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Abstract 
Future consumption and use of aluminium is expected to continue to increase 

significantly. However, due to the heavily inter-connected and complex global aluminium 

system, there is a need to better understand how increases in aluminium consumption and 

demand will impact the future flows within the global aluminium cycle. This study aims to 

analyse the historical flows and in-use stock of aluminium within each region to create a 

stock-driven, trade-linked, multi-regional model that can forecast global aluminium flows to 

2050 through various scenarios. The end goal of this research effort is to provide the 

aluminium industry with a robust tool that provides insights into long-term business strategies 

given various possibilities for how the global aluminium cycle could evolve in the future. 

  



2 

Table of Contents 

Abstract ............................................................................................................................................ 1 
1. Introduction .................................................................................................................................. 3 
2. Methodology ................................................................................................................................ 5 

2.1. System Description ............................................................................................................... 6 
2.2. Scenario Projections and Model Assumptions ................................................................... 10 

2.2.1. In-Use Stock Scenario Projections ............................................................................... 11 
2.2.2. Satisfying Aluminium Demand Scenario Projections ................................................. 18 

2.2.2.1. Primary Aluminium Production Scenarios ........................................................... 19 
2.2.2.2. Product Fabrication Scenarios .............................................................................. 22 
2.2.2.3. Bauxite, Alumina, and Scrap Scenario Projections .............................................. 24 

2.2.3. Additional Model Assumptions ................................................................................... 27 
3. Results and Interpretation .......................................................................................................... 29 

3.1. Future Demand for Aluminium Products and Future Availability of Scrap ....................... 30 
3.2. Future Production to Satisfy Future Demand ..................................................................... 39 

3.2.1. Scenario 1: Middle East dominates primary AL production, Fabrication follows 
domestic demand ................................................................................................................... 40 
3.2.2. Scenario 2: Middle East dominates primary AL production, Fabrication integrated 
with primary AL production .................................................................................................. 46 
3.2.3. Scenario 3: China dominates primary AL production, Fabrication follows 
domestic demand ................................................................................................................... 51 
3.2.4. Scenario 4: China dominates primary AL production, Fabrication integrated with 
primary AL production .......................................................................................................... 57 

3.3. Summary of Scenario Results ............................................................................................. 62 
4. Further Discussion ..................................................................................................................... 65 
References ...................................................................................................................................... 68 

 

 

 

  



3 

1. Introduction 

Aluminium is the third most abundant element in the Earth�s crust after oxygen and 

silicon. Following its discovery in the 1800s and commercial production in the 1880s, 

aluminium has grown to be the second most used metal in the world following iron. The 

metal�s durable, lightweight, flexible, and corrosion resistant properties have led to a 

significant increase in use for a variety of applications in construction, transport, packaging, 

and electronics. 

The use of aluminium is expected to continue to increase in the future. The USGS 

estimates that global aluminium consumption will increase by almost 2.5 times by 2025 

compared to 2006 levels, with most of the aluminium consumption occurring in countries that 

did not consume as much aluminium in the past, such as China, Russia, Brazil, and India. As 

production and consumption are two sides of the same coin, a significant increase in 

aluminium, alumina, and bauxite production is necessary to meet the global consumption 

demand for aluminium. In addition, there will also be a significant increase in scrap and 

secondary aluminium as the consumption of aluminium increases in the future, given the 

lifetimes of different aluminium containing products (Menzie, 2010). Due to the heavily 

inter-connected and complex global aluminium system, there is a need to better understand 

how increases in aluminium consumption and demand will impact the future flows within the 

global aluminium cycle. 

Material Flow Analysis is a widely used approach to develop models that map complex 

systems and uncover the intricate system of flows within them. Several studies have been 

performed using this approach to map the global aluminium cycle. The GARC (2011) model, 

developed by the International Aluminium Institute is the first dynamic model of global 

aluminium flows, and has since been updated to capture flows as recent as 2011, though it 

does not account for regional flows. More detailed regional studies on aluminium flows have 

also been conducted, primarily static models for a specific year for specific countries, such as 

Europe (Bertram, Martchek, & Rombach, 2009), China (Chen & Shi, 2012), Japan 

(Hatayama et. al., 2009) and the United States (Liu, Bangs, & Mueller, 2011).  

However, the majority of these studies have not been developed to effectively forecast 

future flows within each region using a stock-driven approach, one that focuses on the future 

aluminium consumption within society and evaluates the impacts of that future demand on 

the rest of the aluminium cycle. The GARC (2011) model attempts to forecast future global 

flows by using estimated growth rates for semi-fabricated net shipments, but this approach 
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does not take into account consumption or in-use stocks of aluminium. The study conducted 

by the USGS (Menzie, 2010) to forecast the future aluminium industry to 2025 uses 

regression analyses with GDP and aluminium consumption per capita to project future 

aluminium consumption in different countries around the world. Similarly, a study by Liu, 

Bangs, and Mueller (2013) on the stock dynamics of the global aluminium cycle forecasts 

global aluminium in-use stock per capita based on various saturation levels. A more regional 

report developed by the European Aluminium Agency (2012) forecasts European aluminium 

consumption and scrap availability to 2050. None of these studies, however, evaluate the 

implications of future consumption on aluminium, alumina, and bauxite production and the 

global aluminium cycle. 

Thus, there is no comprehensive model that sufficiently forecasts future aluminium 

consumption using a stock-driven approach and evaluates the implications of future 

consumption on primary and secondary aluminium production, alumina, and bauxite in 

different regions within the global aluminium cycle. Recent studies by NTNU and the 

International Aluminium Institute have developed historical, trade-linked, multi-regional 

models to understand the dynamics of the global aluminium cycle for various product 

categories within each region from 1962 to 2011 (Ramkumar, 2013). This study aims to build 

upon these historical models to analyse the historical flows and in-use stock of aluminium 

within each region to create a stock-driven, trade-linked, multi-regional model to forecast 

global aluminium flows to 2050 through various scenarios. The end goal of developing such a 

model is to provide the aluminium industry with a robust tool that provides insights into long-

term business strategies given various possibilities for how the global aluminium cycle could 

evolve in the future. 

In order to highlight how the stock-driven, trade-linked, multi-regional model can be 

used for scenario analysis and strategy development, this paper aims to use the model to 

answer the following questions using a defined set of scenarios developed in cooperation with 

the International Aluminium Institute and the aluminium industry: 

1. What is the future demand for aluminium products and the future availability of 

scrap given the stock dynamics of aluminium consumption in different regions 

within the different final product categories? 

2. How can future production of aluminium and fabrication of final products meet this 

demand given the following 4 scenarios? 

o Middle East dominates primary AL production, Fabrication follows domestic 

demand: By 2050, future primary aluminium production is dominated by the 
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Middle East, with other regions� primary aluminium production capacity not 

replaced. By 2050, fabrication of final products containing aluminium is 

satisfied by domestic facilities that meet domestic demand. 

o Middle East dominates primary AL production, Fabrication integrated with 

primary AL production: By 2050, future primary aluminium production is 

dominated by the Middle East, with other regions� primary aluminium 

production capacity not replaced. Fabrication of final products containing 

aluminium is integrated with primary AL production facilities. 

o China dominates primary AL production, Fabrication follows domestic 

demand: By 2050, future primary aluminium production is dominated by China, 

with other regions� primary aluminium production capacity not replaced. By 

2050, fabrication of final products containing aluminium is satisfied by domestic 

facilities that meet domestic demand. 

o China dominates primary AL production, Fabrication integrated with primary 

AL production: By 2050, future primary aluminium production is dominated by 

China, with other regions� primary aluminium production capacity not replaced. 

Fabrication of final products containing aluminium is integrated with primary 

AL production facilities. 

2. Methodology 
The stock-driven, trade-linked, multi-regional model represents a fundamental shift in 

thinking for how the aluminium industry can understand and evaluate future flows within the 

global aluminium cycle. The GARC model (2011) and previous historical models 

(Ramkumar, 2013) used by aluminium industry have focused on a production-driven 

approach, evaluating the impact of shipments of aluminium on the rest of the industry. 

However, the stock-driven model focuses on analysing in-use stock within society and takes a 

more demand oriented approach in forecasting future aluminium flows. In this way, the 

stock-driven model evaluates historical consumption of aluminium, future demand for 

aluminium, production to meet this demand, and the implications for the global aluminium 

cycle. This section will describe the methodology behind developing the stock-driven, trade-

linked, multi-regional model. 
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2.1. System Description 
The first step taken in creating a stock-driven model that forecasts the future of the 

global aluminium cycle was to determine the timeframe. According to a paper by Spyros 

Makridakis, long-term forecasting is crucial for identifying potential opportunities and threats 

to the business environment. Compared to short-term and medium-term forecasting, which 

have higher uncertainty and less useful insights, long-term forecasting is where real strategic 

benefits can be extracted (Makridakis, 1996). As a result, the stock-driven, trade-linked, 

multi-regional model continues where the historical models left off and forecasts the 

aluminium cycle by an additional 39 years � from 2012 to 2050. This provides a smooth 

continuation of both historical data and future trends and is a sufficiently long time horizon 

for strategic forecasting and scenario planning. 

In an effort to maintain consistency with the historical models as well as utilize 

historical trends to aid in future projections, the regions defined in the stock-driven model are 

the same as those defined in the historical, trade-linked, multi-regional models (Ramkumar, 

2013). The 10 regions considered within the global aluminium cycle are shown in table 1.  
 

Table 1. List of 10 Regions in Model 

 
  

As was the case with the historical, trade-linked, multi-regional model study 

(Ramkumar, 2013), there are slight differences between the regions defined here and the 

GARC (2011) model typically used by the aluminium industry. One of the main differences 

between this study�s regional classification and the data used in the GARC (2011) model is 

the inclusion of the Middle East countries into a separate region. There are also minor 

differences between the countries that are categorized as Europe in the GARC (2011) model 

and in the stock-driven model. A detailed list of the countries classified into the various 

regions can be found in the model Excel-file under the tab �Country Categorization.� 

Australia & Oceania

USSR

Africa

Middle East

China

India

Rest of Asia

10 Regions Modeled in Study

Europe

North America

Latin America & the Caribbean
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The processes defined in the stock-driven, trade-linked, multi-regional model are also 

similar to the ones defined in the historical model (Ramkumar, 2013), but with slight 

modifications to make the model simpler and easier to use. The following is a brief summary 

of the global aluminium cycle, which along with the system outlined in the GARC (2011) and 

additional input from the International Aluminium Institute, formed the basis for the system 

definition in the historical, trade-linked, multi-regional models (Ramkumar, 2013):  

� The first step in the global aluminium cycle is the mining of bauxite ore, which goes 

through a beneficiation process to remove impurities and dried before it is shipped 

to the alumina refinery (Luo & Soria, 2007). 

� At the refinery, the bauxite is put through the Bayer process, the most widely used 

and efficient process for alumina manufacturing, to create alumina (Luo & Soria, 

2007). 

� Next, the alumina is sent to smelters, which use the Hall-Héroult process to convert 

alumina to aluminium ingots through electrolysis (Luo & Soria, 2007). 

� The aluminium ingots then undergo rolling, extrusion, casting, and other processes 

to produce semi-fabricated products (Liu & Mueller, 2012). 

� These semi-fabricated products are sent to manufacturers to be used as components 

for the production of final products in different industries (Liu & Mueller, 2012). 

� In the use phase, the various final products have different lifetimes and as these 

products become obsolete, they are collected for recycling (Liu & Mueller, 2012). 

� The scrap goes through a variety of treatment steps to clean the scrap, after which it 

is re-melted and refined to produce secondary aluminium. In addition, new and 

internal scrap from the semi-manufacturing and final product manufacturing 

processes are also collected and re-melted to produce secondary aluminium (Luo & 

Soria, 2007). 

Figure 1 provides a general overview of the system defined in the stock-driven, trade-

linked, multi-regional model. Like the GARC (2011) model and the historical, trade-linked, 

multi-regional models (Ramkumar, 2013), the upstream processes related to Bauxite and 

Alumina are displayed as metric kilotons of bulk bauxite and bulk alumina. However, all the 

processes after primary aluminium production are displayed as metric kilotons of AL. Much 

of the flows are similar to the historical models (Ramkumar, 2013) in order to maintain 

consistency between historical data and future projections 
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However, there are some key differences between the historical models (Ramkumar, 

2013) and the stock-driven model. These changes were made in order to simplify the model 

for user-friendliness and forecasting purposes: 

� Semi-fabrication and final product fabrication processes and relevant flows were 

combined into a single process called �Fabrication.� 

� The separation of the 4 different aluminium products - rolling, extrusion, casting, 

and semi-other - was aggregated; however, the separation of flows into 11 final 

product categories was maintained. 

� Scrap treatment was simplified into a single treatment step that combines pre-

melting and remelting.  

� Unlike the historical models (Ramkumar, 2013), which show trade in detail between 

each region, trade in the stock-driven model is treated as a global market. Each of 

the producing regions for a particular resource contributes to a global market pool, 

from which consuming regions can draw to meet demand. Thus, the regions are still 

trade-linked, but there is no way to know the imports and exports of different 

resources between each region.  
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Figure 1. Stock-Driven Model System Overview 
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As figure 1 shows, the processes in the system are color-coded and classified according 

to the following categories: 

� Transformational Processes: processes that transform or convert inputs into a 

different set of outputs 

� Markets: processes that represent the global market inventory of a produced 

resource and the global demand and consumption of that resource 

� Stock Accumulation: processes that accumulate a stock of the inflows over time 

Similarly, the flows in the system are color-coded and classified according to the 

following categories: 

� Scenario Projections: flows determined through scenarios developed to answer 

specific questions or through projections based on historical trends 

� Calculated Data: flows determined through transfer coefficients and specific data 

points, such as collection rates, utilization rates, loss rates, etc. 

� Mass Balance: data calculated using the Mass Balance principle, such that input 

flows are equal to output flows plus any stock accumulation 

Though this is not represented in Figure 1 above, each of the flows in the stock-driven, 

trade-linked, multi-regional model is broken down by region. So for a given year, the model 

shows the total global flow values between the various processes and also how the flows are 

distributed by region. The assumptions used to calculate the flows for each region will be 

discussed in section 2.2. 

2.2. Scenario Projections and Model Assumptions 
In a paper by Bradfield et al. (2005) tracing the origins of scenario planning as a 

strategic planning tool, it notes that in order to accurately support decision making, models of 

future environments needed to be able to investigate various alternatives and their 

consequences. This led to the use of scenarios as a methodology for planning in complex and 

uncertain environments (Bradfield et al., 2005). Thus, in order for the stock-driven, trade-

linked, multi-regional model to be used as a tool for strategic decision making, it must be able 

to answer various strategy questions that are relevant to the aluminium industry through the 

use of scenarios to evaluate various alternatives for the future of the aluminium industry and 

their consequences. The following sub-section will highlight the defined set of scenarios and 

assumptions that the stock-driven model analysed to answer the two questions posed in this 

paper.  
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2.2.1. In-Use Stock Scenario Projections 

As a stock-driven model, it is first necessary to understand how the in-use stock and 

aluminium consumption will evolve in the future. Forecasting future aluminium consumption 

and demand to answer the first strategic question has a high degree of uncertainty. There are a 

variety of factors within each of the 10 regions and within each of the 11 final product 

categories that could significantly alter the way aluminium could be consumed in the future. 

Government regulations, trade policies, new products using aluminium, substitute materials, 

etc. are some of the many factors that could influence future aluminium demand. 

Rather than accounting for all of these different possibilities and creating a multitude of 

scenarios of the future of aluminium demand, this paper used in-use stock dynamics as an 

indicator for aluminium consumption and analysed historical data to forecast how the in-use 

stock could evolve based on trend-based projections. The approach follows a similar 

approach used by Liu, Bangs, & Mueller (2013), which estimates future aluminium demand 

using in-use stock per capita. Only one scenario for future aluminium demand projections 

was assumed for simplicity, as the main objective of this paper is to highlight how such a 

model can be used to forecast future aluminium flows and develop strategies to meet a given 

level of future demand.   
 

Table 2. Approach for Forecasting Stock Dynamics 

 
 

The approach is illustrated in Table 2 above and each of the steps taken is described in 

detail below: 

1. The first step was to look at the in-use stock of aluminium built up within each 

of the 10 regions and 11 product categories from 1950 to 2011 using the 

previously developed historical models (Ramkumar, 2013). This data was then 

divided by population estimates for each region from 1950 to 2011 using the 

United Nations Population Division�s World Population Prospects (UN, 2013) to 

calculate in-use stock of aluminium per capita historically. For the packaging 

categories, �Packaging Cans� and �Packaging Other,� the in-use stock of 

Product 
Shipments

Availability of 
Old Scrap

Stock 
Change

In-Use Stock 
Per Capita In-Use Stock

Historical Data
(1950-2011) 1

Forecasted Data
(2012-2050) 6 5 4 2 3



12 

aluminium per capita was calculated from 1962 to 2011 due to how the data was 

calculated in the historical models (Ramkumar, 2013). 

2. Next, the in-use stock of aluminium per capita for each of the 11 product 

categories within each of the 10 regions was plotted in a chart and Excel�s 

trendlines option was used to forecast the data to 2050. The trendlines use 

regression analysis to find a line of best fit through linear, logarithmic, 

polynomial, power, or exponential functions, then uses these functions to find 

future values until 2050. Figure 2 shows an example of the historical in-use 

stock of aluminium per capita and a polynomial trendline forecasted until 2050 

for the Auto & Lt Truck product category for the Middle East region. 
 

Figure 2. Middle East Auto & Lt Truck In-Use Stock Per Capita (tons per capita) 

 
 

Using the trendlines as a guide, the order of magnitude of the in-use stock of 

aluminium per capita in 2050 compared to historical levels was determined. 

Thus, using the example in figure 2, Auto & Lt Truck in-use stock of aluminium 

per capita for the Middle East in 2050 is expected to be around 0.045 tons per 

capita, which is 225% of 2011 levels based on historical trends. The in-use stock 

of aluminium per capita in 2050 was thus determined for all of product 

categories in each of the regions. Table 3 shows the assumptions for in-use stock 

of aluminium per capita in 2050 compared to 2011 levels for the 11 product 

categories for all 10 regions. This can be viewed in the �Scenarios and Inputs� 

tab in the model�s Excel file. 
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Table 3. 2050 In-Use Stock of Aluminium per Capita Compared to 2011 Levels 

 
 

Though the trendlines construct a line of best fit using linear, logarithmic, 

polynomial, power, or exponential functions, these functions have different rates 

of growth before reaching the forecasted 2050 levels. However, as in the paper 

by Liu, Bangs, & Mueller (2013), this paper assumed that the in-use stock of 

aluminium per capita for the 11 product categories within the 10 regions would 

grow gradually before levelling off by 2050. In order to fulfil this assumption 

for how in-use stock per capita would grow between 2011 and 2050, this paper 

used a unique negative square function to estimate in-use stock of aluminium 

per capita between 2011 and 2050. Equation 1 provides the exact formula used 

to create the curve. 
 

Equation 1. Negative Square Growth Formula In-Use Stock of Aluminium Per Capita 

!"#! =
!"#!"#" − !"#!"## ∗ (! − 2050)!

− 2050!− 2011 ! + !"#!"## 

where !"#! is the in-use stock per capita for year t from 2012 to 2050 
 

Using the same example of in-use stock of aluminium per capita for the Auto & 

Lt Truck product category for the region Middle East, figure 3 shows both the 

historical data from 1962 to 2011, as well as projected data from 2012 to 2050 

using the negative square growth formula. As the figure shows, there is a 

gradual growth in the in-use stock of aluminium per capita for the Auto & Lt 

Truck product category in the Middle East after 2012, before it levels off as it 

approaches 2050.  
 

Europe
North 

America
Latin 

America Africa MidEast China India
Rest of 

Asia
Australia 
Oceania USSR

150% 105% 170% 150% 230% 350% 380% 130% 150% 350%

140% 150% 275% 160% 225% 350% 380% 175% 175% 350%

150% 150% 150% 95% 150% 420% 130% 130% 155% 500%

160% 130% 175% 160% 180% 280% 320% 180% 300% 170%

160% 80% 350% 140% 150% 150% 100% 200% 500% 300%

180% 130% 145% 120% 200% 250% 350% 250% 130% 120%
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165% 105% 180% 150% 160% 290% 265% 105% 135% 105%

165% 120% 250% 220% 240% 375% 300% 165% 250% 375%

145% 150% 200% 250% 300% 550% 300% 300% 250% 400%

145% 150% 150% 120% 115% 180% 120% 160% 150% 40%
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Electrical - Other
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Other (ex Destructive Uses)
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Figure 3. Historical and Projected Middle East Auto & Lt Truck In-Use Stock Per 
Capita (tons per capita) 

 
 

3. The forecasted in-use stock of aluminium per capita for all of the 11 product 

categories within each of the 10 regions from 2012 to 2050 was then multiplied 

by population projections for each region from 2012 to 2050 to get in-use stock 

of aluminium. Future population projections from the United Nations Population 

Division�s World Population Prospects were used, assuming the UN�s medium 

fertility scenario. The medium fertility scenario was selected since it is the 

median of 60000 projected country trajectories and forms the basis for all the 

other possible scenarios for population growth that the United Nations 

Population Division analysed (UN, 2013). 

4. Next, the change in stock between each of the forecasted years was calculated in 

a manner similar to the historical data (Ramkumar, 2013). Stock Change, �S, 

was calculated following the formula shown in equation 2. 
 

Equation 2. Stock Change Calculation 
∆!! = !! − !!!!  

where ∆!! is the stock change and !! is the in-use stock for year t from 2012 to 2050 
 

5. The future outflows of aluminium containing products within the 11 product 

categories for each of the 10 regions for 2012 to 2050 was also calculated using 

the same approach as the historical models (Ramkumar, 2013). The future 

outflows were based on a lifetime distribution of the final product categories, 

which calculates the percentage of the historical product shipment flows that 

become obsolete and thus become available as old scrap. This methodology was 

borrowed from the study conducted by Liu (2013). Equation 3 summarizes the 

calculation of future outflows. 
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Equation 3. Future Outflows Calculation 

!! = ! !, !! ∗ !" !! !"′
!

!!
 

! !, !! = ! 1
! ∗ 2! ∗ !

!!!!!!
!!!  

where !! is the outflow for year t from 2012 to 2050, 
!"(!!) is the product shipments from previous years t�, 

!(!, !′) is the lifetime function at year t given by a Normal distribution 
with an average lifetime of m and standard deviation of ! 

 

For the two packaging product categories, �Packaging � Cans� and �Packaging � 

Other,� the future outflows are calculated by the approach illustrated in equation 

4. 
 

Equation 4. Packaging Future Outflows Calculation 
!! = !"(!!!) 

where !! is the outflow for year t from 2012 to 2050, 
!"(!!!) is the product shipments from the average lifetime m years prior 
 

The average lifetimes and standard deviations used to calculate the future 

outflows from 2012 to 2050 for the 11 product categories were assumed to be 

the same as in the historical models for all the regions (Ramkumar, 2013) and 

the GARC (2011) model. These lifetimes and standard deviations are 

summarized in table 4. It should be noted that these lifetimes and standard 

deviations are based on fixed assumptions for all years, and they may contain a 

high degree of uncertainty, particularly as these lifetimes may change over time. 

However, these figures were used since they are widely accepted and agreed 

upon by the aluminium industry. 
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Table 4. Average Lifetimes and Standard Deviations for Outflow Lifetime Distribution 

 
 

6. Lastly, future product shipments for each of the 11 product categories in each of 

the 10 regions from 2012 to 2050 were calculated using the mass balance 

principle. The mass balance principle is described in equation 5 below and states 

that inflows into a process, in this case product shipments, must equal the 

outflows plus the change in stock. 
 

Equation 5. Future Product Shipments Calculation 

!"! = !!! + ∆!! 
where !"! is the product shipments, !! is the outflows,  

∆!! is the stock change for year t from 2012 to 2050  
 

The assumptions made for forecasted 2050 in-use stock per capita for all the 

product categories and all the regions in step 2 were adjusted from the levels 

shown by the trendlines to ensure that historical shipments and future product 

shipments had a smooth transition and were in the right order of magnitude. 

Figure 4 shows the historical and future product shipments curve after 

adjustment for the Auto & Lt Truck product category in the Middle East. 
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50 17
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40 13
30 10
1
1
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Figure 4. Historical and Projected Middle East Auto & Lt Truck Product Shipments 
(�000 Metric Tons) 

 
 

In order to ensure that the forecasted in-use stock of aluminium per capita numbers 

were within the range of previous studies, the global in-use stock of aluminium per capita 

calculated through the stock-driven model was compared with 9 scenarios developed in a 

paper by Gang Liu, Colton Bangs, and Daniel Mueller. As figure 5 shows, the stock-driven 

model�s estimate for the growth of in-use stock of aluminium per capita is in line with the 

Low 2050, Low 2075, and Low 2100 scenarios developed by Liu, Bangs, & Mueller (2013). 

This is likely because the future in-use stock per capita forecasts based on historical trends 

are more conservative than the assumptions made in the 9 scenarios. 
 

Figure 5. Global In-Use Stock Per Capita Stock Driven Model vs. Other Scenarios 
(kg/capita) 

 
 

Thus, the model can evaluate one potential scenario to answer the first strategic 

question, �What is the future demand for aluminium products and the future availability of 

scrap given the stock dynamics of aluminium consumption in different regions within the 

different final product categories?� These assumptions can be viewed under the �UseStock� 
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tabs for each region in the model�s Excel file. This forms the basis for the stock-driven, trade-

linked, multi-regional model. By understanding the future aluminium consumption, the 

context is set for developing scenarios to answer the second strategic question and 

understanding the implications of the forecasted future demand for the entire aluminium 

industry. 

2.2.2. Satisfying Aluminium Demand Scenario Projections 

In order to answer the second strategic question of how to satisfy future aluminium 

demand, the level of bauxite, alumina, primary vs. secondary aluminium, as well as the level 

of product fabrication for each of the 11 product categories in the 10 regions needs to be 

determined. Additionally, the role of the various regions and how primary aluminium 

production as well as product fabrication will be distributed across the 10 regions needs to be 

evaluated.  

To address the first issue, the stock-driven, trade-linked, multi-regional model assumed 

a production follows demand approach, adapted from the capacity follows demand approach 

presented in a demand-driven model for steel capacity (Pauliuk et al., 2013). Thus, demand is 

always met by production � future global demand for aluminium containing products for any 

given year is completely satisfied by product fabrication, future global demand for primary 

aluminium for fabrication for any given year is completely satisfied by primary aluminium 

production, and so on for bauxite, alumina, and scrap. This is illustrated by figure 6 using the 

aluminium market in 2047 as an example. 
 

Figure 6. Aluminium Market in 2047 Assuming Production Follows Demand 

 
 

Evaluating the role of different regions and forecasting how the future production levels 

will be broken down across the 10 regions is more challenging. As was the case with future 

aluminium consumption, there could be a variety of factors that affect future flows in the 

aluminium production cycle in the different regions such as government regulations, 

5. Aluminium 
Market

Market Inventory
119748

Global Demand
119748

A4,5. Primary AL Prod (kt AL) A5,6. Ingot Demand (kt AL)

A31,5. Recycled Scrap (kt AL)
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protectionist trade policies, financial considerations, etc. Starting with primary aluminium 

production and product fabrication, four simple scenarios were developed in collaboration 

with the International Aluminium Institute to analyse potential future alternatives. The four 

scenarios are based on a combination of two possible future alternatives for primary 

aluminium production and two possible future alternatives for product fabrication, 

highlighted in table 5. Any number of additional scenarios can be incorporated into the model 

in order to assess their impact on the future aluminium cycle; however, only these four 

scenarios were analysed since this paper aims to highlight the use of a stock-driven model for 

scenario analysis and strategy development. 
 

Table 5. Four Scenarios for Meeting Future Aluminium Demand 

 
 

2.2.2.1. Primary Aluminium Production Scenarios 

The primary aluminium scenarios assumed that either the Middle East or China 

dominate primary AL production from 2012 to 2050, such that there is no build-up of primary 

aluminium production capacity in any region except the dominant region. Thus, no additional 

primary aluminium smelters or expansions of existing smelters were assumed to be built in 

any of the non-dominant regions and any existing smelters were assumed to reach their end of 

life. Primary aluminium production was then assumed to follow the declining primary 

aluminium smelter capacity in non-dominant regions, while the dominant region would 

produce any remaining primary aluminium required by the global market.  

To create these scenarios, smelter capacity for all primary aluminium smelters within 

each region from 1900 to 2013 was analysed using sources from GeniSim (2014), Light 

Metal Age (Pawlek, 2012), and the UN Conference on Trade and Development (UNCTAD, 

2000). Here, 2013 was selected as the cut-off point, since any plans for additional smelters, 

expansions of existing smelters, or smelter closures between 2011 and 2014 should be 

accounted for. The compiled data was separated into inflows of primary aluminium smelter 

Fabrication integrated with 
primary AL production

China dominates primary AL 
production

Combined Scenarios

Middle East dominates primary AL production, 
Fabrication follows domestic demand

Middle East dominates primary AL production, 
Fabrication integrated with primary AL production

China dominates primary AL production, 
Fabrication follows domestic demand

China dominates primary AL production, 
Fabrication integrated with primary AL production

Fabrication integrated with 
primary AL production

Fabrication follows domestic 
demand

Middle East dominates primary AL 
production

Primary AL Scenarios Product Fab Scenarios

Fabrication follows domestic 
demand
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capacity from the construction of new smelters or the expansion of existing smelters, as well 

as outflows of primary aluminium smelter capacity from the closure of smelters or production 

lines. This data was then aggregated to total primary aluminium capacity inflows and 

outflows for each region based on the location of the smelters. In addition, the age of the 

primary aluminium smelters within each region was calculated. An approach similar to the 

one taken to forecast in-use stock dynamics was applied, illustrated in table 6.  
 

Table 6. Primary Aluminium Production Capacity Approach for Non-Dominant 
Regions 

 
 

1. Using the aggregated data of historical capacity inflows and capacity outflows 

of primary aluminium smelters from 1900 to 2013, a capacity change and 

capacity stock were calculated for each of the non-dominant regions 

2. For the non-dominant regions future capacity inflows were set to zero for all 

future years from 2014 to 2050, since the scenarios assumed that no additional 

capacity would be built-up in the non-dominant regions 

3. Capacity outflows for each of the non-dominant regions were calculated using 

the same methodology used in the in-use stock calculations illustrated in 

equation 3. Future outflows were based on historical inflows using average 

lifetime and standard deviations of the primary aluminium smelters in each 

region, shown in table 7, based on the age distribution of the smelters. 

Due to lack of sufficient data to calculate average lifetime and standard 

deviation for Africa, and lack of sufficient data to calculate standard deviation 

for Middle East and Rest of Asia, data from Latin America was used as a proxy. 

This was because Latin America was assumed to have the most similar smelter 

characteristics in terms of age and technology.  
 

Capacity 
Inflows

Capacity 
Outflows

Capacity 
Change Capacity Stock

Historical Data

(1900-2013)

Forecasted Data

(2014-2050)

1 1

2 3 4 4
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Table 7. Average Lifetimes and Standard Deviations of Primary Aluminium Smelters 

 
 

4. Using the future capacity inflows and future capacity outflows, capacity stock 

change and capacity stock were calculated for future years from 2014 to 2050 

for the non-dominant regions. The yearly change in smelter capacity stock from 

2011 to 2050 was also calculated.  

Since it was assumed that future primary aluminium production for the non-dominant 

regions would follow smelter capacity stock, the yearly change in primary aluminium smelter 

capacity stock from 2011 to 2050 was applied to forecast future primary aluminium 

production from 2012 to 2050 for the non-dominant regions. This is shown in equation 6 

below. 
 

Equation 6. Non-Dominant Region Primary Aluminium Production Calculation 

!"#$%&'%! = !!"#$%&'%!!! ∗%!"#!ℎ!"!,!!! 

where !"#$%&'%! is the primary aluminium produced in non-dominant regions in year t,  
%!"#!ℎ!"!,!!! is percent change in smelter capacity stock in the non-dominant region 

from year t-1 to year t, for years 2012 to 2050  
 

As mentioned earlier, the dominant region, which is the Middle East or China 

depending on the scenario, would then produce any remaining primary aluminium demanded 

by the global market. Equation 7 shows the exact methodology used to calculate the dominant 

region�s primary aluminium production. 
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Equation 7. Dominant Region Primary Aluminium Production Calculation 

!"#$%&$! = !!"#$! − !"#$%&! − !"#$%&'%! 
where !"#$%&$! is the primary aluminium produced in the dominant region, 

!"#$! is the global demand for aluminium ingot, 
!"#$%&! is the level of secondary aluminium available globally, 

!"#$%&'%! is the total primary aluminium produced in all non-dominant regions, 
in year t from 2012 to 2050 

 

Through this approach, the stock-driven, trade-linked, multi-regional model is able to 

analyse future primary aluminium production flows within each of the 10 regions in a 

situation where the Middle East would dominate primary aluminium production, or an 

alternative situation where China would dominate primary aluminium production. These 

assumptions can be reviewed under the �PrimAL� and �PrimALCap� tabs in the model�s Excel 

file. 

2.2.2.2. Product Fabrication Scenarios 

The first product fabrication scenario assumed that the fabrication of aluminium 

containing products entirely supplies the region�s domestic demand in each of the 11 product 

categories by 2050. This makes product fabrication more localized and each region more self-

sufficient in meeting demand for aluminium products. 
 

Table 8. Product Fabrication Domestic Demand Scenario Approach 

 
 

Table 8 illustrates the methodology used to create this first scenario for each of the 11 

product categories. The historical product fabrication level in 2011 was broken down into a 

percentage distribution between the 10 different regions. Next, the forecasted shipments in 

2050 were also broken down into a percentage distribution between the 10 different regions. 

For the years 2012 to 2049, the same negative growth formula used in forecasting in-use 
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stock per capita was used to calculate the percent distribution between the 10 regions over 

time, illustrated in equation 8.  
 

Equation 8. 2012-2049 Distribution by Region Product Fabrication Negative Square 
Growth Formula 

%!"#$!,!,! =
%!"#$!,!,!"#" −%!"#$!,!,!"## ∗ (! − 2050)!

− 2050!− 2011 ! +%!"#$!,!,!"## 

where %!"#$!,!,! is the percent regional distribution of global product fabrication 
of product category p, for region r, at time t from 2012 to 2049 

 

Once the regional distribution was calculated, the global demand in terms of shipments 

for each of the 11 product categories was multiplied by the distribution to find the product 

fabrication level within each of the 10 regions for each of the product categories. Equation 9 

shows the exact formula used. 

 

Equation 9. Product Fabrication Calculation 
!"#$!,!,! = !"!,! ∗%!"#$!,!,! 

where !"#$!,!,! is the level of product fabrication,  
!"!,! is the level of global demand for product shipments, 

%!"#$!,!,! is the percent regional distribution 
of product category p, for region r, at time t from 2012 to 2050 

 

The second product fabrication scenario assumed that the fabrication of aluminium 

containing products is integrated with primary aluminium production. This assumption 

supposes that future product fabrication for each of the 11 different product categories within 

each region follows the same growth rate as future primary aluminium production from 2012 

to 2050.  
 

Table 9. Product Fabrication Integrated with Primary Scenario Approach 
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Table 9 illustrates the methodology used to create this second scenario for each of the 

11 product categories. As before, historical product fabrication level in 2011 was broken 

down into a percentage distribution between the 10 different regions. Next, the yearly percent 

change in NDomPALP or DomPALP depending on whether the region was dominant or not, 

was calculated for each of the regions. This yearly change was then applied to calculate each 

region�s distribution of product fabrication from 2012 to 2050 for each of the 11 product 

categories, as illustrated in equation 10. 
 

Equation 10. 2012-2050 Distribution by Region Product Fabrication Integrated with 
Primary  

%!"#$!,!,! = %!"#$!,!,!!! ∗%!ℎ!"#$%#!,! 
where %!ℎ!"#$%#!,! is the percent change in primary aluminium production, 
%!"#$!,!,! is the percent regional distribution of global product fabrication 

of product category p, for region r, at time t from 2012 to 2050 
 

As with the first product fabrication scenario, once the regional distribution was 

calculated, the global demand in terms of product shipments for each of the 11 product 

categories was multiplied by the distribution to find the product fabrication level within each 

of the 10 regions for each of the product categories. Equation 9 shows the exact formula used. 

Thus, the model is able to analyse two potential future alternatives for how product 

fabrication for the 11 product categories within the 10 regions could evolve in the future. As 

mentioned before, additional scenarios for how the product fabrication is distributed across 

the various regions could be incorporated into the model; however, these were not explored to 

maintain simplicity. These assumptions can be reviewed under the �ProdFab_DD� and 

�ProdFab_INT� tabs in the stock-driven model�s Excel file. 

2.2.2.3. Bauxite, Alumina, and Scrap Scenario Projections 

In addition to developing scenarios to forecast primary aluminium production and 

product fabrication, the other parts of the aluminium cycle � bauxite production, alumina 

production, and scrap treatment � also need to be forecasted to meet the level of aluminium 

demand. Similar to the in-use stock scenario projections, only one scenario was developed for 

bauxite production, alumina production, old scrap treatment, and new scrap treatment. While 

the stock-driven model can incorporate additional scenarios, these were not explored in order 

to maintain simplicity in the model. 
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Table 10. Bauxite, Alumina, Scrap Scenario Approach 

 
 

The approach for developing the scenario projections for bauxite production, alumina 

production, old scrap treatment, and new scrap treatment are the same and is illustrated in 

table 10. First, the % distribution of bauxite production, alumina production, and old and new 

scrap treatment was calculated from 1962 to 2011 using historical data from the historical 

models (Ramkumar, 2013). This data was plotted in Excel and similar to in-use stock per 

capita, Excel trendlines were used as a guide to understand the magnitude of the percent 

distribution of production in each region in 2050. Figure 7 shows an example of how the 

trendlines were used to understand the percent distribution of global alumina production in 

Africa in 2050. These forecasts were developed for each of the 10 regions for bauxite 

production, alumina production, old scrap treatment, and new scrap treatment. The forecasts 

were then adjusted and normalized such that the sum of the percent distribution across the 10 

regions equalled 100%. 
 

Figure 7. 2050 Forecasted Distribution for Alumina Production in Africa 

 
 

Next, the percent distribution of production in each region between 2012 and 2049 was 

calculated using the same negative square growth function using the historical 2011 data and 

2050

Fo
re

ca
st

ed
 d

is
tri

bu
tio

n 
ba

se
d 

on
 

E
xc

el
 tr

en
dl

in
es

, n
or

m
al

iz
ed

 to
 1

00
%

North America

Latin America & Caribbean

Africa

Middle East

China

India

Rest of Asia

Australia & Oceania

USSR

% distribution of bauxite 
production, alumina production, 

old scrap and new scrap 
treatment

Region 2012 - 2049
Europe

Negative Square Growth 
Formula used to calculate % 

distribution 

1962 - 2011



26 

the forecasted 2050 data, illustrated in equation 8. Figure 8 shows an example of the 

historical and forecasted regional distribution of alumina production based on this approach.  
 

Figure 8. Regional Distribution of Alumina Production 1962-2050 

 
 

These forecasted regional distributions were then multiplied by the global demand for 

bauxite, the global demand for alumina, the global market supply of old scrap, and the global 

market supply of new scrap respectively. Doing so provides the level of bauxite production, 

alumina production, old scrap treatment, and new scrap treatment within region, as shown in 

equations 11-14. 
 

Equation 11. Bauxite Production Calculation 
!"#$%!,! = !"#$%&! ∗%!"#$%&'(!,! 
where !"#$%!,! is the level of bauxite production,  

!"#$%&! is the level of global demand for bauxite, 
%!"#$%&'(!,! is the percent regional distribution of bauxite production for region r,  

at time t from 2012 to 2050 
 

Equation 12. Alumina Production Calculation 

!"#$%!,! = !"#$%&! ∗%!"#$%&'(!,! 

where !"#$%!,! is the level of alumina production,  
!"#$%&! is the level of global demand for bauxite, 

%!"#$%&'(!,! is the percent regional distribution of alumina production for region r,  
`at time t from 2012 to 2050 

 

Equation 13. Old Scrap Treatment Calculation 

!"#$%&'$(%)!,! = !"#$%&'(! ∗%!"#$%&'()*!,! 
where !"#$%&'$(%)!,! is the level of old scrap treatment,  

!"#$%&'(! is the level of global market supply of old scrap, 
%!"!"#$%&'(!,! is the percent regional distribution of old scrap treatment for region r,  

at time t, from 2012 to 2050 
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Equation 14. New Scrap Treatment Calculation 
!"#$%&'$(%)!,! = !"#$%&'(! ∗%!"#$%&'()*!,! 

where !"#$%&'$(%)!,! is the level of new scrap treatment,  
!"#$%&'(! is the level of global market supply of new scrap, 

%!"#$%&'()*!,! is the percent regional distribution of new scrap treatment for region r,  
at time t, from 2012 to 2050 

 

From this approach, the model is able to evaluate the future flows from 2012 to 2050 

for the remainder of the aluminium cycle involving bauxite, alumina, and scrap treatment 

based on the level of aluminium demand determined in the in-use stock scenario projections. 

This is only one of the many possible scenarios for how the rest of the aluminium cycle can 

evolve in the future, and the model is able to incorporate and adapt additional scenarios for 

future flows. 

 By evaluating the above scenarios, the model can answer the second strategic question, 

�How can future production of aluminium and fabrication of final products meet this 

demand?� The approaches taken above enables the stock-driven model to evaluate various 

future alternatives for primary aluminium production and product fabrication, as well as 

scenarios for upstream processes such as bauxite production and alumina production and 

downstream processes such as scrap treatment. These assumptions can be reviewed under the 

�Bauxite,� �Alumina,� and �ScrapOld� and �ScrapNew� tabs, as well as the �Scenarios and 

Inputs� tab in the model�s Excel file. 

2.2.3. Additional Model Assumptions 

Aside from the scenarios, the stock-driven, trade-linked, multi-regional model utilizes a 

variety of other assumptions for parameters such as utilization rates, collection rates, loss 

rates, etc. to determine the flows described as Calculated Data flows and highlighted in grey 

in figure 1. Some of these parameter assumptions were sourced directly from industry, while 

other parameter assumptions were sourced from the historical data.  
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Table 11. Calculated Data Parameters Industry Assumptions 

 
 

Table 11 provides an overview of all the flows that are based directly from industry 

assumptions and the source of the data. For most of the calculated data flows in table 11, the 

assumptions from the industry were the same assumptions used to calculate the historical 

data. The �A29,32. Collection & Under Investigation Loss� parameter assumptions for old 

scrap collection rates varied by year from 1962 to 2011 across the different product 

categories, so the most recent 2011 parameter assumptions from the International Aluminium 

Institute were used to calculate the future flows from 2012 to 2050.  
 

Table 12. Calculated Data Parameters Historical Average 

 
 

Some of the other flows were based on historical data, as shown in table 12. For these 

flows, the parameter assumptions were taken as an average of historical data from the years 

2000 to 2011 (Ramkumar, 2013). The historical data itself is based on industry assumptions 

or the Mass Balance principle; however, since the stock driven model simplified and 

aggregated these particular flows the industry assumptions were no longer directly applicable. 

The years 2000 to 2011 were selected to utilize data from the most recent decade for the 

parameter assumptions for future flows. These assumptions can be reviewed under the 

�Scenarios and Inputs� tab in the model�s Excel file. 

Calculated Data Flow Parameter Description Source

A29,32. Collection & Under 
Investigation Loss

Old Scrap by product category, 
New Scrap, and Internal Scrap 
Collection Rates

International Aluminium Institute

A31,32. Treatment Loss Loss of Old, New, and Internal 
Scrap from treatment

International Aluminium Institute

Percent of produced bauxite lost 
in mining process due to 
beneficiation

AB,0. Beneficiation Loss

A4,32. Dross Loss

Rio Tinto & Geoscience Canada

International Aluminium InstitutePercent of primary aluminium 
that is unrecovered dross

A6,0. Destr Uses and Semi-Trade Ratio of aluminium for destructive uses and 
regional trade of semi-fabrication compared 
to total final product fabrication

Historical Average from 2000 to 2011

A6a,29. Internal Scrap Generation Historical Average from 2000 to 2011

A6b,29. New Scrap Generation Historical Average from 2000 to 2011

Percent of total final product fabrication that 
is lost as internal scrap
Percent of total final product fabrication that 
is lost as new scrap

A2,0. Refining Losses and Other 
Uses

Historical Average from 2000 to 2011

A4,0. Smelting Losses and Other 
Uses

Historical Average from 2000 to 2011

Ratio of losses from alumina refining and 
other uses for alumina compared to alumina 
production
Ratio of losses from aluminium smelting 
and other uses for aluminium compared to 
primary aluminium production

Calculated Data Flow SourceParameter Description
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All remaining flows shown in figure 1 in blue utilized the Mass Balance principle, 

described in equation 5, and shown in a more general form in equation 15 below. This was 

done to ensure that all flows were accounted for and that the model maintains mass balance 

consistency that does not violate the principles of conservation of mass. 
 

Equation 15. General Form of Mass Balance Principle 

!! = !!! + ∆!! 
where !! is the input into a process, !! is the outflow from a process,  

∆!! is the stock change within the process, for year t from 2012 to 2050  
 

The stock-driven model also incorporates new assumptions for the bauxite resources 

process, �B. Bauxite Resources and Mining� in figure 1. In the historical models (Ramkumar, 

2013), the bauxite resources were calculated using reserves data from the US Geological 

Survey. However, in the stock-driven models, Bauxite Reserve Base data from the USGS 

(2009) was used instead. The reason for this shift is because the reserve base is defined as 

�parts of a resource that have a reasonable potential for becoming economically viable� and 

�includes those resources that are currently economic (reserves), marginally economic 

(marginal reserves), and some of those that are currently subeconomic (subeconomic 

resources)� (USGS, 2009). This provides a better understanding of the availability of bauxite 

in the future, since bauxite resources that are marginally economic and subeconomic may 

prove to be economically viable in the future and available for mining and extraction. The 

reason this process exists is to help understand the level of bauxite demanded due to the 

various scenarios and whether production levels will require a higher level of bauxite 

resources relative to what is currently known to be available. 

As was the case with the historical models (Ramkumar, 2013), the stock-driven models 

also incorporate a process called �32. System Losses,� shown in figure 1. This process 

captures the magnitude of losses of aluminium in the smelting, manufacturing, scrap 

collection, and treatment processes. As it is a stock accumulation process, it represents the 

opportunity present in improving the processes in the global aluminium cycle to reduce losses 

from aluminium production as well as scrap recovery and treatment. 

3. Results and Interpretation 
With all the methodology established in the previous section, the stock-driven, trade-

linked, multi-regional model is able to provide a comprehensive view of the future global 
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aluminium cycle. This section provides insights into how future flows will evolve from 2012 

to 2050 across the 10 regions based on the specific scenarios, assumptions, and calculations 

outlined in the previous section. Here the paper will showcase how the stock-driven model is 

able to evaluate various alternatives for future aluminium flows in the different regions to 

answer key questions relevant to the industry and provide insights for strategy development. 

These charts can also be viewed in the tab �Time Series Charts� in the stock-driven model�s 

Excel file. 

3.1. Future Demand for Aluminium Products and Future Availability of Scrap  

The first part of the answer to the first strategic question �What is the future demand for 

aluminium products and the future availability of scrap given the stock dynamics of 

aluminium consumption in different regions within the different final product categories?� is 

shown in figure 9. The figure shows the in-use stock of aluminium for all 11 product 

categories in total broken down by the 10 regions from 1962 to 2011, describing the future 

per capita consumption of aluminium globally. 
 

Figure 9. Total In-Use Stock of Aluminium for All Product Categories by Region from 
1962-2050 

 
 

Based on the assumptions and the scenarios described in section 2.2.1, the future 

consumption of aluminium in 2050 is expected be roughly 2 times 2011 levels, in large part 

due to increases in future consumption in China and Rest of Asia. China is expected to 

become the largest consumer of aluminium, exceeding levels in Europe and North America. 

Rest of Asia is also expected to reach aluminium consumption levels at par with North 

America and Europe.  

Comparing these results to the study by the USGS, which mentioned that the level of 

aluminium consumption in 2025 is 2.5 times compared to 2006 levels (Menzie, 2010), the 
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stock-driven model results show that the level of aluminium consumption in 2025 is about 2 

times compared to 2006 levels. This comparison, along with the model results for in-use 

stock of aluminium per capita compared to 9 different scenarios in figure 5 (Liu, Bangs, & 

Mueller, 2013), reinforces that the stock-driven model takes a more conservative approach in 

estimating future aluminium consumption. 

The model is able to further disaggregate the future consumption of aluminium into the 

various product categories, as shown in figure 10. These results provide insights into which of 

the product categories are expected show the greatest changes in aluminium consumption in 

the future, as well as which regions are expected to see the greatest level of consumption for 

each product category. 
 

Figure 10. In-Use Stock of Aluminium by Product Category by Region from 1962-2050 
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Given the assumptions made, all 11 product categories show significant increases in 

aluminium consumption by 2050. The majority of the product categories� increase in 
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consumption is due to China; however, for certain categories like Packaging Cans, Consumer 

Durables, and Other, Rest of Asia also has a large contribution to the increased consumption. 

Looking in greater detail, Buildings and Construction shows the greatest absolute increase in 

aluminium consumption of nearly 300 million metric tons from 2011 to 2050, mainly due to 

significant increases in China. Auto and Light Truck makes up the second biggest product 

category for aluminium consumption by 2050, with nearly 400 million metric tons of in-use 

stock; the increase comes mostly due to increases in China and Rest of Asia, as well as North 

America. Other Transportation also shows large growth in aluminium consumption of nearly 

100 million metric tons by 2050 due to increases across all regions.  

The second part of the answer to the first strategic question shows the consequences of 

this increased aluminium consumption in the future. Figure 11 shows the total amount of old 

scrap generated for all the product categories broken down by region from 1962 to 2050. The 

old scrap generated shows the level of aluminium that flows out from society after 

consumption as products reach their end of life and become obsolete, and partly helps answer 

the question of future scrap availability given the stock dynamics of aluminium consumption. 
 

Figure 11. Total Old Aluminium Scrap Generated for All Product Categories by Region 
from 1962-2050 

 
 

From the assumptions related to the dynamics of in-use stock and the lifetimes of the 

various product categories, the level of old scrap available for recycling and reuse in 2050 is 

expected to be nearly 3 times 2011 levels, as seen in figure 11. China, North America, 

Europe, and Rest of Asia are the regions with the biggest availability of old scrap, with the 

largest growth of scrap generation occurring in China and Rest of Asia. This can be explained 

by the large build-up of in-use stock of aluminium in China and Rest of Asia, as well as the 

steady increase in in-use stock in North America and Europe, shown in figure 9. 
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Delving deeper into the various product categories, there are close parallels between the 

in-use stock of aluminium charts in figure 10 and the old scrap generated charts, shown in 

figure 12.  
 

Figure 12. Old Aluminium Scrap Generated by Product Category by Region from 1962-
2050 
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The model shows how the availability of old scrap within the 11 product categories for 

the 10 different regions is heavily influenced by the level of aluminium consumption, but also 

the lifetimes of the different products. The regions that have the largest availability of old 

scrap in each of the product categories, China in the majority of cases, are the very regions 

that have a high build-up of in-use stock of aluminium. However, lifetimes play a significant 

role in determining which of the product categories are the biggest sources of old scrap. Auto 

and Light Truck, which has the second biggest level of aluminium consumption in 2050, has 

the biggest level of old scrap generated, nearly 16 million metric tons by 2050, owing to its 

relatively shorter lifetime. Though Building and Construction is still a significant source of 

old scrap, it is not the largest because of its assumed lifetime of 50 years, causing aluminium 
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in buildings to stay in-use for a longer period of time. As mentioned before in section 2.2, the 

fixed lifetime assumptions used are highly uncertain and may change over time, thus 

impacting the results shown above. 

The last part of the answer to the first strategic question shows the demand for 

aluminium products in the future given the levels of aluminium consumption shown in 

figures 9 and 10, as well as the level of aluminium outflows shown in figures 11 and 12. 

Figure 13 shows the total shipments for aluminium products from 1962 to 2050, and 

highlights the expected future demand for aluminium across all 11 product categories within 

each of the 10 regions.  
 

Figure 13. Total Product Shipments for All Product Categories by Region from 1962-
2050 

 
 

As figure 13 shows, from the assumptions made about the stock dynamics, consumption 

forecasts, and lifetimes of aluminium products, future demand for aluminium products is 

expected to increase gradually from 2011 to around 2040, where it reaches a peak of around 

70 million metric tons, and then decline from 2040 to 2050. The gradual increase and 

subsequent decline in future aluminium demand can be attributed to the fact that the future 

aluminium consumption levels assumed in the model are very conservative, as was shown in 

figure 5, and tend to reach a saturation point by 2050. Moreover, the lifetimes for some of the 

largest aluminium consuming product categories are quite long. As result, there is enough 

aluminium in-use to meet consumption needs by 2050, so future demand for aluminium 

products tends to stabilize and then slightly decline.  

Further disaggregation into product categories provide more detailed insight into the 

future demand for different types of aluminium products. Figure 14 shows the future 

aluminium demand for the 11 product categories. 
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Figure 14. Product Shipments by Product Category by Region from 1962-2050 
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From figure 14, the results show that for product categories with the smallest lifetimes, 

such as Packaging Cans and Packaging Other, there is a significant growth in aluminium 

demand of nearly 4 million metric tons between 2011 and 2050 to meet future aluminium 

consumption needs. This is also the case for Consumer Durables and Auto and Light Truck, 

which have smaller lifetimes of 12 to 20 years. There is a large growth in product shipments 

demanded of around 3 million to 4 million metric tons between 2011 and 2050 to meet future 

aluminium consumption levels. However, for the remaining categories which have lifetimes 

of 30 to 50 years, there is a stable or declining level of future aluminium demand, due to the 

longer presence of these products in-use. This is particularly true for the Building and 

Construction product category, which sees a sharp decline in demand for aluminium until 
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2050. The main factor contributing to this decline is the significant build-up of in-use stock of 

aluminium in buildings in China, which due to its long lifetime, reduces future demand and 

thus future shipments. As mentioned before, these results are entirely dependent on the 

lifetime assumptions made in section 2.2. 

Within each of the product categories, the regions that have the largest aluminium 

consumption levels, as shown in figure 10, are also the very same regions that have the 

largest future demand for aluminium. For the majority of the product categories, China is the 

main region with significant aluminium demand to 2050. However, Rest of Asia is also a key 

growth market for aluminium products, particularly in Auto & Light Truck, Packaging Cans, 

Consumer Durables, and Other. The regions with strong historical demand for aluminium 

products, North America and Europe, continue to be key regions with significant levels of 

future demand for many product categories. 

Thus, the stock-driven, trade-linked, multi-regional model is able to answer the first 

strategic question, �What is the future demand for aluminium products and the future 

availability of scrap given the stock dynamics of aluminium consumption in different regions 

within the different final product categories?� By making a series of assumptions and 

evaluating specific scenarios for how aluminium in-use stock could evolve in the future, the 

stock-driven model is able to evaluate future aluminium consumption and its impacts on 

scrap availability and aluminium demand.  

3.2. Future Production to Satisfy Future Demand  
With the future demand for aluminium products and the future availability of scrap 

understood, the second strategic question �How can future production of aluminium and 

fabrication of final products meet this demand?� can be answered by analysing the 4 different 

scenarios for future production of aluminium and fabrication of final products, outlined in 

section 2.2.2. The following section will review each of the scenarios separately to highlight 

how the model is able to evaluate the impact of varying assumptions on the future flows of 

the global aluminium cycle. 

In evaluating the results of the scenarios, product fabrication will first be discussed. 

Next, the total amount of old, new, and internal scrap collected will be analysed, since the 

volume of new and internal scrap generated is dependent on the product fabrication scenario. 

The volume of scrap impacts the amount of primary aluminium needed vs. recycled scrap 

used. This will then lead to understanding the production of primary aluminium based on the 
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scenario selected. Lastly, the effects of primary aluminium production on alumina and 

bauxite will be analysed. 

3.2.1. Scenario 1: Middle East dominates primary AL production, Fabrication follows 

domestic demand 

The first scenario for future aluminium production and final product fabrication 

assumes that by 2050 future primary aluminium production is dominated by the Middle East 

and by 2050 fabrication of final products containing aluminium is satisfied by domestic 

facilities that meet domestic demand. Figure 15 shows the product fabrication of all the 

product categories by region � the global total is the same as the aluminium demand in figure 

13, since the model assumes that all demand is met. However, because the product fabrication 

scenario assumes that domestic demand within each region is met domestically by 2050, the 

regional breakdown of product fabrication between the 10 regions is very similar to figure 13. 

Even after disaggregating product fabrication by product category, as shown in figure 16, the 

results remain quite similar to the aluminium demand for each product category shown in 

figure 14.  
 

Figure 15. Scenario 1: Total Product Fabrication for All Product Categories by Region 
from 1962-2050 
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Figure 16. Scenario 1: Product Fabrication by Product Category by Region from 1962-
2050 
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With the above level of product fabrication within each region and the assumptions 

made about scrap generation and collection, as described in section 2, the amount of old, new, 

and internal scrap collected within each region is shown in figure 17, reaching nearly 95 

million metric tons by 2050. Since the fabrication takes place domestically in this scenario, 

the collected scrap is very similar to the old scrap generated curve in figure 11 and the 

product fabrication curve in figure 15 in terms of regional distribution. 
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Figure 17. Scenario 1: Total Collected Scrap for All Product Categories by Region from 
1962-2050 

 
 

After treatment of the collected scrap, the amount of recycled scrap available for reuse 

compared to the amount of primary aluminium required to meet global fabrication demand is 

shown in figure 18.  
 

Figure 18. Scenario 1: Primary Aluminium vs. Recycled Scrap by Region from 1962-
2050 

 
 

In total, around 120 million metric tons of aluminium is required to meet fabrication 

demand in 2050. Given the assumptions made and the scenarios chosen for product 

fabrication and in-use stock, the large amount of collected scrap from 2012 to 2050 is 

expected to be recycled and reused, thereby reducing the amount of primary aluminium 

required to meet global demand. As figure 18 shows, the amount of recycled scrap steadily 

increases from around 54 million metric tons in 2011 to nearly 90 million metric tons in 

2050, while on the other hand, the amount of primary aluminium demanded stabilizes at 

around 50 million metric tons in 2012 and 2013 before starting to decline gradually to 30 

million metric tons in 2050. 
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Going into greater detail with primary aluminium production, figure 19 highlights the 

distribution by region. Since the scenario assumes that the Middle East dominates primary 

aluminium production, the figure highlights how starting in 2011, the Middle East gradually 

increases its production of primary aluminium until around 2025, when it maintains the 

dominant position as the main producer of primary aluminium until 2050, taking over from 

China. 
 

Figure 19. Scenario 1: Primary Aluminium Production by Region from 1962-2050 

 
 

The declining level of primary aluminium in this scenario will impact the amount of 

alumina and bauxite demanded and produced. As figure 20 shows, the alumina demand to 

meet the level of primary aluminium production also declines from around 95 million metric 

tons in 2011 to 50 million metric tons in 2050. Since the Middle East is the dominant 

producer of primary aluminium in this scenario, the majority of the demand comes from this 

region. However, based on the scenarios and assumptions regarding alumina production 

described in section 2.2.2.3., China is the dominant producer of alumina to meet this demand. 

Looking at bauxite, the bauxite demanded to produce the necessary level of alumina declines 

from around 260 million metric tons in 2011 to less than 150 million metric tons in 2050, 

with demand mainly in China as it is the dominant producer of alumina. To meet this 

demand, based on the scenarios and assumptions regarding bauxite production in section 

2.2.2.3., Rest of Asia and China become the major producers of bauxite starting from around 

2015 to 2050, gradually stealing share away from Australia and Oceania and Latin America. 
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Figure 20. Scenario 1: Alumina and Bauxite Demand and Production by Region 
from 1962-2050 
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3.2.2. Scenario 2: Middle East dominates primary AL production, Fabrication 

integrated with primary AL production 

The second scenario for future aluminium production and final product fabrication 

assumes that by 2050 future primary aluminium production is dominated by the Middle East 

and by 2050 fabrication of final products containing aluminium is integrated with primary 

aluminium production. The global level of product fabrication does not change, since the 

model assumes that all aluminium product demand is met, but the regional distribution of 

product fabrication in this scenario is different. Since fabrication is integrated with primary 

aluminium production and Middle East dominates primary aluminium production, the Middle 

East is the main region for product fabrication, as shown in figure 21 in total and figure 22 by 

product category.  
 

Figure 21. Scenario 2: Total Product Fabrication for All Product Categories by Region 
from 1962-2050 

 
 

Figure 22. Scenario 2: Product Fabrication by Product Category by Region from 1962-
2050 
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Given this regional breakdown of product fabrication, the amount of old, new, and 

internal scrap collected within each region is shown in figure 23.  The amount of collected 

scrap is lower than in the first scenario, only reaching around 85 million metric tons by 2050. 

There is a greater share of scrap coming from the Middle East compared to the first scenario 

in figure 17, since the majority of product fabrication takes place there leading to greater 

internal and new scrap. 
 

Figure 23. Scenario 2: Total Collected Scrap for All Product Categories by Region from 
1962-2050 
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Figure 24. Scenario 2: Primary Aluminium vs. Recycled Scrap by Region from 1962-
2050 

 
 

The amount of recycled scrap available for reuse compared to the amount of primary 

aluminium required to meet global fabrication demand is shown in figure 24. Due to the 

regional fabrication assumptions made in section 2, making the Middle East more efficient in 

product fabrication, the total amount of aluminium required to meet fabrication demand is 

much lower in this scenario, around 110 million metric tons between 2011 and 2050, 

compared to the scenario 1 which is around 120 million metric tons. The amount of primary 

aluminium required to meet global demand declines to 25 million metric tons in 2050. On the 

other hand, the amount of scrap available for reuse grows to 80 million metric tons in 2050. 

The regional breakdown of primary aluminium production is shown in figure 25. Like 

the first scenario, this scenario also assumes that the Middle East dominates primary 

aluminium production. Thus, as in figure 19, figure 25 shows the Middle East gradually 

increases its production of primary aluminium taking over China by 2025. 
 

Figure 25. Scenario 2: Primary Aluminium Production by Region from 1962-2050 
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The impact of the primary aluminium production in this scenario is shown in figure 26. 

The alumina demand to meet the level of primary aluminium production declines from 

around 95 million metric tons in 2011 to 40 million metric tons in 2050. Once again, since the 

Middle East is the dominant producer of primary aluminium in this scenario, the majority of 

the demand comes from this region. To meet this demand for alumina, alumina production 

primarily takes place in China based on the assumptions made in section 2. In this scenario, 

bauxite demanded to produce the necessary level of alumina declines from around 260 

million metric tons in 2011 to around 100 million metric tons in 2050, with demand mainly in 

China as it is the dominant producer of alumina. As in the first scenario, to meet this bauxite 

demand Rest of Asia and China become the major producers of bauxite starting from around 

2015 to 2050, gradually stealing share away from Australia and Oceania and Latin America. 
 

Figure 26. Scenario 2: Alumina and Bauxite Demand and Production by Region from 
1962-2050 
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3.2.3. Scenario 3: China dominates primary AL production, Fabrication follows 

domestic demand 

The third scenario for future aluminium production and final product fabrication 

assumes that by 2050 future primary aluminium production is dominated by the China and by 

2050 fabrication of final products containing aluminium is satisfied by domestic facilities that 

meet domestic demand. As in the first two scenarios, the global level of product fabrication 

does not change, since the model assumes that all aluminium product demand is met. Figure 

27 shows the product fabrication of all the product categories by region. Like the first 

scenario, domestic demand within each region is assumed to be met domestically by 2050, 

thus the regional breakdown of total product fabrication between the 10 regions is exactly 

identical to figure 15. The fabrication charts by product category, shown in figure 28, is also 

the same as the first scenario, shown in figure 16. 
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Figure 27. Scenario 3: Total Product Fabrication for All Product Categories by Region 
from 1962-2050 

 
 

Figure 28. Scenario 3: Product Fabrication by Product Category by Region from 1962-
2050 
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The amount of old, new, and internal scrap collected within each region is shown in 

figure 29, reaching nearly 95 million metric tons by 2050. Since the fabrication takes place 
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domestically in this scenario, both the distribution and volume of scrap collected is the same 

as figure 17 in the first scenario.  
 

Figure 29. Scenario 3: Total Collected Scrap for All Product Categories by Region from 
1962-2050 

 
 

Likewise, the amount of recycled scrap available for reuse compared to the amount of 

primary aluminium required to meet global fabrication demand, shown in figure 30, is also 

identical to figure 18 from the first scenario. As before, around 120 million metric tons of 

aluminium is required to meet fabrication demand in 2050. 
 

Figure 30. Scenario 3: Primary Aluminium vs. Recycled Scrap by Region from 1962-
2050 

 
 

Just as in the first scenario, the amount of recycled scrap steadily increases from around 

54 million metric tons in 2011 to nearly 90 million metric tons in 2050, while the amount of 

primary aluminium demanded declines from around 50 million metric tons in 2011 to 30 

million metric tons in 2050. 

However, when it comes to primary aluminium production, this scenario differs from 

the first scenario by assuming that China dominates primary aluminium production. Figure 31 
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shows the breakdown of primary aluminium production by region. As China already was 

beginning to dominate primary aluminium production from 2005 to 2011, the assumptions for 

this scenario continue to increase China�s share of primary aluminium production from 2012 

to 2050. 
 

Figure 31. Scenario 3: Primary Aluminium Production by Region from 1962-2050 

 
 

The effect of primary aluminium production in this scenario on alumina and bauxite is 

shown in figure 32. Since the level of primary aluminium production is the same as the first 

scenario, the total alumina demand is also the same, declining from around 95 million metric 

tons in 2011 to 50 million metric tons in 2050. However, since China is the dominant 

producer of primary aluminium in this scenario, the majority of the alumina demand comes 

from China. Based on the scenario for alumina production, China is the dominant producer of 

alumina and thus has the greatest demand for bauxite, based on the assumptions made. The 

level of bauxite demand globally is identical to scenario 1, from around 260 million metric 

tons in 2011 to less than 150 million metric tons in 2050. As before, based on the 

assumptions made, to meet this bauxite demand Rest of Asia and China become the major 

producers of bauxite starting from around 2015 to 2050, gradually stealing share away from 

Australia and Oceania and Latin America. 
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Figure 32. Scenario 3: Alumina and Bauxite Demand and Production by Region from 
1962-2050 
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3.2.4. Scenario 4: China dominates primary AL production, Fabrication integrated with 

primary AL production 

The last scenario for future aluminium production and final product fabrication assumes 

that by 2050 future primary aluminium production is dominated by the China and by 2050 

fabrication of final products containing aluminium is integrated with primary aluminium 

production. As in the earlier scenarios, the global level of product fabrication does not 

change, since the model assumes that all aluminium product demand is met. This scenario is 

similar to the second scenario, since it assumes that fabrication is integrated with primary 

aluminium production. However, in this scenario, China is the dominant producer of primary 

aluminium. Thus, when looking at the regional distribution, as figure 33 and figure 34 show, 

China overwhelmingly dominates the product fabrication for all the product categories 
 

Figure 33. Scenario 4: Total Product Fabrication for All Product Categories by Region 
from 1962-2050 

 
 

Figure 34. Scenario 4: Product Fabrication by Product Category by Region from 1962-
2050 
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59 

  

 
 

Based on this regional breakdown of product fabrication, the amount of old, new, and 

internal scrap collected within each region is shown in figure 35. From the assumptions about 

scrap generation made in section 2, the amount of collected scrap in this scenario is the 

highest of all the scenarios, reaching nearly 100 million metric tons by 2050. The largest 

share of the scrap comes from China, as it is the region where the majority of product 

fabrication takes place. 
 

Figure 35. Scenario 4: Total Collected Scrap for All Product Categories by Region from 
1962-2050 
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The amount of scrap recycled and available for reuse compared to the amount of 

primary aluminium required to meet global demand for fabrication is shown in figure 36.  
 

Figure 36. Scenario 4: Primary Aluminium vs. Recycled Scrap by Region from 1962-
2050 

 
 

The regional fabrication assumptions made in section 2 assumed that China is less 

efficient in product fabrication, thus the total amount of aluminium required to meet 

fabrication demand is the highest in this scenario, reaching a maximum of over 125 million 

metric tons. The amount of primary aluminium required to meet global demand declines to 

around 33 million metric tons in 2050, while the amount of scrap available for reuse grows to 

90 million metric tons in 2050. 

As in scenario 3, this scenario assumes that China dominates primary aluminium 

production. Figure 37 shows the breakdown of primary aluminium production by region, 

which looks very similar to figure 31 in scenario 3. 
 

Figure 37. Scenario 4: Primary Aluminium Production by Region from 1962-2050 

 
 

Figure 38 shows the alumina and bauxite demand and production as a result of the 

primary aluminium production levels in this scenario. The total alumina demand declines 
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from around 95 million metric tons in 2011 to 60 million metric tons in 2050, higher than the 

other scenarios due to the higher level of primary aluminium production. As China is the 

dominant producer of primary aluminium in this scenario, the majority of the alumina 

demand comes from China. As in the previous scenarios based on the assumptions made 

regarding alumina production, China is the dominant producer of alumina and thus has the 

greatest demand for bauxite, based on the assumptions made. The level of bauxite demand 

globally is around 260 million metric tons in 2011 to a little over 150 million metric tons in 

2050. Once again as in the previous scenarios, to meet this bauxite demand Rest of Asia and 

China become the major producers of bauxite starting from around 2015 to 2050, gradually 

stealing share away from Australia and Oceania and Latin America. 
 

Figure 38. Scenario 4: Alumina and Bauxite Demand and Production by Region from 
1962-2050 

 

 



62 

 

 
 

In this way, the stock-driven, trade-linked, multi-regional model is able to answer the 

second strategic question, �How can future production of aluminium and fabrication of final 

products meet this demand?� The above results show how the stock-driven model can provide 

important insights for companies along the entire value chain of the global aluminium cycle 

and allow them to better understand the future of the aluminium industry by evaluating a set 

of alternatives and scenarios and making key assumptions. 

3.3. Summary of Scenario Results  
From the scenario results in section 3.1 and 3.2 and the answers to the key strategic 

questions posed in the introduction, companies across the aluminium cycle are able gain a 

better understanding of future flows of the global aluminium cycle given potential future 

alternatives. These results could provide valuable insights for strategy development within 

these companies and allow them to assess key opportunities and threats within the various 

regions around the world.    

The results of the in-use stock scenario show that China is a key region for future 

aluminium consumption and product demand across the majority of product categories, and 

Rest of Asia is also expected to be an important region for certain product categories such as 

Auto & Light Truck, Packaging Cans, Consumer Durables, and Other. The regions with 
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strong historical demand for aluminium products, North America and Europe, continue to be 

key regions with significant levels of future demand for many product categories. 

To meet this future level of aluminium consumption and demand, various regions play 

an important role depending on the scenario analysed. As figure 39 summarises, in scenarios 

1 and 2, China and Rest of Asia are key regions for product fabrication companies, since the 

manufacturing of final products is to happen domestically within each region to meet demand 

in the future. These regions are also important for scrap dealers, since they will have 

increasing scrap outflows from 2012 to 2050. However, in scenarios 2 and 4, depending on 

which region is the dominant primary aluminium producer, either the Middle East or China 

will overwhelmingly be the most important for the manufacturing of final products by 2050. 

Thus, depending on which future alternatives are evaluated, product manufacturers are able to 

gain valuable insights into which regions they should be focusing on in the future. 
 

Figure 39. Total Product Fabrication for All Product Categories by Region from 1962-
2050 

Scenario 1      Scenario 2 

 
Scenario 3      Scenario 4

  

Based on the primary aluminium scenarios and assumptions analysed, summarized in 

figure 40, the dominant region will be a key strategic area for primary aluminium companies, 

depending on the whether the Middle East or China is dominant. However, in all scenarios, 

there is expected to be a significant decline in primary aluminium production by 2050, as 

recycled scrap becomes more abundant and available to satisfy aluminium demand, 

summarised in figure 41. This potentially has significant implications for aluminium 

companies who would benefit from investing more in their recycling and remelting 

businesses instead of primary aluminium production.  
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Figure 40. Primary Aluminium Production by Region from 1962-2050 
Scenario 1      Scenario 2 

  
Scenario 3      Scenario 4 

  
 

Figure 41. Global Recycled Scrap Available by Scenario from 1962-2050 

 
 

As a result of the decline in primary aluminium production by 2050 across all scenarios, 

global levels of alumina and bauxite production are also expected to decline, summarised in 

figure 42. Based on the scenarios and assumptions defined, China is expected to be a key 

region for alumina production in the future, dominating alumina production by 2050. China 

and Rest of Asia are expected to make up the biggest share of bauxite production by 2050 

based on the assumptions made. This is significant for the alumina and bauxite industry, as it 

could potentially indicate the need to pursue other uses for alumina and bauxite outside of 

aluminium production. 
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Figure 42. Global Alumina Production by Scenario from 1962-2050 

 
 

Figure 43. Global Bauxite Production by Scenario from 1962-2050 

 
 

A very important consideration, as mentioned before, is that these results are entirely 

dependent on the specific assumptions and scenarios defined in section 2. What the results do 

show, however, is that the stock-driven model can be a powerful tool for scenario analysis 

and strategy development for companies in the aluminium industry. By defining and 

evaluating a concrete set of future scenarios and specified assumptions, the stock-driven 

model is able to provide answers to key strategic questions and allow the aluminium industry 

to gain valuable insights into the future of the global aluminium cycle for strategy 

development.  

4. Further Discussion 
In his paper on long-term forecasting, Spyros Makridakis mentions that: 

�Long-term forecasting is difficult and challenging for two reasons. First, the long-term 

future is not simply an extrapolation of the past because of technological and other changes. 

Second, humans, in their attempt to profit from and influence what will happen, can and do 

change the course of future events to achieve desired goals.� (Makridakis, 1996).  

The above statement is highly relevant for the scenarios and assumptions that were 

tested and highlighted using the stock-driven, trade-linked, multi-regional model in this 

paper. As described in section 2, the scenarios and assumptions used in the model were 
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primarily developed by determining trends from historical data and assuming that these trends 

will continue into the future using a defined growth functions and trendlines.  

The scenario for future aluminium consumption based on historical trends is very 

conservative when compared to other scenarios developed to forecast aluminium in-use stock, 

as figure 5 shows, and it utilizes one very specific growth function, defined in equation 1, to 

forecast how aluminium consumption could evolve in the future. It is also based on a fixed 

set of assumptions regarding lifetimes of aluminium products, which may also change over 

time and are not accurately captured in either the historical data or the forecasted data. This is 

also true for the bauxite production, alumina production, and scrap treatment scenarios, which 

are based on defined trends using historical data as well as the specific negative square 

growth function to determine future regional distribution. Even the 4 specific scenarios 

defined for primary aluminium production and product fabrication are developed through 

understanding historical trends, and they capture only a subset of potential future alternatives 

that can be analysed through the stock-driven model. Thus, all of the results from the model 

described in section 3 are built upon a predetermined set of alternatives that were extrapolated 

from historical data in order to answer the key strategic questions posed. 

Moreover, the data determined through the historical models (Ramkumar, 2013) could 

be further refined and improved. The historic data is based on assumptions from the GARC 

(2011) model as well as various extrapolations that still have a lot of data gaps and are not 

robust. Currently, the International Aluminium Institute is working to address these data 

issues in cooperation with each of the regional aluminium associations in an effort to have 

more detailed model assumptions and more accurate data for the historical, trade-linked, 

multi-regional models. These updates could significantly impact the scenarios and 

assumptions made in this paper and thus affect the results in the stock-driven model. 

As Makridakis states and as was briefly mentioned in section 2, any number of 

technological changes, human influences, government policies, or other factors could affect 

the future development of the aluminium cycle. The scenarios defined in this paper may not 

necessarily reflect plausible alternatives for the future of the aluminium industry, as they are 

based solely on historical trends and specific assumptions that may ignore many of these 

other factors. But, these additional considerations and factors can be easily incorporated into 

the model to create better scenarios that are more relevant and important to the aluminium 

industry. Various growth alternatives for future aluminium consumption and demand, more 

concrete scenarios for primary aluminium production and product fabrication, and additional 
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scenarios for bauxite, alumina, and scrap can be developed that try to account for factors such 

as potential government policies, changes in consumer behaviour, new technologies, etc. 

The aim of this paper is not to accurately forecast future aluminium flows to 2050. 

Rather, as mentioned in the introduction, the goal of this research effort is to develop a stock-

driven, trade-linked, multi-regional model and use the model to test defined example 

scenarios to answer specific strategic questions important to understanding the future of the 

aluminium industry. In this way, this paper aims to use these results to illustrate how the 

stock-driven model can be a robust tool for analysing scenarios for how the global aluminium 

cycle can evolve and can provide insights for developing long-term business strategies for 

companies along the aluminium value chain. 

In the future, the stock-driven, trade-linked, multi-regional model could be further 

expanded to incorporate greater detail and include various additional layers - energy, process 

technology, quality of aluminium flows, financial market mechanisms, and many others. 

These additions would greatly expand the stock-driven model�s ability to test more complex 

scenarios, allowing the model to provide deeper insights for strategy development. 

Companies along the entire value chain of the global aluminium cycle - from bauxite mining 

companies, alumina producers, primary aluminium producers, product fabrication firms, to 

scrap dealers - can use such a tool to test various future scenarios and develop appropriate 

business strategies that will enable them to more effectively respond to future opportunities 

and threats.  
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