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Abstract. The finite-temperature Casimir effect for a scalar field in the
bulk region of two Randall–Sundrum models, RSI and RSII, is studied.
We calculate the Casimir energy and the Casimir force for two parallel
plates with separation a on the visible brane in the RSI model. High-
temperature and low-temperature cases are covered. Attraction versus repulsion
of the temperature correction to the force is discussed in the special cases
of Dirichlet–Dirichlet, Neumann–Neumann and Dirichlet–Neumann boundary
conditions at low temperature. The Abel–Plana summation formula is used, as
this is found to be the most convenient. Some comments are made on the related
contemporary literature.
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1. Introduction

Inspired by the Randall–Sundrum models [1], there has recently been considerable interest in
the Casimir effect in higher-dimensional space. We may recall the characteristic features of this
model. In the first variant, called RSI, one assumes that we are living on a (3+1)-dimensional
subspace called a 3-brane, separated from an additional hidden brane by a bulk region. Only
gravity is assumed to propagate in the bulk. The extra dimension is a circle S1 with radius rc,
represented by a coordinate φ in the range −π 6 φ 6 π . The hidden and the visible branes
are located at φ = 0 and φ = π , respectively. Imposition of Z2 symmetry means that the points
(xµ, φ) and (xµ,−φ) are identified. In the second variant of the model, RSII, the hidden brane
is sent to infinity. The major difference between the RS model and other higher-dimensional
models lies in the warp factor e−2kr c|φ| in the metric

ds2
= e−2krc|φ|ηµν dxµ dxν − r 2

c dφ2, (1)

where ηµν = diag(1,−1,−1,−1) is the Minkowski metric of flat spacetime and k is a constant
of order MPl, the Planck mass. The warp factor plays an important role, helping to solve the
hierarchy problem without introducing additional hierarchies.

Whereas in the original RS model the fields of the standard model (SM) were, as
mentioned, confined to the visible brane only, the possibility of having additional fields in the
bulk was soon investigated, beginning with scalar fields [2, 3] introduced to stabilize the inter-
brane distance. Subsequently, the possibility of having other fields, such as fermion fields [4, 5],
gauge fields [5]–[7], or even the full assembly of SM fields [8], was investigated. Tests of
Newton’s law at short distances may show aberrations at short distances (see for instance [9]).
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Only recently have there appeared papers on the Casimir effect in the Randall–Sundrum
models. To our knowledge the first group working on this was Frank et al, who published two
papers [10, 11] on Casimir force in both the RSI/RSII and the RSI-q/RSII-q models. Here RSI-
q and RSII-q refer to generalizing the 3-branes on RSI/RSII to (3 + q)-branes (this kind of
generalization will however not be dealt with in the present paper). There are also two papers
from the group of Morales-Técotl et al [12], which focus on RSI-q/RSII-q. While Frank et al
used zeta function regularization to calculate Casimir force, Morales-Técotl et al used a Green’s
function formalism. A delicate point is that their results are seemingly in conflict, except in the
Minkowskian case. We shall comment on this point later.

A third class of papers are those of Cheng [13]–[15]. These papers, except for [15], assume
zero temperature. Moreover, Elizalde et al have recently studied repulsive Casimir effects from
extra dimensions for a massive scalar field with a general curvature parameter [16].

Among previous papers in this research field, the ones most similar to the present work
are those of Teo [17]–[21]. She calculated the temperature Casimir force but not, however, the
Casimir free energy.

As already mentioned, we will assume a scalar field 8 in the bulk. Both the RSI and
the RSII models will be considered. Formally, expressions pertaining to the RSII case may be
derived by letting rc → ∞ in the RSI expressions. The use of a scalar field makes the situation
more unphysical than would be the case when assuming an electromagnetic field in the bulk.
But we avoid the complications arising from photon spin in higher-dimensional spacetimes (for
some recent papers in this direction, see for instance [22]–[27]). The conflict is not even resolved
when we have only one extra spatial dimension and spacetime is flat. On the one hand, we
have e.g. Poppenhaeger et al [27] and Pascoal et al [26], who find the electromagnetic Casimir
force by multiplying by a factor p to account for the possible polarizations of the photon and
subtract the mode polarized in the direction of the brane. On the other hand, we have Edery and
Marachevsky, who start out with decomposition of the five-dimensional (5D) Maxwell action.
This conflict in not the central issue in this paper and we avoid it by only considering a scalar
field.

Our main purpose is to calculate the Casimir free energy and the Casimir force for the
RSI model when there are two parallel plates with separation a on the visible brane. This is the
piston model. Our main focus is on the following points:

1. The calculation is given for arbitrary temperature T , and the low- and high-temperature
limits are considered thereafter. The attraction versus the repulsion of the temperature
corrections for different boundary corrections at low temperature is of definite physical
interest and is therefore pointed out. We regularize infinite expressions by using zeta
functions and the Abel–Plana summation formula, as this formula turns out to be better
suited to the problem than the more commonly used Euler–Maclaurin.

2. We assume Robin boundary conditions on the physical plates at x = 0 and x = a. Usually,
one considers the more simple Dirichlet conditions when working on this kind of problem,
although very recently Robin considerations have begun to attract attention [21, 28].

As an introductory step, we consider in the next section the partition function and the
free energy of a bulk scalar field. We discuss the distinction between even and odd fields, and
also consider the mode localization problem. After a brief survey of the Abel–Plana formula
in section 3, we consider in section 4 the Dirichlet–Dirichlet (DD), Neumann–Neumann (NN)
and Dirichlet–Neumann (DN) boundary conditions in flat space, at finite temperature without
extra dimensions. Our main topic, the temperature RSI case, is covered in section 5, where the
New Journal of Physics 12 (2010) 013022 (http://www.njp.org/)
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Casimir free energy and force are calculated for different boundary conditions. A brief treatment
of the RSII case is given in section 6.

It should be recognized that the warp factor is an important element in the present problem.
One might analyze instead the analogous higher-dimensional cases taking spacetime to be flat.
Considerable interest has been devoted to this simpler variant of higher-dimensional Casimir
theories in recent years. See for instance [19, 25, 26], [29]–[32], and further references therein.

2. Free energy of a bulk scalar field

To find the partition function for a non-minimally coupled scalar field8 with mass m in the RSI
model, we follow a Kaluza–Klein reduction approach [28, 33], starting from the Lagrangian
density

L=
√

−G
(

1
2∂M8∂

M8−
1
2(m

2 + ζ R + chidδ(z)+ cvisδ(z − zr))8
2
)
. (2)

Here G = det G M N (with M, N = 0, 1, 2, 3, 5) is the determinant of the 5D metric, R is the
5D Ricci scalar, ζ is the conformal coupling and chid/vis are the boundary mass terms on the
branes. Throughout the article we use h̄ = c = kB = 1. We have introduced above a new position
coordinate z so that |z| = (ek|r cφ|

− 1)/k, implying that zr = (ekπr c − 1)/k. It is convenient to
also introduce the quantity A(z)= 1/(1 + k|z|). The partition function

Z =

∫
D8 exp

(
i
∫

d4x dz L
)

(3)

can now be calculated, making use of the Euclideanization x̃ i
= x i , x̃0

= τ = ix0. Partial
integration yields

Z =

∫
D8 exp

[
−

∫
d4 x̃ dz

1

2
8A3(z)( p̂2 + M̂2

z)8

]
. (4)

Here

p̂2
= η̃µν∂µ∂ν, (5)

where η̃µν = −δµν is the metric in the coordinates x̃µ, and

M̂2
z = A−3(z)

[
−∂z A3(z)∂z + A5(z)(m2 + ζ R + chidδ(z)+ cvisδ(z − zr))

]
. (6)

We now expand 8 in the eigenfunctions χp(x̃µ) and ψN (z) of p̂2 and M̂2
z , respectively,

8(x̃, z)=

∑
N ,p

cN (p)χp(x̃)ψN (z), (7)

where (τ = it)

p̂2χp(x̃)= −(∂2
τ + ∂2

x + ∂2
y + ∂2

z )χp(x̃)= p2χp(x̃), (8)

M̂2
zψN (z)= M2

NψN (z). (9)

The eigenfunctions are normalized as∫
d4 x̃ χp(x̃)χp′(x̃)= δpp′, (10)∫ zr

−zr

dz ψN (z)A
3(z)ψN ′(z)= δNN ′ . (11)
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The partition function now takes the form (with an unimportant factor omitted)

Z =

∏
MN ,p

(
M2

N + p2
)−1/2

, (12)

where the sum goes over all eigenvalues of MN and p. Our next step is to identify MN and p.

2.1. Eigenfunctions and eigenvalues for p̂2 and M̂2
N

We start from equation (8), assuming Robin boundary conditions on the physical walls,

(1 +β0∂x)χp(x̃)
∣∣

x=0
= 0, (13)

(1 −βa∂x)χp(x̃)
∣∣

x=a
= 0, (14)

with constants β0 and βa referring to x = 0 and x = a. The forms above are as in [28]. Dirichlet
and Neumann boundary conditions correspond to β = 0 and β = ∞, respectively. We assume
eigenfunctions of the form

χp(x̃)= Nei(εlτ+ky y+kz z) cos(kx x +α), (15)

with eigenvalues

p2
= ε2

l + k2
x + k2

y + k2
z . (16)

For a bosonic field at temperature T , the Matsubara frequencies are

εl = 2πT l, l ∈ Z. (17)

Equation (13) leads to the following constraint on α,

cosα =
β0kx√

1 +β2
0 k2

x

, (18)

whereas equation (14) yields Fx(kx)= 0, where

Fx(kx)= (1 − k2
xβ0βa) sin(kxa)− kx(β0 +βa) cos(kxa). (19)

Consider next the eigenfunctions ψN (z). We insert expression (6) into equation (9), taking into
account that the Ricci scalar for the RS metric is

R = −20k2 + 16k(δ(z)− δ(z − zr)), (20)

and change the position coordinate in the bulk back to y using d/dz = A(y) d/dy. Then,

ψ ′′

N (y)− 4kψ ′

N (y)+
(
M2

N e2ky
− (m2

− 20ζk2)
)
ψN (y)= 0. (21)

The solution is (we consider the region 0< y < πrc only)

ψN (y)=
e2ky

CN

(
Jν

(
MN

k
eky

)
+ bν(MN )Yν

(
MN

k
eky

))
, (22)

where ν =
√

4 + (m/k)2 − 20ζ and CN is a normalization constant. This is the same result as
in [5], except that we include curvature (ζ 6= 0) in our model.
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One should now distinguish between even fields satisfying ψN (−y)= ψN (y) and odd
fields satisfying ψN (−y)= −ψN (y). Their behavior may be summarized as follows:

• Even scalar fields obey the Robin BC on the branes. If the field is minimally coupled
(ζ = 0) and there is no mass boundary term (cbrane = 0), the boundary condition reduces to
the Neumann BC, ψ ′

N (y)|brane = 0.

• Odd scalar fields obey the Dirichlet BC on the branes.

These two cases may be combined. We introduce the two functions

jbrane
ν (z)= (2 − (kβbrane)

−1)Jν(z)+ z J ′

ν(z),

ybrane
ν (z)= (2 − (kβbrane)

−1)Yν(z)+ zY ′

ν(z),
(23)

and now let z mean z = ekπr c MN/k (not to be confused with the coordinate z in section 2), and
d = e−kπr c . Then we can write the general BC as FN (z)= 0, where

FN (z)= jhid
ν (zd)yvis

ν (z)− jvis
ν (z)y

hid
ν (zd). (24)

This is in accordance with [35] in the case of minimal coupling, if we choose chid = −cvis =

2α/k.
Special attention ought to be given to the massless case, MN = 0. For fields with m2

−

20ζk2
6= 0, there is no solution of equation (21) with MN = 0 satisfying the Robin BC on both

branes. For an even field with m2
− 20ζk2

6= 0 with no boundary mass term, the situation is
different, as ψ0 =const is a solution of equation (21) and also satisfies the boundary condition
which in that case is the Neumann. The MN = 0 case has important consequences for the
Casimir force from a bulk scalar field. This is related to the localization problem for the
Kaluza–Klein modes in general. In RSI, the massless mode is localized near the hidden brane at
y = 0. In RSII, the situation is reversed, as the massless mode is localized near the visible brane
at y = 0 and the massive modes are delocalized. The reader may consult [12, 36] for discussion
of what weight is to be given to the massless modes in RSI due to the fact that it is localized
near the hidden brane only.

2.2. Approximate expressions for the masses

We assume d = e−kπr c � 1 but keep z = ekπr c MN/k as arbitrary to find convenient
approximative expressions for the Kaluza–Klein masses. As in this case jbrane

ν (z)� ybrane
ν (z),

the equation FN (z)= 0 reduces to

jvis
ν (z)= 0. (25)

The situation can be divided into two classes.

1. For Dirichlet BC (βbrane = 0) it follows that we need the zeros of J2(z). Making use of the
large-z approximation Jν(z)∼ (2/π)1/2 cos(z −

1
2νπ −

1
4π), we find that the expression

MN = kπe−kπrc
(
N + 1

2ν−
1
4

)
, N = 1, 2, . . . . (26)

is useful for practical purposes.

2. For non-Dirichlet BC (βbrane 6= 0) we obtain from equation (23)

jν(z)= (2 + ν− (kβ)−1)Jν(z)− z Jν+1(z), (27)
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leading to approximately

MN = kπe−kπrc
(
N + 1

2ν−
3
4

)
, N = 1, 2, . . . . (28)

The formula works well for kβbrane > 1 and better for higher N . As an example, choosing
kβbrane = 103, d = 10−12, ν = 2, we find the numerical error of the zeros to be about four
per cent when N = 3 and around one per cent when N = 5. As we will see later, the first
(i.e. smallest) values of MN are the most significant for the Casimir force in RSI.

2.3. Two expressions for the free energy

From equation (12) we obtain for the free energy

F = −T ln Z =
1

2
T V⊥

∫
d2k⊥

(2π)2

∞∑
l=−∞

∑
MN ,kx

∫
ln(M2

N + ε2
l + k2

x + k2
⊥
), (29)

where k2
⊥

= k2
y + k2

z , V⊥ is the transverse volume, εl = 2πT l, and the summations over kx and
MN go over all real zeros of the functions Fx(kx) (equation (19)) and FN (z) (equation (24)).

By making use of the zeta function

ζ(s)=

∞∑
l=−∞

V⊥

∫
d2k⊥

(2π)2
∑

MN ,kx

(
M2

N + ε2
l + k2

x + k2
⊥

)−s
, (30)

following [34], we can re-express F as

F = −
1

2
T
∂

∂s
µ2sζ(s)

∣∣∣
s=0
, (31)

where µ is an arbitrary parameter with dimension mass.
We now derive the classical expression for F using the fact that the Mellin transform of

b−z0(z) is e−bt , i.e.

b−z
=

1

0(z)

∫
∞

0
t z−1e−bt dt. (32)

Applying the Poisson summation formula (details omitted), we can then derive

F =
1

4
√
π

V⊥

∫
d2k⊥

(2π)2
∑

MN ,kx

∞∑
p=−∞

∫
∞

0
dt t−s−1e−(p2/4T 2t)−t(k2

x +k2
⊥

+M2
N). (33)

Further manipulations lead us to the desired expression

F = T V⊥

∫
d2k⊥

(2π)2
∑

MN ,kx

ln

[
2 sinh

(
1

2T

√
M2

N + k2
x + k2

⊥

)]
. (34)

One may note here that a boson with energy E p contributes with (β = 1/T )

Z p =

∞∑
n=1

e−βE p(n+1/2)
=

1

2 sinh(βE p/2)
(35)

to the total partition function [35]. Summing over all energies, we obtain the classical expression
corresponding to equation (34). The expression of the free energy of a scalar bulk field is equal
to that of bosons with energy E2

p = M2
N + k2

x + k2
⊥

, where MN are the masses found in section 2.1.
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Figure 1. Illustration of the four cavities in the piston model.

For MN = 0, this is the free energy of a scalar field in Minkowski (i.e. flat) spacetime without
extra spatial dimensions. By letting T → 0 we find the zero-point energy

E = V⊥

∫
d2k⊥

(2π)2
∑

MN ,kx

1

2

√
M2

N + k2
x + k2

⊥
. (36)

Again, we observe that the MN = 0-term in the sum corresponds to the familiar expression for
(3+1)-dimensional Minkowski spacetime.

Another expression for F can be derived, which is more useful in view of our application of
the Abel–Plana summation formula later. We start from expression (31), introduce a generalized
polar coordinate transformation along the same lines as in [37], and integrate over all angles.
We then obtain (the limit s → 0 is understood)

F = −
T V⊥

4π

∂

∂s
µ2s

∞∑
l=−∞

∑
MN ,kx

∫
∞

0
dr r(C + r 2)−s, (37)

where C is defined as

C = M2
N + ε2

l + k2
x . (38)

The integral is solved using the variable change x = r 2/C and leads essentially to the Beta
function B(q, v)= 0(q)0(v)/0(v + q). We obtain

F = −
T V⊥

8π
0(−1)

∞∑
l=−∞

∑
MN ,kx

(M2
N + ε2

l + k2
x). (39)

This is the finite-temperature form that we will use below. The corresponding zero-temperature
form is found by a limiting procedure to be

E = −
V⊥

16π 3/2
0

(
−

3

2

) ∑
MN ,kx

(M2
N + k2

x)
3/2. (40)

From now on we will set V⊥ = 1. Hence E , F and P (force) refer to, respectively, energy, free
energy and force per unit area of the physical plates.

2.4. The piston model

Before finding explicit expressions and specifying BCs we introduce the piston model. The
model has received a great deal of attention [21], [29] and [38]–[41]. We introduce the piston
(figure 1) with the same notation as in chapter 4.3 of [42]. Instead of only using the free energy
FI of cavity I as the Casimir free energy, we use

Fpiston = F I(a)+ F II(X − a)− F III(X/η)− F IV(X (1 − 1/η)). (41)
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Initially the system is in an unstressed situation where the cavities have size X/η and
X (1−1/η). Then we shift the middle plate so that the lengths of the two cavities are a and X−a;
the system is now in a stressed situation. The Casimir free energy is the sum of the free energies
of two cavities in the stressed case (I and II) minus the free energies of the cavities in the
unstressed case (III and IV). The constant η is ∼ 2, characterizing the unstressed situation. In
the end, we let X → ∞ and effectively remove the rightmost plate from the setup.

The piston model introduces a term linear in a that may cancel an already existing term.
Detailed analysis shows that all terms linear in a cancel in our final expression for the free
energy in RSI and RSII. Terms independent of a do not contribute to the Casimir force. Hence
from now on we discard all terms being linear in a, or independent of a.

3. Casimir free energy and force: initial remarks

3.1. The Abel–Plana formula

We want to find a more explicit expression for the Casimir free energy, one that can be evaluated
numerically. Thus all the summations over kx and MN from equation (39) need to be taken care
of. Instead of using equation (39), we look at the complex function

F(s)= −
T

8π
0(s)

∞∑
l=−∞

∑
MN ,kx

(M2
N + ε2

l + k2
x)

−s, (42)

which reduces to the free energy in equation (39) when s = −1. The function F(s) is well
defined for large, positive Re(s) and we analytically continue it to the whole complex plane.
Together with F(s), we will use a variant of the Abel–Plana formula [28, 43]
∞∑

n=1

π f (zn)

1 + (1/zn) sin zn cos(zn + 2α)
= −

π

2

f (0)

1 −β0/a −βa/a︸ ︷︷ ︸
1

+
∫

∞

0
dz f (z)︸ ︷︷ ︸

2

+ i
∫

∞

0
dz

f
(
eiπ/2z

)
− f

(
e−iπ/2z

)
(β0/a−1)(βa/a−1)
(β0/a+1)(βa/a+1) e2z − 1︸ ︷︷ ︸

3

, (43)

especially suited for plates with Robin BC. Here, zn denotes the nth zero in the right half of the
complex plane of the complex function Fx(z = akx) in equation (19). From equations (18) and
(19) we can find the relation

1 + (1/zn) sin zn cos(zn + 2α)= 1 −
β0/a

1 + (β0zn/a)2
−

βa/a

1 + (βazn/a)2
. (44)

By choosing

f (z)=
1

π

(
M2

N + ε2
l + z2/a2

)−s

1 −

∑
j=0,a

β j/a

1 + (β j z/a)2

, (45)

the left-hand side of equation (43) matches the sum over kx in F(s). The notation
∑

j=0,a means
there are contributions from both the left ( j = 0) and the right ( j = a) plates.
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3.2. Application of the Abel–Plana formula

We can divide the free energy F at arbitrary temperature T into two separate parts, F =

F(MN = 0)+ F(MN > 0). For a massive scalar field, there is no massless mode (MN = 0) at
all. For a massless field, even and minimally coupled, there is an MN = 0 mode. Recall that
F(MN = 0) yields the same expression as the free energy of the massless scalar in Minkowski
spacetime. To find the Casimir energy and force for such a field, one can simply add the
massless mode term. It is natural, therefore, to analyze the MN = 0 mode separately. The formal
expressions are divergent and will be regularized by the use of zeta functions.

Now let MN be arbitrary. Insert expression (45) into (43), and divide the sum into three
separate parts as indicated by the underlines 1, 2 and 3. We do not give the details here, as the
formalism is analogous to that of [28], pertaining to the zero-temperature case. The free energy
can be written as the sum of three parts: one part FNP as the contribution when no plates are
present, one part F j as the vacuum free energy along the transverse directions induced by the
plates at x0 = 0 and xa = a, respectively, and the remaining part 1F . Thus

F = FNP +
∑
j=0,a

F j +1F. (46)

The first two terms do not refer to the gap width a, or are linearly dependent on a, so we discard
them. The last term 1F , henceforth called simply F , is the term of physical importance. It
is precisely the term corresponding to underline 3 in equation (43). We give this expression
explicitly:

F(s)= −
T

(2π)2
0(s) sinπs

∞∑
l=−∞

∑
MN

∫
∞

a
√

M2
N +ε2

l

dz
[z2/a2

− (M2
N + ε2

l )]
−s

(β0/a−1)(βa/a−1)
(β0/a+1)(βa/a+1) e2z − 1

×

1 −

∑
j=0,a

β j/a

1 − (β j z/a)2

. (47)

We can now use this expression as a basis for discussing special cases, namely DD, NN and DN
boundary conditions. We first consider flat space with no additional spatial dimensions.

4. Dirichlet–Dirichlet (DD), Neumann–Neumann (NN) and Dirichlet–Neumann (DN)
boundary conditions in flat space with no extra dimensions

To demonstrate the procedure used for finding the Casimir free energy and force, we look at
a well-known case; a massless, scalar field in flat spacetime (Minkowski metric) and no extra
spatial dimensions. An additional motivation for including this section is that F(MN = 0)=

FMink, as mentioned earlier.
Consider first the general formalism. With DD or NN boundary conditions we obtain, when

making use of the substitution z = xa
√

M2
N + ε2

l ,

FDD,NN
= −

aT

(2π)2
0(s) sinπs

∞∑
l=−∞

∑
MN

(M2
N + ε2

l )
−s+1/2

∫
∞

1
dx

(x2
− 1)−s

e2a
√

M2
N +ε2

l − 1
. (48)
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We expand the denominator and use the relation∫
∞

1
(x2

− 1)ν−1e−µxdx =
1

√
π

(
2

µ

)ν−(1/2)
0(ν)Kν−(1/2)(µ). (49)

In the limit s → −1, we use the property 0(x) sinπx = π/0(1 − x) to obtain the free energy
for arbitrary T :

FDD,NN
= −

√
πaT

(2π)2

∞∑
l=−∞

∑
MN

∞∑
n=1

(
M2

N + ε2
l

n2a2

)3/4

K3/2

(
2na

√
M2

N + ε2
l

)
. (50)

The same expression follows if one makes use of zeta regularization. The Abel–Plana
formula is effective in the present context, as it is easily adjustable to different choices for
the boundary conditions.

Consider next flat space. With MN = 0 we obtain from equation (50)

FDD,NN
Mink = −

ζR(3)T

16πa2
−

1

2
aT

(
2T

a

)3/2 ∞∑
l,n=1

(
l

n

)3/2

K3/2(4πanlT ). (51)

The first term corresponds to l = 0, and is derivable, for instance, by taking into account the
properties of Kν(z) for small arguments.

For high temperatures, aT � 1, expression (51) is suitable. The first term is the dominant
one, as the Kν terms decrease for increasing temperatures.

For low temperatures, aT � 1, some rewriting is, however, necessary. We go back to the
complex function

F(s)= −
T

8π
0(s)

∞∑
l=−∞

∑
kx

(ε2
l + k2

x)
−s, (52)

which corresponds to equation (39) when MN = 0, s = −1. Splitting off the l = 0 term and
using again Mellin transform (32), we can write F(s) as

F(s)= Fl=0 −
T

4π

∑
kx

∫
∞

0
dt t s−1S2(4π

2T 2t)e−k2
x t . (53)

Here

Fl=0 = −
T

8π
0(s)

∑
kx

(k2
x)

−s (54)

and S2(t) is the function

S2(t)=

∞∑
m=1

e−m2t , (55)

possessing the property [42]

S2(t)= −
1

2
+

1

2

√
π

t
+

√
π

t
S2

(
π 2

t

)
. (56)
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The first of the three terms from the rhs of equation (56) cancels out Fl=0, leaving

F(s)= −
1

16π 3/2
0

(
s −

1

2

)∑
kx

k−2(s−1/2)
x

−
1

8π3/2

∑
kx

∞∑
l=1

∫
∞

0
dt t (s−1/2)−1 exp

(
−tk2

x −
l2

4T 2t

)
. (57)

The first term here is recognized as the zero-temperature energy, F(T = 0)= E . With s = −1,
we find

FMink = EMink −
1

4π3/2
(2T )3/2

∑
kx

∞∑
l=1

(
kx

l

)3/2

K3/2

(
kxl

T

)
. (58)

We can now make use of the Abel–Plana formula (43), choosing for the function f (z) the form

f (z)=
1

π

( z

a

)3/2
K3/2

(
lz

aT

)1 −

∑
j=0,a

β j/a

1 + (β j z/a)2

. (59)

This leads to, when omitting terms not contributing to the piston model,

FMink = EMink −
2a

π 2

∞∑
n,l=1

1

(4a2n2 + l2/T 2)2
. (60)

We once more use the Mellin transform, but this time choosing S2(4a2t), together with equation
(56). Some calculation leads to the final expression

FDD,NN
Mink = EDD,NN

Mink −
2T 3/2

(2a)3/2

∞∑
n,l=1

(n

l

)3/2
K3/2

(
πln

aT

)
, (61)

where EDD,NN
Mink = −π 2/(1440a3). The corresponding expression for the pressure is2

PDD,NN
Mink = PDD,NN

Mink (T = 0)−
3T 3/2

√
2 a5/2

∞∑
n,l=1

(n

l

)3/2
K3/2

(
πln

aT

)

+
π

√
T/2

a7/2

∞∑
n,l=1

n5/2

√
l

K5/2

(
πln

aT

)
, (62)

where PDD,NN
Mink (T = 0)= −π 2/(480a4). The Casimir energy and force are equal to the zero-

temperature expressions plus correction terms, the latter decaying exponentially as T → 0.
In equation (62) we may insert the asymptotic expansion for large arguments, Kν(z)=

(π/2z)1/2 e−z[1 + (4ν2
− 1)/8z]. It is of interest to extract the dominant term in the correction,

corresponding to n = l = 1. Approximatively, we then obtain

PDD,NN
Mink = PDD,NN

Mink (T = 0)+
π

2a3
exp

(
−
π

aT

)
. (63)

2 We are missing the Stefan-Boltzmann term in both the free energy and force since we have removed all terms
linear in a.
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The physically important point here is that the finite-temperature term is positive, corresponding
to a repulsive force correction (recall that we are considering aT � 1). The situation is in some
sense similar to that encountered in earlier studies when calculating the Casimir force between
two parallel metallic slabs in physical space, assuming the Drude dispersion relation for the
material; in that case the finite-temperature effect was also found to weaken the attractive T = 0
force [44].

We now consider the third class of BCs mentioned above; assuming Dirichlet boundary
conditions on one plate and Neumann on the other, we find

FDN
=

aT

(2π)2
0(s) sinπs

∞∑
l=−∞

∑
MN

(M2
N + ε2

l )
−s+1/2

∫
∞

1
dx

(x2
− 1)−s

e2a
√

M2
N +ε2

l + 1
. (64)

The steps are similar to those of the DD and NN calculations, only with a factor (−1)n due
to the positive sign in the denominator and accordingly EDN

Mink = −7/8EDD,NN
Mink . The free energy

density with DN boundary conditions becomes

FDN
= −

a
√
πT

(2π)2

∞∑
l=−∞

∑
MN

∞∑
n=1

(−1)n
(

M2
N + ε2

l

n2a2

)3/4

K3/2

(
2na

√
M2

N + ε2
l

)
. (65)

With MN = 0, we obtain

FDN
Mink =

3ζR(3)T

64πa2
−

1

2
aT

(
2T

a

)3/2 ∞∑
l,n=1

(−1)n
(

l

n

)3/2

K3/2(4πanlT ), (66)

which is a convenient form for the case of high temperatures.
For low temperatures, we obtain, by reasoning similar to that given above,

FDN
Mink = EDN

Mink −
2T 3/2

(2a)3/2

∞∑
n,l=1

(−1)n
(n

l

)3/2
K3/2

(
πln

aT

)
(67)

with corresponding force

PDN
Mink = PDN

Mink(T = 0)−
3 T 3/2

√
2 a5/2

∞∑
n,l=1

(−1)n
(n

l

)3/2
K3/2

(
πln

aT

)

+
π

√
T/2

a7/2

∞∑
n,l=1

(−1)n
n5/2

√
l

K5/2

(
πln

aT

)
. (68)

Again extracting the dominant term by including only n = l = 1, we obtain approximately

PDN
Mink = PDN

Mink(T = 0)−
πT

2a3
exp

(
−
π

aT

)
. (69)

The correction term is the same as in equation (63), but with the opposite sign. The thermal
correction is attractive.

5. DD, NN and DN boundary conditions in Randall–Sundrum Model I

Consider first the high-temperature regime. Whereas in flat space this corresponds to aT � 1,
in RSI the natural choice for high temperatures is T � ke−kπr c . Recall that the lowest values of
MN are ∼ ke−kπr c; this implies aT � 1 since ake−kπr c � 1 for all relevant distances in physical
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space. In this limit, equation (50) is a suitable expression for the free energy and the Casimir
force is

PDD,NN
RSI =

√
π T

(2π)2

∞∑
l=−∞

∑
MN

∞∑
n=1

(
M2

N + (2πT l)2

n2a2

)3/4

K3/2

(
2na

√
M2

N + (2πT l)2
)

−
2
√
π T

(2π)2

∞∑
l=−∞

∑
MN

∞∑
n=1

(
M2

N + (2πT l)2
)5/4

√
na

K5/2

(
2na

√
M2

N + (2πT l)2
)
. (70)

After some rewriting we find that this is in accordance with equation (23) in [20]. We need
only to include the E(MN = 0) term to get the Casimir force for a massless scalar instead of a
massive scalar.

We find that the high-temperature limit is valid for T � 1016 K. Only temperatures much
less than these are expected to be of physical importance. It is very natural therefore to find
the Casimir energy and force for T � ke−kπr c . Note that the brane low-temperature condition
does not fix the magnitude of the product aT relative to unity. With k ∼ 1019 GeV, e−kπr c ∼

10−16, we only obtain the weak condition T � 103 GeV. As an example, choose T = 300 K
(2.6 × 10−11 GeV), a = 1µm, from which it follows that aT = 0.15. In most cases of practical
interest we will have aT � 1, although one can easily consider cases where aT � 1, still
compatible with the condition T � ke−kπr c .

Using the same procedure as in flat space, we find the RSI equivalent to equation (58),

FRSI = ERSI −
1

4π 3/2
(2T )3/2

∑
MN

∑
kx

∞∑
l=1

(
k2

x + M2
N

l2

)3/4

K3/2

(
l

T

√
k2

x + M2
N

)
. (71)

We can differentiate this expression to find the Casimir force. By assuming ∂kx/∂a = −kx/a,
we obtain equation (17) in [21], only missing the first term3. The assumption holds for all kx

proportional to 1/a, which is the case for DD, NN and DN BC. Although the metric in [21]
does not include the warp factor e−2kr cφ, the expressions are the same, since the warp factor
only affects the values of the MN s. In equation (71) ERSI is the zero-temperature energy in RSI
and is found from equation (40) using the Abel–Plana formula (43) with

f (z)=
1

π

(
M2

N + z2/a2
)3/2

1 −

∑
j=0,a

β j/a

1 + (β j z/a)2

 . (72)

After some variable changes, the energy reads

ERSI = −
1

6π 2

∑
MN

∫
∞

aMN

dz (z2/a2
− M2

N )
3/2

1 −
∑

j=0,a
1−β j/a
(β j z/a)2

(β0/a−1)(βa/a−1)
(β0/a+1)(βa/a+1) e2z − 1

, (73)

and for DD and NN boundary conditions it simplifies to

EDD,NN
RSI = −

1

8π 2a

∞∑
n=1

∑
MN

M2
N

n2
K2(2aMN n). (74)

3 This is the additional term from cavity II-IV in the piston model and is independent of a (the free energy is linear
in a). With the free energy of this form, we do not get cancelation of the terms linear in a.
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The Casimir force at zero temperature is

PDD,NN
RSI (T = 0)= −

3

8π2a2

∞∑
n=1

∑
MN

M2
N

n2
K2(2aMN n)−

1

4π2a

∑
n=1

∑
MN

M3
N

n
K1(2aMN n). (75)

This is in accordance with [28], although that paper does not consider the Casimir effect arising
from a bulk scalar in the RS model in particular. Inserting the approximation equation (28) for
MN , we see that the energy is essentially the same as in [10]. There are three minor differences.
First of all the energy in [10] has some extra terms that are linear and independent of a since
the piston model is not used. Secondly, factors p are included to make the expression hold for
electromagnetic fields, where p is the polarization of the photon. The last difference is a factor
of 2 included to account for ‘the volume of the orbifold’. Since we cannot see how this factor
occurs, it is not included. This is also equal to equation (26) in [20], except that it contains the
E(MN = 0) term since a massless field is considered.

The summation over kx in equation (71) is still left and can be done using the Abel–Plana
formula with

f (z)=
1

π
(M2

N + z2/a2)3/4K3/2

(
l

T

√
z2/a2 + M2

N

)1 −

∑
j=0,a

β j/a

1 + (β j z/a)2

. (76)

After inserting K3/2(z)= (π/2z)1/2 e−z(1 + 1/z), the free energy reads

FRSI = ERSI −
T 3

π 2

∑
MN

∞∑
l=1

l−3

∫
∞

MN a
dz

1 −
∑

j=0,a
β j/a

1−(β j z/a)2

(β0/a−1)(βa/a−1)
(β0/a+1)(βa/a+1) e2z − 1

[
sin

(
l

T

√
(z/a)2 − M2

N

)

−
l

T

√
(z/a)2 − M2

N cos

(
l

T

√
(z/a)2 − M2

N

)]
. (77)

We continue by inserting the βs for DD and NN boundary conditions, expansion of the
denominator and the variable exchange x = z/a to obtain

FDD,NN
RSI = EDD,NN

RSI −
T 3a

π 2

∑
MN

∞∑
l=1

l−3
∞∑

n=1

∫
∞

MN

dx e−2nax

[
sin

(
l

T

√
x2 − M2

N

)

−
l

T

√
x2 − M2

N cos

(
l

T

√
x2 − M2

N

)]
. (78)

Integrals of this form are solved in the appendix with the result∫
∞

C
dx
(

sin(A
√

x2 − C2)− A
√

x2 − C2 cos(A
√

x2 − C2)
)

e−Bx

=
C2 A3

A2 + B2
K2(C

√

A2 + B2), (79)

giving the free energy

FDD,NN
RSI = EDD,NN

RSI −
a

π 2

∑
MN

∞∑
l=1

∞∑
n=1

M2
N

(2na)2 + (l/T )2
K2

(
MN

√
(2na)2 + (l/T )2

)
(80)
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and force

PDD,NN
RSI = PDD,NN

RSI (T = 0)

−
1

π 2

∑
MN

∞∑
l=1

∞∑
n=1

M2
N (3(2na)2 − (l/T )2)

((2na)2 + (l/T )2)2
K2

(
MN

√
(2na)2 + (l/T )2

)

−
1

π 2

∑
MN

∞∑
l=1

∞∑
n=1

M3
N (2na)2

((2na)2 + (l/T )2)3/2
K1

(
MN

√
(2na)2 + (l/T )2

)
. (81)

This expression, belonging to the low-temperature regime T � ke−kπr c , can be used both for
aT � 1 and for aT � 1. The argument of the Bessel functions will always be large since
ake−kπr c � 1 for all relevant distances. The correction terms to the zero-temperature energy
and force expressions are small. The expression, to our knowledge, has not been given before.
The leading term for the force in terms of T/MN is

PDD,NN
RSI ∼ PDD,NN

RSI (T = 0)−
1

√
2π 3

∑
MN

∞∑
l=1

∞∑
n=1

M4
N e−

MN
T

√
(2anT )2+l2

×

(
T

MN

)3/2
(2naT )2(

(2naT )2 + l2
)7/4 . (82)

In contrast to flat space, both zero-temperature Casimir force and thermal correction a negative.
Hence, the Casimir effect in RSI is stronger in the low-temperature limit (T � ke−kπr c) both for
aT � 1 and for aT � 1.

The DN expressions deviate from the DD and NN expressions in RSI in the same way as in
flat space. The factor of (−1)n must be included in sum over n, where the sum over n originates
from the expansion of the denominator in equations (73) and (77).

5.1. Comparison to flat space

The point of calculating the Casimir force in RSI is to find out where there are deviations
from the Casimir force in flat spacetime without extra spatial dimensions. For an easier
comparison, we give the full expression for the Casimir force of a massless bulk scalar in RSI
with DD/NN BCs.

PDD,NN
RSI = −

π 2

480a4
−

1

a4

∑
MN

∞∑
n=1

[
3

8π 2

(aMN )
2

n2
K2 (2aMN n)+

1

4π2

(aMN )
3

n
K1 (2aMN n)

]

+
1

a4

∞∑
n,l=1

[
−

3(aT )3/2
√

2

(n

l

)3/2
K3/2

(
πln

aT

)
+π

√
T a/2

n5/2

√
l

K5/2

(
πln

aT

)]

−
1

a4π2

∑
MN

∞∑
n,l=1

[
(aMN )

3(2n)2(
(2n)2 + (l/aT )2

)3/2 K1

(
aMN

√
(2n)2 + (l/T a)2

)
−
(aMN )

2
(
3(2n)2 − (l/aT )2

)(
(2n)2 + (l/aT )2

)2 K2

(
aMN

√
(2n)2 + (l/aT )2

) ]
. (83)
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This expression is good at low temperatures because the Bessel function decreases exponentially
at high arguments. Hence, we only need to sum over the first couple of values from MN ,
n and l if the other factors (MN , a and T ) ensure that the argument is much greater than
one. On the other hand, if the argument of the Bessel function is not large we need to be
careful that the sum has converged. Now the essential question is, for what values (of MN ,
a and T ) are the sums of Bessel functions of the same magnitude as the flat spacetime at zero
temperature (i.e. the first term)? Or, simply, when can we see a deviation from the ordinary
Casimir force?

Looking at equation (83), we see that at zero temperature we need aM N ∼ 1 for a
noticeable difference. We know that MN ≈ ke−kπr c for low N and k is usually set to ∼ Mpl ≈

1019 GeV in RSI. In the original paper of Randall and Sundrum, they propose choosing kr c ∼ 10
in order to solve the hierarchy problem. With these values, we find that a is ∼ 10−21 m. There
is no point in looking at distances smaller than the size of an atom. Only distances of physical
relevance (>1 nm) are of interest. In figure 2, we keep k = 1019 GeV, but choose e−kπr c = 10−26.
The difference from RSI to ordinary Casimir force FMink at zero temperature is given in figure 2.
By a choice of parameters, the magnitude of the correction in RSI is of the same order of
magnitude as FMink, given by the red line in figure 2(a). With a smaller value of kr c we will not
see any difference at separations larger than 1 nm. The corresponding size of the extra dimension
is rc ≈ 10−35 m. In figure 2(b), we see the ratio of this difference to the Casimir force at zero
temperature. We observe that this extra term we obtain in RSI goes more quickly to zero than
FMink. Now we turn to relevant values of the temperature. The choices of rc, k and a are still
the same, and after some testing it turns out that amaxT ∼ 3 is suitable. To be sure that the sums
have converged, we let both n and l run to 30. The result is presented in figure 2. The green line
is the PRSI − PMink for T = 3 × 106 K and we see that this gives a stronger Casimir force than at
zero temperature.

5.2. Comparison to flat space with one extra dimension

In the previous section, we compared the Casimir force in RSI with the Casimir force for
a massless scalar in ordinary flat (3+1)-spacetime. In this section, we will look at a higher-
dimensional spacetime that is flat, i.e. with no warp factor in the metric. As mentioned in
the introduction, this topic has received much interest lately. The extra dimension is a torus
with circumference 2πL . In this case MN = N/L , with N = 0,±1,±2, . . . . With these values
for the MN s instead of those we have in RSI, we see that equation (70) is equal to the high-
temperature expression in [19]. However, we have not found an expression corresponding to the
Casimir force in equation (83). Since the new values for the MN s are equally separated, we can
use the Chowla–Selberg formula found in [45]. The function F(s) now reads for DD BCs

F(s)= −
T

8π
0(s)

∞∑
l=−∞

∞∑
N=−∞

∞∑
n=1

((2πT )2 + (nπ/a)2 + (N/L)2)−s. (84)

Rewriting this to homogeneous Epstein zeta functions

ZE,p(s; a1, . . . , ap)=

∞∑
k1,...,kp=−∞

′

((a1k1)
2 + (a2k2)

2 + · · · + (apkp)
2)−s, (85)
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Figure 2. PDD,NN
RSI − PDD,NN

Mink for a massless scalar bulk field with k = 1019 GeV
and d = e−kπr c = 10−26. (a) The difference between the Casimir force for RSI
and flat (3+1)-spacetime at T = 0 and T = 3 × 106 K. The Casimir force for
a massless scalar field in flat spacetime at zero temperature is included for
comparison. (b) The ratio of the difference between the Casimir force in RSI
and flat spacetime at T = 0 and T = 3 × 106 K to the force at zero temperature
in flat spacetime.

we find

F(s)= −
T

16π
0(s)Z E,2(s; 2πT, 1/L)−

T

16π
0(s)Z E,3(s; 2πT, π/a, 1/L). (86)

The notation
∑

∞

k1,k2,...kp=−∞
means that for k1 to kp we sum from −∞ to ∞. The prime ‘′’

behind the sum means that the term k1 = k2 = · · · = kp = 0 is omitted. The Chowla–Selberg
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formula is

ZE,p(s; a1, . . . , ap)= ZE,m(s; a1, . . . , am)+
πm/20

(
s −

m
2

)(∏m
i=1 ai

)
0(s)

ZE,p−m

(
s −

m

2
; am+1, . . . , ap

)

+
2π s

0(s)
(∏m

i=1 ai

) ∞∑
k1,...,km=−∞

′ ∞∑
km+1,...,kp=−∞

′
( ∑m

i=1(ki/ai)
2∑p

j=m+1 (k ja j)2

)(2s−m)/4

×Ks−m/2

2π

√√√√ m∑
i=1

ki/ai

√√√√ p∑
j=m+1

(k ja j)2

. (87)

After using the Chowla–Selberg formula with m = 2 we put s = −1 and remove all terms linear
and independent of a. Then we see that the free energy is

F = −
T

16π
0(−1)Z E,2(−1; 2πT, π/a)−

a

4π2

∞∑
N=−∞

′ ∞∑
n,l=−∞

′

(N/L)2

(2na)2 + (l/T )2
K2

×

(
N/L

√
(2na)2 + (l/T )2

)
. (88)

The first term can be identified as F(MN = 0) and the second term is equal to equation (80).
From

∑
∞

n,l=−∞

′, we obtain the factor 4 when we rewrite so that n and l run from 1 to ∞. The
term l = 0 but n 6= 0 gives the zero-temperature expression and n = 0 with l 6= 0 is independent
of a and is removed. Since equation (80) leads to equation (83), we can conclude that we
obtain the same answer with the Chowla–Selberg formula as with the Abel–Plana formula in
flat spacetime with one extra spatial dimension. However, the Abel–Plana formula can be used
regardless of the values of MN , while the Chowla–Selberg formula is only useful if we can
rewrite our expressions to homogeneous Epstein zeta functions. The second advantage of the
Abel–Plana formula is that different boundary condititions can easily be obtained.

6. DD, NN and DN boundary conditions in Randall–Sundrum Model II

In RSII, the Kaluza–Klein modes are continuous and we must replace the sum over MN with an
integral, ∑

MN

→

∫
∞

0

dM

k
. (89)

In equation (50), we obtain an integral of the form∫
∞

0
dz(z2 + A2)3/4K3/2

(
B
√

z2 + A2
)

=

√
π

2B
A2K2(AB). (90)

The derivation of this formula is given in the appendix. We find that the free energy and force
in RSII are

FDD,NN
RSII = −

Tπ3

1440ka3
−
πT 3

ak

∞∑
l=1

∞∑
n=1

l2

n2
K2 (4πT aln) (91)
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and

PDD,NN
RSII = −

3 Tπ 3

1440ka4
−

3πT 3

a2k

∞∑
l=1

∞∑
n=1

l2

n2
K2 (4πaT ln)−

4π 2 T 4

ak

∞∑
l=1

∞∑
n=1

l3

n
K1(4πaT ln). (92)

These expressions are convenient for the high-temperature limit aT � 1. In RSII, there are
only two temperature regimes, aT � 1 and aT � 1, since MN is continuous. To find the low-
temperature limit, we insert equation (89) into equation (80) and use the integral∫

∞

0
dz z2K2(Az)=

3π

2A3
. (93)

The free energy reads

FDD,NN
RSII = EDD,NN

RSII −
3a

2πk

∞∑
n=1

∞∑
l=1

1

((2an)2 + (l/T )2)5/2
, (94)

where EDD,NN
RSII = −

3ζR(5)
128πka4 is the zero-temperature energy in RSII. We can find this energy from

e.g. equation (74) by making use of equation (93). We use the Mellin transform as in low-
temperature, flat spacetime (with S2(4a2t)) and find that

FDD,NN
RSII = EDD,NN

RSII −
πT 2

2ka2

∞∑
n,l=1

(n

l

)2
K2

(
πnl

aT

)
. (95)

The Casimir force is

PDD,NN
RSII = PDD,NN

RSII (T = 0)+
π 2 T

2ka4

∞∑
n,l=1

n3

l
K1

(
πnl

aT

)
, (96)

with PDD,NN
RSII (T = 0)= −

3ζR(5)
32πka5 .

In the low-temperature limit aT � 1, we obtain from equation (96) the dominant term
corresponding to n = l = 1,

PDD,NN
RSII = PDD,NN

RSII (T = 0)+
π 2 T

2ka4

√
aT

2
exp

(
−
π

aT

)
. (97)

The temperature correction term is repulsive.
As in RSI the only difference between DD/NN BC and DN is a factor (−1)n in the sum

over n.

7. Concluding remarks

Our main objective has been to calculate the finite-temperature Casimir effect for a scalar field
residing in the bulk in the two Randall–Sundrum models, RSI and RSII. Two parallel plates are
envisaged, with gap a located on one of the RS branes. We have given most attention to the RSI
model. Robin boundary conditions, see equations (13) and (14), are assumed on the two plates.
The geometrical picture is the piston model, as illustrated in figure 1. We have made use of the
Abel–Plana summation formula throughout, as this is found to be the most convenient choice in
the present context.

In the case of flat space the basic expressions for the Casimir free energy and force (per
unit surface area) are worked out in the form of the series in section 4, for both high and low
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temperatures. A characteristic feature for DD and NN boundary conditions on the two plates is
that the dominant part of the finite-temperature correction term for low temperatures (aT � 1)
is repulsive. That is, the force decreases slightly when the temperature increases from zero. In
this sense the behavior is analogous to that encountered in the case of conventional Casimir
theory for metallic slabs in physical space when the dispersive relation for the material is taken
to have the Drude form [44].

The RSI model is covered in section 5 in an analogous way. The dominant term in the
Casimir force shows that the characteristic property strengthens the zero-temperature effect
instead of weakening it as in RSII. From equation (81) we can evaluate the Casimir force for
both aT � 1 and aT � 1, provided T � ke−kπr c . This section also covers a comparison to flat
space with and without a compactified extra dimension.

In section 6, the RSII model is considered. We have
∫

∞

0 dM/k = π/k
∫

∞

−∞
dM/(2π)

and thus the Casimir force has a characteristic π/k times the Casimir force of a (4+1)-
dimensional Minkowski spacetime. This is pointed out by Morales-Técotl et al [12], but as
an argument against using zeta functions in the regularization in favour of Green’s functions.
It is not only the regularization method that is different; the physical picture also differs
from this article and the work by Frank et al [10, 11]. While Frank et al calculate the free
energy of a slice of the bulk, Morales-Técotl et al. try to restrict the system to the brane by
evaluating the Green’s function at the visible brane (y = 0 for RSII). In this way they claim to
incorporate the localization properties of the modes of the scalar bulk field (ψN (y)). Note that
the Green’s function method includes an integral over y, and by setting y = 0, Morales-Técotl
et al thus remove the y-dependence of a part of the integrand before integrating. However,
keeping the y-dependence before the integration makes for results different to those of Frank
et al. The delicate point is how to include the localization properties of the modes. In [36], it
is proposed to resolve the issue by changing the boundary conditions. The problem with the
localization properties of the modes needs to be resolved before the Casimir effect from an
electromagnetic field can be considered.

Appendix. Integrals and Bessel functions

We need to calculate the nontrivial integral∫
∞

C
dx
(

A
√

x2 − C2 cos
(

A
√

x2 − C2
)

− sin
(

A
√

x2 − C2
))

e−Bx . (A.1)

First use the substitution u =
√

x2 − C2 to find∫
∞

0

du
√

u2 + C2
(Au2 cos(Au)− u sin(Au))e−B

√
u2+C2

= A
∂2

∂B2

∫
∞

0
du

1
√

u2 + C2
cos(Au)e−B

√
u2+C2

−A
∫

∞

0
du

1
√

u2 + C2
cos(Au)e−B

√
u2+C2

−

∫
∞

0

du
√

u2 + C2
u sin(Au))e−B

√
u2+C2

. (A.2)
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Using equation (3.961) in [46],∫
∞

0

xdx√
γ 2 + x2

e−β
√
γ 2+x2

sin(ax)=
aγ√

a2 +β2
K1

(
γ
√

a2 +β2
)
, (A.3)

as well as ∫
∞

0

dx√
γ 2 + x2

e−β
√
γ 2+x2

cos(ax)= K0

(
γ
√

a2 +β2
)
, (A.4)

we obtain ∫
∞

C
dx
(

A
√

x2 − C2 cos
(

A
√

x2 − C2
)

− sin
(

A
√

x2 − C2
))

e−Bx

= A
∂2

∂B2
K0

(
C

√

A2 + B2
)

−
AM

√
A2 + B2

K1

(
C

√

A2 + B2
)

−AM2K0

(
C

√

A2 + B2
)
. (A.5)

After differentiating and using the relationships between K0, K1 and K2, we find the solution∫
∞

C
dx
(

A
√

x2 − C2 cos
(

A
√

x2 − C2
)

− sin
(

A
√

x2 − C2
))

e−Bx

= −
C2 A3

A2 + B2
K2

(
C

√

A2 + B2
)
. (A.6)

Next consider the integral∫
∞

0
dz(z2 + A2)3/4K3/2

(
B
√

z2 + A2
)
. (A.7)

With the substitution u =
√
(z/A)2 + 1, we obtain

A5/2

∫
∞

1

du u5/2

√
u2 − 1

K3/2(B Au)=

√
π

2B
A2

∫
∞

1

du u2

√
u2 − 1

(
1 +

1

B Au

)
e−B Au, (A.8)

again using K3/2(z)= (π/2z)1/2 e−z(1 + 1/z). As the integral representation of K2(B A) is [47]

K2(ax)=
π 1/2

(
1
2ax

)2

0
(

5
2

) ∫
∞

1
du e−axu(u2

− 1)3/2, (A.9)

we find after several partial integrations

K2(ax)=
π 1/2

(
1
2ax

)2

0
(

5
2

) 3

(ax)2

∫
∞

1

du u2

√
u2 − 1

(
1 +

1

axu

)
e−axu. (A.10)

Thus, the integral becomes∫
∞

0
dz
(
z2 + A2

)3/4
K3/2

(
B
√

z2 + A2
)

=

√
π

2B
A2K2(B A). (A.11)
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