: MMAP predictors and marginal probabilities for various
k for respectively the truncation (top) and projection (bottom) approximations, together
with the reference profile.

The misclassification coverage statistics for the approximate posterior models, p(k) (κ|d),
are given in Fig. 5.7. In the top row of displays, the truncation approximation has be used
to approximate the likelihood model. From left to right, we present the misclassification
statistics for classes light-grey, dark-grey and black. The misclassification rates are shown
as functions of k ∈ {1, 3, 5, 7}, with a line segment for the corresponding misclassifica-
tion coverage statistic. For example, the light-grey class has a misclassification coverage
statistic of approximately [0.87, 1.15] for the first order truncation based approximation.
The misclassification coverage statistics for the projection approximation are given in the
bottom row of displays, in an identical format as for the truncation approximation. Both
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the truncation and projection approximation tend to overestimate the occurrences of the
light-grey and black classes, whereas the dark-grey is severely underestimated. The cov-
erage bands are fairly wide, which is reasonable since the class responses are chosen to
be partly overlapping. We see that an increasing k is preferable for correctly classifying
the middle dark-grey class, at the cost of possibly underestimating the occurrence of the
black class. We observe that the projection based approximation has slightly shorter
misclassification coverage statistics intervals for the light-grey and black classes than the
truncation based approximation.
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Figure 5.7: SE/MK/MV/MC: Misclassification coverage statistics. Top row: Truncation
approximation. From left to right: Light-grey class, dark-grey class, and black class, as
functions of k. Bottom row: Projection approximation. From left to right: Light-grey
class, dark-grey class, and black class, as functions of k.

We generate 100,000 realizations from the correct posterior model, p(κ|d), using the
various approximate posterior models as proposal densities in the independent proposal
McMC MH-algorithm. The acceptance rates, α, of the independent proposal McMC
MH-algorithm, as functions of k, are given in Fig. 5.8. For k ≥ 3, we get a reasonable
acceptance rate for the projection approximation, slightly above 10%. Higher order k is
not found to have a great effect on the acceptance rates. If the likelihood is approximated
by the truncation method, the acceptance rates appear to be somewhat lower, compared
to the ones based on the projection method. Both the truncation and projection based
approximation appear to have a slight decrease in the acceptance rate for k = 7, compared
to k = 5.
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Figure 5.8: SE/MK/MV/MC: Acceptance rates as functions of k. Results based on
the projection approximation is given with a solid line, and based on the truncation
approximation with a dashed line.

We compare the two other distance measures defined in Section 3.3. Note that these
measures are inverted relative to the acceptance rates α, since they decrease to zero when
the approximate posterior model get closer to the correct posterior model. In Fig. 5.9a
the log-maximum total variation distance measure, D[p(k) (κ|d) , p (κ|d)], is given for the
likelihood approximations. The results based on the truncation approximation decrease
for k up to 5, and then slightly increase, while the projection approximation is strictly
decreasing for increasing k. This is consistent with the acceptance rates in Fig. 5.8. The
Kullback-Leibler divergence measure, DKL[p(k) (κ|d) , p (κ|d)], is given in Fig. 5.9b. The
distance is strictly decreasing for increasing k. We observe that by increasing the order of
the approximation, the approximate posterior models get closer to the correct posterior
model. Since the distance measures appear with similar behaviour, we choose only to
consider the acceptance rates in the following case studies.
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Figure 5.9: SE/MK/MV/MC: Log-maximum total variance and Kullback-Leibler diver-
gence measures. Results for the projection approximation are given with a solid line, and
a dashed line for the truncation approximation.

In Fig. 5.10, 5,000 realizations from the correct posterior model p(κ|d) are given. The
realizations are generated by the independent proposal McMC MH-algorithm. The trun-
cation approximation has been used to approximate the likelihood in the proposal density.
Compared to the truncation based MAP and MMAP predictors, the posterior realizations
are more heterogeneous, and they are comparable to the reference profile.

5 = 1 5 = 3 5 = 5 5 = 7

Figure 5.10: SE/MK/MV/MC: 5,000 realizations from the correct posterior model,
p(κ|d), based on the truncation approximation.

In Fig. 5.11, 5,000 realizations from the correct posterior model are given, using k-th order
projection approximations. These realizations share most of the characteristics with their
associated MAP and MMAP predictors. Compared to the realizations in Fig. 5.10, the
realizations in Fig. 5.11 appear to fluctuate more rapidly.
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5 = 1 5 = 3 5 = 5 5 = 7

Figure 5.11: SE/MK/MV/MC: 5,000 realizations from the correct posterior model,
p(κ|d), based on the projection approximation.

In Fig. 5.12 the marginal probabilities and MMAP predictor are estimated based on the
realizations from the correct posterior model, p(κ|d), together with the reference profile.
These realizations are generated using a seventh order approximation, where the acquisi-
tion likelihood has been approximated by the projection method. The estimated MMAP
predictor based on the correct posterior model, p(κ|d), is almost identical to the corre-
sponding exact MMAP predictor in Fig. 5.6 based on the approximate posterior model,
p(k) (κ|d). The marginal probabilities appear to be less smooth than the corresponding
ones in Fig. 5.6, probably due to estimation error. Indeed, the MMAP predictor is less
heterogeneous than the reference profile because of the poor signal-to-noise ratio.

p(xn) MMAP 5

Figure 5.12: SE/MK/MV/MC: Marginal probabilities and MMAP predictor for the cor-
rect posterior model, p(κ|d), together with the reference profile, κ.



5.1. MODEL SPECIFICATION 47

5.1.2 Apparent Convolution Kernel

We consider various apparent convolution kernels. The model parameters, except those
describing the apparent convolution kernel, are assumed to be as in Section 5.1.1. Cases
PE/MK/MV/MC, SE/MK/MV/MC and RE/MK/MV/MC are studied, and we refer to
them as cases one, two and three. In case one we assume the apparent convolution kernel
to be a powered exponential function,

wA(h) = const× exp

{
−
(
|h|
4

)1.2
}
. (5.6)

Case two is the reference case as defined in Section 5.1.1, while case three is defined from
a Ricker kernel,

wA(h) = const×
(

1− h2

42

)
× exp

{
− h2

2× 42

}
. (5.7)

We require each row in WA to sum to unity, i.e. we normalize the apparent convolution
kernels. The acquisition convolution kernels for cases one, two and three, which are all
symmetric, are displayed in Fig. 5.13.
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Figure 5.13: Acquisition convolution kernel for cases one to three, displayed with respec-
tively a dotted, solid and dashed line.

The signal-to-noise ratios are 2.04, 0.204 and 0.885 for cases one, two and three, respec-
tively.

In Fig. 5.14 and Fig. 5.15 we display the results based on the three cases. We present the
figure layout in great detail. At the top row the model parameters are given. Note that
the signal-to-noise ratios are different for the three cases. In the top row of displays, the
spatial correlation function and acquisition convolution kernel are given in pairs for the
three cases.

At the second to top display, the reference profile, κ, is given. Each pair of response
profiles, ri, and observations, di, are then given together for cases one, two and three.
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They are ordered such that each pair of realizations is beneath their respective spatial
correlation function and acquisition convolution kernel. The response profiles, ri, are
identical in the three cases. Indeed, d1 and d2 have very similar observations, but with a
different degree of smoothness. We observe that d3 appear with the most ’shoulder effect’.
Indeed, more of the small-scale variability is evident in d3 than in d1 and d2.

In the third row of display, the MAP predictors for the approximate posterior models
are given for the truncation based approximation for various k. They are ordered such
that they are beneath their respective response and observational realizations. The MAP
predictors for cases one and two are almost identical for all k, and both reproduce the
main characteristics of κ. The MAP predictors in case three also reproduce some of the
small-scale variability in κ. Indeed, the MAP predictors are fairly stable as functions of
k. The acceptance rate, α, is specified beneath each MAP predictor. The acceptance
rate, α, is estimated from 90,000 iterations of the McMC MH-algorithm. An increase of
k is observed to in general increase the acceptance rates, α.

The MAP predictors for the projection based approximation are presented in the same
format as for the truncation approximation above. Compared to the truncation based
approximation MAP predictors, the projection based approximation MAP predictors re-
produce more of the variability in κ. The MAP predictors are almost identical for in-
creasing order k. In cases two and three, the acceptance rates seem to stabilize for k ≥ 3
for the projection approximation. In case one, we see that a fifth order approximation
is needed in order to obtain a reasonable acceptance rate. In fact, the truncation based
approximation performs slightly better than the projection based approximation for k = 7
in cases one and three.

At the top row of display in Fig. 5.15, the acceptance rates are plotted as functions of k
for cases one, two and three. In general, higher order approximations are observed to be
preferable. The acceptance rates have similar behaviour, and the projection approxima-
tion is preferable for lower order k. Below 5,000 realizations from the correct posterior
model in cases one and three are given. We observe that the realizations are more het-
erogeneous than the MAP predictors, as they should be. We observe that the MAP
predictors in Fig. 5.14 do share most of the main characteristics with the realizations in
Fig. 5.15.
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Figure 5.14: PE-SE-RE/MK/MV/MC: Model parameters, reference cases and MAP
predictions/α-values for truncation and projection approximation for varying order k. The
acceptance rates, α, are estimated from 90,000 iterations from the McMC MH-algorithm.
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Figure 5.15: PE-SE-RE/MK/MV/MC: Top row: Acceptance rates as function of k. Pro-
jection approximation is shown with a solid line and truncation approximation with a
dashed line. Bottom: 5,000 realizations from the various models with varying k. Accep-
tance rates, α, are included.
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5.1.3 Apparent Convolution Width

We study a normalized, second order exponential apparent convolution kernel, but assume
it to also be dependent on the range,

wA(h; ε) = const× exp

{
−1

2
×
(
h

ε

)2
}
. (5.8)

The apparent convolution kernel range is assumed to be ε ∈ {2, 4, 6}, i.e. they have
either a short, medium or long apparent convolution kernel. These cases are respectively
SE/SK/MV/MC, SE/MK/MV/MC and SE/LK/MV/MC, and we refer to them as cases
one, two and three. The remaining model parameters are assumed to be fixed, and
as defined in Section 5.1.1. The resulting acquisition convolution kernels are given in
Fig. 5.16.
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Figure 5.16: SE/SK-MK-LK/MV/MC: Short, medium and long acquisition convolution
kernel, given with respectively a dotted, solid and dashed line.

Fig. 5.17 and Fig. 5.18 are in the same format as Fig. 5.14 and Fig. 5.15, respectively. The
model parameters are specified at the top row. In the top row of displays, the spatial cor-
relation function and the acquisition convolution kernel, are plotted in pairs. From left to
right they are given with an increasing acquisition convolution kernel width. In the second
to top row we see that the observations appear with decreasing ’shoulder effects’, which
is intuitively correct since the apparent convolution kernel increases. Both the truncation
and projection based approximation have MAP predictors that appear to capture more of
the small-scale variability in case one. As before, we find the projection approximation to
be mostly superior to the truncation one. Indeed, a higher order likelihood approximation
yields a higher acceptance rate in general.

The acceptance rates are presented at the top row of displays in Fig. 5.18. The acceptance
rates increase for an increasing kernel width, i.e. it increases as the influence of the
acquisition convolution kernel increases relative to the spatial correlation function. In the
low displays of Fig. 5.17, 5,000 realizations from the correct posterior model, p(κ|d), are
included for cases one and three.
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Figure 5.17: SE/SK-MK-LK/MV/MC: Model parameters, reference cases and MAP
predictions/α-values for truncation and projection approximation for varying order k. The
acceptance rates, α, are estimated from 90,000 iterations from the McMC MH-algorithm.
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Figure 5.18: SE/SK-MK-LK/MV/MC: Top row: Acceptance rates as function of k. Pro-
jection approximation is shown with a solid line and truncation approximation with a
dashed line. Bottom: 5,000 realizations from the various models with varying k. Accep-
tance rates, α, are included.
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5.1.4 Variances in Response Model

We study the impact of different variances in the class response models. A low variance
and a high variance case are introduced, in addition to the reference case. These cases are
SE/MK/LV/MC, SE/MK/MV/MC and SE/MK/HV/MC, which we refer to as cases one,
two and three. They are assumed to have σr|κ′ = (0.6, 0.6, 0.6)>, σr|κ′ = (0.7, 0.7, 0.7)> and
σr|κ′ = (1, 1, 1)>, respectively. The remaining model parameters are given in Section 5.1.1.
The marginal class response densities are shown in Fig. 5.19, and should be compared
with Fig. 5.2a. The spatial correlation function and apparent convolution kernel are fixed,
and hence also the acquisition convolution kernel. The approximate posterior models have
identical posterior means, but different covariance matrices.
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Figure 5.19: SE/MK/LV-HV/MC: Class response densities displayed with solid lines. The
Gaussian mixture is given with dashed line, and the Gaussian approximation is given with
a dotted line.

The results are presented in Fig. 5.20 and Fig. 5.21. The model parameters are given
at the top in Fig. 5.20, and we have assumed three different variances. At the top row
of display from left to right, the apparent convolution kernel, and in pair the spatial
correlation function and acquisition convolution kernel are given. Indeed, the response
profiles and observations are almost identical in the three different cases since they have
identical spatial correlation and acquisition convolution kernel. The MAP predictors for
the truncation approximation are almost identical in the three cases. For the truncation
based approximation, an increase in the class response variances entails a loss of small-
scale variability in the MAP predictors. The MAP predictors based on the projection
approximation are fairly similar in the various cases, however for case three, a small part
of the dark-grey class is not identified compared to the other two cases.

The acceptance rates increase as functions of k in Fig. 5.21, and a high class response
variance is favourable, as expected. The acceptance rates as functions of k have similar
behaviour for the truncation and projection approximation. Based on the acceptance
rates, the approximations are observed to favour high response variances.

For cases one and three, 5,000 realizations from the correct posterior model are displayed in
Fig. 5.21. Higher heterogeneity than in the MAP predictions are observed, of course.
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Figure 5.20: SE/MK/LV-MV-HV/MC: Model parameters, reference cases and MAP
predictions/α-values for truncation and projection approximation for varying order k. The
acceptance rates, α, are estimated from 90,000 iterations from the McMC MH-algorithm.



56 CHAPTER 5. MAP CASE STUDIES

SE/MK/LV/MC
1 3 5 7

0.025

0.03

0.035

0.04

0.045

SE/MK/MV/MC
1 3 5 7

0

0.05

0.1

0.15

SE/MK/HV/MC
1 3 5 7

0

0.05

0.1

0.15

0.2

k = 1
0.0277

T
ru
n
ca
ti
on

li
ke
li
h
o
o
d

k = 3
0.0379

k = 5
0.0355

k = 7
0.0389

k = 1
0.0361

P
ro
je
ct
io
n
li
ke
li
h
o
o
d

k = 3
0.0378

k = 5
0.0403

k = 7
0.0413

k = 1
0.0487

T
ru
n
ca
ti
on

li
ke
li
h
o
o
d

k = 3
0.1078

k = 5
0.1381

k = 7
0.1856

k = 1
0.0709

P
ro
je
ct
io
n
li
ke
li
h
o
o
d

k = 3
0.1418

k = 5
0.1615

k = 7
0.1733

Approximate Posterior Similarity Measure

Realizations SE/MK/LV/MC

Realizations SE/MK/HV/MC

Figure 5.21: SE/MK/LV-MV-HV/MC: Top row: Acceptance rates as function of k. Pro-
jection approximation is shown with a solid line and truncation approximation with a
dashed line. Bottom: 5,000 realizations from the various models with varying k. Accep-
tance rates, α, are included.
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5.1.5 Spatial Correlation Response Model

A case study where the apparent convolution kernel is fixed, but the spatial correlation
function is varied, is now considered. We assume the remaining model parameters to be
given as in Section 5.1.1. The spatial correlation function is defined as

ρr(h; ξ) = exp

{
−1

2
×
(
h

ξ

)2
}
, (5.9)

where the range parameter, ξ, describes the effective range of the spatial correlation.
We consider test cases SE/MK/MV/SC, SE/MK/MV/MC and SE/MK/MV/LC, with
respectively ξ ∈ {1, 2, 3}. They are referred to as cases one, two and three, respectively.
The spatial correlation functions are presented in Fig. 5.22.
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Figure 5.22: SE/MK/MV/SC-MC-LC: Spatial correlation functions, ρr(h), with ranges
1, 2 and 3.

The results are presented in Fig. 5.23 and Fig. 5.24. Model parameters are given at the top
in Fig. 5.23. The apparent convolution kernel is given in the leftmost plot in the top row of
displays. Then, in pair with increasing spatial correlation, the spatial correlation function
is given together with the acquisition convolution kernel. The various response profiles,
r1 to r3, appear with increasing smoothness. We observe that the different observations
do share the main characteristics, with slightly more smoothness in d1.

The MAP predictors for the truncation approximation are almost identical for the various
cases, and as functions of k. As before, the projection approximation captures more of
the small-scale variability in the reference profile

As we have discussed in Section 5.1.3, the acceptance rates increase when the influence
of the acquisition convolution kernel, w, increases relative to the spatial correlation func-
tion, ρr(h). Indeed, case one has significantly higher acceptance rates than case three in
Fig. 5.24. Acceptance rates of approximately 0.5 are obtained, which entails good mixing
in the McMC algorithm. This can be observed in the display of the 5,000 realizations for
case one.
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Figure 5.23: SE/MK/MV/SC-MC-LC: Model parameters, reference cases and MAP
predictions/α-values for truncation and projection approximation for varying order k. The
acceptance rates, α, are estimated from 90,000 iterations from the McMC MH-algorithm.
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Figure 5.24: SE/MK/MV/SC-MC-LC: Top row: Acceptance rates as function of k. Pro-
jection approximation is shown with a solid line and truncation approximation with a
dashed line. Bottom: 5,000 realizations from the various models with varying k. Accep-
tance rates, α, are included.
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5.2 Closing Remarks

We have studied in total nine different models. Two different likelihood approximations,
of various order, are evaluated.

The MAP predictors based on projection for the approximate posterior models capture
more of the model heterogeneity than the MAP predictor for the truncation based ap-
proximation. The MAP and MMAP predictors are almost identical for various k, hence
a lower order approximation is sufficient if prediction of the approximate posterior model
is of interest.

Since the computational cost increases exponentially with increasing k, we seek a low
order approximation. The approximate posterior should be sufficiently close to the correct
posterior model, so that realizations from the correct posterior model can be generated
at a reasonable computational cost. We introduce the acceptance rate as a measure of
similarity, i.e. it quantifies the quality of the approximations. The projection based
approximate posterior model has generally higher acceptance rates than the truncation
one for lower order approximations. In most cases the acceptance rate is shown to be an
increasing function of k, which stabilizes for k ≥ 3. We observe that the truncation based
approximation has increasing acceptance rates for increasing k, and we expect it to be
better than the projection approximation for a sufficiently large k. Indeed, the truncation
approximation is exact if k is chosen sufficiently large.

If the acquisition convolution kernel is wide, the projection based approximation is found
to perform significantly better than the truncation based approximation. If the apparent
convolution kernel is short, the relative difference between the truncation and projection
approximations is small. Response models which are strongly correlated, are more likely
to have a low acceptance rate compared to the response processes with less spatial cor-
relation. A high class response variance is also preferable with respect to the acceptance
rates.

The realizations from the correct posterior model represent more of the heterogeneity
than the predictors, which they should.

We conclude that a third or fifth order projection approximation is favourable since it
yields reasonable acceptance rates at a low computational cost.



Chapter 6

Assessment of the Transition Matrix

We study assessment of the transition matrix, Pκ. A simple model with two different
classes, and a more complicated model with ordered classes, are studied. The first case
study is inspired by the simple Bernoulli-Gaussian model, where the second class denotes
a jump between classes. In the latter test study we assume a structured Pκ.

Only the third order projection approximation of the likelihood model is considered.
This is found to be a reasonable trade-off between computational cost and accuracy in
Chapter 5. We compare the approximate EM-algorithm and McMC approach, presented
in Chapter 4 to assess the transition matrix, Pκ. In the latter case we also assess the
uncertainty in the estimates. We use the estimated transition matrices as plug-in estimates
to assess the MAP and MMAP predictors.

We assume the model parameters, except the transition probabilities, to be fixed and
known.

6.1 High Reflector Points

The first test study is an extension of a model studied in Lindberg and Omre (2014b).
A convolutional two-level hidden Markov model of length N = 200, with κn ∈ Ωκ =
{grey, black}, is studied. The Bernoulli-Gaussian model only predicts the location of the
transitions, and not the distinct classes.

6.1.1 Model Specification

We assume the transition matrix to be defined as

Pκ =

(
0.90 0.10
0.95 0.05

)
, (6.1)

having stationary distribution (0.9048, 0.0952). The reference profile is displayed in
Fig. 6.1. The corresponding empirical transition matrix, P̂emp

κ , which we obtain by count-
ing the number of transitions in κ, is

P̂emp
κ =

(
0.8764 0.1236
1.0000 0

)
. (6.2)
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Figure 6.1: Reference profile, κ.

A longer reference profile would randomize over the model, and with an infinite long
profile the correct and empirical transition matrices coincide.

We assume the class response models to be defined by µr|κ = (0, 0)> and σr|κ = (0.1, 3)>.
The two classes are chosen to have identical means, but different variances. High reflector
points have high variance, and inhomogeneities inside each class are assumed to have
a smaller variance. In Fig. 6.2 the conditional response densities, p(r|κ = grey) and
p(r|κ = black), are displayed with solid lines. The corresponding Gaussian mixture
is given with a dashed line, and almost overlaps with p(r|κ = grey). The Gaussian
approximation is displayed with a dotted line.
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Figure 6.2: Conditional densities displayed with solid lines, the Gaussian mixture with a
dashed line, and the Gaussian approximation with a dotted line.

The spatial correlation function

ρ(h) = exp
{
−h1.4

}
, (6.3)
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is displayed in Fig. 6.3a. We truncate Σρ
r by assuming aρ = 5. The acquisition convolution

kernel is assumed to be a powered exponential,

w(h) = exp

{
−
(
h

2

)1.4
}
, (6.4)

and it is given in Fig. 6.3b. We truncate W to be of band width 15, i.e. aw = 7.
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Figure 6.3: Spatial correlation function, ρr(h), and acquisition convolution kernel, w.

An observational error σ2
d|r = 0.01 is assumed, and the associated signal-to-noise ratio is

1.4237. The signal-to-noise ratio is defined in Section 5.1.

In Fig. 6.4 the response profile, r, is given together with the observations, d. Most of
the high reflection points appear as spikes in the response profile. Because of identical
expectation, not every transition in reference profile is evident in the response profile.
Indeed, the main characteristics of reference profile appear as distinct shoulders in the
observations.
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Figure 6.4: Response profile, r, and observations, d.
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6.1.2 Results

The approximate EM-algorithm is run in total 25 times with various initial transition
matrices, Pκ. The initial transition matrices are chosen both informative, i.e. close to
the correct transition matrix, and uninformative, having uniform probabilities. The 25
versions converge to the same estimate. In Fig. 6.5 we have included trace plots of the
log-likelihoods found by the approximate EM-algorithm based on four different initial
transition matrices. The log-likelihoods converge within seven iterations. The estimated
transition matrix is given as

P̂aEM
κ =

(
0.8803 0.1197
0.9235 0.0765

)
, (6.5)

with stationary distribution (0.8853, 0.1147). Compared to the correct transition matrix,
given in Eq. (6.1), the approximate EM estimate slightly overestimates the proportion of
the black class. As discussed, this is not unreasonable since the Gaussian approximation
has a heavier tail than the Gaussian mixture in our response model.
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Figure 6.5: Trace plot of the log-likelihoods based on four different initial transition
matrices.

The approximate EM-algorithm provides an extremely fast and accurate estimate of the
transition matrix. However, the fast computation comes at the cost of not having the
associated uncertainty in the parameter estimates. It is possible to construct approximate
confidence bands from the Hessian matrix, see Lindberg and Omre (2014b), but these are
not very reliable estimates close to zero or one.

In Fig. 6.6 the marginal probabilities, and MAP and MMAP predictors for p
(
κ|d; P̂aEM

κ

)
are given together with the reference profile. The MAP and MMAP predictors represent
the main characteristics of the reference profile. The MMAP predictor is almost identical
to the reference profile, whereas the MAP predictor differs slightly more.
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Figure 6.6: Marginal probabilities, and MAP and MMAP predictors for p
(
κ|d; P̂aEM

κ

)
,

together with reference profile.

We assess the transition matrix through McMC sampling, see Section. 4.3.1, by assuming
a symmetric Dirichlet prior, with ηij = 1 for all i, j. A sequence of 5,000 realizations is
generated from the posterior p(Pκ|d). The McMC algorithm is initialized with a transition
matrix having elements equal to 1/2. Trace plots of the transition probabilities in the
McMC-algorithm are displayed in Fig. 6.7. We observe that the sequence of realizations
converges almost instantaneously. The burn-in period is fixed to 1,000 iterations.
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Figure 6.7: Trace plots of the estimated transitions probabilities.

The McMC estimate is given as
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P̂McMC
κ =

(
0.8608 0.1392
0.9203 0.0797

)
, (6.6)

with stationary distribution (0.8686, 0.1314). Each element, p̂ij, in Eq. (6.6) is chosen to
be the estimated mode of the realizations, since the estimated mean in general is a poor
estimate if it is close to zero or one. The estimated transition matrices are found to be
almost identical. Both estimates overestimates the proportion of the black class.

In Fig. 6.8 the estimated transition probabilities are given with their associated 95% con-
fidence bands. The confidence bands are defined from the 95% range of the posterior
for each parameter. We see that the correct transition probabilities are well inside their
respective 95% confidence band.
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Figure 6.8: Estimators
[
P̂McMC

κ

]
ij
, with estimated values displayed with ’o’, correct values,

’×’, and 95% confidence range.

In Fig. 6.9 the marginal probabilities, and MAP and MMAP predictors for p
(
κ|d; P̂McMC

κ

)
are given together with the reference profile. The marginal probabilities capture most of
the variability in the correct posterior model. Indeed, the MAP and MMAP predictors
based on the McMC estimate are very similar to the MAP and MMAP predictors based
on the approximate EM.
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Figure 6.9: Marginal probabilities, and MAP and MMAP predictors for p
(
κ|d; P̂McMC

κ

)
,

together with reference profile.

We compare the misclassification coverage statistics as defined in Eq. (5.3). The estimated
transition matrices, P̂aEM

κ and P̂McMC
κ , are used as plug-in estimates. In Fig. 6.10 we

observe that the approximate posteriors, p
(
κ|d; P̂aEM

κ

)
and p

(
κ|d; P̂McMC

κ

)
, are good

approximations for the grey class since the coverage statistics are small and close to unity.
We find this to be reasonable since we have more observations from the grey class. Indeed,
the black class is slightly underestimated. Indeed, the coverage statistics based on the
approximate EM and McMC estimates are almost identical.
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Figure 6.10: Misclassification coverage statistics based on the approximate EM and McMC
estimation methods.

The computational requirement of P̂McMC
κ is severe compared to P̂aEM

κ . Indeed, the latter
requires only to run the Forward-Backward algorithm to ensure convergence to the correct
maximum of the log-likelihood. To generate realizations from the correct posterior model,
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we need to run the Forward-Backward algorithm each time, and then generate realizations
from p(Pκ|κ), which may be very expensive if the acceptance rate is low.

6.2 Ordered Profile

We study a ordered reference profile, κ, of length N = 100. The reference profile is
assumed to be a first order Markov chain, with κn ∈ Ωκ = {1, . . . , 4}.

6.2.1 Model Specification

We assume the transition matrix to be given as

Pκ =


0.8 0.2 0.0 0.0
0.1 0.7 0.2 0.0
0.1 0.0 0.7 0.2
0.3 0.0 0.0 0.7

 , (6.7)

with stationary distribution (0.4154, 0.2769, 0.1846, 0.1231). The reference profile is dis-
played in Fig. 6.11, and it appears with a stair-like sequence, which randomly falls back
to class one. By counting the number of transitions in κ, the empirical transition matrix
is found to be

P̂emp
κ =


0.8298 0.1702 0 0
0.0800 0.6800 0.2400 0
0.1667 0 0.6666 0.1667
0.3333 0 0 0.6667

 , (6.8)

with stationary distribution (0.4769, 0.2557, 0.1778, 0.0896).
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Figure 6.11: Reference profile, κ.

The model parameters in the class responses are assumed to be given as µr|κ′ = (0, 1, 2, 3)>

and σr|κ′ = (0.5, 0.5, 0.5, 0.5)>. In Fig. 6.12 the class response densities p(rn|κn = i) for
i = 1, . . . 4 are shown with solid lines, with the appropriate grey-scale. The Gaussian
mixture is shown with a dashed line, and it is found to be skewed. The Gaussian approx-
imation, which is symmetric, is displayed with a dotted line.



6.2. ORDERED PROFILE 69

-6 -4 -2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 6.12: Class response densities displayed with solid lines, together with the Gaussian
mixture displayed with a dashed line and the Gaussian approximation displayed with a
dotted line.

For the response likelihood, a dependent mode process is assumed, with spatial correlation
function

ρr(h) = exp
{
−h1.4

}
. (6.9)

The spatial correlation function is given in Fig. 6.13a, and it is truncated with aρ = 4.
We assume the acquisition convolution kernel to be given as

wA(h) = const× exp

{
−
(
h

2.5

)1.4
}
. (6.10)

In Fig. 6.13b the acquisition convolution kernel is given, and we truncate W to a band-
diagonal matrix of band-width 21, i.e. aw = 10. The acquisition convolution kernel has a
fairly high spike.
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Figure 6.13: Spatial correlation function, ρr(h), and acquisition convolution kernel, w.
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We assume the observational error to be σ2
d|r = 0.01. The ordering model is specified with

a reasonably high signal-to-noise ratio, S/N ≈ 3.25. The response profile and observations
are given in Fig. 6.14. We assume prior knowledge about the zero-probabilities in Pκ.
That is, we require p13, p14, p32, p42 and p43 to be zero in the estimate. Since the likelihood
approximations and Forward-Backward algorithm preserve zero-probabilities, we are able
to capture this in the estimate. Hence, the number of transition probabilities to be
estimated is ten. Numerical experiments without this assumption tend to estimate band
diagonal transition matrices, i.e. we estimate each class to move to one of its closest
neighbours.
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Figure 6.14: Response profile, r, and observations, d.

6.2.2 Results

The approximate EM-algorithm is run 25 times with various initial transition matrices.
The estimate of Pκ is

P̂aEM
κ =


0.8919 0.1080 0 0
0.0003 0.7032 0.2964 0
0.1186 0 0.6652 0.2162
0.3697 0 0 0.6302

 . (6.11)

Compared to the correct transition matrix, P̂aEM
κ is found to be reasonable since it cap-

tures most of the structure in Pκ. The stationary distribution of P̂aEM
κ is found to be

(0.5334, 0.1942, 0.1719, 0.1005), and it overestimates the proportion of class one, at the
cost of class two. Indeed, also p23 is overestimated at the cost of p21.
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In Fig. 6.15 trace plots of the approximate log-likelihood values are given based on four
different initial transition matrices. The log-likelihoods converge within ten iterations,
however the log-likelihoods are not necessarily non-decreasing because of the likelihood
approximations.
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Figure 6.15: Trace plot of the log-likelihoods based on four different initial transition
matrices.

For the McMC based inference of Pκ, we generate 5,000 realizations from p (Pκ|d), where
we assume the hyperparameters to be ηij = 0 for (i, j) ∈ {(1, 3), (1, 4), (2, 4), (3, 2), (4, 2),
(4, 3)}, and ηij = 1 else. We have chosen to discard the first 1,000 realizations as a burn-in
period. The estimated transition matrix is given as

P̂McMC
κ =


0.8811 0.1189 0 0
0.0518 0.6028 0.3454 0
0.1236 0 0.6414 0.2350
0.4200 0 0 0.5800

 , (6.12)

with stationary distribution (0.5718, 0.1712, 0.1649, 0.0922). If we compare the elements
with the corresponding elements in the correct transition matrix, we see that the main
characteristics of the transition matrix are found by the McMC estimate. Compared to
P̂aEM

κ , the estimates are fairly similar. Note that P̂aEM
κ estimates p21 to be essentially

zero, while P̂McMC
κ estimates it to be slightly above 0.05.

In Fig. 6.16 the estimated non-zero transition probabilities are presented together with
their corresponding 95% range. We see that the correct transition probabilities lie inside
their respective 95% confidence band. Compared to the confidence bands in the previous
example, the confidence bands given here are fairly wide. We find this to be reasonable
since the number of classes is larger and the classes are overlapping.
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Figure 6.16: Estimators
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P̂McMC
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, with estimated values displayed with ’o’, correct

values, ’×’, and 95% range.

In Fig. 6.17 the MAP predictors are given based on the approximate EM and McMC
estimates. Compared to the reference profile, the predictors are surprisingly similar.
Most of the small-scale variability are in fact captured in both of the predictors, which
we find to be encouraging. The resulting MAP predictors are observed to be almost
identical.
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Figure 6.17: MAP predictors for p
(
κ|d; P̂aEM

κ

)
and p

(
κ|d; P̂McMC

κ

)
, together with the

reference profile, κ.

The misclassification coverage statistics based on the estimated transition matrices are
presented in Fig. 6.18. Indeed, the approximate EM-algorithm and McMCmethod provide
slightly different results. Classes one and four, corresponding to the light-grey and black
class, are seen to have the best misclassification coverage statistics in both cases. This is
as expected, since they are the extreme classes. The misclassification coverage statistic
varies in the two middle classes. This is to be expected since they are partly overlapping,
and intuitively should be hard to separate.
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Figure 6.18: Misclassification coverage statistics based on the approximate EM and McMC
estimation methods.

6.3 Closing Remarks

Estimation of the transition matrix based on the approximate EM-algorithm and McMC
sampling are demonstrated to be feasible. Compared to the approximate EM-algorithm,
the McMC based inference is computationally expensive. The McMC method quickly
becomes computational infeasible if there is a large number of unknown transition prob-
abilities.

The approximate EM-algorithm only provides point estimates, while the McMC based
inference also provides parameter uncertainties. The 95% confidence bands covers the
correct transition probabilities well. If we study a approximate posterior model with
plug-in transition matrix estimates, the MAP predictors are reliable representations of
the reference profile.

The structure of Pκ is found to be important. That is, if we have prior knowledge of
zero transitions in Pκ, this should be taken into account in both the approximate EM-
algorithm and McMC based inference.
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Chapter 7

Case Study: Seismic Inversion

We present a synthetic seismic test study. A reference profile of length N = 150, with
κn ∈ Ωκ = {1, . . . , 4}, is studied. The reference profile is displayed in Fig. 7.1. The four
classes represent the lithology/fluid classes shale, gas-saturated sandstone, oil-saturated
sandstone and brine-saturated sandstone.

The MAP and MMAP predictors based on the approximate posterior model are assessed
when the model parameters are assumed to be known. These predictors are compared
with the MMAP predictor based on the correct posterior model.

Realizations from the correct posterior response model, p(r|d), are generated.

We estimate the transition matrix, Pκ, using the approximate EM-algorithm under two
different assumptions. First, we have no restrictions on Pκ. Secondly, we require some of
the elements in Pκ to be zero, imposing an optimization of a lower dimension.

Finally, a univariate optimization of the model parameter in the Ricker acquisition con-
volution kernel is studied.

The model parameters are assumed to be similar to the ones given in Lindberg (2010).
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Figure 7.1: Reference profile, κ.
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7.1 Model Specification

We assume the first order Markov chain describing the lithofacies to be defined by the
transition matrix

Pκ =


0.94 0 0 0.06
0.04 0.91 0 0.05
0.01 0.02 0.95 0.02
0.02 0.02 0.11 0.85

 , (7.1)

with stationary distribution (0.2309, 0.1398, 0.4326, 0.1966). Classes one to four are as-
signed various shades of grey. Transitions in the vertical downward direction are described
by the Markov chain. By counting the transitions in the reference profile, the empirical
transition matrix is found to be

P̂emp
κ =


0.9464 0 0 0.0536
0.0250 0.9250 0 0.0500
0.0541 0.0811 0.8649 0
0.0625 0 0.2500 0.6875

 , (7.2)

having stationary distribution (0.4499, 0.2268, 0.2098, 0.1134). The empirical transition
matrix overestimates the proportion of class one, at the cost of class three in particular.
Except p43 and p44, the main characteristics of Pκ are observed in empirical transition
matrix.

The class response models are defined by µr|κ′ = (15.74, 15.80, 15.87, 16.01)> and σr|κ′ =

(0.0200, 0.0173, 0.0141, 0.0100)>. In Fig. 7.2 we present the class response densities, and
they are displayed with the appropriate grey-scale. The Gaussian mixture and Gaussian
approximation are displayed with a dashed and dotted line, respectively.

15.6 15.7 15.8 15.9 16 16.1

Figure 7.2: Class response densities displayed with solid lines. The Gaussian mixture is
displayed with a dashed line, and the Gaussian approximation with a dotted line.

We assume the spatial correlation function to be a powered exponential,

ρr(h) = exp

{
−
(
h

1.2

)1.2
}
. (7.3)
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The spatial correlation function is assumed to be truncated with aρ = 5, and it is displayed
in Fig. 7.3a. We study a Ricker acquisition convolution kernel,

wR(h;χ) = const×
(

1− h2

χ2

)
× exp

{
− n2

2 · χ2

}
, (7.4)

where χ is the model parameter. We assume χ = 2, which entails a fairly short Ricker
kernel. The discretized Ricker convolution kernel is stored in a matrix, WR, and normalize
each row. The Ricker kernel is shown in Fig. 7.3b. We define a differential operator D =
tridiag(−0.5, 0, .5), i.e. a band matrix with diagonal band (−0.5, 0, 0.5). The acquisition
convolution kernel is defined as W = WRD, having a contrast kernel w. The acquisition
convolution kernel, W, is truncated to be of band width 21, i.e. aw = 10. The contrast
kernel is presented in Fig. 7.3c.
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Figure 7.3: Spatial correlation function, ρr(h), Ricker acquisition convolution kernel, wR,
and contrast kernel, w.

The observational error is assumed to be σ2
d|r = 0.01. In Fig. 7.4 the response profile, r,

and observations, d, are given. Indeed, part of the characteristics from the response profile
are preserved in the observations, however the observations appear as highly fluctuating.
The class transitions are partly identifiable in the response profile. Since we have included
an approximation of the derivative, the observations appear as relative contrasts, and the
class response means are unidentifiable.
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Figure 7.4: Response profile, r, and observations, d.

7.2 Results

We consider only the third order projection approximation since it is found to be a rea-
sonable approximation in Chapter 5.

7.2.1 MAP Prediction

We consider the model parameters to be known and fixed in this section. The MAP
and MMAP predictors are displayed in Fig. 7.5, together with the marginal probabilities
and reference profile. Both the MAP and MMAP predictors are observed to reproduce
the main characteristics of the reference profile. The predictors appear to be too smooth,
which is as expected. The MAP predictor is closer to the reference profile than the MMAP
predictor is. Indeed, the MMAP predictor is observed to overestimate the proportion of
class three.
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Figure 7.5: Marginal probabilities, and MAP and MMAP predictors for p(k) (κ|d; Pκ),
given together with the reference profile.

We generate 50,000 realizations from the correct posterior model, p(κ|d), by the indepen-
dent proposal McMC MH-algorithm. We discard the 10,000 first as a burn-in period. The
acceptance rate is found to be 0.0181. Together with the marginal probabilities, MMAP
predictor and reference profile, 5,000 realizations from the correct posterior model are
given in Fig. 7.6. The marginal probabilities reproduce the variability in the correct
posterior model. The MMAP predictor slightly overestimates the proportion of the dark-
grey class. Only some of the main characteristics in the reference profile are found by the
MMAP predictor based on the realizations.

MMAP 5

Figure 7.6: Realizations from the correct posterior model p(κ|d), together with the
marginal probabilities and MMAP predictor, together with the reference profile.



80 CHAPTER 7. CASE STUDY: SEISMIC INVERSION

7.2.2 Simulation from the Response Model

We refer to Section 2.3.1 where we have discussed the model studied in Grana and
Della Rossa (2010). We generate 5,000 realizations from p(r|d) using the realizations
generated in Section 7.2.1.

In Fig. 7.7a the response profile is shown with a solid line, together with five conditional
realizations from p(r|d), displayed with dashed lines. The conditional realizations repro-
duce some of the characteristics in the response profile, r. The MMAP predictor [̂r|d] is
given together with its approximate 95% posterior range in Fig. 7.7b. Indeed, the un-
certainty in [κ|d], entails uncertainty in [r|d]. The approximate 95% posterior range is
found to be fairly wide, however the main characteristics of r are captured in the MMAP
predictor.
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(b) MMAP

Figure 7.7: Response profile, r, and five conditional simulations from p(r|d), together
with the MMAP predictor and approximate 95% posterior range.

7.2.3 Estimation of the Transition Matrix

The transition matrix is now assumed to be unknown. It is assessed using the approximate
EM-algorithm. Since the reference profile is of limited length, we expect the estimates to
resemble the empirical transition matrix more than the correct transition matrix. Initially,
we assume the structure of Pκ to be unknown. The approximate EM-algorithm is run
in total 25 times, with different initial transition matrices to ensure convergence to the
correct maximum log-likelihood value.
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In Fig. 7.8 five different trace plots based on the log-likelihood values are given. The
log-likelihoods are not necessarily non-decreasing since we consider the approximate log-
likelihoods. The transition matrices converging to the highest log-likelihood value are
found to be identical, and is given as

P̂aEM
κ =


0.8379 0.0736 0.0886 0.0000
0.4642 0.5358 0.0000 0.0000
0.0000 0.0000 0.8603 0.1397
0.0000 0.2137 0.0000 0.7863

 , (7.5)

with stationary distribution (0.4171, 0.1457, 0.2644, 0.1728). The stationary distribution is
observed to be fairly close to the empirical stationary distribution. Indeed, the estimated
transition matrix and correct transition matrix have some similarities. In particular, p21

and p42 are overestimated, while p22 is severely underestimated. Some of the smaller
transitions probabilities in the transition matrix are estimated to be zero.
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Figure 7.8: Trace plot of the log-likelihoods based on five different initial transition ma-
trices.

The marginal probabilities based on P̂aEM
κ are given together with the MAP and MMAP

predictors in Fig. 7.9. Parts of the variability in the reference profile are captured by
the MAP predictor. Indeed, the MAP predictor in Fig. 7.9 is fairly close to the MAP
predictor in Fig. 7.5. The marginal probabilities, and thereby the MMAP predictor, are
found to be poor.



82 CHAPTER 7. CASE STUDY: SEISMIC INVERSION

p(xn)

0

50

100

150
MMAP

20

40

60

80

100

120

140

MAP

20

40

60

80

100

120

140

5

20

40

60

80

100

120

140

Figure 7.9: Marginal probabilities, and MAP and MMAP predictor based on
p(k)

(
κ|d; P̂aEM

κ

)
, together with the reference profile.

As discussed in Section 6.2, it is possible to enforce zero probability transitions in the
estimate. We assume p12, p13 and p23 to be equal to zero in the initial transition matrix.
Zero transitions in the prior model are preserved in the likelihood approximation, and
hence also in the approximate posterior model. As before, the approximate EM-algorithm
is run 25 times with different initial conditions. The estimated transition matrix is given
as

ˆ̂PaEM
κ =


0.8713 0 0 0.1287
0.0305 0.8103 0 0.1592
0.0000 0.0293 0.9707 0.0000
0.0000 0.0000 0.1989 0.8011

 . (7.6)

Its stationary distribution is given as (0.0273, 0.1154, 0.7472, 0.1101), which severely over-
estimates the proportion of the third class. Compared to the correct transition matrix,
the estimates are fairly close.

In Fig. 7.10 trace plots based on various log-likelihoods are given. The log-likelihood
appears to have multiple local maximums as in Fig. 7.8. The maximization does not
necessarily provide non-decreasing sequences of the log-likelihoods, since we consider like-
lihood approximations.
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Figure 7.10: Trace plot of the log-likelihoods based on five different initial transition
matrices.

The marginal probabilities, and MAP and MMAP predictors for p(k)
(
κ|d; ˆ̂PaEM

κ

)
are

given in Fig. 7.11. The MAP predictor looses small-scale variability compared to Fig. 7.5.
Both predictors favour the dark-grey class, i.e. class three. This should come as no
surprise since the estimated stationary distribution favours class three, compared to the
correct stationary distribution.
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Figure 7.11: Marginal probabilities, and MAP and MMAP predictor based on
p(k)

(
κ|d;

ˆ̂
PaEM

κ

)
, together with the reference profile.
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7.2.4 Estimation of the Acquisition Convolution Kernel

We consider the model parameter χ in the Ricker acquisition convolution kernel to be
unknown. A univariate optimization is considered when the remaining model parameters
are assumed to be known. For simplicity, we impose the restriction χ ∈ [1.5, 3.0]. The
optimization procedure is presented in Chapter 4. The correct value is given as χ =
2.

The univariate marginal likelihood is displayed in Fig. 7.12, being maximized for χ̂ =
2.375. Compared to the correct value, the estimate is too high. Numerical experiments
indicate that the model parameter tends to be overestimated when we increase the range
of the spatial correlation function. Compared to Lindberg (2010), we see that the spatial
correlation function may lead to overestimation of χ.
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Figure 7.12: Marginal likelihood function. MMLE indicated with an ’*’, and the correct
maximum is shown with a dashed line.

7.3 Closing Remarks

A synthetic seismic test case is studied. We are able to provide fairly reliable predictions
if the model parameters are assumed to be known. In particular, the MAP predictor
captures the variability in the reference profile. Unfortunately, the acceptance rate is
fairly low, slightly below two percent.

Indeed, we are able to generate realizations from p(r|d). Since the realizations from p(κ|d)
fluctuate rapidly, each conditional realization from p(r|d) do not necessarily reproduce
the response profile.

Without prior information concerning the zero probability transitions, the estimated tran-
sition matrix is found to be a poor estimate. Convergence of the approximate EM-
algorithm is dependent on the initial transition matrix. The MAP and MMAP predictors
are found to be fairly different.

A univariate optimization of the model parameter in the Ricker acquisition convolution
kernel is found to be feasible. We have reason to believe that the spatial correlation leads
to overestimation.



Chapter 8

Conclusions and Future Work

In this thesis we study a one dimensional categorical random field, which can for example
represent a vertical profile through a geological unit. We consider a convolutional Markov
model. The bottom level contains latent categorical variables. Given the categorical
variables, the response variables define a latent continuous response model. Convolved
observations are collected along the profile, and previously studied models are extended
by including spatial correlation in the response model. We assess the correct posterior
model and its model parameters. Relevant theory and models are introduced and dis-
cussed.

Two different likelihood approximations are proposed, namely the truncation and projec-
tion based approximation. The approximations are studied for varying order, k. Eval-
uation of the truncation approximation has a slightly lower computational cost than
evaluation of the projection approximation. The truncation approximation is exact if k is
sufficiently large, but then the computational cost is infeasible. We assess the approximate
posterior models by the Forward-Backward algorithm. The MAP and MMAP predictors
for the approximate posterior models represent the main characteristics of the categorical
variables. The predictors are seen to be stable for increasing values of k. The predictors
for the approximate posterior model based on the projection approximation are observed
to capture more of the small-scale variability in the correct posterior model.

The approximate posterior models are used as proposal densities in an independent pro-
posal McMC algorithm to generate realizations from the correct posterior model. The
acceptance rate is defined as a measure to quantify the similarities between the approx-
imate posterior models and the correct posterior model. We obtain higher acceptance
rates when we increase k. A response model with high class variances, and a short spatial
correlation range, yields the highest acceptance rates. For a higher order projection ap-
proximation with a short spatial correlation range we obtained an acceptance rate above
50%. The projection based approximation is in general found to be preferable compared
to the truncation approximation, in particular for lower order approximations. If the
convolution kernel and the spatial dependencies are short, the relative difference between
the approximations is observed to be small.

The realizations from the correct posterior model generated by the McMC algorithm are
seen to represent more of the heterogeneity than the predictors based on the approximate
posterior models, as expected.

Since the computational cost increases exponentially when increasing k, we conclude that
the projection approximation of third or fifth order is favourable.
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Estimation of the transition matrix, i.e. the prior model parameters, for the categorical
variables based on the approximate EM-algorithm and McMC sampling are found to be
feasible. The approximate EM-algorithm provides point estimates at a low computational
cost, while uncertainty statements are also provided by the McMC estimates at a higher
computational cost. Prior knowledge about zero-probabilities in the transition matrix is
seen to be important. A univariate optimization of the MML for the model parameter in
the Ricker acquisition convolution kernel is studied, and found feasible. This should be
studied in greater detail in the future.

Topics for future research might include a study of the transition matrix, when the di-
mension is unknown, and model parameter estimation in the response model. The former
can for example be done by extending the reversible jump methodology, or comparing
models of different dimensions with an appropriate criterion.

Our model may be generalized by assuming the response variables to be dependent on
the elastic material properties P-wave velocity, S-wave velocity and density. We may also
have angle dependent observations, and extend to two dimensions.
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Appendix A

Probability Distributions

A.1 Gaussian Distribution

Definition 1 (Multivariate Gaussian Distribution). A random vector x = (x1, . . . , xT )>

is said to have the multivariate Gaussian distribution if for every constant vector a ∈ RT ,
Y = a>x has a univariate Gaussian distribution. The multivariate Gaussian probability
density function is given as

φT (x;µ,Σ) = (2π)−
T
2 |Σ|−

1
2 exp

{
−1

2
(x− µ)>Σ−1(x− µ)

}
, (A.1)

where µ is the expectation T -vector and Σ is the positive definite covariance (T × T )-
matrix.
Theorem A.1 (Conditional Gaussian). Assume x ∼ φT (µ,Σ) where

x =

(
x1

x2

)
, µ =

(
µ1

µ2

)
and Σ =

(
Σ11 Σ12

Σ21 Σ22

)
. (A.2)

Here, x1 = (x1, . . . , xt)
> and x2 = (xt+1, . . . , xT )>. The conditional distribution [x1|x2 = a]

is then also Gaussian, φt
(
µx1|x2

,Σx1|x2

)
where

µx1|x2
= µ1 + Σ12Σ

−1
22 (a− µ2) ,

Σx1|x2 = Σ11 −Σ12Σ
−1
22 Σ21.

(A.3)

Theorem A.2 (Linear combination of Gaussian). Let x ∼ φT (µ,Σ). Let A ∈ RM×T be
of full rank and y ∈ RM . Then y = Ax + b is also Gaussian with

µy = Aµ+ b,

Σy = AΣA>.
(A.4)

Corollary A.2.1. Assume y ∼ φT
(
µy,Σy

)
, M ∈ RM×T , b ∈ RM and [x|y] = My + b,

e.g. [x|y] = φM
(
My + b,Σx|y

)
. Then the marginal for x is

p(x) = φM

(
Mµy + b,Σx|y + MΣyM>

)
. (A.5)
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A.2 Dirichlet Distribution

Definition 2 (Dirichlet Distribution). Let x = (x1, . . . , xT )> be a Dirichlet distributed
random vector defined for {0 < xi < 1; i = 1, . . . , T} and

∑T
i=1 xi = 1. The Dirichlet

probability density function, with scale parameter vector η = (η1, . . . , ηT ) where αi > 0 ∀i,
is defined as

p(x) =
Γ
(∑T

i=1 αi

)
∏T

i=1 Γ(αi)
×

T∏
i=1

xαi−1
i , (A.6)

where Γ(·) is the gamma-function.



Appendix B

Generalized Forward-Backward Algorithm

We extend the Forward-Backward algorithm described in Section 3.2 to a higher order
factorial form model, following the lines of Reeves and Pettitt (2004), and Friel and Rue
(2007). We consider a model on factorial form, as in Eq. (2.28),

p (x1, . . . , xn) =
n∏

i=r+1

pi (xi−r, . . . , xi) , (B.1)

where pi are densities. The normalization constant, z, can be recursively computed
since

z =
∑
xn

· · ·
∑
xm

pm (xm, . . . , xn)
∑
xm−1

pm−1 (xm−1, . . . , xn−1) · · ·
∑
x1

p1 (x1, . . . , xr+1) . (B.2)

The recursive procedure, often referred to as the forward recursion, is given as follow-
ing

z1 (x2, . . . , xr+1) =
∑
x1

p1 (x1, . . . , xr+1)

zi (xi+1, . . . xr+i) =
∑
xi

pi (xi, . . . , xi+r) zi−1 (xi, . . . , xi+r−1) for i = 2, . . . ,m

z =
∑
xm+1

· · ·
∑
xn

zm (xm+1, . . . , xn)

. (B.3)

The joint density is computed recursively by a backward step since

p (x1, . . . , xn) = p (xm+1, . . . , xn)
m∏
i=1

p (xi|xi+1, . . . xn) . (B.4)

The backward transitions are given as

p (xm+1, . . . , xn) =
zm (xm+1, . . . , xn)

z

p (xi|xi+1, . . . xi+r) =
pi (xi, . . . , xi+r) zi−1 (xi, . . . , xi+r−1)

zi (xi+1, . . . , xi+r)
for i = m, . . . , 2

p (x1|x2, . . . , xr+1) =
p1 (x1, . . . , x1+r)

z1 (x2, . . . , xr+1)

. (B.5)

Friel and Rue (2007) noted that by storing the normalization constants found in the
forward recursion, it is possible to generate (x1, . . . , xn) in a reverse index order, i.e. from
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n down to 1. Similarly, from Eq. (B.4) we can sequentially find the mode from a recursive
scheme, similar as in Eq. (3.43). That is,

(x̂m+1, . . . , x̂n) = arg max
(xm+1,...,xn)

p (xm+1, . . . , xn)

(x̂i|x̂i+1, . . . , x̂i+r) = arg max
xi

p (xi|x̂i+1, . . . , x̂i+r) for i = m, . . . , 1
. (B.6)

A possibility is to record ties between two or more different paths, and then sample
uniformly between the different paths in the backward step. We refer to Eq. (B.6) as the
extended Viterbi algorithm, which is an extension of the algorithm presented in Viterbi
(1967), which produces the MAP predictor.

The MMAP predictor is evaluated similarly by maximizing p(xi) for i = 1, . . . , N . In-
deed,

p(xm+1, . . . , xn) =
zm(xm+1, . . . , xn)

z
. (B.7)

Since p (xi|xi+1, . . . xi+r) is available from the backward recursion, we assess

p(xi, . . . , xi+r−1) =
∑
xi+r

p(xi|xi+1, . . . , xi+r)p(xi+1, . . . , xi+r) (B.8)

recursively. Finally, the MMAP predictor are obtained by summing out the remaining
indices, i.e.

p(xi) =
∑
xi+1

· · ·
∑
xi+r−1

p(xi, . . . , xi+r−1). (B.9)

Friel and Rue (2007) noted that the generalized Forward-Backward algorithm is extremely
useful in practice since it amounts to reuse the same algorithm twice. First a forward re-
cursion with increasing indices, and then a forward recursion with decreasing indices.

Until now we have only considered the generalized Forward-Backward algorithm for a
general factorial form model. Indeed, the densities pi in Eq. (B.1) may be likelihoods,
which need not be normalized. Therefore, we define

pn
(
κ(k)
n

) def
= p(k)

(
d|κ(k)

n

)
p (κn|κn−1) (B.10)

for n = k, . . . , N . Since our k-th order approximation in Eq. (3.10) is a lag-(k−1) general
factorisable model, we assess it using the generalized Forward-Backward algorithm. Note
that this only holds for k ≥ 2, but for k = 1 the forward and backward recursions simplify
to the well-known Forward-Backward algorithm presented in Section 3.2. Since the prior
model is already on factorial form, we need not approximate it. The prior model could
in fact have been a k-th order Markov chain without increasing the lag of the posterior
model.

The forward recursion evaluates the normalization constant, which we denote z(k)
d for the

k-th order approximation. The normalization constant appears in Eq. (3.10) as p(k) (d) =

z
(k)
d . The forward and backward recursions for Eq. (3.10) are presented in Alg. 6 and Alg. 7.
Evaluations of the approximate posterior for a general lag-(k−1) factorisable model can be
exactly assessed in O

(
(N − k)Kk

)
operations, using the generalized Forward-Backward

algorithm. In fact, the approximate posterior model is exact up to the approximation of
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Algorithm 6: Forward recursion for a general factorisable model
Result: Normalization constant, z, to Eq. (3.10)
Initial step
z1

(
κ

(k−1)
k

)
=
∑

κ1
l(k)
(
κ

(k)
k

)
p (κk|κk−1)

for t = 2 to n− k + 1 do
zt

(
κ

(k−1)
t+k−1

)
=
∑

κt
l(k)
(
κ

(k)
t+k−1

)
zt−1

(
κ

(k−1)
t+k−2

)
p (κt+k−1|κt+k−2)

end

z =
[∑

κt−k+2
· · ·
∑

κn
zn+k−1

(
κ

(k−1)
n

)]−1

return z

Algorithm 7: Backward recursion for a general factorisable model
Result: Backward probabilities p(κ|d)
Initial step
p
(
κ

(k−1)
n |d

)
= z × zn−k+1

(
κ

(k−1)
n

)
for t = n− k + 1 to 2 do

p
(
κt|κ(k−1)

t+k−1,d
)

=
p(κt+k−1|κt+k−2)×l(k)

(
κ
(k)
t+k−1

)
×zt−1

(
κ
(k−1)
t+k−2

)
zt+k−1

(
κ
(k)
t+k−1

)
end

p
(
κ1|κ(k−1)

k ,d
)

=
p(κk|κk−1)×l(k)

(
κ
(k)
k

)
z1

(
κ
(k−1)
k

)
p (κ|d) = p

(
κ

(k−1)
n |d

)
×
∏k

t=1 p
(
κt|κ(k−1)

t+k−1,d
)

return p (κ|d)

the acquisition likelihood, thus we evaluate the exact posterior if k = 4aw + 2aρ + 1. This
requires a sum over Kk elements.

For a general factorisable model the MAP predictor is assessed using Alg. 8. Finally,
define κ(k−1)

n \κn = (κn−k+2, . . . , κn−1). The MMAP predictor algorithm is given in Alg 9.
In practice, we expect the MAP and MMAP predictors to have similar characteristics,
but they are not necessarily identical. In specific, the MMAP predictors are also given
with uncertainty statements, since we evaluate the marginal probabilities p(κn|d) for
n = 1, . . . , N .

Algorithm 8: MAP predictor for a general factorisable model
Result: MAP predictor, κ̂
Initial step
κ̂

(k−1)
N = arg max

κ
(k−1)
N

p
(
κ

(k−1)
N

)
Iterate
for n = N − k + 1 to 2 do

κ̂n = arg maxκn p
(
κn|κ̂(k−1)

n+k−1

)
end
return κ̂
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Algorithm 9: MMAP predictor for a general factorisable model
Result: MMAP predictor, ˆ̂κ
for n = 1 to N do

ˆ̂κn =

arg maxκn

{∑
κ
(k−1)
n \κn

p(k)
(
κ

(k−1)
n |d

)}
if n ≥ k − 1

arg maxκn

{∑
κ
(k−1)
k−1 \κn

p(k)
(
κ

(k−1)
k−1 |d

)}
if n < k − 1

end
return ˆ̂κ


