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Abstract

This thesis concerns the partial differential equations governing acoustic wave propagation in
heterogeneous materials. We start with an investigation of the standard Eulerian formulation
of the equations, and point out why some of the underlying assumptions and approximations
might give inaccurate results in some cases. We argue that a Lagrangian framework is better
suited to accurately model wave propagation in materials with discontinuous material prop-
erties, and derive a momentum equation in Lagrangian coordinates without approximations.
We continue by looking at conservation of energy and attenuation of the wave. To solve the
Lagrangian equations on a computer, we propose a numerical scheme based on a Leapfrog on
staggered grid-scheme that is second order both in space and time. We also do a numerical
experiment and compare results from simulations with the Eulerian and Lagrangian equations.
The simulations indicate that the Lagrangian equations are better suited model to certain phe-
nomena.

Sammendrag

Denne oppgaven omhandler differensiallikningene som beskriver oppførselen til akustiske bølger
i heterogene materialer. Vi undersøker den klassiske Euler-formuleringen av disse likningene, og
peker p̊a hvordan noen av antagelsene og tilnærmingene som gjøres kan være unøyaktige i visse
tilfeller. Videre argumenterer vi for hvorfor en Lagrange beskrivelse kan være bedre egnet som
en nøyaktig modell av bølgeforplanting i heterogene materialer, og vi utleder en momentlikning
i Lagrange-koordinater uten noen antagelser. Vi fortsetter med å se p̊a energibevaring og
energitap for akustiske bølger. For å løse Lagrange-likningene numerisk foresl̊ar vi en numerisk
metode basert p̊a Leapfrog p̊a staggered grid-metoden, som er andreordens b̊ade i tid og rom. Vi
gjør et eksperiment med denne metoden, og sammenlikner resultatene fra Euler- og Lagrange-
likningene. Resultatene indikerer at Lagrange-likningene er bedre egnet til modellering av visse
fenomener.
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CHAPTER 1

Introduction

The understanding of waves is fundamental to our of understanding the physical world. Waves
are present at the largest and the smallest scales of the universe, from cosmic rays and tsunamis
to quantum physics and vacuum fluctuations in outer space. A scientific understanding of waves
has been a concern for scientist since antiquity [15]. As with most physical phenomena, the
road to enlightenment goes through experiments and mathematical theories. The mathematical
treatment of waves often starts with the derivation of the linear wave equation for transverse
waves on a string,

∂2y

∂t2
= c2

0
∂2y

∂x2 , (1.1)

and this is somehow the canonical example of a wave equation, the one wave equation every
student recognizes. Equations of the same form arise in many different areas of physics, from
electromagnetics to elasticity.
The linear wave equation serves as a good example of the problems addressed in this thesis.
When formulating a mathematical model of a physical problem, one always has to make some
simplifying assumptions. The key then, is to make assumptions such that the important features
of the physical phenomenon are not lost. If one does not simplify, the mathematical model can
become very complex and to hard to analyze. A balance has to be found, where the mathemat-
ics is tractable and the physics of interest is modeled adequately. Equation (1.1) serves as an
example. The linear wave equation arises when one wants model the propagation of a wave on a
string. When deriving it one assumes that certain quantities are small and that there is no loss
of energy [31]. If you are interested in understanding the basics of harmonics and vibrations in
a string, the equation is very good. It is easy to analyze mathematically, and the solutions shed
much light on the physics. If, however, this is a guitar string, and one want to know how long
the tone from a plucked string lasts, this model is not good as the equation does not account
for loss of energy. Or if you want to know what happens when your guitar makes a ”twangy”
sound just as you pluck the string; this is a nonlinear effect, not accounted for in this equation
[12]. This illustrates that when you make a mathematical model of a physical phenomenon, you
have to know, or at least have some notion of, what is essential for describing the phenomenon
of interest.

In this thesis we are interested in acoustic waves. Simply told, acoustic waves, commonly
known as sound waves, are waves that propagate as local compression and expansion of the
medium they travel through. More specifically, we are interested in ultrasonic waves propaga-
tion in the human body in interaction with very small1 objects. Ultrasonic waves are acoustic
waves with frequencies higher than the upper range of what is audible for humans, i.e. in the
range 20 kilohertz to 40 megahertz. One usage of these waves is in in medical imaging, where
it is a common tool for ”looking” inside the body, and also for treatment. This is a broad field
of study and research, widely known as ultrasound. We want to look at one particular aspect
of ultrasound, namely the equations used to model it. What are the underlying assumptions
made in the standard equations used in acoustic wave models, and what are the assumptions
in these equations? By the initiative of prof. Bjørn A. J. Angelsen at ISB2, we investigate

1Objects on the same scale as the wavelength.
2Department of Circulation and Medical Imaging at NTNU
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how a Lagrangian formulation of the equations would look, in contrast to the commonly used
Eulerian formulation. As we will see, the Lagrangian formulation of the equations seems to
be more suited to model the interaction between ultrasonic waves and microscopic structures,
e.g. calcium particles or micro bubbles. We also develop a numerical method for solving the
Lagrangian equations. An extension of this work is in connection with SURF Technologies and
their research on using ultrasound to detect breast cancer. An early sign of breast cancer is
clusters of micro calcium particles in the breast. Due to their tinyness (20-300 µm in diameter),
these are very hard to detect. If their interaction with high intensity ultrasonic waves is properly
understood, one might come closer to finding a way to discover them.

The Chapters

• Chapter 1 is the introduction.

• Chapter 2 discusses the standard, Eulerian formulation of the equations governing
propagation of acoustic waves, and ways to represent heterogeneities in these equations.
We point out how certain approximations made in the derivation of these equations
can lead to inaccurate results.

• Chapter 3 concerns the formulation of the Lagrangian equations governing wave prop-
agation. We introduce the Lagrangian description of the continuum, and use this
framework to develop a different set of governing equations.

• Chapter 4 addresses conservation of energy in acoustic waves, and show how a viscoelas-
tic model can be added to the Lagrangian equations to account for the attenuation of
energy.

• Chapter 5 describes a numerical method for solving the equations developed in Chapter
4. We add a PML damping layer, sources and other necessary conditions, and propose
a numerical scheme to solve the first order system of Lagrangian equations.

• Chapter 6 describes a numerical experiment using the scheme from Chapter 5. We
look at the reflection of intersecting waves from a calcium particle, and compare re-
sults from the Lagrangian and Eulerian equations.

Note on the structure and style of this thesis

As the discussion on the different topics in this text overlap to some extent, some concepts
might be introduced and discussed before they are properly defined and described. However, we
aim to give an adequate description of the important topics when needed. Also, the writer has
a limited knowledge to the wast field of ultrasound, and the thesis probably reflects this. It is
written from the perspective of a mathematician, with focus on some particular equations, and
the writer most definitely have the feeling of being a beginner.
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CHAPTER 2

Acoustic modeling

We now introduce quantities and equations1 used to describe acoustic waves. We also look
at how one could represent particles and material heterogeneity in the Eulerian2 framework
commonly used in acoustic modeling, and point out how some of the assumptions and simpli-
fications that can cause the equations to not adequately model the interaction of waves and
small particles and heterogeneities.

The main quantities in the description of a wave propagation are:

• Acoustic pressure: p(x,t) = P (x,t)−P0
The acoustic pressure is deviation of total pressure P (x,t) from the static, or ambient,
pressure P0. Pressure is a scalar quantity.
• Particle velocity: v(x,t) = V (x,t)−V0

This is the time derivative of the particle displacement, and V0 is usually assumed
equal to zero. Velocity is a vector quantity.
• Mass density: ρ′(x,t) = ρ(x,t)−ρ0(x)
ρ′ is the excess mass density, or mass per unit volume, a scalar quantity. Mass density
is closely connected to the acoustic pressure and the compression and expansion of the
material. ρ is the total density, while ρ0 is the ambient, or equilibrium density.
• Compressibility: κ

Compressibility is a measure of volume compression due to change in pressure. We
denote the equilibrium density as κ0. κ0 (and ρ0) are material dependent parameters,
we will refer to them as material parameters.
• Sound speed: c

The sound speed is the speed at which an acoustic wave propagates through a material.
At equilibrium we denote c= c0, and we have the relation c2

0 = 1
κ0ρ0

Most formulations of the acoustic equations begin with two well-known conservation laws, and
what is known as an equation of state. A derivation of the conservation laws can e.g. be found
in [8, 4], and we will comment on it later. The first equation, often known as the continuity
equation, is a mathematical description of the principle that mass is conserved,

∂ρ

∂t
+∇· (ρv) = 0. (2.1)

1Most of the time, equations means partial differential equations.
2We will elaborate on the Eulerian and Lagrangian descriptions later.
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The second equation is known as conservation of momentum, and is essentially Newton’s second
law. It reads

ρ
Dv
dt =−∇p, (2.2)

where D
dt = ∂

∂t + v ·∇ is known as the total or material derivative. To connect the equations
and get a complete system, one introduces a relation between the density and pressure. This
is called an equation of state, generically written p = P (ρ). It is material dependent, and will
later be specified.

2.1. Derivation of the acoustic wave equations

At this point it is informative to do the standard derivation of the governing equations, as it is
presented in the literature [15, 31, 10]. It will become more apparent why the standard approach
is not well suited for an accurate description of the behavior and wave interaction of a particle.

The linear equations

In a derivation of the acoustic wave equation(s), it is usual to decide on what order of accuracy
one wants. First order means you only include first order terms. First order terms are linear
terms, e.g. ∂2p

∂t2 , v, etc., second order means term on the form p2, vp, ∂v∂t v etc. We start with the
linear equations, where we include only first order terms of the acoustic quantities. The linear
equation of state is

p= c2
0(ρ′), (2.3)

that is, the acoustic pressure p is equal to the excess density ρ′ times the squared speed of sound
c2

0 [15]. From (2.1), we get
∂ρ

∂t
+∇· (ρv) = ∂ρ′

∂t
+∇· (ρ′v) +∇· (ρ0v)≈ ∂ρ′

∂t
+∇· (ρ0v) = 0, (2.4)

where the last transition is from neglecting the second order term ∇· (ρ′v). By inserting (2.3)
and assuming that the ambient density3 ρ0 is constant, one obtains an equation for the pressure:

∂p

∂t
=−c2

0ρ0∇·v (2.5)

Linearising (2.2) accordingly yields
ρ0
∂v

∂t
=−∇p, (2.6)

Also assuming c0 is constant, and combining the temporal derivative of (2.4) and the divergence
of (2.6) gives us the familiar

∂2p

∂t2
= c2

0∇2p, (2.7)

where ∇2 = ∆ =∇·∇ is the divergence of the gradient, known as the Laplace operator. This
is the linear acoustic wave equation, and it serves as a good model for the lossless propagation
of small-signal waves. Small-signal waves are waves with sufficiently small pressure and veloc-
ity amplitudes, s.t. nonlinear effects can be neglected [31]. However, due to the assumption

3From the standard derivation as given at https://en.wikipedia.org/wiki/Acoustic_wave_equation ”Re-
arranging and noting that ambient density does not change with time or position...”
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of constant material parameters ρ0 and c0, it only describes the propagation in homogenous
materials. We now elaborate on how the behavior of the wave in a heterogeneous material is
modeled.

Particle representations

A common way of adding the effect of wave-particle interaction to equation (2.7) is through the
addition of a source term. Say a particle occupies a small region Ωp of the material: then there
is a change in material parameters ρ0 and κ0, and hence, speed of sound inside Ωp. We define
cp to be the sound speed in Ωp, and write (2.7) as

1
c2

0

∂2p

∂t2
−∇2p=−Sp (2.8)

where the source term Sp is defined as

Sp(x,t) =


(

1
c2

0
− 1

c2
p

)
∂2p
∂t2 for x ∈ Ωp

0 for x 6∈ Ωp

(2.9)

This approach produces the effects of refraction4 and reflection, but the method has an ad hoc
feel to it, since one reintroduces the varying material parameters after the derivation of the
equation where it has been assumed constant. When c0 6= cp, it implies discontinuous variation
in ρ0 and κ0, and the derivation of equation (2.7) would not be justified. Another effect that is
not accounted for in this approach is the fact that the wave might exert a force on the particle,
causing it to move in space. Such behavior is not accounted for by representing the particle as
a static region Ωp. Another approach is to model Ωp as a distinct region, with a boundary ∂Ωp

between it and the surrounding material. This requires the specification of boundary conditions
on v and p at ∂Ωp, and becomes increasingly complex if, in addition, the particle is moving.
Verweij et al. briefly mention that spatially varying material parameters are important [31],
but do not treat it in any detail.

The nonlinear equations

The nonlinear equations rely on the same assumption on material parameters as the linear ver-
sions, and particle interaction and homogeneity are modeled accordingly. Nonlinear effects are
important in the analysis and use of ultrasound [8, 10]. The justification of linearization relies
on the assumption that signals are sufficiently small, but this is not always the case. When
signals are large, nonlinear effects must be accounted for to give an adequate description of
wave propagation.

By nonlinear equations, we mean nonlinear up to second order. The derivation of these equa-
tions use a principle called ”repeated substitution”, which says that you can substitute relations
from the linear equations into the nonlinear relations.5 Details of the derivations can be found

4Refraction is the change of propagation direction due to heterogeneity.
5This is justified by the fact that substitution of higher order equations would introduce quantities of order

> 2, which again would have to be neglected.
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in [10], but roughly it goes like this: We expand the continuity equation (2.1)
∂ρ′

∂t
+ρ0∇·v+ρ′∇·v+v ·∇ρ′ = 0. (2.10)

Now we use the linear equation of state (2.3),
∂ρ′

∂t
+ρ0∇·v =− p

c2
0
∇·v− v

c2
0
·∇p, (2.11)

and substitution of the linear relations from (2.4) and (2.6), to get
∂ρ′

∂t
+ρ0∇·v = p

ρ0c4
0

∂p

∂t
+ ρ0v

c2
0
· ∂v
∂t
. (2.12)

At this point one introduces the Lagrangian density L(x,t) = 1
2ρ0v

2− 1
2κ0p

2, where κ0 = 1
ρ0c2

0
and v2 = v ·v. We will return to the Lagrangian density later. If we include L(x,t) and divide
by ρ0 we get

1
ρ0

∂ρ′

∂t
−κ2

0
∂p2

∂t
=−∇·v+κ0

∂

∂t
L(x,t) (2.13)

Now one could subtitute ρ′ = 1
c2

0
p and have a nonlinear PDE for the pressure. Nonlinearity is

however, a material dependent property, and this is captured by the nonlinear equation of state,

ρ′ = 1
c2

0
p− 1

ρ0c4
0

B

2Ap
2 or ρ′

ρ0
= κ0p−κ2

0
B

2Ap
2. (2.14)

The relation is obtained by second order Taylor expansion of the generic relation p = P (ρ),
around ρ0 [10]. A and B are material specific parameters, given as

A= ρ0

(
∂p

∂ρ

)
s,0

= ρ0c
2
0

B = ρ2
0

(
∂2p

∂ρ2

)
s,0
,

where the subscript (s,0) indicates that the partial derivatives are evaluated for constant en-
tropy, i.e. that there is an assumption of no extrinsic or intrinsic heat loss in the process [4].
Measured values of B

A exist for a range of materials [31]. As Robert T. Beyer writes in [15], ” ...
[the parameter B

A ] characterizes the dominant finite amplitude contribution to the sound speed
for an arbitrary fluid.” Hence (2.14) should be used for a more accurate description of nonlinear
effects. Substitution of the nonlinear equation of state in to (2.13) yields

∂

∂t

(
κ0p−βκ2

0p
2
)

=−∇·v+κ0
∂

∂t
L(x,t), where β = 1 + B

2A. (2.15)

The parameter β is commonly used in acoustics, and accounts for both the inherent and mate-
rial specific nonlinearity. The inherent nonlinearity is present in all waves, accounted for by the
factor 1 in β. Material specific nonlinearity, represented by B

2A , are nonlinear effects that occur
due to the structure of the material. Hence, all waves are nonlinear, but how much depends on
the material.

When deriving the nonlinear equation for conservation of momentum, a similar approach is fol-
lowed, with the additional assumption that the velocity field is irrotational, i.e. that ∇×v = 0.
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This can be thought of as a linear approximation: A result from vector calculus says that for
any scalar field, e.g. the acoustic pressure field p, ∇×∇p = 0 [2]. Applying this to equation
(2.6) we get

∇×
(
ρ0
∂v

∂t

)
=−∇×∇p= 0 =⇒ ρ0

∂

∂t
(∇×v) = 0 =⇒ ∇×v = 0.

By using the identity v ·∇v = 1
2∇v

2−v× (∇×v) we can rewrite the nonlinear term in the total
derivative:

Dv
dt = ∂v

∂t
+ 1

2∇(v2)−v× (∇×v) = ∂v

∂t
+ 1

2∇v
2 (2.16)

By following a similar procedure as above, we get the nonlinear equation for conservation of
momentum:

ρ
Dv
dt = (ρ0 +ρ′)∂v

∂t
+ (ρ0 +ρ′)1

2∇v
2

≈ ρ0
∂v

∂t
+ρ0

1
2∇v

2 +ρ′
∂v

∂t

≈ ρ0
∂v

∂t
+ρ0

1
2∇v

2−κ0p∇p

Including the pressure gradient and rearranging we get

ρ0
∂v

∂t
=−∇p−∇L(x,t) (2.17)

Once again, the Lagrangian density L appears. We now take a closer look at the role of the
Lagrangian density in acoustic models.

The Lagrangian density

The Lagrangian density appears in both (2.17) and (2.15). It has its name from the theory of
Lagrangian mechanics, where it serves as a important tool for obtaining the governing differential
equations, through the principle of stationary action [11]. The Lagrangian is defined as L =
K−V , where K and V are the total kinetic and potential energy of the system. Hence, in our
case L would be

L=
∫
LdV =

∫ 1
2ρ0v

2− 1
2κ0p

2dV (2.18)

It is well known that the kinetic energy density is εK = 1
2ρv

2, and in acoustics the potential
energy density of a wave is sometimes defined as εP = 1

2κ0p
2 [8], although there seems to be

different opinions on this [28]. We will later show that a different expression for εP is needed for
nonlinear waves. However, the main point about the Lagrangian density is not if it is correct
in terms of representing the kinetic and potential energy, but that for it can be neglected. This
might seem dramatic, but the reason lies in the fact that it does not contribute to cumulative
nonlinear effects in the wave propagation, since L(x,t) ≈ 0 after a very short propagation dis-
tance. Cumulative nonlinear effects are effects that occur due to variation in propagation speed
along the wave form, i.e. because the wave is influencing its own wave speed, an effect that
can cause development of shocks [15]. We now show why L can be neglected when one only
concerns cumulative nonlinearity.
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L(x,t)≈ 0

In the case of a wave originating from a point source in R3, the homogenous, linear wave equa-
tions reduces to a one dimensional equation in the following way: Let r = ||x||=

√
x2 +y2 +z2.

Due to symmetry of the spherical waves from a monopole point source, i.e. a small, vibrating
sphere that expands and compresses the material equally in all directions [31], the Laplace
operator only has a radial part [7]:

∇2φ(r, t) = 1
r2

∂

∂r

(
r2∂φ(r, t)

∂r

)
= ∂2φ(r, t)

∂r2 + 2
r

∂φ(r, t)
∂r

= 1
r

∂2

∂r2 (rφ(r, t)). (2.19)

Still assuming the velocity is irrotational, we introduce the velocity potential φ. It is defined as

∇φ= v. (2.20)

The governing equations is as before

κ0
∂p

∂t
+∇·v = 0 (2.21)

ρ0
∂v

∂t
+∇p= 0. (2.22)

Combing (2.21),(2.22) and (2.20), we get a wave equation for φ and a simple relation between
p and φ

∂2φ

∂t2
= c2

0∇2φ and p=−ρ0
∂φ

∂t
(2.23)

and the wave equation for the potential in spherical coordinates becomes
∂2φ

∂t2
= c2

0
r

∂2

∂r2 (rφ), or ∂2

∂t2
(rφ) = c2

0
∂2

∂r2 (rφ). (2.24)

We now have a 1-D wave equation for w= rφ, and the solution can be computed by d’Alembert’s
formula. We want to find the solution in the case of a small, vibrating sphere placed at the
origin.
The radial position of the sphere boundary is R(t) = r0 +r(t), where r0 is some mean position,
and r(t) is the boundary oscillations around r0 with frequency ω. When assuming |r(t)|<< r0,
we can choose r(t) such that the velocity potential at the boundary is φ|r0 = Asin(ωt), where
ω is the angular frequency of the vibration[7]. The solution of (2.24) is of the form

φ(r, t) = f(r− c0t)
r

+ g(r+ c0t)
r

, (2.25)

where f represents an outgoing wave (from the origin) and g represents an incoming wave. Since
the sphere is the only source, we only need the f term. We apply the boundary condition to
get

Asin(ωt) = φ(r0, t) = f(r0− c0t)
r0

. (2.26)

Replacing t by ( r0
c0
− r
c0

+t), we have f(r−c0t) = r0Asin
(
ωt− ω

c0
(r− r0)

)
, and we get the solution

for φ(r, t):

φ(r, t) = Ar0
r

sin
(
ωt− ω

c0
(r− r0)

)
. (2.27)
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Using the relation 2π
λ = ω

c0
, where λ is the wavelength, we write

φ(r, t) = Ar0
r

Imei(ωt−
2π
λ

(r−r0)). (2.28)

Utilizing the relations between φ, p and v in (2.20) and (2.23), remembering that ∇= ∂
∂rer due

to the symmetry, we have

v =−i2π
λ

(
1 + λ

i2πr

)
φ and p=−iωρ0φ (2.29)

We now introduce the acoustic impedance, defined as Z = p
v . Acoustic impedance is a way

to measure a material’s resistance to acoustic propagation, and as we will see, it becomes
approximately constant. Returning to the wave from the pulsating sphere, we get

Z = p

v
= c0ρ0

1 + λ
i2πr

= c0ρ0

 1
1 + λ

i2π||x||

 . (2.30)

Hence, if ||x|| � λ, we see that Z ≈ c0ρ0, i.e. as the wave gets far enough from the source at r0,
the impedance is approximately constant. Rearranging the impedance relation Z = p

v , we get

v = p

Z
≈ p

c0ρ0
for ||x|| � λ (2.31)

Returning to the Lagrangian density once again, L(x,t) = 1
2ρ0v

2− 1
2κ0p

2, remembering that
κ0 = 1

c2
0ρ0

, we substitute the relation (2.31) for v:

L(x,t)≈ 1
2ρ0

p2

c2
0ρ

2
0
− κ0

2 p
2 = 1

2
(
κ0p

2−κ0p
2
)

= 0 for ||x|| � λ. (2.32)

In [1] Aanonsen et al. explain:
”... the L terms can only produce local effects in the wave solution. They cannot, for a progres-
sive wave, lead to cumulative effects. These are fully accounted for through the

[
q = βκ2

0
∂p2

∂t

]
term, and thus are described by a nonlinear wave equation in p.”
In this example we have looked at a wave from a pulsating sphere, but the same result also
hold for propagating plane waves and cylindrical waves [1]. In most of the situations consid-
ered in ultrasound, the condition ||x|| � λ, that is, propagation lengths are much longer than
wavelengths, is valid. Hence if one is interested only in the cumulative nonlinear effects, it is
a fair assumption to leave the Lagrangian density out. For example, Treeby et al. neglect the
Lagrangian density in their state-of-the-art acoustic simulation tool k-Wave [29]. In absence of
L, the nonlinear equations (2.15) and (2.17) read

∂

∂t

(
κ0p−βκ2

0p
2
)

=−∇·v, (2.33)

ρ0
∂v

∂t
=−∇p, (2.34)

and can be combined to give the second order lossless Westerwelt equation [15]:

∇2p− 1
c2

0

∂2p

∂t2
=− β

ρ0c4
0

∂2p2

∂t2
(2.35)
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A similar, but more involved derivation, yields the KZK-equation(Khokhlov-Zabolotskaya-
Kuzentsov):

∂2p

∂z∂τ
− c0

2 ∇
2
⊥p−

δ

2c3
0

∂3p

∂τ3 = β

2ρ0c3
0

∂2p2

∂τ2 (2.36)

The KZK-equation is used to model directional sound beams, propagating in the z-direction.
The operator ∇2

⊥ = ∂2

∂x2 + ∂2

∂y2 acts only perpendicular to the propagation direction, and δ is a
factor that accounts for loss terms. This equation is widely used to model nonlinear waves in
ultrasound [15, 18].

However, since local nonlinear effects might occur in wave-particle interaction, and we want
an accurate description, we should not neglect the Lagrangian density.

A problem with the derivation of the continuity equation

In the case of a discontinuous density distribution, the Eulerian derivation of the continuity
equation (2.1) in differential form is not valid. On deriving the equations, one starts with the
assumption that the change of mass for an arbitrary control volume Ωc must be equal to the
flux of mass through the volume boundary ∂Ωc:

d
dt

∫
Ωc

ρdV =−
∫
∂Ωc

vρ ·ndA (2.37)

Then one applies the divergence theorem to get∫
Ωc

∂ρ

∂t
+∇· (ρv)dV = 0. (2.38)

The statement of the divergence theorem for a smooth volume Ω reads [26]:

Let Ω and n the outward unit normal on ∂Ω, and let f(x,t) be a continuously differentiable
vector function, i.e. f ∈ C1(Ω). Then

∫
Ω
∇·fdV =

∫
∂Ω
f ·ndA.

But ρv is not always continuous, and hence the theorem cannot be used this way. One can do
the derivation with test functions to get a weak formulation, but this is a different story [26, 24].
The differential form of the Euler equations require the ambient, or initial, distribution of mass,
to be continuous. We will later see that the Lagrangian equivalent of (2.1) does not, and hence
is more suited for our purpose.

The Eulerian form of the acoustic equations have many applications, but from the above inves-
tigations, it seems that the standard Eulerian equations for propagation of acoustic waves are
not well suited for an accurate description of general wave-particle interaction.
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Particles represented as a variation in material parameters

We have already seen some methods to include particles and heterogeneity in our model. A
natural way of describing a particle in the material is through the material parameters. The
particle is characterized by having different material properties than its surroundings. Mate-
rial properties are represented in parameters that describe different aspects of a material, and
materials have many different material properties: Electric conductivity, specific heat capacity,
Young’s modulus, etc. However, when we study acoustic waves, there are mainly two parameters
of interest: The mass density ρ and the compressibility κ. They are defined as:

ρ= dm
dV (2.39)

κ=− 1
V

∂V

∂p
(2.40)

As mentioned above, acoustic waves propagate as compression and expansion of the material,
and how a material compresses and expand is mainly determined by its (mass) density and
compressibility. At a particle these properties differ, often discontinuously, and this leads to
changes in the wave propagation.
We define a particle to be a small, simply connected6 region in the material, denoted Ωp. For
a single particle in R3, where the surrounding material and the particle have, respectively,
constant material parameters ρm, κm,ρp and κp, we define

ρ0(x,t) =
{
ρp for x ∈ Ωp

ρm for x 6∈ Ωp
κ0(x,t) =

{
κp for x ∈ Ωp

κm for x 6∈ Ωp.
(2.41)

Since the same equation describes the acoustic wave propagation both inside and outside the
particle, we want to derive a wave equation that allows for inclusion of the material parameters
in a natural way, without the ad hoc touch. As we will see, using a Lagrange formulation lets
us do just that.

6Simply connected means that you can draw a curve between all points in the region without leaving it, and
that it has no holes.
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CHAPTER 3

Lagrangian formulation of the governing equations

In this chapter we introduce the Lagrangian description, and derive the governing equations
formulated in Lagrangian coordinates. We also point at why these equations are better suited
to model wave propagation in heterogeneous materials.

The Lagrangian description of a material (i.e. a fluid, solid, etc.) differs from the descrip-
tion we have used this far, the Eulerian description. In Eulerian coordinates, the governing
equations are formulated to yield a value at fixed point in space at a given time. Thus, if for
example one is interested in the velocity of a fluid, v(x,t), the Eulerian description will give
you the velocity of the fluid flowing past the spatial position x at time t. Since one does not
usually care about the life of individual regions of a fluid, but rather the behavior of the fluid at
given points (e.g. ”will the pressure break the dam?”), this works very well. But if a pile of dry
leaves were lying on the ground, and the wind started blowing, and you wanted to know how
each single leave would be carried around by the wind, the Eulerian description would not be
very good. It could give you information on the velocity of the particular leave drifting by, and
possibly also the density of that leave, but it would be a cumbersome process to try and recon-
struct each of the leaves’ paths from this information. The Lagrangian description gives you an
alternative. It describes the properties and movement of each point in you domain, uniquely
determined from its starting position, its Lagrangian coordinate. The Lagrangian coordinates
of the leaves would be their initial positions in the pile, and the solution to the Lagrangian
equations of motion would give you each leaves’ current velocity and position. We will see that
the Lagrangian formulation leads to a much more convenient equation for conservation of mass,
and incorporates heterogeneous material parameters in a natural way. It also solves the problem
of the potentially moving particle, as we obtain equations for the motion of all points in material.

We now introduce the mathematical framework of the Lagrangian description, and derive the
equations used to describe acoustic wave propagation in Lagrangian coordinates.

3.1. Mathematical formulation

Let X∈Ω(0), with Ω(0)⊂R3. We refer to Ω(0) as the reference, or initial, configuration.1 Then
the position of a point originally at situated the spatial position X = [X,Y,Z]T at t0 = 0 is given
by x = [x,y,z]T = ϕ(X, t), where ϕ is called the displacement function. Hence, its position at
a given time t depends on its starting point X, i.e. its Lagrangian coordinate. A natural
requirement is that ϕ(X,0) = X. Because of this it is common to define ϕ(X, t) = X+U(X, t),

1Boldface letters X and x are not used for vectors in general, but reserved for the coordinates of the reference
and current configurations.
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where U(X, t) is the displacement from the starting point. Naturally, we require U(X,0) = 0.
The vector U is called the displacement vector. Written out we have

ϕ(X, t) = X+U(X, t) =

ϕi(X, t)ϕj(X, t)
ϕk(X, t)

=

X+Ui(X, t)
Y +Uj(X, t)
Z+Uk(X, t)

 , (3.1)

where the i, j,k subscripts signifies the x,y,z directions in Cartesian coordinates. We will refer
to a region Ω(t) = ϕ(Ω(0), t) as the deformed, or current, region. A graphical representation of
the Lagrangian description can be seen in Figure 1. As we will see, the Lagrangian description

Figure 1. A control volume Ω(0) gets displaced in space, to Ω(t) = ϕ(Ω(0), t). X,Y,Z are the
Lagrangian coordinates, and x,y,z are the spatial/Eulerian coordinates.

offers two possible formulations of the equations of motion; either with respect to the reference
configuration or with respect to the deformed configuration. The former is called the material
description, and the latter is called the spatial decription. We will denote quantities evaluated
in the reference position with capital letters, and quantities evaluated at the deformed configu-
ration with lowercase letters. Hence, F (X, t) = f(ϕ(X, t), t). The acceleration of a point is the
temporal derivative of its velocity, and the difference in where one evaluates it is

∂V (X, t)
∂t

= ∂V

∂t
+∇V · ∂X

∂t
= ∂V

∂t
, (3.2)

since ∂X
∂t = 0, and

∂v(ϕ,t)
∂t

= ∂v

∂t
+ ∂ϕ

∂t
·∇xv = ∂v

∂t
+v ·∇xv. (3.3)
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Hence ∂V (X,t)
∂t = ∂v(ϕ,t)

∂t + v(ϕ,t) ·∇xv(ϕ,t). The term v ·∇xv is called the convective accelera-
tion, and is also included in the total derivative D

dt introduced in (2.6). The subscript x on the
nabla operator indicates that the gradient is taken w.r.t. the deformed configuration x.

ϕ as a mapping

Mathematically one can view the function ϕ as a mapping from some initial region to the current
region; ϕ : (Ω(0), t)→ Ω(t). The Lagrangian description is often used in continuum mechanics,
a mathematical theory for modeling the behavior of matter as a collection of deformable bodies
[22]. It is through this framework we will formulate our equations. A fundamental assumption
in continuum mechanics is that matter occupies space completely and continuously. To quote
J.T. Oden in [22]:
”Matter is not discrete; it is continuously distributed in one-to-one correspondence with points
in some subset of R3.”
The displacement function ϕ serves as this continuous, one-to-one correspondence between the
reference configuration and the current configuration. Two important concepts in the description
of displacement are the displacement gradient, the Jacobian of ϕ, and the Jacobian determinant.
They are defined as

F (X, t) =∇ϕ(X, t) =

∂Xϕi ∂Y ϕi ∂Zϕi
∂Xϕj ∂Y ϕj ∂Zϕj
∂Xϕk ∂Y ϕk ∂Zϕk

=

 1 +∂XUi ∂Y Ui ∂ZUi
∂XUj 1 +∂Y Uj ∂ZUj
∂XUk ∂Y Uk 1 +∂ZUk

 , (3.4)

where we have used the notation ∂
∂X = ∂X etc., and

J(X, t) = det(F ) (3.5)

F and J becomes important in the Lagrangian formulation of both mass and momentum con-
servation.

3.2. Conservation of mass

Another fundamental assumption in continuum mechanics is that matter is neither destroyed
or created during a deformation. This means that a region with an initial mass M0 should still
have mass M0 at any later time, independent of its deformation, if no mass enter or leave it.
On could think of a sloppy football; no matter how you squeeze it, it still weighs the same.

From this assumption we obtain the Lagrangian continuity equation. We define a region, or
control volume, to be B(t) = {ϕ(X, t) : ϕ(X,0) ∈B ⊂R3}, i.e. B(t) is a region of points initially
located at B. Thus B(0) =B. We denote the mass density as ρ(x, t), and ρ(x,0) = ρ0(X). We
denote the mass of B(t) as M(t). The initial mass M(0) is then given as

M(0) =
∫
B

ρ0(X)dV (3.6)
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where dV = dXdY dZ, and should remain the same as B(t) changes its position an configuration
with time. That is,

M(0) =M(t) =⇒
∫
B

ρ0(X)dV =
∫
B(t)

ρ(x, t)dv, (3.7)

where dv = dxdydz. We now take the volume integral over the deformed region back to the
initial region to perform the integration over B(0), and get [2]∫

B(t)

ρ(x, t)dv =
∫
B

ρ(x, t)JdV, (3.8)

where J is the Jacobian determinant of the displacement, as introduced above.
The requirement that M(0) =M(t) now reads∫

B

ρ0(X)dV =
∫
B

ρ(x, t)JdV, (3.9)

or ∫
B

ρ0(X)−ρ(x, t)JdV = 0. (3.10)

Since B is arbritary, the integrand in (3.10) has to be zero for all t and X. The continuity
equation now takes the form

ρ(x, t) = ρ0(X)
J(X, t) . (3.11)

This is quite a different expression than its Eulerian equivalent (2.1). Once the deformation is
known, we can simply compute the density ρ(x, t) in the deformed material from the initial den-
sity ρ0(X) and the Jacobian determinant J(X, t), and the computation does not involve taking
spatial derivatives of the density. It is apparent that this formulation is more suited if one wants
to include heterogeneous material parameters; the formulation allows ρ0 to be discontinuous.

It is also interesting to note the following: The fundamental hypothesis of continuum me-
chanics says that there is a bijection between material and spatial coordinates. It can be shown
that this requires for the Jacobian matrix to be invertible for all times [16]. This equivalent to
J(X, t)> 0, ∀t≥ 0 since the existence of F−1 implies J(X, t) 6= 0, and J(X,0) = det(F (X,0)) =
det(I) = 1,2. This condition also seem natural in the light of (3.10) since J ≤ 0 would cause
the density to blow up or become negative, which is clearly non-physical. The condition is
sometimes referred to as the mathematical form of the assumption of impenetrability of matter
[16].

2I is the 3 × 3 identity matrix.
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3.3. Conservation of momentum

We continue to obtain the momentum equation in Lagrangian coordinates. The integral formu-
lation of principle of conservation of momentum, in absence of body forces, is [22]

d
dt

∫
B(t)

ρ(x, t)v(x, t)dv =
∫

∂B(t)

σ(x, t)nds. (3.12)

Here B(t) denotes the same kind of control volume as used in derivation of (3.11), and ∂B(t) is
the boundary3 of B(t). σ(x, t) is known as the Cauchy stress tensor, and a detailed discussion
on σ can be found in [22, 14]. σ is a 3×3 matrix that specifies the forces acting in a in a con-
tinuum. When we only hydrostatic pressure, the stress tensor reduces to σ =−p(x, t)I, where I
is the 3× 3 identity matrix [16]. n is the outward unit normal vector in the deformed volume
and ds is the surface differential of ∂B(t). We now want to relate the surface integrals over the
deformed and initial control volume.

Nanson’s formula

Nanson’s formula relates the normal differentials nds and NdS on ∂B(t) and ∂B. We have the
following relation between the normal differentials and the volume differentials:

dX ·NdS = dV and dx ·nds= dv. (3.13)

Taking the total differential dx w.r.t. X gives

dx =

dx
dy
dz

=

∂Xx ∂Y x ∂Zx
∂Xy ∂Y y ∂Zy
∂Xz ∂Y z ∂Zz

dX
dY
dZ

 , (3.14)

or in terms of the displacement gradient F ,

dx = FdX. (3.15)

From the change-of-variable formula for volume integration we know that the volume differen-
tials are related by dv = JdV . Hence,

JdX ·NdS = dx ·nds =⇒ dX ·JNdS = FdX ·nds= dX ·F Tnds, (3.16)

and since F is assumed invertible, we obtain Nanson’s formula

JF−TNdS = nds (3.17)

where F−T = (F−1)T .

3We require ∂B(t) to be piecewise continuous.
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The Lagrangian momentum equation

We are now in a position to do the integration of (3.12) over the reference configuration. Using
(3.17) we have ∫

∂B(t)

σ(x, t)nds=
∫
∂B

Jσ(x, t)F−TNdS. (3.18)

This transition is known as the Piola transform [22]. The transformed volume integral from
(2.6) is ∫

B(t)

ρ(x, t)v(x, t)dv =
∫
B

ρ(x, t)V (X, t)JdV =
∫
B

ρ0(X)V (X, t)dV, (3.19)

since, from (3.11), ρ0 = Jρ. The integral formulation of the conservation of momentum in the
reference configuration thus becomes

d
dt

∫
B

ρ0(X)V (X, t)dV =
∫
∂B

Jσ(x, t)F−TNdS. (3.20)

The expression P = JσF−T appearing in the surface integral is known as the Piola-Kirchhoff
stress tensor, and relates stress in a deformed configuration to the stress in the reference con-
figuration [22]. Using the tensor form of the divergence theorem [22], where ∇ denotes the
divergence w.r.t. the Lagrangian coordinates, and pulling the time derivative inside the volume
integral, we get ∫

B

ρ0
∂V

∂t
dV =

∫
B

∇·PdV =⇒
∫
B

ρ0
∂V

∂t
−∇·PdV = 0. (3.21)

Again, since B is arbitrary, the integrand has to be zero for any control volume. Hence, the
differential form of conservation of momentum in Lagrangian coordinates is:

ρ0
∂V

∂t
=∇·P (3.22)

This equation looks both unpleasant and simple. Compared to its Eulerian equivalent, we see
that we don’t have a Lagrangian density L(x,t), which is nice. Another nice property is that
we don’t require spatial gradients of the density; nowhere in the derivation of neither (3.11) or
(3.22) do we make the assumption that ρ or ρ0 is continuous in space. But we have gained some
complexity by introducing the Piola-Kirchhoff tensor. At first glance it is not very clear how
one should handle ∇·P =∇·JσF−T , neither analytically or numerically, but the following will
make it more clear.

The Piola-Kirchhoff stress tensor

The Piola-Kirchhoff stress tensor relates the pressure in the deformed configuration to the forces
in the reference configuration. To analyze P , we start by looking at JF−T . A result from linear
algebra simplifies things:
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Let A be a invertible, square matrix in Rn×n. Let CA be the cofactor matrix of A. Then

A−1 = 1
det(A)(CA)T , (3.23)

where CA of A is defined as

CA =


c11 c12 . . . c1n
c21 c22 . . . c2n
...

... . . . ...
cn1 cn2 . . . cnn

 , (3.24)

and the cofactors are ci,j = (−1)i+j det(Mi,j), and Mij is the ij’th minor of A. The minor Mij

of A is the matrix A with row i and column j removed. For A ∈R3×3, the minor M21 would be

M21 =
(
a12 a13
a32 a33

)
. (3.25)

Since F is a square, invertible matrix, we have JF−T =CF . Calculation of CF in 2 dimensions
give

CF =
[
1 +∂Y Uj −∂XUj
−∂Y Ui 1 +∂XUi

]
. (3.26)

Now we show that ∇·CF = 0. The divergence of the tensor CF is

∇·CF =∇·

c11 c12 c13
c21 c22 c23
c31 c32 c33

=

∂Xc11 +∂Y c12 +∂Zc13
∂Xc21 +∂Y c22 +∂Zc23
∂Xc31 +∂Y c32 +∂Zc33

 . (3.27)

Writing the cofactors of the first component in terms of ϕ(X, t) = [ϕi,ϕj ,ϕk]T we get

c11 = ∂Y ϕj∂Zϕk−∂Zϕj∂Y ϕk
c12 =−(∂Xϕj∂Zϕk−∂Zϕj∂Xϕk)
c13 = ∂Xϕj∂Y ϕk−∂Zϕj∂Y ϕk.

The first row in ∇·CF equals ∇· [c11, c12, c13], and direct calculation gives

∇· [c11, c12, c13] = ∂X∂Y ϕj∂Zϕk +∂Y ϕj∂X∂Zϕk−∂X∂Zϕj∂Y ϕk−∂Zϕj∂X∂Y ϕk
−∂Y ∂Xϕj∂Zϕk−∂Xϕj∂Y ∂Zϕk +∂Y ∂Zϕj∂Xϕk +∂Zϕj∂Y ∂Xϕk

+∂Z∂Xϕj∂Y ϕk +∂Xϕj∂Z∂Y ϕk−∂Z∂Y ϕj∂Xϕk−∂Y ϕj∂Z∂Xϕk = 0.

The same holds for the j and k component of ∇·CF . Remembering that σ(x, t) =−p(x, t)I, we
have that P = σCF =−pCF . The divergence of a scalar-matrix product is

∇· (pCF ) = (CF )T∇p+p(∇·CF ), (3.28)

so from what we have just shown,

ρ0
∂V

∂t
=−CTF∇p. (3.29)
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Written out in component form, in two dimensions, with V = [Vi,Vj ]T , the equation for conser-
vation of momentum reads

ρ0
∂

∂t

[
Vi
Vj

]
=−

[
1 +∂Y Uj −∂Y Ui
−∂XUj 1 +∂XUi

][
∂Xp
∂Y p

]
. (3.30)

3.4. An evolution equation for the pressure

Obtaining a valid partial differential equation for the pressure is not as straight forward as one
would think, given (3.11). Not much literature on the topic exists, but it seems it is common
to do certain assumptions on the acoustic quantities. We now discuss these assumptions and
follow the derivation of a pressure evolution equation by B. A. Angelsen in [4].

The acoustic assumption

The acoustic assumption concerns the size of certain acoustic quantities. It is common to say
that the theory of acoustics is an infinitesimal theory, meaning that e.g. the acoustic pressure
and density, defined as the deviation from their static values, are very small quantities. Following
the introductory discussion in R. T. Beyer ’s book Nonlinear Acoustics [6], we introduce the
acoustic Mach number, M . M is defined as the ratio of maximum particle velocity v0 over local
sound velocity c0, and we require M = v0

c0
� 1. We don’t present the argument, but this leads

to a condition on the spatial derivative on the displacement U :

max
(
∂U

∂x

)
=O(M) (3.31)

From a similar derivation to the one in section 3.3, the 1-D version of the second order wave
equation can be shown to be [6]

∂2U

∂t2
= c2

0(
1 + ∂U

∂x

)2
∂2U

∂x2 , (3.32)

and the acoustic assumption serves as a justification for linearization, since
(
1 + ∂U

∂x

)2
≤ (1 +M)2≈

1. Since the linear wave equation in Eulerian coordinates is

∂2U

∂t2
= c2

0
∂2U

∂x2 , (3.33)

the linear wave equation in Lagrangian and Eulerian coordinates coincides, and this also serves
as a justification of the linearization of the Eulerian equations. It can also be shown that this
leads to similar linear Lagrangian and Eulerian equations for higher dimensions, by assuming
CF ≈ I [30].
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Angelsen’s equation

The derivation starts by showing that one can assume |∇ ·U | ≤M . The Jacobian determinant
J is approximated to first order in ∂U as

J ≈ 1 + ∂Ui
∂X

+ ∂Uj
∂Y

+ ∂Uk
∂Z

= 1 +∇·U. (3.34)

The condensation, or relative change in density, is defined as ρ′

ρ0
, and from (3.11) we get

ρ′

ρ0
=
ρ0
(

1
J −1

)
ρ0

= 1
J
−1≈ 1

1 +∇·U −1. (3.35)

A second order Taylor expansion of this expression gives
ρ′

ρ0
≈ 1 +∇·U + (∇·U)2−1 =∇·U + (∇·U)2, (3.36)

justified by |∇ ·U | ≤M � 1. In terms of the condensation, the nonlinear equation of state is
[15]

p=A

(
ρ−ρ0
ρ0

)
+ B

2

(
ρ−ρ0
ρ0

)2
(3.37)

Substituting the expression from (3.36) in to (3.37), discarding terms of order three or higher,
yields the relation

p=A

(
ρ′

ρ0

)
+ B

2

(
ρ′

ρ0

)2
≈−A∇·U +Aβ (∇·U)2 , (3.38)

where again β = 1 + B
2A . We now want to invert this relation. Solving for ζ =∇·U and k = p

A ,
we get

βζ2− ζ−k = 0 =⇒ 2βζ = 1±
√

1 + 4βk. (3.39)
We choose the negative root, since the other choice would leave us with ∇·U = 1

2β when p= 0.
Since k = p

A � 1, we can approximate the root with its Taylor series up to second order [4], to
get

ζ ≈ 1
2β

(
1−

(
1 + 1

24βk− 1
8(4βk)2

))
=
(
−k+βk2

)
. (3.40)

Hence, using that κ0 = 1
ρ0c2

0
= 1

A we get

κ0p−β(κ0p)2 =−∇·U or K(p) =−∇·U where K(p) = κ0p−β(κp)2 (3.41)
To get the equation presented in [3], one proceeds to take the material derivative of (3.41), to
get

K ′(p)∂p
∂t

=−∇·V, (3.42)

where K ′(p) = κ0−2βκ2
0p is known as the nonlinear elastic volume compressibility [4, 17]. There

are certain similarities between this equation and the nonlinear pressure equation in Eulerian
coordinates,

∂

∂t

(
κ0p−βκ2

0p
2
)

=K ′(p)∂p
∂t

=−∇·v+κ0
∂

∂t
L(x,t). (3.43)

Again, we have lost the Lagrangian density L(x, t), but it required an additional assumption.
The approximations that led to (3.42) are justified by the acoustic assumption, and by keeping
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first order terms, instead of linearizing completely as in (3.32), but it is unclear what conse-
quences these approximations have on the accuracy of the equation. In the paper describing the
acoustic simulation tool Abersim [30], the authors use a Lagrangian description and equation
(3.42) (where they include a loss term), and approximate the Piola-Kirchhoff tensor in (3.22)
as ∇·P ≈∇p. Comparing with the Eulerian equations, we see that this is equivalent to solving
the system (2.33)-(2.34).

A different approach

Since the density is given directly once we know the deformation, as in (3.11), we can, in
principle, obtain the pressure directly. In terms of the condensation ρ′

ρ0
= 1

J −1 and the linear
and nonlinear equation of state, we have that

p= 1
κ0

( 1
J
−1
)

or p= 1
κ0

( 1
J
−1
)

+ B

2

( 1
J
−1
)2
. (3.44)

For analytical purposes and for comparison with the Eulerian equations we also derive the
differential form of (3.44). For that we need a result on the derivative of J . From [16] we have
the result that for a continuously differentiable invertible matrix M(t)

∂

∂t
det(M) = det(M)tr

(
M−1 ∂

∂t
M

)
, (3.45)

where, for a square matrix A∈Rm×m, the trace is tr(A) =
m∑
i=1

aii. In the case of the deformation
gradient F , we have

∂

∂t
F = ∂

∂t
∇ϕ(X, t) =∇ ∂

∂t
ϕ(X, t) =∇V (X, t). (3.46)

We now need a relation between the gradient w.r.t. the reference configuration and the gradient
w.r.t. the deformed configuration. Since v(x, t) = V (X, t), the chain rule gives, for component
i,

∂Vi
∂X

= ∂vi
∂x

∂x

∂X
+ ∂vi
∂y

∂y

∂X
+ ∂vi
∂z

∂z

∂X
. (3.47)

Carrying out the computation for all the components in ∇xv, one finds that the gradients are
related by the deformation gradient F as

∇V =∇xvF or ∇xv =∇V F−1. (3.48)

Going back to (3.45), with J = det(F ), we have
∂

∂t
J = Jtr

(
F−1 ∂

∂t
F

)
= Jtr

(
F−1∇V

)
= Jtr

(
∇V F−1

)
= Jtr(∇xv) = J∇x ·v, (3.49)

since tr(AB) = tr(BA) for matrices A,B ∈ Rm×m, and tr(∇xv) =∇x ·v.

If we now take the material derivative of the pressure equation (3.44) obtained from the linear
equation of state, we get

∂p

∂t
+∇xp ·v =− 1

κ0

∇x ·v
J

. (3.50)
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We note that a linearization according to the acoustic assumption that J ≈ 1, leads to a equation
similar to the linear Eulerian pressure equation (2.5), i.e.

∂p

∂t
=− 1

κ0
∇x ·v. (3.51)

We can also express (3.50) in the reference configuration, using that4 ∇x ·v = 1
J∇·

(
JF−TV

)
:

∂p

∂t
=− 1

κ0J2∇·
(
JF−1V

)
(3.52)

A derivation with the nonlinear equation of state yields
∂p

∂t
+∇xp ·v =− 1

κ0
(1−B)∇x ·v

J
−B∇x ·v

J2 . (3.53)

These equations are an alternative to the pressure equation (3.42). As there is, to our knowl-
edge, no literature describing this latter approach or equations (3.50), (3.52) and (3.53), we will
not pursue it further.

Summing up, the Lagrangian equations describing acoustic wave propagation are

K ′(p)∂p
∂t

=−∇·V (3.54)

ρ0
∂V

∂t
=−∇·P, (3.55)

or written out in two dimensions,

K ′(p)∂p
∂t

=−∂Vi
∂X
− ∂Vj
∂Y

(3.56)

ρ0
∂

∂t

[
Vi
Vj

]
=−

[
1 +∂Y Uj −∂Y Ui
−∂XUj 1 +∂XUi

][
∂Xp
∂Y p

]
. (3.57)

The equations must be equipped with suitable initial and boundary conditions. We will return
to this in Chapter 5, when we construct a numerical method to for solving them.

4This relation is obtained by similar arguments to those yielding (3.29).
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CHAPTER 4

Energy, viscoelasticity and attenuation

In this section we look at a property that is essential to equations derived from conservations
laws; a feature known as conservation of energy. We then introduce the concept of viscoelasticity,
to account for attenuation, i.e. loss of energy, in our equations.

4.1. Conservation of Energy

Physically, acoustic waves can be interpreted as the interaction of the potential and kinetic
energy of the particles in the material in which the wave propagates. The propagation appears
as compression and expansion of the material. When the material is compressed, the wave
energy exists as potential energy, and during the expansion this energy is converted into kinetic
energy. Hence, one can say that kinetic energy depends on the motion of the material, while
potential energy depends on the deformation. The principle of conservation of energy1 says that
the sum of potential and kinetic energy is constant in absence of sources. It is useful for proving
uniqueness of solutions and stability of numerical schemes, and also for calculating acoustic
intensity [28].

It is natural to write the total energy density as a sum of the kinetic and potential energy
density:

εT = εK +εP (4.1)
The kinetic energy density is generally defined to be εK = 1

2ρv
2 , or εK = 1

2ρ0v
2, for the Euler-

ian equations [6]. As we pointed out earlier, there seems to some disagreement on what the
potential energy density is [28]. We now present a quite general approach to find expression for
εP using thermodynamics.

Let U be the internal energy2 of a material. Then the first law of thermodynamics states
that

dU = δQ+ δW. (4.2)
Equation (4.2) says that the change in internal energy (dU) is equal to the heat transfer into
the system (δQ) plus the work done on the system (δW ) [28]. The δ’s are known as inexact
differentials, and will soon be replaced by exact ones. At this point we assume that the com-
pression/expansion process is adiabatic, i.e. that there is no heat transfer during the process.
Then δQ = 0. This is a common assumption in acoustics, and is motivated by assuming that
pressure variations are so rapid that there is no time for heat flow [9]. For an ideal fluid we
have δW =−pdV , and from conservation of mass we have ρV =m. To get the potential energy

1energy=acoustic energy.
2Internal energy is the total energy of a system excluding kinetic energy and potential energy due to external

forces, i.e. gravity.

25



per mass, we first set m= 1, and get that dV =−dρ
ρ2 . Inserting this in the linear compressibility

relation (2.40) we get

κ0 =− 1
V

∂V

∂p
= ρ

1
ρ2

dρ
dp =⇒ dρ= κ0ρdp =⇒ dU = κ0

p

ρ
dp (4.3)

The internal energy (per mass) and the potential energy density then relates as ρdU = dεP [6].
Integrating dεP from 0 to p, we get that the potential energy density relative to the undisturbed
state is

εP = κ0

p∫
0

qdq = 1
2κ0p

2 (4.4)

This is the most common expression for εP , found in e.g. [4, 28, 6]. Before we continue, we look
closer at energy conservation.

Acoustic intensity and Power

To see how energy is conserved in the acoustic equations, we look at the closely related concepts
acoustic intensity and power. Acoustic intensity is defined as I(x, t) = pv, and represents the
instantaneous energy flow per unit area [8]. The power P(x, t) of a volume Ω(t) is the work
per unit time from the forces acting on Ω(t), and can, in absence of body forces, be written in
terms of the acoustic intensity [22]:

P(x, t) =−
∫

∂Ω(t)

p(v ·n)ds=−
∫

∂Ω(t)

I ·nds (4.5)

One can then show that the total acoustic energy E(t) of Ω, given as

E(t) =
∫

Ω(t)

εTdv, (4.6)

and the power is related as
d
dtE = P+Q, (4.7)

where Q represents heat sources, which we assume to be zero [22]. In fact this is a more specific
version of the first law of thermodynamics given in equation (4.2). Hence it becomes clear that
the energy of a wave is conserved in some domain Ω(t), if p or v (or both) are zero at the entire
boundary ∂Ω, since this yields

d
dtE = P =−

∫
∂Ω(t)

p(v ·n)ds= 0. (4.8)

From (4.7) we can also obtain a energy-intensity equation. In integral form we have
d
dt

∫
Ω(t)

εTdv =−
∫

∂Ω(t)

I ·nds=−
∫

Ω(t)

∇x · Idv =⇒
∫

Ω(t)

∂εT
∂t

+∇x · Idv = 0, (4.9)

and since Ω(t) is arbitrary we have
∂εT
∂t

+∇x · I = 0 (4.10)
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We will now see that we have energy conservation for the linear Eulerian equations, when

E(t) =
∫
Ω

1
2ρ0v

2 + 1
2κ0p

2dV. (4.11)

We want to show that ∂E(t)
∂t = 0, and we get

dE(t)
dt = d

dt

∫
Ω

1
2ρ0v

2 + 1
2κ0p

2dV =
∫
Ω

ρ0v ·
∂v

∂t
+κ0p

∂p

∂t
dV. (4.12)

Substituting from the linear equations (2.4) and (2.6) and integrating by parts we get

dE(t)
dt =

∫
Ω

−v ·∇p−p∇·vdV =
∫
Ω

p∇·v−p∇·vdV = 0. (4.13)

We continue to find an expression for εP in the nonlinear case: κ0 is the linear compressibility,
and it can be shown that a nonlinear compressibility relation is [4, 17]

K ′(p) =− 1
V

∂V

∂p
, where K ′(p) = κ0−2βκ2

0p. (4.14)

Hence the potential energy density for nonlinear waves is found to be

εnlP =
p∫

0

qK ′(q)dq = 1
2κ0p

2− 2
3βκ

2
0p

3. (4.15)

We note that for nonlinear waves, the Lagrangian density that appears in (2.15) and (2.17),
L(x,t) = 1

2ρv
2− 1

2κ0p
2, is not really the Lagrangian density, since L(x,t) 6= εK −εnlP .

We now show that the nonlinear Eulerian equations, when L is neglected, also obey the principle
of conservation of energy when εnlP is the potential energy density. The nonlinear wave equations
are

K ′(p)∂p
∂t

=−∇·v+κ0
∂

∂t
L(x,t) (4.16)

ρ0
∂v

∂t
=−∇p−∇L(x,t). (4.17)

Ignoring the terms involving L, we get
dE(t)

dt = d
dt

∫
Ω

1
2ρ0v

2 + 1
2κ0p

2− 2
3βκ

2
0p

3dV

=
∫
Ω

ρ0v ·
∂v

∂t
+p(κ0−2βκ2

0p)
∂p

∂t
dV

=
∫
Ω

ρ0v ·
∂v

∂t
+pK ′(p)∂p

∂t
dV
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Substitution of (4.16) (4.17) and integration by parts then yields
dE(t)

dt =
∫
Ω

−v ·∇p−p∇·vdV =
∫
Ω

p∇·v−p∇·vdV = 0, (4.18)

as it should. However, if include L in the calculation, things do not work out so smoothly:
Carrying out the same calculation, we are left with

dE(t)
dt =

∫
Ω

κ0p
∂

∂t
L−v ·∇LdV =

∫
Ω

∇·v
(1

2ρ0v
2 +κ0p

2
)

dV. (4.19)

Since all the terms in the parenthesis are positive, we can rewrite this as∣∣∣∣dE(t)
dt

∣∣∣∣≤ ∫
Ω

|∇ ·v|CdV, (4.20)

where C > 0 is some constant, and it is clear that for E to be constant, we have to have ∇·v = 0
in all of Ω, i.e. no wave.

Energy conservation for the Lagranigan equations

As we saw in (4.20), we did not get the wanted energy conservation when we included the
Lagrangian density term the Eulerian equations. Attempting to show energy conservation for
equation (3.29), (3.42) and (3.52), using both the nonlinear potential energy expressions, also
fails. Hence the problem can lie either in the formulation of the potential energy εP or equations
(3.42) and (3.52), or it can be related to the equation of state. In the, sometimes impervious,
literature of continuum mechanics and elasticity, e.g. [22, 19], and also in [15], the potential
energy density is sometimes referred to as the strain energy density. The strain energy density
is a functional on the form

S = S(I1, I2, I3) where λi = eig(F TF ) and In = In(λi) i,n= 1,2,3. (4.21)
Here eig(A) denotes the eigenvalues of the matrix A. According to [22], if the correct strain
energy density function is known, the stress(in an elastic) material can be derived from S. At-
tempts to show this, and energy conservation, with the Lagrangian equations did not succeed.

A motivation for the investigation of conservation of energy has been that it could serve as
a verification device for the Lagrangian equations, but this has not been successful. As a last
note on conservation of energy, we can say that it seems that the standard expression 1

2κ0p
2

is a fair approximation to the potential energy density. When we calculate the total energy in
simulations using (4.11), energy conservation seem to hold.

4.2. Viscoelasticity and attenuation

To include the effects of attenuation in our model we consider viscoelastic effects. Attenuation,
or loss of energy, in acoustic waves is due to microscopic phenomena, where the kinetic and
potential energy of the molecules are transferred to other degrees of freedom, e.g. vibrational
or rotational energy, or changes in the molecular configuration [14, 4]. Then the assumption
that the process is adiabatic, which we utilized in deriving the potential energy in (4.4) and
(4.15), is no longer valid. When a material is compressed, it might not expand to its initial state
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afterwards, and some of the (vibrational) energy is lost. A fully elastic material is a material
where no energy is lost due to this kind of behaviour, and a fully viscous material is a material
where all the energy is lost. Viscoelastic materials are materials that exhibit both elastic and
viscous properties. An underlying assumption in the equations we have developed so far is that
the medium in which the waves propagate is purely elastic, and this is also reflected in the
conservation of energy.

When deformed by some constant force, an elastic material instantaneously deforms and com-
pletely recovers its original shape when the force stops acting on it. Quite opposite, a viscous
material would, when being acted on by a constant force, deform until the force stops acting
on it, and the deformation does not reverse itself. A viscoelastic material is a material that
exhibits a mix of these properties. A rubber band is an example of a very elastic material, a
piece of toy clay is an example of a very viscous material, and human tissue is an example of
a viscoelastic material. Figure 1 illustrates how the different materials might deform under an
impulse force.
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Figure 1. On the bottom right, we see the time response of the applied force. The elastic
material deforms in agreement with the applied force. The rate of deformation for the viscous
material is proportional to the applied force, and hence the material deforms linearly until the
force stops acting. The viscoelastic material inherits a combination of these properties, and
deforms at at varying rate, before it slowly returns to its initial configuration. Values on axis
are arbitrary.

One could attempt to model viscoelastic behavior from the molecular level, but this is a difficult
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and intractable problem due to the number of molecules involved. Instead one tries to model
the macroscopic behaviour with simpler, heuristic models.

Two important concepts in viscoelastic models are stress and strain. Stress, denoted σ(X, t), is
a representation of surface forces that particles exert on each other. Strain, denoted ε(X, t), is
a measure of the deformation of the material. Both ε and σ are represented as tensors. In the
case of small deformations and pressure induced forces, they take the form [16]

ε(X, t) = 1
2(FT + F)− I σ(X, t) =−pI, (4.22)

where F =∇ϕ is the deformation gradient. We are mainly interested in the volumetric strain,
defined as εv = tr(ε(X, t)) =∇·U . The viscoelastic equations are given as relations between the
components of ε and σ, and E and η, the elastic modulus and viscosity parameters, respectively.
In the case of pressure induced strain, we have E = 1

κ0
. There exists multiple models to account

for viscoelastic effects, but as proposed in [3], the Three-element-model gives an is an adequate
model for such effects in soft tissue.

The Three-element-model

In [20] the elastic and viscous pressure-density relations are given in terms of excess density
ρ′, ambient density ρ0, compressibility κ0, the viscosity parameter η and the pressure p. From
(3.34) we get the first order approximation ρ′ =−ρ0∇·U =−ρ0εv. The Three-element-model is
pictured in Figure 2. The quantities in the model are the nonlinear elastic strain ε1, the linear
elastic and viscous strain, εs and εd, the sum of these, ε2. From [14] we have that the linear
elastic strain-stress relation is

εs = 1
E
σs =−κ0p, (4.23)

the viscous strain stress relation is
dεd
dt = 1

η
σd =−1

η
p, (4.24)

and the nonlinear elastic relation, which we recognize from (3.41), is
ε1 =−K(p). (4.25)

The model is understood by thinking of each infinitesimal volume as a microscopic mechanical
system. This system consists of a nonlinear spring connected to a dashpot and a linear spring
aligned in a parallel configuration as in Figure 2. A dashpot is also known as a Newtonian
damper, and models the viscous part of the system. The spring is the mechanical analogy of
Hooke’s law, and is the elastic part of the system. The nonlinear spring represents the nonlinear
elastic effects of the system, and the dashpot and linear spring the viscoelastic effects.3 The
total volumetric strain for the system is εv = ε1 +ε2. From (4.25) we have that ε1 =−K(p). For
ε2, one assumes that ε2 = εs = εd. The total strain over the parallel spring and dashpot is the
sum of the strain from the spring and the dashpot, as given in equations (4.23) and (4.24) [14]:

σ = σs+σd = 1
κ0
εs+η

dεd
dt = 1

κ0
ε2 +η

dε2
dt (4.26)

3A dashpot and spring in parallel is known as the Kelvin-Voigt model, and is one of the fundamental models
for viscoelastic effects[14].
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Figure 2. Illustration of the Three-element-model. ε1 and ε2 is the volumetric strain in each
part of the system, εs and εd is the (volumetric) strain in the spring and dashpot part of the
parallel part of the system. A is the nonlinear spring, B is the viscous element, the dashpot,
and C is the linear spring.

Or, as an ordinary differential equation for ε2, in terms of σ =−p:

dε2
dt =− η

κ0
ε2−

1
η
p (4.27)

Taking the time derivative of εv, we get

dεv
dt = dε1

dt + dε2
dt =− d

dtK(p)− 1
η
p− η

κ0
ε2. (4.28)

Now, since dεv
dt = ∂

∂t∇·U =∇·V , and d
dtK(p) =−K ′(p)∂p∂t , we have

K ′(p)∂p
∂t

=−∇·V − η

κ0
ε2−

1
η
p (4.29)

We now have an equation for the acoustic pressure that includes the effect of viscoelastic atten-
uation. We have added new viscosity term ε2 = ε, and the ODE (4.27). We continue to look at
how attenuation depends on frequency.
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Frequency dependent attenuation

The effect of acoustic attenuation is known to be frequency dependent [3, 29], i.e. that the
amount of attenuation depends of the vibration frequency of the wave. There are various mod-
els to account for this effect in equation (4.29), described in e.g. [14, 4, 8, 31]. We want to
adapt the viscoelastic model to include such effects, according to [3]. To explain how this can
be done, we do an energy analysis of the viscoelastic system.

When a viscoelastic material is deformed by some periodic function, the stress will generally
lag behind the strain. For a sinusoidal volumetric deformation, when the process has reached a
steady state, we can assume

ε= ε0 sin(ωt) (4.30)
where ε0 is an amplitude parameter to be specified. Inserting this expression into the dashpot-
spring system in equation (4.27), writing σ =−p, we get that

σ = ηε0

(
ω cos(ωt) + η

κ0
sin(ωt)

)
(4.31)

The energy loss during on period of vibration is given as [14]

εL =

2π
ω∫

0

σdε. (4.32)

Calculation with ε and σ as defined above yields

εV =

2π
ω∫

0

σdε=

2π
ω∫

0

σ
dε
dtdt= ωε20η

2π
ω∫

0

(
ω cos(ωt) + η

κ0
sin(ωt)

)
cos(ωt)dt= πε20ηω, (4.33)

Hence, the attenuation of energy has a linear frequency dependence:
εV (ω) = πηωε20. (4.34)

If one has measurements of the amount of attenuation for specific materials and frequencies,
the parameter η could be adjusted to fit the measurements. However, in the continuation of
this thesis, we choose to not include this particular loss model. It will be clear that it poses
no huge complications or changes in the numerical model to include it, but it is left out since
it requires of extra parameters and specific knowledge, in contrast to the rest of the equations,
which are more general.
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CHAPTER 5

Numerical Method

In this section we propose a numerical method to solve the equations derived in Chapter 3.
The method is second order in space and time, and is based of a FDTD1 method that uses
leap frog time integration and staggered grids. The introduction of the Piola-Kirchhoff tensor
in (3.29) ads some complexity, but we propose a construction of a staggered grid that handles
this without loss of accuracy. The method also uses split-field PML boundary conditions for
damping of the waves.

The full system of partial differential equations for the lossless propagation of acoustic waves in
two dimensions is

∂

∂t

[
Ui
Uj

]
=
[
Vi
Vj

]
(5.1)

K ′(p)∂p
∂t

=−∂Vi
∂X
− ∂Vj
∂Y

(5.2)

ρ0
∂

∂t

[
Vi
Vj

]
=−

[
1 +∂Y Uj −∂Y Ui
−∂XUj 1 +∂XUi

][
∂Xp
∂Y p

]
. (5.3)

The system (5.1)-(5.3) must be equipped with a suitable set of boundary conditions, initial
conditions and as we will see, sources, before we can proceed.

5.1. Sources

An acoustic wave is a propagation of some disturbance from the equilibrium state. This initial
disturbance can appear anywhere inside the medium in which the wave propagates, but in
the case of a ultrasound wave being exerted into the human body, it would seem natural that
the disturbances that cause the incoming wave arises at the boundary of the domain. The
disturbance can for example be represented either as a boundary condition on p and V , or as
source term in equations (5.2) or (5.3) (or both), included as follows:

K ′(p)∂p
∂t

=−∇·V +Sm (5.4)

ρ0
∂V

∂t
=−∇·P +SF (5.5)

We can use the source term Sm to simulate the effect of a vibrating plane. Let a stiff, vibrating
plane occupy the region ΩW , say ΩW = {(X,Y ) :X = a,y1 ≤ Y ≤ y2}, and let vp(t) be the
uniform vibrational speed of the plane, and n its normal vector. We require that V ·n= vp(t),
i.e. that the normal velocity is continuous over the plane. Since the vibration causes a local

1Finite Difference Time Domain.
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change in density, its effect can be modeled as an infinitely thin volume injection source Sm on
the form

Sm(X, t) =
{

2vp(t)δ(y−Y ) for X,y ∈ ΩW
0 for X 6∈ ΩW

(5.6)

added to (5.2) [31]. Then Sm produces the same acoustic wave field for X > a as one would
get from placing the boundary at ΩW enforcing the above mentioned condition on the normal
velocity. A source of this type is known as a monopole source. A monopole source source is
easiest understood when it acts as a point source. If a infinitesimal spherical volume expands, it
displaces its surroundings equally in all directions, and hence initiates a spherical wave.2 In the
case of a monopole plane source, it will radiate two main waves, one in each spatial direction,
and also spherical-like waves from the edges of the plane. An example of waves generated by
such sources can be seen in Figure 1 and 2. We will later use a source of this type combined
with appropriate boundary conditions to generate waves.

Figure 1. A 2-D spherical wave
from a monopole volume injection
point source.

Figure 2. A wave from a plane(line)
volume injection source.

2This is the same kind of wave we looked at in connection with the Lagrangian density.
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5.2. Split-field Perfectly Matched Layer

We are interested in the wave-particle interaction, and not reflections or other wave phenomena
that occurs at boundaries of our medium. The ideal solution would be to have a infinitely
big computational domain, and while we study the region of interest, let the rest of the wave
propagate into oblivion. This is of course not computationally feasible, and to remedy this we
use a technique called split-field Perfectly Matched Layer. This is not a boundary condition per
se, but a modification of the equations to produce a gradual absorption of the wave in certain
parts of the computational domain, the Perfectly Matched Layer(PML).

The PML method was initially developed for the equations describing electromagnetic wave
propagation [5]. In electrodynamics, both the magnetic and electric fields are vector fields. To
use the method in acoustics, one has to split the scalar pressure field into two components,
p = pi + pj , and add them together after computation. Hence the additional ”split-field”. We
will see that the formulation of the equation in terms the components pi and pj is natural when
we also split ∇·V . The method also has a simpler and more intuitive formulation when used
with first order systems like those being treated this thesis, favorable to the more common
second order formulations of wave equations like (1.1). In the original paper by Berenger [5],
the modified equations were introduced, followed by arguments on how and why they worked.
Later, others have derived the same equations through rather lengthy arguments on analytical
continuation of the wave in to an absorbing infinite space [21]. However, the method appears
very intuitive when one sees the modified equations, and we present it as it is given in [23].

We denote our computational domain Ω, and the PML Ωpml, where Ωpml ⊂ Ω, and the outer
and inner boundaries, Γo and Γi, are as in Figure 3. We define the absorption coefficients as

Figure 3. A 2-D domain Ω, where the PML-region Ωpml is marked with yellow, and the outer
and inner boundaries are Γo and Γi.
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σk(X) =
{
αk(X) for X ∈ Ωpml

0 for X 6∈ Ωpml
k = i, j (5.7)

where αk is a positive, real valued function that monotonously increases from 0 to some value
αmax from Γi to Γo in Ωpml. The modified equations3 now become

∂Vi
∂t

=− 1
ρ0

((1 +∂Y Uj)∂Xp−∂Y Ui∂Y p)−σiVi (5.8)

∂Vj
∂t

=− 1
ρ0

((1 +∂XUi)∂Y p−∂XUj∂Xp)−σjVj (5.9)

∂pi
∂t

=− 1
K ′(p)

∂Vi
∂X
−σipi (5.10)

∂pj
∂t

=− 1
K ′(p)

∂Vj
∂Y
−σjpj (5.11)

p= pi+pj (5.12)
That the split-field system is equivalent to the original system inside the non-PML region, is
easily seen by adding the equations for pi and pj . Each of the modified equations roughly
resemble equations of the form g′(ξ) = f(ξ)−αg(ξ), where the solution is of the form

g(ξ) = c1e
−αξ +e−αξ

ξ∫
1

f(y)eαydy, (5.13)

and one sees that the additional term introduces a exponential decay proportional to α. Thus,
one obtains a damping of both the velocity and the pressure when inside the PML. This is
also intuitively understood since the addition of the PML terms is equivalent to saying that
the rate of change of a quantity is equivalent to the negative value of that quantity(plus the
contribution from the pressure gradient) when inside the PML. The absorption coefficients have
to be specified to yield a gradually increasing damping as the wave propagates through the PML.
Sharp changes in absorption can lead to unwanted reflections of the wave, and should be avoided
[31]. If we were in 1-D, and the PML was located at x1 ≤X ≤ x2, we could e.g. define

σ(X) =
{
αmax(x1−X)2 for x1 ≤X ≤ x2

0 for 0<X < x1
(5.14)

and the parameter αmax would need to be set an optimized according to the width of the PML,
pressure amplitude, etc. This kind of damping of a sine-wave can be seen in Figure 4.

When the wave enters the PML it becomes increasingly attenuated as it propagates through
it, but it does not vanish completely. Hence we need to specify a boundary condition at the
outer boundaries of the PML, Γo. It is then common to use a Dirichlet boundary condition on
the velocity: V (X, t) = 0 on Γo, while the pressure at the boundary remains unspecified. Zero
vibration velocity means that the boundary is perfectly rigid, and this yields a total reflection
of the wave back in to the PML. However, as the reflected wave is also absorbed on its way
back from the boundary, it practically becomes negligible.

3We don’t include the equation for the displacement, as it is unaltered by PML.

36



Figure 4. A sine wave propagates a unit length before entering the PML. The PML starts
where the line color switches from blue to orange, and the amplitude is quickly attenuated.

To initiate waves into Ω, we use a volume injection source as described above in (5.6), placed
along a part of the inner boundary Γi where we want e.g. a transducer to appear. Hence the
part of the wave created by the monopole source Sm not propagating into Ω is immediately
absorbed as it propagates into the PML. A graphical explanation of the PML method can been
seen in Figure 5, and a simulation of the source/PML combination is seen in Figure 6.

Figure 5. A is the ultrasound transducer, the source of the acoustic waves. B can be the
entire physical region, while C is our computational domain. The region of interest D is inside
the dotted circle. The PML is the area between the thin green rectangle and the broader yellow
rectangle, and the source Sm is placed at the inner boundary of the PML, where the blue front
end of the transducer is.
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Figure 6. A cross section of a Gaussian plane wave radiated by a volume injection source just
inside Γi. The monopole source radiates two main waves, one traveling in to the domain, and
one traveling out of it. The outwards traveling wave quickly absorbs in the PML, while the
inwards traveling wave is free to propagate undisturbed. Values on axes are arbitrary.

We assume the medium initially is at equilibrium, i.e. all acoustic quantities are zero. With
initial and boundary conditions, PML-modification and addition of sources, the full 2-D system
of equations to be solved numerically is

∂Ui
∂t

= Vi (5.15a)

∂Uj
∂t

= Vj (5.15b)

∂Vi
∂t

=− 1
ρ0

((1 +∂Y Uj)∂Xp−∂Y Ui∂Y p)−σiVi (5.15c)

∂Vj
∂t

=− 1
ρ0

((1 +∂XUi)∂Y p−∂XUj∂Xp)−σjVj (5.15d)

∂pi
∂t

=− 1
K ′(p)

(
∂Vi
∂X
− 1

2Sm
)
−σipi (5.15e)

∂pj
∂t

=− 1
K ′(p)

(
∂Vj
∂Y
− 1

2Sm
)
−σjpj (5.15f)

p= pi+pj (5.15g)

U,V,p ∈ Ω and U = V = p= 0 at t= 0
Vi = Vj = 0 on ∂Γo
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5.3. Discretization

We want to solve the equations (5.15) using a finite difference method in both the spatial and
temporal domain. A well known and elegant numerical method used on equations originating
from conservation laws involves writing the system in a matrix form and diagonalizing it before
solving it, as described in [24, 27]. One problem with this approach is that it gets increasingly
complex as the number of dimensions increase and nonlinear terms are added. In [31], a number
of numerical methods for solving the linear equations (2.4) and (2.6) are proposed, e.g. finite
element methods, pseudospectral methods and finite difference methods. One of the finite dif-
ference methods, a method also originating from the field of electrodynamics,4 combines a grid
construction technique called staggered grid, and a time integration method known as leapfrog
time integration, where different quantities are computed at alternating time steps. We propose
a finite difference scheme based on the same idea, but first we examine the method in its original
form to see how it works on the linear and nonlinear Eulerian equations, (2.4), (2.6),(2.15) and
(2.15), and why it fails on (5.15).

Leapfrog on Staggered Grid for the Eulerian equations

We start by defining discrete variables. Let ΩI,J = {(xi,yi) = (i∆x,j∆y), i, j ∈ N,0≤ i≤ I,0≤
j ≤ J} be the discrete domain, where I and J are the number of nodes in the x and y-direction,
respectively. We let ∆x= Lx

I and ∆y = Ly
J , where Lx and Ly are the domain lengths in the x

and y-direction. The discrete time is denoted tn, where tn = n∆t and n ∈ N, and ∆t is some
chosen temporal step length. We denote discrete function values as

f(xi,yj , tn) = f(i∆x,j∆y,n∆t) = fni,j

f(xi,yj , tn+ 1
2
) = f(i∆x,j∆y,n∆t+ 1

2∆t) = f
n+ 1

2
i,j

f(xi+ 1
2
,yj , tn) = f(i∆x+ 1

2∆x,j∆y,n∆t) = fn
i+ 1

2 ,j
etc.

The idea behind the leapfrog time integration is to solve the equations for p and v at different
timesteps. One uses pn to compute vn+ 1

2 , and vn+ 1
2 to compute pn+1 and so forth. The staggered

grid in the spatial domain places the nodes such that spatial derivatives at fni,j are computed
from neighboring points, a half step away in the x and y-directions, by a second order central
difference operator. More specifically, we approximate the temporal and spatial derivatives as

∂f

∂x

∣∣∣∣n
(i,j)

=
fn
i+ 1

2 ,j
−fn

i− 1
2 ,j

∆x +O(∆x2)

∂f

∂y

∣∣∣∣n
(i,j)

=
fn
i,j+ 1

2
−fn

i,j− 1
2

∆y +O(∆y2)

∂f

∂t

∣∣∣∣n
(i,j)

=
f
n+ 1

2
i,j −fn−

1
2

i,j

∆x +O(∆t2)

4The first paper on the method seems to be ”Numerical solution of initial boundary value problems involving
Maxwell’s equations in isotropic media” [32], written by Kane Yee.
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The computational molecules in Figure 7 shows how the nodes are aligned and used in the
computation, and Figure 8 shows a section of the staggered grid. It works very elegantly
due to the structure of the system: (2.4) and (2.6) constitutes a mixed system, where the
temporal derivative of p depends on the divergence of v and vice versa, and the staggered
grid lets us compute pn+1

i,j from the divergence of vn+ 1
2

i,j , which is computed from the nodes
surrounding (xi,yj). The same technique applies to computation of the velocity components
from the pressure gradient. The discretization of (2.4) and (2.6), with v = [u,v]T becomes

pn+1
i,j −pni,j

∆t =− 1
κ0

u
n+ 1

2
i+ 1

2 ,j
−un+ 1

2
i− 1

2 ,j

∆x − 1
κ0

v
n+ 1

2
i,j+ 1

2
−vn+ 1

2
i,j− 1

2

∆y (5.16)

u
n+ 1

2
i+ 1

2 ,j
−un−

1
2

i+ 1
2 ,j

∆t =− 1
ρ0

pni+1,j−pni,j
∆x (5.17)

v
n+ 1

2
i,j+ 1

2
−vn−

1
2

i,j+ 1
2

∆t =− 1
ρ0

pni,j+1−pni,j
∆y (5.18)

Figure 7. Computational molecules for p, u and v according to the discretization in equations
(5.16)-(5.18).

As we mentioned, the central difference operators used in this discretization are second order
approximations to the analytic derivatives, meaning that truncated terms in the approximation
occur with a factor ∆xm = (∆x)m, where m≥ 2. In numerical methods solving wave equations,
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Figure 8. Section of the staggered grid.

this feature is important, as first order approximations of spatial derivatives adds unwanted
numerical diffusion to the the solution. Expanding a forward difference operator of a spatial
derivative in a Taylor series shows why:

1
∆x

(
fni+1,j−fni,j

)
= ∂f

∂x

∣∣∣∣n
(i,j)

+ 1
2∆x∂

2f

∂x2

∣∣∣∣n
(i,j)

+O(∆x2) (5.19)

Hidden in the first order approximation is the second spatial derivative. Hence, using a first
order forward difference operator in a equation like (2.4) would compare to solving the equation

∂p

∂t
≈− 1

κ0

(
∇·v+ 1

2∆x∇2v

)
+O(∆x2), (5.20)

where the term 1
2∆x∇2v is recognized as a diffusion term appearing in the heat equation or

in transport equations [26]. Diffusion, manifested as a smoothing and ”spreading out” of the
solution as seen in Figure 9, is avoided by using the central difference operator. By a Taylor
expansion we get

fn
i+ 1

2 ,j
−fn

i− 1
2 ,j

∆x = ∂f

∂x

∣∣∣∣n
(i,j)

+ 1
24∆x2∂

3f

∂x3

∣∣∣∣n
(i,j)

+O(∆x3). (5.21)
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There is no diffusive term hidden this approximation. Hence, we want to use second order
operators in our method.
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Figure 9. Plot of from a 1-D implementation of a first order upwinding scheme. One sees how
the numerical diffusion attenuates and spreads out a pressure wave.

The scheme presented above can easily be used for the nonlinear equations (2.15) and (2.17),
when neglecting the Lagrangian density. We only have to change the scheme for the pressure
equation, using a explicit variation of the central difference operator, to get

pn+1
i −pni

∆t =− 1
K ′(pni,j)

u
n+ 1

2
i+ 1

2 ,j
−un+ 1

2
i− 1

2 ,j

∆x +
v
n+ 1

2
i,j+ 1

2
−vn+ 1

2
i,j− 1

2

∆y

 , (5.22)

where K ′(pni,j) = κ0−βκ2
0p
n
i,j .

Leapfrog on Staggerd Grid for the Lagrangian equations

We now want to apply a similar method to the Lagrangian equations. A closer look at e.g. the
momentum equation (5.15)c-d reveals that the grid structure used for the Eulerian equations is
not well suited: if we consider the component Vi, we have that

ρ0
∂Vi
∂t

=−((1 +∂Y Uj)∂Xp−∂Y Ui∂Y p) . (5.23)

First, we see that the equation includes the displacement U , and hence this quantity also has
to live at some suitable set of nodes. Second, it depends on the pressure gradient in both the
x and y-direction, but as we see from Figure 8, a velocity component (Vi)i,j is not placed in a
way that lets us apply the central difference in a natural way to obtain this. To fix this, and
allow the leapfrog time integration, we need a grid that satisfies the following requirements:

• The pressure and displacement nodes are placed such that we can compute spatial gra-
dients with central differences in a natural way when computing velocity components.
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• The pressure and displacement nodes should be computed at the same timestep.
• The the velocity nodes should be placed such that when we compute velocity gradients

at pressure nodes, it can be done using the central difference operator.

To meet these requirements, we propose the grid shown in Figure 10.

Figure 10. A staggered grid structure for the Lagrangian equations. It differs from the grid
in Figure 8, both in that it contains displacement values Ui,Uj and in the relative positioning
of the nodes.

As we will see, with this grid construction, central difference operators can be used in a natural
way in both space and time, and by computing p and U in the same time step, and V at the
next, the leapfrog time integration can be used similarly as with the Eulerian equations. It
might seem strange that the velocity and displacement does not reside at the same nodes, but
there is really no need for this, as in the limit when increments go to zero, all approximations
will remain consistent with the original equations. The computational molecules for Ui, Vi and
p are shown in Figure 11. We now give a detailed exposition of the discretization used in solving
each of the equations in (5.15), starting with the displacement:

∂Ui
∂t

= Vi
∂Uj
∂t

= Vj (5.24)

43



Figure 11. Computational molecules for central difference operators on the grid in Figure 10.

∂Ui
∂t

∣∣∣∣n+ 1
2

(i,j)
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(Ui)n+1
i,j − (Ui)ni,j

∆t
∂Uj
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2
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For the split-field pressure components we have

K ′(p)∂pi
∂t

=−∂Vi
∂X

K ′(p)∂pj
∂t

=−∂Vj
∂Y

p= pi+pj (5.25)

K ′(p)∂pi
∂t

∣∣∣∣n+ 1
2

(i,j)
≈K ′(pni,j)

(pi)n+1
i,j − (pi)ni,j

∆t
∂Vi
∂X

∣∣∣∣n+ 1
2

(i,j)
=

(Vi)
n+ 1

2
i+ 1

2 ,j
− (Vi)

n+ 1
2

i− 1
2 ,j

∆X
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And for the momentum equation we have

ρ0
∂Vi
∂t

=−((1 +∂Y Uj)∂Xp−∂Y Ui∂Y p) (5.26)

ρ0
∂Vj
∂t

=−((1 +∂XUi)∂Y p−∂XUj∂Xp) (5.27)
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By the same method as in (5.21) one can easily verify that all the approximations above are
second order.
Combining the above discretizations and adding sources and the PML-modification, we get a
numerical scheme that is second order both in space and time:
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A MATLAB implementation of this scheme, written to preform the numerical experiment i
Chapter 6, can be found in the appendix. The code also contains a modification of the scheme
that allows for comparison with the Eulerian equations.

Properties of the scheme

To say something about the properties of the numerical scheme proposed above is difficult. The
very essential property that the discrete equations are consistent with the continuous equations
can easily be established. But one also wants to know if the scheme is stable, and if it converges.
The scheme should be stable in the sense that numerical errors do not increase with time. That
the scheme is convergent means that the numerical solutions tends to the actual solution as
discrete increments tend to zero. Also, if conservation laws hold for the system, one should
investigate if the numerical scheme satisfies these.
In the paper describing the original method [32], a stability criterion that resembles a CFL-
condition is given, without any rigorous analysis, and this should hold for the linear Eulerian
method too. The criterion says that the method is stable if√

∆x2 + ∆y2 >C∆t,

where ∆x,∆y and ∆t are discrete increments as defined above, and C = C1 max
x∈Ω

(c0(x)) with
0 ≤ C1 ≤ 1, i.e. C is the maximum wave propagation velocity inside the domain. This similar
to the CFL-condition for hyperbolic PDEs, and has the natural interpretation that information
should not travel more than one discrete length, or cell length, per time step [27]. Experimen-
tation with the scheme shows that C1 ≤ 1

3 hinders unwanted numerical oscillations.
It is not whitin the scope of this thesis investigate these properties further, but we can say that
from numerical experiments, the numerical scheme seems stable and produces solutions that
behaves as one would expect.
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Implementation

With the discrete scheme described above, it is convenient to represent the field quantities
Ui,Uj ,Vi,Vj ,pi,pj and p as matrices. If a grid size (I,J) is chosen, each of the fields is represented
discretely as a matrix M ∈ R2I×2J . The reason for the unfortunate doubling of nodes in each
dimension of the discrete field is is due to the structure of the grid; due to the staggered grid
and the halfstep difference operators, there is no simple data structure to represent the ”square
with center” node distribution of p and U , and the interleaved ”diamond” node distribution of
V . However, the matrix representation of the acoustic fields makes the implementation flexible
and lucid. The scheme is also suitable for parallelisation, e.g. to be ran on GPU’s (Graphics
Processing Unit), as the computational operations are ”local”, in the sense that computation
of values only rely on a small amount of the information. Hence the computation can be split
into many local, smaller computations, each preformed separately, and put back together when
finished. Due to lack of computer facilities we were not able to implement a parallel version of
the scheme.
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CHAPTER 6

Numerical experiment

The are a number of scenarios where the Lagrangian equations could give interesting results.
We choose to focus on one particular situation, pointed1 out by B. A. Angelsen and O. F.
Myhre at ISB, NTNU: Scattering of ultrasound from a particle from intersecting waves with
different frequencies. When sending waves of different frequencies from orthogonal angles at a
small particle, the waves scattered from the particle are easier to observe. The experiment was
done in connection with a project by SURF Technology, mentioned in the introduction, where
one wants to use a combination of high and low frequency ultrasound waves to detect micro
calcium particles in breast tissue. If this is achieved, it is a step towards better methods for
detecting breast cancer.

We do simulations of this scenario with both the Lagrangian and Eulerian equations, and
point to how this particular example illustrate some of the differences between the Lagrangian
and Eulerian equations, and how the Lagrangian equations might be better suited to model it.

6.1. The experiment

A sketch of the experimental setup is given in Figure 1, and the data (frequencies, pressure etc.)
is provided by O. F. Myhre. We simulate the behavior of the waves in the focus area of the
intersecting ultrasound beams, where the waves roughly appear as plane waves. The particle
is placed at the center of the domain, and the waves are produced by sources as described in
Chapter 5. We continuously excite a sine wave at T1 with frequency of fLF = 1 MHz, and at
time tm we excite a fHF = 10 MHz sine wave in a Gaussian envelope from T2, in the direction
orthogonal to the low frequency sine wave. We record the pressure signal at T2, and denote the
recorded signal as P .

The particle is a calcium particle, and the surrounding medium is human fat. Material pa-
rameters, found in [3, 31], are given in Table 1.

Material ρ0 (kg m−3) κ0 (m s2 kg−1) c0 (m s−1) β (1)
Fat 928 5.3 ×10−10 1430 6.14
Calcium 1550 4.5 ×10−11 3810 ≈ 0

Table 1. Material parameters for fat and calcium.

We let the wavelength of the high frequency wave determine the size of the computational
1Explained in conversation. This means we do not have a report with data from the experiment, and to our

knowledge no such report exists.
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domain Ω.

λ= c0
fHF

= 1430
10 ·106 m = 1.43 ·10−4 m = 143 µm (6.1)

We choose Ω to be 3000 µm×3000 µm. This allows the high frequency wave to propagate for
some time, about 10 wavelengths, before it hits the particle. The particle diameter varies from
20− 300 µm, and in the MATLAB script we allow for square, triangular and circular particle
geometry. The vibration speed for the sources are

vLF (t) = p0
z0

sin(2πfLF t) and vHF (t) = p0
z0

sin(2πfHF t)exp
(
−(t− tm)2

2σ2

)
, (6.2)

where z0 = ρ0c0 is the plane wave impedance, and σ = 3
4.3fHF determines the width of the

Gaussian envelope on the high frequency wave, and is set to approximately three wavelengths.
p0 is in the pressure of the incoming wave, and we use p0 = 2MPa.

Figure 1. Sketch of the experimental setup. Ω is the computational domain, with the particle
at the center. The low frequency wave propagates from T1, while the high frequency wave
propagates from T2. We continuously record the signal at T2, so both the outgoing and incoming
signal from the high frequency wave is recorded.

What can we expect to see from this experiment? Since the particle is stiffer and heavier than
its surroundings, and the low frequency wave exert a periodic radiation force on it, it might
start to vibrate out of phase with its surroundings, causing a rapid variation in displacement
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and density [3]. When we compare the Eulerian2 and Lagrangian momentum equations,

ρ0
∂

∂t

[
vi
vj

]
=−

[
∂xp
∂yp

]
(6.3)

ρ0
∂

∂t

[
Vi
Vj

]
=−

[
1 +∂Y Uj −∂Y Ui
−∂XUj 1 +∂XUi

][
∂Xp
∂Y p

]
, (6.4)

we see that such variation in displacement enters in the Lagrangian equation, through compo-
nents of the displacement gradient, but not in the Eulerian equation. If we look a plane wave
propagating in the x-direction, we should have ∂Y p,∂XUj ,∂Y Ui ≈ 0, and the two equations
should yield similar behavior. But in the case of intersecting waves, the particle and material
can vibrate in the y-direction, and the terms ∂Y Uj and ∂XUj can become significant and effect
the wave.

In the numerical experiment we want to investigate if this has any effect and significance on
the scattered wave, and also how the scattered high frequency(HF) wave signal differs with
and without the influence of the intersecting low frequency(LF) wave. To do this, we do three
different simulations with both Lagrangian and Eulerian equations:

• HF: Only the high frequency wave, recording P lHF and P eHF
• LF: Only the low frequency wave, recording P lLF and P eLF
• LFHF Both low and high frequency wave, recording P lLFHF and P eLFHF

We use the exact same LF and HF wave sources in all simulations. The LF data is used to
remove the LF signal from the LFHF signal, for better comparison with the HF signal, as
seen in Figure 2. Using the parameters and sources given above, we simulate for a period
tsim = 8 · 10−6 s, set tm = 1

2 tsim, and choose a particle diameter of about 180 µm. We use a
spatial apodization of the sources, i.e. we round off the source edges in a Gaussian fashion, to
avoid unwanted numerical oscillations.

A plot of the intersecting waves can be seen in Figure 3. Next, we compare the relative
difference in the signal for P lHF and P lLFHF , and the the relative difference in signals from
different simulations with the Lagrangian and Eulerian equations. Plots of the results from the
simulations can be seen in Figures 4-5.

2Where the Lagrangian density has been neglected.
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Figure 2. The recorded signal from simulations. The first plot shows the HF signal P l
HF

alone, the second shows the LFHF signal P l
LF HF , and the third shows the LFHF signal when

the signal from simulations with only the LF wave have been subtracted, i.e. P l
LF HF −P l

LF .
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Figure 3. The high frequency wave coming in from the left, just as it hits the particle. The
intersecting LF wave travels from the top and downwards. We also see the spherical waves
from the scattering with the particle at the center.
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Figure 4. Plot of the relative difference in the recorded signals from the simulation with only
the HF wave and the simulation with both LF and HF waves, P l

HF −(P l
LF HF −P l

LF )
p0

. The first
peaks are from the outgoing wave, and the second peaks are from the scattered wave. We see
that both the outgoing and reflected wave signals clearly differ, and that the difference in the
scattered signal is larger than the outgoing signal, relative to the signal amplitudes seen Figure
2.
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Figure 5. Plot comparing the relative difference in HF and LFHF signals obtained from simu-
lations with the Lagrangian and Eulerian equtions. We compare P l

LF HF −P l
LF

p0
− P e

LF HF −P e
LF

p0
to

P l
HF −P e

HF
p0

. The relative difference is about a factor ten larger for the Lagrangian simulations.
It is interesting to note that the difference in the outgoing signal is zero for P e, but not for P l.
This can be explained by the variation in displacement caused by the intersecting LF waves,
since this variation is only accounted for in the Lagrangian equation.
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The results shows a small but clear difference in the received signal in the reflected wave when
the intersecting LF wave is present. Figure 4 also shows that the difference is more significant
in the Lagrangian equations than in the Eulerian equations. This indicates that the effects
from the displacement variations accounted for in the Lagrangian equations can contribute in
explaining the observations in the experiment by Angelsen and Myhre. These results can be
important. If they can help to explain how a small calcium particle better can be detected,
must be decided by others, preferably by linking experiments and simulations more closely and
using signal processing.

Summary and further work

In this thesis we have investigated the equations governing acoustic waves. We have seen how
the approximations in classical Eulerian formulation of these equations in some situations can
be inaccurate. As an alternative to the Eulerian equations, we derived the Lagrangian equa-
tions, and pointed out why these equations are more suited to model waves in heterogeneous
materials and in interaction with particles. We then investigated conservation of energy and
energy attenuation, and showed how a frequency dependent viscoelastic attenuation term can be
added to the Lagrangian equations. We continued to develop a second order numerical scheme
to solve the Lagrangian equations, and did a numerical experiment using this scheme, where we
also compared the Eulerian and Lagrangian equations.

If the work in this thesis should be taken further, it would be interesting to compare the
results in Chapter 6 with experimental data, and to use a more powerful computer or a faster
programming language, to be able to simulate larger computational domains and longer simula-
tion times. One should also think of other scenarios where the Lagrangian equations could serve
as a better model, e.g. in modeling micro bubbles or waves that interact with moving parts of
the body. The numerical method should also be further analyzed, and implemented in paral-
lel, and it would be interesting to develop a numerical scheme using a pseudospectral method
[31]. It would also be interesting to further investigate the Lagrangian equations, especially the
pressure equation (3.42).
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Appendix

1 %%% NUMERICAL SCHEME FOR A 2-D NONLINEAR WAVE EQUATION %%%
2 %%% IN LAGRANGIAN COORDINATES USING A MODIFIED %%%
3 %%% LEAPFROG-STAGGERED GRID SCHEME, AND IN EULERIAN %%%
4 %%% COORDINATES USING A REGULAR LEAPFROG-STAGGERED GRID%%%
5 %%% SCHEME. %%%
6
7
8 %grid spesification etc.
9 Lx=3000*10ˆ-6; %x-length, meters

10 Ly=3000*10ˆ-6; %y-length, meters
11 I=250; %x-steps
12 J=250; %y-steps
13 dx=Lx/I; %spatial increments
14 dy=Ly/J;
15 T=2*10ˆ-6; %simulation time, seconds
16
17 %material parametres etc.
18 kappa ambient=5.269*10ˆ-10; %background compressibilty
19 rho ambient=9.28*10ˆ2; %background density
20 beta ambient=6.14; %nonlinearity parameter
21 rho 0=rho ambient*ones(2*J,2*I);
22 kappa 0=kappa ambient*ones(2*J,2*I);
23 beta=beta ambient*ones(2*J,2*I);
24
25 % Field variables: pressure, displacement, velocity, etc.
26 % for both Lagrangian and Eulerian(marked pE, vE etc.) simulations
27 %pressure
28 p=zeros(2*J,2*I);
29 px=p;
30 py=p;
31 pE=zeros(2*J,2*I);
32 pxE=p;
33 pyE=p;
34
35 psource=p;
36 %displacement
37 u1=zeros(2*J,2*I);
38 u2=zeros(2*J,2*I);
39 %velocity
40 v1=zeros(2*J,2*I);
41 v2=zeros(2*J,2*I);
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42 v1E=zeros(2*J,2*I);
43 v2E=zeros(2*J,2*I);
44 %boundary condition for v
45 yz=zeros(1,2*I);
46 xz=zeros(2*J,1);
47
48 %reference grid/lagrangian coordinates
49 [X,Y]=meshgrid(linspace(0,Lx,2*I),linspace(0,Ly,2*J));
50
51
52 %defining the heterogeniety/particle
53 rho p=2.8; %scaling factors for background density etc.
54 kappa p=0.05; %in the particle region
55 beta p=0;
56 lx=8; %defining the size of the particle in
57 ly=8; %number of steps
58 Istart=ceil(I); %position of the particle
59 Jstart=ceil(J);
60 % %Square particle
61 rho 0(Jstart:Jstart+ly,Istart:Istart+lx)=...
62 rho p*rho 0(Jstart:Jstart+ly,Istart:Istart+lx);
63 kappa 0(Jstart:Jstart+ly,Istart:Istart+lx)=...
64 kappa p*kappa 0(Jstart:Jstart+ly,Istart:Istart+lx);
65 beta(Jstart:Jstart+ly,Istart:Istart+lx)=...
66 beta p*beta(Jstart:Jstart+ly,Istart:Istart+lx);
67
68 %%Circular particle
69 % sx=ceil(I);
70 % sy=ceil(J);
71 % r=30;
72 %
73 % for i=1:I
74 % for j=1:J
75 % if( sqrt((i-sx)ˆ2 + (j-sy)ˆ2) ≤10)
76 % rho 0(j,i)=rho p*rho 0(j,i);
77 % kappa 0(j,i)=kappa p*kappa 0(j,i);
78 % end
79 % end
80 % end
81
82 %Triangualr particle
83 % H=20;
84 % for i=0:H
85 % for j=i:H
86 % rho 0(Jstart-j,Istart-i)=rho p*rho 0(Jstart-j,Istart-i);
87 % kappa 0(Jstart-j,Istart-i)=kappa p*kappa 0(Jstart-j,Istart-i);
88 % beta(Jstart-j,Istart-i)=beta p*beta(Jstart-j,Istart-i);
89 % end
90 % end
91
92 %time integration parameters
93 kappa min=kappa ambient*kappa p;
94 CFL=.2;
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95 c max=sqrt(1/(kappa min*rho ambient));
96 dt=min(dx,dy)*CFL/c max;
97 steps=ceil(T/dt);
98
99

100
101 %Construction of the PML
102 PML=zeros(2*J,2*I);
103 pml sz=ceil(I/5);
104 pml factor=10ˆ8;
105 damp=pml factor*(linspace(0,1,pml sz)).ˆ2;
106
107 for k=pml sz:-1:1
108 PML(k,k:end+1-k)=ones(1,2*I-2*(k-1))*damp(pml sz+1-k);
109 PML(k:end+1-k,k)=ones(1,2*I-2*(k-1))'*damp(pml sz+1-k);
110 end
111
112 for k=1:pml sz
113 PML(end-pml sz+k,(pml sz-k+1):(end-pml sz+k))=...
114 ones(1,2*I-2*(pml sz-k))*damp(k);
115 PML((pml sz-k+1):(end-pml sz+k),end-pml sz+k)=...
116 ones(1,2*I-2*(pml sz-k))'*damp(k);
117 end
118
119
120
121
122 %source conditions for exciting waves, frequencies etc
123 LF=1*10ˆ6;
124 HF=10*10ˆ6;
125 SW=1400*10ˆ-6; %source width
126 SSW=200*10ˆ-6; %apodization width
127 sigmaHF=(1/(.3*HF))/4.3;
128 sigmaLF=(1/(.5*LF))/4.3;
129 t mLF=1/(.5*LF);
130 t mHF=1/(.5*HF);
131 p 0=2*10ˆ6;
132 z 0=(rho ambient*sqrt(1/(rho ambient*kappa ambient)));
133 %source apodization to avoid unwanted oscillations
134 SA=apodization(SW,SSW,J,Ly);
135
136
137 t mid=(1/2)*T;
138
139
140
141 for i=1:J;
142 k(i)=2*i;
143 end
144
145
146 %received signal, comparison etc.
147
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148 p rec mean=zeros(1,steps);
149 pE rec mean=p rec sum;
150
151 for n=1:steps
152
153
154 % imposing different boundary conditions/ pressure source
155
156 % v sin source HF=2*(p 0/z 0)*sin(2*pi*HF*(n*dt-t mHF))...
157 %*exp(-((n*dt-t mHF)ˆ2)/(2*sigmaHFˆ2))*SA;
158 v sin source HFdelay=2*(p 0/z 0)*sin(2*pi*HF*(n*dt-t mHF))...
159 *exp(-((n*dt-t mid)ˆ2)/(2*sigmaHFˆ2))*SA;
160 % v sin source LF=-2*(p 0/z 0)*sin(2*pi*LF*(n*dt-t mLF))...
161 %*exp(-((n*dt-t mLF)ˆ2)/(2*sigmaLFˆ2))*SA;
162 % v sin source contHF=2*(p 0/z 0)*sin(2*pi*HF*(n*dt-t mHF))*SA;
163 v sin source contLF=2*(p 0/z 0)*sin(2*pi*LF*(n*dt-t mLF))*SA;
164
165 % %
166 psource(:,pml sz)=-v sin source HFdelay;
167 psource(:,pml sz+1)=psource(:,pml sz);
168 % %
169 psource(end-pml sz,:)=v sin source contLF';
170 psource(end-pml sz+1,:)=psource(end-pml sz,:);
171
172
173
174 %Discrete operators for U
175 du2dy=(1/dy)*([u2(2:end,:);yz]-[yz;u2(1:end-1,:)]);
176 du1dx=(1/dx)*([u1(:,2:end),xz]-[xz,u1(:,1:end-1)]);
177 du2dx=(1/dx)*([u2(:,2:end),xz]-[xz,u2(:,1:end-1)]);
178 du1dy=(1/dy)*([u1(2:end,:);yz]-[yz;u1(1:end-1,:)]);
179
180
181 dpdx=(1/dx)*([p(:,2:end),p(:,end)]-[p(:,1),p(:,1:end-1)]);
182 dpdy=(1/dy)*([p(2:end,:);p(end,:)]-[p(1,:);p(1:end-1,:)]);
183 dpEdx=(1/dx)*([pE(:,2:end),pE(:,end)]-[pE(:,1),pE(:,1:end-1)]);
184 dpEdy=(1/dy)*([pE(2:end,:);pE(end,:)]-[pE(1,:);pE(1:end-1,:)]);
185
186 %Integration of v1,v2
187 v1=v1-(dt./rho 0).*((1+du2dy).*dpdx -du1dy.*dpdy) - (dt)*PML.*v1;
188 v2=v2-(dt./rho 0).*((1+du1dx).*dpdy-du2dx.*dpdx) - (dt)*PML.*v2;
189 %Linear integration, Euler equations
190 v1E=v1E-(dt./rho 0).*dpEdx - (dt)*PML.*v1E;
191 v2E=v2E-(dt./rho 0).*dpEdy - (dt)*PML.*v2E;
192
193 %Discrete operators for p, v1, v2
194 dv1dx=(1/dx)*([v1(:,2:end),xz]-[xz,v1(:,1:end-1)]);
195 dv2dy=(1/dy)*([v2(2:end,:);yz]-[yz;v2(1:end-1,:)]);
196
197 dv1Edx=(1/dx)*([v1E(:,2:end),xz]-[xz,v1E(:,1:end-1)]);
198 dv2Edy=(1/dy)*([v2E(2:end,:);yz]-[yz;v2E(1:end-1,:)]);
199
200 V1=(1/4)*([v1(:,2:end),xz]+[xz,v1(:,1:end-1)]...
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201 +[v1(2:end,:);yz]+[yz;v1(1:end-1,:)]);
202 V2=(1/4)*([v2(:,2:end),xz]+[xz,v2(:,1:end-1)]...
203 +[v2(2:end,:);yz]+[yz;v2(1:end-1,:)]);
204
205 %Integration of p, u1, u2
206 px=px-dt*Kinv(kappa 0,beta,p).*(dv1dx-.5*(1/dx)*psource)-(dt)*PML.*px;
207 py=py-dt*Kinv(kappa 0,beta,p).*(dv2dy-.5*(1/dx)*psource)-(dt)*PML.*py;
208 p=px+py;
209
210 pxE=pxE-dt*Kinv(kappa 0,beta,pE).*(dv1Edx-.5*(1/dx)*psource)-(dt)*PML.*pxE;
211 pyE=pyE-dt*Kinv(kappa 0,beta,pE).*(dv2Edy-.5*(1/dx)*psource)-(dt)*PML.*pyE;
212 pE=pxE+pyE;
213
214 u1=u1+dt*V1;
215 u2=u2+dt*V2;
216
217
218 p rec mean(1,n)=mean(p((J-20):(J+20),pml sz+20));
219 pE rec mean(1,n)=mean(pE((J-20):(J+20),pml sz+20));
220
221 %plotting
222 if mod(n,20)==0
223 x=X+u1;
224 y=Y+u2;
225 %
226 %
227 pcolor(x(k,k),y(k,k),p(k,k));
228 xlabel('meter')
229 ylabel('meter')
230 shading interp;
231 colormap('bone')
232 % plot(x(J,k),p(J,k))
233 title(strcat(num2str(n*dt),'seconds'))
234 h=colorbar;
235 ylabel(h,'Pressure, Pa')
236 drawnow
237
238
239 end
240
241 end
242
243
244 %Apodization function
245 function [ pB ] = apodization(Cw,Sw,J,Ly)
246
247 smoothJ=ceil(2*J*Sw/Ly);
248 sourceJ=ceil(2*J*Cw/Ly);
249 smooth2=[.5*(1+sin(linspace(-pi/2,pi/2,smoothJ))),ones(1,sourceJ)...
250 ,.5*(1+cos(linspace(0,pi,smoothJ)))];
251 l=length(smooth2);
252 pB=zeros(1,2*J);
253 pB(1,(J-ceil(l/2)):(J+floor(l/2))-1)=smooth2';
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254
255
256 end
257
258 %Kinv function
259
260 function [ dK inv ] = Kinv(kappa 0,beta,p)
261
262 dK inv=1./(kappa 0 -2*beta.*kappa 0.ˆ2.*p);
263
264 end
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