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Abstract

The sea conditions of two areas, Haltenbanken and the Barents Sea, have been estab-
lished in this project. Furthermore, a few cases of marine operations have been evalu-
ated, among other topics.

The fist part establishes the sea conditions by creating a so-called Metocean Design
Basis. This is a basis for determining the feasibility of e.g. a marine operation. The
report focuses on sea states in terms of waves and the duration of good and bad weather
windows. Current and wind is neglected. Sea states, in terms of Hs and Tp, are presented
by scatter diagrams, where tendencies of the sea environment can be observed. It is
also described by mathematical models, which have been established through different
techniques. The subject of probability and statistics plays a central part in establishing
such a report. Extreme sea states have been obtained by using the same mathematical
models along with a contour plot. The duration of good and bad weather windows have
been established through simple considerations and mathematical distributions. Results
show that sea conditions are more severe at Haltenbanken than in the Barents Sea.

The Metocean report constitutes a basis for investigation of marine operations, which is
presented in the second part. There are two cases in this part, and the first case investi-
gates limiting conditions in terms of the heave motion of a drill ship. Results are shown
in Figure 1, which illustrates the acceptable sea states together with relevant severe sea
states. The empty pocket in-between the contour plot and the acceptable values illus-
trates critical sea states. This have been achieved by establishing the response spectrum,
a method which assumes a linear relationship between the waves and the response of
the vessel, an assumption which is probably valid for the heave response.

The feasibility of marine operations have been considered by employing the distribution
for the duration of the longest good weather windows. Additionally, the feasibility
of marine operations have been looked at by simulation. Two different methods were
considered, and the one which employs data directly seems to yield the most accurate
results. The other method, which employs the distribution of duration of good and bad
weather windows, seems to have a potential, and could be improved in further work. Its
strength lies in the ability to employ Monte Carlo simulation, while its weakness lies in
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its inflexibility of handling different thresholds.

The second case is a study of the roll motion of a vessel. The purpose of the case is
to investigate what kind of effect the roll motion of the ship, due to swell sea, has on
the usability of good weather windows. Results are given in Figure 2. These show
a drastic reduction in the average duration of good weather windows due roll motion
caused by swell sea. Reductions seem too significant, and this is most likely because
the damping of the roll motion is not sufficiently incorporated in the analysis. Although
the results are probably not sufficiently accurate, they show that the swell sea has a
significant effect on weather conditions which otherwise are considered as more than
suitable. This could possibly confirm that the swell sea should be given more attention
during the process of planning of a marine operation.
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Sammendrag

En beskrivelse av havmiljøene i Haltenbanken og Barentshavet har blitt produsert i dette
prosjektet. I tillegg har forskjellige marine operasjoner blitt analysert, blant annet ved
bruk av denne havmiljøbeskrivelsen.

Havmiljøbeskrivelsen, som er presentert i del én, har sitt fokus på bølger og varighet av
gode og dårlige værvinduer. Strømninger og vind er ikke tatt med. Sjøtilstander, gitt
ved Hs og Tp, er presentert ved tabeller. Disse tabellene kan gi et godt overblikk over
karakteristikken til sjøtilstanden i et område. Det har også blitt etablert sannsynlighets-
fordelinger (matematiske modeller) som beskriver sjøtilstanden. Forskjellige metoder
har blitt brukt, deriblant ”Method of Moments”. Sannsynlighet og statistikk spiller en
viktig rolle ved etableringen av en slik havmiljøbeskrivelse. Ekstreme sjøtilstander har
blitt estimert ved bruk av sannsynlighetsfordelinger og contour plott. Varigheten av
gode og dårlige værvinduer har blitt etablert. Dette har også blitt modellert ved en
sannsynlighetsfordeling. Alle resultater viser at forholdene er mer vanskelig i Hal-
tenbanken enn i Barentshavet.

Denne havmiljøbeskrivelsen utgjør en basis for å vurdere utførelsen av marine op-
erasjoner. Slike vurderinger er presentert i del to. Først ble det sett på en case med
et drillskip, hvor målet var å estimiere begrensende sjøtilstander for skipet. En øvre
terskel for hivbevegelsen ble satt, og ved hjelp av responsspekter-metoden ble aksept-
able sjøtilstander etablert. Disse er plottet sammen med et contour plot, se Figur 3,
som viser relevante og vanskelige sjøtilstander, en såkalt 10-års sjøtilstand. Mellom de
akseptable sjøtilstandene og denne finnes de kritiske sjøtilstandene for skipet.

Gjennomførbarheten av generiske marine operasjoner har blitt sett på ved å bruke fordelin-
gen til det lengste gode værvinduet. På denne måten har det blitt produsert tabeller med
forskjellige terskler og varighet av operasjon som gir et sannsynlighetsestimat på gjen-
nomførbarheten. Videre har gjennomførbarheten av operasjoner blitt sett på ved bruk av
simulering. Den ene metoden bruker sannsynlighetsfordelingene for varighet av gode
og dårlige værvindu sammen med Monte Carlo-simulering. Denne metoden er inter-
essant og utradisjonell. Den har en styrke ved at den kan simulere mange operasjoner,
og en svakhet ved at det er vanskelig å simulere en operasjon med forskjellige terskler.
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Den andre metoden bruker hindcast data direkte. Det vil si at den går igjennom all data
og simulerer hvordan en operasjon ville utfoldet seg. Begge metodene gir et estimat på
en gjennomsnittlig varighet av operasjon, avhengig av måned.

Til slutt ble det sett på rullebevegelsen til et skip på grunn av dønningssjø. Dette fordi
det har vist seg at dønningssjø kan skape store problemer selv om sjøtilstanden totalt sett
er antatt å være god. Resultatene er illustrert i Figur 4. Denne viser at gjennomsnittlig
varighet av gode værvindu har blitt mer enn halvert. Dette resultatet er nok for stort,
og dette er meget sannsynlig på grunn av at rulledemping ikke blir godt nok estimert
ved bruk av metoden som ble brukt, nemlig responsspekter-metoden. Denne metoden
antar et lineært forhold mellom bølger og respons, noe som ikke stemmer godt nok for
rullebevegelsen. Uansett, så viser resultatene en så sterk tendens at rullebevegelsen på
grunn av dønningssjø bør vurderes videre, gjerne i et dataprogram hvor en kan ta godt
nok hensyn til rulledemping.
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Figure 3: Akseptable sjøtilstander for
drillskip
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1 Introduction

In connection to planning marine operations, it is of the upmost importance to have
knowledge of the environment in which the operation will take place. Due to this fact
there exist several techniques for recording values of certain characteristics which are
important for a climate such as an area of sea. One of these techniques is hindcasting.
This method utilizes real registrations of the wind in the relevant area and uses these
in an algorithm in order to produce realistic values of the wave height. The produced
values are thus artificial. These values are found in a data sample, a hindcast data file.

This data can be used to establish a report which describes the wave climate of the area
which the data represent. Elements of such a report is produced in this project. This is
done by employing theory and methods in probability and statistics.

Additionally, the data can be used to investigate the response of a marine structure. The
sea state, given by data, can be described by a wave spectrum, and this can be further
used to estimate the response of a vessel by the response spectrum. This method has
been used in two cases, which are presented in the second part of the report. One can
also estimate extreme wave heights (and therefore also extreme responses) by the use of
probability distribution functions. Such functions are established in the first part.

The purpose of the project is to establish elements of a report which describes the sea
environment, and use this in the evaluation of marine operations.

The report consists of the following main parts:

Section 2: Presentation of a Metocean design basis and relevant theory:

• Presenting data by scatter diagrams

• Long term joint distributions: description of the long term variation of a climate

• Monthly marginal distributions, hereunder extreme sea states

• Establishing extreme sea states by a contour plot

• Establishing the duration of good and bad weather windows
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Section 3: Investigation of marine operations, establishing weather windows and generic
tools, together with relevant theory:

• Establishing critical sea states from a critical heave motion

• Assessing the feasibility of marine operations by employing the distribution of
the longest calms

• Assessing the feasibility of marine operations by simulation

• Investigating the effect that swell sea has on the roll motion of a vessel

Every part of the thesis is solved by the use of a mathematical computer software called
MATLAB. It can be used as a simple calculator or as a programming tool where scripts
use functions and algorithms in order to solve problems. Writing the MATLAB scripts
and functions constitutes a significant amount of work in this project, and the relevant
files are to be found in the attached file (vedlegg.zip). The scripts and functions are
referred to throughout this report.
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2 Metocean Design Basis

In this part a Metocean Design Basis with the emphasis on waves and weather windows
is presented.

This section presents hindcast data in scatter diagrams, the short and long term varia-
tions of the wave climate, extreme sea states and the duration of good and bad weather
windows. Relevant theory is presented throughout the section.

2.1 Work prior to the master thesis

Prior to the master thesis, a project thesis ([19]) was carried out, partly with an intention
of being a pre-phase to this master thesis. In this project, parts of a Metocean Design
Basis was produced. Some of the work which was performed during the project thesis
was not satisfactory and therefore some of it has been improved during the master thesis.
Elements of this report together with elements produced during the master thesis are
presented in part one. This lays a foundation for the latter part of the master thesis,
where generic and specific marine operations are investigated.

2.2 What is a Metocean Design Basis, why do we need it, and how is it

produced?

Metocean is an abbreviation of Meteorology and Oceanography (see [21]), and a meto-
cean design basis is a report which describes the characteristics of the environment of
a certain area covered with sea. This is then a basis which is used in order to design
structures which are to operate in the area which the report describes. Sea behaviour
(described by waves, current, swell, etc.) and wind are particularly interesting (hence
Meteorology and Oceanography). It is of the upmost importance to secure the integrity
of a structure, and in order to do this one needs a very good understanding of the sea
environment. Two of the most popular methods which are used when analysing the
response of a marine vessel are the Design Wave Method (DWM) and the Design Spec-
trum Method (DSM). Both methods have been looked at in this thesis.
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In order to use these methods, a metocean design basis can be used. Such a report is
built on the data which represents the characteristics of an area. Several techniques
exist for recording such data, and in this case the technique of hindcasting is used. This
is a method which uses an algorithm, taking past events as input and producing new
output (see [15]). The algorithm exploits real values of wind which are recorded, and
produces estimates of waves. This is practical due to the fact that the wave data is
scarce, while the wind data is plentiful. The result is a hindcast data file which includes
several characteristic values such as wind, wave and current. This is explained in the
next section.

DWM is typically used in a fashion where one makes certain assumptions so that one can
express the behaviour of the sea in terms of a mathematical distribution function. In this
manner one can establish estimates of e.g. the largest wave during ten years. DSM on the
other hand, is a method where one utilizes the wave spectrum and a Response Amplitude
Operator (RAO) in order to produce the response spectrum. The wave spectrum can
be determined from the significant wave height, which describes a certain sea state,
while the RAO is usually established through model tests or computer software. The
characteristic value which is typically sought for is then the standard deviation of the
response spectrum. These concepts are explained in greater detail later on in the report.

2.3 Data, Hindcasting and Scatter Diagrams

As previously mentioned the data is generated by the use of a technique termed hind-
casting. Figure 5 shows the top part of a hindcast data file. The first entry corresponds
to the year of 1957, and the last entry is from the end of 2014. In total there are 166053
entries. Every entry is an artificial registration, meaning that it is not a real time regis-
tration but a value generated by a mathematical model. This data file has been handed
to the author by the Norwegian Meteorological Institute via Professor Sverre Haver. As
we can see, the three blocks of columns to the right in the file are divided into total
sea, wind sea and swell. This is because some of the sea is locally generated by the
wind, while some of it is called swell sea, which means that it is sea that is not locally
generated. Total sea has been employed in the majority of the analyses in this project.
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Section 2.3.1 presents relevant theory, Section 2.3.2 discusses the topic of modifying
hindcast data while Section 2.3.3 and Section 2.3.4 presents scatter diagrams and direc-
tional scatter diagrams, respectively.

Figure 5: Hindcast data file

2.3.1 Some relevant definitions: wave spectrum, significant wave height and spectral

peak period

The following definitions are found in Myrhaug [23].

One of the most interesting entries in the hindcast data (see Figure 5) is found in column
seven and eight: Hs, significant wave height and Tp, spectral peak period. These two
values can describe a sea state, which is often described by a wave spectrum S(ω). Such
a wave spectrum is shown in Figure 6.

In order to define S(ω), one can start with the surface elevation of the sea. A surface ele-
vation of an irregular sea consists of many separate wave components ζAn cos(ωnt− knx+ εn).
If we consider a fixed position (x=0) it is reduced to ζAn cos(ωnt + εn). The surface el-
evation ζ(t) is then given by

ζ(x, t) =
N

∑
n=1

ζAn cos(ωnt− knx+ εn) (1)

=
N

∑
n=1

ζAn cos(ωnt + εn) (2)

This is illustrated in Figure 7. ζA is the wave amplitude, ωn is the wave frequency, k is
the wave number and ε is the phase angle. The wave number k is given as k = 2π

λ
, where

λ is the wave length. Furthermore, the energy per unit length, which is completely
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described by the amplitude of the wave and the length of the wave, can be expressed as

En =
1
2

ρgζ
2
An (3)

Energy at different frequencies can be expressed through the wave spectrum S(ω) by
combining Equations 1 and 3:

E
ρg

=
N

∑
n=1

1
2

ζ
2
An =

N

∑
n=1

S(ωn)∆ω (4)

A relation between the n’th wavelet can be written as

ζ
2
An(ωn) =

√
2S(ωn)∆ω (5)

As stated above, the S(ω) can be established through Hs and Tp. As an example, the
Pierson Moskowitz spectrum can be used. This spectrum is a so-called standardized
spectra, which is based on data from the North Atlantic sea. The spectrum is valid for
fully developed sea states in an open sea. It can be written as

S(ω) =
A
ω5 exp

[
− B

ω4

]
(6)

A = 0.11 H2
s B =

5
4

ω
4
p

By this we can understand how Hs and Tp can describe a sea state. Hs is in some
literature defined as the average of the third largest wave heights during a relatively
short time interval (usually between 20 minutes and 3 hours), and the definition of a
wave height is shown in Figure 8. Another definition is Hs = 4

√
m0, which is seen in

Figure 6. As we can see, the value of Hs is determined by the wave spectrum S(ω) via
the moment m0 of the spectrum. m0 is equal to the area under the curve of S(ω). Tp

or ωp (see Figure 6), which is the wave period/wave frequency with the highest energy
in the sea state, can be defined as Tp ≈ 5.3H1/2

s . The relation between the period and
frequency is Tp =

2π

ωp
.
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Figure 6: Definition of Hs

2.3.2 Modification of data

Prior to using the hindcast data, some adjustments had to be done. Due to polarized val-
ues of the spectral peak period, Tp, modifications were needed. Figure 9 illustrates the
problem. Instructions and reasoning behind these modifications are given in Andersen
[1]. According to Andersen [1, p. 3], the problem is due to the fact that ”the [...] spec-
tral peak period (original values found in Hindcast data) is discrete with a logarithmic
spacing”. The equations used to modify the Tp values are given below (see [1]):

i = ROUND

[
1+

ln
(
T ∗p /3.244

)
0.09525

]
(7)

Tp = 3.244 · exp(0.09525 · (i−0.5− rand)) (8)

Equation 7 determines i based on the original value of Tp, T ∗p . Next, the modified
value of Tp is calculated by equation 8. rand is a random number generating function,
generating a random number between 0 and 1. The result is the noisy distribution of Tp,
illustrated in Figure 10.
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Figure 7: Connection between surface elevation ζ(t) and wave spectrum S(ω)
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Figure 10: Tp after modification

Additionally, values of wind speed larger than 15 metres/second were modified by the
following equation:

wcorrected = w+0.2 · (w−15) (9)

The reason for this modification is due to the experience of Statoil, the largest com-
pany in Norway in terms of permanent marine offshore structures. They have found the
largest values of wind to be slightly small. By using the equation above, the largest val-
ues are increased. MATLAB scripts used for both procedures are located in a folder
named ”Modifications of Hindcast data”, which is located in the attached file ved-

legg.zip. The calculations were carried out only once due to their random nature. The
modified set of data was then used consistently throughout the rest of the project.

2.3.3 Scatter Diagram

In Figure 5, the first value of Hs is equal to 1.1 metres. Every value of Hs has a cor-
responding value of Tp (spectral peak period). The set of values [Hs,Tp] = [1.1,5.2]
together with other sets are of interest, and therefore it is practical to present all of the
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Table 1: Omnidirectional Scatter Diagram for Haltenbanken

Omni Directional Scatter Diagram Haltenbanken

Hs

Spectral peak period, Tp SUM
2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10 10-11 11-12 12-13 13-14 14-15 15-16 16-17 17-18 18-19 19-20 20-21 21-22 22-23

0-1 2 148 1044 1946 3106 3072 2479 1852 898 433 260 109 47 44 25 13 8 4 4 0 0 15494
1-2 0 13 1180 4715 7178 9004 11033 9280 6148 4131 2507 1272 623 382 228 104 75 36 22 14 4 57949
2-3 0 0 7 454 2930 5062 5755 6786 6413 4886 3528 2114 1140 726 361 168 103 29 21 10 7 40500
3-4 0 0 0 4 260 1399 3378 4241 4040 3750 3007 1869 1128 731 383 181 133 21 26 5 3 24559
4-5 0 0 0 0 6 85 928 2024 2599 2494 1892 1326 922 551 254 155 102 13 6 2 0 13359
5-6 0 0 0 0 0 1 95 562 1286 1650 1445 782 495 332 192 90 66 3 6 3 0 7008
6-7 0 0 0 0 0 0 11 61 300 829 1050 612 308 213 121 71 44 4 2 0 1 3627
7-8 0 0 0 0 0 0 1 10 31 223 571 550 244 133 62 51 39 1 0 0 0 1916
8-9 0 0 0 0 0 0 0 0 4 48 147 364 190 107 22 21 24 1 0 0 0 928

9-10 0 0 0 0 0 0 0 0 0 6 27 120 135 83 28 21 11 2 0 0 0 433
10-11 0 0 0 0 0 0 0 0 0 0 4 25 61 41 21 14 10 0 0 0 0 176
11-12 0 0 0 0 0 0 0 0 0 0 0 6 20 19 9 4 5 0 0 0 0 63
12-13 0 0 0 0 0 0 0 0 0 0 0 0 1 10 8 2 1 0 0 0 0 22
13-14 0 0 0 0 0 0 0 0 0 0 0 0 0 4 3 3 0 0 0 0 0 10
14-15 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 2 0 0 0 0 6
15-16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16-17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 0 0 0 0 3
SUM 2 161 2231 7119 13480 18623 23680 24816 21719 18450 14438 9149 5314 3377 1718 901 625 114 87 34 15 166053

166053 values in one diagram in order to get a clear overview. This can be conve-
niently shown in a scatter diagram. In a scatter diagram it is easy to see tendencies.
Such a diagram will have Hs in the vertical direction and Tp in the horizontal direc-
tion. Table 28 shows a scatter diagram for Haltenbanken. It is an omni directional
scatter diagram, which means that waves from all directions are considered. The dia-
gram gives the number of entries of a certain class: for example, there are 1044 entries
of [Hs,Tp] = [0− 1,4− 5]. Another insightful way of presenting the data is shown in
Figure 10, where Hs is plotted versus Tp.

2.3.4 Directional Scatter Diagrams

Scatter diagrams for a given direction are also useful. These have been created for
30 degree sectors, as illustrated in Figure 11. Table 30 is a scatter diagram for the
northern sector. The distribution among all twelve sectors is presented in Figures 12
and 13. Distributions for both areas (Haltenbanken and Barents Sea) are displayed. It
is observed that for Haltenbanken a large portion is found in sectors eight through ten,
which represent the western and southwestern directions. On the other hand, only a
small portion of the waves are found in sectors three through seven, which represent the
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Figure 11: Sectors

eastern and southeastern direction.

The MATLAB scripts for the scatter diagrams are given in the folder ”Scatter Diagrams”.
Larger versions of all scatter diagrams are found in appendix F. The sectors for the
directional scatter diagrams have been defined as
(−15◦,15◦],(15◦,45◦] · · ·(315◦,345◦]. 345 degrees corresponds to −15 degrees.
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Table 2: Unidirectional Scatter Diagram, sector 1(north),−15◦ to 15◦, for Haltenbanken

Scatter Diagram, Haltenbanken, Northern Sector

Hs
Spectral Peak Period, Tp SUM

2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10 10-11 11-12 12-13 13-14 14-15 15-16 16-17 17-18 18-19 19-20 20-21 21-22 22-23
0-1 0 19 159 477 836 723 336 145 61 30 12 7 3 0 2 0 0 1 1 0 0 2812
1-2 0 0 95 516 1335 2081 2428 1865 755 259 104 56 32 22 10 1 3 0 0 2 0 9564
2-3 0 0 0 11 140 510 899 1233 1202 793 290 48 35 22 13 6 3 1 0 1 0 5207
3-4 0 0 0 0 1 33 238 489 556 480 324 92 37 10 6 4 2 0 0 0 0 2272
4-5 0 0 0 0 0 0 24 158 261 277 213 83 28 4 6 2 0 0 0 0 0 1056
5-6 0 0 0 0 0 0 0 16 82 121 118 59 16 3 1 0 0 0 0 0 0 416
6-7 0 0 0 0 0 0 0 1 13 49 72 26 4 1 1 0 0 0 0 0 0 167
7-8 0 0 0 0 0 0 0 0 1 9 36 20 5 1 1 0 0 0 0 0 0 73
8-9 0 0 0 0 0 0 0 0 0 1 1 8 8 2 1 0 0 0 0 0 0 21

9-10 0 0 0 0 0 0 0 0 0 1 0 3 2 1 0 0 0 0 0 0 0 7
10-11 0 0 0 0 0 0 0 0 0 0 0 1 2 1 1 0 0 0 0 0 0 5
11-12 0 0 0 0 0 0 0 0 0 0 0 0 3 1 0 0 0 0 0 0 0 4
12-13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13-14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14-15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15-16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16-17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SUM 0 19 254 1004 2312 3347 3925 3907 2931 2020 1170 403 175 68 42 13 8 2 1 3 0 21604
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Figure 12: Distribution of waves among sectors
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2.4 Long Term Joint Distribution of Hs and Tp

The description of a sea environment can be separated into two parts, short term and
long term. The short term description is a stationary process which is usually defined
to last between 20 minutes and 3 hours. An entry in the Hindcast data is a short term
description, where the sea state, which is defined to be constant for 3 hours, can be
described by its wave spectrum S(ω) (by the use of Hs and Tp). Since many analyses
study structures which are to operate in a timespan which is significantly longer than
that of a short term description, it is of interest to establish a long term description for
the Metocean design basis. The long term variation of a sea state can be given as

fHs,Tp (hs, tp) = fHs (hs) · fTp|Hs (tp|hs) (10)

As previously mentioned, it is common to apply mathematical models to the data. What
is meant by this is that one attempts to describe some sort of physical quantity, e.g.
waves, by a mathematical model. Such a model is often called a distribution function,
and the most common distribution function is the so-called normal distribution, which
is also called the Gaussian distribution. In this case, where we are considering a model
to describe the long term sea state given by Hs and Tp, a Weibull distribution is a model
which has been successfully used to describe the first part, fHs(hs), which is often termed
the marginal distribution of Hs. Another proposed model is the hybrid model, termed
”LoNoWe”, which is an abbreviation for ”Lognormal” and ”Weibull”, i.e. a hybrid
model of the Lognormal and Weibull distributions. This hybrid function describes the
lower tail of fHs(hs) by the Lognormal distribution and the upper tail by the Weibull
distribution. It is defined in Haver [10, p. 128] as

fHs(hs) =
1√

2π α hs
· exp

[
−(ln(hs)−θ)2

2 α2

]
hs ≤ η (11)

fHs(hs) =
β

ρ

(
hs

ρ

)β−1

· exp

[
−
(

hs

ρ

)β
]

hs > η (12)
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In this case a 2-parameter Weibull distribution is employed. For the conditional distri-
bution function, fTp|Hs , a log-normal distribution, described in Bury [3], is probably the
best fit. It is given by

fTp|Hs(tp|hs) =
1√

2π σ(hs) tp
exp

[
−1

2

(
ln(tp)−µ(hs)

σ(hs)

)2
]

(13)

Section 2.4.1 presents how parameters are established, while Section 2.4.2 presents
monthly distributions.

2.4.1 Establishing parameters

Both fHs(hs) and fTp|Hs(hs|tp) were produced in the project thesis. The parameters of the
marginal distribution of Hs, fHs(hs), were estimated by using a mixture of techniques.
The parameters α and θ were estimated by Maximum Likelihood estimators, while η, ρ

and β were estimated by using a probability plot. The probability plot is a tool which we
will look further into later in this report. Figure 14 shows two probability plots, one for
the Lognormal part of fHs(hs), the second for the Weibull part. The complete LoNoWe
distribution is seen in Figure 15.

The parameters for the conditional distribution function fTp|Hs(hs|tp) (Lognormal dis-
tribution) were established by using empirical relationships, represented by equations
14 and 15. These equations have been established and used by Statoil, and they can be
found in [5, p. 23]. In order to use these, the mean and variance given an interval of Hs

were determined (using values of Hs from the hindcast data file). This was plotted, see
Figure 16. Finally, curve fitting by the method of least squares was performed in order
to determine parameters of equation 14 and 15.

Established parameters for the complete long term joint probability distribution function
(JPDF) are given in Table 3, and the distribution is illustrated in Figure 17. The area
under investigation is Haltenbanken. A more in-depth description of the methods and
work above can be found in the project thesis ([19]).
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µ(hs) = a1 +a2 ·ha3
s (14)

σ
2(hs) = b1 +b2 · exp [−hs ·b3] (15)
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Figure 14: Establishing parameters for LoNoWe distribution

Table 3: Estimated parameters in connection with establishing long term JPDF of Hs
and Tp

Estimated parameters for fHs,Tp , Haltenbanken
α θ η β ρ

LoNoWe 0.5737 0.8162 4.6 1.3456 2.5382
a1 a2 a3 b1 b2 b3

Lognormal 1.5538 0.5476 0.3199 0.00005 0.1056 0.2688

2.4.2 Monthly long term JPDF ’s

In addition to establishing a distribution for the entire collection of data, it is useful
to establish monthly distributions. This implies that one will estimate parameters of
monthly distributions. The monthly distributions are useful, and can yield higher accu-
racy in some situations. This is especially true for marine operations, since these are
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Figure 16: Establishing parameters for Lognormal distribution

planned to happen in a certain time period during one or several of the months of a year,
where as a permanent marine offshore structure is obviously subject to the climate of all
months of a year.

The method which was used to estimate these parameters is very similar to the one in
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Figure 17: Long Term Joint Probability Distribution of Hs and Tp

the previous section. The main difference is that one must first sort the data by months,
and then apply the same techniques to the twelve data samples. Results can be found in
Table 4. In this case both Haltenbanken and the Barents sea has been investigated. The
MATLAB scripts are located in the folder ”Monthly long term distributions”.

2.5 Monthly marginal distributions of Hs

The LoNoWe distribution and the method which was used to estimate parameters, which
has been presented in the previous sections, has a few weaknesses. Firstly, the upper
part of the distribution, which is the 2-parameter Weibull distribution, does not represent
the higher range of Hs values as well as one would like. Secondly, the method used in
order to estimate parameters might not be satisfactory. The LoNoWe parameters were
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Table 4: Monthly long term JPDF’s

Area Parameters Months
1 2 3 4 5 6 7 8 9 10 11 12

Haltenbanken

α̂ 0.4662 0.4794 0.4903 0.4760 0.4694 0.4278 0.4285 0.4480 0.5109 0.4856 0.4679 0.4530
θ̂ 1.2235 1.1738 1.0575 0.7741 0.4792 0.4026 0.3309 0.3759 0.7190 0.9721 1.0825 1.2094
η̂ 6.5000 5.6000 4.7000 6.1000 5.0000 4.6000 4.3000 4.7000 5.0000 5.4000 7.0000 5.8000
ρ̂ 3.6469 3.6065 3.2759 1.9545 1.3605 1.2002 1.1148 1.1604 2.0604 2.8043 2.8954 3.6842
β̂ 1.5846 1.6545 1.6899 1.2621 1.2093 1.2614 1.2576 1.2074 1.3127 1.4873 1.3952 1.7175
â1 1.9552 1.8249 1.8734 1.9321 1.7589 1.9521 1.9342 1.8460 1.7280 1.9288 2.0661 2.0632
â2 0.2645 0.3754 0.3120 0.2164 0.3181 0.0890 0.0871 0.2014 0.3762 0.2155 0.1339 0.1641
â3 0.4546 0.3649 0.4199 0.5405 0.4543 1.0103 1.0577 0.6068 0.3881 0.5465 0.6675 0.5858
b̂1 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0003 0.0009
b̂2 0.1183 0.1213 0.1069 0.1174 0.1208 0.0953 0.0929 0.0807 0.1008 0.0977 0.1188 0.1152
b̂3 0.2462 0.2397 0.2405 0.3571 0.2434 0.2404 0.1559 0.2757 0.3136 0.2594 0.3150 0.2702

Barents Sea

α̂ 0.4986 0.5133 0.5107 0.5413 0.5488 0.4933 0.4507 0.4559 0.4707 0.4669 0.4803 0.4843
θ̂ 0.9661 0.9487 0.8305 0.5765 0.3040 0.2488 0.1883 0.2906 0.5665 0.7997 0.8584 0.9433
η̂ 4.7000 5.8000 4.3000 2.6000 3.0000 2.8000 3.5000 5.5000 4.2000 5.5000 4.5000 4.2000
ρ̂ 2.9347 2.6910 2.5452 2.1109 1.4558 1.3325 1.0379 0.8936 1.7283 2.1350 2.5562 2.9127
β̂ 1.5811 1.3666 1.5149 1.6801 1.3245 1.4196 1.2732 1.0665 1.3869 1.3648 1.5585 1.7025
â1 1.8171 1.7719 1.5598 1.5329 1.6732 1.6174 1.7606 1.7150 1.7888 1.7564 1.5770 1.2496
â2 0.2310 0.2785 0.4318 0.3924 0.2296 0.3146 0.1485 0.2137 0.2026 0.2646 0.4363 0.7552
â3 0.5935 0.5273 0.4318 0.4651 0.6806 0.5034 0.8535 0.6759 0.6839 0.5580 0.3920 0.2730
b̂1 0.0055 0.0036 0.0087 0.0024 0.0001 0.0033 0.0001 0.0021 0.0001 0.0022 0.0002 0.0001
b̂2 0.1949 0.2133 0.1950 0.1729 0.1379 0.1579 0.1116 0.1676 0.1101 0.0933 0.1158 0.1624
b̂3 0.3676 0.4066 0.4546 0.5172 0.4072 0.7087 0.3662 0.7300 0.2851 0.2871 0.2991 0.2724

established partly by applying the probability plot. Since the probability plot is first and
foremost meant to indicate whether or not the distribution which is being tested might
be a good fit, another method should yield more accurate results. For these two reasons,
it was of interest to look at another distribution, namely the 3-parameter Weibull distri-
bution and estimate parameters by the Method of Moments. The 3-parameter Weibull
distribution is according to [3] given as

fHs(hs|ρ,β,λ) =
β

ρ

(
hs−λ

ρ

)(β−1)

exp

[
−
(

hs−λ

ρ

)β
]
, hs ≥ λ (16)

Method of Moments This is a method which uses the expressions of the moments
of the distribution. These moments represent the properties of a distribution, and the
moments which are needed to describe the Gaussian distribution are presented in Table
5.
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Table 5: Moments of a distribution

Moment no. Meaning Mathematical expression

1st Expected value E[X ] = 1
N ∑

N
i=1 xi

2nd Variance VAR[X ] = 1
N ∑

N
i=1(xi−E[X ])2

3rd Skewness γ1 =
1
N ∑

N
i=1(xi−E[X ])3

(VAR[X ])3/2

4th Kurtosis γ2 =
1
N ∑

N
i=1(xi−E[X ])4

(VAR[X ])2

The moments of the 3-parameter Weibull distribution are given in Bury [3] as

E[Hs] = λ+ρ Γ

(
1+

1
β

)
(17)

VAR[Hs] = ρ
2
[

Γ

(
1+

2
β

)
−Γ

2
(

1+
1
β

)]
(18)

γ1 =
Γ

(
1+ 3

β

)
−3Γ

(
1+ 1

β

)
Γ

(
1+ 2

β

)
+2Γ3

(
1+ 1

β

)
[
Γ

(
1+ 2

β

)
−Γ2

(
1+ 1

β

)]3/2 (19)

where the gamma function is defined as Γ(u) =
∫

∞

0 zu−1 exp(−z)dz. The 4th moment
(kurtosis) is not relevant here, since we are only looking to estimate 3 parameters. The
method works in such a way that if one can calculate the mean, variance and skewness
from a sample, one can use the expressions above and solve these for the parameters
ρ, β and λ. In order to acquire a satisfactory accuracy, a rather large sample is needed,
which is certainly the case here, considering that the hindcast data consists of 166053
observations, representing a time span from 1957 until 2014.

Algorithm and results The parameters were established by a MATLAB script which
is found in the folder ”3 par Wei f Hs”. The script employs the following algorithm:

1. Hs is sorted by month. Data is sorted into a table where there are 12 columns, each
column containing the entire collection of data corresponding to that particular
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month.

2. The mean, variance and skewness of Hs is determined by using the expressions in
Table 5.

3. The skewness is determined by Equation 19, using a range β values. This is then
compared to the skewness calculated from the actual data sample, and when a
match is found, an estimator of β, β̂ is established. This is illustrated in Fig-
ure 18. The 12 vertical lines represent the 12 months. A match corresponds to
intersections between vertical lines and red curve.

4. With β̂ established, ρ̂ can be established from Equation 18 using the variance
found from the data. Finally, λ̂ can be established from Equation 17, using the
mean calculated from the data.

The estimators are found in Table 6, and the corresponding distributions are found in
Figures 19 and 20. It can be seen that the monthly distributions for Haltenbanken in-
clude larger values of Hs than for the Barents Sea, meaning that the wave climate is
worse for Haltenbanken. In order to illustrate how the distribution fits the observations,
probability plots which correspond to values of July are shown in Figures 21 and 22.
Notice that the distribution is only defined for values of hs ≥ λ. In this case, λ̂ = 0.7033
for Haltenbanken and λ̂ = 0.5827 for the Barents Sea. It is clear that the 3-parameter
Weibull distribution fits the higher part of the observations very well while it deviates
quite a bit in the lower part. This is the strength and the weakness of the 3-parameter
Weibull distribution in the case of evaluating significant wave heights. Since, for the
most part, the largest values of Hs are the most crucial, the distribution is of practical
application. One should of course keep in mind that if one is dealing with a structure or
something else which is sensitive to small values of Hs, a different distribution such as
the LoNoWe distribution should be considered.
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Figure 18: Estimation of β of 3-parameter Weibull distribution, Haltenbanken

Table 6: Estimated parameters for monthly marginal distributions of Hs.

Months 1 2 3 4 5 6 7 8 9 10 11 12
Haltebanken

ρ̂ 2.7087 2.7173 2.5455 1.5703 1.0487 0.8625 0.8701 0.9237 1.5897 2.1052 2.2210 2.7054
β̂ 1.3742 1.4156 1.4771 1.2060 1.1054 1.0667 1.1551 1.1140 1.1832 1.3180 1.3051 1.4519
λ̂ 1.3103 1.1489 0.9323 0.9553 0.7948 0.8046 0.7033 0.7275 0.8391 1.0305 1.2390 1.2566

Barents Sea
ρ̂ 2.2825 2.1289 1.9776 1.7671 1.1134 0.9538 0.7970 0.7544 1.2996 1.6361 1.9055 2.2401
β̂ 1.3934 1.2855 1.3732 1.5027 1.1913 1.2041 1.1633 0.9912 1.2474 1.2537 1.3454 1.4645
λ̂ 0.8879 0.9677 0.7945 0.4504 0.5190 0.5502 0.5827 0.7329 0.7582 0.9595 0.8968 0.8518
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Figure 19: Monthly 3-parameter Weibull distributions of Hs for Haltenbanken
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Figure 20: Monthly 3-parameter Weibull distributions of Hs for Barents Sea
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Figure 21: Probability plot, 3-parameter Weibull, July in Haltenbanken
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Figure 22: Probability plot, 3-parameter Weibull, July in Barents Sea
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2.6 Extreme Sea States

Determining extreme values of certain physical quantities is very often of high interest,
and such information is often part of a typical Metocean Design Basis. Extreme values
of Hs can be determined according to regulations which are set by the authorities. In this
project, the standards of NORSOK [25] have been used. These standards, or criterias,
are called Ultimate Limit State (ULS) and Accidental Limit State (ALS) criterias. These
are part of a limit state design, also known as load and resistance factor design. ULS and
ALS correspond to probabilities of 0.01 and 0.0001, respectively. One can of course use
any probability for that matter. The probabilities represent return periods of the physical
quantity. In the case of significant wave heights, a probability of 0.01 describes a sea
state which returns, on average, every 100 years

( 1
100 = 0.01

)
.

If the distribution of fHs(hs) has been established, one can determine the extreme sea
states by manipulation of the equation. This is in essence the Design Wave Method,
a method which seeks to determine a sea state corresponding to a criteria such as the
ULS. The marine structure which is under consideration is then designed to withstand
such a severe sea state as the one corresponding to the ULS criteria.

Method The procedure which has been used in this project is described in Myrhaug
[23, p. 43-44]: The extreme value of hs which is exceeded once during M years (i.e. a
sea state which has a return period of M years), hs,M, is calculated by

P[Hs > hs,M] = 1−FHs(hs,M) =
1
N

(20)

where N = number of sea states during M years. Equation 20 states that the probability
that the wave hs,M is exceeded once during M years is equal to 1/N. The Weibull
distribution is

FHs(hs) = 1− exp

[
−
(

hs

ρ

)β
]

(21)
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which inserted in 20 yields

exp

[
−
(

hs,M

ρ

)β
]
=

1
N

(22)

hs,M = ρ [ln(N)]
1
β (23)

We have values of hs corresponding to every third hour and therefore there are N =
365·24

3 = 2920 values of hs (three hour sea states) in one year, and this yields

hs,M = ρ

[
ln
(

1
2920

)] 1
β

(24)

If a 3-parameter Weibull distribution is employed the expression will be slightly differ-
ent:

hs,M = ρ

[
ln
(

1
2920

)] 1
β

+λ (25)

An alternative to the expression above, and which is used in the following, is

hs,q = ρ

[
ln
( q

2920

)] 1
β (26)

Here, hs,q is the significant wave height which is exceeded once during q−1 years. From
equation 26 one can calculate the extreme values which are sought for.

Results Table 7 displays the extreme values which were produced during the project
thesis, found by using the LoNoWe distribution of fHs . Corresponding Tp values are
also given in this table. Furthermore, extreme values corresponding to each month,
calculated from the monthly distributions presented in Section 2.5 are found in Table 8.
As we can see, the tendencies concur with the ones found in Table 7, that is to say the
wave climate is worse for Haltenbanken than for the Barents Sea. In addition to this we
can see that that the values of Hs are smallest for the summer months and largest for
the winter months, which is of course of no surprise. However, it is worth noticing that
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for Haltenbanken, the value of Hs is decreasing as the year goes by from January until
July, while on the other hand, this seems to be more random for the Barents Sea. For
example, February is worse than January, and August is worse than September for the
ALS criteria for the Barents Sea. Lastly, it is seen that the largest values of extremes
found from the 3-parameter Weibull distribution are larger than the largest found from
the LoNoWe distribution. However, it is questionable whether or not it is reasonable
to compare the values of these two tables since one of them represents values found
from monthly distributions while the other table represents values found from the entire
collection of data (the entire year). Therefore, the parameters of a yearly (considering
all values of Hs) 3-parameter Weibull distribution for Hs were estimated, and these are
shown in Table 9. These were also estimated using the method of moments, employing
the same steps taken to produce the monthly distributions. It is seen that the values
are as with the monthly distributions slightly larger than the values found by LoNoWe
distribution. Based on the fact that it is known that a 3-parameter Weibull distribution
can better predict the higher range of Hs values, and that the method of moments is a
more accurate method (especially considering that we have a large sample), it is quite
likely that the LoNoWe distribution underpredicts extreme values of Hs. In other words,
the LoNoWe distribution is likely a conservative model.

With the possibility of comparing the monthly distributions with the distribution for the
whole year it is interesting to see that there are larger extreme values found from the
monthly distributions than for the entire year. It should especially be noticed that the
largest monthly value found in the Barents Sea is 19.5 metres (corresponding to the ALS

criteria), found in the month of February. On the other hand, the largest extreme found
from the distribution for the whole year, for the Barents Sea, is 18.2 (corresponding to
the ALS criteria). By this one can understand that the monthly distributions can reveal
valuable information.

The algorithm which calculates the extreme values is found in the same script that cal-
culates the parameters, which is found in the folder ”3 par Wei f Hs”.
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Table 7: Extreme Values of Hs from LoNoWe Distribution

Extreme values of Hs from LoNoWe Distribution
Area q Hs[m] Tp[s] 90% interval

Haltenbanken

0.01 (ULS) 16.7 18.2 17.2-19.3
0.0001 (ALS) 21 20.2 19.5-20.9

0.1 14.3 17.1 15.8-18.5
0.63 12.4 16.1 14.5-17.8

Barents Sea

0.01 (ULS) 14.2 18.1 16.4-20.0
0.0001 (ALS) 18 20.9 19.3-22.7

0.1 12.2 16.6 14.8-18.8
0.63 10.5 15.4 13.3-17.7

Table 8: Monthly Extreme Values of Hs from 3-parameter Weibull distribution

Months 1 2 3 4 5 6 7 8 9 10 11 12
q Hs [m]

Haltenbanken

0.01 (ULS) 17.1 16.3 14.1 12.8 10.4 9.27 7.79 8.97 13.5 14.4 15.5 15.5
0.0001 (ALS) 21.5 20.3 17.5 16.6 13.7 12.4 10.2 11.9 17.6 18.2 19.6 19.2
0.1 14.8 14.1 12.3 10.8 8.63 7.67 6.54 7.48 11.4 12.3 13.2 13.5
0.63 12.8 12.3 10.8 9.21 7.22 6.37 5.52 6.27 9.64 10.6 11.4 11.8

Barents Sea

0.01 (ULS) 14.1 15.3 12.5 9.53 9.33 7.81 7.03 9.71 9.9 12.3 12.5 12.6
0.0001 (ALS) 17.6 19.5 15.7 11.7 12.1 10.1 9.19 13.3 12.7 15.8 15.8 15.6
0.1 12.2 13 10.8 8.33 7.87 6.61 5.91 7.92 8.42 10.5 10.8 11
0.63 10.6 11.2 9.35 7.31 6.67 5.61 4.99 6.49 7.19 8.97 9.3 9.61

Table 9: Extreme Values of Hs from 3-parameter Weibull distribution

q Hs [m] Parameters for 3 p. Weibull

Haltenbanken

0.01 (ULS) 17.2 ρ̂ 1.6694
0.0001 (ALS) 22.0 β̂ 1.2074
0.1 14.7 λ̂ 0.6288
0.63 12.6

Barents Sea

0.01 (ULS) 14.2 ρ̂ 2.0782
0.0001 (ALS) 18.2 β̂ 1.2219
0.1 12.1 λ̂ 0.7174
0.63 10.4
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2.7 Determining extreme response by a contour plot

When designing a structure such as a permanent offshore rig which is to operate in a
certain area, it is necessary to determine the extreme structural response. One can then
consider the extreme values which are presented in Section 2.6, but these values might
not give the extreme structural response. Therefore, other methods should be consid-
ered, taking Tp into account. The reason why one should consider Tp as well as Hs is
due to the fact that a certain wave period might cause a greater load on the structure
than an extreme wave height. This is known as resonance, a phenomenon that consists
of a given system being driven by external forces to oscillate with greater amplitude at
some preferential frequencies ([28]). NORSOK [25] recommends producing contour
plots which are functions of both Hs and Tp (other combinations could also be of rel-
evance, e.g. taking current into consideration). These contour plots, or contour lines,
should correspond to the ULS and ALS criterias, i.e. contour lines which correspond to
the 100 and 10 000 year extreme sea states. When such a plot is produced, one should
investigate points along the contour, i.e. investigate what kind of response the various
sets of [Hs,Tp] will produce.

One way of creating the contour lines is by using the Inverse First Order Reliability

Method (IFORM), as described in Haver [10, p. 85]. The method includes the following
steps:

1. The probability of exceeding the value of Hs corresponding to the ULS criteria is
established: P[Hs > hs,ULS] = 1−FHs(hs,ULS) =

1
N = 1

100·365·24
3

= 3.42 ·10−6.

2. The corresponding value of x in Gaussian space is established:

P[X > x] = 1−F(x|µ,σ) = 3.42 ·10−6

P[X ≤ x] = F(x|µ,σ) = 1−3.42 ·10−6 = 0.9999965

x = F−1(p = 0.9999965|µ,σ)

3. The absolute value of x can be considered as the radius r of a sphere in Gaussian
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space. It is found by employing the inverse Gaussian cumulative distribution:

µ = 0,σ = 1

→ x = r = F−1(p = 0.9999965|0,1) = 4.5

Figure 23 illustrates the probability under the Gaussian probability distribution function
(PDF) curve (the Gaussian PDF is defined in equation 27, from Walpole [29, p. 173]),
which practically covers the entire area, and the value of the radius (r = 4.5). The
Gaussian contour line, a sphere, is illustrated in Figure 24.

f (x|µ,σ) = 1
σ
√

2π
exp
[
−(x−µ)2

2σ2

]
(27)

Finally, the points on the Gaussian sphere are transformed into physical space by using
the Rosenblatt-transformation:

F(u1) = FHs(hs) = 1− exp

[
−
(

hs

ρ

)β
]

(28)

→ hs = ρ [− ln1−F(u1)]
1
β (29)

F(u2) = FTp|Hs(tp|hs) =
1
2
+

1
2

er f
[

ln(tp)−µ(hs)√
2σ(hs)

]
(30)

→ tp = exp
[
(
√

σ ·u2)+µ
]

(31)

Each value of U1 and U2 yield a value of Hs and Tp, producing the contour lines which
are sought for. Such contour plots for Haltenbanken and the Barents Sea are presented
in Figures 25 and 26. With this plot one can investigate the different sets [Hs,Tp] along
the contour line. Each set of Hs and Tp yields a structural response, and the structure
should according to regulations set by NORSOK be able to withstand what is considered
the worst of these.
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Figure 25: Contour plot, Haltenbanken
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2.8 Duration of good and bad weather windows

In connection to marine operations, it is of high interest to establish information about
the duration of good and bad weather windows. Good weather windows are periods
of time where there are no occurences of waves larger than a chosen threshold. If one
has information of these weather windows, it is easier to plan when and where a ma-
rine operation can happen. In this project, waves have been defined as the phenomenon
of interest, but it can be of interest to define weather windows in terms of other phe-
nomenons such as wind or current. Figure 27 illustrates the definitions of the duration
of good and bad weather windows which are found in Nielsen [24, p. 29]). The terms
”calm” and ”storm”, and ”good” and ”bad” weather windows, are used throughout the
report. The Figure illustrates registered values of Hs, which are recorded every third
hour. Between t1 and t2, all recorded values of Hs are below the threshold value H

′
s of

2 metres, i.e. this period is a calm period, denoted τc. On the other hand, between t2
and t3, all recorded values of Hs are above H

′
s, i.e. it is a stormy period, denoted τs. The

threshold value H
′
s, which will of course play a huge role in determining the weather

windows, can vary quite a lot, dependent on what kind of operation one is looking at.
Table 10 gives an overview of different marine operations and their operational limits.

The following sections present the average duration of both calms and storms and the
distributions for the duration of calms and storms. Both Haltenbanken and the Bar-
ents Sea have been investigated, and different techniques have been used in different
MATLAB scripts, which are located in the folder ”Weather Windows”.

2.8.1 Average Duration of Calms

In connection to planning marine operations, the monthly average duration of a calm,
denoted τ̄c is valuable information. The average duration of a calm must be of such
length that it seems feasible perform the operation in that particular month

What is the average duration of a calm in July, given a threshold of Hs = 2 metres? What
about January? In the following, such an investigation is presented.

34



Table 10: Table found in Nielsen [24, p. 31]: Approximate operational limits for some
marine operations

Heave double
amplitude <(m)

Roll / pitch double
amplitude <(deg) Hs < (m)

Semisubmersible
Drilling
Running casing
BOP and riser handling
Mooring

4
2
1.5

10
7
2

3
Drill ship (head seas)
Drilling
Running casing
BOP and riser handling

5
4
3.5

Large crane vessel
Mooring
Piling

3
4

Pipeline repair, large water depth
Inspection

Large monohull
Large semisub

Install welding habitat
Large monohull
Large semisub

4
7

2
4
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Figure 27: Definition of storms and calms

Method A MATLAB script called average duration.m was created in order to solve
the task. First, the script uses the function years.m to fetch and sort all values of Hs by
month. By doing this, the data is better organized, which in turn makes it easier to design
the script. The function years.m takes Hs data and sorts it into one three dimensional
array called years. This array contains 58 two dimensional arrays, representing 58 years
of data. Array number 1 is 1957 while array number 58 is 2014. In each two dimensional
array (each year), there are 12 columns which represent the months of the year. Table
11 shows one of these years. The script years.m has been used in most scripts for this
project.

Secondly, the script inspects every column (month) and determines the number of calms
by using a series of logical if statements along with variables which are set to ”true”
or ”false” (0 or 1). These variables tell the script whether the last observation was a
calm or a storm (if the value was below or above H

′
s), and in this way contributes in

determining the length of the calms. Each observation which is below the threshold
value adds another three hours in a calm because there are three hours between every
observation. In order to determine the average duration of a calm of e.g. May, every
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Table 11: Values of Hs for 1959, sorted by month

1959

Observation no.
Months

1 2 3 4 5 6 7 8 9 10 11 12
1 2.5 2.3 8.1 6.1 1.6 1.5 1.2 0.9 1.8 1.9 3.8 4
2 2.3 2.3 7.5 5.5 1.5 1.6 1.1 1 2 1.9 3.9 3.5
3 2.2 2.5 6.8 4.9 1.5 1.6 1 1 2.2 1.8 3.4 3.1
4 2.1 3.2 6 4.2 1.6 1.6 0.9 0.9 2.1 1.7 2.9 2.8
5 2.1 4.2 5.4 3.7 1.9 1.6 0.9 0.9 1.9 1.7 2.6 2.7
6 2.2 4.9 5 3.4 2.3 1.6 0.9 0.8 1.8 1.8 2.5 2.8
7 2.2 5 5 3.1 2.8 1.5 0.8 0.8 1.7 1.8 2.7 3
8 2.2 4.6 5.4 3 2.8 1.4 0.8 0.8 1.5 1.8 3.1 3.1
9 2.2 4.2 6 3.1 2.4 1.3 0.9 0.7 1.4 1.8 3.5 3
10 2.1 3.8 6.3 3.3 2 1.2 0.9 0.7 1.3 1.8 3.8 3.1
11 2 3.5 6.4 3.3 1.8 1.2 1 0.7 1.3 1.8 4.1 3.1
12 2 3.5 6.5 3.2 1.7 1.2 1.1 0.7 1.2 1.9 4.4 3
...

...
...

...
...

...
...

...
...

...
...

...
...

237 3.6 0 2.2 2.6 2.1 2 1.1 1.6 1.9 1.2 2.8 4.7
238 3.6 0 2.4 2.2 2.3 1.8 1 1.6 1.9 1.2 3.4 4.9
239 3.7 0 2.7 1.9 2.5 1.5 0.9 1.6 1.9 1.2 4 5
240 4.1 0 2.9 1.7 2.4 1.4 0.8 1.5 1.9 1.2 4.2 5.2
241 4.3 0 3 0 2.3 0 0.8 1.4 0 1.3 0 5.1
242 4.3 0 2.9 0 2.2 0 0.7 1.6 0 1.3 0 5.9
243 4 0 2.8 0 1.9 0 0.7 1.7 0 1.2 0 6.3
244 3.9 0 3.1 0 1.6 0 0.7 1.6 0 1.5 0 5.7
245 3.7 0 3.6 0 1.3 0 0.7 1.7 0 1.9 0 5
246 3.3 0 4.1 0 1.1 0 0.8 1.8 0 2.4 0 5
247 2.9 0 4.7 0 1.1 0 0.8 1.8 0 2.9 0 5.2
248 2.6 0 5.6 0 1.2 0 0.9 1.8 0 3.3 0 5.1
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calm corresponding to this month is added together and divided by the total number of
calms. Additionally, the worst and best months are determined by evaluating the calms
of each year.

Results Figure 28 displays the average duration of calms for all months for Hal-
tenbanken and the Barents Sea, given H

′
s = 2 metres. The longest average durations

of calms are found in the summer months, which is of no surprise. The average duration
of a calm in July at Haltenbanken is roughly 110 hours, while it is roughly 135 hours in
the Barents Sea, implying that the conditions are more difficult at Haltenbanken. The
variation of the length of calms for both areas is displayed in Figure 29, where the worst,
mean and best months are plotted. The variation is quite similar for both, with the ex-
ception of august in the Barents Sea, which deviates significantly from the same month
at Haltenbanken.
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Figure 28: Average duration of calms for Haltenbanken (left) and the Barents Sea
(right), using a threshold of Hs = 2m

Durations of calms were also calculated using a threshold of five metres. Results are
shown in Figure 30. The average duration of calms in July is nearly 700 hours, which
means that on average, there will be calms with a time span of almost one entire month
(30 days · 24 hours = 720 hours). In other words this means that on average you will
very rarely see Hs larger than five metres in July. The variability is illustrated in Figure
31. It is seen that almost all of the best months are of the same value (between 720 and
744 hours). The reason for this is that, with such a large threshold value (Hs = 5m), the
best calms, i.e. the best months, will almost always have a calm of nearly the time span
of the entire month.
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Figure 29: Worst, average and best duration of calms, Haltenbanken (left) and the
Barents Sea (right), using a threshold of Hs = 2m
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Figure 30: Average duration of calms for Haltenbanken (left) and the Barents Sea
(right), using a threshold of Hs = 5m

Figure 31 shows that the variability of some months is large. The average duration of a
calm in December is relatively short, as we can see from Figure 30. But Figure 31 shows
that there are some months which have calms which last the entire month of December.
In December 2009, there was a calm in the Barents Sea which lasted the entire month
(31 days · 24 hours = 744 hours), which is the best month of all months of December. It
is easy to verify that this is true, by entering the data. The array years(:,12,53) represents
December of year number 53 (2009), and the colon sign means that the entire column,
i.e. all the data of this month, is looked at. By inspecting the column it goes to show
that there are in fact no values of Hs larger than five metres. This is illustrated in Figure
32.
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Figure 31: Worst, average and best calms, Haltenbanken (left) and the Barents Sea
(right), using a threshold of Hs = 5m
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2.8.2 Average Duration of a Storm

Instead of looking at the average duration of a good weather window, how about con-
sidering the average duration of a bad weather window? As mentioned above, such a
window is defined as a window where registrations are above the threshold value, i.e.
above the acceptable value, and such a period of registrations is defined as a storm. It
is of interest to know how long on average a storm will last when it first occurs. By
having this information one can determine how long one is likely to be forced to sit and
wait for the operation to get back on track. Operation costs include numerous expenses,
and these are usually of a large scale in terms of marine operations. Hereunder lies
crew salary, fuel consumption, rent of equipment, etc. By this one can understand that
in terms of economy, information of the duration of stormy periods is useful. It is of
course possible to get an indication of the duration of a storm based on the duration of
a calm, which was established in Section 2.8.1, but here an accurate investigation has
been performed.

Results The task was solved by using the script average duration.m, i.e. the same
script as in Section 2.8.1. This script was originally designed to establish both calms
and storms. As in Section 2.8.1, figures of the average duration of calms and storms
and their corresponding varations are presented, found in Figures 33 through 36. The
results show that the conditions are significantly more severe for Haltenbanken than the
Barents Sea, in particular for the winter months. When the threshold is increased to five
metres, the difference is not as significant. We can observe in Figure 35 that the average
duration of a storm is more uniform for the Barents Sea than it is for Haltenbanken. It
must be emphasized that in terms of storms, the best are considered to be the ones with
the shortest duration, which is the opposite case of the best calms, which are considered
to be the longest calms.

2.8.3 Describing the duration of calms and storms by a 2-parameter Weibull distribution

The subject of establishing parameters of a long term join distribution for Hs and Tp

was briefly discussed in Section 2.4.1. This subject is relevant in this section as well.
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Figure 33: Average duration of storms for Haltenbanken and the Barents Sea, using a
threshold of Hs = 2m
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Figure 34: Worst, average and best duration of storms, Haltenbanken and the Barents
Sea, using a threshold of Hs = 2m
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Figure 35: Average duration of storms for Haltenbanken and the Barents Sea, using a
threshold of Hs = 5m
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Figure 36: Worst, average and best duration of storms, Haltenbanken and the Barents
Sea, using a threshold of Hs = 5m

With the calms established, is there any distribution which could describe the duration
of these? Some theory on the subject is discussed in Nielsen [24, p. 32]: ”Based
on empirical data it is found that the cumulative probability of the duration of a calm
period may be written as a two parameter Weibull distribution”:

Fτc(t) = P[τc ≤ t] = 1− exp

[
−
(

t
ρ

)β
]

x≥ 0 (32)

The expression above represents the probability that a calm is below or equal to t. ρ is
the scale parameter and β is the shape parameter. Here, it should be emphasized that τc

is the duration of a calm and not the average duration of a calm, τc.

The methods and calculations which were performed in order to determine both yearly
and monthly 2-parameter Weibull distributions are presented in Section 2.8.3 and Sec-
tion 2.8.3. The threshold value H

′
s is equal to two metres throughout all calculations.

Probability plot In order to see whether or not the Weibull distribution (Equation 32)
can be a possibility for describing the calms, a probability plot is a useful tool. As
stated in Section 2.4.1, the probability plot is a plot where the y-axis is a linearization
of the cumulative distribution and the x-axis is the natural logarithm of the data. The
cumulative distribution function (CDF) for the calms is obtained by

Fτc(t) = P[τc ≤ t] =
ni

N +1
t ≥ 0 (33)
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ni is the number of calms lower than or equal to t and N is the total number of calms. The
CDF is displayed in Table 12. As we can see, the intervals, or values of t, were chosen
to be of lengths of 10 hours. Total number of calms is 3891. This table was obtained
using the function prob under t func.m, which in turn uses the function durationz.m.
The latter establishes the calms, while the first investigates whether or not the calm is
below or equal to t. In this manner the number of calms below t, ni, is determined. When
the CDF had been established, the next step was to use this in the probability plot. As
mentioned, this paper has some special axes. Since this was a Weibull probability plot,
the y-axis is ln(− ln(1−Fτc(t))) and the x-axis is ln(t). The reason is because the CDF

is linearized:

Fτc(t) = 1− exp

[
−
(

t
ρ

)β
]

− ln(1−Fτc(t)) =
(

t
ρ

)β

ln(− ln(1−Fτc(t))) = β ln(t)−β ln(ρ) (34)

The left hand of the last equation can be regarded as ”y” and the right hand side as ”ax
+ b” in the linear equation ”y= ax + b”.

ln(− ln(1−Fτc(t)))︸ ︷︷ ︸
”y”

= β ln(t)︸ ︷︷ ︸
”ax”

−β ln(ρ)︸ ︷︷ ︸
”b”

We can now see that the term ”N + 1” is used to avoid infinite values because
ln(− ln(1− 1)) = ∞. If the probability plot, ln(− ln(1−Fτc(t))) versus ln(t), yields
a somewhat straight line, the data might fit a Weibull distribution. Furthermore, one
can perform linear regression in order to find estimates of the parameters of the Weibull
model.

The probability plot which was established is illustrated in Figure 37, and the data is
plotted together with a curve fit. The curve fit was done by using the built-in MAT-

LAB function fit, which can use a various number of methods. In this case, Method of
Least Squares was chosen. Finally, with the parameters a and b of the linear curve fit
established, the parameters of the distributions, β and ρ, could be established by the
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following relations:

β = a = 0.7925

ρ = exp
[
−b

β

]
= exp

[
−−3.0993

0.7925

]
= 49.9338

The PDF is plotted in Figure 38, while the CDF is plotted in Figure 39. In order
to verify that the parameters are reasonable, τ̄c was calculated using the established
Weibull distribution and the script average duraton.m which uses the data directly:

Weibull estimator : τ̄c = E[τc] = ρ Γ

(
1+

1
β

)
= 49.9338 ·Γ

(
1+

1
0.7925

)
= 56.96 hours

data : τ̄c = E[τc] = 56.26 hours

Further comparison was done by calculating some numbers using the Weibull CDF

(found in Figure 38) and comparing these results to the CDF found from the data. This
is found in Table 13. One can see that there are discrepancies here. In reality it is difficult
to describe a phenomena perfectly, and one might have to accept small discrepancies.
The important thing is that the distribution can represent the part which is the most
interesting, well enough. If the upper part of the distribution (the largest values) are
of interest, then it is important that the chosen distribution can represent the largest
values with sufficient accuracy. With that being said, the method of using a probability
plot is in most cases only used as a test to see whether or not the phenomena might be
described by the proposed model. Therefore, the next chapter will look into estimation
of parameters by a different method, assuming that the 2-parameter Weibull distribution
is satisfactory.
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Figure 38: 2-parameter Weibull PDF for the duration of calms, Haltenbanken
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Table 12: Cumulative Distribution Function of Calms

t ni N +1 P[τc ≤ t] = ni
N+1

5 271 3892 0.0696
15 1320 3892 0.3392
25 1847 3892 0.4746
...

...
...

...
395 3864 3892 0.9928
405 3867 3892 0.9936
...

...
...

...
745 3891 3892 0.9997

Table 13: Comparing results from data and Weibull, parameters found by probability
plot

t P[τc ≤ t], data P[τc ≤ t], Weibull
5 0.0696 0.1491
25 0.4746 0.4389
55 0.7094 0.6603
105 0.8623 0.8351
455 0.9961 0.9969
705 0.9997 0.9997
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Figure 39: 2-parameter Weibull CDF for the duration of calms, Haltenbanken
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Estimating parameters using the Method of Moments As stated in Section 2.8.3, a
probability plot is only used as an indication as to whether or not a phenomena might be
described by a certain model. In this case, a 2-parameter Weibull model was proposed
to describe the duration of calms. Since the indication was strong, further estimation
of parameters using different and more accurate methods was relevant. Method of Mo-
ments is a common method, which uses expressions for the mean and variance of a
distribution in order to estimate parameters of the distribution. According to [22], the
moments of the 2-parameter Weibull distributions are given as

E[τc] = ρ Γ

(
1+

1
β

)
(35)

VAR[τc] = ρ
2
[

Γ

(
1+

1
β

)
−Γ

2
(

1+
1
β

)]
(36)

Since both the mean and variance can be calculated from the hindcast data, the parame-
ters can be calculated by the following method: First, the standard deviation is divided
by the mean:

ST D[τc]

E[τc]
=

√
ρ2
[
Γ

(
1+ 1

β

)
−Γ2

(
1+ 1

β

)]
ρ Γ

(
1+ 1

β

)

=

√[
Γ

(
1+ 1

β

)
−Γ2

(
1+ 1

β

)]
Γ

(
1+ 1

β

) (37)

Notice that the parameter ρ is now out of the equation, leaving only one unknown vari-
able which is β. Secondly, the ratio of the standard deviation and the mean is moved to
the right of the equality, giving the following√[

Γ

(
1+ 1

β

)
−Γ2

(
1+ 1

β

)]
Γ

(
1+ 1

β

) − ST D[τc]

E[τc]
= 0 (38)

With this expression one can find the estimator β̂ by iteration. The estimator is estab-
lished by trying with different values of β in the left term of Equation 38. The β value
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Table 14: Comparing results from data and Weibull, parameters found by Method of
Moments

t P[τc ≤ t], data P[τc ≤ t], Weibull
5 0.0696 0.1591

25 0.4746 0.4515
55 0.7094 0.6685
105 0.8623 0.8379
455 0.9961 0.9965
705 0.9997 0.9996

which yields the closest result to zero is chosen as an estimator for β, β̂. In Section 2.8.3
β was established by a probability plot, and it was therefore natural to start with a value
close to this. Iteration starting from β = 0.65 to β = 0.9 was done, producing the graph
found in Figure 40. In the graph one can see that the input value of β which gave zero
is roughly 0.8 (0.7723), i.e. our estimation of the parameter β is β̂ = 0.7723. ρ̂ is then
found by

ρ̂ =
E[τc]

Γ

(
1+ 1

β̂

) =
56.26

Γ
(
1+ 1

0.7723

) = 48.3731 (39)

The parameters are now inspected by evaluating E[τc]:

Weibull estimator : E[τc] = ρ Γ

(
1+

1
β

)
= 48.373 ·Γ

(
1+

1
0.7723

)
= 56.26 hours

data : E[τc] = 56.26 hours

The two values of E[τc], obtained from the Weibull distribution and the data, are now
equal. With reference to Table 13, another table comparison was done, now using the
new parameters. See Table 14. The values are closer than in Table 13, even though
there still are discrepancies. These results suggests that the parameters which have
been obtained by the method of moments are more accurate than the ones which were
obtained using the probability plot.

By using the data in such a fashion in order to determine the parameters, it is obvious
that one is in need of a sufficient amount of data in order to acquire a satisfying accuracy.
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Figure 40: Estimation of β using Method of Moments

The final product can be found in Figure 41 which illustrates the 2-parameter Weibull
PDF with the estimated parameters. With this, one can now determine how likely it is
to experience a calm of a certain length any time of the year. It is also possible to find
extreme values by the distribution of the longest calm, which is looked at in Section 3.2.

Monthly distributions of the duration of calms and storms As with the monthly
distributions of Hs, presented in Section 2.5, it is of interest to produce monthly dis-
tributions of the duration of calms and storms as well. By doing this one can obtain a
larger accuracy during relevant analyses or simulations.

Similar to the procedure in Section 2.5, the parameters of the monthly distributions were
estimated using the method of moments. First, all values of τc and τs were sorted by
month. Secondly, the mean, variance and skewness were calculated, and lastly, the pa-
rameters were estimated by the expressions for the moments. Estimated parameters for
both Haltenbanken and the Barents Sea can be found in Tables 15 and 16. Cumulative
distributions of both data and estimated parameters for Haltenbanken can be seen in
Figures 42 and 43, while the PDF’s can be seen in Figure 44. Figures 42 and 43 show
that there are not as many data points for January as there is for July, and this is due to
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Figure 41: Yearly PDF of the duration of calms, parameters estimated by method of
moments

Table 15: Estimated parameters for monthly distributions of the duration of a calm, τc.

Months 1 2 3 4 5 6 7 8 9 10 11 12
Haltenbanken

ρ̂ 23.296 26.698 31.958 41.273 63.527 80.04 94.621 84.525 43.813 34.119 26.535 24.468
β̂ 1.0519 0.9523 0.9689 0.9702 0.9363 1.0188 0.8785 0.8871 0.8417 0.9888 0.9054 1.0992

Barents Sea
ρ̂ 30.661 31.545 35.177 51.747 81.243 95.29 114.77 103.68 51.108 36.354 32.232 27.4
β̂ 0.9825 1.0768 0.9968 0.9582 0.9643 0.9216 0.9205 0.9859 0.8661 0.9256 0.9788 0.9720

the fact that sea state is more severe in January than in July. Since the sea states are more
severe, there are less calms, hence there is less data available to estimate parameters by.
This is probably why the CDF curve seem to fit better in July than in January. With
that being said, the distribution for January is useful, even though the parameters might
not be as accurate as one would have liked. In January, there is a 50 % chance that the
duration of a calm is below or equal to roughly 20 hours, while in July, there is a 50 %
chance that the duration of a calm is below or equal to roughly 60 hours.
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Table 16: Estimated parameters for monthly distributions of the duration of a storm, τs

Months 1 2 3 4 5 6 7 8 9 10 11 12
Haltenbanken

ρ̂ 131.426 117.056 92.951 54.931 33.744 30.752 31.296 30.835 52.756 81.681 101.913 139.821
β̂ 0.8929 0.8601 0.7968 0.9477 0.9657 1.0958 1.1607 1.0089 0.9085 0.9027 0.9552 0.9323

Barents Sea
ρ̂ 69.469 59.859 59.095 45.503 33.914 29.602 26.157 31.994 41.592 56.203 58.946 65.768
β̂ 0.9113 0.8263 0.9842 1.1180 1.2233 1.2902 1.2605 1.2497 1.1427 1.0080 0.9924 1.0094

=
c
 [hours]

0 50 100 150

F
=

c

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
January

Figure 42: Weibull CDF for the duration of calms, January, Haltenbanken

53



=
c
 [hours]

0 100 200 300 400 500 600 700 800

F
=

c

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
July
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3 Marine Operations

This part presents evaluations of marine operations. These have been conducted both
with and without using the Metocean Design Basis which is presented in Section 2.

3.1 Establishing a limiting pair of Hs and Tp from a critical heave motion

Section 3.1.1 presents the background for this part of the project, while Section 3.1.2
presents relevant theory for the analysis which is presented in Section 3.1.3 and Section
3.1.4.

3.1.1 Background

In connection to planning and conducting marine operations, establishing a feasible
weather window is of high importance, particularly in terms of avoiding critical loads
on the structure performing the operation, installation equipment or the structure which
is operated on. An example of this could be a ship lowering a structure to the bottom
of the ocean by a winch. In such an operation the load on the wire and the motion of
the ship would be of upmost importance to keep under control. In this part of the report
a general approach to how one can find limiting pairs of Hs and Tp corresponding to a
critical heave amplitude is presented. The outline of the master thesis reads:

”Discuss a particular operation where the critical variable is heave at midship, and

indicate how one can establish a limiting pair of Hs and Tp from the critical heave

motion.”

The following presents an analysis where limiting values of Hs and Tp are determined
by using a critical heave amplitude, response characteristics of a vessel and the hindcast
data.
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3.1.2 Theory

This section aims to establish some of the relevant theory which was used to perform
the analysis which is presented in the next section.

Evaluation has been simplified by considering a point exactly at midship (x = 0,y =

0,z= 0), see Figure 47). If one considers a point in the negative or positive x-direction of
the vessel, one must also take the pitch motion η5 into consideration. If one considers a
point in the negative or positive y-direction, the roll motion η4 must be considered. This
is understood by the equation of motion of any point on the body, defined in Faltinsen
[7, p. 41]:

s = (η1 + z η5− y η6)i+(η2− z η4 + x η6) j+(η3 + y η4− x η5)k (40)

η3 + y η4− x η5 represents the vertical motion, and we can see that both roll η4 and
pitch η5 influences the total vertical motion. Therefore, it must be emphasized that
results which are presented in the following will most certainly change if one considers
a different point on the vessel.

Since x = y = 0, Equation 40 reduces to s = η3 (considering only the vertical displace-
ment). We can then start by defining the heave process η3(t) of the structure on hand.
The definition is based on the one which is used in Pettersen [27, p. 3.5]. Figure 45
illustrates a structure with zero velocity ahead, bobbing in waves coming in straight
ahead of the structure. In this case, the motion in focus is the heave motion η3. This
motion is also illustrated in Figure 47. The waves are moving in negative x-direction,
and the waves and the heave response can be written as

ζ(t) = ζA cos(ωt + kx) Waves (41)

ζ(t) = ζA cos(ωt) Waves at midship(x = 0)

η3(t) = η3A cos(ωt + ε) Heave response (42)

The system is a linear response system, which implies that the heave process η3(t) is
linearly dependent on the wave process ζ(t), illustrated in Figure 46. This is commonly
accepted for some quantities such as heave and pitch. The difference between the wave
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process and the heave process is the phase shift ε. In Figure 46 one can observe that the
heave response comes after the waves. The wave process and therefore also the response
process is a short term process dependant on one particular sea state.

Describing the heave process by the Rayleigh distribution If the right assumptions
are made, the heave process can be described by a probability distribution function. The
following theory is found in Myrhaug [23], and the assumptions are:

1. The heave process is stationary, i.e. the mean heave response µ and variance σ2 is
constant for our sea state.

2. Gaussian: the heave process is normal distributed with mean heave response µ

equal to zero and constant variance σ2.

3. The heave process is narrow banded, i.e. all frequencies are close to ω = 2π/T .

t

z

η3
ζA ζ(x, t) = ζA cos(ωt + kx)

η3(t) = η3A cos(ωt + ε)

Figure 45: Structure in Waves

Based on these assumptions the heave process can be described by a Gaussian probabil-
ity distribution function with expected heave response equal to zero. This is plotted in
Figure 48 by the blue curve. The Gaussian distribution is written as

fη3(η3) =
1

m0
√

2π
exp
[
−(η3−µ)2

2m2
0

]
(43)

Furthermore, the heave response amplitudes η3a (the maximum values in the heave
process η3(t)) can be described by a Rayleigh distribution. The Rayleigh PDF is given
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t

η3(t) = η3A cos(ωt + ε)

ζ(t) = ζA cos(ωt)

ε

ζ(t),η3(t)

Figure 46: Wave Process and Response Process

as

fη3A(η3a) =
η3a

σ2
η3

exp

[
−1

2

(
η3a

ση3

)2
]

(44)

This is plotted in Figure 48 by the red curve. The cumulative distribution function can
be written as

Fη3A
(η3a) = 1− exp

[
−1

2

(
η3a

ση3

)2
]

(45)

The standard deviation of the heave process, ση3 , is defined as

ση3 =

√∫
∞

0
Sη3(ω)dω (46)

Sη3(ω) is the heave response spectrum, and is given by

Sη3(ω) = |RAO(ω)|2 ·S(ω) (47)

RAO is a response amplitude operator and S(ω) is a wave spectrum. The RAO is a
transfer function which describes the motion characteristics of the structure, while the
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Figure 47: Figure found in Faltinsen [7, p. 41]: Rigid-body motions modes and wave
propagation

wave spectrum S(ω) represents the sea state at hand. The RAO will be evaluated more
thouroughly in Section 3.1.3.

According to Haver [13, p. 22], Equation 47 is deducted by first considering the expres-

sion Sη3(ωn) =
η2

3a,n
2∆ω

, which is analogous to S(ω) =
ζ2

A,n
2∆ω

. Assuming a linear relationship
between waves and response, RAO(ωn) =

η3a,n
ζA,n

, we get

Sη3(ωn) =
|RAO(ωn)|2ζ2

A,n

2∆ω
=
|RAO(ωn)|2

2∆ω
S(ωn)2∆ω = |RAO(ωn)|2S(ωn) (48)

Critical Heave Amplitude Let us say that the critical heave response amplitude of
heave at midship is η3ac . In order to evaluate whether or not this value is exceeded, the
largest heave response has to be inspected. This value can be found by manipulation of
the cumulative distribution function of heave response amplitudes η3a, Equation 45. If
we have η3a1 , η3a2 , ..., η3aN during a three hour sea state, then η3amax is the largest heave
response amplitude among these N values. N, which is the number of zero up-crossing
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response cycles during these three hours, is found by

mn =
∫

∞

0
ω

nSη3(ω)dω n = 0,1,2, ... (49)

Tm02 = 2π

√
m0

m2
(50)

N =
3 hours

Tm02
=

10800 s
Tm02

(51)

Furthermore, if we assume that

1. all heave response amplitudes are identically Rayleigh distributed
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2. all heave response amplitudes are statistically independent

we can define the cumulative distribution of the largest heave response amplitude as
given in Myrhaug [23, p. 32]:

P [η3amax ≤ η3a] = P [(η3a1 ≤ η3a)∩·· ·∩ (η3aN ≤ η3a)]

= P(η3a1 ≤ η3a) ·P(η3a2 ≤ η3a) · · · · ·P(η3aN ≤ η3a)

= [P(η3ai ≤ η3a)]
N = [Fη3A(η3a)]

N

=

[
1− exp

[
−1

2

(
η3a

ση3(Hs,Tp)

)2
]]N

= Fη3amax
(52)

By that, Fη3amax
is the cumulative distribution function for the largest heave response

amplitude. In Figure 48, the PDF is plotted by the green curve.

With this it is possible to determine a limiting value of Hs and Tp by following the
formulation in Haver [13, p. 24]. If we now consider the probability of exceeding η3ac ,
we write

P [η3amax > η3ac ] = 1−

[
1− exp

[
−1

2

(
η3ac

ση3(Hs,Tp)

)2
]]N

(53)

(54)

The accept criteria is P [η3amax > η3ac]≤ q, i.e.:

1−

[
1− exp

[
−1

2

(
η3ac

ση3(Hs,Tp)

)2
]]N

≤ q (55)

The free variable is the heave standard deviation. Solving with respect to heave standard
deviation, ση3(Hs,Tp), we establish the following operational criteria:

ση3(Hs,Tp)≤
η3ac√

−2ln
[
1− (1−q)1/N

] (56)

The equation above states that as long as the standard deviation of the heave process
is smaller or equal to the term to the right in the equation, the sea state is acceptable.
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Keeping in mind that the objective of the task on hand is to show how one can establish
a limiting pair of Hs and Tp, we can find these values by evaluating ση3 . If the value
of ση3 fullfills the criteria above, one can say that the Hs and Tp values which produced
ση3 are acceptable.

The value of q has been set to 0.1 in the following analysis. This means that we define
η3a to be below η3ac 90 % of the time, which implies that there is a 10 % chance that η3a

exceeds η3ac . The reasoning behind the set value is nothing else than common sense.
Which value to choose is something which is not studied in this project. η3ac has been
set to 4 metres. Table 10 has been used as reference here. Values of both q and η3ac are
of course easily changed.

3.1.3 Case

A case with a drill ship which is to perform a marine operation at Haltenbanken was
chosen in order to discuss the subject in more detail. The theory presented in the previ-
ous section has been used to determine the response of the vessel. The critical responses
and their corresponding sea states have been compared to relevant sea states represented
by contour plots. Total sea has been used as input.

Wave Spectrum A wave spectrum was needed in order to carry out the analysis, and
Section 2.3.1 spoke briefly about wave spectrums. There exists several standardized
spectrums today, and for this case the JONSWAP spectrum was chosen: ”Numerous
models for the wave frequency spectrum have been proposed over the years. At present
the most common model is the JONSWAP spectrum” (p. 117, Haver, 2013). The JON-
SWAP spectrum is more peaked than the Pierson Moskowitz spectrum, and this is based
on research which was carried out in the North Sea. The JONSWAP spectrum for grow-
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ing wind sea is given as (Haver [10, p. 150])

S(ω) =
1

2π
H2

s Tp

(
ω

ωp

)−5

exp

[
−1.25

(
ω

ωp

)−4
]
(1−0.287lnγ) γ

exp
[
−0.5

(
ω−ωp
ωp σ

)2
]

(57)
where

γ = 42.2

(
2πHs

gT 2
p

) 6
7

(58)

and

0.07, ω≤ ωp (59)

σ =

0.09, ω > ωp

Figure 49 shows a wave spectrum with Hs = 1 metres and Tp = 5 seconds.

Verification of the MATLAB script and wave spectrum was done by the following con-
siderations:

1. Verifying that the input value of Tp corresponded with the Tp of the wave spectrum
which was produced: The spectral peak frequency, wp, is found from wp = 2π

Tp
.

The input value of wp was then compared to the peak value of the graph in Figure
49, by using a function in MATLAB which calculates the frequency corresponding
to the peak of the graph. An almost perfect match of wp = 1.27 seconds was
found.

2. Verifying that the input value of Hs corresponded with the Hs of the wave spec-
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Figure 49: Wave Spectrum, Hs = 1m and Tp = 5s

trum which was produced: This was done my calcuating m0 of the wave spectrum:

mn =
∫

∞

0
ω

nS(ω)dω ,n = 0,1,2, ...

m0 =
∫

∞

0
ω

0S(ω)dω

=
∫

∞

0
S(ω)dω (60)

As we can see m0 is the area under the graph, and this area was calculated by us-
ing the trapezoidal integration function trapz in MATLAB. Hs was then calculated
by Hs = 4

√
m0. A Hs value equal to 9.855 metres was found (the input was 1 me-
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tres). This is considered acceptable, since the trapezoidal method is a numerical
method.

Response Amplitude Operator As mentioned in the previous section, an RAO for
the structure is needed in order to determine the response spectrum Sη3(ω) and its cor-
responding standard deviation ση3(ω). An RAO is a function which represents a certain
motion characteristic of some structure. It is the ratio of the response amplitude to the
wave amplitude, η3A/ζA. In this problem the heave motion is under consideration:

Table 17: Definition of Response Amplitude Operator

Wave process: ζ(t) = ζA cos(ωt)
Heave process: η3(t) = η3A cos(ωt + ε)

RAO: η3A
ζA

For this task we chose to use an RAO for a drill ship, illustrated in Figure 50. The curve
for head seas is used, meaning that we are considering waves which are headed straight
towards the bow of ship. Head seas and beam seas (beam seas are waves which are
headed towards the side of the ship, 90◦) have a different impact on the heave response
η3, which can also be seen in the figure. According to Faltinsen [6, p. 83], the larger
response from beam seas can be understood by considering

|η3|head sea = |η3|beam sea ·
2

kL

∣∣∣∣sin
(

kL
2

)∣∣∣∣ (61)

The relation above shows that the length of the vessel L and the wave number k deter-
mines the size of |η3|head sea. L is relatively large, meaning that 2

kL is small, giving a
small value of |η3|head sea. As the wave period T increases, k decreases, increasing the
fraction 2

kL . Therefore, |η3|head sea and |η3|beam sea approach each other as the wave pe-
riod increases. For relevant wave periods, |η3|beam sea is always larger than |η3|head sea

(see Figure 50). A larger version of this figure is found in appendix B.

Points on the curve in Figure 50 were visually interpreted and stored in an array in
the MATLAB script, and the results are shown in Figure 51. Next, the points were
transformed to be dependant of frequency ω[rad/s] instead of wave period, by ω = 2π

T .
This is illustrated in Figure 52. In order to make the data more complete and the curve
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smoother, it was interpolated using an interpolation function in MATLAB. The results
are shown in Figure 53.

Figure 50: RAO for Drill Ship
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Figure 51: RAO for Drill Ship
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Figure 52: RAO(ω) versus ω
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Figure 53: RAO(ω) versus ω, interpolated

Determining acceptable pairs of Hs and Tp As stated in Section 3.1.2 we can deter-
mine a limiting pair of Hs and Tp by

ση3(Hs,Tp)≤
η3ac√

−2ln
[
1− (1−q)1/N

] (62)

An iteration process was performed, producing unique wave spectrums S(ω) from dif-
ferent pairs of (Hs,Tp) and calculating ση3(Hs,Tp) for every iteration. The iteration loop
which was used in MATLAB looks like this:

1. Hs and Tp are first set to an arbitrary value, e.g. Hs = 1 metre and Tp = 5 seconds.
We then have a wave spectrum, S(ω)

2. Sη3(ω) is determined by Sη3(ω) = |RAO(ω)|2 ·S(ω)

3. N is determined by m0, m2

4. ση3 is determined by
√∫

∞

0 Sη3(ω)dω. If this value is smaller than the right side
of Equation 62, the set of Hs and Tp is acceptable and stored in an array.

This is an iteration process which calculates ση3(Hs,Tp) for many different wave spec-
trums. This implies that each iteration starts with a value of Hs and Tp. In the total
picture, each value of Hs is combined with a series of Tp values, and it looks like this:
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1. A value of Hs, Hs1 , is combined with a series of different Tp-values (Tp1,Tp2, ...,Tpn)

2. Taking the next fixed value of Hs, Hs2 , and combining this with the same series of
different Tp-values

3. Continuing doing this until our last value of Hsm

In this fashion a large number of different sets of (Hs,Tp) are tested.

3.1.4 Results and Discussion

The iteration process took a series of values of both Hs and Tp and combined these to
produce several wave spectrums. The standard deviation of each response spectrum
was evaluated. If the criteria in Equation 62 was fullfilled, the corresponding values of
Hs and Tp were acceptable and stored. A range of Hs values from 1 to 25 metres with
increments of 0.5 metres, and a range of Tp values from 5 seconds to 30 seconds with
increments of 0.5 seconds was chosen. The combinations of these values which were
found acceptable are plotted in Figure 54. In other words, the figure illustrates the sea
states which are acceptable (blue dots), while the white space corresponds to the area of
critical sea states.

As the figure illustrates, any set of Hs and Tp is acceptable for Tp ≤ 12 seconds. From
an intuitive point of view this can be explained by evaluating what kind of effect waves
with small periods will have on the ship. If there is a rapid frequency of wave crests (a
large frequency ω) hitting the hull of the ship, the hull might experience rapid but small
movements (vibrations), but these waves will not have the ability to give a large heave
displacement of the ship. Such a large frequency corresponds to small wave periods T ,
ω = 2π

T , i.e. roughly corresponding to Tp ≤ 12 seconds. On the other hand, waves with
large periods will have the ability to give large heave displacements. Figure 55 seeks
to illustrate how waves with large wave periods can give large vertical displacements.
Such a wave, with a period of e.g. T = 15 seconds, has a length, λ, of approximately
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351 metres if we assume the deep water relation:

ω
2 = kg

ω =
2π

T
, k =

2π

λ

→ λ =
T 2

2π
g =

152

2π
9.81 = 351.3 m

(63)

The RAO and two frequency domains are illustrated in Figure 56. The blue domain
corresponds to waves with frequencies that have no effect on the ship at all. This natu-
rally corresponds to the domain where the RAO is zero (where the response is zero), i.e.
0 s < T < 4 s. There is also plotted another cut off at T = 12 seconds which signifies
where the region of some unacceptable values of Tp begins.

Another way of explaining the results is to look at the equations. Now, the value of
ση3 is the value which decides if the sea state is acceptable or not. So one is therefore
interested in evaluating this particular value, from the equation

ση3(Hs,Tp) =

√∫
∞

0
Sη3(ω)dω (64)

As we can see the value is dependent on the value of Sη3(ω), which in turn is dependent
of the RAO multiplied with the wave spectrum:

Sη3(ω) = |RAO(ω)|2 ·S(ω) (65)

It is now of interest to look at a wave spectrum with a small value of Tp (Tp ≤ 12 sec-
onds), since these are acceptable for any value of Hs. Figure 57 shows such a wave
spectrum S(ω) and its corresponding response spectrum Sη3(ω). Hs = 3.5 metres and
Tp = 10 seconds. Because the peak of S(ω) is sufficiently far to the right, S(ω) does
not coincide sufficiently enough with the RAO to produce a significant response spec-
trum Sη3(ω), i.e. yielding a small standard deviation ση3 . This is possible to observe
in the figure if one pays careful attention to the red curve which represent a small re-
sponse spectrum Sη3(ω). The area under the curve is small, which in turn, yields a small
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standard deviation ση3 , resulting in a fullfillment of the criteria in Equation 62.

Going back to Figure 54: In order to make it more helpful, a ten year contour plot of
Haltenbanken was plotted in the same figure. By doing this, one can see which severe
sea states (during a ten year period at Haltenbanken) coincides with the sea states which
the drill ship can not operate in. The result is an empty pocket in the top part of the
contour plot, which defines which relevant severe sea states that the drill ship can not
operate in. This pocket is in other words an area which defines critical sets of Hs and
Tp. For example, it is seen from the figure that the sea state [Hs,Tp] = [8m,19s] is not an
acceptable sea state to perform the operation in, nor is [Hs,Tp] = [12m,14s].
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3.2 Assessing the feasibility of a marine operation by using the distribu-

tion of the longest calm

As mentioned in previous sections, one is in many cases interested in estimating ex-
treme values. By doing this, one can for example design structures to withstand ex-
treme waves. Such waves, extreme values of Hs, and the procedure behind calculating
these were presented in Section 2.6. Extreme values are relevant in this section as well.
What is the longest expected calm for a certain month? Such information is valuable in
connection to planning marine operations.

If one is planning an operation which is to be performed in one continuous time span,
one can estimate the feasibility of performing the operation in a certain month by eval-
uating the distribution of the longest calm. A premise for performing the operation is
that the duration of the longest calm is at least as long as the duration of the operation.
If this is not the case, then it is not reasonable to perform the operation in this partic-
ular time period and area. With such information one can avoid unwanted situations,
where one might have to wait for an unwanted period of time before the operation can
be performed. By avoiding this one will of course also avoid extra costs. The follow-
ing evaluation is only carried out for the area of Haltenbanken, in order to avoid excess
work, tables and figures.

3.2.1 Theory and examples

Theory In order to determine the distribution of the longest calm one can apply the
techniques used in Section 2.6. As an example, let us consider how we can establish the
distribution of the longest calms in July. The calms are defined by the threshold value
H
′
s = 2m, and we can start by making the following assumptions:

1. we have τc1,τc2, . . . ,τcN , where τcmax is the largest among these. All observations
are found in months of July.

2. we have the distribution of calms for July (found in Section 2.8.3).

3. we can assume that all calms are equally distributed.
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4. we can assume that all calms are independent.

The last assumption is debatable, and it will probably lead to conservative results (Myrhaug
[23, p. 31]). With the assumptions above, the distribution of the longest calms can then
be determined in the following manner:

P[τcmax ≤ τc] = P[(τc1 ≤ τc)∩·· ·∩ (τN ≤ τc)]

= P(τc1 ≤ τc) · (τc2 ≤ τc) · · · · · (τcN ≤ τc)

= [P(τci ≤ τc)]
N = [Fτc(τc)]

N

=

[
1− exp

[
−
(

τc

ρ

)β
]]N

= Fτcmax
(τc) (66)

The value of N, which is the number of calms, is found from previous work presented in
Section 2.8.1 and 2.5. Firstly, the average duration of a calm in July is determined from
Figure 28 to be roughly 120 hours. Secondly, the total number of hours below 2 metres
is determined from the monthly cumulative distribution of Hs which was established in
Section 2.5. Since we are considering a small value of Hs, the Lognormal part of the
LoNoWe distribution is used:

P[Hs ≤ hs] =
1
2
+

1
2

er f
[

ln(hs)−θ√
2α

]
(67)

P[Hs ≤ 2m] =
1
2
+

1
2

er f
[

ln(2)−0.3309√
2 ·0.4285

]
= 0.80

Which means that, since there are a total of 31 · 24 = 744 hours in July, there will be
0.80 · 744 ≈ 596 hours which are below 2 metres. Finally, in order to calculate N, this
is divided by the average duration of a calm

N =
596

121.4
hours
hours
calm

= 4.9 calms (68)

In other words, there are on average roughly 5 calms in each month of July. The CDF

of the longest calm for July is then determined by applying the CDF of the duration
of calms for July, parameters ρ = 94.621 and β = 0.8785 (found in Table 15), together
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Figure 58: CDF of longest calm in July

with N = 4.9:

Fτcmax
(τc) =

[
1− exp

[
−
(

τc

94.621

)0.8785
]]4.9

(69)

This is the cumulative distribution function for the longest calm in July. The expected
longest calm is calculated by

E [τcmax ] =
∫

∞

0
τc fτcmax

dτc ≈ 232 h (70)

This is plotted together with the CDF and PDF in Figures 58 and 59.

Examples As an example, let us consider an operation with duration of 24 hours,
which is to be performed in July. We should then investigate the probability that the
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longest calm in July is below or equal to 24 hours:

P[τcmax ≤ 24] =

[
1− exp

[
−
(

24
94.621

)0.8785
]]4.9

= 0.0013

There is only a 0.13 % chance that the longest calm is below or equal to 24 hours, i.e.
there is a (1− 0.0013) = 0.9987, 99.87 % chance that the longest calm is larger than
24 hours. By this one can understand that it would be safe to say that it is reasonable
to perform the operation. On the other hand, if the operation is going to take place in
January, with a duration of 24 hours, and a limiting value H

′
s = 1m, the calculation will

be

N =
3.23
6.75

hours
hours
calm

= 0.48 calms

P[τcmax ≤ 24] =

[
1− exp

[
−
(

24
23.296

)1.0519
]]0.48

= 1.0
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In other words, there is a 100 % chance that the longest calm is below or equal to 24
hours, yielding a 0 % chance that the longest calm will be larger than 24 hours. It is
therefore not feasible to perform this operation.

3.2.2 P[τcmax > t] for various values of H
′
s and t

In the same manner as above, one can calculate the probability that the longest calm
is larger than t for a range of values of t and threshold values H

′
s. Table 18 displays

P[τcmax > t] for t = 12− 84 hours and a fixed threshold value H
′
s = 1 m, while Table

22 displays the same range of t but H
′
s = 3 m. Tables 18 through 22 show two things:

Firstly, as the value of t increases, the value of P[τcmax > t] decreases. In other words,
the longer the operation, represented by t, the more difficult it will be to perform the
operation. Secondly, as the value of H

′
s increases, P[τcmax > t] increases as well. This

means that the likelihood of performing the operation increases, which is expected, since
as the threshold value increases, one has a larger margin to operate under.

The MATLAB scripts which performs the analysis is located in the folder ”Feasibility
of Op Longest Calm”. The main script is an accumulation of almost all of the work up
until now in the report. The script uses several functions, and these functions are built
on earlier work. A flowchart for the algorithm is found in appendix D.1. The algorithm
can be described by the following steps:

1. Number of calms, N, in each month is determined by

(a) Calculating the average duration of a calm for each month, τ̄c, by calling
function avg dur func.m.

(b) Calculating the expected hours below threshold H
′
s by employing the Log-

normal part of the LoNoWe distribution FHs(hs). Monthly parameters are
fetched by the function monthly lon func.m.

(c) N is then equal to the expected number of hours below H
′
s divided by τ̄c.

2. Fetching parameters for monthly distribution of calms by using function monthly calms func.m.
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Table 18: P[τcmax > t], threshold value H
′
s = 1m

H
′
s = 1 m t

Months
1 2 3 4 5 6 7 8 9 10 11 12

P[τcmax > t]

12 0.04 0.27 0.51 0.85 0.98 1.00 1.00 1.00 0.92 0.56 0.26 0.13
24 0.00 0.05 0.21 0.49 0.87 0.92 0.95 0.94 0.68 0.27 0.05 0.01
36 0.00 0.01 0.07 0.21 0.71 0.70 0.83 0.80 0.44 0.12 0.01 0.00
48 0.00 0.00 0.02 0.08 0.54 0.44 0.64 0.62 0.26 0.05 0.00 0.00
60 0.00 0.00 0.00 0.02 0.39 0.24 0.46 0.44 0.14 0.02 0.00 0.00
72 0.00 0.00 0.00 0.01 0.28 0.12 0.31 0.30 0.07 0.01 0.00 0.00
84 0.00 0.00 0.00 0.00 0.20 0.06 0.20 0.20 0.04 0.00 0.00 0.00

Table 19: P[τcmax > t], threshold value H
′
s = 1.5m

H
′
s = 1.5 m t

Months
1 2 3 4 5 6 7 8 9 10 11 12

P[τcmax > t]

12 0.80 0.74 0.92 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.92 0.71
24 0.44 0.48 0.72 0.96 1.00 1.00 1.00 1.00 0.97 0.84 0.68 0.36
36 0.20 0.31 0.51 0.85 0.98 0.99 0.99 0.99 0.90 0.61 0.42 0.15
48 0.08 0.19 0.34 0.68 0.93 0.96 0.98 0.96 0.78 0.38 0.24 0.06
60 0.03 0.12 0.22 0.49 0.86 0.91 0.95 0.91 0.65 0.22 0.13 0.02
72 0.01 0.08 0.14 0.34 0.76 0.83 0.90 0.85 0.52 0.12 0.06 0.01
84 0.00 0.05 0.09 0.22 0.65 0.74 0.83 0.77 0.41 0.06 0.03 0.00

3. Calculating P[τcmax > t] =
[

1− exp
[
−
(

t
ρ

)β
]]N

for a range of values of t and H
′
s.
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Table 20: P[τcmax > t], threshold value H
′
s = 2m

H
′
s = 2 m t

Months
1 2 3 4 5 6 7 8 9 10 11 12

P[τcmax > t]

12 0.98 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99
24 0.85 0.88 0.97 1.00 1.00 1.00 1.00 1.00 0.99 0.98 0.93 0.87
36 0.63 0.72 0.88 0.98 1.00 1.00 0.99 1.00 0.97 0.92 0.80 0.65
48 0.42 0.55 0.76 0.94 0.99 0.99 0.99 0.99 0.93 0.82 0.64 0.43
60 0.26 0.40 0.61 0.86 0.96 0.98 0.97 0.98 0.87 0.68 0.49 0.26
72 0.15 0.28 0.48 0.77 0.93 0.96 0.95 0.95 0.80 0.55 0.36 0.15
84 0.09 0.20 0.36 0.66 0.88 0.93 0.92 0.93 0.72 0.42 0.26 0.09

Table 21: P[τcmax > t], threshold value H
′
s = 2.5m

H
′
s = 2.5 m t

Months
1 2 3 4 5 6 7 8 9 10 11 12

P[τcmax > t]

12 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
24 0.98 0.98 0.99 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.98
36 0.90 0.92 0.96 0.99 1.00 0.99 0.99 0.99 0.99 0.97 0.95 0.91
48 0.77 0.82 0.91 0.97 0.99 0.98 0.98 0.98 0.97 0.93 0.87 0.78
60 0.62 0.70 0.83 0.94 0.98 0.96 0.96 0.97 0.93 0.87 0.76 0.63
72 0.48 0.57 0.74 0.90 0.96 0.94 0.95 0.96 0.89 0.79 0.63 0.48
84 0.35 0.45 0.65 0.84 0.93 0.92 0.92 0.94 0.84 0.70 0.52 0.36

Table 22: P[τcmax > t], threshold value H
′
s = 3m

H
′
s = 3 m t

Months
1 2 3 4 5 6 7 8 9 10 11 12

P[τcmax > t]

12 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
24 1.00 0.99 1.00 1.00 1.00 0.99 0.99 1.00 0.99 1.00 1.00 1.00
36 0.97 0.96 0.98 0.98 0.99 0.98 0.99 0.99 0.98 0.99 0.98 0.97
48 0.92 0.90 0.95 0.96 0.99 0.97 0.98 0.98 0.96 0.96 0.93 0.91
60 0.84 0.82 0.90 0.93 0.98 0.96 0.97 0.97 0.93 0.93 0.87 0.82
72 0.74 0.73 0.84 0.90 0.97 0.94 0.95 0.96 0.90 0.87 0.79 0.72
84 0.63 0.64 0.77 0.85 0.95 0.92 0.93 0.95 0.86 0.81 0.70 0.61
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3.3 Assessing the feasibility of a generic marine operation by simulation

The outline of the thesis suggests investigating simplified methods which can assess the
feasibility of a marine operation. The procedure of one of the methods is specified while
the other is open. In this context a marine operation is chosen by the author to consist
of a custom number of intervals, breaks and limiting weather thresholds. The limiting
weather is chosen to be the significant wave height, i.e. spectral peak period is not
considered. Haltenbanken is the only area which has been considered in this part. The
following analyses are performed by MATLAB scripts located in the folder ”Generic
Marine Op”. It should be emphasized that the operations in the following have been
specified, hence ”generic” might seem strange. The point is that any type of operation,
consisting of n number of intervals and different thresholds H

′
s, can be simulated. The

goal of the following analyses is to investigate whether such methods are reasonable and
if they can potentially be used as a quick tool at an early stage when planning a marine
operation.

Section 3.3.1 presents a method where simulations are carried out by employing the dis-
tributions of the duration of calms and storms combined with Monte Carlo simulation.
Section 3.3.2 presents a method where simulations are carried out using the Hindcast
data directly.

3.3.1 Utilizing the distributions of the duration of calms and storms and Monte Carlo

simulation

The company DeepOcean, which collaborated on the project, suggests establishing a
simple tool for considering the feasibility of a generic marine operation based on a
monthly scatter diagram for Hs and Tp. A proposed method is to employ the distribution
for the duration of calms and storms in a simulation employing the technique of Monte
Carlo simulation. These monthly distributions are presented in Section 2.8.3, and they
were established using the monthly scatter diagrams (the hindcast data).
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Method At first it was considered to define a marine operation with different required
thresholds H

′
s. An operation consisting of two intervals with two different thresholds

was chosen. Item 1 in Figure 62 illustrates this. The method assumes that the first
period is a calm (τc1), i.e. it is assumed that vessel and crew will wait until the weather
is good enough to start the operation, e.g. utilizing a weather forecast. Furthermore
it is assumed that the following period is a storm (τs1). This is a natural assumption,
otherwise the definition of a calm would be unclear. The simulation can unfold in several
different ways, but a problem arises with a calm of such a duration that it covers the
whole operation. For example, if the first calm τc1 (given H

′
s = 3 metres) is determined

to be 40 hours, it is long enough to cover both intervals. The issue is that the calm is
determined given H

′
s = 3 metres, which means that the second interval of the operation

is not suitable for this calm, since this interval requires H
′
s = 1.5 metres. A calm can not

be estimated for two different thresholds H
′
s.

It was therefore decided to simplify the definition of the operation by reducing H
′
s from

two to only one, i.e. requiring the same threshold for the entire operation. It is thereby
possible that one sufficiently long calm is enough to finish the operation in only one
time span. It was also decided to increase the number of intervals from two to three
and adding two breaks in between these. This is illustrated by item 3 in Figure 62. It is
assumed that a calm of any length is used to operate. Let us say that the first calm lasts
only 3 hours. This calm is then used to complete the 3 first hours of the first interval.
Duration of calms and storms are determined by the 2-parameter Weibull distributions:

τc = ρc[− ln(1−U)]
1

βc τs = ρc[− ln(1−U)]
1

βs (71)

U is a random generated number between 0 and 1. This is in essence the Monte Carlo
simulation. Each value of U is independent of each other. This is a sensible assumption
considering that the start of each calm or storm is separated by a fairly long time span.
Parameters of the distributions are dependent upon what month we are evaluating. These
are displayed in Tables 15 and 16. It is assumed that the operation is a failure if it is
not possible to carry it out in one month. The script which performs the simulation is
named ”mar op weibull.m”, and a flowchart is found in appendix D.2.
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Table 23: Simulations of generic operation, constant threshold H
′
s, 10 000 simulations

3 Intervals x 24 hours
H
′
s = 2 m

Months
1 2 3 4 5 6 7 8 9 10 11 12

Average duration
of operation [hours] 373.5 308.5 267.0 181.7 120.7 106.3 104.0 108.2 175.8 257.3 312.5 373.0

No. of impossible months 2470 2011 975 19 0 0 0 0 19 314 1082 2432
Probability of not

performing operation 0.25 0.20 0.1 0.00 0 0 0 0 0.00 0.03 0.11 0.24

Results Results are displayed in Table 23. If the operation is finished in only one time
span, including breaks, the total duration of the operation is 3 ·24+2 ·3= 78 hours. Due
to the fact that July has arguably the best conditions, a large portion of the simulations
(42%) in this month yield results where the operation is finished in one calm. This is
why there is a horizontal fat line in the bottom of Figure 60. This figure displays all
of the 10 000 simulations and their corresponding operational durations. Furthermore,
it is seen from Figure 61 that the simulations are significantly more spread for January
than for July, illustrating the increased uncertainty in January. This is confirmed by
considering the standard deviation, σ = 37.1 hours for July and σ = 188.4 hours for
January. Note that the x-axis for January ends at roughly 7500 simulations because 25
% of the simulations yields zero, meaning that it was impossible to perform an operation
in these simulations.

3.3.2 Utilizing the Hindcast data directly

Method A different idea is to use the Hindcast data directly, i.e. simulating operations
using the data for each month and each year. Let us say that we have a marine operation
consisting of only one interval, with a given limiting threshold H

′
s, which will take place

in the month of May. We can then go into the first entry corresponding to May in the
Hindcast data and evaluate whether or not Hs is below H

′
s. Every entry in the relevant

month is inspected, for all years (1958-2014). In this manner it is possible to perform
simulations for different marine operations.

Let us say that we have an operation which consists of two intervals where the first
interval lasts 24 hours and requires H

′
s = 3 metres, while the second lasts 12 hours and

requires H
′
s = 1.5 metres. There are no breaks. The simulation can unfold in different
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Figure 60: Simulations of a generic operation, July
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Figure 61: Simulations of a generic operation, January

84



Interval 1, 24 hours
H
′
s = 3m

Interval 2, 12 hours
H
′
s = 1.5m

Break
(1)

τc1

H
′
s = 3m

τs1

τc2

H
′
s = 1.5m

(2)

Interval 1 Interval 2 Interval 3

Break 1 Break 2
H
′
s = 2m (3)

Figure 62: Generic Marine Operations
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ways, and the following shows a couple of examples in order to illustrate a simulation.

1. The first 14 observations of Hs are below 1.5 metres, yielding a time span of 42
hours (there is an observation every third hour, 14 ·3 = 42 hours). In other words,
one would have been able to carry out the entire operation at the first attempt, and
the total duration would have been 24+ 12 = 36 hours, which is the minimum
possible time.

2. The first 3 observations are below 3 metres, yielding a time span of 9 hours,
which is not enough to perform the first interval. Two observations larger than
then required H

′
s = 3 metres occur after this, yielding 6 hours (there is in other

words a storm). The next 8 observations are below 3 metres, yielding 24 hours,
finishing the first interval. There are then 5 observations larger than 3 metres,
yielding a storm which lasts 15 hours. Finally there are 4 observations below
1.5 metres, yielding 12 hours and finishing the last interval. Total duration of the
operation is then: 9+6+24+15+12 = 66 hours.

In this manner one can consider the total duration of the marine operation. Each year
yields a unique operation time for a particular month, and the average operational time
for e.g. May is found by adding all operation times for May and dividing it by the total
number of years, which is 58. It is also here assumed that the operation is considered a
failure if it is not possible to finish it in one month.

Results Results are displayed in 24 and 25. These tables correspond to two different
operations. The latter consists of three intervals and a constant H

′
s, such as the one in

the previous section. This was done in order to compare the methods. The previous
method yielded an average operational time for July equal to 104.0 hours, while in this
simulation it was determined to be 108.3 hours. The result is a bit surprising, since it
was expected that the method which employs the Weibull distributions would not be
particularly accurate. Although this by no means validates either method, it is a good
indication that it could be studied in more detail and improved. Furthermore, results
from both methods, for all months, are displayed in Figure 63. The figure shows a
significant discrepancy for the months during spring, in particular March.
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Table 24: Simulation of generic operation, two intervals, two thresholds

Interval 1: 24 hours, H
′
s = 3m

Interval 2: 12 hours, H
′
s = 1.5m

Months
1 2 3 4 5 6 7 8 9 10 11 12

Average duration
of operation [hours] 326.9 286.6 310.5 200.0 102.6 64.2 54.4 55.0 110.7 220.9 258.8 344.0

No. of impossible months 29 24 17 1 1 1 2 2 2 8 14 25
Probability of not

performing operation, % 51 42 30 2 2 2 4 4 4 14 25 44

Table 25: Simulation of generic operation, constant threshold H
′
s

3 Intervals x 24 hours
H
′
s = 2m

Months
1 2 3 4 5 6 7 8 9 10 11 12

Average duration
of operation [hours] 370.8 351.7 372.2 255.6 144.9 112.4 108.3 98.79 168.8 264.8 357.1 433.7

No. of impossible months 32 32 18 1 1 1 2 2 1 10 19 30
Probability of not

performing operation 0.55 0.55 0.31 0.02 0.02 0.02 0.03 0.03 0.02 0.2 0.33 0.52

Months
0 2 4 6 8 10 12A

ve
ra

ge
 d

ur
at

io
n 

of
 o

pe
ra

tio
n 

[h
ou

rs
]

0

50

100

150

200

250

300

350

400

450

500

550

Using Weibull distributions
Using Hindcast data

Figure 63: Monthly duration of operation, both methods
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3.3.3 Comments

There are weak and strong points to both methods. When the first method estimates
calms by the Weibull distribution of such length that they can cover several intervals,
but not several intervals of different thresholds, it limits the method significantly. An-
other concern is the quality of the Weibull distributions. The discrepancies for the win-
ter months (Figure 63) suggests that the simulated durations of calms in these winter
months are too large. Its strength is its ability to run thousands of simulations. The
second method which uses the Hindcast directly employs 58 samples of the month it
evaluates, while the Monte Carlo technique can simulate thousands of months. As the
methods stand, the one which uses the hindcast data directly is the most reliable because
it uses real data, and is also the most flexible since it can manage several thresholds. This
method can be considered as a reasonable and good alternative when investigating the
feasibility of a marine operation at an early stage. On the other hand, it would be very
interesting to work more on the one which uses Monte Carlo simulation, since one can
simulate such a large number. If one is able to overcome the challenge of using different
thresholds, while at the same time employing the distributions of durations of calms and
storms in a sensible way, this could possibly be a better method.
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3.4 Rolling, a challenge in marine operations

Section 3.4.1 presents the motivation behind this chapter. Section 3.4.2 briefly presents
theory on roll damping and equipment used in order to decrease the roll motion. Fur-
thermore, a specific case with a Platform Supply Vessel (PSV) is presented in Section
3.4.3, with the intention of investigating the effect that the swell sea has on the opera-
tional potential of the vessel. First, the roll motion due to swell sea is evaluated, and
secondly, the effect that this roll motion has on the usability of a good weather window
is investigated.

3.4.1 Background

During marine operations, the roll motion is typically the most problematic motion. It
is common that a marine structure, especially a ship, will have large roll amplitudes
(resonance effects in roll), which is due to little damping. Roll amplitudes of 30 and 40
degrees have occurred. During marine operations, it is common to turn the bow of the
vessel against the wind sea so that the motions of the vessel are minimized. In particular,
sway, roll and yaw are reduced by doing this (see Figure 47). Swell sea, on the other
hand, does not necessarily have the same direction as the wind sea, which means that
the swell sea can cause a problem, e.g. in terms of significant roll amplitudes.

Typically, a ship and its crew will wait until the value of Hs is suitable to perform the
operation. This limiting value of Hs, H

′
s, has to be determined beforehand by analysis of

the operation which is to be performed. Such an analysis can be performed by computer
simulation software. Experience has shown that these analyses might not be able to pre-
dict the response well enough, in particular the response due to swell sea. Operations
which have been started during seemingly perfect conditions have been delayed for long
periods of time due to a problematic swell sea. The swell sea can cause large roll ampli-
tudes which prevent the operation from being carried out. There were problems during
the installation of the deck at Kvitebjorn [26]. Even though the conditions seemed more
than suitable, there were problems which delayed the operation significantly. According
to S. Haver (personal communications, 15th of February 2015) the vessel which were
to lift the deck of the barge, experienced large roll motions due to the swell sea. These
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were of such magnitude that the operation had to be stopped.

Therefore, the outline of this master thesis suggests investigating the impact of swell
sea on the usability of the good weather windows.

3.4.2 Roll damping and roll stabilization equipment

Damping in a system is understood to be mechanisms which drain the system for energy,
i.e. damping the system and reducing its oscillations. In this case, the roll motion and
roll damping is under consideration. The roll motion is illustrated in Figure 47. The
uncoupled roll equation can be defined in Faltinsen [6, p. 53] as

(I44 +A44)η̈4 +B44η̇4 +C44η4 = F4 (72)

I44 is the moment of inertia, A44 is added mass moment in roll, B44 is damping in roll
while C44 is the restoring coefficient (stiffness coefficient). Damping in roll can be
divided into four categories (Faltinsen [6, p. 54]):

1. Wave generating

2. Effects due to lift

3. Viscous effects

4. Roll stability systems

Damping due to wave generating is understood by considering the energy that is needed
to generate waves. Because of the roll motion of the ship, waves are generated, and
these are in essence using energy from the roll motion, i.e. damping the roll motion.
Roll damping is dependant of the structure’s speed relative to the frequency of waves
coming head on, while it is independent of the structure’s speed relative to waves coming
straight in from the side. Wave roll damping is typically small for common ship sections,
while it is significantly larger if the ratio of the width and the depth of a section is either
small or large. Because of the lack of moment generated by pressure forces, sections
which are in the vicinity to quadratic shapes will have little roll damping (Faltinsen [6]).
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Linearized roll damping can be written as in Faltinsen [6, p. 56]:

B44 =
∫

b44 dξ+U aA
44 +B∗44 (73)

The first term is the roll wave damping while the third term is the damping due to viscous
effects and roll stabilizing systems. The second term is roll damping due to lift effects.
U is the forward speed of the structure, while aA

44 is the two dimensional added moment
in roll. ”The lift effects are expected to be more significant for fine ship hulls than for
blunt hulls”(Faltinsen [6, p. 56]).

Viscous damping is in general due to two effects: Effects due do the friction of the skin
of the structure, and effects due to vortex shedding.

Stability systems can be categorised as passive and active systems. Passive systems are
for example bilge keels, passive anti-roll tanks or fixed fins, whereas active systems
are for example active anti-roll tanks or active fins. One of the most used systems is
the bilge keel, because it is effective while at the same time a cheap option. Passive
anti-roll tanks are also quite popular, but these are more costly and have little effect in
severe seas due to large roll motions which in turn will make the fluid inside the tanks
slam against the ceiling of these. A simple sketch of bilge keels and a passive anti-roll
tank is illustrated in Figure 64. Another system is the Voith Schneider propeller, a type
of propulsion system which can reduce roll motion. In the case of marine operations,
where the vessel often lies still, or almost still, with the bow against the wind, systems
such as fixed and active fins or Voith Schneider propellers become almost insignificant
due to very little or no forward speed. This leaves us with anti-roll tanks and bilge keels
as the most relevant systems for the PSV which is evaluated in the following.

Passive anti-roll tanks A passive anti-roll tank, such as the one which is seen in
Figure 64, counters the roll motion because the liquid is sloshing inside the tank, hence
it functions as a roll damping device. The RAO which is seen in Figure 69 represents a
PSV with a passive anti-roll tank. The RAO in Figure 52 displays the same vessel but
without a tank, thereby illustrating the difference.

In order to obtain the best roll damping, the lowest natural frequency of the liquid should
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be set equal to the natural roll frequency of the vessel. The sloshing frequency can be
altered by changing the water depth inside the tank. Vessels which operates with a
number of different metacentric heights GMT will operate with different natural roll
frequencies, which makes the passive anti-roll tank practical.

One of the challenges with the passive anti-roll tank is saturation which occurs at large
roll amplitudes. As the roll motion increases, so does the sloshing, and if the roll motion
is sufficiently large the liquid might slam against the ceiling of the tank, reducing its
function severely.

According to Faltinsen [8, p. 83], the effect of the anti-roll tank can be found by
considering the moment which the sloshing of the liquid inside the tank creates. If
we assume regular waves inside the tank and describe the forced roll oscillations as
η4 = η4a sin(ω t), the moment due to the anti-roll tank can be written as given in Faltin-
sen [8, p. 85]:

F t
4 = Kta sin(ω t + εt) (74)

= Kta sin(ω t)cos(εt)+Kta cos(ω t)sin(εt)

=
Kta

η4a
cos(εt)η4 +

Kta

ω η4a
sin(sinεt)η̇4

Kta and εt can be established experimentally through tests of the tank. The effect of the
anti-roll tank comes into Equation 85 through F t

4 (given in Faltinsen [8, p.85]):

(I44 +A44)η̈4 +B44η̇4 +C44η4 = F4 +F t
4

(I44 +A44)η̈4 +

(
B44−

Kta

ω η4a
sin(εt)

)
η̇4 +

(
C44−

Kta

η4a
cos(εt)

)
η4 = F4 (75)

”The term −Kta sin(εt) is large if we choose the natural period for the flow inside the
tank to coincide with the natural roll period” (Faltinsen [8, p.85]). As we can see, the
restoring coefficient C44 has been changed, but this not of significance since the term
Kta
η4a

cos(εt) is small when the the sloshing frequency is close to its natural frequency. It
should be noted that for sufficiently accurate estimates the coupling between the motions
sway, roll and yaw should be considered.
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Bilge Keels Anti-Roll Tank

Figure 64: Anti-rolling devices

Bilge keels As mentioned above, the bilge keel is often used because it is very cheap
while at the same time effective, even in severe seas. There are several positive sides
to such a system and very few negative. There are only two negative aspects worth
mentioning: it marginally increases the resistance of the vessel, and it can promote bio-
fouling growth around the keel (Baniela [2, p. 676]). On the other hand, the bilge keel
is very effective and can constitute more than 50 % of the total roll damping (Faltinsen
[6, p. 68]). It is a cheap option, it has a light weight and it can be added to the ship after
it is built.

Ikeda [17] and Himeno [14] have carried out model tests in order to predict the roll
damping effect due to bilge keels. Some of the theory is briefly presented in the follow-
ing.

Bilge keel damping components are defined in Himeno [14, p. 19] as

BBK = BN +BS +BW (76)

BN is the normal force damping of the bilge keels, BS is the hull surface pressure damp-
ing to due bilge keels and BW is the wave damping of the bilge keels. ”Although these
components are seemingly linear, their values may vary with roll amplitude and fre-
quency” (Himeno [14, p. 19]).

Forced roll tests have been carried out in order to compare experimental results with

93



empirical formulas. Ikeda [17, p. 5] has found a prediction formula for BN at zero
forward speed:

BN =
8

3π
ρ r l ω

(
22.5

b2
BKr
π

+2.40bBKr2
φA

)
(77)

ρ is the density of water, r is the mean distance from G (centre of gravity) to bilge keel,
l is the moment lever, bBK is the breadth of the bilge keel, ω is the frequency of the
roll motion and φA is there roll amplitude. Figure 65 shows how the formula matches
experimental results.

BS is suggested by Ikeda [17] to be predicted by

BS =
4

3π
ρ r2 d2

ω φA f 2 I (78)

where I =
1
d2

∫
CP l0 ds

f is the modification factor of the flow velocity at the bilge keel, while d is the draft. I

is integrated along the complete girder of the hull. CP is the distribution of the pressure
difference coefficient, which is multiplied by the moment lever l0. The pressure around
the hull is changed because of the bilge keels. Pressure p on an infinitesimal surface of
the hull ds creates a force, which creates a moment around the axis of rotation. l0 is the
arm of this moment. The positive pressure coefficient C+

P on the front of the bilge keel
and the negative pressure coefficient C−P on the back of the bilge keel are given as:

C+
P = 1.2 (79)

C−P =−22.5 bBK

π r f φA
−1.2 (80)

This is illustrated in Figure 66.

BW can according to Himeno [14, p. 42] be neglected: ”[..] it can be noted that for bilge
keels with ordinary breadth [...] we can safely neglect the wave effect of bilge keels. [...]
it can be concluded that the total damping increment due to bilge keels can be predicted
as the sum of two bilge-keel dampings, BN and BS”. Predicted values of BBK together
with experimental results are illustrated in Figure 67.
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Figure 65: Figure found in Ikeda [16, p. 10]. Damping coefficient BN due to the nor-
mal force of bilge keels

Figure 66: Figure found in Ikeda [17, p. 9]. Change in hull pressure due to bilge keels
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Figure 67: Figure found in Ikeda [17, p. 10]. Roll damping coefficient BBK due to
bilge keels

3.4.3 Case

The following case is presented with the intention of investigating the effect that the
swell sea has on the operational potential of vessel, and in this case a PSV with length
90 metres, breadth 21 metres and draught 6 metres has been employed.

The roll response is investigated by using DSM. A RAO with and without an anti-roll
tank for the PSV is shown Figures 68 and 69, respectively. These RAO’s have been
handed to the author by professor Sverre Steen of the Department of Marine Technol-
ogy. These have been generated by the software ShipX, a software which performs
hydrodynamic analysis. An anti-roll tank has been added to the ship in the second RAO

(Figure 69). The curve shows that the roll response is smaller with an anti-roll tank than
without. Furthemore, one can observe that some of the directions coincide in the same
curve due to symmetry around the y-axis of the vessel (see Figure 47 for reference ).
For example, the blue curve in Figure 68, which corresponds to waves coming in at a
30◦ angle, lies behind the curve which corresponds to waves coming in at an angle of
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Figure 68: RAO without anti-roll tank

150◦. Finally, because the vessel is symmetric around the x-axis, waves coming in at
starboard and port will produce the same roll response. Therefore, roll response on only
one side is studied (0 to 180◦).

Wave spectrums due to swell sea are established by using the Hindcast. Wind sea and
swell sea is represented by each their values of Hs, and corresponding directions. This
implies that it is possible to determine the angle of attack of the swell sea if we assume
that the bow of the ship is turned straight against the wind sea.

The following text presents the roll response which is caused by the swell sea alone, and
what effect this roll response has on the operational potential of the vessel.

Roll motion due to swell sea The following assumptions were made in order to in-
vestigate roll response due to swell sea:

1. Wind sea is assumed to have no effect on roll, because the bow of the ship is
always pointed straight towards the direction of the wind sea. In reality this is not
correct. Since the wind sea is short crested, there will be waves from wind sea
which do not come in straight at the bow, hence some of the waves from the wind
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Figure 69: RAO with anti-roll tank

sea will contribute to roll.

2. RAO’s for the vessel are not continuous. Because of this, the side of the ship has
been discretized into sectors, and therefore there will be discretization errors.

Even though the assumptions above can lead to incorrect results, the results should be
good enough in order to investigate any tendencies due to swell sea.

The calculations were carried out using a MATLAB script, and the script is found in
the folder ”Rolling due to swell sea”. The algorithm can be described by the following
steps:

1. RAO’s are fetched from a .mpl file produced by ShipX. First, all points on the
curves are multiplied by the wave number k in order to obtain the unit which is
sought for. Secondly, due to very few points on the graph, it is interpolated, giving
the graphs in Figure 68 and 69.

2. The angle between swell and wind sea is determined. This angle is assumed to
produce roll. These values are fetched from the Hindcast data.
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3. Swell angles are investigated in order to determine which RAO is used in order to
calculate response. RAO’s are discretized into sectors.

4. For each swell angle the corresponding value of Hs (i.e. Hs found for swell sea)
is used to produce a wave spectrum, S(ω).

5. The response spectrum for each swell angle and its corresponding value of Hs is
then calculated by Sη4(ω) = |RAO(ω)|2 ·S(ω).

6. Finally, the standard deviation of the response spectrum is obtained: ση4 =
√∫

∞

0 Sη4(ω).
Since there are 166053 observations in the hindcast data, 166053 values of ση4

are produced.

As stated in 3, the RAO’s are discretized into sectors (each RAO covers a sector):

(15,45], RAO = 30◦

(45,75], RAO = 60◦

(75,105], RAO = 90◦

(105,135], RAO = 120◦

(135,165], RAO = 150◦

The RAO which is chosen in order to determine Sη4(ω), is dependant on which sector
the swell angle (relative to the wind sea angle) lies in.

In 1, the RAO’s are multiplied by the wave number k. The original unit of the RAO’s,
η4A
λk [rad], leads to values with an undesired unit. Since the variance of the roll process is

given as σ2
η4

=
∫

∞

0 Sη4(ω)dω, we know that the unit of Sη4(ω) should be rad · s because

σ
2
η4

=
∫

∞

0
Sη4(ω)dω = rad s

rad
s

= rad2,

→ ση4 = rad (81)
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Radians is the desired unit of the standard deviation. We also know that the wave spec-
trum S(ω) has the unit m2 s

rad , i.e. the desired unit of RAO is decided by considering

Sη4(ω) = RAO(ω)2 S(ω)

rad s = RAO(ω)2 m2 s
rad

→ RAO(ω) =
rad
m

(82)

(83)

The original RAO is found in appendix B.

Figure 70 show how ση4 varies with the adjusted swell sea direction. There are 166053
values in the figure, meaning that the observations stack on top of each other. The fig-
ure shows that ση4 increases with increasing angle up until approximately somewhere
between 75 and 105 degrees, while it decreases after this. This is as expected: swell
waves which come towards the ship close to 90 degrees will produce larger roll am-
plitudes than waves which come in close to the bow or stern. This is understood by
considering the RAO’s. The response is also dependant on Hs and Tp which is used to
create the wave spectrum. This is elaborated in the next section.

Figures 71 and 72 show the distribution of adjusted swell sea direction and ση4 . Figures
73 and 74 show the distribution of swell sea Hs and Tp. There is an inconsistency in
Figure 73, and this is probably due to the problems regarding polarized values of Tp. It
seems as if the modifications have not been able fix the problem sufficiently. At last,
some results are given in Table 26.

Table 26: Average values of standard deviation of roll due to swell sea. η4ac = 4◦

Angle Average ση4 [deg] Extreme values of ση4 [deg]
All 1.12 13.83
30◦ 0.53 4.47
60◦ 1.25 8.02
90◦ 1.67 13.75
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Figure 70: Adjusted swell direction versus ση4
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Usability of good weather windows, taking roll response due two swell sea into

consideration The outline of the master thesis suggest investigating how often a good
weather window is made unusable due to rolling caused by swell sea. The evaluation
which is presented in the following is a prediction of a vessels ability to perform an
operation in a particular month, based on two requirements, namely the significant wave
height Hs (total sea) and the roll motion due to swell sea. The MATLAB script employs
the following sequence in order to predict the usability of a good weather window:

i f Hs ≤ H
′
s AND ση4 ≤

η4ac√
−2ln

[
1− (1−q)(1/N)

] (84)

→ sea state is acceptable
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This check is performed for every observation in the Hindcast data (each row). Se-
quences of observations fulfilling or not fulfilling the requirements above are then es-
tablished in the same manner as for the calms in Section 2.8.1. The average duration
of these operational windows, taking roll into account, is then found by taking the to-
tal number of hours where the criterias are fulfilled and divided by the total number of
sequences.

It should be pointed out that ση4 is calculated by using the swell sea together with the
RAO (i.e. not the total sea).

The MATLAB script rolling calm.m, located in the folder ”Rolling due to Swell Sea”,
was used to solve the task. The algorithm of the script can be described by the following
steps:

1. The hindcast data which is needed is fetched:

(a) Hs, total sea

(b) Hs, swell sea

(c) Tp, swell sea

(d) Directions for wind sea and swell sea

These values are read and stored by the function years with swell.m.

2. RAO’s are fetched.

3. A for-loop begins: The direction of the swell sea in terms of the wind sea is
determined. The for-loop loops through every entry in the Hindcast data.

4. Swell directions are mirrored due to the symmetry around the x-axis of the vessel.

5. The RAO to be used is chosen by considering which sector the swell direction lies
in.

6. A wave spectrum is established. This is calculated using the swell Hs and Tp.
The response spectrum for roll, due to swell, is then established from Sη4(ω) =

RAO(ω)2 ·S(ω).
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7. The standard deviation of the roll spectrum ση4 , and number of up zero up cross-
ing cycles N is determined.

8. If Hs ≤ H
′
s and ση4 ≤

η4ac√
−2ln [1−(1−q)(1/N)]

, the operational criterias are fullfilled,

meaning that this observations is registered as a calm. A fixed probability of
q = 0.1 and a critical roll response of η4ac = 4◦ has been used in this case.

9. This evaluation is carried out for every observation in the Hindcast data. The
observations are either calm or stormy values, and the length and number of calms
are established. The calms are determined in the same manner as in section 2.8.1.

10. The average calm of every month is established by taking the total number of
calm hours and dividing them by the total number of calms in each month.

The swell Tp which is used to establish the wave spectrum S(ω) (item no.6) is modified
in the same manner as the Tp values for total sea, explained in Section 2.3.2. The second
equation in item no. 8 is established by using the same theory as in Section 3.1.2:
The distribution function of 3-hour maximum roll is established, and if the standard
deviation is below or equal to the term to the right in the equation in 8, the operational
criteria is fulfilled.

A flowchart for the script which performs the analysis, rolling calm.m, is found ap-
pendix D.3.

Discussion of results Results are displayed in Figures 75, 76 and 77. The RAO

with an anti-roll tank was used. It might seem strange to present the results as average
duration of calms, because the the duration of a calm is a weather statistic, while the
roll response of a vessel is not. A better description could be ”usability of good weather
windows”. Nonetheless, it has been chosen to present the results in this manner in
order make it clear how the results compare to the average duration of calms which is
presented in Section 2.8.1, where the roll response due to swell sea was not considered.
The thresholds which were used in these calculations were H

′
s = 2 metres and η4ac = 4

degrees. These choices are based on Table 10. A probability of q equal to 0.1 was used,
meaning that the roll amplitude can exceed the critical roll response η4ac 10 % of the
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Figure 75: Calms, total sea and roll motion considered

time.

It can be seen that the results have drastically changed. For example, the average dura-
tion of a calm in July has decreased from 110 to a 34.4 hours, i.e. a reduction of roughly
70 %. In January, the average calm has been reduced from 24.5 to 12.5, 51 %. By this,
one can conclude with the following: given the assumptions which have been made, the
swell sea produces a roll response which has a significant effect on the ability to perform
an operation which has the thresholds (limits) of H

′
s = 2 metres and η4ac = 4 degrees.

Lack of damping The results are of such magnitude that they would appear to be
dubious, and this is very likely due to the fact that the response spectrum method is not
the best for analyzing the roll response of a vessel such as a PSV. The method which
has been used assumes that there is a linear relationship between the input (waves) and
the output (roll response) (see Section 3.1.2), which is a poor assumption, in particular
for large roll amplitudes Haver [13, p. 21]. In reality, the damping increases nonlinearly
when the roll amplitude is large. This is due to both viscous effects from the hull and the
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Figure 76: Worst, average and best calms, total sea and roll motion considered

fact that the vessel is generating larger outgoing waves from the vessel. The uncoupled
roll equation is sometimes expressed as

(I44 +A44)η̈4 +B44η̇4 +Bvη̇4|η̇|+C44η4 = F4 (85)

As we can see, the viscous damping (Bv) is non-linear. Viscous damping is, as previ-
ously mentioned, due to skin friction and vortex shedding.

By this, one can understand that the largest roll amplitudes which have been established
should be lower. If these roll amplitudes were lower, the operational criteria would be
fulfilled more often, giving larger monthly average duration of calms. The results may
therefore be considered as conservative.

Critical values of ση4 If we consider the values of ση4 which are of such magnitude
that the criteria is not fulfilled (Equation 86), we can investigate these critical values
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further in order to determine any regularity or tendencies.

ση4 ≤
η4ac√

−2ln
[
1− (1−q)(1/N)

] (86)

There are 46469 critical values of ση4 (values that are larger than the term to the right
in the equation). This is 46469

166053 = 28% of all hindcast values. By this, one might say
that during one year, the ship will experience critical roll amplitudes due to swell 28 %
of the time. Table 27 shows the distribution of the adjusted swell angle, and how often
each RAO has ben used.

Typically, the largest response of a system will occur when the frequency of the in-
put is in the vicinity of the natural frequency of the system. It is therefore relevant to
investigate the spectral frequency ωp of the wave spectrums S(ω) (swell sea) which
correspond to the critical values of ση4 . Figure 78 shows a histogram of ωp for swell
sea, corresponding to critical values of ση4 . The mean value is 1.28 radians/seconds.
If we compare this to the natural frequencies of the RAO’s (see Figure 69), roughly
ωn = 1.5 radians/seconds, these are quite close. By natural frequency of a RAO we
mean the natural frequency in roll of the PSV. Since the critical values of ση4 are de-
termined by ση4 =

√∫
∞

0 Sη4(ω)dω, and Sη4(ω) = RAO(ω)2 · S(ω), we can understand
that RAO(ω) and S(ω) must coincide sufficiently in order to produce critical response
spectrums Sη4(ω). In other words, the peaks of S(ω) and RAO(ω) must lie close to each
other.

Another important factor is the size of Hs. This variable decides the size of the wave
spectrum S(ω), and a difference of one metres changes the spectrum drastically, see
Figure 79. Figure 80 shows a histogram of Hs for swell sea, corresponding to critical
values of ση4 . The mean of all swell sea Hs is 1.95 metres, while the mean for swell
sea Hs corresponding to critical values of ση4 is equal to 2.38 metres, suggesting that
it is the larger portion of swell sea waves in the hindcast data that produce critical roll
amplitudes.

In summary, critical values of ση4 are produced by one of the following or the combi-
nations of these:
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Table 27: Distribution of adjusted swell angles for large values of ση4

Adjusted Swell Direction [deg] 30 45 60 75 90 105 120 135 150 Sum
Number of occurences 2506 10700 8755 7173 5231 4657 3733 3142 572 46469

RAO [deg] 30 60 90 120 150
Number of occurences 2506 19455 17061 6875 572 46469
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Figure 78: Swell Sea ωp, corresponding to critical values of ση4

1. The size of Hs is sufficiently large

2. Spectral frequency ωp of swell sea wave spectrum S(ω) is sufficiently close to the
natural frequency of RAO, ωn

3. The direction of swell sea relative to the direction of wind sea is close to 90◦

109



! [rad/s]
0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

S
(!

) 
[m

2
 s

]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

T
p
 = 3 s

H
s
 = 1 m, m

0
 = 0.0610 m2 rad

H
s
 = 2 m, m

0
 = 0.2378 m2 rad

Figure 79: The effect of the size of Hs on the wave spectrum

H
s
, Swell sea (critical <

2
4

) [m]
0 2 4 6 8 10 12

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

average H
s
 = 2.38 m

Figure 80: Swell Sea Hs, corresponding to critical values of ση4
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4 Conclusion

The thesis has dealt with evaluation of marine operations, and these have partly been
based on a Metocean Design Basis. The evaluations have been carried out partly by
utilizing well known theory in terms of wave spectrums, response amplitude operators
and response spectrums, while some of the theory is some what unorthodox.

Part 1: Metocean Design Basis Scatter diagrams were created in order to investi-
gate tendencies of the areas of Haltenbanken and the Barents Sea. The distribution of
waves in terms of direction is more even for the Barents Sea than for Haltenbanken.
A short and long term description of the wave climate was established by probability
distribution functions. The method of moments yielded the best results for the marginal
distribution of Hs. Contour plots were also established. Finally, the duration of good
and bad weather windows were produced. These were also described by a 2-parameter
Weibull distribution. Almost all of the models have been established by the method of
moments, which is a suitable method considering the large data sample. The results
show that the climate is more severe for Haltenbanken than for Barents Sea. Both the
lower and the upper range of Hs is described well, by the LoNoWe distribution and the
3 parameter Weibull distribution, respectively.

It is difficult to validate the results, especially considering that the access to other reports
of relevant areas is limited. In total, no large discrepancies have been detected by the
author, and the results appear satisfactory. A large amount of time has been spent on
creating the MAT LAB scripts and making sure that they do not make errors which lead
to inaccurate results. There have been performed verifications at crucial points in most
scripts. A deeper understanding of theory, in particular statistics and probability, and
more experience is needed in order to better discuss the results.

Part 2: Marine Operations The procedure of determining limiting sea states was dis-
cussed by evaluating the heave response spectrum of a drill ship, operating in Hal-
tenbanken. A plot of acceptable sea states together with relevant severe sea states was
established. Here, an area of unacceptable sea states was established.
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The feasibility of marine operations was investigated by simulation, where two differ-
ent methods were tested. The first method employs the distribution of the duration of
calms and storms. Even though the method shows potential, there are uncertainties re-
garding employing the distributions of the duration of calms and storms together with
Monte Carlo simulation. The method with the largest accuracy is most likely the sec-
ond method, which utilizes the hindcast data directly. This method is a good alternative
when investigating the feasibility of an operation at an early stage.

Lastly, it was investigated what kind of impact the swell sea has on the roll response of
a platform supply vessel. Results were quite noticeable. They show that the usability
of good weather windows is reduced by more than 50 %. Results appear dubious,
and this is most likely due to the fact that the method assumes a linear relationship
between the waves and the response. By doing this we neglect the nonlinear behaviour
of the roll damping. In other words, the roll damping should have been larger, yielding
smaller roll amplitudes and thereby having a smaller influence on the usability of good
weather windows. Although the results are inaccurate, they strongly suggest that the
swell sea has significant influence on sea states which otherwise would seem more than
acceptable.
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5 Recommendations for Further Work

The Metocean report lacks information concerning wind, current and duration of weather
windows in terms of the wave period. This should be established in further work. Ad-
ditionally, results should be more thoroughly verified, employing statistical hypothesis
tests. Further work and increased understanding of the subject on probability and statis-
tics is needed in order to better evaluate results.

Simulation of marine operations has been particularly interesting. The method which is
assumed to give the most accurate results is rather simple, while the other one, which
is not a common method, could possibly have a lot of potential. The latter uses the
distribution of the duration of calms and storms together with Monte Carlo simulation.
Using Monte Carlo simulation in this context is interesting, and further work on this
subject is exciting. One of the challenges is to incorporate the possibility of simulating
with different thresholds.

The effect that the swell sea has on the roll response under seemingly suitable conditions
is noticeable. Further analysis of this should be done, e.g. through computer simulation
software. It is important that the software is able to fully account for the roll damping.
The analysis in this project suggests that the swell sea and the effect that it has on the
roll response, is a quantity which is not considered well enough during preparation of
marine operations.

Lastly, there is generally a potential in terms of improving the MATLAB scripts. Through-
out the project, the knowledge concerning programming in MATLAB has increased,
thereby producing more accurate scripts along the way. Several of the scripts could be
improved in terms of simplicity. By making them more simple, there is a smaller chance
of errors. Lastly, there is also more room for stepwise verification in the scripts.
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A safe execution of a marine operation requires that governing load effects are kept well
below the critical values. Governing load effects can be the hook load of a crane 
operation, it can be motions of vessel used for the operation or it can be load in the 
crane structure.  Common for these load effects is that they are caused by the waves. 
This means that all cases we can replace the criteria regarding critical load effect by a 
critical sea condition, e.g. requiring that the significant wave height to be lower than a 
certain value during the length of the operation. The criteria can be optimized by also 
including spectral peak period in addition to the significant wave height.  In principle 
wind can also represent a limiting quantity regarding the execution of an operation, but 
in this theses focus will be a wave governed operation.  

The aim of the theses is to present a metocean description being convenient for the 
planning of a marine operation where significant wave height, hs, is lower than a certain 
threshold h0(tp) for at least a duration d0.  

Available weather data will be data from the Norwegian hindcast data base, NORA10. 
For the theses data from Haltenbanken and Barents Sea are made available.  

Below a possible division into sub-tasks is given. 

1. Dicuss a particular operation where the critical variable is heave 20m aft of 
midship and indicate how one can establish a limiting pair of hs and tp from the 
critical heave motion.   

2. Introduce the available metocean data and present a summary of the metocean 
condition for the selected area. Base this on the work done in the project.
 

3. Define good weather window and estimate the average duration of good weather
windows for various limiting values of hs. Do this for all months. Find a proper 
distribution function of the duration events fulfilling the requirement to hs and tp. 
Investigate the sensitivity of the distribution parameters to the limiting values of hs 
and tp. 
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Determine also a probabilistic modelling of the duration of “bad” weather 
windows. Do this for all months and for various limiting conditions. Investigate 
sensitivity of distribution parameters to the limiting levels. 

4. Is it possible to establish a simple tool for considering the feasibility of a generic 
marine operation based on a monthly scatter diagram for hs and tp and the 
duration statistics for good and bad weather windows established above

5. Investigating the feasibility of the generic operation simulating the execution of 
the operation in the hindcast data series starting in September 1957. Do this on a
monthly basis, i.e. the first day of each month. Find the total time including 
waiting time for each month and each year. Discuss the year to year scatter and 
compare feasibility with what is done in 4).  

6. Rolling is often a problem in connection with marine operations.  Discuss how 
rolling can be  minimized. Is a transfer function for rolling for a vessel with anti-
rolling devises available? If so assume vessel is heading towards the wind sea 
and calculate rolling due to the swell component. Select Haltenbanken for this 
study. Is it important to account for the difference in direction between wind sea 
and swell. How often is a good weather window made unusable due to rolling. 

7. Summarize the investigation in conclusions pointing out major learnings of this 
investigation. 

The candidate may of course select another scheme as the preferred approach for 
solving the requested problem. He may also other subjects than those mentioned 
above. 

The work may show to be more extensive than anticipated.  Some topics may therefore
be left out after discussion with the supervisor without any negative influence on the
grading.

The candidate should in his report give a personal contribution to the solution of the
problem formulated in this text.  All assumptions and conclusions must be supported by
mathematical  models and/or references to physical effects in a logical manner.  The
candidate should apply all available sources to find relevant literature and information
on the actual problem. 

The report should be well organised and give a clear presentation of the work and all
conclusions.  It is important that the text is well written and that tables and figures are
used to support the verbal presentation.  The report should be complete, but still as
short as possible.



The final  report  must  contain  this  text,  an acknowledgement,  summary,  main body,
conclusions, suggestions for further work, symbol list, references and appendices.  All
figures, tables and equations must be identified by numbers.  References should be
given by author and year in the text, and presented alphabetically in the reference list.
The report must be submitted in two copies unless otherwise has been agreed with the
supervisor.  

The supervisor may require that the candidate should give a written plan that describes
the progress of the work after having received this text.  The plan may contain a table of
content for the report and also assumed use of computer resources. As an indication
such a plan should be available by end of November. 

From the report it should be possible to identify the work carried out by the candidate
and what has been found in the available literature.  It is important to give references to
the original source for theories and experimental results.

The report must be signed by the candidate, include this text, appear as a paperback,
and  -  if  needed  -  have  a  separate  enclosure  (binder,  diskette  or  CD-ROM)  with
additional material.

Supervisor: Sverre Haver, NTNU. 
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B Response Amplitude Operators
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C Matlab scripts

MATLAB has been used throughout the whole project. All tasks have been solved partly
by using scripts and functions. Some scripts use several functions created by the author.
Most folders contain a script which the reader should use, named RUN.m. The heading
of each script explains what the script does and which functions it runs. Some scripts
take several minutes to run. It is important that the hindcast files in the folder ”Hindcast”
are added to the current path in MATLAB. All scripts are located in vedlegg.zip. The
structure of the file is

1. Part 1:

(a) Modifications of Hindcast data

(b) Scatter Diagrams

(c) Long term distribution

(d) Monthly long term distributions

(e) 3 par Wei f Hs

(f) Contour Plot

(g) Weather Windows

2. Part 2:

(a) Establishing a Limiting Sea State

(b) Feasibility of Op Longest Calm

(c) Generic Marine Op

(d) Rolling due to Swell Sea

3. Hindcast:

(a) Heidrun (Haltenbanken)

(b) Barents Sea
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D Flowcharts for MATLAB scripts

Flowcharts have been made for a few scripts. Functions are illustrated as red ellipsis.

D.1 Flowchart for feasibility of marine operation by distribution of longest

calm

RUN.m

Hindcast sorted
by month

years.m

Monthly average
duration of a calm

is determined

avg dur func.m

durationz.m

Parameters for
FHs are fetchedmonthly lon func.m

N is determined

Parameters for
monthly calms

are fetched

P[τcmax > t]
is determined

monthly calms func.m

durationz.m

Figure 81: Flowchart for script mar op weibull.m
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D.2 Flowchart for mar op weibull.m

Hindcast
sorted by

month
years.m monthly calms.m

monthly storms.m

durationz.m

durationz2.m

Parameters

Monthly
average

duration of
operation

mar op weibull f.m

Figure 82: Flowchart for script mar op weibull.m
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D.3 Flowchart for rolling calm.m

rolling calm.m

Hindcast data
sorted by month

years with swell.m

RAO’s fetched
and interpolated

First observation is evaluated (iter-
ation starts): Swell dir. in terms
of wind sea dir. is determined

Swell dir. is mir-
rored (symmetry)

RAO is
chosen

S(ω), Sη4 , N and
ση4 are determined

If Hs < H
′
s and ση4 < ηη4ac

→ sea state is acceptable

Iterated for all hindcast val-
ues. Calms are established

loop

Figure 83: Flowchart for script rolling calm.m
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F Scatter Diagrams
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