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Abstract. We numerically explore network models which are derived for the
isothermal Euler equations. Previously we proved the existence and unique-

ness of solutions to the generalized Riemann problem at a junction under the

conditions of monotone momentum related coupling constant and equal cross-
sectional areas for all connected pipe sections. In the present paper we extend

this proof to the case of pipe sections of different cross-sectional areas.

We describe a numerical implementation of the network models, where the
flow in each pipe section is calculated using a classical high-resolution Roe

scheme. We propose a numerical treatment of the boundary conditions at the
pipe-junction interface, consistent with the coupling conditions. In particular,

mass is exactly conserved across the junction.

Numerical results are provided for two different network configurations and
for three different network models. Mechanical energy considerations are ap-

plied in order to evaluate the results in terms of physical soundness. Ana-

lytical predictions for junctions connecting three pipe sections are verified for
both network configurations. Long term behaviour of physical and unphysical

solutions are presented and compared, and the impact of having pipes with

different cross-sectional area is shown.

1. Introduction. Models for networks of hyperbolic conservation laws are for ex-
ample used to describe traffic flow [6, 15] and fluid flow in junctions [1, 2, 3, 7, 10,
13, 16]. Gas transport in pipe networks is the most common fluid flow application,
but systems of water distribution, tunnel aerodynamics, mine ventilation and gas
dynamics in engines and engine manifolds have also been considered [16]. With the
extension of the theory to two-phase flows, at present developed for the drift-flux
model [3, 4], one could as well potentially investigate flow distribution issues in
e.g. heat exchangers. More advanced models would however be needed in order to
account for phase change in the fluid and heat transfer to the flows.

1.1. The network models. A network model for fluid flow in pipes consists of a
set of hyperbolic equations describing the flow in each pipe together with a set of
coupling conditions. The hyperbolic conservation laws are given by

∂Uk

∂t
+

∂

∂x
F (Uk) = 0, k ∈ {1, . . . , N}, (1)
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where in each pipe section k, we seek the solution Uk(x, t) for t ∈ R+ and x ∈ R+.
It is assumed that the junction-pipe interface is positioned at x = 0.

The boundary conditions at each junction-pipe interface are determined by a
set of coupling conditions. The conditions relate the flows in each of the N pipe
sections and are closely linked to the applied conservation law (1). The coupling
conditions we will be concerned with in this paper, derived for the isothermal Euler
equations, are presented below in Definition 1.1. Following the approach of [8, 9],
this definition of the solution to the generalized Riemann problem at the junction
is set up allowing for pipe-sections of different cross-sectional areas. The coupling
conditions are denoted RP1 and RP2.

Definition 1.1. A solution to the generalized Riemann problem at a junction,

Uk(x, 0) = Ūk ∀k ∈ {1, . . . , N}, x ∈ R+, (2)

is a set of self-similar functions Uk(x, t) such that

RP0: For all k ∈ {1, . . . , N}, there exists a state

U∗k
(
Ū1, . . . , ŪN

)
= lim
x→0+

Uk(x, t) (3)

such that Uk(x, t) is given by the restriction to x ∈ R+ of the Lax solution to
the standard Riemann problem for x ∈ R:

∂Uk

∂t
+

∂

∂x
F (Uk) = 0,

Uk(x, 0) =

{
Ūk if x > 0

U∗k if x < 0.

(4)

RP1: Mass is conserved at the junction:

N∑

k=1

Akρ
∗
kv
∗
k = 0. (5)

RP2: There is a unique, scalar momentum related coupling constant at the junction:

H(ρ∗k, v
∗
k) = H̃ ∀k ∈ {1, . . . , N}. (6)

Equation (4) is a constructed half-Riemann problem where U∗k is calculated using
the coupling conditions (5) and (6). The two states Ūk and U∗k are assumed to be
connected by a wave with non-negative speed. For the isothermal Euler equations
at subsonic conditions this implies that the states are connected by waves of the
second family. Ak is the cross-sectional area of pipe k, ρ∗k and v∗k are density and
velocity at the boundary, respectively.

To select entropic solutions we follow the approach of [7, 22]:

Definition 1.2. An entropic solution to the Riemann problem (2) is a solution
satisfying the conditions RP0–RP2 as well as

RP3: Energy does not increase at the junction, i. e.

N∑

k=1

Akρ
∗
kv
∗
k

(
1

2
(v∗k)2 + a2 ln

ρ∗k
ρ0

)
≤ 0, (7)

where ρ0 is some reference density and a is the constant fluid speed of sound,
see (10).
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Equation (7) is based on the mechanical energy flux function for the one-dimensi-
onal Euler equations for gas dynamics together with the isothermal pressure law [22].

We also refer to [1, 2, 7, 8, 9, 14, 22] for more details on the network theory.

1.2. Approaches for solving a fluid network system. The mathematical the-
ory of compressible pipe flow in networks has mainly been developed during the last
decade [12, 1, 2, 7, 8, 9]. Prior to that, and in parallel, this phenomenon has been
studied from the more applied point of view.

Osiadacz [19] and Kiuchi [17] uses an equation of state for each junction. The
equation is based on a finite junction volume and summation of ingoing and out-
going flows. The equations have been implemented into an implicit scheme used to
simulate large pipe network systems.

Hong and Kim [16] also model the junction as a node of finite volume. However,
each node is characterised by the three-dimensional Euler equations and the wall
forces are accounted for. With the aid of the normal vector at each pipe-junction
interface, the three-dimensional flux function is converted into one-dimensional pipe
boundary conditions. Hence the model is able to account for the junction geometry.
Special care is taken to ensure that the stagnation enthalpy is conserved at the
boundaries, and the flow in each pipe is calculated using a modified scheme based
on the approximate Riemann solver of Roe. In their paper, numerical results for
several different T-junction configurations are presented. For Mach numbers less
than 0.2 the results are seen to correspond well to analytic correlations that are
based on the assumption of incompressible flow. It is also concluded that the model
to some extent reflects the compressibility effect at higher Mach numbers.

A methodology used to estimate the total pressure loss coefficient for internal
compressible flow in T-junctions was established by Perez-Garcia et al. [21]. The
Reynolds Averaged Navier-Stokes equations were used to simulate the flow in a 90◦

T-junction, modelled in a three-dimensional computational domain. For Mach num-
bers larger than 0.2, pressure loss factors were found as a function of mass flow ratio
and extrapolated Mach number in the common branch. The numerical results from
the three-dimensional model were compared to experimental data, with a generally
good agreement. However, challenges with both the experimental measurements
and the numerical modelling were seen to produce deviations.

Pearson et. al. [20] compared schlieren images and pressure histories obtained
from a two-dimensional numerical model against experimental results for a three-
pipe junction. The three pipes constituted a 180◦ junction where two adjacent pipes
merged into one pipe with cross-sectional area equal to the sum of the two first pipes.
An approximate Roe solver was used to resolve the fluid dynamics modelled by the
two-dimensional Euler equations, and adaptive grid refinement could be used. It
was found that the pressure-loss characteristics of the junction could be reproduced
by a model with a numerical mesh much coarser than what was needed in order to
produce well resolved two-dimensional images of the wave front. Thus, the proposed
numerical model was seen as a feasible sub-model for an internal combustion engine
design tool. There it would be used together with one-dimensional models for gas
dynamics.

Early mathematical models for gas flow in pipe networks were closely related
to network models for traffic flow, building on the initial approach of Holden and
Risebro [15]. Banda et al. [1, 2] describe models for the isothermal Euler equations.
The pipes at the junction were divided into ingoing and outgoing pipes, and it was
assumed that the velocity in each pipe always would be non-negative. It was as
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well assumed that no vacuum states would appear. The problem was set up as a
half-Riemann problem where the solution was found as a maximisation problem on
the total mass flux at the junction. Supply and demand functions were defined and
used as an important part of this problem formulation.

The additional restriction needed in order to complete the problem formulation
was discussed in [2]. Two options were considered: equal pressure at the vertex and
subsonic flow on all outgoing pipes. The choice of equal pressure was used in [1].
The models in [1, 2] were numerically implemented, and results from a set of test
cases were presented.

A comparison between the network model proposed in [1] and results from a
two-dimensional simulation model was performed by Herty and Seäıd [14]. A flow
merge and a flow split configuration in a 90◦ T-junction were used as test cases. It
was found that in both cases the trend between the results were similar. However,
for the flow merge case, deviations were seen. Therefore the approach of using
empirical geometry dependent pressure loss coefficients was said to be supported
for this configuration.

Colombo and Garavello [7] modified the mathematical description of network
models for gas flow in pipe networks and established a network model for the p-
system. Flow directions in the pipe sections were no longer given a priori, and the
maximisation problem was replaced by an entropy condition (Eq. (7)) in addition
to the mass- and momentum related coupling conditions (Eq. (5) and (6)). The
selection of momentum related coupling constant was investigated by looking at
the well posedness of the Riemann problem at a junction connecting three pipes.
The analysis showed that equal momentum flux gave a problem that continuously
depended on the initial conditions. This was not the case when pressure was used
as coupling constant.

For the network model with momentum flux as coupling constant, Colombo and
Garavello [7] investigated the existence and uniqueness of solutions, and proved that
it was global in time and local in the subsonic state space.

The Cauchy problem at a junction for the p-system was investigated by Colombo
and Garavello [8]. Well posedness was proved for initial states that are perturbations
of subsonic states that are stationary, entropic solutions to the generalized Riemann
problem.

Numerical results for network models based on the p-system are presented in [9].
In particular, the pressure is modelled by the γ-law:

p(ρ) = p0

(
ρ

ρ0

)γ
, (8)

with the parameters γ = 1.4, p0 = 1 and ρ0 = 1. Three different junctions were
considered. They consisted of two, three and four pipes connected at the junc-
tion, respectively. In all cases the pipes connected at the junction are of different
cross-sectional area. In the last case the two momentum related coupling constants
considered, pressure and momentum flux, were seen to give qualitatively different
results for the chosen initial data.

Brouwer et al. [5] used a friction dominated pipe model together with suitable
coupling conditions in order to simulate a gas pipeline case from the Norwegian
continental shelf. The pipeline network is characterised by supply and demand
restrictions at a given set of locations, and the results are presented in terms of
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stationary pressure distribution and throughput. The simulation results were com-
pared to previous presented results on the same case. However, due to missing case
information the comparison was rather limited.

The analysis performed in our previous work [22] was motivated by the usage
of two different momentum related coupling constants; pressure and momentum
flux. Network models with the two coupling constants were considered for the
special case where all pipe sections have equal cross-sectional areas. Under this
assumption, existence and uniqueness of entropic solutions was found to be global
in time and local in the subsonic state space:

Proposition 1. (Proposition 9 in [22]) Consider the generalized Riemann problem
at a junction of N pipes with equal cross-sectional areas. With pressure or mo-
mentum flux as coupling constant (RP2), there exists a unique solution satisfying
RP0–RP2 provided that the initial data belongs to the subsonic region as defined
in [22]. There does not exist solutions that satisfy RP3 (entropic solutions) for all
initial data in this subsonic region.

Using the concept of ideal flow in a junction as starting point, the Bernoulli
invariant was suggested as momentum related coupling constant. The invariant is
derived from the conservation equation for total mechanical energy in smooth flows
and is constant along streamlines. These properties are both valid for ideal flow, as
such flow should be reversible and have uninterrupted streamlines.

The subsequent analysis of the network model containing Bernoulli invariant as
coupling constant allowed us to prove existence and uniqueness globally both in
time and in the subsonic state space:

Proposition 2. (Proposition 10 in [22]) Consider the generalized Riemann problem
at a junction of N pipes with equal cross-sectional areas. With Bernoulli invariant
as coupling constant (RP2) there exists a unique entropic solution satisfying RP0-
RP3 provided that the initial data belongs to the subsonic region as defined in [22].

1.3. Overview. The aim of the present work is twofold: to present an appropri-
ate numerical method for junction flow and to explore the impact of the different
momentum related coupling constants numerically. As network theory is a fairly
young field of research, there does not seem to be any established benchmarks which
could serve as standard test cases. Therefore, we have here constructed two basic
network configurations for our numerical investigations. For both of them we are
able to numerically evaluate the entropy condition (7). This allows us to analyse if
a solution is physical or not, even at conditions where we are not able to compare
our results to analytical ones.

Before we describe the numerical method and the evaluation of results, two dif-
ferent issues are investigated analytically. First, the previous work performed in
[22] was based on the assumption of pipe-sections of equal cross-sectional areas.
In Section 2 we consider problems that are not restricted by this assumption. For
monotone momentum related coupling constants, we provide a proof for the exis-
tence and uniqueness of solutions to the generalized Riemann problem in the sense
of Definition 1.1.

Second, the standard Riemann problem is a well known test case with analytic
solution. Formulated as a network problem, the case consists of two pipe sections
of equal cross-sectional area connected at a junction. An analytical investigation
of such a network configuration is presented in Section 3. The solutions of the
network model and the standard Riemann problem are compared. Two conditions
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on the momentum related coupling constants, which ensure that the two solutions
coincide, are identified. Both pressure, momentum flux and Bernoulli invariant as
coupling constant are seen to fulfil the conditions. Thus the corresponding models
should all predict the analytical solution to the standard Riemann problem.

The implemented network models are presented in Section 4. The flow in each
pipe section is calculated using an approximate Riemann solver of Roe, presented in
Section 4.1 and Section 4.2. Section 4.3 shows how the conservative flux function at
the pipe junction interface has been evaluated and set such that mass is conserved
at the junction. Finally, the numerical procedure used to calculate U∗k for each pipe
section is presented in Section 4.4.

Numerical results for the first test case, a closed network consisting of three pipe
sections connected at two junctions, is presented in Section 5.1. Using the total
energy in the network as indicator, we show how both pressure and momentum flux
as coupling constant lead to unphysical solutions for different initial conditions. We
also show the long term development of the total energy as waves interact in pipe
sections and at the junctions.

Steady state conditions in an open network model is presented in Section 5.2. The
network consists of a symmetric branch structure where the flow in each pipe section
is divided equally between two pipes at each junction. Simulations on a model
where all pipes are of equal cross-sectional area verify the presence of unphysical
solutions for pressure and momentum flux as coupling constant. Using the same
initial conditions, but changing the cross-sectional areas such that the velocities in
all pipe sections are equal, we observe no unphysical behaviour.

1.4. The isothermal Euler equations. In this work, we follow the approach
of [1, 2, 7, 14, 17, 19] and consider one dimensional, compressible, pipe flow governed
by the isothermal Euler equations. These consist of the isentropic Euler equations

∂

∂t

[
ρ
ρv

]
+

∂

∂x

[
ρv

ρv2 + p(ρ)

]
=

[
0
0

]
, (9)

together with a specific pressure law

p(ρ) = a2ρ. (10)

Here ρ and v are the fluid density and velocity, respectively, p(ρ) is the pressure
and a is the constant fluid speed of sound.

A more general formulation of (10) was considered in [7]. By an appropriate ex-
tension of the theory presented in [22], it should be possible to extend our numerical
method to this more general formulation.

2. Existence and uniqueness of solutions to the generalized Riemann
problem at a junction. A proof of uniqueness and existence of solutions to the
generealized Riemann problem, as stated in Definition 1.1, was presented in [22] for
the special case of equal cross-sectional areas in all pipe sections. This proof is valid
for monotone momentum related coupling constants as defined below:

Definition 2.1. A momentum related coupling constant is monotone if

dH∗k(M∗k ; ρ̄k, M̄k)

dM∗k
> 0 for M∗k ∈ 〈−1, 1〉 (11)

for both shock waves and rarefaction waves connecting the two states U∗k and Ūk.
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In Definition 2.1, M∗k = v∗k/a is the Mach number and H∗k is the coupling constant
value for pipe section k. The constant is a function of ρ∗k or M∗k alone, because both
variables may be expressed as a function of the other variable and of Ūk, which is
a constant state, using the appropriate wave equation [22].

Here we will extend the proof of existence and uniqueness to the case of pipe
sections of different cross-sectional areas. That is, we will show that the conditions
RP0 – RP2 have a unique solution that exists for all subsonic initial data when the
momentum related coupling constant is monotone. The proof will extensively be
based on the results found in [22].

First we state the extended definition of subsonic initial conditions:

Definition 2.2. Assume that a set {Ūk} of initial data is given. Assume that this
set satisfies the conditions

1. M̄k ∈ 〈−1, 1〉 ∀k;
2. J (H−) < 0, where

J (H) =

N∑

k=1

Akρ
∗
k(H)M∗k (H) =

N∑

k=1

Ak[ρM ]∗k(H) (12)

and

H− = max
k
H∗k|R2(M∗k = −1); (13)

3. J (H+) > 0, where

H+ = min
k
H∗k|S2(M∗k = 1). (14)

Such a set of initial data is said to belong to the subsonic region.

R2 and S2 denote rarefaction and shock wave of the second family, respectively.
The notation indicates which of the wave equations that is used in H∗k (M∗k ). Condi-
tion (1) is the obvious constraint of subsonic initial conditions in each pipe section.
The two additional conditions set the limits for where the solutions are subsonic.

Then we may state the following:

Proposition 3. Assume that the initial data Ūk belongs to the subsonic region in
the sense of Definition 2.2 and that the momentum related coupling constant H is
monotone in the sense of Definition 2.1. Then there exists a unique set of subsonic
solutions satisfying RP0–RP2.

Proof. Proposition 1 in [22] proves the uniqueness of a state U∗k that satisfies RP0
for the conditions

1. The initial state Ūk is subsonic,
2. The momentum related coupling constant is monotone in the sense of Defini-

tion 2.1
3. The coupling constant value is given and satisfies

H∗k|R2(M∗k = −1) < H̃ < H∗k|S2(M∗k = 1). (15)

The proof of the proposition is independent of the assumption on the cross-sectional
area of each pipe section, and is hence valid for the generalized Riemann problem in
the sense of Definition 1.1. As the last condition is satisfied for a set of initial data
that belongs to the subsonic region, all three conditions are met. The uniqueness
of a state U∗k satisfying RP0 is thus proved.
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Figure 1. A junction with 2 connected pipes

Proposition 3 in [22] proves the uniqueness of the set of solutions {U∗k} that
satisfies RP0–RP2, given that the states U∗k uniquely satisfies RP0 and that the set
of solutions exist. Using the rarefaction and shock wave equations, it is proved that

d[ρM ]∗k
dρ∗k

> 0, M∗k ∈ 〈−1, 1〉. (16)

This implies that monotone coupling constants are as well monotone functions of the
[ρM ]∗k variable. As the cross sectional area of each pipe section is a constant, we may
therefore conclude that the total mass function J (H), as defined in Equation (12),
is a monotonically increasing function of a monotone coupling constant, H, in the
sense of Definition 2.1. Thus Proposition 3 in [22] holds for the case of pipe sections
with different cross-sectional areas.

As in [22], the definition of the subsonic region in Definition 2.2 guarantees the
existence of the unique set of solutions.

3. The standard Riemann problem test case. In addition to the monotonicity
constraint (11), two requirements on the momentum related coupling constant are
found by looking at the standard Riemann problem test case. In this test case two
pipe sections of equal cross-sectional area are connected at a junction along the
same axis, see Figure 1. Thus, the solution predicted by the network model must
coincide with that of a Standard Riemann problem. The initial conditions in two
such pipe sections are given as Ū1 and Ū2. Their boundary conditions at the pipe
junction interfaces, Eq. (3), are U∗1 and U∗2, respectively.

The corresponding standard Riemann problem would have ρL = ρ̄1, vL = −v̄1

and UR = Ū2 with a resulting intermediate state Um. In the following we begin by
identifying a set of {(ρ∗k, v∗k), k = 1, 2}, which correctly describes the intermediate
state.

Lemma 3.1. Consider isothermal flow. A network model for two pipe sections
of equal cross-sectional area will predict the correct intermediate state Um of the
corresponding standard Riemann problem if:

ρ∗1 = ρ∗2 (17)

and

− v∗1 = v∗2 . (18)

That is:

ρ∗2 = ρm, (19)

v∗2 = vm. (20)
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Proof. The solutions to the standard Riemann problem is characterised by rarefac-
tion and shock waves of the 1st and 2nd family (denoted R1, R2, S1 and S2):

R1 : vm = vL + a ln
ρL

ρm
(21)

R2 : vm = vR + a ln
ρm

ρR
(22)

S1 : vm = vL + a



√
ρL

ρm
−
√
ρm

ρL


 (23)

S2 : vm = vR + a



√
ρm

ρR
−
√
ρR

ρm


 (24)

In the network model, the boundary conditions are found from the equations:

R21 : v∗1 = v̄1 + a ln
ρ∗1
ρ̄1

= −
(
vL + a ln

ρL

ρ∗1

)
(25)

R22 : v∗2 = v̄2 + a ln
ρ∗2
ρ̄2

= vR + a ln
ρ∗2
ρR

(26)

S21 : v∗1 = v̄1 + a

(√
ρ∗1
ρ̄1
−
√
ρ̄1

ρ∗1

)
= −

(
vL + a

(√
ρL

ρ∗1
−
√
ρ∗1
ρL

))
(27)

S22 : v∗2 = v̄2 + a

(√
ρ∗2
ρ̄2
−
√
ρ̄2

ρ∗2

)
= vR + a

(√
ρ∗2
ρR
−
√
ρR

ρ∗2

)
(28)

Equation (25) to (28) are identical to Equation (21) to (24) if Equation (17) and
(18) hold. Consequently Equation (19) and (20) are fulfilled.

Next, we consider the momentum related coupling constant of the network model
and identify two constraints:

Lemma 3.2. Consider isothermal flow. The coupling conditions of a network model
for two pipe sections of equal cross-sectional area reduces to the following set of
equations:

ρ∗1v
∗
1 =− ρ∗2v∗2 , (29)

H(ρ∗1, v
∗
1) =H(ρ∗2, v

∗
2). (30)

Equation (17) and (18) form a unique solution to this set if and only if

1. H is a symmetric function of ρ∗kv
∗
k, that is

H(ρ∗k, ρ
∗
kv
∗
k) = H(ρ∗k,−ρ∗kv∗k) (31)

2. H is a monotone function of ρ∗k for constant ρ∗kv
∗
k, that is:

∂H(ρ∗k, ρ
∗
kv
∗
k)

∂ρ∗k
> 0 or

∂H(ρ∗k, ρ
∗
kv
∗
k)

∂ρ∗k
< 0 for M∗k ∈ 〈−1, 1〉. (32)

Proof. The existence of a unique relation between ρ∗1 and ρ∗2 is guaranteed by the
monotonicity constraint (32). Symmetry in the ρ∗kv

∗
k variable is required for Equa-

tion (17) to be a solution of the Equations (29) and (30). If one or both of the
conditions are not met, Equation (17) and (18) does not form a unique solution to
the Equations (29) and (30).
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Then we may state:

Proposition 4. Consider fluid flow described by the isothermal Euler equations.
A network model for two pipe sections of equal cross-sectional area, connected as
in Figure 1, will correctly describe the standard Riemann problem if and only if the
constraints (31) and (32) of Lemma 3.2 hold.

Proof. Lemma 3.1 proves that if the network model predicts equal densities at the
pipe-junction interfaces and velocities that are equal in absolute value and of oppo-
site sign, then the solution will coincide with that of the standard Riemann problem.
Lemma 3.2 proves that the network model will predict this kind of densities and
velocities if and only if the two constraints on the momentum related coupling
constant are met.

A simple analysis, omitted here, show that pressure

H(ρ,M) = ρ, (33)

momentum flux

H(ρ,M) = ρ
(
1 +M2

)
, (34)

and Bernoulli invariant

H(ρ,M) = ln(ρ) +
1

2
M2 (35)

as momentum related coupling constant all fulfil the conditions set in Lemma 3.2.
Hence they all correctly reproduce the solutions to the standard Riemann problem.
Observe however that in this case, the entropy condition, RP3, is trivially satisfied.
Therefore, studies involving junctions with more than two pipe sections are required
if we wish to gain insight into the general entropy consistency of the various coupling
constants.

4. Numerical implementation. In this Section, we describe a numerical imple-
mentation of the network model. The approximate Riemann solver of Roe has been
chosen, as it allows for easy extension to second-order accuracy for smooth solu-
tions using the wave-limiter approach of LeVeque [18]. This approach is described
in more detail in Section 4.2.

In Sections 4.3 and 4.4, we describe the boundary treatment needed to ensure
that the coupling conditions are satisfied.

4.1. The approximate Riemann solver of Roe. The set of equations governing
the flow in each pipe is solved using the approximate Riemann solver of Roe [23].
The approximation is made by replacing the nonlinear problem (1) by a linearised
problem at each cell interface [18]:

∂Ûk

∂t
+ Âi−1/2

∂Ûk

∂x
= 0. (36)

The Roe matrix, Âi−1/2, must fulfil three conditions :

Condition 1. Âi−1/2 must be diagonalisable and have real eigenvalues

Condition 2. Âi−1/2 → f ′(Ũ) as Qi−1,Qi → Ũ

Condition 3. Âi−1/2(Qi −Qi−1) = f(Qi)− f(Qi−1)
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The conditions are set in order to ensure a hyperbolic system (Condition 1) that
is consistent with the original conservation law (Condition 2). In addition Wp will

be an eigenvector of Âi−1/2 if the states Qi−1 and Qi are connected by a single
wave, Wp = Qi − Qi−1, in the true Riemann solution (Condition 3). The last
condition also guarantees that the selected scheme (39) is conservative [18].

For the isothermal Euler equations, the following matrix fulfils the conditions
[24, Eq. (11.42) and Eq. (11.43)]:

Âi−1/2 =

[
0 1

a2 − v̂2 2v̂

]
, (37)

where

v̂ =

√
ρivi +

√
ρi−1vi−1√

ρi +
√
ρi−1

. (38)

4.2. Numerical algorithm. Equation (39) describes the numerical algorithm,
written on conservation form. The algorithm is based on Godunov’s method, ap-
plied for non-linear systems. It contains both a conservative Roe flux, F , and a

correction term, F̃ , where the latter extends the algorithm to a high-resolutions
method [18].

Qn+1
i =Qn

i −
∆t

∆x

(
F(Qn

i ,Q
n
i+1)−F(Qn

i−1,Q
n
i )
)

− ∆t

∆x

(
F̃ (Qn

i ,Q
n
i+1)− F̃ (Qn

i−1,Q
n
i )
)
. (39)

The conservative Roe flux is found using the Roe matrix Âi−1/2:

F(Qn
i−1,Q

n
i ) =

1

2
(f(Qn

i ) + f(Qn
i−1))− 1

2
|Âi−1/2|(Qn

i −Qn
i−1). (40)

The matrix |Âi−1/2| is defined as [18]:

|Âi−1/2| = Â
+

i−1/2 − Â
−
i−1/2, (41)

where

Â
±
i−1/2 = R̂i−1/2Λ̂

±
i−1/2R̂

−1

i−1/2, (42)

Λ̂
±
i−1/2 = diag

(
1

2

(
λ̂i−1/2 ± |λ̂i−1/2|

))
, (43)

and λ̂i−1/2 and R̂i−1/2 are the eigenvalues and right eigenvector matrix of Âi−1/2,
respectively.

The high-resolution correction terms are defined by Equation (44), where the

limited wave W̃p
i−1/2 is given by Equation (45). In this equation, each wave of the

solution is modified by a limiter function φ(θ).

F̃ (Qn
i−1,Q

n
i ) =

1

2

m∑

p=1

|spi−1/2|
(

1− ∆t

∆x
|spi−1/2|

)
W̃p
i−1/2. (44)

W̃p
i−1/2 = φ(θpi−1/2)Wp

i−1/2. (45)

In our implementation, the monotonized central-difference limiter function (MC
limiter) was chosen:

φ(θ) = max(0,min((1 + θ)/2, 2, 2θ)). (46)
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The ratio θ is found by:

θpi−1/2 =
Wp
I−1/2 · W

p
i−1/2

Wp
i−1/2 · W

p
i−1/2

, (47)

where the index I is defined as:

I =

{
i− 1 spi−1/2 ≥ 0

i+ 1 spi−1/2 < 0
. (48)

The waves, Wp
i−1/2, may be calculated from the eigenvectors of the Roe matrix:

Qi −Qi−1 =

m∑

p=1

Wp
i−1/2 =

m∑

p=1

βpi−1/2r̂
p
i−1/2, (49)

where r̂pi−1/2 is the right eigenvector of Âi−1/2 belonging to family p and

βi−1/2 = R̂
−1

i−1/2(Qi −Qi−1). (50)

The wave speeds needed in Equation (44) and Equation (48) are defined as the
eigenvalues belonging to the Roe matrix:

spi−1/2 = λ̂pi−1/2 (51)

4.3. The flux function at the junction boundary. In our numerical model, all
boundary conditions are managed using the ghost cell approach. We have chosen
to extend the computational domain by one ghost cell at each end of a pipe section.
At a boundary towards a junction, the boundary condition found from the network
model, U∗k, is used to determine the ghost cell variables. By doing so, some special
care must be taken about axis directions and the calculation of the flux across the
boundary.

We denote the condition in cell i in the k-th pipe section at time t = n∆t by
Qn
i,k and the ghost cell by Qn

GC,k. The ghost cell variables are updated according
to Equation (52).

Qn
GC,k =

[
ρ∗k

(−1)jkρ∗kv
∗
k

]
. (52)

The variable jk is used as an indicator of the relation between the global axis, ix,g,
used in the numerical model and the local axis, ix,l, used by the network model at
each junction:

jk =

{
0 if ix,g = ix,l,

1 if ix,g = −ix,l.
(53)

When calculating the numerical flux across the pipe-junction boundary, it is
necessary to ensure that the mass conservation coupling condition (5) is fulfilled for
each junction. The selected approach is outlined below in Proposition 5.

Proposition 5. Denote the internal grid cell which is closest to the junction bound-
ary, Qn

SJ,k. The numerical network model will conserve the total mass if the upwind
Godunov flux (54) is used at pipe junction interfaces:

F tot(Q
n
GC,k,Q

n
SJ,k) =

[
(−1)jkρ∗kv

∗
k

ρ∗k((v∗k)2 + a2)

]
, (54)

where
F tot(Q

n
GC,k,Q

n
SJ,k) = F(Qn

GC,k,Q
n
SJ,k) + F̃ (Qn

GC,k,Q
n
SJ,k). (55)



NUMERICAL NETWORK MODELS AND ENTROPY PRINCIPLES 77

Proof. The numerical mass flux at a pipe-junction interface may be written as:

Fnum = AkF tot(Q
n
GC,k,Q

n
SJ,k)[1], (56)

where V [h] is used as notation for the h-th element of the vector V . Numerical
conservation of mass at a junction is then expressed as:

∑

k∈(jk=0)

AkF tot(Q
n
GC,k,Q

n
SJ,k)[1] =

∑

k∈(jk=1)

AkF tot(Q
n
GC,k,Q

n
SJ,k)[1]. (57)

Using the selected flux (54), Equation (57) becomes:

∑

k∈(jk=0)

Ak(−1)0ρ∗kv
∗
k =

∑

k∈(jk=1)

Ak(−1)1ρ∗kv
∗
k. (58)

For a junction connecting N pipes this is equal to:

N∑

k=1

Akρ
∗
kv
∗
k = 0, (59)

which satisfies Equation (5).

Remark 1. The Godunov flux (54) may be expressed as a corrected Roe flux [(40),

(55)] if the correction term, F̃ , is appropriately chosen. For a boundary at the left
hand side of a computational domain we have:

F̃ (Qn
GC,k,Q

n
SJ,k)

=
1

2

(
f(Qn

GC,k)− f(Qn
SJ,k)

)
+

1

2
|ÂSJ−1/2,k|

(
Qn

SJ,k −Qn
GC,k

)
. (60)

Similarly, at the right hand side of the domain the correction term is:

F̃ (Qn
SJ,k,Q

n
GC,k)

=
1

2

(
f(Qn

GC,k)− f(Qn
SJ,k)

)
+

1

2
|ÂGC−1/2,k|

(
Qn

GC,k −Qn
SJ,k

)
. (61)

We may use Condition 3, presented in Section 4.1, and simplify Equation (60) and

(61). Noticing that Âi−1/2 may be written as:

Âi−1/2 = Â
+

i−1/2 + Â
−
i−1/2, (62)

and inserting the expression for |Âi−1/2| found in Equation (41), Equation (60) may
be written as:

F̃ (Qn
GC,k,Q

n
SJ,k)

=− 1

2
ÂSJ−1/2,k

(
Qn

GC,k −Qn
SJ,k

)
+

1

2
|ÂSJ−1/2,k|

(
Qn

SJ,k −Qn
GC,k

)
,

=− Â−SJ−1/2,k

(
Qn

SJ,k −Qn
GC,k

)
.

(63)

Similarly, Equation (61) may be written as:

F̃ (Qn
SJ,k,Q

n
GC,k) = Â

+

GC−1/2,k

(
Qn

GC,k −Qn
SJ,k

)
. (64)
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4.4. Calculation of boundary conditions at pipe junction interfaces. The
implemented procedure calculating the boundary conditions is in accordance with
the results in [22]. We consider the three different momentum related coupling
constants; pressure (33), momentum flux (34) and Bernoulli invariant (35), which
are all monotone in the sense of Definition 2.1 [22].

The inverted functions, density and velocity as function of the momentum related
coupling constant, will depend on the appropriate wave equation. They are denoted
(ρ)R,(M)R and (ρ)S ,(M)S when rarefaction and shock wave equations are used,

respectively. For a given coupling constant value, H̃, the density, Mach number and
mass flux at a pipe-junction interface may be calculated:

[ρM ]∗k(H̃) = ρ∗k(H̃)M∗k (H̃) =





ρR(H̃)MR(H̃) if H̃ < Hk
ρkMk if H̃ = Hk
ρS(H̃)MS(H̃) if H̃ > Hk.

(65)

Numerically, the inverted function values are found by iteration on the function

IM∗
k
(H̃) = H∗k (M∗k )− H̃ = 0. (66)

Here the appropriate wave equation is used to describe the relation between the
conditions of the ghost cell, Qn

GC,k = [ρ∗k, ρ
∗
kv
∗
k]T , and of the nearby internal cell,

Qn
SJ,k = [ρ̄k, ρ̄kv̄k]T , which is regarded as initial condition of the pipe section.
A Newton-Raphson algorithm is used to solve (66), utilising that the derivative

dH∗
k/dM∗

k is known. If the algorithm fails, a bisection method is used on the interval
M∗k ∈ [−1, 1].

The total mass flux function is defined by Equation (12). Using this equation
together with the inverted mass flux function (65), we calculate J (H−) and J (H+),
see Equation (13) and (14). If the set of initial states, {Qn

SJ,k}, belong to the
subsonic region in the sense of Definition 2.2, a solution may be calculated. This is
done with the aid of a bisection method on the interval H̃ ∈ [H−,H+].

5. Numerical results. The impact of the selected momentum related coupling
constant will be explored using two different network configurations. The first
configuration, a closed system consisting of three pipes and two junctions, will be
used to show how the selected constant affects the energy of the system. The second
configuration, an open system of 16 pipes connected in a network, will be used to
show how the coupling constant influences the steady state flow situation in the
network.

In all cases, the fluid speed of sound is set to a = 300 m/s.

5.1. Simulations on a closed network. An outline of the closed network config-
uration is shown in Figure 2. Three pipe sections, labelled S1 to S3, each of length
L = 50 m, are connected by two junctions. All pipe sections are assumed to have
equal cross-sectional areas. The global axis direction, ig, is set in the direction from
junction J1 to junction J2, as indicated in the figure. It should be noted that for
junction J2, the global axis and the local axis, il, that is applied by the network
theory are of opposite directions, see Figure 2b.

Initially, each pipe is filled with stagnant fluid of uniform pressure, with different
pressure levels in each pipe. Two different sets of initial pressures have been selected.
These are shown in Table 1.
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S2

ig

ig

ig
S1

S3

J1 J2

(a) Principal diagram

ig

il

J1
ig

il

J2

(b) Relation between the global axis, ig, and
the local axis, il, used by the network model.

Figure 2. Closed system consisting of three pipe sections and two
junctions. All pipe sections are modelled as straight pipes.

Section
CS # 1 CS # 2

p [bar] v [m/s] p [bar] v [m/s]

1 1.0 0.0 1.0 0.0
2 1.5 0.0 1.5 0.0
3 1.6 0.0 2.34 0.0

Table 1. Initial conditions, closed network cases

5.1.1. Comparison of analytic and simulation results. Grid refinement results for
the two sets of initial data are shown in Figure 3 and Figure 4. The simulations
were run until T = 0.06 s. For simplicity, only results for the first pipe-section
are presented, and only for pressure as momentum related coupling constant. The
results for the other coupling constants and pipe sections are however similar.

The analytical pressure- and velocity profiles, shown in the figures 3a, 3b, 4a
and 4b are calculated using the wave equations for rarefaction and shock waves of
the second family. If U∗k and Ūk are connected by a rarefaction wave, Equation (67)
and (68) describe the density and velocity profiles in the pipe section.

ρk(x, t) =





ρ∗k if 0 ≤ x < λ2(ρ∗k, v
∗
k)t,

ρ̄e(
x−v̄t
at −1) if λ2(ρ∗k, v

∗
k)t ≤ x < λ2(ρ̄, v̄)t

ρ̄ if λ2(ρ̄, v̄)t ≤ x
, (67)
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energy is due to unphysical energy production in the junctions.

Figure 3. CS #1, Section 1: Comparison between numerical and
analytical results. (H̃ = ρ, T = 0.06 s)

vk(x, t) =





v∗k if 0 ≤ x < λ2(ρ∗k, v
∗
k)t,

x
t − a if λ2(ρ∗k, v

∗
k)t ≤ x < λ2(ρ̄, v̄)t

v̄ if λ2(ρ̄, v̄)t ≤ x
. (68)

(69)

In these equations, λ2 is the eigenvalue of the second family:

λ2(ρ, v) = v + a. (70)

Equation (71) and (72) describe the profiles when the two states are connected by
a shock wave.

ρk(x, t) =




ρ∗k if 0 ≤ x <

(
v̄ + a

√
ρ∗

ρ̄

)
t,

ρ̄ if
(
v̄ + a

√
ρ∗

ρ̄

)
t ≤ x.

, (71)

vk(x, t) =




v∗k if 0 ≤ x <

(
v̄ + a

√
ρ∗

ρ̄

)
t,

v̄ if
(
v̄ + a

√
ρ∗

ρ̄

)
t ≤ x.

. (72)

Comparing analytical and numerical results, it is seen that only the lowest grid
resolution leads to a significant deviation.
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Figure 4. CS #2, Section 1: Comparison between numerical and
analytical results. (H̃ = ρ, T = 0.06 s)

Figure 3c and Figure 4c present the development of total energy on a normalised
form as a function of time. The numerical profiles are seen to converge towards
a solution as the grid size is reduced. The exact solution, that is, the limit which
the numerical results should converge to, is shown as “Analytic 1”. The profile
is derived as described in Observation 1 to Observation 3 and Equation (85), and
relies on the condition that the two initial waves entering each pipe section have not
yet interacted. This condition is satisfied at T = 0.06 s. The “Analytic 2” profile is
derived in order to distinguish between physical and unphysical solutions. We will
describe this further later in this section.

Observation 1. Each of the pipe sections shown in Figure 2 has an interface
towards a junction in both ends. Denote the boundary conditions at these two pipe-
junction interfaces of pipe section k, as Ub

k,J1 and Ub
k,J2. Note that both conditions

relate to the global axis, ig. Then, for the closed configuration shown in Figure 2
the following holds:

ρb
k,J1 = ρb

k,J2 ∀k ∈ 1, 2, 3, (73)

vb
k,J1 = −vb

k,J2 ∀k ∈ 1, 2, 3. (74)

Proof. Figure 2 shows that the two junctions with connected pipes have the same
initial conditions. Hence,

|Ub
k,J1| = |Ub

k,J2| ∀k ∈ 1, 2, 3. (75)
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However, as the directions of the global axis and the local axis used by the net-
work theory are opposite at the second junction, J2, the velocities are related by
Equation (74).

Observation 2. Denote boundary conditions as in Observation 1 and consider the
closed configuration shown in Figure 2. A pipe section containing two rarefaction
waves that has not yet interacted has the following energy-content as a function of
time:

Ek,2×R2(t) = Ek(t = 0) + 2vb
k,J1ρ

b
k,J1

(
1

2
(vb
k,J1)2 + a2

(
ln (ρb

k,J1) + 1
))

t (76)

Proof. Energy and energy flux is an entropy entropy-flux pair for the isothermal
Euler equations. [11, p. 212] Thus the entropy condition for a pipe section is given
by Equation (77), with energy, E, defined by Equation (78).

∂E

∂t
+

∂

∂x
(v(E + p)) ≤ 0, (77)

E =
1

2
ρv2 + ρa2 ln(ρ). (78)

In the present case, the pipe section only contains rarefaction waves. For such a
smooth solution Equation (77) shows that energy is conserved:

∂Ek
∂t

+
∂

∂x

(
vkρk

(
1

2
v2
k + a2(ln(ρk) + 1)

))
= 0. (79)

Integration along the pipe section from the interface towards J1 to the interface
towards J2 gives

∫ J2

J1

∂Ek
∂t

dx+

∫ J2

J1

∂

∂x

(
vkρk

(
1

2
v2
k + a2(ln(ρk) + 1)

))
dx

=
dEk
dt

+ vb
k,J2ρ

b
k,J2

(
1

2
(vb
k,J2)2 + a2(ln(ρb

k,J2) + 1)

)

− vb
k,J1ρ

b
k,J1

(
1

2
(vb
k,J1)2 + a2(ln(ρb

k,J1) + 1)

)

=0.

(80)

Using the results in Observation 1 and integrating from 0 to t gives the result in
equation (76).

Observation 3. Denote boundary conditions as in Observation 1, the initial con-
dition in the pipe as Ūk and consider the closed configuration shown in Figure 2.
A pipe section containing two shock waves that have not yet interacted has the fol-
lowing energy-content as a function of time:

Ek,2×S2(t)

=ρ̄a2 ln (ρ̄)L

+ 2a

√
ρb
k,J1

ρ̄k

(
1

2
ρb
k,J1(vb

k,J1)2 + a2
(
ρb
k,J1 ln (ρb

k,J1)− ρ̄k ln (ρ̄k)
))

t,

(81)

where L is the length of the pipe section.
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Proof. Denote the speed of the shock waves emerging from the interfaces towards
J1 and J2 by sk,J1 and sk,J2, respectively. Due to symmetry, the relation between
the speeds may be found as:

sk,J1 = −sk,J2 = v̄k + a

√
ρb
k,J1

ρ̄k
= a

√
ρb
k,J1

ρ̄k
. (82)

The final expression in (82) is obtained when taking into account that the initial
velocity is zero, see Table 1.

At a given time t, the two shock waves divide the pipe section into three regions.
Closest to the pipe-junction interface the conditions are given by Ub

k,J1 and Ub
k,J2,

respectively. The mid-region is given by Ūk. Total energy is found by summation
of energy in each region:

Ek,2×S2(t) = Ēk (L− sk,J1t+ sk,J2t) + Eb
k,J1sk,J1t− Eb

k,J2sk,J2t, (83)

where energy, E, is defined by Equation (78). Inserting the results from Observa-
tion 1 and Equation (82), we may write:

Ek,2×S2(t) = ĒkL+ 2sk,J1t(E
b
k,J1 − Ēk). (84)

Equation (81) is found by inserting the expressions for Ēk, Eb
k,J1 and sk,J1 (82) into

Equation (84).

The total energy may then be found by summation:

EAn1(t) =
∑

k∈R2

Ek,2×R2(t) +
∑

k∈S2

Ek,2×S2(t), (85)

where R2 is the subset of pipes containing rarefaction waves, and S2 is the subset
containing shock waves.

The “Analytic 1” profile is compared with the numerical results (see Figure 3c
and Figure 4c), in order to determine the appropriate grid size. The results show
that only at the smallest grid size, ∆x = 5.0× 10−3 m, the deviation from the
analytical profile is negligible. All further results presented for this configuration
are therefore obtained using this grid size.

The second curve, denoted “Analytic 2”, is used to determine if the numerically
obtained solution is entropic in terms of Definition 1.2. These solutions are charac-
terised by the absence of energy production in the junctions. In order to identify
energy production or dissipation in the junctions, we need to account for the en-
ergy development in each of the pipe sections. Looking at the entropy condition in
Equation (77) we see that pipe sections containing shock waves will have a reduced
energy content as a function of time. This energy loss may be calculated as shown
in Equation (86). By subtracting this loss from the total initial energy, as shown in
Equation (87), we may calculate the total energy of the system for conditions with
no energy dissipation or production in the junctions.

Ek,d(t) = Ek,2×R2(t)− Ek,2×S2(t). (86)

EAn2(t) =

N∑

k=1

(Ek(t = 0)− Ek,d(t)) . (87)

Entropic solutions are then characterised by:

EAn2(t) ≥ EAn1(t) (88)

Otherwise there is energy production in the junctions.
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We use this criterion (88) to investigate the numerical results presented in Fig-
ure 3c and Figure 4c. It is clearly seen that the network model with pressure as
momentum related coupling constant yields an entropic solution only for the second
set of initial data. For the first set of initial data, the model predicts a condition
with energy production in the junctions.

Next, we present results for all three momentum related coupling constants.
Figure 5 and Figure 7 show the pressure and velocity profiles in each of the pipe
sections at T = 0.06 s. The corresponding energy profiles are shown in Figure 6
and Figure 8. As expected, only the choice of Bernoulli invariant as momentum
related coupling constant leads to energy conservation at the junctions. The duality
between the two momentum related constants, pressure and momentum flux, is as
well as expected [22]. For the first set of initial data, pressure as constant results
in energy production at the junctions, while equal momentum flux gives energy
dissipation. For the second set of initial data this is the other way around.

5.1.2. Development of total energy as a function of time. A second set of simulations
were run until T = 1.00 s. Within this time-frame the first set of waves entering
each pipe section interact, the resulting waves propagate out of the pipe sections
and into the junctions, new waves are created and re-enter each pipe section and
so forth. The resulting energy profiles for the two selected cases are shown in
Figure 9. As seen, there is a net reduction of total energy for all three momentum
related coupling constants. However, the profiles for pressure and momentum flux
as coupling constant are not decreasing monotonically. This is due to the direction
of the pipe flows. For instance we may consider the profile for pressure as coupling
constant in Figure 9a. From T = 0.00 s to T ' 0.17 s there is an increase in total
energy. At T ' 0.17 s there is a significant change in the profile and the total energy
is decreasing. At T = 0.00 s the first set of waves enter the pipe sections. Relative
to the local axis at the junctions, two pipe sections have boundary conditions with
negative flow velocity, one pipe section has positive boundary velocity. As seen in
Figure 3c, this implies energy production for a network model having pressure as
coupling constant. At T ' 0.17 s the second set of waves enter the pipe sections.
In this set, the flow velocities are of opposite sign compared to the first set. Thus,
two pipe sections have boundary conditions with positive flow velocity, one pipe
section has negative boundary velocity. For the selected coupling constant this
implies energy dissipation at the junctions, which explains the significant change
from increasing to decreasing total energy seen in Figure 9.

5.2. Simulations on an open network. An open network consisting of 16 pipe
sections and eight junctions is connected to an unlimited source as shown in Fig-
ure 10. Each section is 50 m long and is initially filled with stagnant fluid at a
pressure of 1.5 bar. The grid resolution is set to ∆x = 5.0× 10−1 m, based on a
consideration of required CPU-time and the accuracy of the results. A simulation
performed with a grid of ∆x = 5.0× 10−2 m showed an insignificant change in the
simulation results reported.

The source is connected at the inlet of pipe section S1 and holds a constant
pressure of 2.0 bar. At T = 0.0 s, a membrane separating the source from the pipe
is broken, and fluid is entering pipe section S1.

At T = 10.0 s, a stationary flow through the network is established. The flow
conditions are evaluated using an integral analysis within a set of fixed boundaries.
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Figure 5. CS #1, Results at T = 0.06 s for the three different
momentum related coupling constants.

For any boundary the following holds if mass and energy is conserved:

∑

k∈Si

Akρkvk =
∑

k∈So

Akρkvk, (89)

∑

k∈Si

Akvk(Ek + pk) =
∑

k∈So

Akvk(Ek + pk), (90)

where Si and So are the sets of pipe sections with flow direction into and out of the
fixed boundary, respectively.
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Figure 6. CS #1, Energy profiles for the three different momen-
tum related coupling constants. The increase in energy for pressure
as coupling constant, H̃ = ρ, is due to unphysical energy produc-
tion in the junctions.

In our analysis we use four different boundaries, indicated as CV1 to CV4 in
Figure 10. For each boundary we calculate the deviances:

Mratio =

∑
k∈So

Akρkvk −
∑
k∈Si

Akρkvk∑
k∈Si

Akρkvk
, (91)

Eratio =

∑
k∈So

Akvk(Ek + pk)−∑k∈Si
Akvk(Ek + pk)∑

k∈Si
Akvk(Ek + pk)

, (92)

based on densities, ρk and velocities, vk that are averaged over all grid cells of each
pipe section.

First we assume that the cross-sectional areas of all pipe sections are equal. The
corresponding results are presented in Table 2. As seen, Mratio deviates from zero.
This is most probably due to minor deviations from steady state in one or more of
the pipe sections. However, the effect of energy production and dissipation at the
junctions is clearly seen from Eratio. There is a significant difference between Mratio

and Eratio for the boundaries CV1, CV2 and CV3 for pressure and momentum flux
as coupling constant. In the case of pressure as constant, there is energy dissipation
at the junctions J1 to J7. In the case of momentum flux as constant, energy is
produced in the same junctions.

Looking at the last boundary, CV4, we observe that the two deviances Mratio and
Eratio are approximately equal for all three momentum related coupling constants.
At this boundary the mass balance (89), the symmetry property of the momentum
related coupling constant (31) and the application of the coupling constant (6) on
loss-less pipe flow result in the following set of equations:

A1v1ρ1 = A16v16ρ16, (93)

H(ρ1, v1) = H(ρ16, v16). (94)

Due to the symmetry property of the coupling constant, the solution to this set of
equations is identical to the solution to the Equations (29) and (30) found for the
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Figure 7. CS #2, Results at T = 0.06 s for the three different
momentum related coupling constants.

test case of a standard Riemann problem. Hence, for the CV4 boundary, the three
different momentum related coupling constants all yield entropic solutions.

The steady state pressure and velocity profiles for the pipe-sections are showed
in Figure 11.

Next we change the assumption of pipe sections of equal cross-sectional areas to
the following:

A16 = A1 (95)
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Figure 8. CS #2, Energy profiles for the three different momen-
tum related coupling constants. The increase in energy for momen-
tum flux as coupling constant, H̃ = ρ

(
1 +M2

)
, is due to unphys-

ical energy production in the junctions.

Mratio[%] Eratio[%]

H(ρ,M) = ρ

CV1 −0.0014 −0.47
CV2 −0.016 −0.60
CV3 −0.017 −0.63
CV4 −0.039 −0.039

H(ρ,M) = ρ(1 +M2)

CV1 −0.0015 0.46
CV2 −0.013 0.56
CV3 −0.014 0.59
CV4 −0.031 −0.030

H(ρ,M) = ln(ρ) + 1
2M

2

CV1 −0.0017 −0.0015
CV2 −0.017 −0.017
CV3 −0.019 −0.019
CV4 −0.042 −0.042

Table 2. Steady state simulation results, open network where all
pipe sections have equal cross-sectional areas.

2x+1∑

k=2x

Ak = Ax; A2x = A2x+1 for x ∈ [1, 7]. (96)

Meaning that at each junction, except J8, the cross sectional area of each of the
outgoing pipe sections is half of the cross sectional area of the ingoing pipe.

The corresponding results are shown in Table 3. For this network there is no
significant difference between the three momentum related constants and the de-
viances are negligible. An analysis on a junction connecting three pipe sections,
similarly as in [22], shows why.

Junction J1 with the connected pipe sections S1, S2 and S3 is representative
for the junctions J1 to J7. These are the junctions impacting the results for CV1
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(b) CS # 2

Figure 9. Energy profiles for the three different momentum re-
lated coupling constants. Note that only Bernoulli invariant as
momentum related coupling constant, H̃ = ln(ρ) + 1/2M2, yields a
monotonically decreasing profile, as explained in Section 5.1.2.

to CV3. Due to the symmetry in the branches of the network, the velocities in
the pipe sections S2 and S3 are equal. Observation 4 and Observation 5 shows that
network models using pressure or momentum flux as coupling constant yields energy
conservation in the junctions due to the selected cross-sectional area ratios (95)-(96).

Observation 4. A network model using pressure as momentum related coupling
constant (33) yields energy conservation in the junctions of Figure 10 for pipe sec-
tions with cross-sectional areas as described by the Equations (95) and (96).

Proof. We consider junction J1 with the connected pipe sections S1, S2 and S3.
Mass conservation at the junction (5) may be expressed as:
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Figure 10. Open system consisting of 16 pipe sections and eight
junctions. All pipe sections are modelled as straight pipes.

Mratio[-] Eratio[-]

H(ρ,M) = ρ

CV1 −3.8× 10−9 −3.8× 10−9

CV2 −6.9× 10−9 −6.6× 10−9

CV3 −2.7× 10−10 −9.2× 10−10

CV4 1.5× 10−10 −2.0× 10−10

H(ρ,M) = ρ(1 +M2)

CV1 2.3× 10−9 1.4× 10−9

CV2 −2.9× 10−9 −3.1× 10−9

CV3 7.0× 10−9 7.1× 10−9

CV4 4.7× 10−9 5.0× 10−9

H(ρ,M) = ln(ρ) + 1
2M

2

CV1 −1.8× 10−9 −1.5× 10−9

CV2 −2.1× 10−9 −1.1× 10−9

CV3 −7.1× 10−9 −5.2× 10−9

CV4 −9.4× 10−9 −6.5× 10−9

Table 3. Steady state simulation results, open network with ad-
justed pipe cross-sectional areas as defined by the Equations (95)
and (96).

3∑

k=1

Akρ
∗
kv
∗
k = H̃

3∑

k=1

Akv
∗
k = 0→

3∑

k=1

Akv
∗
k = 0 (97)

Due to symmetry in the network, A2 = A3 and v∗2 = v∗3 . Then,

v∗2 = − A1

2A2
v∗1 . (98)
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(e) Pipe section 8

Figure 11. Pressure and velocity profiles in each pipe section at
T = 10.0 s for the three different momentum related coupling con-
stants.

The entropy condition (7) becomes:

Q =

3∑

k=1

Akρ
∗
kv
∗
k

(
1

2
(v∗k)2 + a2 ln

ρ∗k
ρ0

)
= H̃

3∑

k=1

Akv
∗
k

(
1

2
(v∗k)2 + a2 ln

H̃
ρ0

)

=
H̃
2

3∑

k=1

Ak(v∗k)3,

(99)
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Q̂ =
2Q

H̃

=

3∑

k=1

Ak(v∗k)3

=A1(v∗1)3 + 2A2(v∗2)3

=A1(v∗1)3 + 2A2

(
− A1

2A2
v∗1

)3

=A1(v∗1)3

(
1− A2

1

4A2
2

)
.

(100)

From the final expression in (100) we see that energy is conserved in the junction
for v∗1 = 0 and for A2 = 1/2A1. As seen from Equation (96), the last condition for
energy conservation is fulfilled.

Observation 5. A network model using momentum flux as momentum related
coupling constant (34) yields energy conservation in the junctions of Figure 10 for
pipe sections with cross-sectional areas as described in the Equations (95) and (96).

Proof. We consider junction J1 with the connected pipe sections S1, S2 and S3.
Mass conservation at the junction (5) may be expressed as:

3∑

k=1

Akρ
∗
kv
∗
k = H̃a

3∑

k=1

Ak
M∗k

1 + (M∗k )2
= 0→

3∑

k=1

Ak
M∗k

1 + (M∗k )2
= 0 (101)

Due to symmetry in the network, A2 = A3 and v∗2 = v∗3 . Then,

M∗2
1 + (M∗2 )2

= − A1

2A2

M∗1
1 + (M∗1 )2

. (102)

The entropy condition (7) becomes:

Q =

3∑

k=1

Akρ
∗
kv
∗
k

(
1

2
(v∗k)2 + a2 ln

ρ∗k
ρ0

)

=

3∑

k=1

Ak
H̃

1 + (M∗k )2
aM∗k


1

2
(v∗k)2 + a2 ln

H̃
1+(M∗

k )2

ρ0




=a3H̃
3∑

k=1

Ak
M∗k

1 + (M∗k )2

(
(M∗k )2 − 2 ln

(
1 + (M∗k )2

)

2

)
,

(103)

Q̂ =
Q

a3H̃

=

3∑

k=1

Ak
M∗k

1 + (M∗k )2

(
(M∗k )2 − 2 ln

(
1 + (M∗k )2

)

2

)

=

3∑

k=1

Akzk(M∗k )bk(M∗k )
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=A1z1(M∗1 )b1(M∗1 ) + 2A2z2(M∗2 )b2(M∗2 )

=A1z1(M∗1 )b1(M∗1 ) + 2A2

(
− A1

2A2
z1(M∗1 )

)
b2(M∗2 )

=A1z1(M∗1 ) (b1(M∗1 )− b2(M∗2 )) .

(104)

Energy conservation, Q̂ = 0, is obtained for two different conditions; z1 = 0 and
b1(M∗1 ) = b2(M∗2 ). The first condition implies that M∗1 = 0. The second condition
is fulfilled for M∗1 = M∗2 and M∗1 = −M∗2 . In our case, the physically relevant
solution is M∗1 = −M∗2 . From Equation (102) we see that this corresponds to the
condition A1 = 2A2, which is fulfilled by Equation (96).

Observation 4 and Observation 5 show that the velocities in each of the pipe
sections are equal, if we refer to the global axis directed from the source to the
outlet of pipe section 16. This is also the situation for the network model using
Bernoulli invariant as coupling constant. Looking at the expressions for momentum
flux and Bernoulli invariant as coupling constant, Equation (34) and (35), we see
that this implies equal density, and thus equal pressure, too. For the present case
the resulting pressure is p = 1.7305 bar. The velocity is v = 43.468 m/s.

6. Summary. We investigate solutions to the generalized Riemann problem for
the isothermal Euler equations analytically and numerically. Restricted to mono-
tone coupling constants and pipe sections of equal cross-sectional area, a proof of
existence and uniqueness of such solutions was given in our previous work [22].
In the present paper we have expanded this proof to the case of pipe sections of
different cross-sectional areas.

We have also compared the solution of a network model that describes a standard
Riemann problem to the analytical solution of such a problem. The analysis lead to
two constraints on the momentum related coupling constant; it must be symmetric
in the ρv variable and monotone in the ρ variable.

A classical high-resolution Roe scheme is used to simulate the flow in each pipe
section. For the pipe-junction interfaces we have proposed a numerical method
which ensures conservation of mass at the junctions. In our implementation, bound-
ary conditions are generally managed using the ghost cell approach. At pipe-
junction interfaces the ghost cell variables are thus set equal to the boundary con-
dition predicted by the network model, U∗k. Conservation of mass at each junction
is obtained by using the upwind Godunov flux as numerical flux function at the
pipe-junction boundaries.

Numerical results are presented for two different network configurations; a closed
system consisting of three pipe sections connected at two junctions and an open
system consisting of pipe sections in a symmetrical branch-tree structure. The
results are analysed with respect to entropy consistency. That is, the evaluation is
performed by applying the entropy condition in order to determine if a solution is
physically reasonable or not. This is done in order to evaluate the three different
options for momentum related coupling constant used in the network model.

We present long-term simulation results, which show the impact of unphysical
solutions predicted by the network models. For the closed system, this is seen as
an increase in total energy at certain time intervals. For the open system, steady
state energy fluxes are used to identify energy production in junctions.

Analytical predictions of entropy consistency for junctions connecting three pipe
sections of equal cross-sectional areas were provided in [22]. Numerical results for
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such junctions, derived in the present paper, are in accordance with these predic-
tions. They show that the options of pressure and momentum flux yields unphysical
solutions for certain initial data. Only Bernoulli invariant as momentum related
coupling constant yields entropic solutions for all the presented test cases.
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