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Background

Use of thermal solar collectors can provide a significant contribution to cover the heat demand in
residential buildings with a renewable and affordable energy source, and is therefore an

appropriate energy supply in low energy and passive houses. In 2008 it was installed solar
systems in 28 passive houses in Løvåshagen cooperatives in Bergen, with solar collectors and

accumulator/DHW tank for each apartment. These are intended to cover about 50% of the
heating demand, mainly hot water.

Energy measurements going on since May 2013 show a considerably lower performance of the
solar collectors than intended. It is in addition suspected a gravity driven circulation, i.e. a liquid
flow because of temperature differences in the collector circuit even if the pump is not running,
which leads to energy loss.

The task is to determine whether there are faults and weaknesses in the design, installation and

operation and to analyze the consequences for energy performance. Based on the effors
discovered and weaknesses changes will be implemented to systern components and operating
strategy in one apaftment during the project period. Experiences from this apartment then forms

the basis for a proposed list of actions for the remaining apartments.

The work was started as a specialization project and the master thesis will be in the continuation
of this.

Objective
The objective of the work is to contribute to increased energy production from the solar plant by
analyzingthe existing solution by measurements and simulations, changing and adjusting the
system components and control system.

The following tasks are to be considered:

1. Continuation of the literature survey done in the project
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2.

a
J.

4.
5.

Perform simulations of the existing solution and study the influence of different
parameters.

Compare with measured values and the extent of shading. Two flats are used for
comparison.
Study the effect of modifications
Suggest new solutions and simulate the performance of these.

Within 14 days of receiving the written text on the master thesis, the candidate shall submit a

research plan for his project to the department.

When the thesis is evaluated, emphasis is put on processing of the results, and that they are

presented in tabular andlor graphic form in a clear manner, and that they are analyzed carefully.

The thesis should be formulated as a research report with summary both in English and

Norwegian, conclusion, literature references, table of contents etc. During the preparation of the

text, the candidate should make an effort to produce a well-structured and easily readable report.

In order to ease the evaluation of the thesis, it is important that the cross-references are correct. In
the making of the report, strong emphasis should be placed on both a thorough discussion of the

results and an orderly presentation.

The candidate is requested to initiate and keep close contact with his/her academic supervisor(s)
throughout the working period. The candidate must follow the rules and regulations of NTNU as

well as passive directions given by the Department of Energy and Process Engineering.

Risk assessment of the candidate's work shall be carried out according to the department's
procedures. The risk assessment must be documented and included as part of the final report.
Events related to the candidate's work adversely affecting the health, safety or security, must be

documented and included as part of the final report. If the documentation on risk assessment

represents a large number of pages, the full version is to be submitted electronically to the

supervisor and an excerpt is included in the report.

Pursuant to "Regulations concerning the supplementary provisions to the technology study
program/Master of Science" at NTNU $20, the Department reserves the permission to utilize all
the results and data for teaching and research purposes as well as in future publications.

The final report is to be submitted digitally in DAIM. An executive summary of the thesis

including title, student's name, supervisor's name, year, department name, and NTNU's logo and

name, shall be submitted to the department as a separate pdf file. Based on an agreement with the

supervisor, the final report and other material and documents may be given to the supervisor in
disital format.

I Work to be done in lab (Water power lab, Fluids engineering lab, Thermal engineering lab)

f Field work

Department of Energy and Process Engineering,14. January 2015

Olav Bolland
Department Head

Hans Martin Mathisen
Academic Supervisor
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Abstract 

This study examines a solar thermal heating system consisting of evacuated tube collectors used for 

combined space heating and heating of domestic hot water. The investigated system belongs to one of 

the passive house dwellings of Løvåshagen housing cooperative, located in Bergen, Norway. Since the 

beginning of its operation in 2008, preliminary measurements suggest that the solar collectors are not 

performing as well as initially intended. The objective of this thesis was to determine potential faults 

and weaknesses, concerning both the design and the operation of the system, and to contribute to 

increased solar utilization. 

For this purpose, the functioning and performance of the investigated system was studied. This was 

achieved by collecting and processing measured data that was available in relation to an ongoing study. 

In addition, a simulation model of the investigated system was created in Polysun. By comparing 

simulated results with measured results, an outline of the present system performance was established. 

Furthermore, a parametric study was performed on the simulation model, in which the influence of 

various design- and operation parameters on system performance was examined. The investigated 

parameters included collector area, inclination angle and orientation angle of the collector, tank size, 

insulation of pipes and tank, volumetric flow rate, as well as parameters related to the control of the 

system and the extent of shading. This examination provided a basis for suggesting several improved 

scenarios that each targeted different components. By combining these scenarios in different ways, the 

best possible system configuration could be obtained.  

It was found that the examined system is far from achieving its initial design goals of an annual solar 

fraction of 47%. In 2014, the measured solar fraction was only 10,8%, whereas the corresponding 

simulated solar fraction was 14,3%. With the current design and operation, the monthly energy savings 

are minimal - even during the high-radiation periods -, thus the benefit of having solar collectors 

installed on the roof seems questionable. However, the results from the parametric study revealed that 

by correcting and improving certain design and operation parameters of the investigated system, a 

simulated solar fraction of almost 43% could be achieved. Even by making just a few alterations 

assumed to be easy and relatively inexpensive to implement, a simulated annual solar fraction of 

approximately 29% was obtained. Other than shading caused by nearby collectors, the most essential 

parameters appear to be the those related to the control of the system, as well as tank design and 

switch-on temperature of the auxiliary heating element.  

It can be concluded that though the potential for increasing the solar utilization is considerable, any 

alterations must be evaluated according to additional costs. Moreover, the results demonstrate the 

importance of thorough research and mapping of the potential performance-reducing factors, already 

during the design phase. Shading by means of nearby collectors is an especially important aspect to 

consider. This can be achieved with the help of proper simulation tools that include a shading 

simulator. Lastly, once the system is installed, it is equally important to ensure proper monitoring and 

control of the functioning of the system.  
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Sammendrag 

I denne studien undersøkes et foreslått solfangersystem bestående av vakuumsolfangere, som brukes i 

et kombinert system for oppvarming av både rom og varmtvann. Systemet tilhører en av passivhus-

leilighetene i Løvåshagen borettslag som ligger i Bergen, i Norge. Siden oppstarten av systemets drift i 

2008, har foreløpige målinger vist at utbyttet fra solfangerne er lavere enn forventet. Målet med denne 

oppgaven var å avgjøre om det finnes feil eller svakheter ved designet og driften av systemet, samt å 

bidra til økt energiutnyttelse av solfangeranlegget. 

For å oppnå dette målet ble det utvalgte systemets drift og energiutnyttelse undersøkt. Dette ble gjort 

ved å samle og bearbeide målinger utført i forbindelse med en pågående studie. I tillegg ble det laget 

en modell i simuleringsverktøyet Polysun. Ved å sammenligne simulerte resultater med målte 

resultater fra 2014, var det mulig å evaluere systemets daværende prestasjon. Videre ble en 

parameterstudie utført på simuleringsmodellen, hvor effekten av diverse design- og driftsparametere 

ble undersøkt. De undersøkte parameterne inkluderte solfangerareal, solfangernes vinkel, 

orienteringsvinkel, tankstørrelse, isolasjon av rør og tank, volumstrøm, samt parametere som påvirker 

systemstyring og skyggenivå. Denne undersøkelsen la grunnlaget for flere foreslåtte forbedrete 

scenarier, som hver av dem tok for seg de viktigste komponentene i et termisk solfangersystem. Ved å 

kombinere disse scenariene på ulike måter, kom man fram til den mest optimale konfigurasjonen.  

Gjennom undersøkelsen ble det oppdaget at det undersøkte systemet langt fra lykkes i å oppnå de 

opprinnelige målene for den årlige soldekningsgraden, som var satt til 47%. I 2014 var 

soldekningsgraden målt til å ligge på kun 10,8%, mens den tilsvarende simulerte soldekningsgraden lå 

på 14,3%. Med systemets nåværende design og drift, ligger den månedlige energisparingen på et 

minimalt nivå - selv under perioder med høy solinnstråling. Dette skaper tvil rundt det reelle utbyttet 

av å ha installert solfangere i de to passivhusene i Løvåshagen borrettslag. På den annen side viser 

resultatene i parameterstudien at man, ved å korrigere og forbedre visse design- og driftsparametere i 

referansesystemet, kan oppnå en simulert soldekningsgrad på nesten 43%. Selv ved å gjøre kun de 

endringene som vurderes som enkle, samt relativt billige å gjennomføre, ble det gjennom simuleringen 

oppnådd en soldekningsgrad på ca. 29%. Med unntak av skyggenivå forårsaket av nærliggende 

solfangere, ser de viktigste parameterne ut til å være de som er tilknyttet solsystemets styring, samt 

designet av tanken og el-kolbens aktiveringstemperatur. 

Til tross for at potensialet for økt solutnyttelse er betydelig, kan det konkluderes med at enhver endring 

må evalueres med tanke på tilleggskostnader. Resultatene gir dessuten et innblikk i viktigheten av å 

gjøre grundig forarbeid allerede under designfasen, gjennom undersøkelser og kartlegging av faktorer 

som potensielt kan ha en reduserende effekt på energiutnyttelsen. Skygging fra nærliggende solfangere 

er en spesielt viktig faktor som må tas hensyn til, og som kan unngås ved hjelp av tilstrekkelig 

simuleringsverktøy som tilbyr skyggesimulering. Ikke minst er det viktig å sørge for tilstrekkelig 

overvåking og styring av systemets drift.  
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Nomenclature 

a1  heat loss coefficient due to conduction and convection [W/(m2K)] 

a2  heat loss coefficient due to radiation  [W/(m2K2)] 

Aabs  Collector absorber area 

Cpsl  Specific heat capacity of the solar liquid [Wh/kgK] 

D  Distance between collector rows [m] 

G  Irradiance; irradiated power [W/m2]  

Esol  Solar irradiation onto total collector area [kWh] 

ΔE  Reduction in annual delivered energy with respect to the reference system [%] 

L   Collector length [m] 

Qaux  Auxiliary heating requirement [kWh] 

Qconv  Energy used by conventional heating system [kWh] 

Qsol  Collector yield [kWh] 

Qdemand  Total heat demand 

SF   Solar fraction 

ΔSF  Increase in annual solar fraction with respect to the reference system [%] 

Ssol  Solar yield; net solar energy utilized by the tank [kWh]  

T  Temperature [°C]  

TA  Ambient temperature 

TL  Temperature of solar liquid in the collector manifold 

ΔT  Temperature difference [K] 

V  Volume [liter] 

V̇  Volumetric flow rate in the solar circuit [l/h] 

 

α  Collector azimuth angle [°] 

β  Collector inclination angle [°] 

ηsc  Collector efficiency [%] or  [-] 

γs   Altitude angle of the sun [°] 

λ  Thermal conductivity [W/(m∙K)] 

θym  Annual mean temperature [°C] 

 

 

sol  solar 

aux  auxiliary 

DHW  Domestic Hot Water 
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Definitions 

Terms and definitions quoted from NS-EN ISO 9488 – Solar energy vocabulary (Standard Norge, 

1999): 

 

Absorber: component of a solar collector for absorbing radiant energy and transferring this 

energy as heat into a fluid 

Aperture area: maximum projected area through which unconcentrated solar radiation enters the 

collector 

Auxiliary heater: device or equipment in which heat from fuel or electric energy is supplied 

Fractional energy savings: reduction of purchased energy achieved by the use of a solar heating 

system 

Irradiance: power density of radiation incident on a surface 

Irradiation: incident energy per unit area of surface 

Solar fraction: energy supplied by the solar part of a system divided by the total system load 

Solar-plus-supplementary system: solar heating system which utilizes both solar and auxiliary 

energy sources as an integrated way and is able to provide a specified heating service independent 

of solar energy 

Stagnation: status of a collector or system when no heat is being removed by a heat transfer fluid 
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1 Introduction 

1.1 Background and objective 

The use of solar thermal heating systems has the potential to cover a large share of the thermal 

energy demand in buildings, as well as providing a renewable and affordable alternative to using 

fossil energy sources. This makes it especially suitable for implementation in low-energy buildings 

and buildings of passive house standard. Harvesting solar energy by means of solar collectors is a 

mature technology, and has had increasing interest in Norway in recent years.  

 

As the number of heating systems that utilize solar thermal energy rises, the need for increased 

knowledge of such systems is growing accordingly. The objective of this study is to contribute to 

increased performance of a particular solar thermal system connected to a passive house dwelling 

in Bergen, which is used for both space heating and preparation of domestic hot water. This will 

be achieved by conducting a thorough analysis of the system, and by performing a parametric 

study that targets both design and operation parameters. In addition to suggesting improved 

solutions for the investigated system, the findings will also provide a basis for implementing 

alterations on similar solar thermal heating systems located in the same housing cooperative.  

 

This master thesis is a continuation of a project study conducted autumn 2014.  

 

1.2 Structure of the report and limitations 

In Chapter 2-4, a literature review of theory relevant for this case study is provided, which is a 

continuation of the literature study conducted in the project work during autumn 2014. In this 

section, a review of the potential for utilizing solar thermal energy will first be discussed. Then, a 

typical solar thermal system is decomposed into its main components, and considered from a 

technical perspective, including discussions regarding dimensioning and important design features. 

This will serve as a basis for understanding and recognizing the potential of such a system. Finally, 

methods for detecting and identifying errors, as well as indicators used to evaluate the 

performance of such a system, are discussed.  

In Chapter 5. Case description, some information and previous experiences regarding the 

investigated system is provided. 

 

In Chapter 6. Methodology, the chosen method for evaluating the performance of the system and 

identifying potential errors are described. 



  

22 

 

In Chapter 7. Description of measurements, the measurement procedure and method for 

processing this data is described. 

 

In Chapter 8. Simulation inputs, the chosen simulation tool for creating a simulation model of the 

investigated system is briefly presented, and its main features described. Then, a detailed 

description of the simulation model created in Polysun is provided. 

In Chapter 9. Results, both measured and simulated results are presented 

 

In Chapter 10. Parametric study, a parametric analysis of various design- and operation 

parameters of the investigated system is conducted. The study is based on the simulation model 

created in chapter 8.  

 

In Chapter 11. Discussion, the findings in this study is discussed, including comments regarding 

previous experienced from this case study. 

Chapter 12. Conclusion 

Chapter 13. Future work 

Chapter 14. References 

 

The research question states that field work will be conducted in this study, and that a risk 

assessment of the work must be documented and attached in the final report. Because of extensive 

mapping of component data in the preliminary project study, and due to assistance from the co-

supervisor, it was considered unnecessary to execute a field trip to Bergen. For this reason, field 

work has been omitted from the master thesis, and a risk assessment is accordingly not included in 

this report. Moreover, the research question states that shading will be evaluated through the 

comparison of two dwellings. Due to limitations in available measured data from the other 

dwelling, this comparison will be made in chapter 11. Discussion, after the parametric study has 

been conducted. 
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2 Potential for utilizing solar thermal energy 

Every year the earth receives radiation from the sun equivalent to 15.000 times the annual 

worldwide energy consumption of humans. In Norway, the sun provides 1500 times more energy 

than what is actually being consumed (Halvorsen et al., 2011). Solar energy is an environmentally 

friendly energy source, and with adequate solar radiation, even in a cold and northern country like 

Norway, there is no doubt a large potential for exploitation of solar resources also here.  

There are three main principles for utilizing solar energy in buildings (Lavenergiprogrammet, 

2013): 

1. Passive utilization of solar energy, i.e. solar heat gains through windows 

2. Solar thermal collectors that heat water to be used for either space heating or heating of 

domestic hot water 

3. Solar cells, which convert solar radiation into electricity 

Since this study targets the second option, only solar thermal utilization will be further discussed. 

 

2.1 Variation in solar irradiation 

In the most sunny places in the world, the annual solar irradiation can reach up to 2500 kWh/m2. 

In Norway, the incoming solar radiation is highly dependent on both season and latitude, spanning 

from approximately 700 kWh/(m2∙year) in the north to 1100 kWh/(m2∙year) in the south 

(Halvorsen et al., 2011). Figure 1 shows how irradiation on a horizontal surface in Norway varies 

according to both location and season.  

 

 

 

 

 

 

 

 

 

 Figure 1: Solar irradiation on a horizontal surface in Norway, winter (left) and 

summer (right) (Rindal & Salvesen, 2008) 
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In Bergen, the annual solar irradiation is approximately 900 kWh/m2 (European Commission, 

2015). Figure 2 shows the monthly solar irradiation per square meter during one year in Bergen at 

an optimum inclination angle. 

 

The amount of solar radiation that reaches a surface depends on several factors, including the 

number of solar hours, the local weather conditions and on how the receiving surface is oriented 

according to the position of the sun (DGS, 2010). 

 

2.1.1 Annual solar hours 

The solar hours, i.e. the number of hours with sunshine during a particular day, varies throughout 

the year. Table 1 shows the monthly variation of solar hours during one year in Bergen, Norway. 

On average, Bergen has 1184,4 solar hours each year.  

 

Table 1: Average monthly and annual amount of solar hours in Bergen during based on 

measurements from 1961-1990 (Meteorologisk Institutt, 2009) 

 Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec Year 

Solar hours [h] 19,3 55,6 93,7 146,5 185,0 188,6 167,1 143,7 85,7 60,1 27,2 11,9 1184,4 

 

2.1.2 Local weather 

The local weather conditions will highly influence the amount of solar energy that reaches a 

surface (DGS, 2010). Figure 3 illustrates how the irradiated power (W/m2) varies with different 

Figure 2: Monthly solar irradiation per m2 surface area. Simulated towards south 

at an optimum inclination angle (European Commission, 2015) 
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sky conditions: from completely covered in clouds on the left to a clear sky on the right. 

Furthermore, solar radiation can be separated into direct and diffuse radiation. Direct radiation 

from the sun is reflected, absorbed and scattered by clouds and particles in the atmosphere. This 

creates diffuse radiation. The sum of the two equals the global irradiation. Cloudy days are mainly 

dominated by diffuse radiation, whereas sunny days are dominated by direct radiation, which is 

pointed out in Figure 3. 

 

 

 

 

 

 

 

 

 

 

2.1.3 Orientation and inclination angle of the receiving surface 

The orientation of a receiving surface, for instance that of a solar collector, refers to two angles: 

the azimuth angle, α, and the inclination angle, β, with respect to the horizontal plane. Figure 4 

provides an illustration of the most important angles used in solar technology.  

 

 

 

 

 

 

 

 

 

Figure 3: Solar irradiance with varying sky conditions (DGS, 2010) 

Figure 4: Angles used in solar technology (DGS, 2010) 
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Azimuth angle 

The most ideal azimuth angle is 0°, i.e. when the collector is facing directly south. A southeast or a 

southwest orientation reduce the incoming radiation by approximately 5-15 %. Moreover, a 

surface that faces southwest will result in a slightly lower reduction of energy supply than a 

surface that faces southeast (Zijdemans, 2012). 

 

Inclination angle 

The solar beams hit a surface at an incident angle. Since this angle differs throughout the year, a 

solar collector should thus be tilted at a particular angle from the horizontal plane – that is, an 

optimum inclination angle - in order to obtain maximum radiation yield (DGS, 2010). Figure 5 

illustrates how the optimum inclination angle varies in Bergen over the course of a year. Due to 

the varying elevation of the sun, this angle is larger (steeper) in the winter (during the low-

radiation months) compared to in the summer (during the high-radiation months). The average 

optimum inclination angle in Bergen is 34° on an annual basis.   

 

However, it is important to differentiate between optimum and recommended inclination angle.  It 

makes little sense to tilt the solar collector at an optimum angle, if this angle makes the collector 

prone to accumulation of snow or dirt. Thus, due to practical reasons, the recommended 

inclination angle may deviate from that of the optimum in order to ensure the highest possible 

radiation yield (Zijdemans, 2012).  

 

2.2 Energy demand in low energy and passive house buildings 

In the Norwegian standard NS3031: 2014, the net energy demand is be defined as the total energy 

demand for all the energy services in a building, including heating, cooling, domestic hot water 

Figure 5: Monthly variation of the optimum inclination angle (°) in Bergen 

(European Commission, 2015) 
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and lighting. The net heat demand is the sum of space heating, heating of ventilation air and hot 

water, as illustrated in Figure 6 below.  

 

2.2.1 Space heating 

Figure 7 shows the typical energy consumption in kWh/(m2∙year) for a residential building based 

on different energy standards and building regulations. 

 

 

 

 

 

 

 

 

 

 

As seen in the figure, the space heating demand in low energy buildings is only ¼ of the heat 

demand of existing buildings. For passive houses, the corresponding value can be as little as 1/10 

(Andresen, 2008). To achieve the ambitious goals of these buildings, a special strategy should be 

followed: first, measures are done to reduce heat loss and electricity consumption, followed by 

passive utilization of solar heat (through windows and a south orientation of the building). As a 

final step, an energy source that are suited for the low energy demand is chosen, such as solar 

collectors and heat pumps (Dokka & Hermstad, 2006).  

 

Heat demand

Heating

Space heating

Ventilation 
heating

Domestic hot 
water (DHW)

Figure 6: Net heat demand in a building (NS3031:2014) 

Figure 7: Typical energy consumption for a residential building according to 

different energy standards and building regulations (Andresen, 2008) 
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According to the Norwegian standard for passive houses and low energy residential buildings (NS 

3700:2013) the maximum annual specific energy demand for space heating (kWh/(m2∙year)) for a 

passive house dwelling can be calculated according to the equations in Table 2. Afl is the floor area 

[m2] and θym is the annual average temperature [K]. 

 

Table 2: Norwegian passive house criteria for maximum calculated net energy demand for space 

heating in residential buildings (NS 3700, 2013) 

Annual mean 

temperature, 

θym 

Maximum calculated net energy demand for space heating 

(kWh/m2∙year) 

Building where Afl < 250 m2 Building where Afl > 250 m2 

≥ 6,3 °C 15 + 5,4 × 
(250 − 𝐴𝑓𝑙)

100
 15 

< 6,3 °C 15 + 5,4 ×
(250 − 𝐴𝑓𝑙)

100
+ (2,1 + 0,59 ×

(250 − 𝐴𝑓𝑙)

100
) × (6,3 − 𝜃𝑦𝑚) 15 + 2,1 × (6,3 − 𝜃𝑦𝑚) 

 

Based on Table 2, the calculated specific space heating demand in Bergen (θym = 7,8 °C) for 

selected floor areas below 250 m2 are shown in Figure 8. The corresponding specific space heat 

demand for 50 m2 and 200 m2 are 24,5 kWh/(m2∙year) and 17,7 kWh/(m2∙year), respectively. 

 

  

 

 

 

 

 

 

 

2.2.2 Heating demand for heating of domestic hot water (DHW) 

The energy demand required for heating of domestic hot water can be calculated according to 

public standardizations. NS3031: 2014 for calculation of energy performance of buildings 

provides a table with annual hot water demand for different building categories. In Table 3, the 

values relevant for dwellings have been extracted and presented. 

Figure 8: Graphic illustration of the criteria in Table 2 for a passive house residential 

building located in Bergen (θym ≥6,3°C) with floor areas, Afl, less than 250 m2 
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Table 3: Standard values for annual hot water demand (NS3031, 2014) 

Building category Annual hot water demand 

[W/m2] [kWh/(m2year)] 

Multi-dwelling building 5,1 29,8 

 

2.3 Heating with solar thermal energy 

In Figure 9, a typical distribution of the total heat demand for space heating and heating of DHW 

in a residential building is depicted. The variation within the potential for utilizing solar thermal 

energy is also included in the graph. 

 

As can be seen from the graph, the main challenge by using solar energy as a heat source is the 

contradiction between the need for space heating and the availability of solar resources. During 

winter, the space heat demand is at its highest, while the solar irradiation is at its lowest. During 

summer, the opposite is the case. However, since the heat demand for preparation of DHW 

remains relatively stable throughout the year, there is a large potential for utilizing solar energy 

that could cover this demand. 

From the previous subchapters, it is evident that the space heating requirements of low energy and 

passive house dwellings are significantly lower, compared to that of existing buildings. This fact, 

in light of the high performance of modern solar energy systems, encourages the supplement of 

space heating when utilizing solar energy. These types of systems are called combination systems 

(Halvorsen et al., 2011). Since solar collectors are unable to cover the entire heat demand, 

auxiliary energy is needed during the coldest months of the year, for instance from an immersed 

electrical heating element that is placed inside the storage tank. 

Figure 9: Variation in required heat demand and available solar energy during 

the course of one year (Zijdemans, 2012) 
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Figure 10: Schematic of a solar thermal system for preparation of hot water. Left: Direct 

system. Right: Indirect system (Andresen, 2008) 

3 Design and operation of a solar thermal system 

A solar thermal heating system converts solar radiation into usable heat by using solar collectors. 

This heat can be utilized for heating purposes in different types of buildings (e.g. single family 

houses, dwellings, office buildings and hospitals), for heating of domestic hot water (DHW) and/or 

for space heating. A solar thermal system can also be used for generating process water for 

industrial processes (Halvorsen et al., 2011). This study will focus on domestic applications only. 

There are different types of solar thermal systems available on the market, and it is common to 

differentiate between direct systems and indirect systems (Zijdemans, 2012), see Figure 10 . 

 

 

 

 

 

 

 

 

 

 

 

 

A direct system (left in Figure 10) consists of a single-circuit system, in which water circulates 

from the storage tank, flows directly through the collector, and finally returns to the storage. The 

use of this type is more relevant for areas with mild climates with little risk of frost. Furthermore, 

this system is more sensitive to unwanted Legionella growth.  

An indirect system (right in Figure 10), on the other hand, has a separate solar circuit. A heat 

transfer fluid in the solar loop is heated by the solar collector, before transferring this heat through 

a heat exchanger to the domestic hot water system – often through an accumulating tank. Indirect 

systems are the most common type used, particularly due to the possibility of using a heat transfer 

medium that can handle very low temperatures, and thus protect against frost (Andresen, 2008). 
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In addition to the properties of the solar collector, correct dimensioning and proper construction of 

all the remaining components of a solar thermal heating system is essential in order to achieve a 

high efficiency (Zijdemans, 2012). In this chapter, a brief description of the different parts of such 

a system will be presented, as well as aspects related to the design and operation of the main 

components. Figure 11 provides an overview of these.  

 

 

 

 

 

 

 

3.1 Solar collector 

The main task of the solar collector is to convert light into usable heat. There are many design 

concepts and types of collectors available on the market, all of which have different performances 

and costs. They range from the simplest type used for swimming pool heating, to the more 

sophisticated systems for high-temperature generation, such as integral storage collector systems, 

flat-plate collectors, evacuated flat-plate collectors and evacuated tube collectors (Quaschning, 

2004). Besides the low-temperature swimming pool collector, the most common types are glazed 

flat-plate collectors and evacuated tube collectors. For this reason, only glazed flat-plate collectors 

and evacuated tube collectors will be further discussed in this chapter. 

 

3.1.1 Flat-plate collector and evacuated tube collector 

The main components of a flat-plate collector are the transparent front cover, the collector housing 

and the absorber. In the absorber, which is usually made of copper, steel or aluminium, sunlight is 

converted into heat and transferred in the absorber tubes. The absorber is enclosed in a box made 

of glass or plastic, where insulation is added to reduce thermal losses (Quatschning, 2004). The 

benefits associated with this type of collector are its robustness, that snow easily slides off, and 

that it is aesthetically appealing. Disadvantages include relatively high heat losses and a higher 

degree of reflection (compared to for instance that of the evacuated tube collector) (Zijdemans, 

2012). Figure 12 shows a sketch of the main components of a flat-plate collector and the thermal 

processes that occur. 

 

Figure 11: Overview of the main components of a solar thermal system. 
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In the evacuated tube collector, the absorber is located within evacuated glass cylinders. Since the 

insulation properties of vacuum is much higher than that of air, the heat loss from the solar 

collector is kept at a minimum (Andresen, 2008). Depending on reference area and type, this type 

of collectors can reach efficiencies up to 30% higher than a flat-plate collector. This makes them 

suitable for areas of use where a high liquid temperature is necessary. Their disadvantages are that 

they are more expensive and have a less robust construction than the flat-plate collectors. 

A common type of the evacuated tube collector is the heat-pipe evacuated tube collector. It 

consists of a copper pipe with closed ends placed inside a glass pipe. The copper pipe contains a 

small amount of liquid, typically water with an underpressure, which has a very low boiling point. 

When the pipe is heated up by the sun, the liquid inside starts to boil, which causes it to evaporate. 

The steam rises to the top and is cooled down by the manifold, in which cold solar circuit liquid 

circulates. As a result, the steam condenses and the condensate flows back to the bottom of the 

heat pipe. Since steam requires more space than liquid, the pressure within the copper pipe rises, 

subsequently causing the boiling point of the liquid to rise. This is a closed process that utilizes the 

heat transfer that occurs during the phase change from gas into liquid. The process is illustrated in 

Figure 13. To obtain this internal circulation process, the heat pipe evacuated tube collectors must 

be installed at a particular inclination angle, typically ranging from 20° to 70° (Zijdemans, 2012).  

 

 

 

Figure 12: The main components of a flat-plate collector and the 

thermal processes (Quaschning, 2005). 
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3.1.2 Collector performance and collector efficiency 

The efficiency of a solar collector is defined as the ratio between useful heat production from the 

solar collector to the amount of solar radiation that hits the collector surface (Andresen, 2008). In 

other words, it describes how well the solar collector is able to utilize the incoming radiation. 

According to Zijdemans (2012), the efficiency of a solar collector ηsc can be calculated using 

equation 1. 

 

 

𝜂𝑠𝑐 =  𝜂0 − 𝑎1 ⋅
(𝑇𝐿̅̅ ̅−𝑇𝐴)

𝐺
− 𝑎2 ⋅

(𝑇𝐿̅̅ ̅−𝑇𝐴)2

𝐺
     [−]             (1)                            

 

where 

η0 is the optical efficiency, i.e. the collector efficiency without any convection and radiation losses 

(when there is zero temperature difference between the absorber and the ambient air) [-] 

a1 is the heat loss coefficient due to conduction and convection [W/(m2K)] 

a2 is the heat loss coefficient due to radiation  [W/(m2K2)] 

Figure 13: The main components and function of the evacuated tube collector with 

heat pipe, seen from the top and from the side (Quaschning, 2005). 
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TL is the average liquid temperature in the solar collector (average supply – return) [K] 

TA is the ambient air temperature [K] 

G is the solar irradiance (irradiated power) [W/m2] 

 

η0, a1 and a2 are based on practical measurements, and are either specified by the solar collector 

manufacturer or provided by an accredited testing institute. The efficiency equation expresses how 

the solar collector efficiency depends on the solar irradiance level and the temperatures. The 

temperature-dependent losses will be more dominating as the solar irradiance decreases. This is 

illustrated in Figure 14. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15 below displays typical efficiency curves and areas of application for a flat plate 

collector, an evacuated tube collector and a low-temperature collector (swimming pool collector), 

with respect to different temperature differences between the surroundings and the collector. Each 

type reaches its highest efficiency when this temperature difference is equal to zero (optical 

efficiency, η0). Accordingly, the efficiency is at its lowest when the collector has reached its 

stagnation temperature, i.e. its maximum temperature limit (DGS, 2010). 

 

 

Figure 14: Collector efficiencies at different irradiances and temperature 

differences (Quaschning, 2004) 
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3.1.3 Required solar collector area 

Zijdemans (2012) provides a simple calculation method for estimating the required solar collector 

area: 

𝐴𝑎𝑏𝑠 =  
𝑄𝑑𝑒𝑚𝑎𝑛𝑑 ∙ 𝑆𝐹

𝑄𝑠𝑜𝑙
                                                          (2) 

where  

Aabs is the collector absorber area, 

Qdemand is the total heat demand,  

SF is the desired solar fraction, and 

Qsol is the collector yield 

 

As mentioned in the previous subchapter, the collector yield, or the useful thermal output of the 

collectors, depends on the total irradiation onto collector area and the collector efficiency. 

The necessary collector area can also be estimated based on the simplifications provided in Table 

4, in which the required area is stipulated based on either the number of inhabitants in each 

dwelling or based the number of dwellings in the building. In solar combination systems, where 

the collectors supply heat both for the preparation of domestic how water (DHW) and for space 

heating, a larger collector area is normally required than for hot water heating only. 

Figure 15: Efficiency characteristic curves and their areas of application for 

different collector types. Assumed irradiated power of 1000 W/m2 (DGS, 2010) 
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Table 4: Simplified estimation of required solar collector area for multi-family dwellings (Zijdemans, 

2012) 

 DHW heating DHW heating + space heating 

Per person in a multi-dwelling 

building 

1 – 1,5 m2 1,5 – 2 m2 

Per dwelling in a multi-dwelling 

building 

3 – 4 m2 4 – 5 m2 

 

 

3.1.4 Shading 

When designing and planning a system that utilizes solar energy, it is important to consider the 

risk of shading. Other than shading from surrounding topography (hills, trees and bushes at a 

distance etc.), it is important to identify specific items that may block the horizon (obstructions), 

such as a tree, a building or another solar collector. The latter is the source of a type of shading 

called mutual shading.  

Mutual shading is the shading effect that occurs when several collectors installed in rows cast 

shade on each other, thereby reducing the amount of radiation that hits each collector. Other than 

the inclination angle (β), the collector length (L) and the sun path (γS), the distance between the 

collector rows (D) affects the mutual shading (AEE Intec, 2004). These parameters and their 

correlation are illustrated in Figure 16. 

 

 

 

Figure 16: The variables influencing the necessary distance between two 

collector rows (AEE Intec, 2004) 
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The minimum distance needed between the collectors to avoid mutual shading can be expressed 

through equation 3 (AEE Intec, 2004). 

 

𝐷 =  
𝐿∙𝑠𝑖𝑛(180−(𝛽+𝛾𝑆))

𝑠𝑖𝑛(𝛾𝑆)
                                    (3) 

 

where  

D is the distance between the rows of collectors [m],  

L is the collector length [m], 

β is the collector inclination angle [°], and  

γs is the altitude angle of the sun [°]. 

 

Based on equation 3, the minimum row distance needed to minimize or avoid mutual shading is 

depicted in Figure 17 for collector inclination angles ranging from 0° to 60°. As illustrated in the 

graph, the difference in required row distance between the various inclination angles are smaller at 

large solar altitude angles. 

 

 

Figure 17: Minimum row distance according to the solar altitude angle for various collector 

inclination angles 



  

38 

 

3.2 Thermal heat storage 

3.2.1 Types and configurations 

As mentioned in chapter 2.3, the available solar energy does not always match the actual heat 

demand. Thus, the thermal energy that is generated in the collectors must be stored.  

There are different storage types and configurations used for solar thermal systems, depending on 

their application. First of all, it is common to differentiate between the following two groups: 

 Short-term heat storage systems (daily cycles) 

 Long-term heat storage systems (inter-seasonal) 

 

The short-term systems are normally only required to store heat over a period of a few days, 

whereas the long-term systems should be able to compensate for seasonal fluctuations. Examples 

of the latter are ground- and rock storage, as well as artificial storage basins.  

Secondly, heat storage systems can be characterized in accordance with their temperature ranges: 

 Low-temperature: below 100°C 

 Medium-temperature: 100°C - 500°C 

 High-temperature: above 500°C 

 

Finally, there are different types of storage principles: 

 Sensible (noticeable) heat storage 

 Latent heat storage (storage due to changes in physical state) 

 Thermo-chemical energy storage 

 

(Quaschning, 2005). This study will only focus on short-term, low-temperature storage systems by 

means of sensible heat, which uses water as the storage material.  

 

In Figure 18, the most common principles of charging a water store with solar energy are 

displayed. Solar energy is typically used for preheating, whereas additional energy sources, or 

auxiliary heating, cover the remaining heat demand (back-up). Figure 19 illustrates typical ways of 

charging a heat storage with auxiliary heating.  
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3.2.2 Thermal stratification and energy contents of a store 

Thermal stratification is a phenomenon that occurs as a result of different densities, in which the 

water separates into “lighter” hot water at the top and “heavier” cold water at the bottom. This 

stratification effect has an especially positive influence on the efficiency of a solar thermal system. 

When hot water is extracted from the top, cold water flows in through the tank bottom. This 

prevents mixing of hot and cold water, which subsequently minimizes the need for auxiliary 

heating. A high level of stratification is attained when the storage tank is slim. 

 

Figure 18: Common types of store charging with solar energy. S= 

temperature sensor (DGS, 2010) 

Figure 19: Types of store charging with auxiliary heating (AH) S= 

temperature sensor (DGS, 2010) 
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The energy contents of a store can be expressed through equation 4 (DGS, 2010). 

 

(4) 

 

where 

Q is the heat quantity [Wh], 

m is the mass [kg], 

cp, water is the specific heat capacity of water = 1,16 Wh/(kgK), 

Δθ is the temperature difference [K], 

 

 

If the same energy content is charged into a store that cannot form layers, i.e. no thermal 

stratification, a uniform mixed temperature occurs instead. Research has shown that a fully 

stratified water tank, in comparison with a fully mixed water tank, can increase the energy store 

efficiency and the whole system efficiency up to 6% and 20%, respectively (Han et al., 2008). The 

thermal stratification effect is illustrated in Figure 20. 

 

 

 

In addition to tank dimensions, degradation of thermal stratification in the tank can also be caused 

by other factors. These include heat loss to the surroundings, thermal mixing at the inlet, forced 

convection flow through the tank, natural convection flow induced by conduction within the tank 

walls, and heat diffusion inside the tank due to vertical temperature gradients (Dehghan & 

Barzegar, 2010).  

Figure 20: Left: Stratification. Right: Uniform mixed temperature (additional 

heating needed) (DGS, 2010) 
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3.2.3 Design and dimensioning of the storage tank 

In general, it is important that the heat store tank is large enough to cover (accumulate) the total 

hot water demand. If the tank is too small, an optimum utilization of the solar collectors is not 

possible, and an overproduction of solar energy may frequently occur during periods with high 

radiation. On the other hand, the storage tank should not be too large, as this will result in a long 

heating and cooling time (Zijdemans, 2012). 

The design and size of the tank is mainly based on heat demand, choice of auxiliary heating, 

collector type and collector area. Other factors to consider are temperature stratification within the 

tank, as well as costs related to both investment and operation (Andresen, 2008). Zijdemans (2012) 

presents some simplifications with respect to the dimensioning of the storage tank in a solar 

thermal system, which is displayed in Table 5. 

 

Table 5: Simplified dimensioning of a storage tank volume in a solar thermal heating system for 

multi-family dwellings (Zijdemans, 2012) 

 Storage tank volume 

 DHW* heating DHW heating + space heating 

Per dwelling in a multi-

dwelling-building 

200 – 300 l 300 – 500 l 

Per 100 m2 dwelling in a 

multi-dwelling-building 

300 – 500 l 600 – 800 l 

 

For combination systems, the tank size normally increases in accordance with the solar collector 

area. The collector yield during periods of moderate radiation can be optimized by tilting the solar 

collectors at a steeper inclination angle. Consequently, the tank volume may be slightly reduced 

due to lower heat generation during summer (Zijdemans, 2012).  

Heat loss from the storage tank can be calculated according to equation 5 (DGS, 2010). 

 

 

where  

k is the heat loss coefficient [W/m2K], 

A is the heat transfer surface area of the tank [m2], and 

Δθ is the temperature difference between the heat store and the surroundings [K]. 

 

kA is often provided by the manufacturer in W/K. 

(5) 
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3.2.4 Temperature requirements in storage tanks 

According to Zijdemans (2012), the temperature of a domestic tap water system is mainly 

influenced by three factors: 

 

1. The temperature out of the mixing valve must be low enough to avoid scolding 

2. The temperature must be high enough to meet the consumer demand 

3. The temperature must be high enough to prevent Legionella growth in the water heater as 

well as in the pipelines 

 

Scolding 

The risk of scolding occurs at temperatures as low as 40°C for adults, and at even lower 

temperatures for children and elderly. According to the Norwegian building regulations of 2010, 

TEK10, the recommended maximum tap water temperature out of the mixing valve is 55°C. 

 

Consumer demand 

Domestic hot water has various areas of use in a household, such as showering, dishwashing, hand 

washing, cleaning, etc: 

 

 

  

  

 

These temperatures represent the minimum tap water temperatures out of the mixing valve. This 

means that the water temperature in the upper part of the tank must be equally high or higher in 

order to meet all the demands.  

 

Legionella protection 

The Legionella bacteria naturally exists in moist areas, and normally it constitutes no significant 

health risk to healthy persons. However, should the bacteria multiply, the high concentration may 

be harmful to human beings. Its growth is also affected by other factors such as acidity, salinity 

and oxygen content. The bacteria multiplies at temperatures between 20-50°C, with an optimum 

range of 35-47°C. In the case of water heaters, sludge, which typically settles at the bottom of the 

tank, may provide especially good living conditions for the Legionella at temperatures lower than 

60°C (Zijdemans, 2012).  

Bathing, showering and hand washing: 38 - 40°C 

Dishwashing and rinsing: 40 - 50°C 

Laundry and rinsing: 40 - 50°C 

Floor cleaning: 45 - 55°C 
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3.3 Solar circuit 

The solar circuit consists of all pipes and components that connect the solar collector to the heat 

store unit (Zijdemans, 2012). Figure 21 provides an overview of these. In this study, rapid air 

bleeders, flowmeters and safety devises will not be further discussed. 

 

 

 

 

 

 

 

 

 

 

 

3.3.1 Pipelines 

The pipelines transfer the heat transfer fluid, or the solar liquid, between the solar collector and the 

heat store tank. The most frequently used material is copper. Long and poorly insulated pipelines 

may have a significant negative impact on the overall heat yield of a solar thermal system. 

Equation 6 can be used for calculating heat loss in insulated pipes (DGS, 2010). 

 

 

(6) 

 

 

where  

λ is the thermal conductivity of the insulating material [W/mK] 

Dins is the outside dimension of the insulated pipe [mm] 

Figure 21: An overview of the components of a solar circuit 
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Dpipe is the outside diameter of the pipe [mm] 

Δθ is the temperature difference between the pipe and the ambient air [K] 

 

3.3.2 Solar liquid 

The task of the solar liquid is to transfer the generated heat from the collector to the heat store tank 

inside the solar circuit. Today, water and a mixture of water and propylene glycol are the most 

frequently used heat transfer fluids. Since the operating temperatures in a solar collector may 

range from -15°C to +350°C, the use of pure water as heat transfer fluid is challenging, as water 

freezes at 0°C and evaporates at 100°C. Therefore, the cold climate in northern countries like 

Norway increases the risk of freezing, and the addition of propylene glycol is necessary. 

(Zijdemans, 2012). Table 6 displays different mixture ratios of propylene glycol and water, as well 

as the corresponding freezing points.  

 

Table 6: Freezing point of propylene glycol at different ratios water-glycol mix ratios [%] 

(Zijdemans, 2012) 

Concentration 

of propylene 

glycol [%] 

 

0 

 

10 

 

20 

 

30 

 

36 

 

40 

 

43 

 

48 

 

52 

 

55 

 

58 

 

60 

Freezing point 

[°C] 

0 -3 -7 -12 -18 -20 -23 -29 -34 -40 -46 -51 

 

Although the addition of propylene glycol increases the frost- and evaporation protection, this 

measure is not exclusively beneficial. First of all, water is highly corrosive. This effect is further 

increased with the addition of propylene glycol. Secondly, a higher percentage of propylene glycol 

affects important heat transfer qualities of the liquid, such as reduced thermal capacity and thermal 

conductivity, and increased viscosity and creep capacity (DGS, 2010).  

 

When using a freezing protective liquid as heat transfer fluid, the freezing point of the liquid 

should be checked every year. Additionally, a chemical analysis of the liquid should be performed 

between every third to fifth year in order to reveal changes of the liquid qualities (Zijdemans, 

2012).  

 

3.3.3 Solar pump 

The solar pump is one of the most important components of a solar thermal system. The pump 

circulates the solar liquid through the system so that heat is transferred from the collector to the 

storage tank. The energy needed to run the pump itself is relatively small compared to the amount 
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of energy that it transfers. Nevertheless, it is important to choose a pump with high efficiency 

(Zijdemans, 2012). Furthermore, the temperature difference between the feed and return flow in 

the solar circuit is affected by the volumetric flow rate in the solar circuit. The achievable 

temperature difference between the feed and return flows can be calculated according to the 

following formula:  

 

Δ𝜃 =  
𝑄𝑠𝑜𝑙

𝐶𝑝𝑠𝑙 ∙ �̇�
 

 

where Qsol is the usable thermal output converted by the collector (W), Cpsl is the specific heat 

capacity of the solar liquid (Wh/kgK) and �̇� is the volumetric flow rate (l/h) (DGS, 2010). 

  

3.3.4 Solar heat exchanger 

In an indirect solar thermal system, a heat transfer unit, i.e. a solar heat exchanger, is required in 

order to transfer the collector yield to its final destination: the storage tank. It is common to 

distinguish between two types: internal and external heat exchangers. Internal heat exchangers are 

manufactured as either finned tube or plain tube coils, illustrated in Figure 22. The latter provides 

a better heat exchange capacity per square meter of exchanger face.  

 

 

 

 

 

 

 

External heat exchangers are available as either plate or tubular heat exchangers. Figure 23 shows 

the principal function of the two. The solar liquid and the tank water flow into the external heat 

exchanger in a separate counter-current flow.  

Figure 22: Left: Finned tube heat exchanger. Right: Plain tube heat exchanger (DGS, 2010) 

(7) 
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There are both advantages and disadvantages for choosing an external heat exchanger over an 

internal heat exchanger. Most importantly, the external heat exchanger has a higher heat capacity 

than the internal, which allows for the use of only one single heat exchanger to charge several 

stores. On the other hand, external heat exchangers are more expensive since they in most cases 

require an additional circulation pump on the secondary side of the heat exchanger. Due to this 

economical aspect, external heat exchangers are more commonly used in larger systems, where 

one exchanger can replace several heat exchangers for charging several stores (DGS, 2010). 

 

3.3.5 Return-flow prevention 

During periods of limited solar radiation, the temperature within the storage tank may exceed the 

temperature of the liquid in the solar collector. As a consequence of this temperature difference, 

gravitational return-flow may occur. In other words, heat from the tank is undesirably withdrawn 

and released into the environment. This can easily be prevented by adding a check valve, which 

only opens while the solar pump is running (Zijdemans, 2012).  

 

3.3.6 Overheating protection 

According to the Norwegian Standard NS-EN 12976-1: 2006 Thermal solar systems and 

components, a system is to be designed “in such a way that prolonged high solar irradiation 

without heat consumption does not cause any situation in which special action by user is required 

to bring the system back to normal operation” (NS-EN 12976-1, 2006, page 8). Overheating is the 

effect that arises when the solar collectors supply more energy to the solar circuit than what is 

being removed. This typically occurs when the user is on holiday and hot water is not being 

Figure 23: Left: Plate heat exchanger. Right: Tubular heat exchanger (DGS, 2010) 
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consumed, but it can also occur if the solar collectors are oversized, or if the storage tank is too 

small. This may lead to very high temperatures in the solar liquid and in the water within the 

storage tank. A potential consequence of overheating is boiling, which at worst may cause damage 

to the system. There are several ways of protecting the solar system against overheating. These 

include: 

 Releasing excess heat by means of night cooling or automatic tapping of domestic hot 

water 

 Reducing the collector efficiency by lowering the volumetric flow rate in the solar 

circuit so that the temperature in the solar collector increases, which increases the 

collector heat loss 

 Controlled boiling 

 Installing a temperature-controlled cooling fin in the solar circuit 

 

It should be noted that efforts to reduce the collector efficiency by increasing collector heat loss is 

not very efficient in the case of evacuated tube collectors, since this type has especially good 

insulation properties (Zijdemans, 2012). In addition to those mentioned above, a few other 

measures can also be done to reduce or avoid high temperatures in the solar circuit (DGS, 2010). 

By installing the collectors at a steeper inclination angle, the amount of excess heat and the 

occurrence of collector stagnation during summer are reduced. Simultaneously, the yield is 

increased during winter. Another measure is to utilize the excess heat for heating of for instance 

swimming pool water. 

 

3.4 Controller 

The task of the controller is to start the circulation pump in the solar circuit (solar pump) when 

there is solar energy to harvest, i.e. when the temperature in the solar collector is higher than the 

temperature in the storage tank (Zijdemans, 2012). The most common control method is by means 

of temperature difference control.  

 

In a standard temperature difference control, two temperature sensors are required: one that 

measures the temperature at the hottest part of the solar circuit, right before the collector outflow, 

and one that measures the tank temperature at the height of the solar coil. The signals from the two 

temperature sensors are compared in a control unit. When a preset temperature difference is 

reached, typically 5-8 K, the pump is switched on. This limit is called the switch-on temperature 

difference. Similarly, the pump is turned off when a given switch-off temperature difference is 

reached, typically 3K. Figure 24 illustrates the concept of this type of control.  
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The chosen switch-on temperature difference depends on various factors, including the pipeline 

distance between the collector and the heat store (DGS, 2010). Furthermore, the effectiveness of 

the controller is highly dependent on correct installation and function of the two temperature 

sensors.  

A third sensor that measures the upper section of the heat store can also be added. This makes it 

possible to read the draw-off temperature from the upper area of the tank. To protect against 

overheating, the system can then be set to switch itself off should the maximum heat store 

temperature be reached.  

 

 

 

 

 

 

 

 

Figure 24: A daily progression of a temperature difference controller with respect to 

collector temperature and heat store temperature (DGS, 2010) 
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4 Function and yield control of small solar thermal systems 

The most common sources of errors and faults in a solar thermal system are displayed in Figure 

25. Other than during planning (45%), faults primarily occur during the installation itself (39%) or 

during production (16%). The most common faults are related to hydraulics (62%), as well as 

process, measuring and control (27%). In comparison, collectors and heat store constitute a 

relatively small share (DGS, 2010). 

 

 

 

 

 

 

 

 

 

 

 

Since the auxiliary heater in solar-plus-supplementary systems often automatically provides 

sufficient hot water temperatures in the storage tank by means of after heating, disturbances in the 

solar thermal system are often noticed too late, or in some cases not at all (DGS, 2010). Since a 

system’s performance can be significantly reduced due to errors, identification and correction of 

these faults is crucial. This chapter targets methods to uncover these. Indicators that can be used to 

evaluate the performance of a solar thermal system are provided in 4.3 Evaluation of system 

performance. 

 

 

 

 

 

Figure 25: Left: Distribution of the phases during which errors normally occur in a solar 

thermal heating system. Right: Distribution of common errors (DGS, 2010) 
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4.1 Function and yield control 

Several approaches have been developed for monitoring and fault detection. Some methods that 

are currently available on the market for small solar thermal system are: 

 Automatic controller with error signals: the controller automatically checks different state 

values. In the case of a disturbance, an error signal appears on the display 

 Remote display of system parameters: allows for remote monitoring 

 Process monitoring by continuous analysis of system data: logged data can be analysed 

over a PC interface with the help of appropriate software 

 

The efficiency of a solar thermal system can be determined with the support of heat metering, 

where the solar yield is measured by using one or more separate heat meters over a given period of 

time. The main components of a heat meter are: 

 A flow rate meter 

 Two temperature sensors: one for the supply flow and one for the return flow 

 Electronics for calculating heat yield 

 

The thermal output of a circuit is estimated by measuring the temperature of the hot supply flow 

and the cold return flow, as well as the volumetric flow rate of the heat transfer medium. Figure 26 

depicts the setup of a heat meter in a solar circuit (DGS, 2010). 

 

 

 

 

 

 

 

 

 

 

Figure 26: Function of a heat meter (Auquametro, 2015)  
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4.2 Fault detection 

When there is reason to believe that the system is not functioning in a satisfactory manner, the 

main challenge is to identify the error. In this chapter, two methods of fault detection will be 

discussed: troubleshooting and simulation-based fault detection.  

 

4.2.1 Troubleshooting 

The most common approach for identifying errors in a solar thermal system is troubleshooting, 

which is fault detection based on measured data (temperature, heat and flow sensors), followed by 

a detailed manual fault analysis by an expert (Keizer, 2012). Examples of fault algorithms by 

means of troubleshooting is shown in Table 7. 

 

Table 7: Cause-effect assignment of errors in a solar thermal energy system (DGS, 2010) 

Error description Resulting effect 

Collector connection faulty Pump cycles 

Collector sensor incorrectly positioned Pump cycles 

Leakage in solar heat exchanger System pressure too high 

Initial pressure of expansion vessel too low System pressure occasionally too high 

Initial pressure of expansion vessel too high System pressure occasionally too low 

Shut-off valve in solar circuit closed Temperature difference (Δθ) too high 

Cable break between controller and pump 

Collector temperature sensor 

defective/inaccurate 

 

Pump runs at wrong times 

Store temperature sensor defective/inaccurate 

Inputs on the controller defective Temperature difference (Δθ) too high; 

pump runs at night Outputs on the controller defective 

Controller software defective  

Temperature difference (Δθ) too high False setting of volumetric flow 

Air bleeding incorrect 

Gravity brake open Pump also runs at night 

Gravity brake contaminated 

Δθ setting unfavourable Temperature difference (Δθ) too high 

Incorrectly programmed timer Pump runs at night 

 

Troubleshooting is a relatively cheap approach that relies on few sensors to check the functioning 

of several components in the solar loop. A significant challenge concerning this method, however, 

is that the data is not automatically analysed for faults, making it difficult to detect errors and 

faults. Moreover, this method requires the skills of a professional to perform the manual analysis 

(Keizer, 2012).  
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4.2.2 Simulation-based fault detection 

Fault detection can be a complex procedure. Another way of determining faults is by comparing 

measured and simulated energy yields or other system characteristics. This can be done by 

creating a simulation model of the existing system. Kalogirou (2004) sums up the greatest 

advantages by using computer modelling of solar thermal systems: 

 

 Eliminate the expense of building prototypes 

 Complex systems are organised in an understandable format 

 Provides thorough understanding of system operation and component interactions 

 Possible to optimise the system components 

 Possible to estimate the amount of energy delivery from the system 

 Provides temperature variations of the system 

 Estimate the design variable changes on system  

 Performance by using the same weather conditions 

 

In this thesis, detecting faults by means of measurements and simulations is the chosen procedure 

for improving system performance. This will be further explained in chapter 6. Methodology.  

 

4.3 Evaluation of system performance 

In order to evaluate the performance of a solar thermal system, it is necessary to define indicators 

that can be used to describe how well such a system is functioning. The most frequently used 

indicator is the solar fraction. According to NS-EN ISO 9488:1999 Solar energy vocabulary 

(Standard Norge, 1999), the solar fraction in its simplest form can be defined as follows: 

 

𝑆𝑜𝑙𝑎𝑟 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 =  
𝐸𝑛𝑒𝑟𝑔𝑦 𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑠𝑜𝑙𝑎𝑟 𝑝𝑎𝑟𝑡 𝑜𝑓 𝑎 𝑠𝑦𝑠𝑡𝑒𝑚

𝑇𝑜𝑡𝑎𝑙 𝑠𝑦𝑠𝑡𝑒𝑚 𝑙𝑜𝑎𝑑
 

 

This definition can, however, be imprecise and misleading since it does not specify any losses that 

the system might have. Thus, an additional comment is provided together with the definition in 

NS-EN ISO 9488: 1999 that the solar part of a system and any associated losses must be specified 

in order to uniquely define the solar fraction. 
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A second indicator is the fractional energy savings, which can be used to calculate the reduction of 

purchased energy achieved when using a solar-plus-supplementary system (Standard Norge, 

1999). In other words, it is a comparison of a system that only uses conventional heating with a 

system that uses both conventional heating and additional solar input. The fractional energy 

savings can be calculated according to the following formula:  

𝑓𝑠𝑎𝑣 =  1 − 
𝑄𝑎𝑢𝑥

𝑄𝑐𝑜𝑛𝑣
 

 

Where fsav is the fractional solar savings, Qaux is the auxiliary energy used by the solar heating 

system and Qconv is the energy used by the conventional heating system. The formula assumes that 

both systems use the same kind of conventional energy (for instance electricity).  

The Norwegian Standard NS-EN 12977-2: 2012 Thermal solar systems and components – Custom 

built systems illustrates the definition of fractional energy savings, which is displayed in Figure 27. 

 

 

 
Figure 27: Comparison of conventional heating system and a solar heating system 

(Standard Norge, 2012) 

(8) 
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5 Case description 

5.1 Løvåshagen 

Løvåshagen housing cooperative is located in Fyllingsdalen, 4 km outside the city centre of 

Bergen, Norway. It was finished in 2008 and consists of four buildings with a total of 80 

dwellings, in which 52 dwellings (two buildings) are of low energy standard and 28 dwellings (2 

buildings) are of passive house standard (Northpass, 2011). An overview of the entire housing 

cooperative is displayed in Figure 28. 

 

 

 

 

 

 

 

 

 

 

 

 

Each of the passive house dwellings has its own solar thermal system with two solar collectors 

mounted on the roof. These are intended to cover some of the heat demand for both preparation of 

domestic hot water (DHW) and space heating. Løvåshagen has been regarded as a pilot project, of 

which one of the goals was to gain wanted experience with the use of solar energy as a heat source 

in Norway. Having been operating for several years, it is of great value for future reference to 

conduct a thorough assessment of this project, with the intention of revealing problems and faults, 

and thereby discovering the potential for improvement. 

 

In this master thesis, the solar thermal heating system of one particular passive house dwelling will 

be investigated.  

 

Figure 28: Overview of Løvåshagen housing cooperative (Northpass, 2011) 
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5.2 Heat demand and heat supply 

There are two hydronic heating units in the dwelling: one small radiator in the hallway, and floor 

heating in the bathroom. The remaining space heating demand is covered by the mechanically 

balanced ventilation system with heat recovery. Table 8 shows the calculated specific heat demand 

for each passive house dwelling that was stipulated at the design stage.  

 

Table 8: Estimated net heat demand for the passive house dwellings (Northpass, 2011) 

 

As presented in the table, the project strives to achieve a maximum energy demand for space 

heating of 15 kWh/m2. Since the objective of this case study is to further investigate the solar 

system, its main concern is the heat demand required for heating of DHW and hydronic space 

heating. When excluding heating of ventilation air from the net heat demand in Table 8, the 

remaining heat that should to be covered by the thermal system is 42,8 kWh/(m2∙year). Table 9 

below displays the estimated share of solar energy and electricity needed to satisfy these heating 

demands.   

 

Table 9: Solar fraction of total heat supply (Northpass, 2011) 

Energy type Heat supply 

[kWh/(m2∙year)] 

Fraction of total 

heat supply 

(solar fraction) 

Solar energy 20,2 47% 

Electricity 22,6 53% 

Total 42,8 100% 

 

As seen in Table 9, the solar heating systems installed in the passive house dwellings are each 

designed to cover approximately 47% of the total heat demand by means of solar energy. The 

remaining 53% is to be supplied by electricity. 

 

Figure 29 below shows the stipulated monthly solar fraction during one year.   

  [kWh/(m2∙year)] 

Space heating  12,8 

Heating of ventilation air 2,2 

Domestic hot water (DHW)  30,0 

Net heat demand 45,0 
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5.3 Description of the solar thermal system 

Two evacuated tube collectors with heat pipe of the type Apricus AP-20 are used. Total collector 

area is 3,2 m2 (effective absorber area). Figure 30 shows an illustration of this collector type, as 

well as the construction of each evacuated tube. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 30: Left: A schematic illustration of the Apricus evacuated tube collector (Apricus, 

2011). Right: Construction of an Apricus AP-20 tube: 1) Glazing 2) Heat-conduction metal 

sheet 3) Heat pipe 4) Vacuum 5) Absorber (SPF, 2004) 

Figure 29: Calculated monthly solar fraction (Andresen, 2008) 
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Institut für Solartechnik (SPF), an official accredited testing institute for thermal solar collector 

components and systems, published a test report in 2004 on the Apricus AP-20 collector. The 

optical efficiency (η0) and the two heat loss coefficients (a1 and a2) are displayed in Table 10. The 

full report can be found in Appendix B.1 Collector. 

 

Table 10: Optical collector efficiency (η0) and heat loss coefficients ((a1 and a2) for the three reference 

areas (SPF, 2004) 

 

The two collectors are connected to a 290 l storage tank, which is located in the bathroom. The 

tank is a customized CTC 300 KEK 9/2/3 from CTC. On days when solar heat production is 

inadequate, necessary auxiliary heating is supplied to the tank through an immersed electrical 

heating element. In case of very high temperatures during summer, the solar circuit is cooled down 

by the activation of cooling radiators, which are positioned on the roof. A sketch of the storage 

tank and the location of the various coil- and port inputs are provided in Figure 31. 

 

                                      Reference area 

 Gross 

(2,886 m2) 

Aperture 

(1,876 m2) 

Absorber 

(1,606 m2) 

η0  [-] 0,399 0,614 0,717 

a1  [W/m2K] 0,85 1,30 1,52 

a2  [W/m2K2] 0,0047 0,0073 0,0085 

Test fluid: water-glycol 33,3%, Volume current: 120 l/h 

Figure 31: Illustration of the customized CTC tank used in the solar thermal heating system 
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Figure 32 shows a simplified schematic of the entire solar circuit. An overview of the system 

components and controller settings is provided in chapter 8. Simulation inputs. Moreover, detailed 

specifications of the main components can be found in Appendix B. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 32: Hydraulic scheme of the solar circuit. Source: Skjølberg Energiteknikk 
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5.4 Relevant experiences and findings 

Since its completion in 2008, certain experiences related to this case study has been gained.  

 

In 2010, Nesland conducted a master thesis, in which energy consumption in both the passive 

house dwellings and the low-energy dwellings were investigated. The results revealed that the 

annual energy consumption varied greatly, and that these fluctuations appeared to be strongly 

related to the energy demand for domestic hot water preparation. Furthermore, the annual heat 

demand for space heating appears to be significantly influenced by the use of floor heating in the 

bathroom. In respect to the solar thermal system, Nesland concluded that the findings suggest that 

the solar contribution in the passive house dwellings is in fact lower than expected. Incorrect 

controller settings are pointed out as a plausible cause. 

 

In a report published by SINTEF in 2012, Prosjektrapport 90 – Systematisering av erfaringer med 

passivhus, a systematic overview of experiences with passive houses in Norway is provided. The 

report includes some information related to the passive house dwellings in Løvåshagen. The study 

states that preliminary measurements conducted has revealed that the energy consumption varies 

strongly between the different dwellings. It comments on the fact that such scattering of measured 

values are not uncommon in large projects, but that the average level is slightly too high. 

Moreover, it is pointed out that the use of solar collectors - thus the expected reduction in 

delivered energy - is not reflected in the results. The report concludes that a reason for this may be 

of a technical nature, and not necessarily related to user habits. A suggested contributing factor is 

that the hydronic heating systems in the passive house dwellings are neither executed nor operated 

according to the plan. It is, however, emphasized that this statement requires energy measurements 

on a more detailed level. 

 

The total delivered energy in 2011, 2012 and 2013 for the examined dwelling is displayed in Table 

11. The data is provided by BKK. The table shows that on an average, the total delivered energy to 

the dwelling is 5570 kWh/year, which equals a specific value of 74,2 kWh/m2. 

 

Table 11: Annual delivered energy and annual specific delivered energy 2011, 2012 and 2013 

(Obtained from BKK via Magnar Berge) 

 kWh kWh/m2 

2011 5946 79,2 

2012 5422 72,2 

2013 5341 71,1 
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5.5 Ongoing study 

Since May 2013, several sensors have been installed in 5 dwellings with the purpose of measuring 

various parameters. Among these are measurements of temperature, relative humidity, energy 

consumption and CO2-content. The study is coordinated by Magnar Berge, PhD fellow for the 

Research Centre on Zero Emission Buildings (ZEB) and co-supervisor for this master thesis. 

During the execution of this master thesis, Berge has provided access to the database containing 

the measured results of the examined system. A more detailed elaboration of the method for 

collecting and processing this data, as well as a description of the measurements, are provided in 

chapter 6. Methodology and 7. Description of measurements. 

 

5.6 Visual check 

A visual check of the solar thermal systems at Løvåshagen revealed that the condition of these 

systems are not flawless. Figure 33 below shows some pictures taken by Magnar Berge on site. As 

can be seen from the pictures, some of the solar thermal systems in Løvåshagen are subject to poor 

insulation of pipes and connections, as well as broken collector tubes. 

 

Figure 33: Pictures taken of the solar thermal systems at Løvåshagen. Top and bottom left: 

Incomplete insulation of pipes and connections. Top and bottom right: Broken collector tubes. 

Photos: Magnar Berge 
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An image of the storage tank, which was taken during a field trip made in relation with the project 

work during autumn 2014, is shown in Figure 34. 

 

 

5.7 Modification 2015 

In January 2015, the solar heat exchanger (solar coil) in the investigated system was replaced. One 

of the motivations for altering the system was the strong suspicion that the internal coil was one of 

the main performance-reducing factors. In addition to having a small surface area, it is made of 

stainless steel – which only has a fraction of the heat transfer qualities of copper, which is a 

common material used for this kind of application. The modification involved switching this 

internal coil with an external plate heat exchanger, thereby hoping to significantly increase the 

utilization of solar energy. Another measure that was taken was to replace the overheating 

protection (cooling radiators on the roof) with a different solution.   

Figure 34: Image of the customized storage tank and the 

hydraulic connections 
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Figure 35 shows a system drawing of the modified system. During solar charging, a thermostatic 

valve ensures that the bottom of the tank is heated first. When the temperature of the water reaches 

68°C, the valve starts to release hot water into the top of the tank instead. In the event of strong 

solar radiation, there is a risk that the temperatures in the solar circuit reach too high values. In the 

original system configuration, cooling radiators were used to prevent overheating. In the altered 

system, however, a special valve (located after the plate heat exchanger) will open in the case of 

very high temperatures. As a result, the pressure drops in the circuit due to the “missing water” 

and cold water is led through the heat exchanger, thereby cooling the solar circuit. The greatest 

benefit with this solution is that cooling of the tank is avoided. 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

In addition to the physical modifications of the system, the controller setting of the immersed 

electrical heating element was slightly altered: instead of a switch-on temperature of 75°C, the 

heater was set to activate at 65°C. Moreover, the solar circuit pipes that were lacking insulation 

were sealed with 10 mm insulation. Finally, the temperature sensor at the collector outlet were 

fastened and its connection insulated.  

Figure 35: Modified system. Source: Skjølberg Energiteknikk 
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6 Methodology 

In this chapter, the chosen procedure for investigating the system performance, as well as for 

identifying potential improvements, will briefly be explained. The approach can be separated into 

the following main parts: 

1. Identifying the performance of the investigated system by collecting and processing 

measured data, and then comparing these with results obtained from the simulation model 

2. Performing a parametric analysis, in which the influence of different design-, operation- 

and user-related parameters are investigated 

3. Creating new and improved scenarios based on the parametric study, and simulating the 

performance of these 

 

Measurements 

In the case description, an ongoing study was mentioned, in which measurement data was made 

available to be used in this thesis. Since this master thesis primarily targets the solar thermal 

heating system, only data that is relevant for the assessment of its performance will be considered. 

The measurement period 01.01.14 – 31.12.14 is the main period investigated. By then, the 

measuring equipment had already undergone some minor alterations that may have affected the 

results.  

As explained in the previous chapter, the examined system was modified in January 2015. To 

assess whether this modification had a positive effect on system performance, measured data from 

the period 01.01.15 – 31.05.15 will also be collected and processed in this study. 

A further elaboration of the measurement setup and the procedure for processing collected data is 

provided in chapter 7. Description of measurements. 

 

Simulations 

To provide a deeper understanding of how well the investigated system is functioning, and to be 

able to compare with the measured results, a simulation model of the system was created. The 

simulation software used was Polysun, for which a free Educational Base Programme licence (for 

the Polysun version 7.2.4) was provided by Vela Solaris to be used for this thesis. The programme 

was chosen because it was regarded as having high flexibility in terms of customizing the 

simulation model, as well as being user-friendly and quickly to learn. Furthermore, the integrated 

shading simulator was considered especially relevant for this particular case study. A brief 

description of this simulation tool is provided in chapter 8.1 Description of Polysun. 
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Even though the system in question was modified at the beginning of this study (January 2015), it 

was decided that a simulation model of only the original system was to be created. This was 

decided for the following reasons: 

1. No measured values were available for the modified system at the commencement of this 

study. This made it impossible to incorporate annual heat consumption values into the 

model in order to make it as similar to the real system as possible  

2. An examination of the pre-modified system was considered greatly valuable. This is due to 

the fact that the 27 other solar thermal heating systems of Løvåshagen housing cooperative 

resemble the system on which the measurements from 2014 are based on (the original 

system design). If this study reveals alterations that may potentially improve the solar 

contribution, then the same implementations may be conducted on the other systems as 

well, thereby also increasing their performance 

3. It was desired to keep this study within reasonable limits 

 

The input values for the simulation model created in Polysun, as well as comments regarding the 

creation of this, are presented in chapter 8. Simulation inputs. 

 

Evaluation of measured and simulated system performance 

As explained in the literature review, different performance indicators can be used to determine 

the performance of a solar thermal heating system. It was decided that the solar fraction is a 

satisfying indicator for this case study, as it establishes the overall performance of a system, and 

not just for one component. In this case study, the solar fraction will be calculated based on the 

amount of solar energy supplied to the tank and the amount of auxiliary energy consumed by the 

immersed electrical heating element. This results in the following equation:  

  

𝑆𝑜𝑙𝑎𝑟 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 =  
𝑆𝑜𝑙𝑎𝑟 𝑒𝑛𝑒𝑟𝑔𝑦 𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑑 𝑡𝑜 𝑡𝑎𝑛𝑘

𝑆𝑜𝑙𝑎𝑟 𝑒𝑛𝑒𝑟𝑔𝑦 𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑑 𝑡𝑜 𝑡𝑎𝑛𝑘 + 𝐴𝑢𝑥𝑖𝑙𝑖𝑎𝑟𝑦 𝑒𝑛𝑒𝑟𝑔𝑦 𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑑 𝑡𝑜 𝑡𝑎𝑛𝑘
 

 

In order to discuss the energy savings from having a heating system with solar input, the fractional 

energy savings will be calculated for the existing system by running simulations in Polysun. The 

method for estimating this is provided in chapter 9.3.2. Fractional energy savings. 

 

To provide a better understanding of the system as a whole, more detailed results will be presented 

based on the simulation model in chapter 9.4 Detailed simulated results. In this regard, certain 

indicators will be used to describe the functioning and performance of the investigated system: 
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Esol is solar irradiaton onto total collector area, 

Qsol is the collector yield, i.e. useful thermal output of the collectors, and 

Ssol is the net amount of solar energy utilized in the storage tank. 

 

The boundary layer for each of the three indicators are shown in Figure 36 below. 

 

 

 

Parametric study 

Once the measured and simulated performance is established, a parametric study of the main 

parameters will be conducted, based on the simulation model in Polysun. The intention is to 

investigate their effect on system performance, and thereby reveal the potential for improving both 

the design and the operation of the system. A more detailed description of the procedure and 

conditions for conducting this study is provided at the beginning of chapter 10. Parametric study. 

Figure 36: The different boundary layers for Esol, Qsol and Ssol 
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7 Description of measurements 

As mentioned in chapter 5.4 Ongoing study, measurements have been made of the investigated 

system since May 2013. In this subchapter, a brief description of devices, measurement setup and 

the procedure for processing the retrieved data is provided.  

 

7.1 Devices 

Energy meter and water meter 

In order to measure the thermal outputs (collectors, radiator, floor heating) and the DHW volume 

withdrawal, energy meters and a water meter were installed.  

Energy meters (kWh meters) of the type Aquametro PMW20 Basic with Aquametro Calec ST 

calculator for net operation were used. The basic function and measuring principle of this meter 

was illustrated in Figure 26 in the literature review (chapter 4.1 Function and yield control). The 

energy meter is equipped with passive or active flow meters and a 2-wire or 4-wire Pt100 or Pt500 

temperature sensor (Aquametro, 2015).  

To measure the consumption of hot water, a mechanical water meter with remote reading output 

from SIEMENS (WFW) was used. The meter accumulates flow values as pulse variables, where 

one pulse equals a volume of 10 liters of water.  

 

Sensors for remote readings 

WiSensys, a platform for wireless measurements developed by Wireless Value, was used to 

monitor the system online. It is useful for various purposes, such as quantifying energy 

consumption or measuring temperatures. Data is digitally sent to a base station by means of 

wireless technology, from which it is automatically forwarded to the web-based application, 

WebSensys (www.websensys.no). Here, the measured results can easily be downloaded and 

displayed in different formats and time intervals (WiSensys, 2014). 

To monitor the solar yield online, as well as the heat consumption for DHW, radiator and floor 

heating, sensors were installed on the thermal heating system. Figure 37 shows the location of 

these. It should be noted that the sketch illustrates the setup before the modification was 

implemented in January 2015. 

http://www.websensys.no/
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Two sensor principals were used: pulse and energy usage. A pulse sensor detects and counts 

pulses. When connected to an energy meter, it can be used to measure energy consumption. For 

every kWh, one pulse is registered. The energy usage sensor is a sensor that measures energy 

usage directly (kWh). This is achieved by plugging the investigated energy meter into the power 

outlet of the sensor (WiSensys, 2015). 

An overview of the sensor types and locations installed on the thermal system is presented in 

Table 12. Location 1-5 corresponds with the positions displayed in Figure 37. 

 

Table 12: Overview of each sensor type and its location on the solar thermal heating system 

Location Sensor 

Name Type 

1 Solar circuit WS-DLX Pulse 

2 El.heating element (tank) WS-DLR Electrical energy usage 

3 Radiator circuit WS-DLX Pulse 

4 Floor heating circuit WS-DLX Pulse 

5 DHW circuit WS-DLX Pulse 

 

7.2 Reliability of devices and challenges during measurements 

The reliability of the measured data that is collected is mainly determined by the devices. The 

energy meters and the water meter were assumed to provide precise measurements, given that they 

were correctly mounted and calibrated. As for the two sensor types used to accommodate remote 

Figure 37: A principal sketch of the instrument setup for remote monitoring 
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readings, i.e. the energy usage sensor and the pulse sensor, it was the pulse sensor that was the 

main source of problems when analysing and processing the measured data collected from 

Websensys.  

 

7.2.1 Challenges during measurements 

The primary focus of this study is the measured results from 2014. During the examined period, 

however, data from occasional time intervals during the year are lacking due to disconnections 

between the sensors and the WiSensys base station. There were three main challenges when 

retrieving the measured data: 

1. Missing intervals: several minor intervals of data in WebSensys were lacking, 

everything from between a few days to several weeks 

2. Deviation between remote and direct readings: at times, the remote readings of the 

solar yield differed considerably from the corresponding direct readings 

3. No available remote readings of the radiator consumption 

Consequently, it was necessary to make certain approximations and assumptions during the 

processing of the measured results. In general, the occasional lack of data only influenced the 

accuracy of the daily, weekly, and sometimes the monthly values. In other words, the annual 

values for the energy consumption and solar yield are unaffected in all cases, except in the case of 

radiator. Co-supervisor Magnar Berge made several visits within the measurement period, during 

which he manually read the thermal outputs displayed on the meters. These direct readings are 

attached in Appendix A.2 Direct readings. Due to the lower accuracy of the pulse sensor that was 

connected to the meters, the manual readings were used to control the accuracy of the digitally 

logged values. The electrical heating element, which was connected to an energy usage sensor, 

could not be read directly since it had no display. Since this sensor has a high accuracy (±1%), it 

was assumed that the remote readings retrieved from this sensor were reliable.  

In the following subchapter, the chosen procedure for stipulating the monthly heat consumption 

and solar yield generated by the collectors, as well as the approximation of the hourly domestic hot 

water draw-off curve, will be elaborated. 

 

7.2.2 Correction of measured results and stipulation of missing values 

1. Complete the thermal output curves for auxiliary and solar heating of the tank 

In order to retrieve monthly data, interpolation was used to stipulate the missing intervals. The 

energy usage sensor, which was used to measure auxiliary energy consumption (electricity), 

automatically reset itself several times during the year, whenever a maximum value of 596,25 

kWh was reached. This knowledge, combined with the different slopes of the curve (before each 
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Figure 38: Top: auxiliary energy consumption curve of the immersed electrical 

heating element. Bottom: Solar yield curve 

peak), made it possible to stipulate the actual consumption curve over the course of the year, 

thereby estimating the monthly values.  

The complete consumption curve for year 2014 of the electrical heating element and the solar 

yield curve of the collectors are presented in Figure 38 below. The solid lines represent the 

measured values that were retrieved from the base station. The dotted lines represent the 

interpolated values that were applied to replace the missing intervals. The corresponding DHW 

curve and the floor heating curve of 2014, as well as the measured values of the modified system 

of 2015, are displayed in Appendix A.  
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2. Control and correction of the remote readings according to the direct readings 

As explained in the introduction, it was only necessary to correct the solar yield curve from Figure 

38. On an annual basis, the value of the direct readings constituted only 54% of that of the remote 

readings retrieved from Websensys. The average daily curve of year 2014 was therefore obtained 

by multiplying with a factor of 0,54, as seen in Figure 39.  

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Stipulate the annual thermal output to radiator 

The direct reading (Appendix A.2) showed that the thermal output that was delivered to the radiator 

during the time period 11.11.13 – 19.11.14 was 264,4 kWh. This period exceeds the duration of 

one year by 7 days. In the time period 19.11.2014-29.01.2015, the average thermal output of the 

radiator was 0,319 kWh/day. Based on the assumption that this was a typical daily heat demand, 

the annual radiator consumption between 11.11.13 – 11.11.15 (i.e. subtracting 7 days) was 

stipulated though the following calculation: 

 

𝑇ℎ𝑒𝑟𝑚𝑎𝑙 𝑜𝑢𝑡𝑝𝑢𝑡 𝑓𝑟𝑜𝑚 𝑟𝑎𝑑𝑖𝑎𝑡𝑜𝑟 = 264,6 − (7 𝑑𝑎𝑦𝑠 ∙ 0,319 
𝑘𝑊ℎ

𝑑𝑎𝑦
 ) 

 

Figure 39: The solar yield curve of the collectors, both before and after correction 
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7.2.3 Estimation of annual DHW consumption curve 

Since the variation in consumption of domestic hot water (DHW) depends on the needs and habits 

of the user, it was considered advantageous to create an approximated hourly consumption profile 

from 2014 that could be implemented into the simulation model. Since data was occasionally 

missing, interpolation was used to estimate the monthly values (as explained in the previous 

section). Moreover, data from 15.05.13  to 31.12.13 and from 01.01.15 to 01.03.15 were used to 

supplement the missing sections. For instance, where weekend data was missing, representative 

weekend consumption data from another date was inserted. Similarly, missing data from a 

weekday was supplemented with data from a corresponding weekday. The resulting DHW curve is 

displayed in chapter 8. Simulation inputs in Figure 47. 

 

7.3 Volume to energy conversion 

The pulse sensor that was connected to the water meter registered the hot water consumption in 

liters. Conversion of volume (l) to energy (kWh) was done according to equation 9. 

 

𝐸 =  
𝑉∙𝑐𝑝𝑤𝑎𝑡𝑒𝑟∙Δt

60∙60
           (9) 

 

 

where  

E is energy [kWh],  

V is volume [l], cpwater is the specific heat capacity of water (4,2 kJ/kg°C), and  

Δt is the temperature difference between hot and cold water [°C]  

(Wigenstad, 2009). In consultation with my supervisor, it was decided to assume a hot water 

temperature of 50°C in the calculations. The cold network water temperature that is supplied to the 

tank bottom was based on measured data provided by Bergen Vann KF. The measured 

temperature of the cold water, measured on an hourly basis, during 2014 is displayed in the next 

chapter 8. Simulation inputs. The average cold water temperature, as well as the minimum and 

maximum value, is summarized in Table 13 below.  
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Table 13: Measured cold city water temperature in 2014 

Max. temperature [°C] 10,8 

Min. temperature [°C] 5,4 

Average temperature [°C] 7,9 

 

For the volume to energy conversion in equation 9, the average measured cold water temperature 

of 7,9°C was used. 

 

7.4 Suspicion of return-flow 

For some period of time, it was suspected that return-flow was occurring in the solar loop. This 

phenomenon was explained in 3.3.5 Return-flow prevention. For this reason, ultra sound 

measurements was conducted on the solar loop in the time period of January to April 2014. 

However, the results revealed no data that could confirm this suspicion. Furthermore, the check 

valve, which is supposed to prevent return-flow, showed no particular defects during an 

examination.   
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8 Simulation inputs 

8.1 Description of Polysun 

Polysun is a simulation software developed and distributed by Vela Solaris, which is a useful tool 

for planning and designing solar thermal-, photovoltaic- and heat pump systems. Polysun is also 

suitable for optimizing and assessing both existing and new systems. The software is available on 

two user levels: a professional level and a designer level. The former is a simple, user-friendly 

sales- and design tool suitable for installers and salespersons, whereas the latter is more advanced, 

and is applicable for system designers, energy consultants and development engineers (Vela 

Solaris, 2014). 

 

The design procedure of Polysun can roughly be separated into five simple steps (Vela Solaris, 

2014):  

1. Selecting worldwide weather data 

2. Defining the hydronic scheme. In addition to having a comprehensive template selection, it 

is also possible for users to create their own hydronic template 

3. Defining consumer demands. Even with limited information available, it is possible to 

obtain accurate simulations 

4. System dimensioning. A database of commercially available products is provided, 

including collectors, tanks, heat generators and heat exchangers. It is also possible to 

modify the system components, e.g. the collector area and collector inclination angle 

5. Results evaluation 

 

Meteonorm weather database 

Polysun allows the user to select any location through an online map, the Open Street Map, from 

which a utility program, called Meteonorm, automatically generates the necessary weather data. 

Meteonorm is a software created by Meteotest, which consists of weather data that is retrieved 

from 8325 weather stations worldwide as well as five geostationary satellites. The software can 

provide accurate data for any place on Earth. Weather data for new locations is generated through 

the use of coordinates and state of the art interpolation models. Climatic data include weather 

parameters like diffuse- and direct radiation, temperatures, wind speed and air humidity 

(Meteotest, 2015). 

 

Shading editor 

The newest releases of Polysun (5.8 or newer) include a shading editor, making it possible for the 

user to account for the surrounding topography and obstructions in the simulations. By stating the 
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distance and height of nearby objects, the dimensions are automatically reflected on the horizon 

line. This allows for more accurate site data entry, as well as better yield calculations, and helps 

assess the impact of shading (Pressbox, 2014). A screenshot of the horizon editor with the shading 

feature is illustrated in Figure 40.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the remaining subchapters, the settings and input values used to create the simulation model of 

the investigated system will be reviewed. In cases where the model deviates from the physical 

system, or where additional explanations are considered necessary, comments are provided at the 

end of each subchapter.  

 

Figure 40: Polysun horizon editor (Pressbox, 2014) 
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8.2 Meteorological inputs 

8.2.1 Location and climate settings 

The exact location of the Løvåshagen housing cooperative was selected in Polysun through the 

Open Street Map, as shown in Figure 41. The location could then be matched with relevant 

climatic data from the Meteonorm weather database.  

 

The chosen location settings and the corresponding annual weather data for this particular location 

are displayed in Table 14. Additionally, the diffuse and direct irradiation on a horizontal surface 

(in W/m2) during one year are illustrated in Figure 42, and the variation in the average outdoor 

temperature is depicted in Figure 43. 

 

Table 14: Coordinates and corresponding weather data for the location of Løvåshagen housing 

cooperative in Bergen, annual sums 

Fyllingsdalen, Bergen Latitude: 60.355° Longitude: 5.284° Elevation: 60 m 

Average outdoor temperature 7,8 °C 

Global irradiation* 760,2  kWh/m2 

                  Direct irradiation 346,9  kWh/m2 

                  Diffuse irradiation 437,3  kWh/m2 

*Irradiation on a horizontal surface 

Figure 41: Open Street Map viewer in Polysun 
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The highest temperatures occur in July, with temperatures ranging from a minimum of 7,7°C to a 

maximum of 25,7°C. The coldest days appear in January, when the temperatures vary from -8,1°C 

to 9,9°C. 

 

 

Figure 43: Average outdoor temperature in Fyllingsdalen in Bergen 

Figure 42: Global irradiation (direct and diffuse) on a horizontal surface (W/m2) in 

Fyllingsdalen in Bergen 
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8.2.2 Horizon profile and collector field settings 

The horizon line from the chosen location was imported from Meteotest (online) into Polysun. To 

further incorporate shading of nearby objects, necessary dimensions were specified in the shading 

editor. The shading editor has two main features: obstructions and mutual shading. In this case, 

only row-to-row shading between the collectors was relevant, and therefore only mutual shading 

inputs were required. The input parameters are displayed in Table 15 below. Figure 44 shows the 

resulting horizon line along with the sun path line on June 1st at noon.  

 

Table 15: Shading editor inputs: Mutual shading 

d Row distance 2,1 m  

 

  

 

 

 

w Collector length 1,9 m 

α Collector inclination angle 51° 

a Orientation angle (azimuth) -10° 

 

 

 

 

 

 

 

 

 

 

 

The pronounced peak in the middle of the horizon line (red) represents the impact of mutual 

shading, whereas the variation of the horizon line in east and west indicates the contours of the 

surrounding topography, i.e. trees, bushes, hills etc.  

Figure 44: Red line: The horizon for the chosen location. Yellow line: Altitude angle of the sun on June 

1st at 12:00 PM 
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8.3 Polysun model 

8.3.1 Hydraulic scheme 

Figure 45 shows the hydraulic scheme of the model that was created and simulated in Polysun.  

 

 

 

 

 

 

 

 

 

 

 

 

8.3.2 Component overview 

In Table 16, an overview of the most important input parameters for the various components in the 

simulation model is displayed. At the end of this subchapter, a few comments regarding the 

gathering of necessary component data, as well as deviations between the Polysun inputs and the 

actual system, is provided.  

 

Table 16: Overview of component inputs 

COLLECTOR AP-20 

     Data source SPF  

     Number of collectors 2  

     Number of arrays 1  

     Total gross area 5,77 m2 

     Total aperture area 3,752 m2 

     Total absorber area 3,21 m2 

     Inclination angle (hor.=0°, vert.=90°) 51 ° 

     Orientation (E=+90°, S=0°, W=-90°) -10 ° 

Figure 45: Hydraulic scheme of the simulation model created in Polysun  
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HEATING ELEMENT: FLOOR HEATING 

     Number of heating modules 1  

     Power per heating element under standard 

     conditions 

1000 W 

     Nominal inlet temperature 60 °C 

     Nominal return temperature 40 °C 

HEATING ELEMENT: RADIATOR 

     Number of heating modules 1  

     Power per heating element under standard  

     conditions 

1000 W 

     Nominal inlet temperature 60 °C 

     Nominal return temperature 40 °C 

PUMP: FLOOR HEATING Eco, small 

     Average circuit pressure drop 0,001 bar 

     Flow rate 30 l/h 

PUMP: RADIATOR LOOP Eco, small 

     Average circuit pressure drop 0,0005 bar 

     Flow rate 43 l/h 

PUMP: SOLAR LOOP Wilo-Star-ST 20/6 

     Average circuit pressure drop 0,171 bar 

     Flow rate 

          Minimum value 

          Maximum value 

 

692 

1041 

 

l/h 

l/h 

STORAGE TANK 

     Volume 290 l 

     Height 1,6 m 

     Material Stainless steel 

1.4521 

 

     Insulation Mineral wool   

     Thickness of insulation 40 mm 

AUXILIARY HEATING 

     Immersed electric heating element   

     Max. power 2 kW 

     Efficiency 100 % 

SOLAR LOOP 

     Fluid mixture Propylene mixture  

     Fluid concentration 40 % 

     Fluid domains volume 12 l 

     Pressure on top of the circuit 4 bar 

     Pipes 

          Outer diameter 

          Inner diameter 

 

18 

16 

 

mm 

mm 

     Pipe insulation 

          Conductivity at 0°C 

          Thickness 

 

0,038 

14 

 

W/(m∙K) 

mm 
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8.3.3 Comments regarding Polysun inputs vs. actual conditions 

The newer versions of Polysun allows for relatively detailed inputs of the different components of 

a solar thermal system. In the hope of achieving more accurate simulations, it was desirable to 

create a model that would resemble the real system as much as possible. However, to gather 

detailed information of an already installed system turned out to be a comprehensive and at times 

challenging process. In cases where necessary input data was lacking, default settings were used 

unless otherwise is explained. The deviations that are considered most significant will be 

explained briefly in the following paragraphs.  

 

8.3.3.1 Storage tank 

It should be noted that the internal components of the tank that was illustrated in Figure 45 are not 

correctly scaled according to actual positions and inputs. In reality, the hot water port and the cold 

water port are located at the center of the tank wall (as shown in Figure 31 in chapter 5. Case 

description), from which the water is led to either the top or the bottom. In Polysun, however, it is 

not possible to replicate these side ports. In the simulation model, the hot and cold water therefore 

enters the tank from the top and the bottom, respectively. An illustration of the tank created in 

Polysun with the different inputs is illustrated in Figure 46 below. The positions of the coils and 

the ports are shown in relative dimensions, i.e. scaled in percentage from the tank bottom. 

Figure 46: Simplified sketch of the various tank component inputs in Polysun 
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8.3.3.2 Circulation pumps 

The circulation pump of the solar circuit (the solar pump) is a speed-stage switching pump that 

operates according to its characteristic pressure curves. It can be regulated at three different stages, 

each with its own pump characteristic. Moreover, the pump is fixed at one stage and must be 

regulated manually. The corresponding pump characteristic for the pump that is used in the 

investigated system, the Wilo-Star-ST 20/6, are attached in Appendix B.3.1. In the simulation 

model, the pump was set to operate at stage one. 

In the space heating circuit, running a simulation was not possible when using only one circulation 

pump. As an alternative, the model was created with one pump for each heating element, i.e. one 

pump for the radiator circuit and one pump for the floor heating circuit.  

 

8.3.3.3 Auxiliary heater 

For the sake of simplicity, the efficiency of the immersed electrical heating element was set to 

100%.  

 

8.3.3.4 Space heating circuit 

In reality, the effects of the radiator and the floor heating element are based on flow control, using 

thermostatic valves. In Polysun, however, there are no two-way valves available. Instead, the 

amount of water is regulated by using three-way-valves (shunt valves). 

 

8.4 Heat demand input 

8.4.1 Heating of domestic hot water and space heating 

Table 17 lists the inputs for the annual heat demand. 

 

Table 17: Inputs for annual heat demand (DHW and space heating) in Polysun 

Domestic hot water demand 

Average daily volume withdrawal 57,7 l/d 

Temperature setting     50  °C 

Space heating demand 

Heated living area 75,1 m2 

Heating setpoint temperature 20 °C 
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8.4.2 Annual DHW consumption profile 

Based on measurements from 2014, the domestic hot water volume withdrawal was identified on 

an hourly basis and imported into Polysun, see Figure 47. Comments and approximations 

regarding the creation of this annual consumption profile was provided in chapter 7.2.3. It should 

be noted that the resolution of the graph makes it impossible to display the value for every hour 

during one year. 

 

 

 

8.4.3 Hot and cold temperature setting 

The temperature setting for the hot water in the mixing valve was set to 50°C. The temperature 

curve of the cold network water in 2014 was acquired from the municipality and imported into 

Polysun, see Figure 48. The cold water that flows into the tank has an annual average temperature 

of 7,9°C. 

 Figure 48: Cold city water temperature during 2014 on an hourly basis. Source: Bergen Vann KF 

Figure 47: Measured DHW consumption curve from 2014, imported into Polysun  
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8.5 Controller inputs 

8.5.1 Controller settings 

The system controller is equipped with three temperature sensors:  

 

T1:  located at the collector outlet, 

T2:  located at the bottom of the tank, and 

T3:  located inside the tank at the electrical heating element 

 

The locations of the different temperature sensors (T1, T2 and T3) are illustrated in Figure 49 as red 

dots. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

An overview of the control of both the solar pump and the electrical heating element is provided in 

Table 18.  

Figure 49: Illustration of the controller inputs and outputs in Polysun 
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Table 18: Controller inputs based on the actual controller settings in 2014 

Solar pump controller 

     Switch-on temperature difference T1-T2 ≥ 6 K 

     Switch-off temperature difference T1-T2 ≤ 4 K 

     Emergency shutdown collector  

     temperature 

140°C 

     Maximum store temperature 90°C 

Auxiliary heating controller 

     Switch-on temperature T3 < 75°C 

     Switch-off temperature T3 > 77°C 

 

 

As described in the table, the solar pump is switched on at a temperature difference T1-T2 equal to 

or larger than 6 K, and is accordingly switched off when the same temperature difference reaches a 

minimum of 4 K. As a precaution against very high temperatures, the overheating protection 

function is automatically activated at a collector outlet temperature above 140°C, which cools 

down the solar loop. The maximum tank storage temperature is set to 90°C. Above this limit, the 

storage tank will no longer be loaded with solar energy. The immersed electrical heating element, 

which feeds the tank with auxiliary heat at times when solar energy is limited, is turned on when 

the temperature of its surrounding water falls below 75°C (T3). To prevent it from switching on 

and off with at very short time intervals, the switch-off temperature is set at a couple degrees 

higher, at 77 °C. 

 

8.5.1.1 Comments regarding the location of the bottom tank sensor, T2 

Polysun separates the tank into the 12 isothermal layers illustrated in Figure 50. The temperature 

sensor that measures the tank water temperature (T2) is, in reality, located inside the drain valve of 

the tank, approximately 3% from the tank bottom. Therefore, layer 1 (bottom layer) was chosen as 

input in Polysun, which is equal to 0–8,3% from tank bottom. 
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8.5.1.2 Comments regarding the protection against overheating 

The existing system has a cooling radiator installed on the solar circuit on the roof, just before the 

first solar collector (see Figure 32). This is activated when the collectors reach the emergency 

shutdown temperature of 140°C. This particular emergency cooling device is not available in 

Polysun. Consequently, its effect on the system can therefore not be accurately established. 

However, the simulation software does specify the maximum collector temperature, which was set 

to 140°C in the controller settings.  

To further investigate the operating conditions of the system, and to get an impression of how 

frequent the cooling radiators would be activated in the model, the number of stagnation days was 

used as an indicator, as well as the collector temperature. 

 

 

 

Figure 50: The twelve isothermal tank layers in Polysun (Vela Solaris, 2014) 
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9 Results 

As explained in chapter 6. Methodology, measured data from 01.01.2014 – 31.05.2015 was 

collected and assessed in order to get an indication of how well the system is performing, both 

before and after the modifications made in January 2015. In this chapter, the measured data will 

first be reviewed together with the simulated results based on the Polysun model that was 

presented in chapter 8. Simulation inputs. Then a more detailed presentation of the various 

simulated parameters is provided, including collector yields, temperatures, volumetric flow rates, 

heat losses, etc. At the end of this chapter, the results will briefly be discussed, and a preliminary 

evaluation of the current function and performance of the investigated solar thermal system will 

finally be made. 

 

9.1 Heat demand 

As explained in chapter 6. Methodology, the measured annual heat demand for year 2014 - for 

space heating by means of two heating units (radiator and floor heating) and heating of domestic 

hot water (DHW) - was used as input in the simulation model. In this subchapter, these results will 

be briefly presented. 

Figure 51 and Figure 52 show the measured monthly heat demand for DHW and the measured 

monthly floor heat demand, respectively. In the two diagrams, the original system configuration 

represents values from 2014, whereas the modified system represents values from 2015. The latter 

are only available until May of the same year.  

 

 

 

 

Figure 51: Monthly measured heat demand for DHW in 2014 and 2015 
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Due to reasons mentioned in 7.2.1 Challenges during measurements, the monthly thermal outputs 

from the radiator were not logged at all during the measurement period. Thus, only the annual heat 

consumption of this unit could be obtained through direct readings on site, which are presented in 

Table 19 below along with the annual values for DHW and floor heating consumption. 

 

Table 19: Measured heat demand in 2014 for the investigated dwelling 

 Energy demand 

[kWh/year] 

Specific energy demand 

[kWh/m2/year] 

Space heating (radiator + floor heating) 712 9,5 

Domestic hot water (DHW) 1034 13,8 

Total heat demand 1746 23,3 

 

As displayed table, the annual heat demand in 2014 for space heating and DHW preparation was 

712 kWh and 1034 kWh, respectively. This equals a total heat demand of 1746 kWh/year. With a 

floor area of 75,1 m2, this corresponds to a specific annual heat demand of 23,3 kWh/(m2∙year).  

 

9.2 Energy supply 

Figure 53 depicts the simulated solar yield in kWh for each month during one year with the 

corresponding measured results, both before and after the modification. 

Figure 52: Measured monthly heat demand for heating of bathroom floor in 2014 and 2015 
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The results show that the measured solar yield is higher in 2015, with the modified system, 

compared to the yield of 2014, before any alterations were made. The exception occurs in March, 

when the results of 2014 appear to have been slightly better than in the following year.  

The simulated monthly solar yields are consistently higher than the corresponding measured 

results from April to August. During the months with moderate to low radiation, however, the 

measured solar yield exceeds that of the simulated results, with the exception of January and 

February. Both measured cases experience a large “jump” in solar yield from February to March, 

whereas the simulation model has a similar effect from March to April.  

The corresponding monthly auxiliary energy (electricity) consumed by the immersed electrical 

heating element for the three cases are provided in Figure 54.  

 Figure 53: Measured and simulated monthly solar yield 

Figure 54: Measured and simulated monthly auxiliary energy supplied to the tank 

(immersed electrical heating element) 
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Similar to the solar yields presented in Figure 53, the measured auxiliary energy consumption is 

higher in 2015 compared to in 2014. Moreover, the simulated auxiliary energy is lower than the 

two measured cases throughout the whole year.  

Figure 55 summarizes the annual energy supplied to the tank by type (auxiliary energy and solar 

energy), for both the simulated case and for the measured case on which the simulation model is 

based (2014). For comparison, the measured annual heat demand for space heating and heating of 

DHW, which is 1746 kWh/year, is included in the diagram as a red, dotted line.  

 

 

The results in Figure 55 show that for both the measured and the simulated case, the amount of 

energy supplied to the storage tank was excessive, compared to the actual heat demand. Moreover, 

this tendency was less prominent for the simulated model. 

 

9.3 System performance 

9.3.1 Solar fraction 

Based on the solar yields and the energy consumed by the auxiliary heater, which was presented in 

the previous subchapter in Figure 53 and Figure 54, the monthly solar fractions can be calculated 

for each of the three cases (simulation model, original system and modified system) according to 

the definition of solar fraction (presented in chapter 6. Methodology). The results are plotted in 

Figure 56 below.  

Figure 55: Measured and simulated energy supplied to the tank in 2014. The 

measured total heat demand for heating of DHW and space heating in 2014 is 

included with a dotted line 
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As can be seen from graph, the simulated monthly solar fractions are significantly higher during 

periods of high solar radiation. Furthermore, the measured monthly solar fraction that was 

obtained in June and July 2014, with the original system configuration, were only 28,5% and 

27,0%, respectively. The corresponding simulated values were 52,9% and 49,2%. In January, no 

solar energy was utilized in neither the simulated case nor in the measured, pre-modified system. 

In December, all three cases have a solar fraction of 0%.  

The average annual solar fraction for the original system design (2014) and the simulated model 

are summarized in Table 20. For the sake of comparison, the initial design goal of this project is 

included.  

 

Table 20: Measured (2014) and simulated annual solar fraction 

Annual solar fraction 

Measured 2014 Simulated in Polysun Initial design goal 

10,8 % 14,3 % 47,0% 

 

 

 

Figure 56: Measured and simulated monthly solar fraction 



  

91 

 

9.3.2 Fractional energy savings 

Seeing that both the measured and the simulated results reveal that the system is not performing as 

well as intended, and that the difference between the amount of heat supplied to the tank deviates 

strongly from that of the actual heat demand, it is highly relevant to ask the following question: 

would the results in fact have been better with the sole use of conventional heating, that is, without 

any solar input?  

A first step in answering this question was to calculate the monthly and annual fractional energy 

savings according to NS-EN ISO 9488:1999 Solar energy vocabulary. This term was defined in 

chapter 4.3 Evaluation of system performance. To calculate how much energy the system would 

consume if only using conventional heating, the simulation model was simulated without solar 

input in Polysun. To achieve this, the model was altered so that the solar pump was not operating 

during the simulation. This version could then be set as reference system, thereby representing the 

case when only electricity is used (immersed electrical heating element). The monthly fractional 

energy savings during one year is plotted in Figure 57 together with specific delivered energy to 

the heating system for both cases.  

 

 

 

 

 

Figure 57: Comparison between the investigated solar thermal system (reference system) 

and the use of only conventional heating (electricity) 
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As can be seen from the graph, the energy savings with the current system design and operation 

are not very high compared to the energy consumed when only using electricity as energy source. 

The savings mainly occur from April to August, during which the highest fractional energy saving 

appears in June, with 26%. Moreover, the energy savings of February, March, September and 

October are negative. During these periods, the conventional heating system has a lower energy 

consumption than that of the system with solar input (reference system). As a result, the energy 

savings are only 3,8 % on an annual basis, as seen in Table 21. 

 

Table 21: Fractional energy savings for the investigated system, annual sums 

Annual specific delivered energy to heating system  

[kWh/m2] 

Annual fractional 

energy savings 

[%] Solar heating system Conventional heating system 

35,6 37,0 3,8 

 

 

9.3.3 Original system vs. modified system 

To get a better indication of whether or not the measured results presented in the previous chapter 

reveal that the modified system is performing better than the original system, a comparison of the 

first five months of years 2014 and 2015 is depicted in Figure 58 below. Both heat supply, by type 

(solar energy and auxiliary energy), as well as the different heat demands (DHW, floor heating and 

radiator) are shown to the left and to the right in the figure, respectively.  

 

Figure 58: Measured heat supplied to the tank, heat demand for space heating, and 

heating of DHW from January 1st to May 31st  
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During the period 01.01.14 to 31.05.14, the solar collectors supplied 133 kWh to the storage tank. 

Simultaneously, 1487 kWh of auxiliary energy was consumed by the immersed electrical heating 

element. Within the same period in 2015 (01.01.15 to 31.05.15) with the modified system, the 

corresponding values were 177 kWh and 1826 kWh respectively. This equals an increase in both 

solar energy, by 33,4%, and auxiliary energy, by 22,8%, compared to the previous year. 

The heat demands for heating of DHW and space heating in 2014 were 475 kWh and 393 kWh, 

respectively. Within the same period in 2015, the corresponding values were 528 and 488 kWh. 

This is equivalent to an increase in DHW demand by 11,2 %, and an increase in space heating 

demand by 24,2 % from 2014 to 2015.  

The total heat demand and heat supply from January to May for the two periods are summarized in 

Table 22, as are also the calculated solar fraction for the given periods.  

 

Table 22: Heat supply vs. heat demand Jan-May 2014 and Jan-May 2015 

  01.01.14 – 31.05.14 

(Original system) 

01.01.15 – 31.05.15 

(Modified system) 

Total heat supply  

(solar energy + auxiliary energy) 

kWh 1620 2003 

Total heat demand  

(DHW + space heating) 

kWh 868  1016 

Solar fraction % 8,2 8,8 

 

As is displayed in the table, the total heat supply to the tank had a slightly higher than the total 

heat demand from 2014 to 2015; the total heat supply increased with 383 kWh, and the total heat 

demand increased with 148 kWh. This equals an increase by 23,6% and 17,1%, respectively. The 

solar fraction for the given periods in 2014 and 2015 were 8,2 % and 8,8 %, respectively. 

 

9.4 Detailed simulated results 

In order to study the system more closely, as well as getting a better understanding of the system 

as a whole, this section considers the different parameters related to the main components of the 

investigated solar thermal system. Since the available measured data is limited, only data based on 

the simulation model (which represents the original system configuration in 2014) is included. 

Furthermore, the results presented here will be used as reference values in the parametric study in 

chapter 10. The terms used to describe the yields based on different boundary layers – Esol, Qsol 

and Ssol (gross, net- and input level) - were explained in chapter 6. Methodology (Figure 36).  

 



  

94 

 

9.4.1 Collector 

9.4.1.1 Solar irradiation per collector area  

Figure 59 shows the irradiated power per collector area (W/m2) during one year. 

 

 

As explained in chapter 2.1 Variation in solar irradiation, the amount of radiation that hits a 

surface is influenced by several factors, of which local weather conditions is the main factor. On a 

clear summer day, the irradiated power may reach well above 1000 W/m2, whereas on a cloudy 

day it can be as low as 300 W/m2. During winter, this value may be even lower. This seems to 

correspond well with the simulated results presented in Figure 59. However, what is curious is that 

the amount of irradiation seems to undergo a sudden climb during March-April and then a large 

drop during August-September. This reduction differs from the global irradiation curve presented 

in Figure 42 in chapter 8. Simulation inputs, where a more even radiation curve was displayed. In 

fact, when further examining the maximum irradiated power per collector area for each month in 

Figure 60 below, these sudden gaps are made even clearer.  

Figure 59: Irradiated power per m2 collector aperture area throughout the year. 

Total aperture area is 3,8 m2 
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The maximum irradiance during the simulated year occurs in June with a power of approximately 

1150 W per square meter aperture area. Furthermore, it takes a considerable leap from March to 

April, from merely 280 W/m2 to over 1000 W/m2, and correspondingly a large drop from August 

to September. Though a lower maximum irradiated power is to be expected as winter approaches 

and temperatures drop, these sudden pronounced leaps are suspicious, and should be investigated 

more closely.  

 

The total solar irradiation during one year is summarized in Table 23 below.  

 

Table 23: Irradiation onto the two collectors, annual sums 

Irradiation onto collector 678,3 kWh/(m2∙year) 

Irradiation onto total collector area, Esol 2437,6 kWh/year 

 

On an annual basis, the specific irradiation onto the collectors are 678,3 kWh per square meter 

collector aperture area. With an aperture area of 3,8 m2, this corresponds to a total irradiation, 

Esol, of 2437,6 kWh/year. By comparison, the annual specific irradiation on a horizontal surface 

for the chosen location presented in Table 14 was 760,2 kWh/m2. Since the two collectors are 

tilted at an angle, which normally increases the amount of perpendicular solar beams that hit the 

receiving surface, the results presented in the table are lower than expected. 

 

Figure 60: Monthly maximum irradiated power per square meter collector aperture 

area [W/m2).  
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9.4.1.2 Collector yield and collector efficiency 

Figure 61 shows the monthly collector yield, Qsol, during one year. The collector yield represents 

the useful energy that is transferred from the collectors to the heat transfer fluid in the solar circuit. 

For the sake of comparison, the monthly irradiation curve, Esol, is included in the graph with a 

dotted line. 

 

 

The graph shows that a large share of the solar radiation that reaches the collectors is lost to the 

surroundings. As discussed in chapter 3.1.2 Collector performance and collector efficiency, the 

collector yield, i.e. the useful thermal output, is strongly dependent on the efficiency of the 

collectors. The efficiency of a solar collector was defined as the ratio between the collected, useful 

energy, Qsol, and the solar irradiation onto total collector area, Esol. Thus, the following definition 

of collector efficiency can be applied: 

 

𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑜𝑟 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 = 100 ∙  
𝑄𝑠𝑜𝑙

𝐸𝑠𝑜𝑙
  [%]   

 

where Qsol and Esol are defined as explained above.   

 

Figure 62 depicts the monthly average values for collector efficiency (%) during one year. As is 

displayed in the graph, the efficiency of the collectors are very low during periods of little to 

moderate radiation.  

 

Figure 61: Simulated monthly energy transferred from the collectors to the solar circuit 

(collector yield), together with the corresponding irradiation onto collector (aperture) area  

 

(10) 
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Figure 63: The efficiency curve for Apricus AP-20 for different irradiated powers (W/m2)  

 

 

 

 

 

 

 

 

Table 24 summarizes the annual performance of the collectors. The total irradiance onto the 

collector area, Esol, was presented in the previous subchapter.  

 

Table 24: Collector performance, annual sums 

Collector yield Qsol 888,2 kWh 

Annual collector efficiency Qsol/Esol 36,4 % 

 

As can be seen from the results in the table, the annual efficiency of the collectors is 36,4%. As 

previously explained, the collector efficiency is determined by the efficiency curve for the 

particular collector type, and can be calculated according to equation 1 in chapter 3.1.2. Figure 63 

depicts the efficiency curve for various irradiation levels for the two Apricus AP-20 collectors, 

based on the optical efficiency and the heat loss coefficients stated in Table 10 in 5.3 Description 

of the solar thermal system. TL is the temperature of the solar liquid in the collector manifold, and 

TA is the ambient temperature.  

 

Figure 62: Monthly simulated collector efficiency [%].  
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As is illustrated by the efficiency curves in Figure 63, the temperature dependent losses (thermal 

losses) become more dominating when the irradiated power decreases. This suggests that shading, 

for instance from nearby collectors, may not only reduce the amount of solar irradiation that hits 

the collectors, it may also significantly reduce the collector efficiency.  

 

9.4.2 Solar circuit 

9.4.2.1 Flow rate in the solar circuit 

The solar pump circulates the heat transfer fluid in the solar circuit between the collectors and the 

solar heat exchanger, which in this case study is a coil. As discussed in chapter 8. Simulation 

inputs, the pump is a speed-stage switching circulation pump that operates according to 

characteristic pressure curves. Figure 64 displays the maximum and minimum monthly volumetric 

flow rate in l/h during operating hours.  

 

The simulations show that the flow rate varies from approximately 690-900 l/h during periods of 

low to moderate radiation, until approximately 830-1040 l/h during periods of high radiation. 

Furthermore, the difference between the maximum flow rate and the minimum flow rate is very 

small from November to January. The impact of volumetric flow rates on system performance will 

be further discussed in the parametric study in chapter 10. 

Figure 65 below depicts the volumetric flow rate on an hourly basis (l/h) during one year. When 

analysing the graph, one immediately notices an irregularity: the pump appears to be running 

continuously during the summer months without being switched off. This is a clear first sign that 

the pump control is not functioning satisfactory, and will thus be further explored in chapter 9.4.4 

Controller.   

Figure 64: Monthly maximum and minimum volumetric flow rate during one year 
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9.4.2.2 Temperature conditions in the solar circuit 

As mentioned in chapter 8. Simulation inputs, the need for protection against overheating within 

the solar loop will be evaluated based on the number of stagnation days and the temperatures of 

the collector. As discussed in chapter 3, a solar thermal system can reach the so-called stagnation 

temperature during periods with high solar radiation when there is a large difference between the 

temperature of the solar liquid in the collector manifold and the temperature of the ambient air. At 

this point, energy is no longer transmitted from the collector to the solar loop since the amount of 

heat lost to the surroundings is just as large as the solar gains.  

The maximum absorber temperature, or stagnation temperature, is strongly dependent on the 

collector type. For the two Apricus AP-20 collectors used in this study, the stagnation temperature 

is 245°C (G = 1000 W/m2, TA = 30°C) (SPF, 2004).To examine if stagnation occurs, the daily 

maximum collector temperature during one year is shown in Figure 66. 

Figure 65: Flow rate through the collectors on an hourly basis throughout the year 

Figure 66: Daily maximum collector temperature during one year 
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The simulations reveal that there are no stagnation days at all during the simulated year – not even 

during summer. Moreover, the maximum temperature of the heat transfer fluid at collector outlet 

varies from over 90°C during summer to just below 20°C during winter. Similar to the solar 

radiation graphs presented earlier in this chapter, the maximum monthly collector outflow 

temperature takes a noticeable leap from March to April, and a noticeable drop from August to 

September.  

As explained in chapter 3.1 Solar collector, evacuated tube collectors have the ability to generate 

relatively high temperatures even on colder days with moderate irradiation. This is because of the 

excellent insulation properties that this collector type holds. For this same reason, the collector 

temperature could be expected to reach even higher temperatures than 90°C during summer 

(higher than the temperatures displayed in Figure 66). Nevertheless, other factors would reduce the 

excess heat production during the high-radiation months, such as the fact that the collectors are 

tilted at a rather steep inclination angle.  

 

9.4.2.3 Heat loss in the solar circuit 

Figure 67 illustrates the annual heat loss of the solar circuit in kWh. Furthermore, a distinction is 

made between heat loss to indoor room and heat loss to outdoor surroundings. 

 

 

As can be seen from the diagram, heat losses to indoor room are just as dominant as heat losses to 

outdoor surroundings. This is due to the long pipelines than run through the three floors of the 

building between the collectors and the tank. By comparison, the simulated annual solar energy 

that was supplied to the tank in chapter 9.2 Energy supply was 415,9 kWh/year, which is less than 

the total heat loss in the solar circuit.  

Figure 67: Annual heat loss in the solar circuit in kWh 
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9.4.3 Storage tank 

9.4.3.1 Solar energy supplied to the tank 

Figure 68 depicts the monthly amount of solar energy supplied to the tank, Ssol, together with the 

monthly collector yield, Qsol, that was presented in chapter 9.4.1.2. 

  

As is shown in the graph in Figure 68, the amount of solar energy supplied to the tank is 

considerably lower than the useful thermal energy converted in the collectors. This difference is 

especially evident from April to August, when the solar radiation is at its highest.  

The annual solar yield was presented in chapter 9.2 Energy supply. In Polysun, this value is a net 

value, which means that it is the sum of heat supplied to and removed from the solar heat 

exchanger (solar coil). Figure 69 shows the hourly amount of energy that flows through the solar 

coil during one year. Positive values indicate that the coil is supplying heat to the storage tank, 

whereas negative values indicate that the coil is withdrawing heat from the tank. 

 

 

 

 

 

 

 

Figure 69: Energy flow per hour in the internal solar heat exchanger (solar coil)  

Figure 68: Monthly amount of solar energy supplied to the tank, Ssol, together with the 

corresponding collector yield, Qsol 
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Figure 70: Monthly mean tank layer temperatures 

The graph shows that the solar heat exchanger too often receives heat from, rather than supplies 

heat to, the storage tank during the high-radiation periods. This is highly disadvantageous, as it 

means that a large amount of heat is removed from the tank and released to the ambient.  

 

9.4.3.2 Tank layer temperatures 

The mean temperature for each of the twelve thermal layers in the storage tank is depicted in 

Figure 70, where the bottom layer (layer 1) is blue, and the top layer (layer 12) is red. 

 

 

The graph shows that the thermal stratification is to some extent present in the storage tank, but 

that layers 2, 3 and 4 have almost the same average temperature from April to September. 

Moreover, layer 7 to 12, i.e. the upper half of the tank, consistently hold high average temperatures 

above 75°C. Figure 71 displays the same layers on an hourly rate during one year.  

 

 Figure 71: Tank layer temperatures from bottom layer (blue) to top layer (red). 
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The graph shows that the temperatures in the lower tank layers occasionally exceed the 

temperatures in the upper part of the tank: they can reach temperatures as high as 90°C. As shown 

in Figure 46 in chapter 8. Simulation inputs, the immersed electrical heating element is located 

within Layer 7 (52% from the bottom of the tank). It is turned on when the surrounding water 

temperature falls below 75°C, which explains the high water temperatures in the layers mentioned. 

During high radiation periods, the solar heat exchanger coil supplies solar energy to the tank 

starting from Layer 4 down to Layer 2.  

The results presented in this subchapter suggests that the thermal stratification within the tank is 

not always sustained, and that a mixing of hot and cold water takes place. As explained in chapter 

3.2.2. Thermal stratification and energy contents of a store, this leads to an increased need for 

auxiliary heating, and has a negative effect on the efficiency of a solar thermal system.  

 

9.4.3.3 Heat loss from the storage tank 

The storage tank is located in the bathroom, which is a heated area. As described in chapter 3.2, 

heat loss from the tank increases in proportion with area and the temperature difference between 

the store and the surroundings. The annual heat loss from the storage tank in the examined system 

is shown in Table 25, including the specific heat loss in kWh per m2 floor area (75,1 m2).  

Table 25: Tank heat loss 

Annual heat loss from the storage tank  564 kWh 7,5 kWh/m2 

 

The annual heat loss of the storage tank is 564 kWh. In this case, this is more than the annual solar 

energy supplied that is supplied to the tank.   

 

9.4.4 Controller 

9.4.4.1 Control of solar pump 

The controller settings used to control the circulation pump in the solar circuit were elaborated in 

section 8.5.1 Controller settings. As previously discussed in this chapter, an evaluation of the 

volumetric flow rate revealed that the solar pump appears to remain turned on for several days 

during periods of high solar irradiation. In this subchapter, the operation of the pump will be 

further investigated. 

Figure 72 below depicts the monthly electricity consumption of the pump together with the 

monthly operating time, which is scaled in percentage on/off. Additionally, the corresponding net 

solar energy supplied to the tank is included for comparison. 
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The graph shows that from April to September, the pump is turned on during 70 to almost 90 

percent of the time. Furthermore, the pump actually consumes more energy than the amount of 

solar energy that it supplies to the tank from September to March. Although this effect is reversed 

during sunnier periods, the pump consumption is still very high. The annual values are 

summarized in Table 26 below.  

 

Table 26: Operation of the solar pump, annual sums 

 

During one year, the pump is turned on for over 50% of the time. Moreover, the total annual 

electricity consumption of the pump is 182,9 kWh, which corresponds to 2,4 kWh per m2 floor 

area each year. This equals a share of 44% of the annual solar yield.  

To give a better understanding of why the pump rarely switches off during high-radiation periods, 

a typical day in June is considered in Figure 73. The graph depicts the volumetric flow rate of the 

solar pump (l/h) together with the two solar pump controller inputs, the bottom tank layer 

temperature (°C) and the collector outflow temperature (°C), on a typical summer day.  

Total electricity consumption of the solar pump 182,9 kWh 

Annual time ON 50,9 % 

Figure 72: Operation of solar pump vs. solar energy supplied to tank 



  

105 

 

 

 

As illustrated in the graph, the pump runs throughout the entire day, except for during a very brief 

moment between 04:00 and 05:00 AM, where it is rapidly switched off and on. The switch-on 

temperature difference is 6 K between the collector outflow temperature and the tank temperature. 

Similarly, it is switched off at a temperature difference of 4 K.  

 

According to the troubleshooting list in chapter 4.2, these are some suggestions related to the 

controller for possible causes for unwanted pump operation: 

1. Unfavourable ΔT settings 

2. Incorrect placing of the tank temperature sensor 

3. Incorrect placing of the collector temperature sensor 

One immediate observation that can be made from Figure 73 is that the temperature at the bottom 

of the tank is constantly much lower than the collector outflow temperature. When the temperature 

at the collector outlet rises with increased radiation, but the temperature at the bottom of the tank 

remains unaffected, the switch-off temperature difference of 4 K is consequently seldom reached.  

The consequence of incorrect controller settings are illustrated in Figure 74 below. The graph 

shows the temperature at (thermal) layer 4 together with the collector outflow temperature, as well 

as the energy flow in the solar coil on an hourly basis.   

 

 

 

Figure 73: Daily operation (June 1st) of the solar pump (l/h) based on bottom tank 

temperature and collector outflow temperature (°C) 



  

106 

 

 

 

 

 

 

 

 

 

 

As shown in the graph, the solar heat exchanger extracts heat from the tank during the night 

(negative power values, W). This is because the temperature in layer 4, where the solar energy 

enters the tank, is higher than the collector outflow temperature. Around 4:00-5:00 AM, the 

collector outflow temperature finally exceeds the temperature of the water that surrounds the upper 

coil connection, which results in energy being supplied to the tank (positive power values, W). 

During the day that is depicted, the positive energy flow lasts from approximately 5:00 AM until 

5:30 PM, when the temperature at the storage tank once again exceeds the collector temperature. 

As a result, the pump circulates the heat transfer fluid in the solar circuit the during night and 

releases heat to the surroundings.  

 

9.4.4.2 Control of auxiliary heater 

To see whether or not the auxiliary controller is working as desired, the same day that was 

considered in the previous subchapter is further examined for the electrical heating element. As is 

displayed in Figure 75, the electrical heater is frequently turned on and off at 75°C and 77°C, 

respectively, especially in the morning and in the afternoon, when hot water is typically consumed 

by the user. Moreover, the graph shows that the temperature in layer 7, i.e. in the middle of the 

tank, never falls below 72-73°C.  

 

 

 

 

 

Figure 74: The effect of incorrect controller settings (June 1st)  
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9.5 Discussion of measured and simulated results  

Both the simulated results and the measured results presented in this chapter reveal that the 

utilization of solar energy is much lower than intended, and that the system is not functioning quite 

as it should be. Before a parametric study is conducted in chapter 10, some brief comments 

regarding the findings of this chapter is provided below.  

The detailed simulations suggest that not only are the collectors exposed to less irradiation than 

expected; the energy flow between various system boundaries also reveals great heat losses from 

one part of the system to the next. In fact, of the total amount of irradiation that hits the total 

collector surface, only 36,4% is converted into useful heat by the collectors. Further 46,8% of this 

amount is supplied to the tank. This means that only 17,1 % of the initial solar energy available is 

utilized for heating of the tank water. Presumably, this number is even lower in real life. The 

energy flow from the collectors to the tank is illustrated in Figure 76 below.    

Figure 75: Operation of the auxiliary heater on June 1st  

Figure 76: Illustration of solar energy flow from the collectors to the storage tank 
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With its current design and operation, it should be questioned whether or not the additional costs 

of installing and maintaining a solar-plus-supplementary system pays off, seeing that the energy 

savings were as low as 3,8 % on an annual basis. Even during summer, the savings are remarkably 

low. During periods of low to moderate solar radiation, the existing system actually consumes 

more energy than it would if one had been using a conventional heating system instead (immersed 

electrical heater only). This was shown in Figure 57 in section 9.3.2 Fractional energy savings. 

This is because during these periods, the solar pump runs during without sufficiently supplying the 

tank with solar energy, which was revealed in the detailed simulations in chapter 9.4.  

 

Original system design vs. modified system design 

A comparison of measurements within a given time period in 2014 and 2015 revealed that despite 

the increase in solar yield, the solar fraction has not noticeably been improved with the modified 

system. One reason for this could be that the total heat demand and the supply of auxiliary energy 

increased accordingly. The weather data for Bergen provided in Appendix A.3 shows that January 

to May in 2015 was generally colder than the same period in 2014. Similarly, the relative humidity 

and the daily precipitation was higher. These are all factors that could explain the increased heat 

demand for space heating, which may further result in a higher auxiliary energy demand, as well 

as a slightly increased solar yield from the collectors. However, based on the results in this 

chapter, no conclusion can be made that the modified system is functioning better than the original 

system. 

 

Return-flow, controller settings and heat loss in solar circuit 

Detailed simulations of the Polysun model revealed that the control of the circulation pump in the 

solar circuit is not functioning as desired. As mentioned in chapter 5. Case description, it has been 

suspected that so-called return-flow is occurring at night, but that the ultra sound measurement 

conducted from January to April 2014 did not successfully prove this. In this chapter, the results 

indicate that during periods with higher radiation, for instance during June and July, the pump 

constantly circulates the heat transfer fluid in the solar circuit for longer periods of time without 

stopping. At times, this may occur on several days in a row. Moreover, this may be the very reason 

why suspicions of night-time return flow were never confirmed: the unwanted flow in the solar 

circuit is not caused by differences in densities (return-flow), but is instead a result of incorrect 

pump controller settings that only seems to be an issue during high-radiation periods. The ultra 

sound measurements, however, were conducted during low-radiation periods, when the control of 

the solar pump has better functioning. Whatever reason, the effect is equally unfavourable: heat is 

withdrawn from the tank and released to the surroundings. Since evacuated tube collectors have 

excellent insulation properties, one can assume that most of this heat is lost in the long solar circuit 

pipelines, both to indoor and outdoor surroundings. This would explain why more heat is lost in 

the solar circuit than the amount of heat that is actually utilized in the tank. It should be noted that 
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no measurements have been conducted to monitor the electricity consumption of the solar pump. 

The unfavourable pump operation can thus not be cross-checked with the real system. However, 

the simulated results suggest that the electricity consumption would be very high compared to the 

energy that is saved by solar energy. The effect of incorrect controller settings will be further 

studied in the next chapter.    

 

Shading and collector inclination angle 

There are several findings in this chapter that point towards shading as a potential performance-

reducing factor. First of all, the total annual solar radiation onto collector area is lower than 

expected. Secondly, the maximum irradiated power curve that was displayed in the detailed 

simulations reveal a sudden increase from March to April, and a corresponding drop from August 

to April. A similar effect could be recognized in both the simulated and the measured solar yields 

presented in Figure 53 in chapter 9.2 Energy supply. Moreover, the two collectors are tilted at an 

inclination angle of 51°, which is steeper than the optimum inclination angle of 34° in Bergen. As 

explained in the literature review, a steeper angle normally reduces the amount of excess heat and 

the number of stagnation days during summer, as well as increasing the solar yield during the 

transitional periods. This corresponds well with the results presented in this chapter, since no 

stagnation days occur, and since the temperatures in the solar circuit are lower than expected 

during summer. The second argument, however, does not apply to this case study; if the collector 

inclination angle is optimized for heat generation during the transitional periods, the irradiation 

onto collector area should have been higher than what was revealed in the results. Thus, there must 

be another factor that is reducing the incoming radiation, such as shading of surrounding 

topography, or shading from nearby collectors (mutual shading).  

 

Excess auxiliary heat supply  

Not only is the contribution of solar energy much lower than intended; the “energy budget” is also 

not in balance. This means that the system is supplying far more energy, i.e. auxiliary energy, than 

what is being consumed by the user. Even though some of this excess heat may be necessary in 

order to compensate for heat losses from tank or pipes, the amount is still very high, and reduces 

the performance (solar fraction) of the solar thermal system significantly. One potential reason is 

the high switch-on temperature setting of the immersed electrical heating element to ensure 

adequate protection against the growth of Legionella. Additionally, this heater is located at the 

middle of the tank, which means that the auxiliary volume constitutes hal the tank. This will be 

further investigated in the parametric study. 
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Deviation between measured and simulated results 

The measured auxiliary energy consumption was slightly higher than the corresponding simulated 

consumption. One explanation for this is that more solar energy is utilized in the simulation model. 

Another aspect is that in the simulation model, it is assumed an efficiency of the immersed 

electrical heating element of 100%, i.e. no heat loss. Despite the attempt to create a simulation 

model that resembles the investigated system as much as possible, both in terms of design and heat 

demand inputs, it will always deviate some from the real, full-scale system.  

 

Finally, the measured heat demand for heating of DHW and space heating is relatively low 

compared to the initial estimations from the design stage presented in chapter 5. Case description. 

To examine if the lower heat demand is a contributing factor to the unsatisfying performance, this 

aspect will be further investigated in the parametric study in chapter 10.  
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Figure 77: Overview of the main categorization in the parametric study. 

10 Parametric study 

10.1 Introduction 

The behaviour of a solar thermal system depends on a large number of parameters related to its 

main components, such as collector inclination angle, collector area, pipe length, tank volume and 

controller settings. In this chapter, a parametric study will be conducted on the Polysun model, 

which from now on will be referred to as the reference system, in which the effect of various 

design- and operation parameters on system performance will be examined. Once the system is 

installed, the design parameters are in general more difficult and expensive to change, whereas the 

operation parameters are often considered easier to adjust. In addition, selected user-related 

parameters, like DHW demand and space heating demand, will be assessed to see how they 

influence the overall performance. In doing so, a more holistic approach is achieved, which will 

make it easier to make general assumptions of the solar thermal systems of Løvåshagen as a 

whole.  

 

To find the improved value of each parameter, or, if possible, the optimum value, only one 

parameter was changed at a time while the other parameters were kept at their initial settings. The 

input values of the different parameters used in this parametric study are mainly based on 

recommendations and information from the literature review in chapter 3. If necessary, additional 

explanations are provided continuously throughout the chapter. The results will be presented 

according to the categorization illustrated in Figure 77 below. Moreover, each category is 

subdivided into its main components. 

 

 

 

 

 

 

 

 

In this parametric study, two main indicators will be used to study the influence of a parameter:  

1. Solar fraction 

2. Specific delivered energy 
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The chosen boundary limit for the solar fraction is the storage tank, and includes the immersed 

electrical heating element, as described in chapter 6. Methodology. Hence, heat losses in the solar 

circuit has already been taken into account. Since previous studies conducted on the Løvåshagen 

project suggest that the energy consumption of the passive house dwellings are higher than 

expected, the specific delivered energy (kWh/m2) is also included in the parametric study in this 

chapter to see if the energy consumed by the solar thermal heating systems may be a contributing 

factor. This performance indicator has a slightly wider boundary limit than that of the solar 

fraction: in addition to the energy required by the immersed electrical heating element, it also 

considers the parasitic energy needed for the operation of all the circulation pumps in the heating 

system, including the solar pump. 

Since the goal of this study is not only to “optimize” each parameter, but also to attempt to 

understand why the system is not functioning as desired with the current design and operation, the 

results presented in this chapter will occasionally be explained beyond the solar fraction and 

specific delivered energy to the solar heating system. For instance, when the collectors are studied 

in 10.2.1 Collector, it is occasionally also relevant to look at other indicators, such as the collector 

yield and the collector efficiency. Similarly, it is sometimes relevant to make further study of the 

amount of heat loss when considering insulation properties, or include the net utilized amount of 

solar energy when investigating parameters related to the storage tank. Seeing that shading affects 

the total irradiation onto the collectors, and that mutual shading is dependent on parameters like 

collector inclination angle and distance between collector rows, the impact of shading will also be 

studied in combination with each parameter investigated in 10.2.1 Collector. 

 

The results that showed insignificant impact on system performance will not be presented with 

tables or figures. Instead, a comment is provided, and the corresponding figures and tables can be 

found in Appendix C. 

A summary of the parametric study is provided in chapter 10.5, before various improved scenarios 

are suggested in chapter 10.6. Finally, the scenario with the highest performance is simulated and 

analysed at the end of this chapter, in 10.7 and 10.8. 
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10.2 Design parameters 

10.2.1 Collector 

10.2.1.1 Effect of shading 

The results presented in the previous chapter showed that shading is a potential performance-

reducing factor for the solar thermal systems installed in the Løvåshagen housing cooperative. In 

this chapter, the extent of shading will be further investigated. As mentioned in chapter 8. 

Simulation inputs, it is only mutual shading that is relevant for the investigated system, in addition 

to surrounding topography.  

Mutual shading was described in 3.1.4 Shading in the literature review as the shading effect that 

arises when several collectors are installed in rows within the same collector field. Parameters like 

solar altitude angle, collector inclination angle and row-to-row distance influence the impact of 

mutual shading. Figure 78 shows the solar altitude diagram (yellow) for the chosen location for the 

first six months of the year along with the horizon line (red), which includes mutual shading 

caused by other collectors (distinct peak in the middle) and shading from surrounding topography. 

The position of the sun at 12:00 PM on each date is marked with a symbolic sun. 

 

The figure indicates that shading caused by other collector rows may potentially be blocking the 

solar irradiation considerably, if not completely, during the first three to four months of the year. 

In fact, it is not until the end of April that mutual shading appears to have no significant influence. 

Moreover, the impact of mutual shading is slightly more dominating towards southwest. This is 

because of the -10° southwest orientation of the collectors. To study the effect of both mutual 

shading and the surrounding topography on system performance, the model was simulated for four 

different cases: 

Figure 78: Solar altitude diagram (yellow) for the six first months together with the horizon line (red). 

The pronounced peak in the middle of the horizon profile represents the impact of row-to-row shading.  
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1. Reference system 

2. Only mutual shading, i.e. no surrounding topography 

3. Only surrounding topography, i.e. no mutual shading from other collectors 

4. No shading, i.e. no shading from neither surrounding topography nor other collectors  

The aggregated horizons for each case is depicted in Figure 79, whereas the monthly solar 

fractions are shown in Figure 80. 

 

 

 

Figure 79: The four horizons simulated in Polysun to study the effect of shading 

Figure 80: The effect of shading on monthly solar fraction for different shading conditions 

1. 2. 

3. 4. 
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The annual solar fraction and the annual specific delivered energy for each of the four cases are 

summarized in Table 27. 

 

Table 27: Effect of shading on system performance 

 1. 

Reference 

system 

2. 

Only mutual 

shading 

3. 

Only shading from 

surrounding topography 

4. 

No shading 

Annual solar fraction 

[%] 

14,3 14,6 19,3 19,6 

Annual specific 

delivered energy 

[kWh/m2] 

 

35,6 

 

35,5 

 

34,5 

 

34,4 

 

Based on the results presented above, the following can be observed: 

 Shading due to surrounding topography (no mutual shading, case 2) has no particular 

impact on neither monthly nor annual solar fraction. 

 Mutual shading caused by nearby collectors reduces the performance significantly. 

This effect, however, is mainly present from August to April, and is less prominent 

during the high-radiation periods. 

Finally, the annual irradiation onto collector area, the annual collector yield and the annual solar 

energy supplied to the tank for the case of shading (case 1, reference system) and for the case with 

no shading (case 4) are illustrated in Figure 81.  

  

Figure 81: The difference between solar irradiation, collector yield and solar energy 

supplied to the tank in kWh/year, both with and without shading. 
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The results in Figure 81 reveal that by eliminating shading, the annual solar irradiation onto 

collector area (Esol) increases by 35,8% - from 2438 kWh to 3311 kWh. Similarly, the collector 

yield (Qsol) jumps from 888 kWh/year to 1242 kWh/year, which constitutes an increase of 39,9%. 

Despite this increase, the collector yield and the amount of solar energy supplied to the tank are 

still not adequate to achieve the initially planned solar fraction of 47%. With shading or no 

shading; less than half of the thermal output from the collectors is supplied to the tank (Ssol). 

Thus, it is evident that the elimination of shading will not solve the problem in itself, and that 

additional measures must be considered in order to increase the solar yield and reduce the massive 

heat loss.  

   

10.2.1.2 Effect of collector row-to-row distance  

In the previous subchapter, different sun altitude angles were shown in Figure 78. With an altitude 

angle of the sun, γs, of roughly 50° in June in the middle of the day, the minimum row distance for 

the reference system according to equation 3 (chapter 3.1.4 Shading) is approximately 2,4 m. This 

is slightly larger than the current row distance of 2,1 m. On April 1st, however, the maximum 

altitude angle of the sun drops to approximately 35°, and the required row distance increases to 3,3 

m, accordingly. In the calculations, an inclination angle (β) of 51° is assumed, along with an 

azimuth angle (orientation angle) of -10°, and a collector length (L) of 1,9 m. These constitute the 

initial values of the reference system. 

 

To study the influence of row distance between the collectors, distances spanning from 1-10 

meters were simulated in Polysun. The generated horizons and their impact is illustrated for each 

row distance in Figure 82. The corresponding performances are displayed in Figure 83. 

 

Figure 82: The effect of row distances 1-10 m on the horizon line (red). 

The yellow line represents the sun path on June 1st 
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The results show that the closer the collector rows are installed with respect to each other, the 

higher the impact of mutual shading on the horizon line, and the lower the annual solar fraction. 

The annual specific delivered energy increases accordingly. It is, however, mainly the first few 

meters that are the most crucial. If the row distance is increased from one to three meters, the solar 

fraction more than doubles from 7,6 % to 16,3 %. The corresponding reduction in annual specific 

delivered energy is from 37,5 kWh/m2 to 35,0 kWh/m2.    

The row distance that is needed to minimize shading is also dependent on the inclination angle of 

the collectors. Collectors with small inclination angles will have shorter shade patterns, which 

allows for a reduced distance between the rows. Similarly, collectors with large inclination angles 

will cast larger shade patterns, and thereby increase the necessary row distance to avoid shading. 

(AEE Intec, 2004). Figure 84 shows the annual useful thermal output from the collectors (left) and 

the annual solar fraction (right) for inclination angles of 20°, 40° and 60°.  

Figure 83: The effect of row-to-row distance on system performance.  

Figure 84: The effect of row-to-row distance on annual collector yield (left) and solar fraction 

(right) for collector inclination angles of 20°, 40° and 60° 
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To summarize the previous paragraph: the lower the inclination angle, the shorter the required row 

distance. As was displayed in the two graphs, a collector with a steeper inclination angle is more 

sensitive to the chosen row distance than a collector with a low inclination angle. The influence of 

the collector inclination angle will be further discussed in the next subchapter.  

 

10.2.1.3 Effect of orientation angle and inclination angle of the collectors 

According to the Apricus Solar Collector Installation and Operation Manual (Apricus Solar, 

2013), the evacuated tube collectors should be installed within the range 20°-80° in order to ensure 

an optimal operation of the heat pipes. At first, only the angles of the two investigated collectors 

were altered, and their corresponding performance plotted. However, since the inclination angle of 

the collectors that were positioned in the front remained unchanged and mutual shading was still 

present, the results showed no significant difference. The results are attached in Appendix C.1.1. 

One of the goals of this study is to consider the solar thermal systems at Løvåshagen housing 

cooperative as a whole. Hence, the effect of simultaneously altering the orientation angle and the 

inclination angle of nearby collectors was regarded as more useful than only altering and studying 

them individually. 

 

The collectors are installed at an azimuth angle of -10° (10° southwest) and an inclination angle of 

51°. The simulated annual solar fraction and the corresponding specific delivered energy for 

inclination angles 20°-80° (the recommended operating range) and orientation angles -30° to 30° 

(W=-90°, E=+90°, S=0°) are presented in Figure 85.  

 

Figure 85: Effect of orientation (left) and the inclination angle (right) on system performance 
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The results show that an alteration in inclination angle has a greater influence on system 

performance than a corresponding change in the azimuth angle. As discussed in chapter 2.1.3, it is 

normally ideal to have the collectors facing directly south, i.e. 0°. Furthermore, a southwest 

orientation is normally preferred over a southeast orientation. In this case, however, an orientation 

of 10° towards east actually leads to a slightly, though hardly significantly, higher annual solar 

fraction and smaller annual specific delivered energy. This is because the impact of the 

surrounding topography is more significant in the west than in the east, which could be seen in the 

horizon line in Figure 44 (chapter 8.2.2).  

The inclination angle, on the other hand, has a considerably higher impact on the annual 

performance. With the current row distance, the optimum inclination angle is 20°. When tilting all 

the collectors to 20°, the annual solar fraction and the annual specific delivered energy is 18,5% 

and 34,6 kWh/m2 respectively. By comparison, the corresponding values are 10,6% and 36,5 

kWh/m2 if the collectors are tilted at 80°.  

The simulated monthly solar fraction during one year at various inclination angles from 20°-80° 

are shown in Figure 86.  

 

 

The results in this chapter imply that by simply lowering the inclination angles of all the collectors 

that are mounted on the roof of the housing cooperative, the impact of mutual shading can to a 

large extent be reduced. As illustrated in Figure 86, a lower angle results in higher solar fraction 

during summer, as well as greatly increasing the solar share during the transitional periods. The 

performance increase achieved through changing the inclination angle from 51° (reference system) 

to 20° is summarized in Table 28 below. 

  

Figure 86: The impact on annual solar fraction when tilting all the collectors at Løvåshagen 

housing cooperative at different inclination angles within the recommended range of 20°-80° 
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Table 28: Potential improvement of system performance when altering the inclination angle 

Inclination angle 

[°] 

Annual specific delivered energy Solar fraction 

[%] [kWh/m2] 

20 34,6 18,5 

51 (Reference system) 35,6 14,3 

Change in performance 2,8% reduction 29,4% increase 

 

Though the optimum inclination angle for the current system design and shading conditions is 20°, 

it is also necessary to consider other factors mentioned in the literature review regarding the 

recommended inclination angle. A lower angle will indeed result in higher collector yield, both on 

an annual basis and during summer. On the other hand, snow and dirt may form more easily on top 

of the collector tubes. 

 

Comments regarding the optimum inclination angle without shading 

It is important to point out that the results of changing the inclination angle are slightly different 

when the shading factor is eliminated from the simulation model, which is illustrated in Figure 87 

below. The two performance curves show that the impact of altering the inclination angle is much 

smaller compared to when mutual shading was included in the simulations. Moreover, the results 

show that without shading, the optimum inclination angle is obtained within the range of 30-40°, 

i.e. the angle with lowest specific delivered energy and highest solar fraction. This fits well with 

the optimum inclination angle of Bergen, which was stated as 34° in the literature review. 

 

 

 

Figure 87: Effect of different inclination angles on system performance when shading is eliminated 
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10.2.1.4 Effect of solar collector area  

The two Apricus AP-20 collectors used in the reference system have a total collector absorber area 

of 3,2 m2. To investigate how the system performance is affected by the collector area, the Polysun 

model was simulated for various absorber areas ranging from 1 to 10 m2. The results are plotted in 

Figure 88 below. 

 

 

From the results, it is evident that the solar fraction increases significantly with a larger collector 

area. Accordingly, the annual specific delivered energy to the heating system decreases. If the 

collector area is doubled from 3,2 m2 to 6,4 m2, the annual solar fraction and the annual specific 

delivered energy increases and decreases by 67,8% and 8,1 %, respectively.  

 

To achieve an annual solar fraction of 47% (initial design goal), the solar fraction during the high-

radiation months must be higher in order to compensate for limited radiation during winter. 

According to Apricus Solar Collector Installation and Operation Manual (Apricus Solar, 2013), 

the solar collectors should normally be sized so that a solar fraction of 90°-95% is attained during 

summer. As stated in Figure 56 in chapter 9. Results, a simulated solar fraction of approximately 

53% and 50% was obtained with the reference system in June and July, respectively. Moreover, 

similarly to the other parameters related to the collector presented in the preceding subchapters, 

also the influence of solar collector area is strongly affected by shading. 

 

The left graph of Figure 90 below depicts the monthly solar fraction throughout the year for a 

collector area of 2, 4, 6 and 8 m2. For comparison, the corresponding simulated results for the case 

without shading are shown to the right. 

 

Figure 89: The effect of solar collector (absorber) area on annual performance 

Figure 88: Effect of collector area on system performance 
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As can be seen from the two graphs, a larger collector area results in a substantial increase in the 

solar fraction during summer. As suggested earlier in chapter 10.2.1.1 Effect of shading, mutual 

shading appears to have no considerable impact on system performance during summer. This 

theory is confirmed in the results in Figure 90 above, where the solar fraction of June and July for 

both with shading and without shading are practically the same. It is in the remaining ten months 

of the year, however, that the two cases differ. With no shading, the solar utilization can be 

extended into the transitional periods – and even more so with a larger collector area. Moreover, 

the results show that although shading is eliminated, the current absorber area of 3,2 m2 is still not 

adequate to achieve the desired solar fraction of 90-95% during the high-radiation periods.  

 

The annual performance for three selected collector areas are summarized in Table 29. The chosen 

values correspond to the total area of one, two and three collectors of the collector type that is 

currently used in the reference system (Apricus AP-20).  

 

Table 29: Effect of one, two or three collectors on annual performance, both with and without shading 

Number of  

collectors 

(absorber area) 

Annual solar fraction  

[%] 

Annual specific delivered energy 

[kWh/m2] 

Shading No shading Shading No shading 

1 collector (1,6 m2) 8,2 11,1  37,5 37,1 

2 collectors (3,2 m2), 

reference system 

14,3 19,5  35,6 34,5 

3 collectors (4,8 m2) 19,8 27,3  33,9 31,9 

 

 

 

Figure 90: Monthly solar fraction for different collector absorber areas, both with 

shading (left) and without shading (right) 
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10.2.1.5 Effect of collector heat loss 

As previously discussed in chapter 3. Design and operation of a solar thermal system, the 

efficiency of a collector is determined by the efficiency curve of the particular collector type. 

Notably, the thermal heat loss in a collector increases with both reduced irradiated power (W/m2) 

and a higher temperature difference between the solar liquid in the collector manifold, TL, and the 

ambient air, TA. In chapter 9. Results, the efficiency of the investigated collectors was established 

to an annual average of 36,4%. To illustrate how the efficiency is affected by solar irradiation, the 

simulation model was simulated both with and without shading. Figure 91 depicts the average 

monthly collector efficiency during the course of one year for the two cases. As seen in the graph, 

the collector efficiency is significantly improved during the colder months with low to moderate 

radiation when shading is eliminated. 

 

 

 

In order to investigate the influence of heat loss from the collector on system performance, the 

Polysun model was simulated for five different collector types with the characteristics presented in 

Table 30 below, including the reference collector (Apricus AP-20). The collectors were simulated 

with the same absorber area. In addition to other evacuated tube collectors, two flat-plate 

collectors were included for comparison.  

 

 

 

 

Figure 91: Monthly average collector efficiency with and without shading of the collectors 
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Table 30: Characteristics of the different solar collectors simulated in Polysun 

Name Type η0 

[-] 

a1 

[W/m2/K] 

a2 

[W/m2/K2] 

Apricus AP-20 

(reference system) 

Evacuated tubes with heat pipe 0,614 1,30 0,0073 

Thermomax 

HP400 20 

Evacuated tubes with heat pipe  0,750 1,18 0,0100 

VitoSol 200 D20 Evacuated tubes with double-pipe 

connection 

0,809 2,22 0,0021 

VitoSol 200-F 5DI Flat-plate collector 0,785 3,76 0,0224 

FPC-A32 Flat-plate collector 0,750 2,77 0,0230 

 

The efficiency curve of each of the collector types are displayed in Figure 92 for two different 

irradiance levels in W/m2: clear and sunny (1000 W/m2) to the left, and cloudy (300 W/m2) to the 

right. As mentioned in chapter 3.1.2 Collector performance and collector efficiency, the typical 

operating areas for water heating and space heating is temperature differences (TL – TA) ranging 

from approximately 20°C - 100°C. 

 

The results in Figure 92 show that when the irradiated power is high (1000 W/m2), the reference 

collector, Apricus AP-20, has a lower efficiency, and thus higher thermal losses, than the two 

other evacuated tube collectors. At temperature differences TL-TA lower than 50-60°C, even the 

Figure 92: Efficiency curves of the collectors. Left: clear, sunny day (1000 W/m2). Right: 

cloudy day (300 W/m2) 
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flat-plate collectors have higher efficiency. For the entire temperature range, the VitoSol 200 D20 

has the best performance, followed by the Thermomax HP400 20. 

 

On cloudy days with lower irradiation (300 W/m2), the two flat-plate collectors quickly reach 

stagnation. Their efficiency exceeds that of the reference collector, Apricus AP-20, for 

temperature differences lower than approximately 20°C. Moreover, the Apricus AP-20 is still 

performing worse than the two other tube collectors, though the difference in performance is 

smaller at higher temperatures. Unlike for high radiation levels, the efficiency of the Thermomax 

HP400 20 on cloudy days is higher than that of the VitoSol 200 D20 for all temperature 

differences greater than approximately 20°C. The annual solar fraction and the annual specific 

delivered energy for each of the collector types are summarized in Figure 93. 

 

 

 

The results show that the evacuated tube collectors have significantly better annual solar fractions 

than the two flat plate collectors, whereas the annual specific delivered energy differs only 

slightly. This is because of the great insulation properties that these collectors hold. The collector 

that holds the highest annual solar fraction is the second evacuated tube collector with heat pipe, 

the Thermomax HP400 20.  

It should, however, be kept in mind that the collectors were simulated with the same absorber area. 

If the model was instead simulated based on the number of collectors (i.e. two collectors), the 

difference between the collector types would have been much larger. For instance, the Thermomax 

HP400 20 has approximately the same length and width (outside dimensions) as the reference 

collector, Apricus AP-20, but the absorber area is almost twice as large. The positive effect of 

having a larger collector area has already been discussed in the previous subchapter.  

Figure 93: System performance for each collector type 
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10.2.2 Tank 

10.2.2.1 Effect of tank insulation thickness 

As discussed in chapter 9. Results, the annual heat loss from the storage tank is 564 kWh, or 7,5 

kWh per m2 floor area. This amount is equally large as the simulated amount of solar energy that 

is supplied to the tank during the course of one year. The storage tank used in the reference system 

is insulated with 40 mm mineral wool, which has a thermal conductivity of 0,033 – 0,040 

W/(m∙K) (Zijdemans, 2012). To study the impact of tank heat loss on the annual performance, the 

model was simulated with insulation thicknesses ranging from 0 mm to 100 mm. The results are 

shown in Figure 94 below, together with the annual specific tank loss in kWh per m2 floor area. 

 

 

The annual solar fraction increases with a thicker insulation. The annual specific delivered energy 

decreases accordingly, along with a reduced tank heat loss. This effect is particularly evident when 

the insulation is very thin. A typical tank insulation thickness found in the Polysun database was 

80 mm, which constitutes twice the thickness of the insulation used in the reference system. The 

impact on performance, as well as on the specific tank loss, of having no insulation, 40 mm 

insulation (reference system) and 80 mm insulation are summarized in Table 31 below.  

 

Table 31: Effect of tank insulation thickness on annual performance for three cases 

 Tank insulation thickness 

0 mm 40 mm (reference system) 80 mm 

Annual solar fraction [%] 13,1 14,3 14,7 

Annual specific delivered 

energy [kWh/m2] 
44,6 35,6 33,6 

Annual specific tank loss 

[kWh/m2] 
17,5 7,5 5,4 

Figure 94: Effect of tank insulation thickness on annual performance 
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10.2.2.2 Effect of tank volume 

The initial tank size used in the reference system is 290 liter. To study the effect of tank size on 

system performance, the model was simulated for tank volumes spanning from 50 l to 600 l. The 

simulated annual solar fraction and the annual specific delivered energy are presented in Figure 95 

below. In addition, the annual specific heat loss from the storage tank, i.e. the annual heat loss per 

m2 floor area, is included in the tank with a red, dottet line.  

 

 

The results show that the annual specific delivered energy increases significantly with a larger tank 

size. As discussed in chapter 3.2.3 Design and dimensioning of the storage tank, the heat loss from 

the storage tank is proportional with the heat transfer surface area of the tank. Hence, a larger tank 

will lead to more heat loss, resulting in higher auxiliary energy demand. This corresponds well 

with the results presented in Figure 95 above. From 50 l to 600 l, the annual specific heat loss from 

the tank is more than trippled: from 3,3 kWh/m2 to 11,0 kWh/m2. Within the same range, the 

annual specific delivered energy increases from 30,8 kWh/m2 to 40,3 kWh/m2, which equals a 

30,8% increase.  

 

The behaviour of the solar fraction curve differs slightly: the annual solar fraction increases along 

with a smaller tank size until a turning point of approximately 100 l, under which the solar fraction 

decreases. This may be related to the DHW demand of the user of the examined system. In 

general, a tank volume that is 1-2 times the amount of daily hot water consumption is 

recommended to get through a few sunless days without significant support from auxiliary heating 

(DGS, 2010). This coincides well with the results presented here, where the average daily hot 

water consumption is less than 60 l per day, and where a higher solar fraction is obtained when the 

tank size is close to 100 l.  

Figure 95: Effect of tank volume on system performance 
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It should be noted that the DHW demand for the user in this case study is significantly lower than 

the estimations made in the design phase, as was described in chapter 5. Case description. 

Therefore, the current tank size of 290 l may be suitable for one of the other dwellings in 

Løvåshagen, where the DHW demand is higher. The effects of both DHW demand and space 

heating demand will be further investigated in chapter 10.4 Parameters related to the user. 

Another influencing factor in this case study is the low amount of solar energy supplied to the tank 

throughout the year, as discussed in chapter 9. Results. If the system is not functioning properly 

and is failing to generate enough heat, inserting a large tank will not in itself increase the system 

performance. With this in mind, the system may benefit from having a larger tank volume than 

100 l with an improved system design and operation.  

 

10.2.2.3 Effect of tank height 

The benefits of having a slim tank were discussed in chapter 3.2.2 Thermal stratification and 

energy contents of a store. It is not possible to change the tank diameter in Polysun. However, 

with a constant tank volume, a change in tank height can be used to study how the narrowness of 

the tank affects the system performance. The model was therefore simulated for different tank 

heights ranging from 1,4 m to 2,2 m. The results are plotted in Figure 96.     

 

As mentioned in chapter 8. Simulation inputs, the initial tank height used in the reference system is 

1,6 m. The tank layer temperatures presented in Figure 70 and Figure 71 in chapter 9.4 Detailed 

simulations revealed that the thermal stratification is not always maintained during the high-

radiation periods. This could be one of the reasons why the annual solar fraction is somewhat 

enhanced with a slimmer tank in Figure 96. The annual specific delivered energy, however, 

increases accordingly.  

Figure 96: Effect of tank height on system performance 
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10.2.2.4 Effect of tank coil- and heating element positions 

In Polysun, the positions of all the tank elements are scaled in percentage from the tank bottom. 

For the two coils (the space heating coil and the solar coil), the position of the upper connection 

must be stated along with the respective coil heights, as illustrated in Figure 97.  

 

 

 

To study the impact of the tank component locations, the three positions were altered one at a 

time; the solar coil from 25% to 40%, the electrical heating element from 40% to 65%, and the 

space heating coil from 55% to 90%. The two coil heights were kept fixed during the simulations. 

The annual solar fraction and annual specific delivered energy for the three cases are illustrated in 

Figure 98 and Figure 99, respectively. The initial settings are included in the graph with dotted 

lines. 

  

Figure 97: The input positions of coils and electrical heating element in the tank in Polysun. 

Figure 98: Effect of tank coils- and heating element position on annual solar fraction 

86% 

52% 

33% 

                   Solar coil            Electrical heating element          Space heating coil 

320 mm 

100 mm 
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The upper solar coil connection is located at 33% from the tank bottom in the reference system. By 

lowering the coil down to 25%, the annual solar fraction increases from 14,3% to 20,9%, and the 

annual specific delivered energy decreases from 35,6 kWh/m2 to 32,5 kWh/m2. Moreover, further 

investigations of the solar pump operation revealed that this positive effect on system performance 

is strongly related to the temperature at the tank bottom. By lowering the solar coil, the bottom 

tank temperature rises, which has a positive influence on the pump operation: it no longer operates 

constantly during night, and the annual pump consumption decreases from 182 kWh to 17,2 kWh. 

This affects the required total specific delivered energy to the solar heating system, as seen in 

Figure 99. As a result, less heat is removed from the tank, which reduces the need for auxiliary 

heating. The effectiveness of the solar pump controller will be further investigated in chapter 12.3 

Operation parameters. 

 

In this case study, the auxiliary heater is located approximately at the middle of the tank (52% 

from tank bottom), which means that the auxiliary volume, i.e. the volume above the heater, 

constitutes almost half the tank. As seen in the detailed simulations in chapter 9.4, the 

temperatures above this level rarely falls below 75°C. Moving the position of the electrical heater 

further up is equivalent to reducing the effective auxiliary volume. As a result, the annual specific 

delivered energy curve depicted in Figure 99 decreases. Furthermore, this significantly increases 

the utilization of solar energy and has a positive impact on the annual solar fraction in Figure 98. It 

should, however, be noted that the position of the heater cannot be moved too far up, as this may 

lead to inadequate heat coverage during the winter. 

 

A change in the space heating coil position had only a minor impact on both annual solar fraction 

and on annual specific delivered energy. These were, however, slightly improved with a lower 

Figure 99: Effect of tank coils- and heating element position on annual specific delivered energy 
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tank position. This is presumably because more solar energy is utilized for space heating if the coil 

is located closer to the solar coil. There is, however, a limitation to how low this coil could be 

positioned within the tank, since it must be placed above the auxiliary heater (52%) in order to 

satisfy the heat demand when there is little or no solar radiation.  

 

10.2.2.5 Effect of solar coil height 

The solar coil height was simulated from 300 mm to 500 mm (reference system: 320 mm). The 

results are shown in Figure 100.  

 

 

 

The solar fraction increases considerably with a larger solar coil height. The position of the upper 

coil connection is fixed at 33%, which means that a larger coil height leads to improved heating of 

the bottom tank water. For the same reasons that were explained in the previous subchapter 

regarding the solar coil position and the pump operation, this has a strong influence on both annual 

solar fraction and annual specific delivered energy. This positive effect, however, is only effective 

until a height of approximately 400 mm. A larger coil height have no further impact; at this point, 

the temperature at the bottom of the tank is just high enough for the current controller settings to 

function properly.  

 

 

 

 

Figure 100: Effect of solar coil height on system performance 
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10.2.2.6 Effect of solar heat exchanger properties 

The solar heat exchanger, or the solar coil, is made of stainless steel with a surface area of 0,8 m2. 

As explained in chapter 5. Case description, the solar coil was one of the main motivations for 

implementing the modification in January 2015. In addition to being small of size, it was argued 

that the material it is made of (stainless steel) has much worse heat transfer properties than for 

instance copper, which is a common material used for this kind of application. In this subchapter, 

an attempt will be made to reveal whether or not the solar heat exchanger reduces the performance 

of the system. 

 

Effect of solar coil surface area 

According to DGS (2010), this type of heat exchanger can be sized according to the following 

rule: 0,2 m2 exchanger surface area per m2 collector surface area. With a collector area of 3,2 m2 

(absorber area), this corresponds to a required solar heat exchanger area of 0,64 m2. It is important, 

however, to emphasize that this rule applies for the sizing of coils in DHW systems. In 

combination systems, like in this case study, additional heat exchanger area should be added. With 

this in mind, the surface area of 0,8 m2 used in the reference system seems relatively suitable for 

the current collector size. To investigate the influence of the solar heat exchanger area, the model 

was simulated for different coil areas ranging from 0,2 m2 to 2 m2. The results are presented in 

Figure 101.  

 

 

As seen in the graph, a larger solar heat exchanger area leads to slightly higher annual solar 

fraction, but appears to have no noticeable impact on the annual specific delivered energy.  

 

Figure 101: Effect of solar heat exchanger area on system performance 
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Effect of solar coil material 

The simulation model was also simulated for different heat exchanger materials with the thermal 

properties displayed in Table 32. As shown in the table, the current material of stainless steel has 

significantly lower thermal conductivity than copper and aluminium. 

 

Table 32: Thermal conductivity of selected materials 

Material Thermal conductivity [W/(m∙K)] 

Copper 394 

Aluminium 239 

Stainless steel (reference system) 15 

 

The resulting performance diagram is attached in Appendix C.1.2. Despite the significant 

difference between the thermal conductivity, the simulations revealed no noticeable impact when 

changing the material.  

 

The results presented in this chapter regarding the solar heat exchanger (solar coil) are not 

significant enough to confirm the suspicion that the solar heat exchanger is an important 

contributing factor for why the system is not performing as desired. Notably, there are other 

parameters investigated in this study that appears to have much more significant impact. It should, 

however, be kept in mind that the solar coil’s small effect on system performance could be related 

to the previously mentioned pump operation, in which heat is removed from the tank during night: 

If a larger surface area results in more heat being supplied to the tank, then more heat can 

potentially be withdrawn from the tank. 

 

10.2.3 Solar circuit pipelines 

The results presented in chapter 9.4 Detailed results revealed that the amount of heat that is lost in 

the solar circuit pipeline during the course of one year is larger than the annual amount of solar 

energy supplied to the tank. Moreover, heat loss to indoor room is just as dominant as heat loss to 

outdoor surroundings. As seen in equation 6 in chapter 3.3.1 Pipelines, the total heat loss from 

pipes is a function of pipe diameter, insulation thickness, thermal conductivity of the insulation, 

pipe length and temperature difference between the hot liquid and the colder surrounding air. In 

this subchapter, some of these parameters will be further investigated.  
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10.2.3.1 Effect of pipe insulation thickness 

The solar circuit pipes in the reference system consist of pre-insulated HT Armaflex pipes, which 

have a thermal conductivity of 0,038 W/(m∙K) at 0°C. The insulation thickness is 14 mm. To 

investigate the influence of pipe insulation thickness on system performance, the model was 

simulated with thicknesses ranging from 10 to 40 mm. The results are displayed in Figure 102. 

 

The results show that a thicker insulation has a positive impact on both performance indicators. 

This coincides well with the pipe heat loss equation, which shows that an improved insulation 

thickness results in less heat loss from the solar circuit pipes. Moreover, thicker insulation 

increases the solar energy contribution to the tank, and thereby reduces the need for auxiliary 

heating. Figure 103 below depicts the annual heat loss from the solar circuit together with the 

annual solar energy supplied to the tank. The influence is especially present when the insulation is 

thin. 

 

Figure 102: The effect of pipe insulation thickness on system performance 

Figure 103: The impact of pipe insulation thickness on annual heat loss in the 

solar circuit and on annual solar energy supplied to the storage tank. 
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According to the European standard EN 12977-2: 2012 Thermal solar systems and components – 

Custom built systems, pipes with external diameters up to 22±1 mm should have an insulation 

thickness of 22±2 mm. This value assumes a thermal conductivity of the insulation of 0,04 ± 0,01 

W/(m∙K) at 10°C. This fact, in combination with the results presented above, suggests that the 

current pipe insulation thickness of only 14 mm that is found in the reference system is inadequate.   

 

10.2.3.2 Effect of pipe diameter 

The solar circuit pipes in the reference system have an inner and outer diameter of 16 mm and 18 

mm respectively. To study the effect of pipe diameter on system performance, different external 

diameters spanning from 12 mm to 22 mm were simulated. The wall thickness remained 

unchanged at 1 mm during the simulations. The results are shown in Figure 104 below. 

 

 

As illustrated in the diagram, an increase in pipe diameter results in a slightly lower annual solar 

fraction. This is because a larger pipe diameter increases the total pipe heat loss due to a larger 

surface area. A smaller diameter would normally result in slightly higher energy consumption of 

the solar pump, which would increase the delivered energy. This effect is, however, minimized 

since less auxiliary energy is required when the total heat loss is smaller. As a result, the total 

delivered energy remains relatively unaffected by a change in diameter.  

 

Figure 104: Effect of external pipe diameter on annual performance. Wall thickness is 1 mm 
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10.2.3.3 Effect of distance between collector and tank 

The investigated system belongs to a dwelling located on the ground floor level in a 3-storey 

building, which results in relatively long pipelines between the two collectors on the roof and the 

storage tank located in the bathroom. In this subchapter, the consequence of long pipelines will be 

studied more closely. To get an idea of how far the useful thermal output of the collectors must 

travel before finally entering its final destination in the storage tank, a simplified sketch of the 

building cross-section (left), as well as the collector layout on the roof seen from above (right), is 

provided in Figure 105. 

 

 

 

 

 

 

 

 

 

 

 

 

The current solar circuit supply pipe length (red) and return pipe length (blue) for the investigated 

system were approximated to 18,5 m and 15 m, respectively, based on the architect drawings and 

on measurements conducted on site.  

 

The model was simulated for various pipeline lengths, distinguishing between pipe lengths 

exposed to the ambient and pipe lengths exposed to indoor room. The simulations were performed 

systematically: first, the indoor pipe length was altered (both supply and return line) while the 

outdoor pipes remained unchanged; next, the opposite was conducted. All other parameters, such 

as pipe diameter and insulation properties, were kept at their initial settings. In this case study, the 

total indoor and total outdoor pipe length is approximately 17,5 m and 16 m, respectively. The 

simulated effect of indoor and outdoor pipes on annual solar fraction and on annual specific 

delivered energy, are depicted to the left and to the right, respectively, in Figure 106. The third 

graph depicts the corresponding heat loss to indoor and outdoor surroundings. 

Figure 105: Left: Cross-section of the building. Right: overview of how the two collectors are 

installed with respect to each other on the roof 
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As seen in Figure 106, the annual solar fraction decreases significantly with an increase in both 

indoor and outdoor pipe length, whereas the annual specific delivered energy increases only 

slightly. When increasing the indoor pipe length from 2 to 18 meters, the annual heat loss is more 

than doubled from approximately 150 kWh to 350 kWh, with a corresponding reduction in the 

annual solar fraction by 14,4 %. On the other hand, the same increase in outdoor pipe length 

causes a multiplication in annual heat loss by a factor of 7,5, from approximately 50 kWh to 375 

kWh, and reduces the solar fraction by 19,5%. Thus, it is evident that heat loss to outdoor 

surroundings has a greater impact on the solar fraction than heat loss to indoor room. This makes 

sense, as the pipes located outside of the building are exposed to a higher temperature difference 

between the solar liquid and the ambient, than the pipes located inside the building. Therefore, it is 

particularly important to keep outdoor pipe lengths at a minimum, and to ensure that they are 

adequately insulated.  

 

Figure 106: Top: Effect of indoor (left) and outdoor (right) pipe length on system 

performance. Bottom: Heat loss to indoor or outdoor room as a function of indoor or 

outdoor pipe lengths 
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To examine if all the solar thermal systems in Løvåshagen are subject to great heat loss, the model 

was simulated for three cases with different indoor pipe lengths presented in Table 33. 

 

Table 33: Simulated cases 

Tank location Total indoor pipe length 

(both supply and return pipe) 

  

Ground floor (reference system) 17,5 m 

1st floor (top floor) 12 m 

2nd floor (top floor) 6,5 m 

 

In addition to the long indoor pipelines, an immediate observation that can be made from the 

sketch of the collector layout in Figure 105 is that the solar liquid does not only have to travel 

through several floors before reaching the tank; the distance between the second collector and the 

opening to the building seems unnecessarily long. As a result, approximately 16 m of the pipeline 

is exposed to ambient air. Even with well-insulated pipes, this layout will cause unfavourable heat 

loss. Thus, an improved layout is suggested in Figure 107 below, in which the collectors are 

instead placed next to each other. As a result, the pipelines on the roof can be much shorter – and 

the accompanying heat loss will be reduced. 

  

 

The total heat loss for each of the three cases that were presented in Table 33, is displayed in Table 

34 below, for both the existing and the suggested improved layout. 

 

Figure 107: Current collector layout (left) and suggested improved collector layout (right) 
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Table 34: Annual heat loss for each case, both with and without improved collector layout 

 Total heat loss in solar circuit [kWh/year] 

 Current roof layout Improved roof layout 

Ground floor 689,0 599,8 

1st floor 643,5 544,5 

2nd floor 591,8 480,0 

 

The corresponding annual solar fraction and annual specific delivered energy are shown in Figure 

108. The benefits of shorter external pipes are represented in the graph, with corresponding dotted 

lines, and represent the suggested improved collector layout. 

 

 

As can be seen from the diagram, the annual solar fraction increases as the tank location draws 

nearer to the two collectors. The solar contribution is further enhanced by altering how the solar 

collectors are placed on the roof, both according to each other and to the building opening. The 

annual specific delivered energy decreases only slightly with a higher floor level and an improved 

collector layout. Moreover, the results suggest that an identical solar thermal system located on the 

2nd floor will have an annual solar fraction that is 11,2% higher than that of the reference system, 

which is located on ground floor level. When also improving the collector roof layout, the total 

increase is 23,8%. 

 

 

Figure 108: Effect of solar circuit pipe length on system performance 
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10.3 Operation parameters 

This chapter targets the parameters that are relevant for the operation of the solar system.  

 

10.3.1 Solar pump controller 

The solar pump controller regulates the on/off operation of the pump within the solar circuit. As 

previously mentioned, this is done by measuring the temperature difference between the hot 

collector outlet and the colder tank temperature.  

On several occasions in the previous chapters, the control of the solar pump has already been 

highlighted as a potential performance reducing factor. Since Polysun does not allow for an 

altering of the position the collector outlet temperature sensor, only the effect of unfavourable 

placing of the tank temperature sensor and the impact of ΔT settings will be further investigated in 

this subchapter.  

 

10.3.1.1 Effect of tank temperature sensor location  

In chapter 3. Design and operation of a solar thermal system, it was mentioned that a correct 

placing and functioning of the tank temperature sensor strongly affects the effectiveness of the 

controller. To further study the influence of changing the position of the tank sensor, simulations 

were made for the five different locations shown in Figure 109. Layer 1 is the bottom layer, which 

represents the initial setting used in the reference system. As previously stated, the solar energy 

from the collectors enters the tank through the solar coil at a tank height of 33% (upper section of 

layer 4), whereas the cooled heat transfer fluid exits the tank through the lower solar coil 

connection at approximately a tank height of 13% (layer 2). The electrical heating element is 

located at 52% (layer 7). 

 

  

 

 

 

 

 

 

Temperature sensor location Position from bottom of tank 

(%) 

Layer 1 

(Reference system) 

0 – 8,3 

Layer 2 8,3 – 16,7 

Layer 3 16,7 – 25,0 

Layer 4 25,0 – 33,3 

Layer 5 33,3 – 41,7 

Figure 109: The various tank sensor locations that were simulated in Polysun 
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Figure 110 illustrates the simulated monthly solar fraction during one year for each of the five 

cases.  

 

As can be seen from the graph, layer 2 results in the highest solar fraction throughout the year, 

closely followed by layer 3, 4 and 5. This is because the lower solar coil connection is located 

within this layer. Layer 1 (reference system), on the other hand, causes a significantly smaller solar 

fraction during the summer months ,compared to the other cases. The resulting annual solar 

fraction and the annual specific delivered energy are summarized in Table 35. 

 

Table 35: Annual performance for five different tank sensor locations 

 Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 

Annual solar fraction [%] 14,3 20,0 19,7 19,3 18,8 

Annual specific delivered 

energy [kWh/m2] 
35,6 32,0 32,0 32,0 32,2 

 

As discussed in chapter 9.4.4 Controller, the reduced performance of placing the temperature 

sensor within layer 1 is a result of incorrect temperature readings. When the temperature sensor is 

located too low in the tank, its readings are strongly influenced by the cold network water 

temperature, which enters the tank through the tank bottom. This water is consistently much colder 

than the temperature of the water that surrounds the solar coil. As a result, the ΔT between the tank 

temperature sensor and the temperature sensor at the collector outlet is very often higher than the 

switch-off ΔT of 4 K during periods with high radiation. Consequently, the pump is not always 

switched off during night. This effect is illustrated in Figure 111 below, which depicts a typical 

week in June for both a tank sensor location at layer 1 (top) and at layer 2 (bottom). The graphs 

show the collector outflow temperature of the solar liquid (red line), the temperature of the tank at 

Figure 110: Effect of different locations of the tank sensor on monthly solar fraction. 
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the chosen sensor location (blue line) and the pump operation (dotted, green line). A pump value 

of 1 equals ON, and 0 equals OFF. 

 

 

With the initial settings of the reference system, the solar pump consumes 182,9 kWh each year, 

which equals a specific consumption of 2,4 kWh per square meter floor area. This constitutes 44% 

of the annual solar energy that it supplies the tank, which is very high. By simply moving the 

sensor up to layer 2, the pump consumption drops to 11,5 kWh/year, that is, 0,2 kWh per square 

meter floor area, and the annual solar fraction increases from 14,3% to 20,0%.  

The moving of the sensor does not only significantly reduce the pump consumption; also, the total 

heat loss in the solar circuit declines by almost 50%, as shown in Table 36 below. 

Figure 111: Solar pump control (1=ON, 0=OFF) during one week in June for the 

two different sensor locations 
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Table 36: Heat loss in the solar circuit with different tank sensor locations 

 

Tank sensor location 

Heat loss to indoor 

room 

[kWh/year] 

Heat loss to outdoor 

surroundings 

[kWh/year] 

Total heat loss 

[kWh/year] 

Layer 1 (ref) 342,8 346,2 689 

Layer 2 193,6 155,4 349 

Reduction in heat loss by 

moving the tank sensor 

from layer 1 to layer 2 

-43,5% -55,1% -49,3% 

 

To illustrate why the heat loss in the solar coil is significantly reduced when changing the tank 

sensor location form layer 1 to layer 2, the hourly energy flow in the solar coil is depicted in 

Figure 112. The graph shows the energy that is supplied to (positive values) and removed from 

(negative values) the tank during the course of one year in W. As can be seen from the graph, an 

evident reduction in heat removal from the tank is achieved by relocating the tank temperature 

sensor. 

 

 

 

10.3.1.2 Effect of ΔT settings of the solar pump controller 

The Apricus’ installation and operation manual (Apricus Solar, 2013) states that a switch-on ΔT of 

8 K and a switch-off ΔT of 2 K are usually appropriate, but that the settings may need to be altered 

according to the particular system design and location. The model was simulated with selected 

switch-on and switch-off ΔT settings, and the two annual performance indicators are shown in 

Figure 113 below. 

Figure 112: Energy flow in the solar coil for two different tank locations. Positive values represent 

energy that is supplied to the tank, whereas negative values represent energy withdrawal 
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As displayed in the graph, the current switch-on/switch-off ΔT of 6K/4K is not the optimum 

control setting for the investigated system. With the current design and operation, the system 

would benefit from having both a higher switch-on ΔT and a larger switch-off ΔT. It is, however, 

important to emphasize that the optimum temperature setting is highly dependent on the chosen 

tank sensor location, which was elaborated in the previous subchapter. If the on/off setting is 

increased to 8K/6K, the annual specific delivered energy decreases from 35,6 kWh/m2 to 35,1 

kWh/m2. This is a slightly bigger reduction than the reduction that was obtained when moving the 

tank sensor from layer 1 to layer 2 in the previous chapter. The annual solar fraction, on the other 

hand, only increases from 14,3% to 14,8%. As recalled in the previous subchapter, a relocation of 

the tank temperature sensor from layer 1 to layer 2 resulted in an annual solar fraction of 20,0%. 

Hence, these two aspects regarding control of the solar pump are strongly correlated, and should 

be adjusted with respect to each other, as well as to the particular system design. 

 

10.3.2 Control of the auxiliary heater 

The switch-on temperature for the immersed electrical heating element (layer 7) is set to 75°C in 

the reference system, which is much higher than the draw-off temperature setting of 50°C. 

Zijdemans (2012) lists the pros and cons of having a high water temperature in the tank. The 

benefits include a reduction in necessary tank size and increased safety against formation of the 

Legionella bacteria, which was discussed in the literature review in chapter 3. On the downside, a 

higher temperatures results in a greater tank heat loss and reduces the utilization of low-

temperature energy sources for preheating of hot water, due to the higher need for after-heating. 

To study the impact of different switch-on settings for the immersed electrical heater, the model 

was simulated for selected switch-on temperatures ranging from 50°C to 75°C. The switch-off 

Figure 113: The effect of ΔT switch-on and ΔT switch-off settings on annual system performance 



  

145 

 

Figure 115: The impact of various switch-on temperatures on the amount of solar- and auxiliary 

energy supplied to the tank 

temperature was constantly set to be 2°C higher than the switch-on temperature. The simulated 

annual solar fraction and the corresponding specific delivered energy are presented in Figure 114. 

  

 

As depicted in the graph, a higher switch-on temperature results in a higher annual specific 

delivered energy, as well as a considerably lower annual solar fraction. This is because of the 

significant increase in necessary auxiliary energy that is required to compensate for the increased 

energy demand for after-heating. Furthermore, a higher temperature setting reduces the utilization 

of solar energy. The distribution of solar energy and auxiliary energy supplied to the tank for the 

different switch-on temperatures are illustrated in Figure 115 below.  

 

 

 

Figure 114: The effect on system performance when changing the switch-on temperature of the 

auxiliary heater. The switch-off temperature is 2°C higher than the switch-on temperature.  
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Comments regarding the impact of Legionella protection 

As discussed in the literature review in chapter 3.2.4 Temperature requirements in storage tanks, 

the growth of Legionella bacteria stagnates at temperatures below 20°C and above 50°C. Above 

55-60°C, the bacteria will eventually die. This effect can significantly be enhanced by raising the 

temperatures to 65-70°C (Folkehelseinstituttet, 2009).  

The consequence of setting the switch-on temperature of the auxiliary controller to 75°C in the 

reference system instead of the 50°C, which is the same as the draw-off temperature setting, is 

illustrated in Table 37. 

 

Table 37: Impact of measures for Legionella protection on annual system performance 

Auxiliary controller SWITCH-ON 

temperature setting [°C] 

Annual specific delivered 

energy [kWh/m2] 

Annual solar 

fraction [%] 

50°C 27,4 24,1 

75°C  

(Reference system) 

35,6 14,3 

Impact on performance when increasing the 

switch-on temperature from 50°C to 75°C 

+29,9% -40,7% 

 

 

In this case study, the Legionella protection increases the auxiliary energy consumption by almost 

30%. Correspondingly, the annual solar fraction is reduced by almost 41%. As a general rule, it is 

recommended that in dwellings and other private households for which the user controls the 

temperature conditions in the storage tank, the temperature should hold at least 70°C (assuming 

that a mixing valve is installed). An alternative measure is to set the tank temperature to hold a 

minimum of 60°C, and then manually (or otherwise) raise the temperature above 70°C on a regular 

basis. In this way, an adequate protection is maintained, and unnecessary heating is avoided 

(Folkehelseinstituttet, 2009). However, in order for this strategy to work, well-established routines, 

as well as a certain level of knowledge on Legionella among the users, would be required.  

 

10.3.3 Effect of volumetric flow rate in the solar circuit 

As presented in equation 7 in chapter 3.3.3, the flow rate through the collectors affect the amount 

of heat that is absorbed by the solar liquid in the collector manifold. The volumetric flow rate in 

the solar circuit is controlled by means of characteristic pressure curves of the solar pump. As seen 

in the simulated results in chapter 9. Results, the volumetric flow rate varies between 

approximately 690 l/h and 1040 l/h, depending on season and time of day. In order to investigate 

the impact on system performance, the model was simulated for the three speed stages of the 

particular pump, as seen in Figure 116. As previously mentioned, the three stages and their 
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corresponding pressure curves are attached in Appendix B.3.1. Stage 1 has the lowest volumetric 

flow rates, whereas stage 3 has the highest.  

  

The results presented in the graph show that the annual solar fraction increases slightly with a 

higher volumetric flow rate. The annual specific delivered energy increases accordingly, due to the 

increased pump consumption.  

It should also be kept in mind that very high flow rates through the collectors could result in 

insufficient temperature generation in the solar liquid, which may reduce the amount of solar 

energy transferred to the storage tank. Furthermore, if not enough heat is removed from the 

collectors, the temperature difference between the solar liquid in the collector and the ambient air 

increases, thereby reducing the efficiency of the collectors.  

Since the amount of solar energy varies according to the season and the time of day, the current 

pump operation based on pressure curves provides a good solution for solar thermal heating 

systems. During winter and in the morning/evening hours, the radiation from the sun is weaker and 

the pump should operate slower in order to generate usable flow temperatures. As the sun gets 

stronger during summer and in the mid-day hours, the flow rate should be faster. This can to a 

certain extent be recognized in the monthly solar fraction curve displayed in Figure 117 below, 

which depicts the monthly solar fraction in May, June and July, for each of the three pump speed 

stages. As can be seen from the graphs, a higher speed slightly increases the solar fraction during 

summer.  

 

 

 

Figure 116: Effect of volumetric flow rate (l/h) on annual system performance 
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10.3.4 Effect of propylene glycol concentration of the solar liquid 

The heat transfer fluid in the solar circuit is a mixture of water and propylene glycol, called 

Tyfocor L. The manufacturer recommends a propylene glycol concentration of 40-75% (Tyforop, 

2009). The initial concentration used in the reference system was unknown. Therefore, the system 

was simulated using a vol-% of 40%. In this parametric study, the influence on performance was 

investigated for glycol proportions ranging from 25-75%. The corresponding annual solar fraction 

and annual specific delivered energy can be found in Appendix C.2.3. 

The results revealed that a change in the concentration of propylene glycol had minor impact on 

the two performance indicators, though an increase in vol-% appears to result in a slight increase 

in both the annual solar fraction and the annual specific delivered energy. Nevertheless, this effect 

is not as significant as that of the other parameters investigated in this study.  

The minimum average outdoor temperature registered in the simulation model was -8,1°C 

(Meteonorm). This is relatively high compared to many other locations in Norway. This is due to 

the mild, coastal climate that is found in Bergen. As stated in Appendix B.3.3, the freeze 

protection of a propylene glycol concentration of 40% is -20°C. This indicates that the freeze 

protection within the solar thermal system is more than adequate.  

Based on the literature review conducted in this study, the glycol concentration was expected to 

have a larger impact on system performance than what appears to actually be the case. As 

discussed in chapter 3.3.2 Solar liquid, an increased concentration is not very beneficial in terms 

of for instance thermal capacity and conductivity. It should, however, be kept in mind that other 

factors may affect the results, for instance the efficiency of the frequently discussed pump 

operation.    

Figure 117: Monthly solar fraction in May, June and July for pump speed stage 1, 2 and 3 
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10.4 Parameters related to the user 

In this subchapter, the impact of selected user-related parameters will be studied. Doing so may 

make it easier to reveal important design features that can contribute to the evaluation of other 

solar systems, located in the other passive house dwellings of the Løvåshagen housing 

cooperative. These solar systems are similar to that of the reference system, but may be subject to 

other heat demands and consumption habits. 

 

12.4.1 Effect of DHW demand 

According to DGS (2010), the following categorization of daily hot water consumption may be 

applied: 

Low consumption:         20-30 l/day per person 

Normal consumption:    30-50 l/day per person 

High consumption:         50-70 l/day per person 

 

In a dwelling of 75 m2, it is reasonable to assume that the number of inhabitants may vary from 

only one person up to a family of four, which causes significant variations in the total hot water 

consumption. Based on the three consumption groups above, the approximated DHW consumption 

(l/day) of a dwelling is roughly estimated according to the number of inhabitants in Table 38. 

 

Table 38: Daily DHW demand according to different consumption levels and number of persons in 

the household 

 Low consumption 

[l/day] 

Normal consumption 

[l/day] 

High consumption 

[l/day] 

1 person 

2 persons 

3 persons 

4 persons 

20-30 

40-60 

60-90 

80-120 

30-50 

60-100 

90-150 

120-200 

50-70 

100-140 

150-210 

200-280 

 

In 2014, the average daily DHW consumption for the investigated dwelling was only 57,7 l/day. 

To investigate how the annual domestic hot water consumption affects the performance of a solar 

thermal system, the model was simulated for average daily consumptions ranging from as little as 

30 l/day (1 person, low consumption) to 200 l/day (3 persons, high consumption). The results are 

presented in Figure 118.  
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The results in Figure 118 suggest that an identical solar thermal heating system in one of the other 

dwellings in Løvåshagen may achieve a higher solar fraction if the DHW consumption is higher 

than that of the reference system. However, this is not in itself a guarantee of higher performance; 

the solar fraction increases along with a higher consumption only up to an average daily 

consumption of approximately 120 l/day, where it reaches a maximum and starts decreasing. This 

is because the auxiliary energy consumption becomes more dominating, as seen in Figure 119.  

 

Though to suggest that the user consumes the same amount of DHW every day throughout the 

year is not realistic, the results still provide an indication of how a change in DHW consumption 

affects the system performance. An average daily consumption of 120 l/day corresponds to an 

annual consumption of 43,8 m3/year, and falls within the range of a household of three people with 

Figure 118: The effect of average daily DHW consumption on annual performance 

Figure 119: The distribution of solar- and auxiliary energy supplied to the tank for different 

average daily DHW consumptions 
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normal consumption habits (based on the values in Table 38). If assuming a temperature difference 

between hot and cold water of 42,1°C as explained in 7. Measurement descriptions, this equals an 

annual heat demand of approximately 2150 kWh/year, or a specific heat demand of 28,6 kWh per 

floor area. This is very similar to the annual DHW heat demand that was estimated in the design 

phase of the Løvåshagen project (explained in chapter 5. Case description), which was 30,0 

kWh/m2. 

 

10.4.2 Effect of daily DHW consumption profiles 

As explained in chapter 8. Simulation inputs, the annual DHW consumption curve was measured 

for every hour and imported into Polysun. To study the impact of user habits on the system’s 

performance, the model was simulated for different daily DHW draw-off profiles. Polysun 

provides several different draw-off profiles to choose from, some of which are included in Figure 

120. Among these, the multi-family dwelling profile resembles the daily consumption of the user 

in the reference system the most.  

The DHW load is scaled according to a chosen daily consumption, which is set to 57,7 l/day 

(reference system). Moreover, the amount of hot water consumed every month was specified to 

match the measured values. In doing so, only the hourly loads differed from that of the reference 

system, thus the effect of various daily profiles could be studied. The results are shown in Figure 

121.  

 

 

 

 

Figure 120: Selected draw-off profiles available in Polysun 
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The graph shows that evening peaks resulted in the highest annual solar fraction and the lowest 

specific delivered energy. This makes sense, as the storage tank has been charged with solar 

energy during the daytime, which is then ready to be used in the evening. Morning peaks and 

constant consumption resulted in the lowest performance. 

 

10.4.3 Effect of space heating demand 

The space heating demand of the user of the reference system is much lower than the estimated 

demand from the project design phase. To see if an increase in the annual heating demand may 

affect the overall collector yield and system performance, the model was simulated for values from 

600-2200 kWh/year, which equals a specific heat demand of 8–29,3 kWh/(m2∙year).  

 

Figure 122: Effect of annual heat demand for space heating on annual system performance 

Figure 121: Effect of different draw-off profiles on annual system performance 
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Unlike in the case of higher DHW consumption, an increase in space heating demand does not 

lead to a higher annual solar fraction. With a greater heat demand and no change in the amount of 

solar energy supplied to the tank, the auxiliary energy demand increases correspondingly – which 

results in a lower solar fraction. The distribution of annual auxiliary- and solar energy supplied to 

the tank is illustrated in Figure 123 below.   

 

 

It should be noted that the poor effect on annual performance could be related to the location of the 

space heating coil in the tank. In the reference system, the space heating circuit gathers heat at a 

height of 80-86% from the tank bottom (layer 11). Furthermore, the space heating coil is located 

above the immersed electrical heater. Thus, when heat is removed from the tank to be used for 

space heating, the auxiliary heater is activated as soon as the temperature in layer 7 falls below 

75°C. Unless the solar collectors manages to supply the tank with temperatures above 75°C, all 

space heating is covered by auxiliary energy. 

 

10.5 Summary of parametric study 

In this subchapter, the design- and operation parameters from the parametric study are 

summarized.  

Figure 124 shows the reduction in specific delivered energy with respect to the reference model 

and its initial settings, ΔE, when choosing an optimized or improved design- or operation 

parameter. Similarly, the corresponding increase in annual solar fraction, ΔSF, is also depicted. 

Both values are given in %. The purpose of Figure 124 is to identify which of the parameters that 

have the greatest influence on system performance. Moreover, the results will be used as basis for 

suggesting improved solutions in the next subchapter. 

Figure 123: Distribution of auxiliary- and solar energy supplied to the tank for 

various annual space heating demands 
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In the parametric study, the optimized value could not always be obtained for every parameter. In 

such instances, the chosen parameter value in Figure 124 was based on discussions made in each 

subchapter throughout the parametric study. For instance, a continuing increase in solar collector 

area results in higher solar fraction and reduced delivered energy to the heating system. However, 

an unlimited collector size is not realistic, and the size of the building roof would obviously have 

its limits. Thus, a collector absorber area of 4,8 m2 was chosen, as this size equals three Apricus 

AP-20 collectors (reference collector type), or 2 Apricus AP-30 collectors with the same 

properties. Similar decisions were made regarding minimum distance between the collectors rows, 

insulation thickness of the pipes and storage tank, pipe diameters, etc. Despite the lower 

performance, a collector inclination angle of 30° was chosen over 20°, with the intention of 

minimizing the risk of dirt or snow settling on top of the evacuated tubes.  

  Design parameters 

Operation parameters 

Figure 124: Summary of the parametric study conducted on various design- and operation parameters 
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As for the design parameter, it is clear from Figure 124 that the amount of solar irradiation that 

hits the collectors (represented in the diagram by shading, collector orientation angle, collector 

inclination angle, row distance and collector area) strongly affects the annual solar fraction. Other 

important design features relate to the tank configuration (such as the tank volume and the 

positions of tank elements), or to the solar circuit (pipe length). Among the operation parameters, 

the switch-off temperature of the immersed electrical heating element and the location of the tank 

temperature sensor are by far the most influential.  

It should be noted that some of the parameters investigated in this study had a similar effect on 

system performance. For instance, the moving of the solar coil closer to the tank bottom had an 

equally positive effect on the annual solar fraction, as the extension of the solar coil height towards 

the bottom (but with fixed position of the upper coil connection). However, in both cases, the 

increased performance is strongly related to the control of the solar pump, which is switched on 

and off based on temperature readings from sensors located at the very bottom of the tank and at 

the collector outlet. One of the main issues discussed in this study is that the bottom tank 

temperature is consistently low due to the input of cold network water in this area. This results in 

problems with the pump operation, since the switch-off temperature difference is seldom reached. 

The simulations showed that each implementation of the two cases mentioned (solar coil position 

and solar coil height) resulted in an increased temperature of the water that surrounds this 

temperature sensor, which subsequently improved the function of the solar pump controller. 

Notably, a similar effect could also be achieved by moving the temperature sensor further up in the 

tank. Thus, it is important to be aware of the fact that though a change in parameters may make a 

significant impact individually, a combination of these may not necessarily lead to the same 

increase in the overall system performance.  

 

As seen in the diagram, a change in a parameter may also lead to contradicting results. Where a 

change leads to an increase in one performance indicator, it may have a negative impact on 

another. This is the case when increasing either the tank height or the volumetric flow rate in the 

solar circuit: the solar fraction increases (ΔSF = positive), but at the same time the total specific 

delivered energy to the heating system increases (ΔE = negative). It should also be kept in mind 

that when altering a parameter, the amount of energy that is saved and the increase in solar 

contribution must be considered in context with costs. For instance, the increasing of the solar 

collector area will also result in higher investment costs. Furthermore, many of the investigated 

parameters in this study are both difficult and expensive to alter once the system is installed.     

 

10.6 Suggested improved scenarios 

In this subchapter, several suggested improved scenarios described in Table 39 will be evaluated. 

In Scenario 1 to Scenario 5, the main components of the investigated system are improved and, if 
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possible, optimized. Scenario 6 and 7 targets shading and tank location, respectively, thereby 

hoping to get an indication of how the other solar thermal systems might be performing compared 

to the examined system. Scenario 8 to 19 consists of different combinations of Scenario 1-7. In 

this way, it is possible to investigate the effect of improving only a few or several components in 

the solar thermal system.   

Since an external plate heat exchanger has replaced the internal solar coil in the modified system, 

an improved scenario of the solar coil is included in Scenario 3, even though the parametric study 

revealed no significant impact on system performance. This is to examine whether or not the effect 

of other coil properties changes when other parameters are improved simultaneously. 

In order to include both reduced heat loss from the collectors and larger collector absorber area in 

Scenario 1, the two Apricus AP-20 collectors were replaced with another evacuated tube collector 

with heat pipe, called Thermomax HP400 20. This collector type has approximately the same 

width and height as the two reference collectors. The properties of this collector were elaborated in 

chapter 10.2.1.5 Collector heat loss in the parametric study.  

As previously discussed, some parameters had the same effect on system performance. It was 

decided only to alter the height of the solar coil in Scenario 2, and to leave the position of the 

upper solar coil connection unchanged, at 33%. The argument for this is that when several 

parameters are improved simultaneously, more solar energy will be supplied to the tank, thus a 

lowering of the solar coil position would minimize the solar storage volume. For the same reason, 

it was decided not to reduce the tank volume in this scenario to match the low heat demand of the 

user. 

The temperature sensor that controls the auxiliary energy supply to the tank is located on the same 

level as the immersed electrical heater, which is within thermal layer 7 in the reference system. 

Whenever the controller (Scenario 5) was altered together with the storage tank (Scenario 2), this 

temperature sensor was moved according to the location of the electrical heater, which is in layer 

8.   

 

Table 39: Suggested improved scenarios 

 Components Parameters 

Scenario 1 Solar collectors 

 

Inclination angle of all collectors: 30° 

Orientation angle of all collectors: South (0°) 

Row distance between collectors: 3 m 

Increased area and reduced collector losses by 

replacing collectors with: 2 x Thermomax 

HP400 20 

Scenario 2 

 

Storage tank Tank insulation thickness: 80 mm 

Position of auxiliary heater: 65% (layer 8) 

Position of space heating coil: 80% 

Solar coil height: 400 mm 
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Scenario 3 Solar heat exchanger (coil) Solar coil material: Copper 

Solar coil surface area: 1,6 m2 

Scenario 4 Solar circuit pipelines External pipe diameter: 14 mm 

Insulation of solar circuit pipelines: 22 mm 

Improved collector layout on roof 

Scenario 5 Controller Solar pump controller: 

Temperature sensor at Layer 2 

ΔT switch-ON/switch-OFF : 7K/3K 

Auxiliary heater controller: 

Temperature sensor located at same level as el. 

heating element 

Switch-on temperature: 70°C 

Switch-off temperature: 72°C 

Scenario 6 Shading No shading from surrounding topography 

No mutual shading (row-to-row shading) 

Scenario 7 Tank location 2nd floor (top floor) 

Scenario 8 Solar collectors and storage 

tank 

Scenario 1 + 2 

Scenario 9 Solar collectors and controller Scenario 1 + 5 

Scenario 10 Solar collectors, storage tank 

and controller 

Scenario 1 + 2 + 5 

Scenario 11 Storage tank and solar circuit 

pipelines 

Scenario 2 + 4 

Scenario 12 Storage tank and controller Scenario 2 + 5 

Scenario 13 Storage tank, solar circuit 

pipelines and controller 

Scenario 2 + 4 + 5 

Scenario 14 Solar collectors, storage tank, 

solar circuit pipelines and 

controller 

Scenario 1 + 2 + 4 + 5 

Scenario 15 Solar collectors, storage tank, 

solar circuit pipelines, 

controller and shading 

Scenario 1 + 2 + 4 + 5 + 6 

Scenario 16 Solar collectors, storage tank, 

solar circuit pipelines, 

controller and tank location 

Scenario 1 + 2 + 4 + 5 + 7 

Scenario 17 Solar collectors, storage tank, 

solar circuit pipelines, 

controller, shading and tank 

location 

Scenario 1 + 2 + 4 + 5 + 6 + 7 

Scenario 18 Solar collectors, storage tank, 

solar circuit pipelines, 

controller, shading, tank 

location and solar heat 

exchanger 

Scenario 1 + 2 + 3 + 4 + 5 + 6 + 7 

Scenario 19 Limited modifications, storage 

tank 

Scenario 0 + 2 
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As previously mentioned, a system can be both expensive and difficult to alter once it is installed 

and up and running. This is the case in this master thesis. To investigate how well the current 

system could potentially perform without taking drastic measures, a final scenario, Scenario 0, was 

created. In this scenario, parameters that are assumed to be less radical and relatively easy to 

change are included. This scenario is presented in Table 40 below. 

 

Table 40: Scenario 0: Limited modifications 

Collector 

orientation 

Inclination angle of all collectors: 30° 

 

Solar loop 

controller input 

Temperature sensor at Layer 2 

ΔT switch-ON/switch-OFF : 6K/4K 

Auxiliary heating 

controller 

Temperature sensor located at same level as el. heating element 

Switch-on temperature: 70°C 

Switch-off temperature: 72°C 

Pipelines Improved insulation of outdoor pipes: 22 mm 

 

All the scenarios in Table 39 and Table 40 were simulated, and the resulting annual solar fraction 

and annual specific delivered energy for each scenario is presented in Figure 125. The initial value 

of the reference system is included for both performance indicators with a dotted line.  

 

Figure 125: Annual solar fraction and specific delivered energy for improved scenarios 
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The simulations showed that an improvement of the solar collectors (Scenario 1) resulted in an 

increased annual solar fraction by as much as 67,8% compared to the reference system, and 

correspondingly a reduction in annual specific delivered energy by 7,7%. An alteration of the tank 

design (Scenario 2) had a similar reduction in annual specific delivered energy (reduction by 

7,6%), whereas the annual solar fraction increased by 36,8%. It should be noted that this was 

without optimizing the tank size so that it would be more suitable for the low heat demand for the 

user in the reference system, as explained in chapter 10.2.2.2 Effect of tank volume. On its own, an 

improvement of the controller (Scenario 5) had a very satisfying effect, with an increase in annual 

solar fraction by 49,7% and a reduction in annual specific delivered energy by 14,6%. Scenario 6 

and 7 each resulted in an increase in annual solar fraction by 16,9% and 11,3%, respectively. The 

same scenarios had a smaller impact on annual specific delivered energy than the scenarios 

mentioned above, with corresponding reduction values of only 1,3%, and 1,2%. A complete 

elimination of shading of the collectors in Scenario 6 led to a 39,2% higher solar fraction, but only 

a decrease in delivered energy by 3,4%. 

 

The best performance that was achieved without the complete elimination of shading was in 

Scenario 16, in which an annual solar fraction of 38,9% and a specific delivered energy of 23,8 

kWh/(m2∙year) were obtained. This equals an increase and decrease by 172% and 33,1%, 

respectively, compared to the reference system.  

 

After improving several components in Scenario 15, the addition of Scenario 7, i.e. tank location, 

in Scenario 17 resulted in an increase in solar fraction from 41,3% to 42,3%, and a corresponding 

reduction in annual specific delivered energy from 23,2 kWh/m2 to 22,9 kWh/m2. This shows that, 

with a well-functioning solar thermal heating system, the significance of having the storage tank 

located on ground floor instead of on second (top) floor is detectable on the system performance, 

but not crucial. 

 

The highest annual solar fraction and the lowest specific delivered energy were obtained with 

Scenario 18, closely followed by Scenario 17. The difference between the two is the properties of 

the solar coil. The effect of improvement of the solar coil had little effect by its own in Scenario 3, 

in which the solar fraction increased by only 0,6%. The specific delivered energy remained the 

same as for the reference system. When the solar coil alterations were introduced after having 

implemented all the other modifications, the two performance indicators both increased and 

decreased by 0,01% and 0,01 %, respectively from Scenario 17 to Scenario 18 (with and without 

Scenario 3). Thus, the impact of the solar coil is yet again confirmed to be not very crucial in 

terms of reducing the performance of the investigated system. In Scenario 18, the parameters 

shading, location of storage tank, collectors, storage tank, solar heat exchanger, solar circuit 

pipelines, and the controller, were improved. The annual solar fraction of this scenario is 42,7%, 

which is almost three times the annual solar fraction of the reference system. Notably, this is rather 
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close to the intended solar fraction of 47%. The corresponding annual specific delivered energy is 

22,7 kWh/m2, which constitutes a reduction of 36,3%. 

 

In Scenario 0, where only a few selected parameters which were considered relatively easy to 

change were altered, the solar fraction and specific delivered energy obtained was 26,3% and 29,0 

kWh/m2, respectively. To study the effect of further changing the storage tank design, Scenario 0 

was combined with Scenario 2 in Scenario 19. This resulted in an annual solar fraction of 28,9% 

and a specific delivered energy of 26,5 kWh/(m2∙year).  

 

10.7 Sensitivity analysis of the best scenario 

Since all the scenarios presented in this chapter are suggested solutions for improving system 

performance, and not necessarily the optimized solutions, a sensitivity analysis was conducted on 

Scenario 18. This makes it possible to study the potential influence of making further changes in 

parameter values. Selected parameters from the scenario were further modified by ± 10%. 

Additionally, two user-related parameters (DHW demand and space heating demand), as well as 

tank volume, were included in the sensitivity analysis, to see if the impact of these had changed 

now that the system was functioning better.  

 

The two diagrams in Figure 126 show the variations in both annual solar fraction and annual 

specific delivered energy. 
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Figure 126: Sensitivity analysis of Scenario 18, annual solar fraction 

(right) and annual specific delivered energy (left) 
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The total collector absorber area in Scenario 18 is 4,3 m2. A 10% increase in collector area would 

have resulted in an annual solar fraction and a specific delivered energy of 44,5% and 22,2 

kWh/(m2∙year), respectively. If the switch-on temperature of the electrical heater was lowered 

slightly further, the annual solar fraction would have been 45,9%, which is 7,5% higher than the 

initial solar fraction in Scenario 18, and 221,0% higher than the reference system. As previously 

discussed, the reference system has a simulated solar fraction of 14,3% and an annual specific 

delivered energy of 35,6 kWh/m2. The results in the sensitivity analysis indicate that with a further 

increase in for instance the collector area or a further lowering of the switch-on temperature of the 

auxiliary heater, the initial goal of an annual solar fraction 47% could be within reach. 

 

Moreover, it is evident from the sensitivity analysis that some parameters affect the system 

performance differently than in the simulations made earlier in the parametric study. For instance, 

a 10% increase in tank volume in Scenario 18 increases the annual solar fraction slightly, whereas 

the same change in tank volume in the reference system in chapter 10.2.2.2 Effect of Tank volume 

ended up reducing the performance. This positive effect suggests that the current tank size of 290 

liters is more suitable if the system is functioning better. One reason for this could be the reduced 

temperature setting of the auxiliary heater, and thus the reduced tank temperature. As discussed in 

the parametric study in 10.3.2 Control of auxiliary heater, a lower tank temperature results in a 

higher required tank volume. Another explanation could be related to the fact that the solar energy 

supply to the tank has increased considerably with a better functioning of the system. As a result, 

the tank must be large enough to be able to store this energy. 

 

As for the two user-related parameters, the change in DHW resulted in slightly surprising results. 

In the parametric study, an increase in annual DHW consumption had a positive impact on annual 

solar fraction, whereas the specific delivered energy increased. In the sensitivity analysis in Figure 

126, on the other hand, a higher heat demand resulted in reduced annual solar fraction, which is 

the opposite effect. This may be related to the discussion in the previous paragraph regarding 

sufficient tank size; if the system has reached a point of “saturation”, a higher heat demand will 

only reduce the performance unless other measures are taken, like installing a larger tank.  

 

10.8 System performance with improved design and operation 

In this chapter, a brief comparison of the solar fraction, the delivered energy and the fractional 

energy savings between the reference system and Scenario 18 will be presented. Scenario 18 is the 

scenario that achieved the highest annual performance in chapter 10.6 Suggested improved 

scenarios. 
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Figure 127 below depicts the simulated monthly solar fraction for a system configuration equal to 

Scenario 18. The monthly amount of solar energy and auxiliary energy supplied to the storage tank 

are displayed to the left in the diagram in kWh. For comparison, the annual solar fraction curve of 

the reference system is included in the graph with a dotted line. 

 

 

 

 

As is illustrated by the Figure 127, the solar contribution in Scenario 18 is significantly higher 

throughout the whole year compared to that of the reference system, with its initial settings. The 

positive increase in solar fraction during the transitional periods is especially beneficial in terms of 

utilizing solar energy for space heating. In the case of Scenario 18, the system is able to achieve a 

solar fraction of 90,6% and 88,2 % for June and July, respectively. This equals a corresponding 

increase from the simulated reference system by 71,3% and 79,3%.  

 

Figure 128 depicts the monthly specific delivered energy for Scenario 18 with respect to the 

reference system. The solar thermal heating system in Scenario 18 requires significantly less 

delivered energy compared to the reference system. On an annual basis, the specific delivered 

energy is 36,2% lower than the initial 35,6 kWh/m2 of the reference system. 

 

 

 

 

Figure 127: Monthly share of solar- and auxiliary energy with the corresponding 

solar fraction (Scenario 18) 
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The fractional energy savings indicator also can be used to compare two solar thermal heating 

systems. The corresponding monthly fractional energy savings when choosing Scenario 18 over 

the reference system are shown in Table 41. 

 

Table 41: Fractional energy savings compared to reference system 

 Fractional energy savings [%] 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Scenario 

18 

11,1 16,4 30,0 62,4 77,9 81,2 80,4 76,1 68,8 39,7 16,3 10,5 

 

As seen in Table 41, the energy savings are more than 60% every month from April to September. 

On an annual basis, the average fractional energy savings compared to the reference system are 

36,2%. Table 42 summarizes the annual values presented in this chapter. Additionally, the number 

of stagnation is included. With this system design and operation, Scenario 18 has 29 days 

stagnation days each year, mainly during the hottest summer months. The reference system, on the 

other hand, had zero stagnation days.  

 

Table 42: Summary annual values, Scenario 18 

Solar energy supplied to the tank 1261,1 kWh/year 

Auxiliary energy supplied to the tank 1693,0 kWh/year 

Annual solar fraction 42,7 % 

Delivered energy to heating system 1704,0 kWh/year 

Specific delivered energy to heating system 22,7 kWh/(m2∙year) 

Fractional energy savings compared to reference 

system 
36,2 % 

Number of stagnation days throughout the year 29 days 

 

Figure 128: Specific delivered energy, Reference system vs. Scenario 18 
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11 Discussion 

In this chapter, some of the findings of this thesis is discussed and compared, including comments 

regarding relevant previous experiences from this case study, presented in chapter 5. Case 

description. A discussion of the investigated system is provided, and the results are also 

considered on a more holistic approach, by the providing of comments relevant to the solar 

systems in Løvåshagen as a whole. 

 

It is important to keep in mind that a solar thermal heating system is very complex, and that the 

results simulated in Polysun may differ considerably from the real, full-size system. For the same 

reason, it is possible to imagine that the parametric study could have reveal different results than 

the ones presented in this thesis, had the system design and operation of the reference system been 

only slightly different. This was for instance indicated in the sensitivity analysis made of the best 

scenario (Scenario 18) in chapter 10.7, in which some of the parameters that had positive effects 

on system performance in the parametric study, suddenly showed either a negative or no 

noticeable influence after the system was improved. Moreover, some of the parameters, such as 

the location of the tank temperature sensor, had significant impact on the results, and might have 

influenced the impact of several of the other investigated parameters.  

 

11.1 Original system 

Heating system with solar input vs. conventional heating system 

According to Siren M. Dahl, the chairman of Løvåshagen housing cooperative, the user of the 

investigated system pays approximately 170 NOK each month for maintenance of the solar 

thermal collectors. On an annual basis, this equals 2040 NOK. Considering that the measured solar 

production in 2014 was only 377 kWh, the financial profitability of the investigated system is 

rendered questionable. Nevertheless, several faults and errors revealed in this report related to both 

the design and the operation of the system, suggest that the general use of solar thermal heating in 

passive house dwellings should not be rejected based on the performance of this particular system. 

 

Delivered energy to the heating system 

Previous findings and experiences relevant for this this case study implied that the total delivered 

energy to the passive house dwellings in Løvåshagen generally appears to be slightly too high, and 

that having solar collectors on the roof is not reflected specifically in the measured energy 

consumptions. The fractional energy savings that were calculated in chapter 9. Results confirmed 

the latter: with the current design and operation, the energy saved by having a solar thermal system 

in the investigated dwelling was a modest 3,8 %. In fact, the results revealed that from September 

to March, the use of the examined system actually leads to a greater energy consumption than 
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would have been consumed with the use of the immersed electrical heating element as the only 

energy source.  

As for the generally high energy consumption in the passive house dwellings, the following 

observations can be made based on the findings in chapter 9 and 10: 

 Both the measured and the simulated results reveal that there is significant disagreement 

between the actual heat demand of the user and the amount of energy that is supplied to the 

storage tank 

 The parametric study revealed that the switch-on temperature setting of the immersed 

electrical heating element not only considerably reduced the utilization of solar energy; it 

also significantly increased the amount of delivered energy to the heating system 

 The incorrect control of the circulation pump in the solar circuit results in a very high 

pump consumption, and causes a significant amount of heat loss from the storage tank - 

which increases the need for auxiliary energy 

 An important factor to consider is the heat demand of the users of each passive house 

dwelling. The results in chapter 10.4 Parameters releated to the user revealed that an 

increase in annual DHW consumption and/or space heating had a very negative impact on 

the energy consumed by the auxiliary heater 

Based on the measurements provided by BKK via Magnar Berge (see Table 11 in chapter 5.4), the 

total specific delivered energy to the investigated dwelling can be estimated to an average of 5570 

kWh/year, or 74,2 kWh/(m2∙year). Moreover, the measured energy consumed by the auxiliary 

heater in 2014 was measured to 3098 kWh/year (41,3 kWh/ (m2∙year)). This means that over 50% 

of the total average delivered energy is used by the immersed electrical heating element to heat the 

storage tank. With additional energy required for the circulation pumps - especially for the solar 

pump, which appears to operate continuously during summer -, this share can be assumed to be 

even larger. This result is not completely surprising, as the heat demand for DHW and space 

heating in residential buildings of passive house standard constitutes a significantly larger share 

than that of existing buildings. It should, however, be kept in mind that the results might differ for 

dwellings with other heat demands. 

 

Planning, assembly and operation 

As mentioned in the introduction of chapter 4, faults are typically made in the planning process, 

during assembly, or during the operation of the system. In this case study it appears as though the 

system performance is subject to faults made in all three phases. 

It is important to keep in mind that this system was planned long before its completion in 2008. 

The simulation tools for planning and dimensioning solar thermal heating systems have 

significantly improved since the commencement of the Løvåshagen project. The newest versions 

of the simulation tools available on the market allows the user to account for important design 
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issues, such as heat loss, distinction between indoor and outdoor room, shading, etc. Shading is a 

particularly important feature, and is highly relevant for this case study, as the performance of the 

reference system has most likely suffered from the lack of adequate simulation tools that would be 

able to consider shading from nearby collectors.  

Regarding assembly, it was mentioned in chapter 5. Case description that a visual check of the 

system revealed pipes and connections with lacking insulation, as well as inadequate fastening of 

the collector temperature sensor. In the publication Suksessfaktorer for økt bruk av solvarme by 

SINTEF in 2014 (Fredriken et al., 2014), interviews of private solar thermal system owners in 

Norway revealed a general lack of necessary solar thermal skills among plumbers, and that errors 

are often made as a consequence of this. This may also be a contributing factor for the investigated 

system. 

The findings in this case study is not only a reminder of how important it is to consider every 

thinkable aspect already at the design stage, it also illustrates the importance of correct control and 

monitoring once the system is installed. The latter is essential for the maximization of utilization 

of solar energy, and to realize the full potential of the system. Along with important design 

features such as the collector inclination angle, the location of the temperature sensor that 

measures the cold tank water appears to be one of the key issues for reduced performance during 

the high-radiation months. It is very unfortunate that a system like the one in this case study has 

operated for so many years without the detection and correction of even the simple faults, such as 

incorrect controller settings. In SINTEF’s report (mentioned above), it is stated that in order for a 

solar thermal system to function properly, it is crucial that the users themselves control the system 

and that they possess adequate knowledge of it (Fredriken et al., 2014). This is without doubt a 

statement that applies for this case study. If each solar thermal system was more easily monitored 

by the user, faults might have been discovered sooner. Moreover, this would perhaps encourage 

the users to get more involved with the function of their own system, and thereby to contribute to 

an increased utilization of solar energy. 

 

Broken evacuated tubes 

In chapter 5.3 Relevant experiences and findings, it was mentioned that some of the evacuated 

tubes were broken. When a tube breaks, the collector can still operate normally, though with 

reduced collector yield (Apricus Solar, 2013). Since the results in this chapter showed that the 

collector area has a considerable impact on system performance, broken tubes may be one reason 

for why the measured performance is even lower than the corresponding simulated performance 

presented in chapter 9.Results.  

 

Inclination angle and shading 

The solar collectors in this case study were most likely tilted at an inclination angle of 51° with the 

intention of maximizing the solar energy utilization for space heating during the transitional 



  

168 

 

periods. However, due to shading from nearby collectors, the effect turns out to have been the very 

opposite: the parametric study revealed that a steeper inclination angle leads to a higher row-to-

row shading (mutual shading), and that this effect is especially dominant in the periods Spring-

Summer and Summer-Autumn, i.e. when the solar altitude angles are lower.  

The best solar fraction that was obtained without the complete elimination of shading in chapter 

10.6 Suggested improved scenarios was 38,9% (Scenario 16). To minimize shading when 

installing solar collectors in several rows behind one another, it is important to ensure a 

sufficiently large distance between the collector rows, as well as a sufficiently low collector tilt. 

Since some of the shading appears to be inevitable in this case study, and because roof space is 

limited, it would be beneficial to use collectors that have less thermal losses and a larger absorber 

area than the collector type that is currently installed. 

 

Protection against overheating 

The simulated results revealed that the cooling radiators have so far been redundant. However, if 

the solar radiation onto the collectors should increase after making improvements, protection 

against high temperatures in the solar circuit and in the storage tank is crucial. Although the 

improved scenarios revealed significant increases in system performance, the number of stagnation 

days increased accordingly. During summer, when the solar collectors supply more hot water than 

what is being consumed, excess heat is generated, and the temperatures in the solar circuit rises. 

To avoid damage to the system, it is important with adequate protection against overheating. 

Excess heat can also be reduced by installing a larger storage tank.  

It should also be noted that even though the temperature sensor at the collector outlet was not 

examined in this study, a false positioning of this sensor may lead to incorrect temperature 

readings. Equally important is the presence of adequate insulation and proper fastening of this 

temperature sensor. At worst, the performance of the solar thermal system may be significantly 

reduced. As mentioned above, this sensor was improperly attached and that its connection to the 

collector were lacking insulation. This may be a contributing factor as to why the measured 

performance was worse than the one that was simulated. 

 

11.2 Modified system 

Effect of modification 

When evaluating the performance of the modified system, it is important to consider the fact that 

additional improvements other than the introduction of a plate heat exchanger were conducted on 

the system. First of all, the insulation of the solar circuit pipelines were sealed where insulation 

was lacking. Secondly, the temperature sensor at the collector outlet was fastened, and the 

connections were insulated. As for the controller settings, the temperature sensor remained in layer 
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one like in the original system configuration, but the switch-on temperature of the immersed 

electrical heating element was changed from 75°C to 65°C.  

The parametric study revealed no noticeable impact, neither when altering the thermal properties 

of the solar coil, nor when increasing its surface area. Therefore, a replacement in the modified 

system of the solar coil with an external plate heat exchanger will not necessarily lead to higher 

performance in itself. It may very well be the lower switch-on temperature of the auxiliary heater, 

along with the improved insulation of pipes and connections, that caused the increase in solar 

fraction. Finally, the increased heat demand in 2015 compared to 2014 might also have played a 

role.   

 

Thermal stratification 

The detailed simulations of the reference system showed that the thermal stratification is not 

always maintained within the tank, as the water in the lower layers may reach temperatures above 

90°C. This is not uncommon when using evacuated tube collectors. Zijdemans (2012) 

recommends directing solar heat into the tank at two different temperature zones in order to 

improve the thermal stratification. This also increases the response time, and improves the 

utilization of solar energy. In the modified system configuration, this specific alteration has been 

made: water is heated in the external plate heat exchanger, before it is led into either the bottom or 

the upper part of the tank, depending on the water temperature. This seems like a good solution for 

avoiding uniform temperature mixing of the tank water, and for preventing the immersed electrical 

heating element from supplying more energy than what is necessary. However, since shading is a 

big issue in this study, being especially influential in the periods with low to moderate solar 

radiation, the positive impact of making this modification is not yet evident in the measured results 

(this thesis ended in the beginning of June 2015). Thus, it still remains to determine from the 

measured results from June, July and August if the introduction of solar energy at two different 

temperature zones does in fact further enhance the utilization of solar energy. Moreover, the full 

potential of the modified system will not be revealed unless some further alterations are made on 

the existing system, such as moving the tank temperature sensor and lowering the inclination angle 

of the collectors.  

It should also be noted that a plate heat exchanger is quite expensive, and that this kind of heat 

exchanger is normally used for larger solar thermal systems. Furthermore, this solution requires an 

additional circulation pump, which increases the total energy consumption. Thus, a better solution 

for the Løvåshagen system would probably be to replace the tank with a better configuration than 

the current system.  
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11.3 General comments 

Variation in total heat demand 

The measured results revealed that the heat consumption of the user of the examined system is 

much lower than what was implied in the initial calculations for which the system is designed, 

which was presented in chapter 5.2 Heat demand and heat supply. In 2014, the measured specific 

space heating demand for this dwelling was 9,5 kWh/(m2∙year). Space heating by means of heating 

of ventilation air was not monitored during the investigated periods, but during the design phase it 

was stipulated to 2,2 kWh/(m2∙year) in the design phase. Thus, the maximum space heating 

demand for passive house buildings of 15 kWh/( m2∙year) according to NS3700 is presumably 

achieved for the investigated dwelling. As for the heat demand required to cover the DHW 

consumption, it was estimated to be 1034 kWh/year, which equals a specific heat demand of 13,8 

kWh/(m2∙year). The latter constitutes less than half of the initially stipulated values.  

It is important to keep in mind that the total heat demand may differ greatly for the various passive 

house dwellings, depending on numerous factors such as the number of inhabitants, the 

composition of users (adults/children, age), as well as the user’s consciousness regarding own 

consumption and habits. An examination of selected user-related parameters in chapter 10.4 

suggests that the performance of an identical solar thermal heating system in one of the other 

dwellings of Løvåshagen might either be suffering or benefitting from having a different heat 

demand than that of the investigated system.  

Simulations revealed that a doubling in DHW consumption compared to the reference value 

resulted in an increase in annual specific delivered energy by as much as 35,1%. The 

corresponding increase in annual solar fraction was only 6,1%. Moreover, the annual solar fraction 

was much more sensitive towards a variation in annual space heating demand. This is presumably 

because the current space heating coil within the storage tank is located above the immersed 

electrical heating element. This means that unless the solar collectors supply the tank with 

temperatures above 75°C, only auxiliary energy is used for space heating. In other words, the solar 

thermal system installed in the passive house dwellings of Løvåshagen housing cooperative are not 

being used for the kind of system that this type of energy source is normally best suited for: 

preheating of DHW and low-temperature space heating. 

 

Variation in shading conditions 

It should be kept in mind that the other solar collectors installed on the roofs of the two passive 

house buildings may have different horizon profiles than the examined system, especially the ones 

located at the very south of the building. These are located on a slightly lower roof level than the 

investigated collectors, and are presumably more exposed to shading of nearby trees and hills. For 

them, the impact of shading from surrounding topography and potential obstructions might play an 
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even bigger role, and consequently the performance might be even lower. It may be worth 

considering the possibility of removing some of the nearby growth. 

 

Comments regarding measurements of another dwelling in the same housing cooperative 

In this master thesis, the main object of examination was the solar thermal heating system in one 

of the passive house dwellings. However, limited data from a second dwelling was obtained 

through Magnar Berge (co-supervisor). The floor area of this dwelling resembles that of the 

investigated dwelling (75 m2), and it is assumed that the two systems are identical both with 

respect to system design and to their operation. Despite this fact, direct readings from the second 

dwelling (attached in Appendix A.2) revealed the solar yield to be approximately 1080 kWh/year, 

which is 186% higher than that of the investigated system.  

The main difference between the two dwellings is that the second dwelling is located on the 2nd 

floor (as opposed to on ground floor), and that the attached collectors are positioned at the front of 

the collector rows, i.e. mutual shading is eliminated. Compared to the investigated dwelling 

(reference system), measurements conducted on this second dwelling within the time period 

28.05.13 – 18.06.14 revealed the following: 

1. Heat demand for space heating: 160 % higher than that of the reference system 

2. Heat demand for heating of DHW:  212 % higher than that of the reference system 

The auxiliary energy consumption of the immersed electrical heater was not measured for the 

second dwelling, and the solar fraction could thus not be calculated. However, based on the 

already discussed findings in this report, it can be concluded that the higher solar yield in this 

dwellings is most likely caused by a combination of higher DHW demand, as well as reduced 

shading and a shorter pipe distance between the collectors and the storage tank.  Moreover, it can 

be expected that the higher space heating demand significantly increases the auxiliary energy 

consumption.  

 

Therefore, despite the higher solar yield for the second dwelling - and thus the seemingly better 

performance - an assumption should not yet be made that the solar fraction of this particular 

system is better than the system that was investigated in this master thesis.  
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12. Conclusion 

The results revealed that the solar fraction measured in 2014 for the examined system was only 

10,8%, whereas the corresponding simulated solar fraction was 14,3%. With the system’s current 

design and operation, the benefits from having solar collectors compared to when only using a 

conventional heating system, are mainly present, though hardly significant, in May, June and July. 

On an annual basis, the energy savings constitute only 3,8%. 

There are several contributing factors as to why neither the measured nor the simulated 

performance live up to the initial goals. Results from the parametric study of the various design- 

and operation parameters revealed that the performance of the system suffers from a combination 

of numerous factors, of which some are more influential than others. The parameters that had the 

greatest impact on system performance were: the switch-on temperature of the immersed electrical 

heating element, the position of the solar coil within the tank, the height of the solar coil, shading, 

and the location of the tank temperature sensor (used to control the solar pump). Regarding 

shading, particularly mutual shading caused by nearby collectors was crucial. Mutual shading is 

furthermore significantly affected by the collector inclination angle and the distance between the 

collector rows.  

Several improved scenarios were suggested and simulated, until the scenario with the highest 

annual solar fraction and the lowest specific delivered energy to the heating system was obtained. 

The results revealed that the best outcome was attained when all of the main components were 

altered. These include: larger collector area, lower collector inclination angle, improved insulation 

of tank and pipes, changed locations of tank ports and coil positions, changed position of the tank 

temperature sensor used to control the solar pump, lower switch-on temperature setting of the 

auxiliary heater, and reduced pipe length of the solar circuit. Without the complete elimination of 

shading, the highest annual solar fraction and the lowest annual specific delivered energy to the 

heating system obtained were 38,9% and 23,8 kWh/m2, respectively. When including the 

elimination of shading, the corresponding values were 42,7% and 22,7 kWh/m2. This equals 

almost three times the solar fraction attained by the reference system. Moreover, a sensitivity 

analysis of the best scenario showed that an additional optimization of the various parameters is 

possible, which may increase the performance even further.  

A limited scenario was created for the sake of studying the effect of changing only a few 

parameters that were assumed to be inexpensive and relatively easy to alter. This scenario 

involved lowering the inclination angle of the collectors from 51° to 30°, moving the tank 

temperature sensor further up in the tank, reducing the switch-on temperature of the electrical 

heating element from 75°C to 70°C, and, finally, insulating all the outdoor pipes with minimum 22 

mm. The resulting solar fraction obtained in the simulations were 28,9%, which is more than twice 
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the solar fraction achieved in the initial system. Furthermore, these alterations reduced the specific 

delivered energy from 35,6 kWh/(m2∙year) to 26,5 kWh/(m2∙year). 

A study of selected user-related parameters revealed that the total heat demand for space heating 

and heating of DHW strongly affects the auxiliary energy consumption, and that it may have 

negative impact on the annual solar fraction.  

To conclude, the findings in this report suggest the presence of one or several faults in the design, 

the installation, and the operation of the investigated system. As a result, the performance of the 

system is significantly reduced, and is far from achieving the initially intended solar fraction of 

47%. Furthermore, the results indicate a large potential for improvements, and that making 

alterations on the system is likely to help increase the solar contribution. It should be noted, 

however, that the fact that the system is already installed, makes an unlimited amount of changes 

neither physically possible, nor financially. Nevertheless, simulations reveal that by making only a 

few alterations, an increase in the utilization of solar energy may be achieved, both during summer 

and during the transitional periods.  
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13 Future work 

If some of the suggested alterations are attempted implemented on the solar thermal heating 

systems of Løvåshagen housing cooperative (such as moving the tank temperature sensor and 

lowering the inclination angles of all the solar collectors on the roof) a continuation of 

measurements and monitoring would be advantageous for the sake of verifying their effect on 

system performance. Moreover, an evaluation of measurements from June and July 2015 should 

be conducted in order to determine whether or not the introduction of solar energy into the tank at 

two temperature zones in the modified system further improves the utilization of solar energy. 

In this work, several aspects had to be considered, thus the process of understanding and analyzing 

the investigated solar thermal system turned out to be a comprehensive process. For this reason, 

certain elements remain to be considered for future reference:  

The results of this report imply that through making improvements on all the main design- and 

operation parameters of the examined solar thermal heating system, the best annual solar fraction 

obtained was 42,7%. Simultaneously, a sensitivity analysis indicated that further improvements 

were possible. Due to the complexity of this kind of system, the development of an optimized 

system can be achieved by using more complicated mathematical models or more advanced 

simulation tools.  

Seeing that this thesis focused mainly on the impact of various parameters on system performance, 

and not so much on costs and expenses, it would be of great value to conduct an economic analysis 

for the implementation of one or several of the suggested alterations in this study. A weighing of 

the benefits of higher solar energy utilization against increased costs should be done. One 

particular aspect is the possibility of replacing the existing storage tank as opposed to introducing 

a plate heat exchanger. An analysis of tanks available on the market could be made - both in terms 

of cost and performance -, followed by a suggestion of what is the tank most suitable for the solar 

thermal systems of Løvåshagen. Among the tanks that can be considered are mantled tanks, tanks 

with stratifier lances, tanks that are charged with solar energy at two temperature zones, separate 

tanks for DHW and for space heating, and, alternatively, a shared storage tank for all of the 28 

dwellings.  

It would be of interest if a study that focused on identifying the potential for using solar thermal 

heating in multi-storey residential buildings in Norway was conducted, according to Norwegian 

weather conditions, building regulations, building mass, esthetics, combination with other energy 

sources, the potential of shading, positioning of the collectors, etc. Moreover, a review of available 

surveillance systems on the market to be used for small solar thermal heating systems would be 

valuable, as well as an economical comparison of these.  
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Appendix A – Measured data 

A.1 Remote readings 
 

Table A. 1: Measured results from 2014 (annual sums) - Remote readings 01.01.14 – 31.12.14 

Radiator Floor 

heating 

DHW consumption 
 

Electrical heating 

element (tank) 

Solar energy 

supplied to 

tank 

[kWh] [kWh] [l] [kWh] [kWh] 

- 449,3 21052 3098 699 
 

 

Table A. 2: Measured results from 2015 – Remote readings 01.01.15 – 31.05.15 

Radiator Floor 

heating 

DHW consumption 
 

Electrical heating 

element (tank) 

Solar energy 

supplied to 

tank 

[kWh] [kWh] [l] [kWh] [kWh] 

- 204 10747,2 1825,8 177,4 
*1 m3 water =1000 l 
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Figure A. 1 Remote readings 2014 and 2015 
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A.2 Direct readings 

Table A. 3: Direct readings of the meter displays during six plant visits 

 

Date 

Radiator 

consumption 

[kWh] 

Floor heating 

consumption 

[kWh] 

Solar energy 

supplied to tank 

[kWh] 

DHW 

consumption 

[m3] 

13.05.2013 7,5 0,5 - 0,768 

15.05.2013 7,5 0,5 - 0,768 

11.11.2013 28,3 83,6 236 10,77 

19.11.2014 292,9 558,4 613 32,336 

29.01.2015 458,4 673,3 613 37,025 

10.03.2015 597,2 734,5 617 39,987 

04.06.2015 677,4 837,7 793 45,907 

 

 

Table A. 4: Extracted values from Table A.3: Direct readings 11.11.13 – 19.11.14 

Radiator Floor heating DHW 

consumption 

Electrical heating 

element (tank) 

Solar collector 

yield 

[kWh] [kWh] [m3] [kWh] [kWh] 

264,6 474,8 21,566 Direct reading not 

possible 

377 

 

 

 

Table A. 5: Measurements from a second passive house dwelling (28.05.2013 – 18.06.2014) 

  

Space heating 

 

DHW 

Electrical heating 

element (tank) 

Solar collector yield 

kWh 2216,8 2688,6 - 1080,0 

kWh/(m2year) 29,6 35,8 - 14,4 
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A.3 Weather data for 2014 and 2015 

 

 

 

 

 

 

Lufttemperatur 

Relativ luftfuktighet 

Nedbør (24t) 

Figure A. 2: Daily mean air temperature, daily mean air humidity (%) and daily 

precipitation in Bergen for 2014 (blue) and 2015 (red) Source: Meteorologisk institutt 
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Appendix B - Detailed component specifications 

B.1 Collector 

Technical specifications for Apricus AP-20 
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B.2 Storage tank 

Table B. 1: Technical specification for the storage tank and the two coils 

Storage tank 

Volume 290 l 

Height 1,6 m 

Wall 

Material 

Wall thickness 

 

Stainless steel (1.4521) 

1,5 

 

 

mm 

Insulation 

Material 

Insulation thickness 

 

Mineral wool  

40 

 

 

mm 

Solar heat exchanger (internal coil) 

Figure B. 1: Test report for the Apricus AP-20 collector (SPF, 2004) 
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Pipe diameter 

        Inner diameter 

        Outer diameter 

 

22 

25 

 

mm 

mm 

Pipe length 9 m 

Pipe surface area 0,8 m2 

Bending radius 140  mm 

Material Stainless steel 1.4401  

Space heating coil 

Pipe diameter 

Inner diameter 

        Outer diameter 

 

22 

25 

 

mm 

mm 

Pipe length 3 m 

Pipe surface area 0,28 m2 

Bending radius 140  mm 

Material Stainless steel 1.4401  

 

Table B. 2: Thermal properties of selected stainless steel types. Source: Norwegian Standard NS-EN 

10088-1:2004, Stainless steels - Part 1: List of stainless steels 

 Material  

Density 

[kg/dm3] 

Thermal 

conductivity 

at 20°C 

[W/(mK)] 

Specific thermal 

capacity at 20°C 

[J/(kgK)]  

Type 

Designatio

n number 

Tank Stainless 

steel 

1.4521 7,7 23 430 

Internal 

coils 

Stainless 

steel 

1.4401 8 15 500 

 

 

B.3 Solar circuit 

B.3.1 Solar pump 

Table B. 3: Extract of technical pump data for Wilo Star ST 20/6 (Wilo, 2004) 

Operating modes Speed-stage switching 

Manual functions Adjustment of speed (manual setting mode) 

Adjustment of speed stages: 3 

Approved fluids Water/glycol mixtures (max 1:1; mixtures 

with more than 20% glycol content require 

rechecking of the pumping data 

Performance 

Max. delivery head 

Flow rate max.  

Speed range 

 

6 m 

3,5 m3/h  

1500 – 2500 rpm 
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Permitted field of application 

Temperature range for use in heating, 

ventilation and A/C systems at max. 

ambient temperature of +40°C 

 

Standard version for operating pressure 

pmax: 

 

 

 

-10 to 110 (short-time duty 2h: +120) 

 

10 bar 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B. 2: Pump curves for Wilo Star ST 20/6. 3 levels: high (max.), 

medium and low (min.) (Wilo, 2004) 
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B.3.2 Pipelines 

The solar loop consists of pre-insulated copper pipes of the type Armaflex DuoSolar Cu with 

HT/Armaflex protected with an outer film (made of polyolefin copolymer). An illustration of this 

particular type and some of its benefits according to the manufacturer is shown in Figure B.3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Table B. 4: Properties of Armaflex DuoSolar Cu (Armacell, n.d) 

Properties Value/Assessment 

Temperature range 

    Max. service temperature 

    Min. service temperature 

 

+ 150°C (+175°C) 

-50°C 

Thermal conductivity λ 
    At 0°C 

    At 40°C 

 

≤ 0,038 W/(mK) 

≤ 0,042 W/(mK) 

Reaction to fire Material class B2 

Water vapour diffusion 

resistance factor μ 

≥ 4000 

Special features Halogen free, resistant to UV radiation, CFC and 

HCHC-free, fulfills DIN 1988 Parts 2 and 7 

 

 

 

Figure B. 3: Pre-insulated pipes (Armacell, n.d) 
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B.3.3 Solar liquid 

 

Table B. 5: Thermal properties of Tyfocor L (Tyforop, 2009) 

Tyfocor L content 

[% vol.] 

Density at 20°C 

[g/cm3] 

Refractive index 

nD20 

Frost protection 

[°C] 

25 1,023 1,3627 -10 

30 1,029 1,3690 -14 

35 1,033 1,3747 -17 

40 1,037 1,3801 -21 

45 1,042 1,3855 -26 

50 1,045 1,3910 -32 

55 1,048 1,3966 -40 
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Appendix C – Parametric study 

C.1 Design parameters 

C.1.1 Effect of inclination and orientation angle of the investigated collectors 

 

 

C.1.2 Effect of solar coil material 

 

 

Figure C. 1: The effect of collector orientation (left) and inclination (right) angle on system 

performance 

Figure C. 2: Effect of solar coil material on system performance 
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C.2.3 Effect of propylene glycol concentration in solar liquid 

 

 

 

 

 

 

 

Figure C. 3: Effect of glycol percentage in solar liquid on system performance 


