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Abstract 

The superchilling process is defined as a method of preserving food by partial ice-crystallization. The 

product quality of superchilled food is very promising, and has nearly the same sensorial attributes 

and nutritional value as the original product. However, more research is required to make the 

technology more suitable to the preservation of food. The optimal degree of superchilling and 

information on the development of the ice crystals during the superchilling process and storage are 

needed because of their large influence on the quality of the final superchilled food.  

The main objective of this thesis was modelling and studying of ice crystallization/recrystallization of 

food during the superchilling process and storage. In order to fulfil the objective the following 

research activities have been carried out: A one-dimensional model for predicting partial freezing time 

necessary to achieve an optimal degree of superchilling in foods was developed.  The degree of 

superchilling is the amount of free water frozen (5 -30%) inside the food and is among the most 

important parameters which influence the quality of superchilled product. The study of the ice 

crystallization/recrystallization of food in superchilling technology was studied based on the 

superchilling rate, and the state of food muscle. The relationship between the development of ice 

crystals in salmon and quality parameters during the superchilled storage was also studied. The final 

research activity in this thesis was to study differences in the superchilling storage methods, shell 

freezing and non- shell freezing. 

The developed model was sufficient to study the thermal behaviour of food, and had the advantage 

that it was simple, very fast and detailed enough to estimate the superchilling time and behaviour of 

food. The model was validated experimentally using salmon, and there was good agreement between 

the numerical and experimental results. Further study to quantify the model using other food products 

is recommended. 

The characteristics of ice crystals have a large influence on the quality of the final superchilled food. 

At a high superchilling rate (227 W/m
2
.K, -30 ℃ and 2.1 min), smaller and well distributed ice 

crystals within and outside the cell were formed compared to a slow superchilling rate (153 W/m
2
.K, -

20 ℃ and 4.2 min), where larger and extra-cellular ice crystals were formed. The state of muscle also 

has an influence on the characteristics of ice crystals. In pre-rigor muscle, the ice crystals were formed 

inside the cells regardless of the superchilling rate. However, at a slow superchilling rate the ice 

crystal size was larger than at a high superchilling rate. The formation of the ice crystals inside the 

cells, regardless of the superchilling rates, is the most important factor for reducing the damage of 

food muscles and hence maintaining the quality.  
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New information was discovered in this work on the development of ice crystals during the 

superchilling process and storage of salmon. There was a significant increase in ice crystal size 

between the superchilling process (day 0) and superchilled storage (after 1 day of storage). The ice 

crystals formed in the surface layer were 4 times larger after only 1 day of storage than those formed 

at day 0. Prior to temperature equalisation, ice crystals growth progressed from the surface to the 

centre of the superchilled food. Different layers with different sizes of ice crystals within the 

superchilled salmon were also observed. This was due to thermal behaviour within the superchilled 

sample, and because we have both ice at the surface and water at the centre, the diffusion process 

should occur. The recrystallization at this time (between day 0 and 1) is unavoidable however, after 

temperature equalization (after 1 day of storage) and control of temperature during storage there was 

no significant growth of ice crystals for the entire storage time.  

The development of ice crystals in red salmon muscle was also studied during the superchilling 

process and storage. The size of the ice crystals formed in the red salmon muscle was smaller than 

those formed in the white salmon muscle. In addition, the ice crystals formed in the pre-rigor red 

muscle was smaller than that formed in the post-rigor red salmon muscle. These findings are 

significant for the industry because small ice crystals indicate better quality. 

Quality changes have been studied with a focus on physical measurements, water holding capacity 

(WHC) and drip loss. The disappearance of liquid water is a major factor affecting the protein 

changes during superchilled storage. It was observed that the drip loss was lower in superchilled 

salmon compared to conventional chilled salmon, and frozen salmon between 1 and 14 days of 

storage. No significant differences were found in WHC and drip loss between 1 and 14 days of 

storage in superchilled salmon. 

The two superchilling storage methods showed differences in the development of ice crystals within 

the superchilled salmon. In non-shell frozen samples, the ice crystals were mainly formed in the 

extracellular spaces. Fine and well distributed ice crystals were formed in both the intracellular and 

extracellular spaces in shell frozen samples. 

Generally, the results found in this study have given more information in the superchilling area. The 

developed model which can be scaled-up to the industrial level, together with information on the 

development of the ice crystals, which has a large influence on the quality of the final superchilled 

food are useful for the industry in estimating the refrigeration requirements for a superchilling system 

and designing the necessary equipment. In addition, the quality study revealed that the superchilling is 

practicable if the product is partially freezing fast, with an optimal degree of superchilling (5 - 30 %), 

good packaging and a strict control of the temperature during superchilled storage. 
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Preface 

This thesis is submitted in partial fulfilment of the requirements for the degree of Doctor of 

Philosophy (PhD) at Norwegian University of Science and Technology (NTNU). The work was 

carried out at the Department of Energy and Process Engineering from March 2010 – February 

2014.The work was supervised by Professor Trygve Magne Eikevik and co-supervised by Professor 

Turid Rustad. 

The PhD study was funded by NTNU and the Research Council of Norway through the project 

Competitive Food Processing in Norway (RCN project number: 178280). The study developed a 

model which predicts the partial freezing time (time spent in the freezers) necessary to achieve an 

optimal degree of superchilling in food. The characteristics of ice crystals during the superchilling 

process and storage were also studied. The degree of superchilling and characteristics of ice crystals 

are very important parameters because of their strong influence on the quality of the final superchilled 

food. The study concluded that the superchilling is a method for preserving the freshness and high 

quality of food. In order to fulfil with the demand for short processing times, a technique for 

quick/fast shell freezing food products which result in better production yields, improved product 

quality and a longer shelf life is required. Good packaging and a strict control of temperature 

throughout the cold chain is important. 
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Chapter 1 

Introduction 

1.1. Background 

Superchilling is a technology used to preserve the freshness and high quality of food by partial 

crystallization. The technology was described as early as 1920 by Le Danois. Various 

definitions have been used to describe the process ‘superchilling’, ‘deep-chilling’ light freezing, 

supercooling or ‘partial ice formation’ (Einarsson, 1988). The main aim is to extend the shelf 

life of foods compared to conventional chilling and to maintain quality and freshness of foods. 

Today the volume and value of fresh, refrigerated foods is increasing along, with the flow of 

these products between countries, and superchilling appears to be a better mode for their 

preservation. This has increased the interest of the food processing companies and research 

institutes based on the research in the superchilling technology. However, most of these studies 

have focused on the chemical, microbiology and physical analyses of foods in superchilling. 

Nevertheless, successful implementation of superchilling in the food industry will depend on an 

efficient method for defining the optimal degree of superchilling. The current method to 

measure the degree of superchilling is calorimeter, which is labour-intensive and time-

consuming (Ottestad et al., 2009; Stevik et al., 2010). To ensure that superchilling achieves its 

objectives, there is a need to establish a tool which is better, quick and more efficient to define 

the degree of superchilling in foods. In addition, information, on the development of ice crystals 

during the superchilling process and storage, and to control temperature during 

storage/distribution, is needed. Therefore, this work focuses on the modelling and ice 

crystallization/recrystallization of food products in superchilling technology. There is a need to 

develop a tool for predicting the partial freezing time necessary to achieve the optimal degree of 

superchilling in food products which will increase shelf life, and maintain quality of food 

products. The characteristics of ice crystals (crystallization/recrystallization) which have a large 

influence on the quality of final superchilled food should be investigated. On the other hand, the 

temperature should be stable enough to avoid significant levels of ice crystal growth that can 

cause structural damage during the storage of the superchilled product.  

1.2. Status of knowledge 

The first reference concerning industry interest in the commercial use of the superchilling 

storage of food products appeared in the trade journal fishing Gazette 1935 (Carlson, 1969). The 
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method has been used aboard a number of Portuguese trawlers working in the warmer parts of 

the Atlantic, and has also been tried on a German vessel (Waterman and Taylor, 2001). The past 

10 – 15 years, superchilling technology has increased significantly and many advantages of 

using superchilling to preserve food products have been shown (Kaale et al., 2011).  On the 

negative side of superchilling, the main concern is the formation and growth of ice crystals 

(Einarsson, 1988). However, the structural changes due to ice crystal formation at sub-zero 

temperature storage appear to be minor compared to those occurring during freezing at -20℃ 

(Einarsson, 1988). It has also been reported that, in order to avoid the influence of low quality in 

the superchilled food, it is necessary to have the degree of superchilling between 5% and 30% 

inside the products and that the degree of superchilling larger than 30% inside the product will 

result in low quality of the food (Stevik and Claussen, 2011). In this study, 20 % has been used. 

Ronsivalli and Baker (1981) also report that the superchilling process is effective and practical, 

provided that the temperature does not fall below the point where freezing is discernible (i.e. -

2℃). This was the recommendation which derived from research teams from England and later 

by teams from Canada, The Federal Republic of Germany, and the United states (Ronsivalli and 

Baker, 1981). However, at this temperature (-2℃), ice crystals will still form since the initial 

freezing points of most foods are between -0.5℃ and -2.8℃. Therefore, there is a need to 

analyse the ice crystals during the superchilling process and storage, in order to understand the 

mechanism of ice crystals in superchilled food because this will give suitable information on the 

characteristics of ice crystal. Thus, the control of temperature during superchilling, the optimal 

degree of superchilling, and hence the information on the development of ice crystals, are all 

essential if the damaging effects during storage are to be avoided. 

1.3. Aims of the study 

A lot of studies have been done on superchilling. Most of these studies have focused on product 

quality and shelf life. The main feedback from those studies is, superchilling method extends 

the shelf life of foods compared to the traditional chilling and maintains high quality foods. 

Nevertheless, the superchilling temperatures are low enough to significantly suppress microbial 

activity but other chemical and physical changes may take place and in some cases even 

accelerate. Therefore, more research is required to study the factors which may influence on 

these changes such as degree of superchilling and characteristics of ice crystals. The information 

on the development of ice crystals during the superchilling process and superchilled storage and 

the optimal degree of superchilling are useful because of their strong influence on the quality of 

the final superchilled food. To date, there is no quick and better way for defining the degree of 
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superchilling in food. In addition, there is limited information on the development of ice crystals 

during the superchilling process and following storage. 

Therefore, the main objective of this thesis was the modelling and studying of ice 

crystallization/recrystallization of food during the superchilling process and storage. In order to 

fulfil the objective the following research activities have been carried out: 

1. A one-dimensional model for predicting partial freezing time necessary to achieve an 

optimal degree of superchilling in foods (salmon was used in this study) was developed. 

The model was validated experimentally using salmon. 

2. The study of the ice crystallization/recrystallization (characteristics of ice crystals) of 

food in superchilling technology was studied based on the superchilling rate (small 

verses high), and the state of food muscle (pre – and post – rigor) which are important 

parameters for determining the characteristics of ice crystals. The characteristics of ice 

crystals were further studied by comparing the ice crystals formed in the red and white 

muscles of salmon. 

3. Packaging is also an important parameter to consider during superchilled storage 

because it defines the shelf life and maintains the quality of the final superchilled food. 

Therefore, the comparison study between vacuum and air-packed salmon was carried 

out.   

4. The relationship between the development of ice crystals in salmon and quality 

parameters during the superchilled storage was also studied. Quality changes have been 

studied with a focus on physical measurements, water holding capacity (WHC) and drip 

loss.  

5. The final activity in this thesis was to study differences in the superchilling storage 

methods, shell freezing (i.e. initial surface freezing of salmon and the followed storage 

at superchilling temperature) and non- shell freezing (i.e. storage of salmon at 

superchilling temperature without initial surface freezing/shell freezing) in order to 

understand the effect of ice crystal development in salmon muscle during superchilled 

storage. 
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Chapter 2 

2. The modelling and simulation of a food product in superchilling 

process 

The main task in modelling a food product is to develop a set of simultaneous equations which 

represent heat conduction within the product, boundary conditions, and the initial condition 

(Cleland, 1990), while programming is to keep track of the average degree of superchilling 

(frozen water) during all stages of the product handling.  

During the superchilling process a thin frozen layer of about 1 - 3 mm is formed on the surface 

of food depending on the superchilling rate and thickness of the product. This section focuses 

on developing a model for predicting/estimating the partial freezing time necessary to achieve 

an optimal degree of superchilling in food. The partial freezing time can be predicted using 

numerical solutions of the heat transfer equations. The advantage of numerical methods is that 

the effects of phase change over a range of temperatures, changing thermal properties and the 

heterogeneity of food products can be considered (Resende et al. 2007; Zuritz and Singh, 1989). 

If numerical methods are formulated and implemented correctly to reduce truncation and 

rounding errors, they are generally considered the most accurate, reliable and versatile 

superchilling process prediction methods. For realistic and thus more complicated heat transfer 

problems usually no analytic solution is available, and a numerical solution becomes mandatory 

(Abbas et al. 2004; Kreith et al. 2003). These numerical methods are capable of handling any 

type of boundary condition and product geometry. 

2.1. Numerical methods 

In the numerical solution of heat conduction problems with phase change by finite differences, 

enthalpy methods or temperature methods can be used (Pham, 1985). The heat diffusion 

equation can be expressed in the following two ways (Pham, 1985; Delgado and Sun, 2001; 

Lind, 1991) 
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The equation 2.1 uses temperature as the only dependent variable, while the equation 2.2 

represents the enthalpy methods, which have two dependent variables, enthalpy being the 

primary, and temperature the secondary variable. The enthalpy method requires either an 

explicit technique, with the consequent problem of convergence, or implicit procedures in which 

iteration at each time step is used, consuming more computational time. However, to avoid the 

need for iteration, Pham (1985) proposed the ‘temperature-enthalpy correction method’, a 

hybrid temperature-enthalpy method. At each time step, the conduction equation is solved by an 

implicit method in the usual manner. Moreover, the enthalpy method has more advantage, the 

change in the relative enthalpy content of the product, ∆H, during thawing and freezing is 

continuous with temperature (Lind, 1991). On the other hand, the temperature method, the latent 

heat is represented by a large but finite wide peak of the curve Cp vs. T. The peak in the C(T) 

curve is narrow (Figure 1), so if the temperature change per time step is too large, a nodal 

temperature may ‘jump’ past the freezing temperature range in one step, resulting in the latent 

heat being ignored [since Cp(T) never takes the peak value] (Cleland, 1990; Pham, 1985). 

  

 

Figure 2.1: Specific heat capacity curve against temperature 

This possibility can be checked by on-going heat balance in the calculation, or within a finite 

difference where the computer program should be regarded as an obligatory checking procedure 

(Cleland, 1990).  Poor heat balances are avoided by the selection of smaller ∆t, but this makes 
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computation times longer. However, several authors have used temperature method and shown 

good results (Hughes and Charng, 1983; Resende et al., 2007; Wang et al., 2007).  

2.1.1. Explicit and implicit scheme 

The model used in this study is a simple finite difference method adapted to handle the 

nonlinear physical properties. The model is implemented in the MATLAB, and has been tried 

with the built-in ordinary differential equation ODE-solvers with various successes. There are 

generally two approaches for time integration: explicit and implicit scheme. Our study used the 

implicit scheme. The explicit scheme is easy to apply but may be computationally demanding 

due to stability restrictions on the choice of time step. The implicit time integration scheme on 

the other hand, has no time step restrictions. The success in applying implicit schemes is based 

on maintaining accuracy in the results, while at the same time avoiding excessive iterations in 

the solutions of the resulting nonlinear algebraic equations (Swaminathan and Voller, 1992). It 

seems that in spite of a large time increment, the computational efficiency of the implicit 

methods is not better than that of the explicit methods (Tavakoli and Davami, 2007). However, 

the study of (Swaminathan and Voller, 1992) explains well the advantage of using implicit 

scheme. This article is known as one of the basic and excellent references in the category of 

phase-change problems. In this article, the authors present a general implicit enthalpy method 

that has significant efficiency in comparison with other implicit methods. The authors 

concluded that the results of the explicit and implicit methods are in close agreement.  

Implicit methods are generally harder to implement than explicit methods, but they have much 

better stability properties. In addition, for transient problems with one-dimension, the 

computational effort per time step for the implicit scheme is not a big problem (Recktenwald, 

2011). For transient problems with two or three dimensions, however, the computational effort 

per time step for an implicit scheme is much greater than the computational effort per time step 

of an explicit scheme. Nevertheless, the superior stability of the implicit scheme usually 

provides an overall computational advantage (Clavier et al., 1994; Idelson et al., 1994; Knoll et 

al., 1999; Muhieddine et al., 2009; Recktenwald, 2011; Tavakoli and Davami, 2007; Trefethen, 

1994; Voller, 1987, Swaminathan and Voller, 1992).  

Eq. (2.3a to 3e) is a model of the transient heat conduction in a slab of material with thickness L 

and boundary conditions. The heat transfer equations below were adapted to develop the model 

in this study. 



7 

 

 

 

 

 (2.3a) 

 

 

 
 (2.3b) 

  

 

  (2.3c) 

 = 0 

 

  (2.3d) 

   (2.3e) 

 

The core element of the model can be visualized as an electrical analogy, with heat storage as 

the capacitors and conduction as the resistors (Figure 2.1). It assumes that the thermal properties 

are isotropic within each element. The node temperature is assumed to be in the centre. The 

model is composed as a row of directly connected elements. Connecting the elements ends in a 

final electrical analogy for the systems (Figure 2.2), generalized for a specific element. The 

surface boundary element is similar, but Ri+Ri-1 includes the surface heat transfer coefficient. 

For the internal boundary element, Rr, N is totally removed. 

 

 

     

(2.4) 

Where 

 

Eq.(2.4) may be expressed as:  

 (2.5) 

The coefficients of  designates a(i), b(i), and c(i), respectively 

form a tridiagonal matrix with diagonal vectors a, b, and c where 
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The right-hand side of Eq.(2.5) the global forcing matrix containing known terms arising from 

heat generation, and boundary conditions (Pham, 2006) is designated as the vector d, where 

 (Hughes and Charng, 1983). In conventional thermal food processes the heat 

generation Q is zero, (Nicolaı¨, et al., 2000). 

 

 

Figure 2.2: The mesh of time and space intervals and thermal resistance connected in series 

during implicit finite difference solution. 
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2.1.2. Error estimation of the numerical solutions 

Error estimation of the numerical solutions for this kind of empirical nonlinear equations has 

not been studied in detail. Instead, the model was tried on a specific sample, and a typical 

superchilling scenario with different resolution in space and time. The simulation model is 

based on symmetry and models the sample from the centre to the surface. The number of nodes 

is 50, and all the thermal properties are available in the simulation input. The ice fraction, 

temperature and the enthalpy are averaged over the total sample and are the most useful output. 
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Chapter 3 

 3. Ice crystallization in food at superchilling  

In this study, the superchilling technology is divided in two parts, the superchilling process 

(initial surface freezing) and superchilled storage. The superchilling process consists of two 

stages; cooling the product to its freezing point (pre-cooling or chilling stage) and removing the 

latent heat of crystallization (phase transition stage) whereby about 5–30% of the free water is 

frozen inside the food products. These stages are achieved at the surface of the food products, to 

a depth of 1-3 mm, depending on the degree of superchilling required, superchilling rate and the 

thickness of food. The ice crystallization of water occurs during the phase transition part of the 

superchilling process and is the key step determining the efficiency of the process (Kiani and 

Sun, 2011; Kiani et al., 2011). During the phase transition stage, water will undergo the stage of 

ice nucleation, followed by the growth of ice (Liu and Du, 2004), which are important stages for 

the crystallization process.  

Crystallization is a process whereby a crystalline phase is created as a consequence of molecular 

aggregation in a solution, leading to the formation of nuclei and later, crystal growth (Delgado 

and Sun, 2012). The quality of superchilled food is mainly related to the properties of the ice 

crystals, such as size, location (i.e. extracellular and intracellular) and morphology during the 

superchilling process (Alizadeh et al., 2009; Martino and Zaritzky, 1986; Martino et al., 1998; 

Petzold, and Aguilera, 2009). The interaction between the nucleation and crystal growth, which 

are the main processes in crystallization, determines these characteristics of ice crystals 

(DeMan, 1999; Kiani et al., 2011; Kiani and Sun, 2011).  

 3.1. Nucleation and crystal growth 

The effects of superchilling process conditions on the quality of superchilled food are often 

related to the characteristics of ice crystals. The primary factor affecting the characteristics of 

the ice crystals immediately after the superchilling process is the rate of nucleation (Roos, 

2012). This is useful information that allows the control of the ice crystal’s size and ultimately, 

in cellular food, the formation of extracellular and intracellular water. 

Nucleation is the combining of molecules into ordered particles of a size sufficient to survive 

and serve as a site for crystal growth (Cubillas and Anderson, 2010; Einarsson, 1988). 

Nucleation is the start of the crystallization process, and involves the birth of a new crystal 

(Schwartz and Myerson, 2002).  There are two types of nucleation; primary nucleation and 



11 

 

secondary nucleation. Primary nucleation involves the formation of a crystal in a solution 

containing no existing crystals (Delgado and Sun, 2012; Chow et al., 2005). The classical theory 

of primary nucleation defines the total work W = Ws+Wv, required to create a nucleus as the 

sum of the work required to form a surface, Ws, and the work required to form the bulk of the 

particle, Wv (Kiani and Sun, 2011). Secondary nucleation involves the production of new 

crystals in a solution containing pre-existing crystals, and it can occur either by the crystals 

acting as templates for a new crystal’s nuclei to be formed or by the crystals fragmenting to 

produce more nucleation sites (Delgado and Sun, 2012; Chow et al., 2005).  

 Nucleation can be homogeneous, in the absence of foreign particles or crystals in the solution, 

or heterogeneous, in the presence of foreign particles in the solution (Cubillas and Anderson, 

2010). Homogeneous nucleation happens only in pure water, in the absence of any foreign 

material, at a homogeneous nucleation temperature of about -40 ℃ (Pham, 2012; Roos, 2012). 

Homogeneous is unlikely in a food system as (1) the cell walls and polymeric components 

provide surfaces for nucleation; (2) dissolved substances cause depression of the chemical 

potential of water and the freezing temperature; and (3) foods contain impurities that enhance 

nucleation (Roos, 2012). Heterogeneous nucleation is therefore the prevailing mechanism in 

food partial freezing (Pham, 2012; Roos, 2012). Nucleation conditions are of fundamental 

importance in the control of the superchilling process and storage of superchilled food 

properties. The main property of the partial frozen materials affected by the superchilling rate is 

the size of the ice crystals, which can be explained by the effects of supercooling, on the rate of 

nucleation and crystal growth (DeMan, 1999; Roos, 2012). Supercooling (the difference 

between the actual temperature of the sample and the expected solid-liquid equilibrium 

temperature at a given pressure) is the driving force for ice nucleation and is an important 

parameter that controls the size and number of ice crystals formed (Mittal and Griffiths, 2005). 

This is because a high level of supercooling increases the rate of nucleation and the number of 

nuclei can then grow to a large number of small ice crystals. Consequently, the cells maintain 

their integrity, which in turn minimises the drip loss during thawing (Pham, 2012; Smith, 2011). 

At low levels of supercooling, the rate of nucleation is low while there is a high rate of crystal 

growth. This allows a small number of nuclei to grow and form a small number of large ice 

crystals (DeMan, 1999; Roos, 2012).  

Crystal growth, in contrast to nucleation, occurs readily at temperatures close to the freezing 

point (DeMan, 1999). The two important mechanisms in crystal growth are the diffusion of 

molecules from bulk to the crystal surface and surface integration, that is, the incorporation of a 
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growth unit into a lattice (Delgado and Sun, 2012). In superchilled food only 5 to 30 % of the 

water is in a solid state. The size and location of the ice crystals is vital to the quality of the 

superchilled food (Einarsson, 1988), particularly for the surface layer which is totally frozen. 

3.2. Methods for the evaluation of ice crystals  

This section addresses the methods of evaluating the ice crystals during the superchilling 

process and storage. The evaluation of ice crystals’ properties can be done using direct or 

indirect methods (Nurzahida et al., 2010). Russell et al. (1999) and Evans et al. (1996) have 

used direct method to view frozen specimens on a microscope cryostage (cryo-scanning electron 

microscope) and confocal laser scanning miscopy, respectively. 

For the indirect method, the evaluation of ice crystals in the partially frozen food products can 

be carried out after thawing the sample; or freeze drying or using a freeze substitution before 

observation (Kiani and Sun, 2011). Nurzahida et al. (2010) used the freeze drying method to 

study the spaces left by the ice crystals. Histological evaluations have also been among the 

methods employed for the evaluation of ice crystal characteristics and the damages to the tissue 

(Kiani and Sun, 2011).  Freeze substitution (Alizadeh et al., 2007; Feder and Sidman, 1958; 

Martino and Zaritzky, 1988) and freeze fixation (Miyawaki et al., 1992) has also been reported. 

Freeze substitution was described as an excellent method of preparing tissue for study in the 

microscope (Feder and Sidman, 1958). It is a convenient method for generating high quality 

histological material and with only minimal denaturation (Knight, 2009). It is compatible with 

the use of wax sectioning; it is also more convenient than cryo-fixation (Knight, 2009). Freeze-

substitution is based on solution substitution of ice at temperatures well below 0 ℃ (Feder and 

Sidman, 1958; Kiani and Sun, 2011).  

In this study a freeze-substitution method was implemented. Freeze-substitution is based on the 

freezing/partial freeze of the tissue and then the ice within the tissue is slowly dissolved in polar 

solutions capable of substituting for ice, such as ethanol or acetone. The main purpose for doing 

this is to fix the ice crystal and preserve the structural integrity of a specimen so that it can be 

viewed microscopically. The entire process is called fixation. There are many methods of 

sectioning tissues such as the agar, gelatin or wax methods. The most widely used is the paraffin 

method. For the case of paraffin, which is also used in this study, all samples must pass through 

different procedures i.e. dehydration, infiltration and embedding in paraffin, sectioning with a 

microtome, mounting on microscope slides, clearing and staining and preparation of permanent 

mounts,  before microscopical examination. The detailed method is explained in papers III, IV, 

V, VI and VII. 
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3.3. Factors affecting quality of the superchilled products during storage 

The quality of superchilled food depends on many factors such as the superchilling process, 

packaging, storage temperature and quality of the raw material. The raw material quality is 

important, and this quality must be preserved during processing and storage (Blond and Meste, 

2004; Margeirsson et al., 2011; 2012). There is no single universal rule governing superchilled 

food preservation; just as with optimal superchilling rates, which vary from product to product, 

the storage time depends not only on the temperature but also on the type of product and 

packaging (Blond and Meste, 2004). Moreover, it is well known that superchilled foods stored 

at fluctuating temperatures have not the same quality as products stored at constant 

temperatures. In order to ensure product quality, temperature control is necessary throughout the 

cold chain, and the required temperature must be maintained during distribution or storage. 

Magnussen et al. (2008) reported that a typical accuracy of ± 0.5 ℃ gives poor feedback from 

product to process. While accurate temperature measurements less than ± 0.5 ℃ can be carried 

out under laboratory conditions, one cannot expect to improve on an accuracy of less than ±0.5 

℃ under industrial conditions. A temperature fluctuation≤0.3 ℃ was proved to have no 

influence on the growth of ice crystal size during the superchilled storage of salmon fillets 

(Kaale et al., 2013c; 2014) which also resulted in the good quality of the superchilled fillets, 

based on the physical measurement done in this study. 

Temperature fluctuation during superchilled storage can result in recrystallization, which is an 

important factor affecting superchilled food quality during storage.  Recrystallization is a 

temperature-dependent process, which is enhanced by temperature fluctuations (Roos, 1995). 

Small ice crystals are thermodynamically unstable, having a high surface–volume ratio and 

therefore a high excess of surface free energy (Alizadeh et al., 2007; Russell et al., 1999; 

Shenouda, 1980; Zaritzky, 2012). Recrystallization basically involves the small crystals 

disappearing, large crystals growing, and crystals fusing together, and affects the quality of the 

products because small ice crystals indicate better quality while large crystals often produce 

damage during partial freezing (Kaale et al 2013b; Pham and Mawson, 1997; Roos, 1995; 

Zaritzky, 2012). The principal mechanisms of recrystallization in partial frozen foods are the 

iso-mass, migratory and accretive.  

Surface iso-mass recrystallization: refers to a change in the crystal structure, which occurs as 

a crystal enters a lower energy level maintaining a constant mass of ice with surroundings 

(Blond and Meste, 2004; Roos, 1995; Zaritzky, 2012). Migratory recrystallization: is the 

result of differences in the surface energies of large and small crystals. Small ice crystals 
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disappear as large ones grow, as a result of the difference in their melting points, small crystals 

melt, and the melted water recrystallizes on larger crystals. The number of crystals decreases 

with time and their mean size increases with time (Blond and Meste, 2004; Karel and Lund, 

2005; Roos, 1995; Zaritzky, 2012). 

Accretive recrystallization: This is the joining together of two ice crystals, increasing the 

crystal size and decreasing the number of crystals and the surface energy of the crystalline 

phase. The phenomenon again leads to increased stress and irreversible damage to tissues, and 

hence increased drip loss and textural changes (Archer and Kennedy, 1998; Blond and Meste, 

2004; Zaritzky, 2012).  

3.4. Control of recrystallization during storage of superchilled products 

Knowledge of the crystallization mechanisms and effects of temperature and time on the 

physical state can be used to control ice formation and recrystallization in partially frozen foods 

(Roos, 1995). There are four strategies for the control of ice crystals in foods; inhibition of 

nucleation, control of nucleation, exploitation of the glassy state and control of ice crystal 

growth (Roos, 1995). The nucleation of ice in food materials can be inhibited by the addition of 

large amounts of osmotically active materials such as sugars. Then, the unfrozen state together 

with a low temperature reduces the rates of chemical and physical changes, but the detrimental 

effects of partial freezing and partial freezing-concentration can be avoided (Roos, 1995). The 

control of nucleation can be achieved by employing a high rate of superchilling to produce a 

large number of small ice crystals while a low rate of superchilling will produce large ice 

crystals. The control of the ice nucleation, crystal growth, and ice recrystallization by the 

exploitation of the glassy state is based on the rate-controlling effect of the Tg without added 

compounds. The control of ice crystal growth uses anti-freezing agents such as salt or anti-

freeze proteins. The possibility of using anti-freeze proteins, a technology which has been 

studied extensively for nearly 30 years with research focusing on their structures, function and 

mechanisms of action (Feeney and Yeh, 1998), could be one way of doing superchilling. Anti-

freeze proteins have the ability to influence ice growth by interacting directly with the ice 

surface (Wang and Sun, 2012). Antifreeze proteins lower the freezing point of water, but not the 

melting point, by a specific non-colligative mechanism termed adsorption inhibition (Feeney 

and Yeh, 1998; Payne et al. 1994). These antifreeze proteins are able to inhibit ice crystal 

growth and reduce recrystallization (Mishra et al. 2010; Payne et al. 1994; Wang and Sun, 

2012). These proteins are able to inhibit ice crystallisation both at low concentrations and high 

concentrations; they are able to completely inhibit ice crystal formation over a temperature 
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range, which is dependent on the AFPs themselves. This protection however is not complete, 

and ice crystal growth will still increase under severe temperature abuse, though less rapidly 

than without AFP (Mishra et al. 2010; Payne et al. 1994; Wang and Sun, 2012). Their ability to 

inhibit ice recrystallization has been shown to reduce the cellular damage in meat and inhibit the 

appearance of ice crystals in frozen food such as ice cream (Wang and Sun, 2012).  

The freezing point of food can also be lowered by using salt. James et al. (2005) reported that 

the freezing point of cured meat was lowered using salts. The initial freezing points were -1.4, -

3.1, -4.1, -5.2 and -6.3 at salt contents of 0.5, 2, 3, 4 and 5 kg salt/100 kg sample respectively 

(James et al., 2005). 

The control of nucleation has been done in this study (paper III, IV and VII), and was proved 

to give small and well distributed ice crystals when a high superchilling rate was applied, 

compared to a slow superchilling rate where most of the ice crystals were formed in the 

extracellular space of post-rigor salmon muscle. However, this is possible only during the 

superchilling process (initial surface freezing). During superchilled storage (inner layer or centre 

layer) using control of the nucleation is not possible and other methods like using the anti-

freezing agents such as anti-freeze proteins have to be tested. Therefore, in the future, it is 

recommended to test these methods to see if they will help prevent recrystallisation during 

storage of the superchilled products, particularly during the first day of storage where 

recrystallization is unavoidable. 
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Chapter 4 

Summary of the papers 

4.1 Paper I  

Title: Superchilling of food: A review  

This paper represents an overview of the recent work within the superchilling area. The review 

summarises the quality and shelf life of superchilled foods and the numerous benefits of 

applying superchilling process to food products were found. This article concluded that it is 

necessary to develop a tool which can define an optimal degree of superchilling immediately 

after the superchilling process. It is also concluded that information on the development of ice 

crystals during the superchilling process and storage is required. 

4.2 Paper II 

Title: Modelling and simulation of food products in superchilling  

A new development to determine the degree of superchilling immediately after the superchilling 

process should be established in order to avoid a negative impact on the quality of the 

superchilled product. Modelling/simulation is an important tool on predicting degree of 

superchilling because it is cheaper and easier to implement.   

This paper presents the modelling and simulation of salmon in the superchilling process. A one-

dimensional model for predicting/estimating the partial freezing time (time spent in the freezers) 

necessary to achieve an optimal degree of superchilling in food products was developed. A 

finite differential numerical method under implicit time integration was used. The model was 

validated experimentally using the calorimetric method, temperature measurement and histology 

method. Although the results show a good level of agreement between the numerical simulation 

and the experimental results using salmon, tremendous efforts are needed to further quantify the 

model using other products and degree of superchilling (i.e. 5, 10 and 30 %).  

4.3 Paper III 

Title: The effect of cooling rates on the ice crystal growth in air-packed salmon fillets during 

superchilling and superchilled storage.  
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Paper III addresses the development of ice crystals in salmon muscle during the superchilling 

process and storage. It also illustrates the effect of the superchilling rate on the ice crystal 

formation in salmon muscle. The samples partially frozen at slow superchilling rates contained 

large and extracellular ice crystals during the superchilling process (partial freezing) and 

following storage of the superchilled salmon, while the samples that were partially frozen at fast 

rates had smaller and finely distributed ice crystals.  

A significant difference between the size of ice crystals formed during the superchilling process 

and superchilled storage was observed. The study also discovered different layers with different 

sizes of ice crystals within the superchilled salmon. This was due to temperature fluctuations 

and thermal conditions inside the superchilled salmon. 

4.4 Paper IV 

Title: Ice crystal development in pre-rigor Atlantic salmon fillets during the superchilling 

process and following storage. 

Paper IV reports on the development of ice crystals in pre-rigor salmon muscle. The availability 

of high quality product to the market relies on early processing. The consumers prefer fresh 

foods, but the most important issue is a product with a good nutritional value. Therefore, this 

paper also addresses the effects of both the rapid, and slow partial freezing of pre-rigor salmon 

fillets on the development of ice crystals during the superchilling process and storage.   

Differences in the size of the ice crystals formed at slow and high rates of superchilling were 

found. It is clearly shown that during rapid superchilling, a large number of smaller ice crystals 

were formed within the cell. Nevertheless, during the slow superchilling of pre-rigor salmon 

muscles, the ice crystals were formed inside the cells. However, a small number of large ice 

crystals were observed compared to those in rapid superchilling. The formation of the ice 

crystals inside the cells, regardless of the superchilling rate, is still very important for the quality 

of superchilled products. It was also observed that there was no significant difference between 

the sizes of the ice crystals formed in pre-rigor compared to those formed in post-rigor. The 

results revealed that the location, size and distribution of ice crystals in muscle tissue are the 

functions of the superchilling rate (slow verses high), the state of the muscle tissue (pre - and 

post - rigor muscle) and the final temperature of the process.  
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4.5 Paper V  

Title: A study of the ice crystals in vacuum-packed salmon fillets (Salmon salar) during the 

superchilling process and following storage. 

The results in this paper present the importance of packaging as well as explaining the effect of 

thermal gradient and temperature fluctuation on the development of ice crystals during the 

superchilling process and storage. Paper III also addresses the same information on the 

development of ice crystals, which results in to different layers with different sizes of ice 

crystals. However, in paper III only two layers (surface and mid centre layers) were analysed, 

while in this study (paper V), the ice crystals were analysed in three different layers (surface, 

mid centre and centre).  

Three different layers with different sizes of ice crystals were observed. The work showed how 

the ice crystals progressed from the surface to the centre immediately after the superchilling 

process and developed different layers within the superchilled salmon muscles. The previous 

work (paper III) white/brown coloured spots (i.e. freezer burn) were observed in some of the 

samples during storage. It was also not possible to analyse the samples on day 28 due to the 

spoiled odour, which may have been caused by oxidation or microbial growth. The samples 

were stored in the normal plastic bags (air packed) which might be one of the reasons. In the 

present study, paper V (vacuum packed), the samples did not exhibit any concerning features 

related to freezer burn or spoilage for the entire storage time.  

4.6 Paper VI  

Title: A histological study of the microstructure sizes of the red and white muscles of Atlantic 

salmon (Salmo Salar) fillets during superchilling process and storage. 

This paper presents the ice crystallization/recrystallization in the post-rigor red salmon muscle 

during the superchilling process and storage. There was also a significant difference between the 

sizes of the ice crystals formed during the superchilling process and superchilled storage (in the 

red muscles) as those observed in the white muscles (papers III – V). The paper also addresses 

the differences between the ice crystal sizes formed in the red and white muscles. The size of 

the ice crystals formed in the white muscle was larger than that formed in the red muscle. It was, 

however, not known why the size of the ice crystals in the red muscle was smaller than in the 

white muscle. 
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4.7 Paper VII 

Title: A study of the ice crystal sizes of red muscle of pre-rigor Atlantic salmon (Salmo salar) 

fillets during superchilled storage 

The effect of the superchilling rate was studied during the superchilled storage of the pre-rigor 

red muscle. The size of the ice crystals partially freezing at a higher rate was significantly 

smaller than at a slower rate. The size of the ice crystals formed in the white muscle was larger 

than that formed in the red muscle. This was similar to the results observed in paper VI. It was 

also observed that the size of the ice crystals formed in the pre-rigor red muscle was 

significantly smaller than the size in the post-rigor red muscle of salmon. 

4.8. Paper VIII 

Title: Changes in water holding capacity and drip loss of Atlantic salmon (Salmo salar) muscle 

during superchilled storage.  

Changes in water holding capacity and drip loss are useful tools for describing the quality 

changes in muscle foods. This article is addressing the quality of the superchilled product, 

referring to water holding capacity and drip loss in relation to ice crystal development during 

the superchilled storage of salmon.  

Due to the significant differences in ice crystal sizes observed in the previous study (paper V), 

the WHC was analysed separately at the surface (approximately 2-3mm from the surface) and 

centre of the superchilled samples. The results showed that the liquid loss decreased with 

storage time (i.e. WHC increased with storage time), both at the surface and in the centre of the 

superchilled samples. No significant differences were found in WHC between the surface and 

centre parts of the superchilled samples. In addition, the drip loss was significantly lower in the 

superchilled samples compared to chilled and frozen samples.  

4.9 Paper IX 

The influence of superchilling storage methods on the characteristics of ice crystal (distribution/ 

location) during storage of Atlantic salmon (Salmo salar). 

The final work of this thesis was to study differences in the superchilling storage methods, shell 

freezing (initial surface freezing of salmon following storage at a superchilling temperature) and 

non- shell freezing (storage of salmon at a superchilling temperature without initial surface 

freezing), in order to understand the effect of ice crystal development in salmon white muscle 

during superchilled storage. Ice crystals were mainly formed in extracellular spaces in the non-
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shell frozen samples. Fine and well distributed ice crystals were formed in both extracellular 

and extracellular spaces in the shell frozen samples. The water holding capacity and drip loss 

were also studied in both storage methods. There was no significant difference between the 

methods with respect to WHC and drip loss.   
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Chapter 5 

5. Discussion 

5.1 General overview  

There is growing demand for fresh and quality foods worldwide. In recent years, consumers are 

increasingly concerned with their health, and are demanding foods that are beneficial to their 

health and help prevent diseases. Due to this, the market for fresh and quality foods is growing 

rapidly and superchilling seems to be a good technology in maintaining the quality and 

freshness of foods. Superchilling has recently been established at an industrial scale. In Norway, 

one superchilling facility is operated at Trøndelag County by Nortura SA for superchilling pork 

meat. This shows that superchilling technology can be scaled up to industrial scale.  

During the last 10-15 years the interest in fresh and high quality foods has increased. The 

storage temperature of chilled food is normally in the region of between 4 and 8 ℃ (Einarsson, 

1988). At these temperatures, the activity of many spoilage microorganisms is still high and the 

growth of some pathogenic bacteria will occur. A technology, for preserving the nutritional 

value of food while simultaneously supressing spoilage microorganism is required.  Therefore, 

superchilling has been recommended as a method for maintaining the freshness, preserving the 

high quality and extending the shelf life of the food.  

The NTNU/SINTEF food engineering group has introduced a new employment of 

superchilling. They are performing superchilling by shell freezing the food (initial surface 

freezing), followed by the storage of food at 1 – 1.5 ℃ below its freezing point. The purpose of 

shell freezing (initial surface freezing) is to facilitate temperature equalization, and hence good 

mechanism of ice crystal within the superchilled food (Kaale et al., 2013b). The ice formed will 

be used as a cold reservoir during distribution or short-term storage. The main advantage of the 

superchilling technology is to extend/prolong the shelf life compared to traditional chilling and 

maintain high quality of foods (Duun and Rustad, 2008; Einarsson, 1988; Kaale et al., 2011; 

Stevik and Claussen, 2011). 

However, more study is required to make the technology more suitable in preserving foods. To 

date, there is not a quick and better way for defining the degree of superchilling in food. In 

addition, no study has been done on the development of ice crystals during the superchilling 

process and following storage. The degree of superchilling and characteristics of ice crystals 



22 

 

(development of ice crystals during superchilling process and storage) are important parameters 

to study because of their strong influence on the quality of the final superchilled food. The study 

by Bahuaud et al. (2008) reported on the development of ice crystals during the superchilling 

process, but the samples were not stored at superchilling temperatures. The study reported that 

the ice crystals were large and formed in the extracellular spaces which might affect the 

nutritional value of the superchilled products. Again however, the study did not establish and 

study the effect of the superchilling rate, which is very important because it has a large 

influence on the characteristics (location, extracellular vs. intracellular spaces, size and shape) 

of ice crystals. In reality, one should not speaks about the quality of food before understand the 

entire process (i.e. freezing, superchilling, drying). The processes should be studied effectively 

and understand precisely the relationship between the processes and the quality of foods. For 

example if one is using a very low superchilling/freezing rate, large and extracellular ice 

crystals are expected and this may influence on the low quality of the final superchilled food 

such as low water holding capacity, high drip loss and change of texture in the food products.  

5.2. The modelling and simulation of salmon. 

Paper II presents the modelling and simulation of salmon in the superchilling process. The main 

idea was to estimate partial freezing time (time spent in the freezers) required to achieve an 

optimal degree of superchilling in food. There was good agreement between the numerical and 

experiment results, particularly that from temperature measurements and the histology study; 

however, the results from calorimetric measurement showed some deviations. There are many 

factors which could contribute on the deviation such as uncertainties present in the calorimetric 

measurement and heterogeneity of food.  

The results from temperature measurements and microscope analysis coincided well with the 

numerical results, which makes the model more accurate than relying only on the calorimetric 

method. The temperature was measured at 4 different locations within the salmon fillet (Figure 

5.1) to confirm the temperature gradients which were also observed in the numerical results.  
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Figure 5.1: Temperature measurement in salmon at different locations during superchilling 

process at an impingement freezer (paper II) 

The histology steps and microscopic analysis on the samples were performed immediately after 

the superchilling process. It was observed that the ice crystals were formed in the outer layer (to 

a depth of 1-3 mm from the surface) of the superchilled salmon. No ice crystals were formed at 

the centre of the salmon. This confirmed the results from temperature measurement (Figure 5.1), 

as well as the results from numerical that there were no ice crystals formed at the centre of the 

superchilled salmon.  

5.3. Ice crystallization in white salmon muscles during the superchilling 

process and storage. 

The study of ice crystal development during the superchilling process and following storage was 

also given more attention in this study (papers III - V). During the superchilling process the ice 

crystals are formed in the outer layer of the superchilled product. It is important that cells in this 

layer are not damaged during superchilling processing (initial surface freezing) and therefore the 

superchilling rate should be considered.  Paper III established and studied the effect of the 

superchilling rate on the characteristics of ice crystals. The formation of fine ice crystals during 

the superchilling process that are evenly distributed both inside and outside the cells, leads to a 

better preservation of quality of the product due to less damages to the tissue (Chevalier et al. 

2001; Dincer, 1997; Ferna´ndez et al. 2008; Kiani and Sun, 2011; Martino and Zaritzky, 1986; 

Martino et al. 1998; Petzold, and Aguilera, 2009). This can be achieved at a higher superchilling 

rate (Figure 5.2 and paper III). The results from this study showed that the samples, partially 

frozen at a slow superchilling rates, contained larger and extracellular ice crystals during the 

superchilling process (partial freezing) and following storage of the superchilled salmon, 

compared to the samples that were partially frozen at fast rates (Figure 5.2 and paper III).  
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Day 0 
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Figure 5.2: Micrographs of salmon at surface layer, post-rigor at fast and slow superchilling rate 

(paper III). 

The large and extracellular ice crystals might destroy the cells in food muscles which reduce the 

quality of superchilled food like low water holding capacity, high drip loss and change of 

texture. On the other hand, rapid superchilling of post-rigor muscle also results in the initial 

formation of extra-cellular ice. However, the extracellular crystals formed during rapid 

superchilling are much smaller and more finely distributed than those in slow superchilling 

100 µm 

Control 
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(Figure 5.2). The formation of extra-cellular ice dehydrates the cells, but as the temperature 

decreases rapidly, the cells become supercooled and the remaining intra-cellular water freezes 

before it has time to diffuse out of the cell.  

The state of the muscle food also has an effect on the characteristics of ice crystals. The results 

in this study showed that partial freezing/shell freezing of muscle food in pre-rigor states results 

in the formation of ice crystal inside the muscle regardless of the superchilling rate. However, at 

a slow rate the ice crystals were fewer and larger than at a higher superchilling rate (Figure 5.3 

and paper IV). In pre-rigor muscle, the cell fluids are tightly bound to the intracellular proteins, 

and the diffusion from inside to outside the cell is therefore limited, resulting in the formation of 

intracellular ice crystals independent of the superchilling/partial freezing rates (Shenouda, 

1980).  

 

 
Pre – rigor fast superchilling Pre – rigor slow superchilling 

Day 0 

  

Figure 5.3: Micrographs of salmon, pre-rigor at fast and slow superchilling rate (paper IV). 

100 µm 

Control 
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5.4. Packaging of superchilled salmon. 

Packaging is also an important parameter to consider during superchilled storage because it 

defines the shelf life and maintains the quality of the final superchilled food. Good packaging 

will prevent dehydration, protect the product from exposure to oxygen and evaporative water 

loss from the surface of the food, and it can minimize the effects of freezer burn (Pornchai and 

Chitsiri, 2011). Freeze burn is a surface desiccation defect that can occur when partial frozen 

tissues are stored without an adequate moisture barrier packaging (Zaritzky, 2006). In this study 

it was discovered that the type of packaging is very important for the quality of the final 

superchilled food. The white/brown coloured spots (i.e. freezer burn) were observed in the air-

packed samples during storage. This is probably due to excessive hydration loss from the 

product surface that often limits the quality and shelf life of partially frozen foods (Pornchai and 

Chitsiri, 2011). It caused by sublimation of ice on the surface region of the tissue where the 

water pressure of the ice is higher than the vapour pressure in the environment.  Freeze burn is 

prevented if a product is packed in tight-fitting, water- and vapour-proof material, because 

evaporation cannot take place. We also observed a spoiled odour in air-packed samples after 21 

days of storage, which may have been caused by oxidation or microbial growth. The study of 

Hansen et al. (2009) showed that the salmon fillets packed in air had the highest bacterial 

growth, unaffected by short-term superchilling prior to packaging. Therefore, product, process 

and packaging (PPP) are important parameters to consider in superchilling technology. 

5.5. Recrystallization of ice in white salmon muscle during superchilled 

storage. 

The results from these studies (Figure 5.4, papers III, IV and V), showed that the size of the ice 

crystals increased significantly within 24 hours. However, the results showed that after 

temperature equalization (temperatures at the surfaces equal to temperatures at the centres of the 

superchilled samples) and with control of the temperature fluctuation during storage, the 

increase in ice crystal sizes was not significant (P < 0.05) at any storage times. This agrees with 

the study of Bevilacqua and Zaritzky (1982), which reported that when temperature is constant, 

the recrystallisation occurs at a significant rate only when the specimen contains crystals with 

diameters less than 24µm. However, temperature fluctuation enhances recrystallisation even if 

they have larger diameters.  
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Figure 5.4: Micrographs of salmon, post-rigor shows surface, mid-centre and centre layers 

within the partial frozen salmon fillet (paper V). 

Nevertheless, the physical analysis, water holding capacity and drip loss results (paper VIII) and 

the results from previous studies Duun (2008); Duun and Rustad (2007); Stevik and Claussen 

100 µm 
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(2011); Stevik et al. (2010) show that the superchilling method does not seem to change the 

nutritional value of food compared to fresh product. This might be due to the fact that in fish 

and meat the destructive effect of ice crystal formation is minimised due to the elasticity of the 

cellular structure in muscle (Smith, 2011). Furthermore, the loss of quality in fish and meat is 

largely associated with the loss of the functionality of proteins. When ice is formed, there is an 

increased concentration of enzymes and build-up of salt concentrations which both cause 

protein denaturation, and therefore effect the protein functionality (George, 1993; Shenouda, 

1980; Smith, 2011). In superchilling the protein denaturation may be minimal because only a 

small amount of free water is frozen, 5–30%, which results in less enzyme and salt 

concentration in the remaining water. In addition to that, shell freezing/initial surface freezing of 

food and the following storage is also important because facilitates temperature equalization and 

hence suitable mechanism of ice crystals growth. It has also been reported that the structural 

changes due to ice crystal formation at sub-zero temperature storage appear to be minor 

compared to those occurring during freezing at -20 ℃ (Einarsson, 1988).  Therefore, a 

combination of high quality raw material, an optimal degree of superchilling, a high 

superchilling rate, good packaging and the control of temperature during storage will result in 

high quality superchilled foods.  

5.6 Ice crystallization/recrystallization in the red salmon muscles during the 

superchilling process and storage. 

Fish muscle has a unique arrangement of muscle fibres. There are two major types of skeletal 

fish muscles: red and white (Figure 6.5). The red muscle lies along the side of the body next to 

the skin, along the lateral lines. The relationship between muscle fibre composition and size, 

and also the information on fat content in both white and red muscles have long been debated 

(Ayala et al., 2005; George, 1962; Jiag and Lee, 2007; Nielsen and Nielsen, 2012; Pritchard et 

al., 1971). Ghaly et al. (2010) also reported that lipid oxidation is a major cause of deterioration 

and spoilage for species that contain high amounts of red muscles, due to the presence of high 

content of oil/fat. 

However, to date no study has been made of the superchilling process as well as the freezing 

processes on the ice crystal sizes in the red muscle both pre- and post - rigor. Therefore, this 

study addresses this lack of information in the superchilling process. The ice crystal size in the 

white muscle was larger than in the red muscle (Figure 5.5), papers VI and Paper VII). 

However, based on the literature as well as on this study, no information exists which explains 

why the size of ice crystals formed in the white muscle is larger than that formed in the red 
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muscle. More research is required to understand why the ice crystal in the white muscle is larger 

than those in the red muscle. 

  

 

  

 

Figure 5.5: Intracellular ice crystals in red and white muscles of pre- rigor salmon (paper VII). 

The study also discovered that the size of ice crystals formed in the post-rigor red muscle was 

significantly larger than in the pre-rigor red muscle of salmon. These findings are of 

significance for industries because small ice crystals indicate better quality while large crystals 

often produce damage during partial freezing. 

5.7 The influence of superchilling storage methods on the characteristics of 

ice crystal (distribution/ location) during storage of salmon. 

Superchilling has been defined/performed differently. Some researchers have stored food just 

below 0 ℃ where ice crystals are not formed (Ando et al., 2004). The main idea is that the 

formation of ice should be avoided within the product in order to retain its original 

characteristics. Superchilling has also been defined as a technology where food is stored at 1-1.5 

℃ below its initial freezing point. In this study the method has been called non-shell freezing 

(storage of food at a superchilling temperature without initial surface freezing). The results 

showed that the ice crystals were formed in the surface and no ice crystals were formed at the 

centre layer for the entire storage time. Most of the ice crystals were formed in extracellular 

spaces which might destroy cells at surface layer (Figure 5.6; paper IX).  

Intracellular ice crystal in 

red salmon muscle 

Red salmon muscle 

Intracellular ice crystal in 

white salmon muscle 

White salmon 
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100 µm 
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Figure 5.6: Micrographs for shell freezing and non-shell freezing at surface and centre after 1 

day of storage (paper IX). 

However, it was not possible to detect the destructive effect in this layer because the samples 

were taken randomly from the surface or the centre of the salmon. In the future, samples should 

be analysed separately at the surface and centre layers in order to see if the formation of 

extracellular ice in the surface layer is affecting the cells.  

100 µm 

Control 
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Some researchers Bahuaud et al. (2008); Duun and Rustad (2008); Kaale et al. (2013b); 

(2013c); (2013c); Stevik et al. (2010) as well as in this thesis have performed superchilling by 

doing initial surface freezing, and followed by storing food at a superchilling temperature (in 

this study the method has been called shell freezing). The method allowed good mechanism of 

ice crystal formation (Figure 5.6) which seems to retain the originality of food properties. 

However, the method is practicable if the food product is shell freezing fast, with an optimal 

degree of superchilling, good packaging and strict control of temperature during the 

superchilled storage. The storage of food at a superchilling temperature range and with control 

of the temperature during storage will only freeze 5 – 30 % of the free water.  

Generally, the initial surface freezing (shell freezing) method is more expensive than the other 

two superchilling storage methods and needs maximum accuracy with regard to processing 

parameters in relation to the equipment used. On the other hand, the initial surface freezing 

(shell freezing) method has many other advantages over the other two methods such as reduced 

energy and labour costs, reduced transport costs and a reduction of environmental impact. This 

is because the ice crystals formed at the surface layer will absorb heat form the interior and the 

temperature will equilibrate within the superchilled product. The small amount of free water (5 

– 30 %) which has been converted to ice will be used as an internal cold reservoir so there is no 

need for external ice around the product during distribution or short term storage. 
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Chapter 6 

6. Conclusions 

The main objective of this work was modelling and ice crystallization/recrystallization of foods 

in superchilling technology (superchilling process and following storage). The relationship 

between ice crystal development and the quality parameters of superchilled product was also 

studied. Salmon was chosen as the case study.   

The main results and conclusions of this work are: 

A one-dimensional model for estimating partial freezing time necessary to achieve an optimal 

degree of superchilling in food was developed. The model was validated experimentally and 

there was good agreement between numerical and experiment results. The degree of 

superchilling is one of the most important parameters because it defines the final quality of the 

superchilled product.  There is no direct/quick way to determine the degree of superchilling, and 

thus the developed model is of importance in superchilling technology. However, tremendous 

efforts are needed to further quantify the model using other types and shape of foods.  

The superchilling rate has a large effect on the ice crystal characteristics such as location, size 

and distribution. At a high superchilling rate, smaller and well distributed ice crystals were 

formed, while at a low superchilling rate larger and extra-cellular ice crystals were formed. The 

characteristics of ice crystals determine the quality of the superchilled food. 

The state of muscle foods (pre - and post - rigor) has an influence on the ice crystal 

characteristics. In pre-rigor muscle the ice crystals were formed within the cells regardless of 

the superchilling rate, which can be confirmed by the fact that a large amount of water is inside 

the muscle cells during superchilling process of pre-rigor muscle, and the water is both inside 

and outside the cells in the post-rigor muscle.  However, at a low superchilling rate the ice 

crystal size was larger than at a high superchilling rate. The formation of the ice crystals inside 

the cells, regardless of the superchilling rates, is the most important factor for reducing the 

damage to food muscles and, hence, maintaining their quality.  

There was a significant increase in ice crystal size between the superchilling process (day 0) and 

superchilled storage (after 1 day of storage). The ice crystals formed in the surface layer were 4 

times larger after only 1 day of storage than those formed at day 0. This is due to temperature 

gradient (-30/20 ℃ to -1.7 ± 0.3 ℃). The recrystallization at this time is unavoidable however, 
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after temperature equalization (after day 1 of storage) and control of temperature during the 

superchilled storage there was no significant growth of ice crystals at any storage time.  

 Different layers with different sizes of ice crystals were observed within the superchilled 

samples. This is due to the isothermal conditions, and because we have both ice crystals at the 

surface and water at the centre of the product. 

Differences were found between vacuum-packed and air- packed samples. The air packed 

samples smelled bad (spoilage odour) after 21 days of storage, and it was not even possible to 

analyse samples at day 28. This may have been caused by oxidation or microbial growth. In 

addition, freezer burn was detected in some of the air packed samples, which often limits the 

quality and shelf life of food. In vacuum packed samples, no smell was observed for the entire 

storage time (after 28 days). In addition, the samples did not exhibit any concerning features 

related to freezer burn during storage. This indicated that the type of packaging is of high 

important for the quality and freshness of superchilled food.  

The ice crystal size formed in red muscle was smaller than those formed in white muscle. In 

addition, the ice crystals formed in pre-rigor red muscles were smaller than those formed in 

post-rigor red muscles. These findings are significant for the superchilling industries because 

small ice crystals indicate better quality. 

Different quality parameters have been studied in superchilling technology by previous 

researchers, and they were found to have many advantages when compared to those of 

conventional chilling and freezing technologies. In this study the physical measurement, water 

holding capacity and drip loss were studied, which are among the most important parameters for 

determining the quality of foods. Due to the significant differences in ice crystal sizes observed 

between the surface and centre, the liquid loss (LL) was analysed separately at both the surface 

and centre of the superchilled samples. No significant differences were found in LL between the 

surface and centre parts of the superchilled samples. No significant differences were found in 

the WHC and drip loss between 1 and 14 days of storage in superchilled salmon. It was also 

observed that the drip loss was lower in superchilled salmon compared to that of conventional 

chilling and frozen salmon between 1 and 14 days of storage. 

The two superchilling storage methods showed differences in the development of ice crystals 

within the superchilled salmon. In non-shell frozen samples, the ice crystals were mainly 

formed in the extracellular spaces. Fine and well distributed ice crystals were formed in both the 

intracellular and extracellular spaces in shell frozen samples. Based on the quality parameters 
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evaluated in this study, there was no significant difference between shell and non-freezing 

samples however, it is important to shell-freeze the samples before storage in order to facilitate 

temperature equalization. This can reduce energy and labour costs, reduce transport costs, easier 

handling during processing and reduce the environmental impact. In addition, since most of the 

ice crystals were formed in extracellular spaces the cells in the surface layer might have been 

destroyed.  

Superchilling technology preserves the freshness and maintains the high quality of food, and 

gives the product nearly same quality as the original product based on the physical 

measurements found in this study. In order to achieve this, a combination of high-quality raw 

materials, good superchilling process, stable temperature during storage of the superchilled 

products and good packaging are most important. 

Generally, the results found in this study have given more information in the superchilling area. 

The developed model which can be scaled-up to the industrial level, together with information 

on the development of ice crystals, which has a large influence on the quality of the final 

superchilled food are useful for the industry in estimating the refrigeration requirements for a 

superchilling system and designing the necessary equipment. In addition, the quality study 

revealed that the superchilling is practicable if the product is partially freezing fast, with an 

optimal degree of superchilling (5 - 30 %), good packaging and strict control of the temperature 

during superchilled storage. 
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Chapter 7 

7. Suggestions for future research 

A-One dimensional model for predicting/estimating partial freezing time (time spend at 

freezers) necessary to achieve an optimal degree of superchilling in food was successfully 

developed. A study on the development of ice crystals during the superchilling process and 

following storage was carried out in this thesis, and useful information in the superchilling area 

was obtained. 

However, more research in superchilling technology is required to further quantify the model, 

using different degrees of superchilling (i.e. 5, 15 and 30 %) and other food products. Foods are 

heterogeneous and have different thermal-physical properties. 

There is also a need to establish a recrystallization model. To develop a mathematical model for 

interpreting the recrystallization of ice, to determine the kinetics of the recrystallization process 

in superchilled foods and to discuss the mechanisms involved in this phenomenon are of great 

importance in the future. Understanding the mechanisms of recrystallization of ice in the 

superchilled food can help for improving superchilling process. 

It has been reported that the formation of ice in extracellular space is due to slow superchilling 

rate and this may reduce the quality of superchilled food (Ferna´ndez et al., 2008; Kiani and 

Sun, 2011) such as low water holding capacity, high drip loss and change of texture. The two 

superchilling storage methods studied in this study show differences in the development of ice 

crystals within the superchilled salmon. In non-shell frozen samples, the ice crystals were 

mainly formed in the extracellular spaces while in shell frozen samples the ice crystals were 

finely distributed in the intra- and extracellular spaces. However, there was no significant 

difference between shell and non-freezing samples based on the physical measurements done in 

this study. Nevertheless, since most of the ice crystals were formed in extracellular spaces in 

non-shell frozen samples, the cells in the surface layer might have been destroyed. The samples 

in this study were taken randomly from the surface to the centre, and therefore, it was not 

possible to detect the destructive effect in this layer. In the future it is necessary to analyse the 

samples differently at both the surface and centre in order to see if the formation of extracellular 

ice has an effect on the quality of superchilled food. It is also necessary to perform biochemical 

and microbiological analyses in both methods in order to compare their capabilities of storing 

foods in relation to shelf life and final quality. If non-shell freezing method will give positive 
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impact on the quality of the final superchilled food, this might be a good alternative of 

doing/performing superchilling because is cheaper than shell freezing method. Non-shell 

freezing does not need initial surface freezing (i.e. no need of freezer), will only need a flexible 

and effective storage facility. In addition to this, Duun and Rustad (2008) as well as in this study 

found a development of white spots on the surface of fillets during superchilled storage. The 

white spots were found in shell frozen samples and not found in non-shell frozen samples. This 

is a challenge in this technology since the product looks undesirable to the customers. 

Superchilling is a promising technology for preserving the freshness and high quality food 

during distribution and storage. In order to achieve the best in superchilling technology, control 

of the superchilling process, storage temperature and degree of superchilling should be kept 

within a narrow margin. In the future it is recommended to implement the following tasks in 

order to make the technology more suitable in preserving the freshness and high quality, and 

extend the shelf life of the superchilled product; 

(a)  Develop a dynamic process control: i.e. the input and output of the process should be 

documented online. Introduction of on-line measurement techniques to understand and 

control the degree of superchilling and temperature distribution in foods during 

superchilling process and superchilled storage is also important in this technique. This 

will give more information on the quality of the final superchilled food. 

(b) In order to fulfil with the demand for short processing times, a technique for quick/fast 

shell freezing food products which result in better production yields, improved product 

quality and a longer shelf life is required. Today most of the equipment are not suitable 

to carry out the superchilling process. The equipment producers, researchers and 

processing companies have to work together in order to produce appropriate equipment 

for superchilling processes. The impingement freezer which has been identified as an 

alternative to conventional freezing methods, because of its high turbulence 

characteristics, which enhance heat transfer and therefore quality product is very 

expensive and alternative equipment with the same characteristics but to be 

commercially interesting is require. 

(c)  On the other hand, developing a flexible and effective storage facility is important. 

More research on how to control and keep the required storage temperature after initial 

surface freezing is needed. The temperature should be stable enough to avoid significant 

levels of ice crystal growth that can cause structural damage during the storage of the 
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superchilled product as well as to keep the degree of superchilling within a narrow 

margin.  
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gricultural and fishery products every year. In addi-
ms and quality deterioration mechanisms are com-
umers are a heterogeneous group. Fresh food,

and fish, are highly perishable products due to
composition. The shelf life of refrigerated meat

ited, primarily due to microbial activities (Duun,
z et al., 2010; Lambert et al., 1991). Controlling
ties is the key to extension of shelf-life during pro-
tion and storage of food. Temperature is one of the

t parameters affecting the growth of microorgan-
al., 1996; Bréand et al., 1997, 1999; Constantin,
89). The rate of food spoilage processes depends
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nsaturated fatty acids, fish is more susceptible to lipid oxidation
an other muscle foods such as poultry, pork, beef, and lamb
ee et al., 2006). Lipid oxidation products are known to react with
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ubow, 1992).
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.1. Shelf-life aspects in relation to superchilling technology

There is no generally accepted definition for the term shelf life
the literature. A universal definition of shelf-life is virtually
possible to establish since it is impossible to satisfy all consum-

rs at all times (Bin and Theodore, 1993). Shelf life can be defined
s the time period for the product to become unacceptable from
ensory, nutritional or safety perspectives. Shelf life is the time
uring which the product will remain safe, to retain the sensory,
hemical, physical and microbiological characteristics, and comply
ith any label declaration of nutritional data (Kilcast and Subr-

maniam, 2000). The shelf life of foods is a function of composition,
rocessing, packaging and environmental factors, including
umidity, and temperature (Bili and Taoukis, 2007).

Studies on superchilling have shown extended shelf life of food
roducts compared to conventional chilling. According to Einars-
on (1988), superchilling results in better quality, and extends
helf life of stored food 1.5–4 times compared to conventional
hilling. Carlson (1969) reviewed superchilling of fish and found

among con
a very com
microbiolog
Microbial g
important
to the fact
main quali
gies such a
undesirable
holding ca
reducing th

Superch
tages on th
salmon fille
ing chilled
be a prom
slowing do
time the d
of structura
et al., 2007
noleptic ch
ature was reduced from �1 �C to �3 �C, the shelf-
from 21 to 35 days. Sivertsvik et al. (2003) reported
lf life of 21 days for superchilled salmon in air,
ed atmosphere and air stored fillets at chilled con-
oiled after 10 and 7 days, respectively. The super-

ckaged salmon had a negligible microbial growth
forming units (CFU]/g) for more than 24 days (aer-
unt, H2S-producing, and psychotropic bacteria)
l., 2003). This is in accordance with the results of
tad (2008) who found a doubling of shelf life of
lmon stored at �1.4 and �3.6 �C compared to ice
with respect to microbial and chemical analyses,

the results of Stevik et al. (2010). Fernández et al.
ported the shelf life of 22 days in superchilling in
ith modified atmosphere packaging (MAP) based

emical, and microbiological analyses compared to
l sample. In a study of MAP and superchilled storage
shelf-life of fresh cod (Gadus morhua) loins, Wang
ound that superchilled-MAP storage had a shelf

compared to 14 days for chilled-MAP storage.
l. (2006) found shelf-life of superchilled cod fillets
obial, Chemical Quality Indicators (Torry – score)
ile basic nitrogen (TVB-N) to be 15 days at �1.5 �C
.5–14 days at 0 �C for iced chilled cod fillets, while

ad (2007) found that the microbial shelf life (with
uced growth of sulphide producing bacteria) in
cuum-packed cod fillets stored at �2.2 �C was ex-
ral weeks compared to chilled cod. When compar-
ining and MAP on the shelf life and quality of cod
e of 21 days for the superchilled samples was found
g the shelf life was about 14–15 days (Lauzon et al.,

eriments were evaluated based on sensory, micro-
ical analyses. Zeng et al. (2005) showed that the to-
s (TVC) of bacteria increased most rapidly in shrimp
ice and in brine mixed with flake ice, followed by
ice at +1.5 �C, while the lowest counts were ob-
p stored in liquid ice at �1.5 �C. For meat a longer

elf life with respect to quality parameters (sensory,
emical and microbiological) has been found, super-
sts had a shelf life of at least 16 weeks compared to
chilled references (Duun et al., 2008).

ects in relation to superchilling method

n arbitrary term and one which causes confusion
ers, processors and researchers. Product quality is

x concept (Gao, 2007) which includes nutritional,
l, biochemical and physiochemical attributes.
th, colour, texture, off-flavour and oxidation are
rs for the safety and quality of food products. Due
colour, texture, and flavour characteristics are the

arameters in food products, conventional technolo-
ezing are often not preferred. Freezing may induce

anges such as protein denaturation, reduced water
ty and increased drip loss on thawing. Methods
problems are therefore wanted.
g processing technology has shown several advan-
ality of food products, for example had superchilled
ower bacterial counts compared to the correspond-
ts (Hansen et al., 2009). Superchilling was found to
g method for storing raw material before salting,
biochemical quality degradation while at the same
e of protein denaturation was low and the degree
mage was less than in frozen storage (Gallart-Jornet
n the evolution of Listeria monocytogenes and orga-
teristics of cold-smoked salmon samples, Beaufort
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al. (2009) reported that storage at �2 �C (superchilling process)
r 14 days did not have any serious consequences on the quality of
ld-smoked salmon compared to controls (absence of superchill-
g). However, the prevalence of L. monocytogenes and organoleptic
operties were higher after 28 days at superchilling, followed by

days in chilling, compared to samples stored at superchilling/
illing for 14 days before chilling for 28 days. During superchilled

orage of kuruma prawn, the brightness of the tail colour could be
tained compared to traditional refrigeration where unfavorable
anges in quality such as discoloration, deterioration of texture
d a rapid rise in the amount of inosine and hypoxanthine in rela-

on to the total amount of ATP and substances derived from ATP
-value) were found (Ando et al., 2004). On evaluating the impact
superchilling on the quality of pre-rigour Atlantic salmon (Salmo
lar) fillets, Bahuaud et al. (2008) found that superchilling pre-
nted the fillets from rigour contraction. The study of Sivertsvik
al. (2003) found no negative texture changes in the superchilled
lmon and insignificant increase in drip loss, this is in accordance
ith the result of Duy et al. (2007) who found no negative effects

the quality in superchilled Arctic Charr fillets. These differ from
e results of Duun (2008) and Duun and Rustad (2007) who found
ip loss to be lower in superchilled samples than in chilled sam-
es both in cod and salmon fillets as well as in pork roasts. Tem-
rature fluctuations during superchilled processing and storage
ould be avoided (Duun, 2008; Duun and Rustad, 2007). The
ount of ice in the products is highly dependent on the temper-

ure and this has a large influence on the quality changes during
orage.

There is a lot of interest in the use of superchilling technology in
od processing. In the specific case of chilling of food products,
perchilling may become an alternative method over conven-

onal chilling. Duun and others (2008) reported extended shelf life
d improved quality for superchilled food products. This may be a
rect result of the reduction of tissue or external damage and an
direct result of the reduction of lipid deterioration and protein
idation in the final food product.
However, some negative effects on quality have also been found
superchilled foods. Bahuaud et al. (2008) reported on freeze

mage during superchilling, the upper layer of the super-chilled
lets showed freeze damage characterized by the formation of
rge intra- and extracellular ice crystals during superchilling.
eeze damage due to superchilling accelerated the amount of
tachments between myofibres and increased the amount of
yofibre breakages during storage time. Super-chilling accelerated
e release of the proteolytic enzymes cathepsin B and L from the
sosomes, causing an acceleration of fish muscle degradation
ahuaud et al., 2008). However, Duun and Rustad (2008) con-
uded that super-chilling did not influence the total cathepsin B
d L activity in salmon muscle stored at �1.4 �C and �3.6 �C.

uun (2008) found that myobrillar proteins denatured more easily
ring superchilled than during chilled storage both in salmon and
d fillets and the amount of free amino acids increased more rap-
ly due to exoproteolytic activity. Duun and Rustad (2007) also
und a higher liquid loss (LL) in superchilled samples compared
ice chilled cod fillets. The high LL was correlated to a reduction
amount of salt soluble proteins which was significantly lower in
e superchilled samples than in the ice chilled samples.
Texture is an important quality parameter, and may vary

pending on species, part of muscle, storage, and processing
ansen et al., 2009). Superchilling in combination with MAP had

negative effect on the texture of salmon fillets. This is in accor-
nce with the results of (Gallart-Jornet et al., 2007; Wang et al.,
08), but in disagreement with the results of Bahuaud et al.
008) who found that MAP did not influence the effects of
per-chilling. Measurements of texture, liquid loss and protein
naturation during superchilling in the reviewed studies indicate

that the su
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hilling process still needs to be optimized before
cial implementation.

g technologies

illing process can be carried out in special cold-pro-
es called freezers; mechanical freezers, cryogenic
ingement freezers. The three technologies, and all
ifferent advantages, drawbacks and limitations. In
will compare mechanical, cryogenic and impinge-
echnologies rather than specific systems. The selec-

freezing equipment helps to maximize product
ng flexibility and return on investment (ROI) while
ste, costs and downtime.

freezers

ting refrigerant to achieve temperature reduction
e against air to the food product. Mechanical freez-
ly used to freeze foods. Mechanical freezers, espe-
ous belt freezers, have lower operating costs than

ers. However, mechanical freezers require higher
s due to low heat transfer coefficients (h� 50 W/

turn, lead to a lower quality product (Salvadori
i, 2002).

eezers

e term cryogenics is applied to temperature below
food processing, the term cryogenic freezing is

o identify freezers using either nitrogen liquid
rbon dioxide (�78 �C as a solid) which are applied
food product to achieve temperature reduction.

ing offers shorter freezing times compared to con-
ezing because of the large temperature differences
ogen and the product surface and the high rate of

ansfer resulting from the boiling of the cryogen
010). Cryogenic freezing requires no mechanical
uipment; simply a cryogen tank and suitable spray

ever, there may be some distortion of the shape of
sed by the cryogenic process that might impact on
application (Zhou et al., 2010). Furthermore cryo-
as a high refrigerant consumption (>1 kg of N2 per
product) and has very high operating costs (Salva-
eroni, 2002; Soto and Bórquez, 2001). This makes
ing a valid alternative only for expensive products

or fine fruits.

t freezers

t which has a freezing chamber divided into zones
erature of each zone is independently controllable

perature profile within the impingement freezer is
e adjacent the outlet and warmest at a zone adja-
for maximum thermodynamic usage of the refrig-

Sahm, 1998). Additionally, the velocity of each of
nt jets is independently adjustable from zone to
the zone adjacent to the entrance of the freezing
pingement jets can be adjusted to have maximum

produce maximum heat transfer coefficients and
ptable rate of cooling within the impingement free-
hm, 1998). Products are placed on conveyor belts,
elocity air passes through the conveyor upwards
. Impingement freezer increases heat transfer rates
with traditional mechanical freezers because it
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reaks up the boundary layer at the surface and hence reduces pro-
essing time (Anderson and Singh, 2006; Erdogdu et al., 2005,
007; Salvadori and Mascheroni, 2002; Sarkar et al., 2004).

pingement jet systems have been identified as an alternative
conventional freezing methods, given their high turbulence

haracteristics, which enhance heat transfer and therefore quality
roduct (Dirita et al., 2007; Garimella and Schroeder, 2002; Soto
nd Bórquez, 2001).

The study of Salvadori and Mascheroni (2002) concluded that
e processing times in an impingement freezer are markedly
wer than the times required in conventional belt tunnel freezers,
us the use of this equipment increases the production capacity
ithout increasing the size of the facilities. In addition the freezing

ment in the
the ice con

Bahuaud
ing superch
fish muscle
ice crystals
on morpho
ation of ce
2004). Thes
during thaw
even if the
growth in s
age temper
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mes and weight losses for impingement freezing are similar to
ose of cryogenic freezing at a noticeably lower operating cost.
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re
he impingement freezer has a good impact on the product, as it
educes processing time by enhancing heat transfer, and therefore
ood quality of the product. Impingement technology advantages
ould give the food technologists the best way of preserving food
roducts, for extending shelf life and improve product quality.

. Ice crystal formation

Ice content, the percentage of the water in a product that is in
olid form, is one of the most important parameters of food when
eezing is involved. It is also one of the parameters that are elusive
nd difficult to measure (Aparicio et al., 2008). However, this de-
ends on controlling the temperature (temperature stability) pre
nd during storage treatment. The process temperature should
e stable enough to avoid significant levels of ice crystal growth
at can cause structural damage. Temperature measurement dur-
g transient chilling and the freezing process is extremely chal-
nging due to temperature variations both in time and space
agnussen et al., 2008). In practice, controlling and measuring

mperature must therefore be performed after chilling and tem-
erature equalization are complete. Accurate temperature mea-
urements can be carried out under laboratory conditions, but
nder industrial conditions one cannot expect to improve on an
ccuracy of ±0.5 �C. However, even with this accuracy, calculating
e amount of ice in the product is highly uncertain due to the

trong dependency of ice content on temperature in the region of
terest (Magnussen et al., 2008). Fig. 1: ice content and specific
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ulation and mo

Fig. 1. Ice content and specific enthalpy in salmon filets (Mag
ustry. Dotted arrows show how these errors affect
and specific enthalpy (Magnussen et al., 2008).

al. (2008) reported that the ice crystals formed dur-
g were large enough to damage the integrity of the

ring superchilling. The large intra- and extracellular
med during superchilling/freezing has a large effect
cal changes, cell destruction as well as the denatur-
omponents (Bahuaud et al., 2008; Gab-Soo et al.,
ay result in textural changes and increased drip loss

(Bahuaud et al., 2008). Fluctuating temperatures,
eezing temperature is quite low, accelerates the
of the ice crystals formed. With a slight rise in stor-
e, the small ice crystals will presumably melt faster
ones, and when the temperature drops down again,
and larger crystals (Shenouda, 1980).
he characteristics of the ice crystals formed during
nd superchilled storage should contribute to a bet-
sis for evaluation of methods for chilling and com-
n technologies (Magnussen et al., 2008). There is,
ublished studies explaining the growth mechanism
during superchilling and superchilled storage. For
owth mechanism of ice crystals during superchilling
related to shelf life of foods and some of the quality

) 141–146
her quality parameters). Therefore, the information
th of ice crystals should be investigated because it
ther way of improving the quality of superchilled

ing-related technology.

nd simulation

w that, the main problem in superchilling technol-
the degree of superchilling and control the temper-
cess that will improve the shelf life sufficiently and
nds regarding processability and quality attributes.
computer simulation of the superchilling process is
uld implement this task. Computer simulation and
eriments of superchilled salmon fillets were re-
e (2003). Simulation was carried out to find the
frozen water at different mean temperature in the
rent chilling times. The computer simulation gave

sults compared to experimental results. As far as

is no published papers concerning computer sim-

delling in superchilling since 2003.

nussen et al., 2008).
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However, different models have been applied in food industries
d presented in the literature for simulation in one, two and three
mensions. Moureh and Derens (2000) developed a three-
mensional heat transfer model to predict the food temperature
a function of time and location within the pallet. They concluded
at to ensure a better control of the cold chain, the model can help
aluate the benefits of investments such as cold-storage facilities,
oice of packaging or the control of ambient temperature.
annapperuma and Singh (1989) developed a numerical method
sed on enthalpy formulation of heat conduction with gradual
ase change which was then used to develop a mathematical

odel to simulate freezing and thawing processes in foods, the re-
lts agreed reasonably well with published experimental results
d with predictions by other published methods. Dolan et al.
987) developed a one-dimensional heat transfer model in order
calculate temperature profiles and histories within a pallet of

ozen food exposed to different environmental conditions. Various
mulations were carried out by varying thermal properties, exter-
l heat transfer coefficient, and ambient temperature and radia-

on surface properties of the carton box. Among these
rameters, the thermal properties exert the greatest effect on
mperature distribution within the pallet.

Mallikarjunan and Mittal (1995) used a validated heat and mass
ansfer model and a pattern search algorithm to evaluate the ef-
ct of the optimum freezing conditions on beef quality after age-
g. A computer programme was written using FORTAN 77 and
ey found that optimum chilling conditions provided a better
ality compared to other chilling systems. Lijun and Da-Wen
002) used a finite element analysis to model the three-
mensional transient heat transfer of roasted meat during air blast
oling process. A user-friendly computer programme developed
visual C++ by the authors was used to solve the model. The tem-
rature predictions were in agreement with experimental values.
The typical shape factor of the food product usually makes a

e-dimensional model sufficient to study the thermal behaviour
the product. Such a model has the advantage that it is simple,
ry fast, and yet detailed enough to estimate the real behaviour
the food product. The physical properties of food have a strongly
nlinear behaviour in the temperature region of freezing. This is
pecially true for the specific heat capacity, since it represents
e latent heat in addition to the sensible heat.

1. Computer programming

A finite difference method adapted to handle the nonlinear
ysical properties of food is adopted to model the freezing/partial

eezing processes. Solving these kind of equations need a fine res-
ution in space and time, and can be implemented using different
mputer languages such as FORTAN 77, C++, MATLAB, etc. MAT-
B is well suited because this tool provides a rich set of built-in

cilities for equation solving and visualization. The main task of
e programme is to keep track of the average ice fraction during
l stages of the product handling. Good knowledge and accurate
ediction of the ice fraction-temperature dependence has signifi-
nt importance for reliable determination of the thermophysical
aracteristics and enthalpy variation during freezing of foodstuffs
well as for proper selection of the temperature regimes during

frigerated processing and storage (Fikiin, 1998).
Based on this information, optimal time in the freezing facilities

ch as impingement can be found by repeated simulations. The
actical methodology will include simulation and verification of
e developed models using experimental data. A major advantage
such a simulation model is a better control of food quality be-

use the process of evaluation can be followed up frequently at
cheap cost. These models, when validated, can be used to design
d operate controls of temperature in superchilling.

6. Challeng
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n superchilling

allenges are: selecting optimal process conditions,
rature, velocity and control holding time in the
it. More knowledge is needed on the right degree
which will increase shelf life and maintain quality

s. To control temperature during superchilling and
rage is a challenging task. It is also difficult to de-
of superchilling required to sufficiently improve

lfill the demands of the process to achieve the de-
tributes (Magnussen et al., 2008). The changes in
ure of foods during superchilling and superchilled
ction of on-line measurement techniques to under-
rol the ice fraction are also main challenges with
Growth of microorganisms, protein denaturation

tion at temperature below 0 �C also requires more
and Rustad (2007) found development of white

rface of fillets during the superchilled storage. This
in superchilling process since the product looks

the customers. Lastly, the superchilling technology
ve than conventional chilling and needs maximum
regard to processing parameters in relation to
. On the other hand superchilling offers advantages

shelf life compared to chilling technology.

at superchilling temperature has three distinct
intaining food freshness, retaining high food quality
g growth of harmful microbes. Superchilling, as a
ctice, can reduce the use of freezing/thawing for
thereby increase yield, reduce energy and labour

lling may also lead to reduced transport costs,
during processing and reduction of environmental

e mechanism of the ice-crystals growth during
orage is highly required. Modelling and computer
e superchilling process is an area that needs more
lating the required superchilling times which will

ee of superchilling required to sufficiently improve
maintain the desired quality attributes is highly
ell as maintaining a stable temperature during
rage.
ed for improved methods to control the superchill-
perature is not a sufficient parameter and ice-frac-
troduced as a parameter to describe the degree of
owever, if the positive effects of superchilling

viewed articles could be implemented at the indus-
chilled storage might be used to provide additional
rcial foods.

/trends

f superchilling, progress is expected in the area of:

: Computer simulation of the superchilling process,
interaction between superchilling method and

rial properties. This is important since computer
ns are cheaper and easier to use to study effect of
arameters and product properties.
on growth of ice crystals during superchilling stor-

h has effect on changes in proteins, lipids, and
in microstructure which resulting in changes in
ce and texture of food products is an important
r for future studies.
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Abstract 

Food superchilling process is of increasing importance because of its benefit in achieving food quality 

and extending shelf life of food products. The rate of the superchilling process is critical to the 

products’ quality and to the productivity of the process and therefore the superchilling dynamics is of 

extreme importance. The objective of this work was to develop a one-dimensional implicit finite 

difference numerical model for predicting partial freezing time necessary to achieve an optimal degree 

of superchilling in foods and to validate the model experimentally. The evaluation of degree of 

superchilling was determined using finite slab and measured by using a calorimetry method. There is a 

good level of agreement between numerical simulation and laboratory experimental results.  

1. Introduction 

Superchilling is the process of partial ice - crystallization from supercooled water in food products. 

The superchilling/partial-freezing process has two stages: 1) cooling the product to initial freezing 

point and 2) removing the latent heat of crystallization (phase transition stage), whereby 5-30 % of the 

water is frozen (degree of superchilling) and stored within the product. Degree of superchilling (ice 

fraction) is amount of water (5 – 30 %) which is frozen inside the food product, is one of the most 

important parameters which define the quality of the superchilled food product (Magnussen et al., 

2008; Stevik et al., 2010). Superchilled storage is the storage of food product at 1-1.5  below its 

initial freezing point. During this time, the ice formed will absorb heat from interior and will 

eventually reach equilibrium. Superchilling provides the food product an internal ice reservoir so that 

no external ice is required during transportation or short term storage (Kaale et al., 2011).   

Superchilling technology has recognized advantages; it results on maintaining food freshness, 

retaining high food quality and suppressing growth of harmful microbes. Despite the benefits of this 

technology, one of its main drawbacks is the need to define the degree of superchilling that will 

sufficiently improve the shelf life and fulfil the demands regarding processability and quality attributes 

(Kaale et al., 2011). The degree of superchilling can be predicted using either analytical or numerical 

mailto:elykaale@yahoo.com
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methods (finite difference, FDM, finite elements, FEM, or finite volume method, FVM) of the heat 

transfer equations. Analytical methods offer an exact solution and are mathematically elegant, 

however, due to  their limitations, analytical solutions are mainly for one-dimensional cases with 

simple initial and boundary conditions and constant thermal properties (Abbas et al., 2004; Bonacina 

et al., 1973b: Pham, 2008; Tavakoli and Davami, 2007). The advantage of numerical methods over 

analytical is that effects of the phase change over a range of temperature, changing thermal properties, 

the step change in thermal conductivity over the same range and heterogeneity of food products can be 

analyzed (Delgado and Sun, 2001; Pham, 2006; Resende et al., 2007; Zuritz and Singh, 1989; 

Tavakoli and Davami, 2007; Wang et al., 2007).  

Studies on phase change problems have been carried out using finite difference method (Clavier et al., 

1994; Pham, 2006; 2008; Tavakoli and Davami, 2007; Idelson et al., 1994; Voller, 1984; 1987; Kim 

and Kaviany, 1990; Muhieddine et al., 2009; Wang et al., 2007; Wilson and Singh, 1987; 

Mannapperuma and Singh, 1989; Abbas et al., 2004). These studies have applied the finite difference 

method by using enthalpy or temperature formulation of heat conduction and have concluded that the 

method has been succeed to study the phase change problems. Moreover, the finite difference is a 

simpler method, which leads to satisfactory results for all simple and regular shapes. Finite differences 

are more difficult to implement for irregular shapes, whereas the complexity of a finite element 

scheme is not affected by product shape (Cleland, 1990). However, by applying numerical grid 

generation approach, the finite difference method can be used for irregular geometry as effectively as 

the more complicated finite element method without sacrificing its simplicity (Delgado and Sun, 

2001).  

In this study, a one dimensional implicit finite difference numerical model was chosen to predict 

partial freezing time (time spent at freezers) necessary to achieve an optimal degree of superchilling in 

food products during superchilling process. Salmon fillet was chosen as a case study. Data of salmon 

fish compositions as well as the suitable composition based correlations were taken from ASHRAE 

handbook (2006). Thus, the one-dimensional case allows use of the finite difference method to obtain 

the numerical solution by implementing the heat transfer partial differential equations in the implicit 

finite difference form and to solve it via a MATLAB computer program. The model was validated 

experimentally. 

2. Methods and materials 

2.1. Numerical methods 

The superchilling process is a highly transient process that develops steep thermal gradients in the 

product near the surface. It is therefore necessary to use a high resolution in the grid and, hence, small 

time steps. It is well- known that a one-dimensional finite difference model has been used for many 
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years to study the freezing process (Cleland, 1990; Bonacina et al., 1973a; 1973b; Hughes and Charng, 

1983; Pham, 2008; Resende et al., 2007). In this study, the one-dimensional finite difference model for 

general heat transfer calculations has been used to study the superchilling process. The thermal 

physical property correlations of food products have been taken from ASHRAE handbook (2006). The 

temperature method with apparent heat capacity combined with an implicit integration scheme proved 

to give desirable results on specific test cases. Desirable accuracy was achieved by manually varying 

the time step and grid resolution. The results of the implicit and explicit simulations were compared 

for sufficiently fine resolution in space and time and gave no significant differences. The results from 

the simulation can be visualized in many ways, each showing the consequences of rapid thermal 

treatment of the product. This paper focused on visualizing the temperature and the ice fraction of the 

product.  

2.2. Laboratory experiments for validation of the model 

2.2.1. Materials and superchilling process 

Salmon fillets (0.9–1.2 kg) of thickness ranging from 0.025 to 0.027 m were provided by Lerøy 

Midnor (Hitra, Norway). Approximately 210 g of sample (salmon fillet) was weighed and stored at 4 

 for 24 h before the superchilling process to ensure a constant temperature in all samples. The initial 

temperature of the salmon fillets was approximately +4.1  before starting superchilling process. The 

superchilling process was performed in an Impingement Advantec Lab Freezer (JBT Food - tech, 

Rusthållsgatan 21, SE-251 09, Helsingborg, Sweden) at NTNU Energy’s laboratory in Trondheim, 

Norway. A 2
4
-two-level full-factorial design was used with four variables: superchilling medium 

temperature, surface heat transfer coefficient, superchilling process time, and product thickness. 

Immediately after superchilling, the ice fraction was measured by a calorimetry method. 

2.2.2. Measurement of the temperature during the superchilling process  

The temperature was measured at four different locations on the samples during the superchilling 

process: the surface, near surface, midway to the centre and the centre. Three thermocouples were 

used at each location (3 - surface, 3-near surface, 3 - midway centre and 3 - centre). The 

thermocouples were connected to a temperature recorder while the sample was cooled in the 

impingement freezer. The temperatures of the cool air and of the sample were recorded every 4 

seconds. The thickness of sample was approximately 0.027 m. The temperature was measured by 

inserting thermocouples approximately 0.001 m from the surface, 0.002 m from the surface (near 

surface), 0.007 m from the surface (midway to the centre) and 0.014 m from the surface (centre). 
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2.2.3. Measurements of ice fraction by calorimetry 

The ice fraction in the superchilled salmon fillets was measured using a calorimetric method. Steel 

thermoses (Finemech Inc., Cylindrical Dewar Container, Portola Valley, USA) were used. The steel 

thermoses were filled with 2 l of water (~24 ). Two l was minimum amount of water that could 

ensure that all of the six thermocouples for each thermos were inside the water. The samples were 

weighed directly after superchilling. The thermoses were tightly sealed, and the systems were left for 

temperature equalization under continuous logging (Agilent Technologies Inc., Agilent 34970A, Santa 

Clara, USA) for approximately 24 h. Analysis was performed on three parallels for each experiment. 

Based on temperature data from the equalization process, the ice fraction after superchilling was 

calculated by method of enthalpy balances explained elsewhere (Stevik et al., 2010). The conductive 

heat loss from the thermoses and the specific heat capacity of the steel thermoses linings were 

considered.  

2.2.4. Surface heat transfer coefficient measurement 

For modeling of food superchilling, apart from thermal properties of the food it is necessary to 

measure the surface heat transfer coefficient (HTC). This is very important in heat transfer 

calculations. In this study, the experiments for measuring surface heat transfer coefficient (HTC) were 

performed in an Impingement Advantec Lab Freezer. Aluminum plate (Al- plate) (20 x 10 x 2.5 cm) 

was used as metal transducer. A hole under the surface of the plate was made in order to insert five 

thermocouples (T-1, T-2, T-3, T-4 and T-5). The five thermocouples were connected to a temperature 

recorder while the plate was cooled in the impingement freezer. The initial temperature of the whole 

plate was controlled before placing it in the impingement freezer at -30 . The temperature of the cool 

air and the plate were recorded every 2 seconds. The heat transfer coefficient was measured at 1.5, 2, 

and 2.5 kPa pressure difference of the fan, and experiments were conducted in three parallel run. 

Calculations of the heat transfer coefficient were made after the attainment of the cooling curves of the 

aluminium transducer (Resende et al., 2003).  

 
                                (1)                                                

The coefficients (G) of the linear regression of versus time were obtained and used in 

the Eq. (1) to find surface heat transfer coefficient. 

where Tial = initial temperature of aluminum plate,  

 Tal = surface temperature of aluminum plate at any time t,  

 T∞ = cooling air temperature,  

 h = surface heat transfer coefficient, W/m
2
.K 

 ρal = density of aluminum plate, kg/m
3
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 t = time, second 

 Cpal = specific heat capacity of aluminum, J/kg.K 

 Aal = surface area of aluminum plate, m
2
 

 Val = volume of aluminum plate, m
3
 

 Tal is obtained by the average values from the readings of the five thermocouples located inside the 

aluminum transducer. The average values (from three parallel runs) of the surface heat transfer 

coefficient were obtained for each pressure difference of the fan.  

2.2.5. Design of experiment and Statistical data analysis 

 Minitab 16 software was used in design of experiment and statistical data analysis. A general linear 

model, (post-hoc test) under Tukey’s simultaneous test was applied whenever the analysis of variance 

(ANOVA) results were significant. The reason for performing the post-hoc test is to compare pairs of 

numerical results with laboratory experiment results simultaneously to understand why the significant 

results were obtained for the overall ANOVA. The statistical significance of each run (comparison 

runs: laboratory experimental and numerical results) was p < 0.01. 

3. Results and discussions 

3.1. Numerical simulation of the salmon fish: Superchilling process 

Figure 1 shows the time–temperature profile for the numerical simulation during superchilling process 

of food products (-30 , 227 W/m
2
.K). The surface heat transfer coefficient value, 227 W/m

2
.K is 

within the range (250 – 300 W/m
2
.K) which has been reported by Goransson and Londahl (2005).  The 

initial temperature of the food products was approximately +4.1 , from 4 minutes. Figure 1 shows the 

superchilling storage time of the food products, as defined in the previous section, the superchilling 

storage temperatures is between -1 and -1.5 . The red line in Figure 1 shows the average temperature 

during all stages of the product handling, the remaining lines show the temperature at the different 

points within the food product. 
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Figur 1: Time - temperature profile of food product by impingement freezing (-30
o
C, 227 W/m

2
.K), 

numerical results  

Figure 2 shows time - temperature profile (-30 , 227 W/m
2
.K) for the laboratory experiment results.  

These results (numerical and laboratory results) show that the surface of the food experiences a rapid 

change in temperature compared to the core part of the product. This behaviour is due to both the 

formation of ice crystals just a few millimeters from the surface during the superchilling process and 

the lack of ice crystals formed at the centre of the food products. In addition, the temperature dropped 

slowly because the water-to-ice transition substantially changes the thermo-physical properties of food 

materials (Alizadeh et al., 2007; Chin and Spotar, 2006).  
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Figure 2: Temperature-time profile at different locations during superchilling process (-30
 o
C, 227 

W/m
2
.K), laboratory experiment 

The results were further proved by performing histology steps plus microscopic analysis on the 

samples immediately after superchilling process. Figure 3, shows the microstructure size of the salmon 

fillets at -30 , 227 W/m
2
.K for 2 min. Pre-superchilled (unprocessed) salmon muscle was used as a 

control for the purpose of microstructure comparison with the superchilled samples. It was observed 

that at the centre of the superchilled samples, there was no ice crystals formed; this agrees well with 

the finding that the temperature at the centre is higher than the initial freezing temperature of Atlantic 

salmon, -1.1 . The initial freezing point was indicated by the beginning of the freezing plateau at the 

centre of the sample. The initial freezing point of the salmon was determined using separate samples 

that were totally frozen in the impingement freezer for approximately 30 minutes, and these samples 

were not used for any other analysis.  
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Control 

surface centre 

  

Figure 3:  Micrographs of unsuperchilled and superchilled salmon tissues:  surface  and centre layers 

  

Figure 4 shows the degree of superchilling formed after 4 minutes of superchilling process, -30 , 227 

W/m
2
.K and 0.014 m half of the product thickness.  The degree of superchilling at the surface was 

about 50 % and 0.001 % at the center. The red line, is the average degree of superchilling at the food 

product, which was 32.5 %, and the remaining lines show the ice level in the different points within 

the food products. 

100 µm 
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Figure 4: Time- degree of superchilling profile of food product (-30oC, 227.14 W/m2.K). Shows ice-

levels at the surface, centre, average and at different parts of the product. 

 

3.2. Calorimetry measurement: Laboratory experiment results compared to numerical 

results  

The formation of ice crystals inside the food products during the superchilling process can be 

influenced by a number of factors such as, product thickness, density, surface area of the food, 

temperature difference between product and superchilling medium, surface heat transfer coefficient, 

superchilling process time, and, of course physical, chemical composition of fish and thermal 

properties of product.  In order to validate the model, design of experiment was performed to study the 

effect of superchilling medium temperature, surface heat transfer coefficient, superchilling process 

time, and product thickness during calorimetry measurement of ice crystals formed in the salmon 

fillets and the results were compared to that of numerical simulation.  

3.2.1. Plots of Interaction between Factors   

Figures 5 and 6 show the interaction results for laboratory experiment and numerical simulation, 

respectively. The plots show the interactions (2-way, 3-way and 4-way effects) of all four factors. The 

interaction plot graphs, the means of the triplicates (degree of superchilling) are organized based on 

the high and low values of the factors. When lines are parallel, interactions effects is small or no 

interaction. The more different the slopes, the more influence the interaction effect has on the results. 
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To visualize these effects, the degree of superchilling was set on the Y- axis for each combination of 

factors.  

Effect of product thickness: It is well- known that smaller, thin product will cool and release heat 

more quickly than large, thicker products. The product thickness was varied from 0.025 to 0.027 m in 

order to observe the effect of the ice crystal formation inside the food product. It was found that, the 

product thickness was inversely proportional to the amount of ice crystals formation during numerical 

simulation and calorimetry measurement results. However, due to very small difference between the 

two values of the thickness (only 0.002 m), the influence of product thickness on the results was small. 

Figures 5 and 6 show lines that are nearly parallel in the column of the product thickness, which 

indicates that, there is little interaction between thickness product and other factors.  

Effect of superchilling medium temperature: The effect of superchilling medium temperature 

shows influence both in numerical and experimental results. The samples had a higher ice level when 

superchilled at -30  than those superchilled at-20 . This is because the temperature difference 

between superchilling medium temperature and food is the driving force for removal of heat (Sun and 

Zheng, 2006). If the superchilling temperature is lowered, the superchilling rate will always increase. 

Therefore, lowering the superchilling temperature, from -20 to -30  is one method to accelerate the 

superchilling process. It was also noticed that, when temperature interacted with other factors at the 

higher superchilling medium temperature, the level of degree of superchilling was higher than in lower 

superchilling medium temperature  

Effect of surface heat transfer coefficient: During superchilling small amount of water is converted 

to ice crystals, (5 % to 30 %). At this point, the surface heat transfer coefficient is very important 

because the difference between surface temperature of product and the superchilling medium 

temperature is high.  Statistical results also indicated that, the high level of ice crystals was achieved at 

higher value of surface heat transfer coefficient (227 W/m
2
.K) than at lower value (153 W/m

2
.K). 

Effect of superchilling process time: is one of the most important parameters in the superchilling 

process. It is well- known that the more time the product spends in the freezer, the more ice crystals 

will be formed within the products. It was observed that the degree of superchilling is directly 

proportional to the superchilling process time. The interactions between time and other factors were 

also observed to influence on the results. 
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3.2.2. Residual Plot  

The final and necessary step is to check the error in the results using residual diagnostic tools. Figures 

7 and 8 show residual plots for laboratory and numerical results, respectively. It can be seen that in the 

residual plots for laboratory experiment and numerical results, most of the data points are fitted in the 

line (normal probability plots). This suggests that, the normal distribution is a good model for these 

data sets. The histogram plots for both experiment and numerical results are more-or-less bell-shaped, 

which confirms the conclusions from the normal probability plots. Nevertheless, both numerical and 

laboratory results were correct; the residuals versus fits values spread well in the points for the highest 

fitted values, which suggest that the models (experimental and numerical) fit the data well. 

Additionally, individuals control charts (I-charts) of residuals versus observed order, which assess the 

independence assumptions, do not exhibit any concerning features, both in numerical and laboratory 

results. 
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 Figure 7: Residual plots for degree of superchilling laboratory experiment results 
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 Figure 8: Residual plots for degree of superchilling numerical simulation results 

Figure 9 shows the degree of superchilling numerical results versa laboratory experiment results. The 

relationship is fairly perfect; the effect of experimental results suffice for an entirely accurate 

prediction of the numerical results, except for runs 4, 7, 20 and 36. ANOVA with Tukey simultaneous 

test was also carried out to prove the results in the Figure 9. The ANOVA did not show significant 

differences at P < 0.01 between experimental and numerical results, except for runs 4, 7, 20 and 36. 

The significant differences observed in these runs may have been caused by uncertainties present in 

the calorimetric measurement such as fluctuation of temperature (room temperature) and reading of 

the equalization temperature. Thorough testing of the developed model was implemented by carrying 

out different simulation under different scenarios using MATLAB software and by intensive 

laboratory experiments. It is worth mentioning that there is a good level of agreement between 

numerical simulation and experimental results.  
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Figure 9: Degree of superchilling, numerical results versa degree of superchilling laboratory 

experimental results 

4. Conclusion 

In the present study, a one-dimensional implicit finite difference numerical model for predicting 

partial freezing time necessary to achieve an optimal degree of superchilling was developed. There is 

good agreement between numerical simulation and experimental results except 4 runs which show 

deviation. The significant differences observed in these 4 runs may have been caused by uncertainties 

present in the calorimetric measurement. The superchilling process time, surface heat transfer 

coefficient, product thickness and superchilling medium temperature gave satisfactory agreement 

between simulation and laboratory results.  

It should, however, be mentioned that this study is only the first step in enabling superchilling 

dynamics as an analysis tool for improving the process. Tremendous efforts are needed in forthcoming 

study to further quantify the model. Determine the optimum superchilling process conditions for 

extending the shelf life and maintaining the quality of foods is the next step. 
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Introduction

perchilling is the process of partial crystallization of ice

m supercooled water in food products. The superchilling/

rtial-freezing process has two stages: 1) cooling the

oduct to initial freezing point and 2) removing the latent

at of crystallization, whereby 5e30% of the water is frozen

egree of superchilling). The phase transition stage of the

perchilling/partial-freezing process involves the conversion

water to ice through the crystallization process and is the

y step in determining the efficiency of the process and the

ality of the resulting superchilled product. The degree of

perchilling (ice fraction) is amount of water (5e30%) which

frozen inside the food product, and it is one of the most

portant parameters which define the quality of the super-

illed food product. Superchilled storage is the storage of

perchilled food product at 1e1.5 �C below its initial freezing

int. During the storage time, the ice formedwill absorb heat

m the interior and eventually reach equilibrium. Super-

illing provides the food product with an internal ice reser-

ir so that no external ice is required during transportation or

orage for short periods (Kaale et al., 2011).

Food products are multicomponent systems of uneven

ality containing many substances, with water being the

ost abundant component (50e95%), which exists in different

rms in the tissue (Dincer, 1997; Do et al., 2004; Kiani and Sun,

11). Superchilling of food products entails the conversion of

minor part of this water (5e30%) into ice crystals. It is the

rmation of these ice crystals that causes major problems in

perchilled food products. The formation of fine crystals

ring the superchilling process that are evenly distributed

th inside and outside the cells leads to better product

ality preservation due to reduced damage to the tissue

levalier et al., 2001; Dincer, 1997; Fernandez et al., 2008;

ani and Sun, 2011; Martino and Zaritzky, 1986; Martino et al.,

98; Petzold and Aguilera, 2009). This even distribution

ually occurs at high superchilling rates. Slow superchilling

tes usually cause texture damage due to the formation of

rge ice crystals.

The volume and value of fresh, refrigerated foods is

creasing along with the flow of these products between

untries, and superchilling appears to be a better mode for

eir preservation (Kaale et al., 2011). This volume increase is

e to a number of factors that are driven by changes in

chnology and lifestyle. However, the sensory and nutritional

ss that occurs in superchilled food products is a major

ncern for consumers. Bahuaud et al. (2008) reported that the

e crystals formed during superchilling were large enough to

mage the integrity of the fish muscle during the super-

illing process. The large intra- and extra-cellular ice crystals

rmed during superchilling has a significant effect on the

orphological changes, cell destruction and the concentra-

n of the unfrozen matrix, which may result in a change in

, osmotic pressure, and ionic strength. These changes can

fect biochemical and physicochemical reactions, such as

otein denaturation, lipid oxidation and enzymatic degra-

tion, in superchilled food products. However, there are few

blished studies describing ice crystal growth during the

superchillin

of the char

superchillin

a better sci

chilling an

used. Ther

the ice cry

superchillin

sizes durin

conditions.

2. Ma

2.1. Ma

Salmon fill

28 mm wer

were remov

the superch

to the rem

insulators

The salmon

superchillin

samples. S

Advantec L

251 09, Hel

Trondheim

design of e

used with

(SHTC) and

different su

labelled A

temperatur

(153 W m�

experimen

Impingeme

set up and

where (Kaa

Once super

pieces each

stored in

�1.7 � 0.3 �

2.2. Im

The imping

employs h

quick free

freezing pr

and the h

upwards an

ence across

ture range

180 mm an

dimensions

from the m

i n t e rn a t i o n a l j o u r n a l o f r e f r i g e r a t i o n
rocess and during superchilled storage. Studies

eristics of the ice crystals formed during the
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r a comparison of the different technologies

e, the objectives of this work were to analyse

l microstructure in salmon fillets after the

rocess and to assess the change of ice crystal

uperchilled storage under various operating

mon fillet was chosen as a case study.

ials and methods

als

(0.9e1.2 kg) of thickness ranging from 26 to

ovided by Lerøy Midnor (Hitra, Norway). Skins

from the fillets to enhance heat transfer during

ng process. This enhanced heat transfer is due

l of lipids in the skin of fish, which are good

heat transfer (McClements and Decker, 2008).

ets were prepared and stored at 4 �C before the

rocess to ensure a constant temperature in all

rchilling was performed in an Impingement

Freezer (JBT FoodTech, Rusthållsgatan 21, SE-

borg, Sweden) at NTNU Energy’s laboratory in

orway. Minitab 16 software was used in the

riment. A 22-two-level full-factorial design was

variables: surface heat transfer coefficient

pingement superchilling temperature. Four

chilling treatments were performed and were

at transfer coefficient 153 W m�2 K�1, air

20 �C), B (227 W m�2 K�1, �20 �C), C
1, �30 �C) and D (227 W m�2 K�1, �30 �C). The
rmeasuring SHTC valueswere performed in an

dvantec Lab Freezer. Details on experiments

ation used to calculate SHTC explained else-

t al., 2012). Five fillets were used per treatment.

led, the salmon samples were sliced into seven

., equal to the number of sampling days, and

tly sealed plastic bags in a cold room at
ement freezers

ent freezer is a tunnel freezing system which

velocity refrigerated air impingement jets to

food products. During the freezing/partial

s, the products are placed on a conveyor belt,

velocity air passes through the conveyor

ownwards Fig. 1. The range of pressure differ-

e fan is 1.5e2.5 kPa and the working tempera-

þ20 to �46 �C. Maximum product height is

aximum surface area is 500 � 459 mm. Other

ch as size/spacing of holes are not available

facturer. Fig. 1.
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3. Measurement of the temperature during the
perchilling process and superchilled storage

he temperature wasmeasured at three different locations on

e samples during the superchilling process: the surface,

idway to the centre and the centre. Three thermocouples

ere used at each location (3e surface, 3emidway centre and

e centre). The thermocouples were connected to a temper-

ure recorder while the sample was cooled in the impinge-

ent freezer. The temperatures of the cool air and of the

mple were recorded every 4 s. The thickness of each sample

as approximately 28mm. The temperaturewasmeasured by

serting thermocouples approximately 2 mm from the

rface, 7 mm from the surface (midway to the centre) and

mm from the surface (centre).

The temperature, as one of the critical parameters during

perchilled storage, was strictly controlled during this

udy. The storage box was designed (92 � 73 � 54.5 cm)

ith a heating element inside to ensure adequate temper-

ure regulation. Three Pt100 temperature sensors were

serted in the storage box: one was used to measure the air

mperature, and the other two were used to measure the

rface and centre temperatures of the superchilled salmon

lets. The set-point temperature was �1.7 �C. The box was

aced inside the storage room, which was at a temperature
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4. Microscopic analysis

wo pieces were cut from the top surface to the bottom

rface of each superchilled sample (�1.7 � 0.3 �C) trans-

rsally to the muscle fibre using a standard knife blade that

as previously stored at �1.7 � 0.3 �C. This procedure was

nducted in a walk-in freezer to ensure a perfect cold chain.

this study, a fixation method similar to those proposed by

lizadeh et al. (2007), Martino and Zaritzky, (1988) was used to

serve the spaces left by the formation of ice crystals in the

ssue. The samples were fixed by immersion in Clarke’s

lution (absolute ethanol and glacial acetic acid, 3:1) at

1.7� 0.3 �C for 24 h. The control (unprocessed) samples were

ed using the same solution but at 4 �C. The fixed samples

ere then heated to room temperature and were subse-

ently dehydrated using absolute ethanol. The dehydrated

mples were then embedded in paraffin. The embedded

mples were cut transversally to the muscle fibre using

3.1. Su

The develo

the superc

shows the

C and D. A

of the sam

freezing p

beginning

The initial

separate sa

freezer for

used for an

3.2. Tim
process an

Figs. 3 an

profiles du
(Autocut 2055, Leica Microsystems, Germany)

k slices. The sliced samples were then stained

method developed by Alizadeh et al. (2007) with

tions: Tissue Clear was used for rehydration,

ere immersed in 1% blue aniline for 1 min, and

ed before mounting.

ared slides were observed with a microscope

p 2 plus, Zeiss Inc., Germany) fitted with

ra (Nikon DS-5M, Nikon, Japan). The images of

e recorded and treated using the stereological

ram CAST2 (Olympus Inc., Denmark). Two

mely the cross-sectional area and the equiva-

, were used in the evaluation. The cross-

refers to the surface area of the cross-section

(ice crystal or fibre muscle). The equivalent

ach ice crystal is defined as the diameter of

the equivalent area, Sp. From the data set of

t diameter, themean crystal diameter,Deq, was

analyses were performed for the six different

ee e surface and three emidway to the centre)

ach case considered, more than 100 incidences

were evaluated.

ical analysis

ons of the microstructure sizes for different

reatments and the locations with respect to the

rage days were determined by one- and two-

of variance (ANOVA) using Minitab 16 soft-

al linear model (post-hoc test) under Tukey’s

test, was applied whenever the ANOVA results

t. The reason for performing the post-hoc test

pairs of locations/treatments with storage days

y to understand why the significant results

( 2 0 1 3 ) 1 1 0e1 1 9
ndard deviation, and the statistical significance

ment was p < 0.05.

ts

hilling simulation processes

model (Kaale et al., 2012) was used to predict

ing process times in the present study. Fig. 2

e-degree of superchilling for treatments A, B,

duct thickness of 14 mm, i.e., half the thickness

, was used for each treatment. The initial

was �1.1 �C, which was indicated by the

e freezing plateau at the centre of the sample.

zing point of the salmon was determined using

les that were totally frozen in the impingement

roximately 30 min, and these samples were not

ther analysis. Fig. 2.

temperature profiles for the superchilling
perchilled storage

show the superchilling temperatureetime

the superchilling process and during storage,
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spectively. Fig. 3 shows that during the superchilling

ocess, the surface of the food experiences a rapid change

temperature: �6 �C at the surface compared to þ4 �C at the

re part of the product. The temperature dropped slowly

cause the water-to-ice transition releases latent heat.

g. 4 shows the evolution of the air temperature in the

orage box and the surface and centre temperatures during

perchilled storage. The profile shows the temperature over

ly one day of storage (24 h); the temperature was main-

ined at �1.7 � 0.3 �C for the entire storage time. After
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Fig. 2 e Ice fraction vs. time
mperature equalization, i.e., one day of storage, the

mperature at the centre of the samples was the same as

at at the surface Fig. 4.

shaped fibres.

was 99 � 11 mm

et al. (2003).

2,01,51,00,5
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g. 3 e Timeetemperature profile at different locations

ring superchilling process.

Fig. 4 e Timee

storage.
copy investigations

tion of the microstructure size during
ocess
hs of salmon fillet samples superchilled using

chilling treatments are shown in Fig. 5. Pre-

unprocessed) salmon muscle was used as

e purpose of microstructure comparison with

d samples. The cross-section of the unpro-

exhibited a uniform distribution of regularly

10 12
The equivalent diameter of the muscle fibres

, which is close to the value reported by Zhu

temperature profile during superchilled
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Table 1 summarizes the statistical results of the ice crystals

rmed during the different superchilling processes and

ring superchilled storage. The ice crystals formed during

ocesses A and C appeared to be large in size (Table 1, Figs. 6

which are

extra-cellu

difficult to

The statist

Fig. 5 e Micrographs of unsuperchilled and superchilled s
d 7). Treatments A and C are slow superchilling processes, difference (P <

Table 1 e Equivalent diameters of the ice crystals (Mean ± standard deviation

Storage
time
(days)

Superchilling processe

A B

Surface Mid centre Surface Mid centre Surface

0 60 � 16 100 � 23 45 � 11 61 � 9 54 � 9

1 124 � 14 170 � 19 110 � 4 144 � 5 114 � 16

3 148 � 18 175 � 9 132 � 6 180 � 10 147 � 14

7 170 � 33 198 � 44 140 � 8 194 � 14 159 � 15

14 189 � 18 237 � 27 160 � 8 198 � 9 169 � 12

21 207 � 22 343 � 4 196 � 44 237 � 20 224 � 10
erally considered to form large and mainly

ice crystals (Zhu et al., 2003), but it was very

erve extra-cellular ice crystals in these samples.

results indicated that there was no significant

on muscles: surface layers.
0.05) between the ice crystals formed during

) during superchilling.

s

C D

Mid centre Surface Mid centre

101 � 18 25 � 2 52 � 7

167 � 14 95 � 5 131 � 3

211 � 20 108 � 7 144 � 23

218 � 28 117 � 8 158 � 17

251 � 12 129 � 9 164 � 4

293 � 41 184 � 36 209 � 25

http://dx.doi.org/10.1016/j.ijrefrig.2012.09.006
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atments A and C (Table 1; Figs. 5e7). The equivalent

ameter of ice crystals formed during treatment A was

� 16 mmat the surface layer and 100� 23 mmmidway to the

ntre layer, which was much larger than those formed

ring treatments B and D (Table 1, Figs. 5 and 6). Thus, slow

perchilling processes such as A and C usually result in

xture damage to real foods due to the formation of large ice

ystals (Zhu et al., 2003, 2005). The damage induced during

rate obtain

temperatur

a function o

of water fro

Goransson

(treatments

in this spac

D and B), a

both outsid

3.3.2. Ice
The evolut

tant during

ice crystals

g. 6 e Boxplots showing equivalent diameters of the ice

ystals at the surface layers of salmon fillets vs. storage

ys at different treatments.
w superchilling/partial freezing is the result of the increase

concentration of extra-cellular electrolytes, which in turn

ads to an increase in the concentration of intracellular
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g. 7 e Boxplots showing equivalent diameters of the ice

ystals at the midway centre layers of salmon fillets vs.

orage days at different treatments.
azur, 1984). Cells also shrink osmotically in

e increasing concentration of extra-cellular

superchilling/freezing, i.e., it is a consequence

of the cells to shrink to the extent required for

brium (Martino and Zaritzky, 1986; Martino

zur, 1984; Shenouda, 1980).

t D, the system is able to remove heat quickly

the superchilling process to produce fine

e evenly distributed both inside and outside the

t D resulted in small ice crystals (Figs. 5e7, 10

ith an equivalent diameter of (25.15 � 2 mm) at

er and 52 � 7 mm midway to the centre layer

to the rapid superchilling treatment (only

reatment B ice crystals were larger, 45 � 11 mm

ayer and 61� 9midway to the centre layer; they

lled under the same SHTC as treatment D
1) but at different superchilling temperatures

s. 6 and 7 and Table 1). These differences

ents can be explained by the faster freezing

t higher heat transfer coefficients and lower air

Because the rate of ice crystallization is

e speed of heat removal as well as the diffusion

he cell to the intercellular space (Dincer, 1997;

Londahl, 2005), at a lower superchilling rate

nd C), fewer and larger ice crystals are formed

hile at a higher superchilling rate (treatments

ge number of smaller ice crystals are formed

d within the cell.

stal evolution during superchilled storage
of the size of the ice crystals formed is impor-

erchilled storage. During the evaluation of the

e statistical results indicated that the ice crys-

formed at day zero (during the superchilling

significantly smaller ( p < 0.05) than those

ng superchilled storage. The superchilling

hly transient process involving steep thermal

ch results in different layers with different ice

uring storage. From the microscopic analysis,

hree different layers of different sizes of ice

the salmon fillets. Fig. 8 shows the ice crystals

nt D from day zero (superchilling process), day

, and day seven (superchilling storage). In this

ysed two layers because the ice crystals at the

yer were different from those at the bottom

and it was not clear if this was due to lipid-

on or due to the presence of the conveyor belt

ment freezer, which is situated at the bottom

ples during the superchilling process. To clarify

top surface and midway-to-the-centre layers

(Figs. 6e8).

, the equivalent diameters of the intracellular

e 110� 4 and 95� 5 mmat the surface layer and

1 � 3 mm at the midway-to-the-centre layer for

eated using treatments B and D, respectively

pared with 124 � 14 and 114 � 16 mm at the

nd 170 � 19 and 167 � 14 mm at the midway-to-

r for the samples treated using treatments A

vely. Fig. 9 and Table 2 show the means of the

the two locations within the superchilled

( 2 0 1 3 ) 1 1 0e1 1 9 115
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mples (surface layer and midway-to-the-centre layer) for

e different treatments (A, B, C and D), which are displayed

ith individual 95% confidence intervals for a mean based on

e pooled standard deviation. The statistical results indi-

ted that, for the location data, there was no significant

fference between surface layers A and C, at P < 0.05.

eanwhile, the midway to the centre layer D did not show

gnificant difference between surface layers A and C (Table 2

d Fig. 9). There was also no significant difference between

e midway-to-the-centre layer A and C and midway-to-the-

ntre layer B and surface layer A.
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g. 9 e Boxplots showing equivalent diameters of the ice

ystals vs. storage days at different locations and

eatments.
ween the superchilling process temperature

) and the superchilled storage temperature

This large temperature differencewill cause the

ce crystals, particularly the small ones thatwere

urface of the salmonfillets. The second factor is

radient effect that was created during the

process. It is well known that a temperature

es ice recrystallization during superchilled

erature gradients, whether large or small, will

stallization during superchilled storage. These

observed to result in slightmelting of the small

rmed at the surface layer and the subsequent

to larger ice crystals. This process causes larger

row,which results in a reduction in thenumber

t the surface layer of the superchilled salmon.

of storage, when temperature equalization was

in the samples, there was gradually growth of

r ice crystals compared to that observed before

qualization (i.e. day 0 and 1). Conversely, spurt

size of ice crystals were observed between 14

storage (Figs. 5e7, 10 and Table 1). It was not

lyse the samples on day 28 due to the spoilage

ay have been caused by oxidation or a problem

obiology (Table 1, Figs. 6 and 7).

of ice crystals after temperature equalization

torage) specifically that observed during day 14

may be associated with temperature fluctua-

ald ripening. The present study indicated that

samples, the ice crystals were growing signif-

14 days of storage. In the vacuum-packed

one day of storage where the temperature

as achieved within the samples) there was no

wth of ice crystals at any storage time (Kaale

12). The differences of the two studies can be

llows; during the air-packed study the samples

o seven pieces each, i.e., equal to the number of

, and stored in one bag for each treatment.

pling process the bags were opened and closed

face and midway centre layers.
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every sampling day. This could cause temperature fluctu-

ions which can accelerate the increase in mean ice crystal

e compared to that of vacuum-packed.

3.2.1. Other factors which cause ice crystals growth during
perchilled storage. Ice crystals have a natural tendency to

crease in size with increase storage time (Alvarez, 2009). The

rger crystals become larger at the expense of the smaller ice

ystals. The study of Hagiwara et al. (2011) reported that the

e crystals grew in size extensively with increasing storage

e.

During superchilled storage, small ice crystals are ther-

odynamically unstable relative to large ice crystals (Mazur,

84; Shenouda, 1980) and undergo changes in number, size,

d shape, which phenomena are known collectively as

crystallization (Russell et al., 1999). During recrystallization,

e crystals can increase in average size and decrease in

mber through the redistribution of water from small to

rge crystals (Pham and Mawson, 1997). Some recrystalliza-

n occurs naturally at constant temperatures because water

vapour wil

pressure (i

lower vapo

is a phenom

Temper

factor to co

the increas

superchille
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quently, th

in the peri
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(Alizadeh e

3.3.3. Eff
superchillin
As demon

results in a
nd to transfer from regions of high vapour

at the surface of small crystals) to regions of

ressure (at the surface of larger crystals), which
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mean ice crystal size. If the temperature during
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ount of unfrozen water increases. Conversely,
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a large number of small nuclei and thus a large number of

all ice crystals that grow both within and outside cells, and

nsequently, the cells maintain their integrity which in turn

inimizes drip loss during thawing (Smith, 2011). However,

is advantagewas reduced during superchilled storage by the

pid growth of the size of ice crystals in the salmon fillets.

he growth of the size of ice crystals during superchilled

orage may impart mechanical damage by physically

pturing cell walls, which may result in an increase in drip

ss (a greater loss of liquid cellular components), protein

naturation, a reduction of the water-holding capacity and

her quality parameters related to the damage of the cell

ructure.
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illed storage. The results further indicated that, the growth

the intracellular ice crystal was significant at (P < 0.05) for

e entire storage time. However, after temperature equal-
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tracellular ice crystals compared to that observed before
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ves of this work were to compare ice crystal sizes of pre-rigor Atlantic salmon fillets subjected
esses of superchilling and to assess the size changes during storage of superchilled samples at
C. The fillets were superchilled in an impingement freezer at either a slow rate (�20 �C,

K, 4.2 min) which is referred to as process S or a fast rate (�30 �C, 227W/m2 K, 2.1 min) which
to as process F before storage for 29 days. Significantly smaller (p < 0.05) equivalent diameters
tal occurred at faster superchilling rate when compared to slower superchilling rate. The
f these processes on the microstructure of pre rigor salmon fillets was studied. The equivalent
f the intracellular ice crystals formed were 60 � 5 and 23 � 1 mm for the samples subjected to
and F, respectively. Significant differences were observed between the size of ice crystals
crystals for
cry
ing the superchilling process and during storage of superchilled samples. The formation of ice
thin salmon muscle regardless of the superchilling rates was an important factor in reducing
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cell structure damage.
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Introduction

1. Superchilling process

Superchilling is the process of partial ice-crystallization from
percooled water in food products. During this process, a thin
ozen layer of about 1e3 mm thick is achieved on the surface of
od product depending on degree of superchilling required. The
gree of superchilling is the amount of water (5e30%) which is
rtially frozen inside the food product and is one of the most
portant parameters which define the quality of the superchilled
od product. Magnussen, Haugland, Torstveit Hemmingsen,
hansen, and Nordtvedt (2008), Stevik and Claussen (2011) and
evik et al. (2010) have reported that the amount of ice crystals
ored inside a superchilled product is one of the most important
rameters which determine the quality of the end product. Also, it
s been reported that a degree of superchilling between 5 and 30%

is accepted
cause highe

1.2. Ice crys

The qua
erties of the
and intrace
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& Zaritzky,
2009). Thes
storage tim
muscle food
Slowpartia
cause textu
ice crystals
Shenouda,1

osmotic pressur
post-rigormusc
ice (Chevalier,
Dincer, 1997; F
2008; Kiani & S

ei 1d, Norway.

L.D. Kaale).

erved.
that a degree of superchilling higher than 30% will
ip loss in food products (Stevik & Claussen, 2011).

ormation in pre-rigor muscle

f superchilled foods is mainly related to the prop-
crystals, such as their size, location (i.e. extracellular
ar) and shape during the superchilling process
leau, Lamballerie, & Bail, 2009;Martino, Otero, Sanz,
8; Martino & Zaritzky, 1986; Petzold & Aguilera,
operties are influenced by the rate of superchilling,
perature fluctuation andphysiological status of the

.e. pre-, in- or post-rigor muscle (Shenouda, 1980).
zing/superchilling rates inpost-rigormuscle usually
mage due to the formation of large and extracellular
ale, Eikevik, Bardal, Kjorsvik, & Nordtvedt, 2013;
) probably because the extracellularfluid has a lower
e than the intracellular fluid. Rapid superchilling of
le also results in the initial formation of extracellular
Sequeira-Munoz, Bail, Simpson, & Ghoul, 2001;
ernandez, Otero, Martino, Molina-Garcıá, & Sanz,
un, 2011; Martino et al., 1998; Martino & Zaritzky,
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986; Petzold & Aguilera, 2009). However, the extracellular crystals
rmed during rapid superchilling aremuch smaller andmore finely
istributed than those in slowsuperchilling (Kaale, Eikevik, Bardal, &
jorsvik, 2013; Kaale, Eikevik, Bardal, et al., 2013). The formation of
xtracellular ice still dehydrates the cells to some extent, but as the
mperature decreases rapidly, the cells become supercooled and

he remaining intracellularwater freezes before it has time to diffuse
ut of the cell.
In pre-rigor muscle, the cell fluids are tightly bound to the

tracellular proteins and the diffusivity from inside to outside the
ell is therefore limited resulting in the formation of intracellular
e crystals independent of superchilling/partial freezing rates
Shenouda, 1980). A large number of smaller ice crystals are formed
ithin the cell. If very slow superchilling/partial freezing rates are
sed, the muscle can go into rigor mortis during the superchilling
rocess and ice crystal formation will be extracellular.
There is pronounced interest for superchillingmuscle in the pre-

igor state. Formation of the ice crystals within the cells regardless
f the superchilling rates is the most important factor for reducing
amage of food muscles and hence maintaining their quality.
reezing pre-rigor Atlantic salmon fillets has also been found to
onserve more of the positive quality aspects than freezing of post-
igor muscle (Einen, Guerin, Fjæra, & Skjervold, 2002; Skjervold
t al., 2001). An alteration of the freezing and thawing regime
llowing for more rigor contraction might potentially conserve
ore of the positive quality aspects of pre-rigor muscle of the food
roducts. The pre-rigor filleting allows the fish to be processed
irectly after slaughter; therefore no storage period before filleting
necessary (Bahuaud et al., 2008). Pre-rigor fillets reach the
arket 3e4 days fresher compared to post-rigor fillets and, as
matter of quality, show a reduction in the severity of gaping,
rmer flesh texture, positive effect on color and increased thickness
f the fillet (Bahuaud et al., 2008; Einen et al., 2002; Hansen,
ørkøre, Rudi, Langsrud, & Eie, 2009; Skjervold et al., 2001). This
arly processing also increases the fresh fillet value and reduces
aste product transport by 20%, considerably decreasing trans-
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2. Materia

2.1. Materi
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28 mm we
Norway). T
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Advantec L
Helsingbor
Norway. Th
153 W/m2

2.1 min, (F
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to predict t

Once su
zero (supe
a cold room
at each sam

2.2. Measu
process and

The tem
the sample
midway to

L.D. Kaale et al. / Food Control 31 (2013) 4992
ortation costs and energy wastage.
However, few studies have been conducted on how the super-

hilling rates and pre-rigor state will affect ice crystal sizes during

used at each
a temperature
impingement f

ig. 1. Temperatureetime profile at three places in the Atlantic salmon fillet and the air temperature in the im
.1 min).
ng process and following storage. The size of ice
in pre-rigor fillets during the superchilling process

ge of the microstructure size during storage of
mples should also be considered, as it is one of the
ffecting the textural and physical properties of
ods. Therefore, the objectives of this work were to
microstructure sizes of pre-rigor salmon fillets
slow and fast rates and to assess the change of these
sizes during storage of superchilled products.

nd methods

nd superchilling process

ts (0.9e1.2 kg) with thickness ranging from 26 to
taken from the slaughtering plant, Salmar (Frøya,
llets were vacuum packed and partially frozen pre-
in 5e6 h of being caught) in an Impingement
reezer (JBT Food - tech, Rusthållsgatan 21, SE-25109,
eden) at NTNU Energy’s laboratory in Trondheim,

mples were superchilled (partially frozen) at�20 �C,
r 4.2 min (S) and at �30 �C and 227 W/m2 K for
achieve an ice content of 20%. The previously

el (Kaale, Eikevik, Kolsaker, & Stevik, 2012)was used
egree of superchilling and superchilling time.
chilled, the salmon samples were analyzed at day
lling process) and other samples were stored in
�1.7� 0.3 �C for 29 days. Three fillets were analyzed
g time.

ent of the temperature during the superchilling
owing storage

ature was measured at three different locations on
uring the superchilling process: at the surface,
center and in the center. Three thermocouples were

98
location. The thermocouples were connected to
recorder while the sample was cooled in the

reezer. The temperatures of the cool air and of the

pingement freezer during fast superchilling (�30 C, 227 W/m2 K
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mple were recorded every 4 s. The samples of 28 mm thickness
ere used. The temperature was measured by inserting thermo-
uples approximately 2 mm from the surface, 7 mm from the
rface (midway to the center) and 14mm from the surface (center).
The temperature, as one of the critical parameters during
perchilled storage, was strictly controlled during this study. The
orage box was designed (92 � 73 � 54.5 cm) with a heating
ement inside to ensure adequate temperature regulation. Three
100 temperature sensors were inserted in the storage box: one
as used to measure the air temperature, and the other two were
ed to measure the surface and center temperatures of the
perchilled salmon fillets. The set-point temperature was �1.7 �C.

immersed
before mou

All the p
Axioskop 2
(Nikon DS-
recorded a
CAST2 (Oly
cross-sectio
evaluation.
the cross-s
equivalent
diameter o

Fig. 2. Temperatureetime profile during superchilling sto
e box was placed inside the storage room, which was at crystal diamete
rent
ach
re ev

cal a

ervations of the microstructure sizes for different
g treatments and the locations with respect to the

crystal diameters (mm means � standard deviations) for fast (F) vs.
chilling of Atlantic salmon fillets.

F S

Top surface Center Top surface Center

23 � 1A/a 0 � 0B/a 60 � 5C/a 0 � 0B/a

93 � 3 A/b 312 � 2B/b 117 � 2C/b 310 � 1B/b

101 � 2 A/b 307 � 4 B/b 122 � 6 C/b 317 � 6 B/b

103 � 1 A/b 305 � 4 B/b 118 � 1 C/b 314 � 6 B/b

110 � 1 A/b 323 � 2 B/b 131 � 4 C/b 326 � 2 B/b

105 � 3 A/b 329 � 1 B/b 130 � 4 C/b 332 � 5 B/b

116 � 4 A/b 343 � 4 B/b 133 � 1 C/b 341 � 4 B/b

(A, B, C) in the same line indicate significant differences (P < 0.05) of
esses.
a, b) in the same column indicate significant differences (P < 0.05) of
temperature of approximately �5 �C (temperature outside the
orage box).

3. Microscopic analysis

Two pieces were cut from the top surface to the bottom surface
each superchilled sample (�1.7 � 0.3 �C) transversally to the
uscle fiber using a standard knife blade that was previously
ored at the same temperature. This procedure was conducted in
walk-in freezer to ensure a perfect cold chain. In this study,
fixation method similar to those proposed by Alizadeh,
apleau, de Lamballerie, and Le Bail (2007) and Martino and
ritzky (1988) was used to observe the spaces left by the
rmation of ice crystals in the tissue. The samples were fixed by
mersion in Clarke’s solution (absolute ethanol and glacial acetic
id, 3:1) at �1.7 � 0.3 �C for 24 h. The control (unprocessed)
mples were fixed using the same solution but at 4 �C. The fixed
mples were then warmed to room temperature and were
bsequently dehydrated using absolute ethanol. The dehydrated
mples were then embedded in paraffin. The embedded samples
ere cut transversally to the muscle fiber using a microtome
utocut 2055; Leica Microsystems, Germany) into 4 mm thick
ices. The sliced samples were then stained according to
method developed by Alizadeh et al. (2007) with some modi-
ations: Tissue Clear was used for rehydration, the samples were

the six diffe
fillet. For e
crystals we

2.4. Statisti

The obs
superchillin

Table 1
Equivalent ice
slow (S) super

Storage
(days)

0
2
4
7
14
21
29

Capital letters
locations/proc
Small letters (
storage.
% blue aniline for 1 min, and xylene was used
g.
red slides were observed with a microscope (Zeiss
s, Zeiss Inc., Germany) fitted with a digital camera
Nikon, Japan). The images of the slides were

treated using the stereological analysis program
s Inc., Denmark). Two parameters, namely the
area and the equivalent diameter, were used in the
cross-sectional area referred to the surface area of
n of an object (ice crystal or fiber muscle). The
eter (Deq) for each ice crystal was defined as the
circle having the equivalent area, (Sp) and mean
rs were calculated. All analyses were performed for
specimens (threee surface and threee center) per
case considered, more than 100 incidences of ice
aluated.

nalysis

at �1.7 � 0.3 �C.



Fig. 3. Non-superchilled salmon fillets (upper micrograph) and after fast superchilling (left micrograph) and slow superchilling (right micrograph).

Fig. 4. Pre-rigor and post-rigor fillets after fast (F) or slow (S) superchilling.
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mber of storage days were determined by one- and two-way
alyses of variance (ANOVA) using Minitab 16 software. A
neral linear model, (post-hoc test) under Tukey’s simultaneous
st, was applied whenever the ANOVA results were significant. The
ason for performing the post-hoc test is to compare pairs of
cations/processes with storage days simultaneously to under-
and why the significant results were obtained for the overall
NOVA. Data were expressed as the mean � standard deviation,
d the statistical significance of each experiment was p < 0.05.

3. Results and

3.1. Thermal tra

Changes in
were recorded
example of the
sample and su
every 4 s. The

Fig. 5. Surface of salmon fillets after fast (F) or slow (S) superchilling a
8 495
discussion

nsition behavior of superchilling process

surface and center temperatures of the samples
during superchilling experiments. Fig. 1 shows an
superchilling process at �30 �C for 2.1 min. The
perchilling medium temperatures were recorded
superchilling timeetemperature profile consists of

nd during �1.7 C storage.
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t
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4

-stages: cooling the product to initial freezing point and removing
he latent heat of crystallization, whereby about 20% of the water
as frozen. These stages were mostly achieved on the surface of
almon fillet, approximately 2 mm from the surface of salmon fillet.
he temperature at the midway center was about �0.7 �C, while

temperature at
was equal to t
chilling. In Fig.
of superchilled
day of storage a

Fig. 6. Center of salmon fillets after fast (F) or slow (S) superchilling a

L.D. Kaale et al. / Food Control 31 (2013) 491e496
the center of the sample was about þ4.4 �C which
he initial temperature of the sample before super-
2, the timeetemperature profile during the storage
samples shows temperature equalizationwithin one
nd was maintained at �1.7 � 0.3 �C during storage.

nd during �1.7 C storage.
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2. Ice crystal formation during the superchilling process

Pre-superchilled (unprocessed) salmon muscle was used as
control for the purpose of microstructure comparison with the
perchilled samples. The cross-section of the unprocessed sample
hibited a uniform distribution of regularly shaped fibers. The
uivalent diameter of the muscle fibers was 95 � 11 mm, which is
ose to the value reported by Zhu, Bail, and Ramaswamy (2003).
e ice crystals formed during the slow superchilling process (S)
peared larger (p< 0.05) in size than those fromprocess F (Table 1,
gs. 3 and 4). Treatment S is a slow superchilling process, which is
nerally considered to form large and mainly extracellular ice
ystals. Since the salmon muscle was superchilled pre-rigor, large
tracellular ice crystals were not observed. The intracellular ice
ystals were formed regardless of superchilling rates. Therewas no
gnificant difference (p> 0.05) between sizes of ice crystals formed
e-rigor compared to post-rigor after fast superchilling. Post-rigor
lets showed fewer (p> 0.05) intracellular ice crystals (Fig. 4)while
rger and mainly extracellular ice crystals were formed in post-
gor fillets after slow superchilling. There was no significant
fference (p > 0.05) between sizes of intracellular ice crystals
rmed pre-rigor compared to post-rigor after slow superchilling.

3. Ice crystal evolution at the surface layers during storage of
perchilled samples

The evolution of the size of ice crystals formed is important
ring storage of superchilled products. Significant differences
< 0.05) in ice crystal sizes during the superchilling process and
llowing storagewere observed. The equivalent diameter, (Deq) for
e outline of the microstructure sizes during storage of super-
illed samples were 117 � 2 and 93 � 3 mm, for processes S and F,
spectively. For the surface layers (Fig. 5), after only 2 days of
orage, the ice crystals were 2 times larger than crystals at day
during process S and 4 times larger than crystals day 0 during
ocess F. This is because the superchilling processes (S and F) were
rformed at a low temperature of �30 �C, or �20 �C and the
mples were then stored at a higher temperature (superchilling
orage temperature) of �1.7 � 0.3 �C. These results are in agree-
ent with that observed by Kaale et al. (2013), Kaale, Eikevik,
rdal, et al. (2013) and Kaale and Eikevik (2013).
Additionally, the superchilling process is a highly transient
ocess that develops steep thermal gradients in the product near
e surface. It is well known that a temperature gradient causes ice
crystallization during superchilled storage. Temperature gradi-
ts, whether large or small, will result in recrystallization during
perchilled storage (Chevalier et al.,; Payne, Sandford, Harris, &
ung, 1994). These gradients were observed to result in slight
elting of the small ice crystals formed at the surface layer and the
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Fig. 6. (continued).
ter diffusion to larger ice crystals. This process
e crystals to grow, resulting in a reduction in the
crystals (Alizadeh et al., 2007; Russell, Cheney, &
; Shenouda, 1980) at the surface layer of the
mon fillets during storage at �1.7 � 0.3 �C. When
ualization was achieved within the samples, the
tracellular ice crystals at the surface layer was not
0.05).

ure sizes at the center of the superchilled samples

erature equalization, ice crystal growth progresses
e to the center of the superchilled food products.
significant difference (p > 0.05) between the ice
at the fillet centers for both processes. Therewas no
ed at the centers in both processes on day zero

. 6). Therefore, the formation of ice crystals in both
same temperature rate that resulted in the same

ystals. The results further indicated that once
ualization was achieved within the samples, the
intracellular ice crystals at the center was not
0.05) during storage. The new crystals that are
enter during storage were large, due to the slow
uld therefore damage the integrity of the super-
In fish and meat tissues the destructive effect of ice
n is minimized due to the elasticity of the cellular
scle (Smith, 2011, chap. 11). Nevertheless, the loss of
and meat is associated largely with loss of func-
teins. When water forms ice, there is an increased
f enzymes and a build up of salt concentration in
water, which may cause protein denaturation and
in functionality (Shenouda, 1980; Smith, 2011, chap.
rchilling, the protein denaturation may be minimal
all amount of water is frozen (5e30%) which will

zyme and salt concentration in the remainingwater.
ling results in extended shelf life of stored food
nventional chilling and better quality compared to
er, despite the benefits of the superchilled storage
s, there is still a need to study quality parameters
ifferent locations within the superchilled product.
differences in ice crystal sizes found in this study
fferences in quality at different locations within the
duct.

rystal formationwas due to the faster superchilling
rigor Atlantic salmon fillets. Quality benefits may
uring�1.7� 0.3 �C storage due to recrystallization.
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e determined to completely evaluate Atlantic salmon fillet
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this work was to study the microstructure of vacuum-packed salmon fillets superchilled in an
ent freezer at �30 �C (air temperature) and 227 W/m2 K (surface heat transfer coefficient,
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tructure of vacuum-packed salmon fillets were analysed at the surface, mid-centre and centre

nificant differences were observed between the ice crystals formed at the surface, mid-centre
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torage
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almon fish

ature equalisation (1 day of storage) the growth of the intracellular ice crystal was not significant at
(P < 0.05) at any storage time.
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.1. Degree of superchilling

The degree of superchilling (ice fraction) which represents the
mount of water that is partially frozen (5–30%) inside the food
roducts, is one of the most important parameters that define
e quality of the finished product during superchilled storage.

ahuaud et al. (2008), Chevalier et al. (2001), Dincer, (1997), Ferná-
dez et al. (2008), Hagiwara et al. (2002), Kiani and Sun, (2011),
artino and Zaritzky, (1986), Martino et al. (1998); Petzold and

guilera, (2009) found that the properties of the ice crystals, such
s their size, distribution and shape, have a major influence on the
uality of food products. Understanding these properties of ice
rystals is critical not only for the quality control of superchilled
ods but also for the proper design and development of superchill-
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Packaging is a particularly important element of the super-
hilled products. Packaging materials intended for superchilled/

uum-packe
considered
and physic
growth of
may be rela
or enzyma

were to analys
chilling proces
vacuum-packe
products.

erved.

n Hejes vei 1d,

.eikevik@ntnu.no
svik@bio.ntnu.no
plications should meet minimum requirements,
have a direct influence on the quality of the super-
ood (George, 1998). Proper packaging like vacuum-
reby the foods are sealed within a skin-tight pack-
hydration and evaporative water loss from the sur-

d, and can minimize the effects of freezer burning
ration loss from the product surface) and postthaw
loss) that often limit the quality and shelf life of par-
ods (Fernández et al., 2010; Pham and Mawson,
i and Chitsiri, 2011). It is therefore important to
t, packaging is one of the most important factors
ing storage of superchilled food products.

wever, few published studies describing the size of
med during superchilling process and the change
ucture of vacuum-packed foods during superchilled
udy of the size of ice crystals formed during super-
s and the change of the microstructure on vac-
roducts during superchilled storage should also be
ause these factors greatly affect the textural quality
roperties of superchilled foods. For example, the
crystals during storage of superchilled products
to protein denaturation, low water holding capacity
egredation. Therefore, the objectives of this work
e the ice crystals in salmon fillets after the super-
s and to assess the change in microstructure of
d salmon fillets during storage of superchilled
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Materials and methods

1. Materials and superchilling process

Salmon fillets (Salmon salar) 0.9–1 kg, were delivered by Lerøy
idnor (Hitra, Norway). The samples were vacuum packed and
ored at 4 �C for 24 h before the superchilling process to ensure
constant temperature in all samples. Superchilling was per-
rmed in an Impingement Advantec Lab Freezer (JBT Food – tech,
sthållsgatan 21, SE-251 09, Helsingborg, Sweden) at NTNU En-

gy’s laboratory in Trondheim, Norway. The samples were super-
illed (partially frozen) at �30 �C and 227 W/m2 K (at 2.5 kPa
essure differences of the fan at the impingement freezer)) for
1 min to achieve an ice content of 20%. The previous developed
odel (Kaale et al., 2012) was used to predict the degree of super-

tems, Germ
then staine
(2007) with
dration, the
and xylene
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tional area
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cross-sectio
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cle having

L.D. Kaale et al. / Journal of Food Engineering 115
illing. The experiments for measuring surface heat transfer coef-
ient (SHTC) value were performed in an Impingement Advantec

equivalent diam
lated. All anal

ce l
fillet
e cr

al a

erva
t to
variance using Minitab 16 software. A general linear
t-ho

ever
the
of e

tal e

rch
nou
both inside and outside the cells. Fig. 1 shows the tem-
me profile and the thermal gradients developed during
g process. The initial freezing point was �1.1 �C, which
b Freezer. Details on experiments set up and equation used to
lculate SHTC explained elsewhere (Kaale et al., 2012). Once
perchilled, the salmon samples were stored in a cold room at

1.7 ± 0.3 �C for 28 days. Three fillets were used in each daily
alysis.

2. Temperature trend during superchilling process and following
orage

The temperature was measured at three different locations on
e samples during the superchilling process: the surface, mid cen-
e and the centre. Three thermocouples were used at each location

– surface, 3 – mid centre and 3 – centre). The thermocouples
ere connected to a temperature recorder while the sample was
oled in the impingement freezer. The temperatures of the cool
r and of the sample were recorded every 4 s. The thickness of
ch sample was approximately 26 mm. The temperature was
easured by inserting thermocouples approximately 2 mm from
e surface, 7 mm from the surface (midway to the centre) and
mm from the surface (centre).
The temperature, as one of the critical parameters during super-

illed storage, was strictly controlled during this study. The stor-
e box was designed (92 � 73 � 54.5 cm) with a heating element
side to ensure adequate temperature regulation. Three Pt100
mperature sensor were inserted in the storage box: one was used
measure the air temperature, and the other two were used to

easure the surface and centre temperatures of the superchilled
lmon fillets. The set-point temperature was �1.7 �C. The box

(three-surfa
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dences of ic
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3. Results

3.1. Ice crys

The supe
removing e
distributed
perature–ti
superchillin
as placed inside the storage room, which was at a temperature

rature–time profile: surface, mid centre and centre layers during
rocess.
approximately �5 �C (temperature outside the storage box).

3. Microscopic analysis

Four pieces were cut from the surface layer to the centre layer
each superchilled sample (�1.7 ± 0.3 �C) transversally to the

uscle fibre using a standard knife blade that was previously
ored at �1.7 ± 0.3 �C. This procedure was conducted in a walk-
freezer to ensure a perfect cold chain. In this study, a fixation

ethod similar to those proposed by Alizadeh et al. (2007), Marti-
and Zaritzky, (1988) was used to observe the spaces left by the

e crystals in the tissue. The samples were fixed by immersion in
arke’s solution (absolute ethanol and glacial acetic acid, 3:1) at
1.7 ± 0.3 �C for 24 h. The control (unprocessed) samples were
ed with the same solution but at 4 �C. The fixed samples were
en brought to room temperature and were dehydrated with
solute ethanol. The dehydrated samples were then embedded
paraffin. The embedded samples were cut transversally to the

uscle fibre using a microtome (Autocut 2055, Leica Microsys-
Fig. 1. Tempe
superchilling p
) into 4 lm thick slices. The sliced samples were
cording to a method developed by Alizadeh et al.

e modifications: Tissue Clear was used for rehy-
ples were immersed in 1% blue aniline for 1 min,
used before mounting.
red slides were observed with a microscope (Zeiss

s, Zeiss Inc., Germany) fitted with a digital camera
Nikon, Japan). The images of the slides were re-
ted using the stereological analysis program CAST2
Denmark). Two parameters, namely the cross-sec-
the equivalent diameter, were used in the evalua-
-sectional area refers to the surface area of the
an object (ice crystal or fibre muscle). The equiva-
r each ice crystal is defined as the diameter of a cir-
equivalent area Sp. From the data set of each
eter, the mean crystal diameter, Deq, was calcu-

yses were done for the 9 different specimens
ayer, three – mid centre layer and three – centre
. For each case considered, more than 100 inci-
ystals were evaluated.

nalysis

tions of the ice crystal size at different locations
storage days were analysed by one- and two-way

) 20–25 21
c test) under Tukey’s simultaneously test was ap-
the ANOVA results were significant. Data were ex-

mean ± standard deviation, and the statistical
ach experiment was p < 0.05.

volution during superchilling process

illing process was done at high rate which allowed
gh heat to produce fine crystals that were evenly
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Fig. 2. Micrographs of unsuperchilled and superchilled salmon tissues: surface mid centre and centre layers.
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as indicated by the beginning of the freezing plateau at the centre
f the sample. The initial freezing point of the salmon was deter-
ined using separate samples that were totally frozen in the
pingement freezer for approximately 30 min, and these samples

were not u
how these t
in salmon fi
mon fillets
for any other analysis. The present work explained
mal gradients created ice crystals with different size
s (Fig. 2). The microstructure of vacuum-packed sal-

investigated at the surface, mid centre and centre
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yers. The macrographs of salmon fillet samples are shown in
g. 2. Pre-superchilled (unprocessed) salmon muscle was used as
control for the purpose of microstructure comparison with the
perchilled samples. The cross-section of the unprocessed sample
owed a uniform distribution of regularly shape fibres. The equiv-
ent diameter of muscle fibres was 96 ± 9 lm, which is close to
e value reported by Zhu et al. (2003).

2. Ice crystal evolution during storage of superchilled samples

Significant differences in ice crystal sizes during the superchill-
g process and following storage were observed here, as in our
evious study (Kaale and Eikevik, 2012) (Figs. 2, 4 and 5 and Ta-
e 1). Table 1 summarises the results of the ice crystal sizes during
perchilling process and storage of superchilled samples. The
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eter, Deq, for the outline of the ice crystal size dur-
perchilled samples was 92 ± 0.3 lm, at the surface
one day of storage, which means 4 times larger

ring superchilling process Table 1. This is because
g process was performed at a very low temperature
he samples were then stored at a higher tempera-
ing storage temperature) of �1.7 ± 0.3 �C. Addition-
ing process is a highly transient process that
thermal gradients in the product near the surface.
that a temperature gradient causes ice recrystalli-
superchilled storage. Temperature gradients,

or small, will result in recrystallization during
rage (Chevalier et al., 2001; Payne et al., 1994).
were observed to result in slight melting of the

ls formed at the surface layer and the subsequent
to larger ice crystals. This process causes larger
row, which results in a reduction in the number
lizadeh et al., 2007; Russell et al., 1999; Shenouda,

urface layer of the superchilled salmon. Results
er one day of storage, when temperature equalisa-
ed within the samples, the growth of the intracel-
s at the surface layer was not significant (P < 0.05)
imes (Fig. 2 and Table 1). In Fig. 3, the profile shows
e over one day of storage (24 h); the temperature

at �1.7 ± 0.3 �C for the other days of storage.

g process (partial freezing) and ice crystal size at the
the superchilled samples

process (partial freezing) is the preservation pro-
ds on the amount of water which is frozen (5–30%)
product. The degree of superchilling 5–30% is low
kes the products taste just like fresh food. During
even ice zone was formed to a depth of about

has been reported that superchilling/freezing rates
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uct (Chevalier et al., 2001). These characteristics of
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tial freezing (Kerr et al., 2004). A rapid superchill-
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is will lead to a superchilled product with a smooth
onsumed in a partial frozen state (Heldman and
igh water holding capacity and protein functional-
variety of other quality attributes such as pigments
duct colour, flavours and nutrients which are not
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Equivalent diameters of the ice crystals (Mean ± standard deviation) lm during
superchilling: surface and centre layers.

Storage time (days) Superchilling process (-30 �C, 227 W/m2.K and 2.1 min)
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nced by conditions maintained during storage of the partial fro-
en food. On the other hand, slow superchilling/freezing rate large
nd extracellular ice crystals is formed which generally result in
isrupt cell and cause the loss of product structure that does not
ecover when thawed (Heldman and Hartel, 1999; Zhu et al.,
003; Shenouda, 1980). In this study, the size of the ice crystals
hich were observed at the surface layer of the superchilled food

id not observed to destroy the integrity of the muscle both during
e superchilling process and following storage because the size of
e ice crystals 23 ± 2.9 and 92 ± 0.3 in days 0 and1, respectively
ere smaller than the size of the muscle tissue, 96 ± 11 lm.

.4. Ice crystal size at the mid centre and centre of the superchilled
amples

The present study showed that, prior to temperature equalisa-
on, ice crystal growth progresses from the surface to the centre
f the superchilled food products. This is due to temperature gradi-
nts during superchilling process. Results indicated that the ice
rystals at the mid centre and centre were 153 ± 8 and
18 ± 4 lm, respectively after only one day of storage. The ice crys-
ls at the centre were 3 times larger than the crystals at the sur-
ce layer (Fig. 4 and Table 1). In addition to temperature

radients, during superchilling processes there was no ice crystals
rmed at the mid centre and centre of the superchilled samples
igs. 1 and 2). The formation of the ice crystals at the mid centre

nd centre took place during the storage of the superchilled sam-
les whereby the superchilling rate was so low .i.e. at
1.7 ± 0.3 �C which result in large size of the ice crystals. The re-

ults further indicated that once the temperature equalisation
as achieved within the samples, the growth of the intracellular
e crystals at the centre was not significant (P < 0.05) at any stor-

ge time. Fig. 5, equivalent diameters vs. time in linear scale. This
igure clearly showing that after temperature equalisation there
as no significant growth of the ice crystals Fig. 4.

The large ice crystals at the centre of the product may have a
ajor effect on morphological changes and cell destruction (Bah-

aud et al., 2008), which may result in microstructure changes dur-
g storage of sueprchilled foods. However, the quality and shelf

fe of superchilled foods has been reviewed by Kaale et al.
011), and many benefits of applying superchilling technology
food products were found compared to chilled and frozen food

roducts. This may be due to, in fish and meat the destructive ef-
ct of ice crystal formation is minimised due to the elasticity of
e cellular structure in muscle (Smith, 2011). Furthermore, the
ss of quality in fish and meat is associated largely with loss of
nctionality of proteins. When water form ice, there is an in-

reased concentration of enzymes and builds up of salt concentra-
on in the remaining water, which both causes protein
enaturation and therefore effect the protein functionality
eorge, 1993; Shenouda, 1980; Smith, 2011). In superchilling
e protein denaturation may be minimal because only small

mount of water is frozen 5–30% which will results in less enzyme
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The mi
analysed at

surface mid centre centre

0 23 ± 2.9 49 ± 4 No ice crystals
1 92 ± 0.3 153 ± 4 318 ± 5
3 98 ± 0.9 157 ± 7 321 ± 8
7 101 ± 1.4 159 ± 3 327 ± 4
14 112 ± 1.4 163 ± 2 333 ± 7
21 117 ± 1.3 158 ± 3 337 ± 8
28 116 ± 1.2 166 ± 4 343 ± 3
tration in the remaining water. It has also been re-

3) 20–25
to suppress bacterial growth and enzymatic but
cellular damage. However, despite the benefits of

d storage of food products, there is still a need to
parameters separately at different locations within

d product. It is unlikely that there is similar quality
face and the centre of the superchilled product due
nt differences of the microstructure sizes found in

onsider during superchilling process and following

btain high-quality superchilled foods, high-quality
re necessary, and processing, distribution and stor-
arefully controlled (George, 1993). The quality of
sh or meat is particularly affected by the loss of
g superchilling process, and even if the factors influ-
ntity of drip losses are numerous, properties of ice
s shape, size, and distribution are most important

textural and physical properties of many super-
s (Chevalier et al., 2001; Hagiwara et al., 2002). In
l and well distribution of the ice crystals both inside
e cells were observed which can be concluded that
s were not destroyed or the destruction was mini-
shell freezing (superchilling process). It is also
control temperature fluctuation which is often
ring storage of superchilled products. This will as-

e recrystallisation during storage of the superchilled
erature fluctuation can be controlled under labora-
, but under industrial conditions can be difficult.

emperature was strictly controlled at �1.7 ± 0.3 �C
s been proved during the analysis of the ice crystals
temperature equalisation within the samples there
ant growth of the ice crystal at any storage time.
process and control of temperature during storage

illed products, packaging is also one of the most
ors to consider during superchilled storage. The
of packaging like vacuum-packaging whereby the
d within a skin-tight package is to keep food from
preserve nutritive value, taste, flavor, texture and
revent freezer burn and oxidation, where air or oxy-
o contact with food (Pham and Mawson, 1997;
hitsiri, 2011). However, none of these parameters
in this study apart from observation of freezer burn
. Freezer burn as one of the main causes of deterio-
torage of superchilled products (Kolbed and Kramer,
hrough a process called sublimation (Goff, 1995)
vaporation of the ice crystals during storage oc-
g in brown spots on the surface of the food products
ation loss from the product surface). This is a visible
dehydration on the surface of the fish. The spots

e to become dry and tough and are very likely to de-
rs (Barbosa-Cánovas et al., 2005). In this study the

t exhibit any concerning features related to freezer
rage. To summarize, a combination of high-quality

good superchilling process, stable temperature dur-
the superchilled products and good packaging will
uality superchilled foods.
tructure of vacuum-packed salmon fillets were
surface, mid-centre and centre layers. Significant
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fferences were observed between the ice crystals formed at the
rface, mid-centre and centre layers. The size of ice crystals at
e centre of the superchilled fillets was 3 times larger than those
the surface layer. Significant differences were observed between
e size of ice crystals formed during the superchilling process and
llowing storage. The results further indicated that, after temper-
ure equalisation (1 day of storage) the growth of the intracellular
e crystal was not significant at (P < 0.05) at any storage time.

Further studies should be carried out to test the quality param-
ers, such as drip loss, water holding capacity, protein denatur-
ion and enzymatic degradation. These parameters should be
aluated at both the surface and centre layers of the superchilled
oduct due to the size differences in the ice crystals at each loca-

on, as observed in this study.
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lmon (Salmo salar) fillets were partial frozen in an impingement freezer at �30 �C and 227 W/
.1 min prior to storage at a superchilling storage temperature of �1.7 ± 0.3 �C for 28 days. The
article is to study the microstructure of the red and white muscles during superchilling pro-

uring superchilled storage. The histology and microscopic analysis of the red and white mus-
arried out. It was found that the size of the ice crystals formed in the red muscles was smaller

formed in the white muscles. The equivalent diameters of the intracellular ice crystals

pon superchilling (day 0) were 17 ± 2 and 29 ± 1 lm for the red and white muscles, respec-
ish muscle
uperchilling

tively. Significant differences were initially observed between the size of the ice crystals formed during
the superchilling process and after 1 day of storage. However, after temperature equalisation (day 1),
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. Introduction

The superchilling process (partial/shell freezing) is simply the
artial crystallisation of ice in muscle tissue and involves the con-
ecutive processes of nucleation and growth. The superchilling/
artial-freezing process has two stages: (1) cooling the product

initial freezing point and (2) removing the latent heat of crystal-
sation (phase transition stage), whereby 5–30% of the water is
ozen and stored within the product. During this process, a thin
ozen layer of about 1–3 mm thick is achieved on the surface of
od product depending on degree of superchilling required. De-

ree of superchilling (ice fraction) is amount of water (5–30%)
hich is frozen inside the food product, is one of the most impor-
nt parameters which define the quality of the superchilled food

roduct (Magnussen et al., 2008; Stevik and Claussen, 2011; Stevik
t al., 2010). The degree of superchilling, 5–30% is low enough that
akes the products taste just like fresh food. It has been reported
at a degree of superchilling between 5% and 30% is accepted and
at a degree of superchilling more than 30% will cause higher drip
ss in food products (Stevik and Claussen, 2011). Superchilling

torage is when the partially frozen food product is stored at
–1.5 �C below its initial freezing point.
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searchers have been defined/performed superchill-
different ways: Ando et al. (2004) defines it as the
ne below 0 �C but where ice crystals are not gener-
et al. (2009) defined superchilling as a technology
stored just below the initial freezing temperature
torage of foods without shell/partial freezing). Duun
08), Stevik et al. (2010), and Bahuaud et al. (2008)
ormed superchilling by doing shell/partial freezing
cts followed by temperature equalisation during
d storage. Recent research has shown that, this pro-
thought to be negative to food products, but now is

le way to rapidly cool food products, provided the
emely fast and even. In fact, using the impingement
ellfreeze food products can result in better produc-

proved product quality and a longer shelf life than
sing old-fashioned bulk storage rooms and tradi-

ling systems (Goransson and Londahl, 2005). The
reezer is a tunnel freezing system which employs
velocity refrigerated air impingement jets to quick

ducts. Another advantage of doing shell freezing of
at the ice formed on the surface of the product acts

ce reservoir during storage and transportation. Dur-
ice distribution equalises and the product obtains a

rature at which it is maintained during storage and
is will provide the food product an internal ice res-
o external ice is required during transportation or

et al., 2011).
g is an efficient food preservation process because
artially frozen state is immobilised as ice, and the
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tes of deterioration are much slower at lower temperatures than
higher temperatures (Do et al., 2004; George, 1993). Food prod-
ts are multicomponent systems of uneven properties containing
any substances; water is the most abundant component (50–
%), and it exists in different forms in tissues (Dincer, 1997; Do
al., 2004; Kiani and Sun, 2011). The superchilling of food prod-
ts entails the conversion of a minor part of this water (5–30%)
to ice crystals. It is the formation of these ice crystals that affects
e quality of superchilled (partially frozen) food products. The for-
ation of fine crystals that are evenly distributed both inside and
tside the cells leads to better preservation of the quality of the
oduct due to less tissue damage (Chevalier et al., 2001; Dincer,
97; Fernandez et al., 2008; Kiani and Sun, 2011; Martino and
ritzky, 1986; Martino et al., 1998; Petzold et al., 2009).
Fish muscle has a unique arrangement of muscle fibres. It is di-

ded into a number of segments called myotomes, which are sep-
ated from one another by a sheath of connective tissue called the
yocomma (Jiang and Lee, 2007). There are two major types of fish
eletal muscles: red and white. The red muscle lies along the side
the body next to the skin, particularly along the lateral lines, and
ay comprise up to 30% of the fish muscle, depending on the spe-
es (Ayala et al., 2005; George, 1962; Jiang and Lee, 2007; Rabah,
05). Kiessling et al. (2006) reported that Atlantic salmon was
mprised of 10% red muscle and 90–95% white muscle. Red mus-

e is usually slow, with low contractive power, and is used for pro-
nged activity sustained by aerobic metabolism. White muscle is
ster, more powerful, and capable of bursts of activity that may

anaerobic (Lindsey, 1978).
Studies on muscle fibres have been conducted over the years.

uscle fibre diameter has been reported to be an important factor
the textural characterisation of the flesh (Ayala et al., 2005;

hnston et al., 2000a, b). There is a direct relationship between
erage muscle fibre size and the firmness of the raw flesh, such
at species with a firmer texture have relatively smaller fibres
an species with a softer texture (Ayala et al., 2005). George
962) found that the size of the white muscle in mackerel is
o times larger than that of the red muscle fibres. However, the

icrostructure sizes of the two types of muscles subjected to the
perchilling process and storage have not been studied yet. Stud-
s of the microstructure sizes of the red and white muscles during
perchilling process and storage are important in the determina-

on of a better scientific basis for the evaluation of chilling meth-
s and a comparison of these technologies. Thus, the present

ork is focused on describing the microstructure sizes of the red
d white muscles during the superchilling process and super-
illed storage.

Materials and methods

1. Materials and superchilling processes

Salmon fillets (0.9–1 kg) were delivered by Lerøy Midnor (Hitra,
orway). The samples were taken at the middle part of the salmon
lets. The samples were cut from the top side to the bottom side of
e salmon fillet in order to obtain samples that possessed both red
d white muscles. The salmon fillets were vacuum packed and

ored at 4 �C for 24 h before the superchilling process to ensure
constant temperature in all samples. Shell freezing was per-
rmed in an Impingement Advantec Lab Freezer (JBT Food – tech,
sthållsgatan 21, SE-251 09, Helsingborg, Sweden) at NTNU
ergy’s laboratory in Trondheim, Norway. The samples were
perchilled (partially frozen) at �30 �C and 227 W/m2.K for
1 min to achieve a degree of superchilling (ice content) of 20%.
e previous developed model (Kaale et al., 2012) was used to pre-

ct the degree of superchilling. The experiments for measuring
rface heat transfer coefficient (SHTC) value were performed in

an Impinge
set up and
(Kaale et al
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t Advantec Lab Freezer. Details on experiments
ation used to calculate SHTC explained elsewhere
12). Once partial frozen, the salmon samples were
room at �1.7 ± 0.3 �C for 28 days. Three fillets were
ily analysis.

t of the temperature during the superchilling process
storage

ture was measured at three different locations on
ring the superchilling process: the surface, midway
nd the centre. Three thermocouples were used at
3 – surface, 3 – midway centre and 3 – centre).
ples were connected to a temperature recorder
le was cooled in the impingement freezer. The tem-
cool air and of the sample were recorded every 4 s.

f each sample was approximately 26 mm. The tem-
easured by inserting thermocouples approximately

surface, 7 mm from the surface (midway to the
mm from the surface (centre).
ture, as one of the critical parameters during super-
was strictly controlled during this study. The stor-
signed (92 � 73 � 54.5 cm) with a heating element
e adequate temperature regulation. Three Pt100
nsors were inserted in the storage box: one was
e the air temperature, and the other two were used
surface and centre temperatures of the superchilled
he set-point temperature was �1.7 �C. The box was
he storage room, which was at a temperature of
�5 �C (temperature outside the storage box).

analysis

ere cut from the centre of each superchilled sam-
�C) transversally to the muscle fibre using a stan-
e that was previously stored at �1.7 ± 0.3 �C. This
conducted in a walk-in freezer to ensure an intact
his study, a fixation method similar to those pro-
eh et al. (2007) and Martino and Zaritzky (1988)
erve the spaces left by the ice crystals in the tissue.
ere fixed by immersion in Clarke’s solution (abso-
d glacial acetic acid, 3:1) at �1.7 ± 0.3 �C for 24 h.
superchilled) samples were fixed with the same

4 �C. The fixed samples were then brought to room
d were dehydrated with absolute ethanol. The
ples were then embedded in paraffin. The embed-
ere cut transversally to the muscle fibre using a
tocut 2055, Leica Microsystems, Germany) into
s. The sliced samples were then stained according

veloped by Alizadeh et al. (2007) with some modi-
Clear was used for rehydration, the samples were
blue aniline for 1 min, and xylene was used before

red slides were observed with a microscope (Zeiss
s, Zeiss Inc., Germany) fitted with a digital camera
Nikon, Japan). The images of the slides were re-
ted using the stereological analysis program CAST2
Denmark). Two parameters, namely the cross-

nd the equivalent diameter, were used in the eval-
ss-sectional area refers to the surface area of the
an object (ice crystal or fibre muscle). The equiva-

or each ice crystal is defined as the diameter of a
e equivalent area Sp. From the data set of each

meter, the mean crystal diameter, Deq, was
nalyses were performed for six different specimens
rface and three white – surface samples) of each
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llet. For each case considered, more than 100 incidences of ice
rystals were evaluated.

.4. Statistical analysis

The observations of the microstructure sizes of the red and
hite muscles with respect to storage days were determined by

ne- and two-way analyses of variance using Minitab 16 software.
ata were expressed as the mean ± standard deviation, and the

tatistical significance of each experiment was p < 0.05.
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.1. Thermal transition behaviour of superchilling process

Fig. 1 is showing time–temperature profile of the superchilling
rocess at �30 �C for 2.1 min. In this study, the surface part of the
almon fillet will be considered because the red muscle is situated
t the surface (lies along the side of the body next to the skin) of
e salmon fillet. The superchilling time–temperature profile con-

3.2. Ice crystalli
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whereby about 20% of water was frozen. These
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surface of salmon fillet. The temperature at the cen-
3.8 �C which were high than initial freezing point of
hows that, during the superchilling process there
rystals formed at the centre of the salmon fillet.
the time–temperature profile during superchilled
ofile shows that, the temperature equalisation was
in 1 day of storage (24 h); the temperature was
�1.7 ± 0.3 �C for the other days of storage (Figs. 1

013) 242–248
sation during superchilling process and storage

illing process was performed at a high rate that was
e enough heat to produce fine crystals that were
ted both inside and outside the cells. During this
n ice zone was formed to a depth of about 2 mm

crostructure sizes of the red and white muscle fibres
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uperchilling process.
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the surface of the salmon fillets were analysed. Pre-superchilled
nprocessed) salmon muscle was used as a control for the pur-
se of microstructure comparison with the partial frozen samples.
e cross-section of the unprocessed sample showed a uniform

stribution of regularly shaped fibres. The red muscle, concen-
ated along the lateral line, consisted of narrow fibres with an

average diame
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ter of 53 ± 9 lm, whereas the white muscle on
d broad fibres with an average diameter of
h is close to the value reported by Kiessling et al.

(2005) reported that the red muscles in salmon
d by smaller fibre diameters, high capillary density

of lipid droplets. On the other hand, the white
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uscles had larger fibre diameters and few capillaries. A histo-
hysiological study of the red and white muscles of mackerel
eorge, 1962) showed that the red muscle consisted of narrow fi-

res with an average diameter 32 lm and white muscle of broad
bres of 65 lm.

The evolution of the microstructure sizes of the red and white
uscles of food products is important during the superchilling pro-

ess and during superchilled storage. The information about the
icrostructure size will give industrial food technologists neces-

ary scientific information on the handling, processing and storage
onditions of different types of food products. During the evalua-
on of the ice crystals, the results showed that the size of the ice
rystals formed in the red muscle during the superchilling process
ay 0) was smaller than those formed in the white muscle, with

verage equivalent diameters of 17 ± 2 lm and 29 ± 1 lm, respec-
vely (Fig. 3 and Table 1).

The size of the ice crystals increased significantly after 1 day of
uperchilled storage. This is due to two important factors during
uperchilled storage: Firstly, the large difference between the
uperchilling process temperature (�30 �C) and the superchilled

storage tem
ence will ca
ones that w
ondly, the
superchillin
causes ice
et al.,1994)
sult in recr
ents were
crystals for
fusion to la
to grow, w
at the surfa
large and r
of storage r
crystals of 5
eter in whi
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spherical t
Fig. 3. Resu

Fig. 3. (continued)
able 1
quivalent diameters of the ice crystals (Mean ± standard deviation) of the red and white muscle during supe

Muscles Storage days

0 1 3 7

Red muscle surface 17 ± 2 52 ± 1 55 ± 3 58 ± 2
White muscle surface 29 ± 1 105 ± 9 116 ± 8 121 ± 2
ature (�1.7 ± 0.3 �C). This large temperature differ-
the growth of the ice crystals, particularly the small
formed at the surface of the salmon fillets. Sec-

rmal gradient effect that was created during the
rocess. It is well known that a temperature gradient
rystallization during superchilled storage (Payne

perature gradients, whether large or small, will re-
llization during superchilled storage. These gradi-

erved to result in slight melting of the small ice
at the surface layer and the subsequent water dif-
ice crystals. This process causes larger ice crystals
results in a reduction in the number of ice crystals

layer of the superchilled salmon. Interestingly, this
change of temperature between day 0 and day 1

lted in equivalent diameters of the intracellular ice
1 in red muscles, which is half the equivalent diam-
uscles, 105 ± 9 lm (Table 1). Additionally, the ice

red muscles seemed to be well arranged and more
those in the white muscles, as may be seen in

showed that after 1 day of storage, when tempera-
rchilling.

14 21 28

60 ± 5 62 ± 4 63 ± 2
129 ± 5 133 ± 3 134 ± 4
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Fig. 4. Boxplot showing equivalent diameters of the ice crystals in the red muscle (RM) and
re equalisation was achieved within the samples, the growth of
e intracellular ice crystals in both the red and white muscles
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as not significant (P < 0.05) at any storage times (Figs. 3 and 4
d Table 1).

3. Quality and shelf life of food product during superchilling process
d storage

The loss of quality in fish and meat is associated largely with
ss of functionality of proteins. When water form ice, there is an
creased concentration of enzymes and builds up of salt concen-
ation in the remaining water, which both causes protein denatur-
ion and therefore effect the protein functionality (George, 1993;
enouda, 1980; Smith, 2011). In superchilling process the protein
naturation may be minimal because only small amount of water
frozen 5–30% which will result in less enzyme and salt concen-

ation in the remaining water. In additional to loss of functionality
proteins, the recrystallization during superchilled storage is
portant for the determination of shelf life and quality of food.
is may impart mechanical damage by physically rupturing cell

alls, which may result in an increase in drip loss (a greater loss
liquid cellular components), protein denaturation, a reduction
the water-holding capacity and other quality parameters related
the damage of the cell structure. However, the size of the ice

ystals which were observed in this study at the surface of the
perchilled food did not observed to destroy the integrity of the
uscle because the size of the ice crystals (52 ± 1, 105 ± 9 lm,
r red and white muscle, respectively) were smaller or equal to
e size of the muscle tissue (53 ± 9 lm, 96 ± 9 lm red and white
uscle, respectively). Furthermore, in fish and meat the destruc-
ve effect of ice crystal formation is minimised due to the elasticity

the cellular structure in muscle (Smith, 2011). It has also been
ported by George (1993) that, the superchilling temperature
nge is cold enough to suppress bacterial growth and enzymatic
t does not cause cellular damage. The information above can
supported with results which has been reported in literature

at; superchilling results in extends shelf life of stored food com-
red to conventional chilling and better quality compared to

eezing.
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almon fillets were superchilled in an impingement freezer and stored at �1.7 ± 0.3 �C for
he objective of this work was to study the ice crystal sizes in red muscle of pre-rigor salmon
were partially frozen at fast (�30 �C, 227 W/m2 K, 2.1 min) which is referred to as process F

(�20 �C, 153 W/m2 K, 4.2 min) which is referred to as process S during superchilled storage.
erved that the size of intracellular ice crystals in pre-rigor muscles at faster superchilling rate
cantly (p < 0.05) smaller than that at slower superchilling rate. The size of ice crystals formed
r muscle was significant (p < 0.05) smaller than that formed in post-rigor muscle. It was also
hat the size of intracellular ice crystals formed in pre-rigor red muscles was significant smaller
n white muscle. In addition, a large number of small ice crystals are formed within the muscle
chilled storage of food products in order to understand more about their characteristics (quality and shelf
life).
. Introduction

Superchilling is a method of preserving the food products by
artial crystallisation. The main objective of superchilling is to pro-
ng the shelf-life of food products compared to conventional chill-
g and to maintain the quality compared to frozen foods. The

election of the optimum method by which food should be par-
ally frozen is the subject of many studies. Recent studies (Kaale
nd Eikevik, 2013; Kaale et al., 2013b, 2013c, 2013d) showed that
artially freezing food products using an impingement freezer re-
ults in suitable properties of ice crystals with regard to size, distri-
ution and shape, provided that the partial freezing occurs at a
igh rate. The study by Kaale et al. (2013b) showed that the super-
hilling rate is one of the most important parameters to consider.

that work, samples partially frozen at slow superchilling rates
ontained larger extracellular ice crystals, during the superchilling
rocess (partial freezing) and following storage of the superchilled
od products, compared to the samples that were partially frozen

t fast rates.
In pre-rigor muscle, the cell fluids are tightly bound to the intra-

ellular proteins and the diffusivity from the inside to the outside
f the cell is therefore limited, resulting in the formation of

intracellula
freezing ra
ice crystals
is importan
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e crystals independent of the superchilling/partial
(Hyldig, 2012; Shenouda, 1980). The formation of
thin the cells, regardless of the superchilling rate,
r the quality of food products.

es contain two types of muscle, red and white. Red
as a thin superficial layer below the skin along the

ect of the fish (Hudson, 1973; Pritchard et al., 1971).
contains more lipids than white muscle (Ayala et al.,
962; Jiang and Lee, 2007; Pritchard et al., 1971). In
uscle has more mitochondria but less sarcoplasmic
white muscle. Red muscle is well oxygenated and
content of myoglobin, which is the colored com-

es the muscle its red color (Jiang and Lee, 2007).
red muscle varies considerably depending on the

cies such as tuna and small fatty pelagic fish, red
stitute up to 48% of the muscle as a whole, whereas
h as cod and flounder, red muscle constitutes only a
ge of the muscle (Nielsen and Nielsen, 2012). Pink
c muscle) is intermediate between red and white
). In some fish, pink muscle is a thin layer of muscle
the red muscle from the white muscle. In other fish,
, carp and trout pink muscle is scattered throughout

fish.
eristics of red muscle are coupled with the presence
unt of lipids, particularly in the fatty species (Jiang
Pritchard et al., 1971). Triglycerides are deposited
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imarily as a substrate, providing fatty acids for aerobic metabo-
m, whereas phospholipids represent most of the lipid fraction of
hite muscle (Nielsen and Nielsen, 2012). This can cause preserva-
on problems because of the increased susceptibility of red muscle

lipid oxidation (Jiang and Lee, 2007). Kiessling et al. (2006) re-
rted that Atlantic salmon was composed of 5–10% red muscle
d 90–95% white muscle. Therefore, it is clear that some species,
ch as salmon and lean fish, which are primarily composed of
ospholipids, can be much easier to preserve compared to tuna
d other species, which are composed of a large percentage of
d muscle. It has also been reported that the ice crystals formed
white muscle are twice as large as those formed in red muscle
aale and Eikevik, 2013). In addition, species with a firmer texture
ve relatively smaller fibers than species with a softer texture
yala et al., 2005). However, there is no study showing ice crystal
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this work was to study the ice crystal sizes of red muscle in pre-
gor salmon fillets partially frozen at slow and fast rates during
perchilled storage.

Materials and methods

1. Materials and superchilling processes

Salmon fillets (0.9–1.2 kg) were taken from a slaughterhouse lo-
ted in Salmar, Frøya, Norway. The samples were cut from the top
the bottom side of the salmon fillet to obtain samples that con-

ined red muscles. The fillets were vacuum packed and partially
ozen in a pre-rigor condition (i.e., within 5–6 h of being caught)

an Impingement Advantec Lab Freezer (JBT Food – tech, Rust-
llsgatan 21, SE-251 09, Helsingborg, Sweden) at NTNU Energy’s

boratory in Trondheim, Norway. The samples were superchilled
artially frozen) at �20 �C, 153 W/m2 K (pressure differences of
e fan at the impingement freezer) for 4.2 min, which is referred
as process S (slow superchilling), and at �30 �C and 227 W/

2 K for 2.1 min, which is referred to as process F (fast superchill-
g), to achieve an ice content of 20%. The surface heat transfer
efficient values, ice content and the superchilling time were
tablished in previous work (Kaale et al., 2013a). Once super-
illed, the salmon samples were stored in a cold room at

1.7 ± 0.3 �C for 29 days. Six fillets were analysed at each sampling
me (i.e. 3-fast superchilling and 3-slow superchilling).
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2. Measurement of the temperature during the superchilling process
d superchilled storage

The temperature was measured at three different locations on
e samples during the superchilling process: the surface, midway

The obse
muscles wi
two-way an
were expre
cal significa
nd the center. Three thermocouples were used at
he thermocouples were connected to a tempera-
hile the sample was cooled in the impingement
peratures of the cool air and of the sample were re-

s. The samples of 28 mm thickness were used. The
as measured by inserting thermocouples approxi-
rom the surface, 7 mm from the surface (midway
nd 14 mm from the surface (center).
ature, as one of the critical parameters during
orage, was strictly controlled during this study.

was designed (92 � 73 � 54.5 cm) with a heating
to ensure adequate temperature regulation. Three

13) 544–551 545
re the surface and center temperatures of the
almon fillets. The set-point temperature was
ox was placed inside the storage room, which
rature of approximately �5 �C (temperature out-

e box).

analysis

were cut from the top to the bottom of each super-
�1.7 ± 0.3 �C) transversal to the muscle fiber using

e blade that was previously stored at �1.7 ± 0.3 �C.
was conducted in a walk-in freezer to ensure a per-

In this study, a fixation method similar to those
lizadeh et al. (2007) and Martino and Zaritzky
d to observe the spaces left by the ice crystals in
samples were fixed by immersion in Clarke’s solu-
thanol and glacial acetic acid, 3:1) at �1.7 ± 0.3 �C
ntrol (not superchilled) samples were fixed with

on but at 4 �C. The fixed samples were then brought
ature and were dehydrated with absolute ethanol.

samples were then embedded in paraffin. The
les were cut transversally to the muscle fiber using
utocut 2055, Leica Microsystems, Germany) into
s. The sliced samples were then stained according

veloped by Alizadeh et al. (2007) with some modi-
Clear was used for rehydration, the samples were
blue aniline for 1 min and xylene was used before

d slides were observed with a microscope (Zeiss
s, Zeiss Inc., Germany) fitted with a digital camera
Nikon, Japan). The images of the slides were re-
ted using the stereological analysis program CAST2
Denmark). Two parameters, namely the cross-sec-
the equivalent diameter, were used in the evalua-
-sectional area refers to the surface area of the
an object (ice crystal or fiber muscle). The equiva-
r each ice crystal is defined as the diameter of a cir-
equivalent area Sp. From the data set of each
eter, the mean crystal diameter, Deq, was calcu-

ses were performed for three different specimens
r each case, more than 50 incidences of ice crystals
.

nalysis

ions of the microstructure sizes of the pre-rigor red
spect to storage days were analysed using one- and
es of variance using Minitab 16 software. The data
as the mean ± standard deviation, and the statisti-
of each experiment was p < 0.05.
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. Results and discussion

.1. Thermal transition behaviour of superchilling process

Thermal transition behaviour of superchilling process and stor-
ge in this study is the same as that reported in our previous work
aale et al. (2013d). However, in this study analysed ice crystal sizes
f the red muscles along the lateral lines of salmon fillets while
aale et al., 2013d) analysed ice crystal sizes of the white muscles

t the top surface and center part of salmon fillets. The initial freez-
g point was �1.1 �C, which was indicated by the beginning of the
eezing plateau at the center of the sample. The initial freezing
oint of the salmon was determined using separate samples that
ere totally frozen in the impingement freezer for approximately

0 min, and these samples were not used for any other analysis.
Fig. 2 shows an example of the superchilling process at�30 �C for

.1 min. The sample and superchilling medium temperatures were
ecorded every 4 s. The temperatures were recorded at surface,

exhibited
Fig. 4.The r
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t an
r, it
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yer, approximately 2 mm from the surface was about�6 �C, while
mperature at the mid center and center were about �0.7 and

.4 �C, respectively. Fig. 3, the time–temperature profile during the
uperchilled storage shows temperature equalization within one
ay of storage and maintained at �1.7 ± 0.3 �C during storage.

the slower
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(P < 0.05) a

Howeve
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.2. Evaluation of ice crystal sizes during superchilled storage

Pre-superchilled (unprocessed) salmon muscle was used as a
ontrol for the purpose of microstructure comparison with the
uperchilled samples. The cross-section of the unprocessed sample
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volume ratio a
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ig. 2. Temperature–time profile: surface, mid center and center layers during
perchilling process.

Fig. 3. Temperature–time profile during storage of the superchilled samples.
niform distribution of regularly shaped fibers
uscle concentrated along the lateral line consisted

rs of average diameter (46 ± 11 lm), whereas the
on either side consisted of broad fibers of

aale and Eikevik (2013), showed that the size of ice
in red muscle during the superchilling process (day
ificant p < 0.05 smaller than those during super-

. In this study, we will not discuss ice crystal sizes
erchilling process (i.e., partially frozen) because

form an analysis at day zero. However, microscopi-
ults are clearly distinguishable from the previous
elopment of ice crystals in red muscle of pre-rigor
during superchilled storage (days 2–29) are there-

indicated that the size of ice crystals at the faster
ate (F) was smaller compared to the slower super-
S) (Figs. 4 and 5). The size of ice crystals was
he faster superchilling process and 55 ± 3 lm at
rchilling process in red muscles after 2 days of stor-
indicated that the increase of ice crystal sizes in the
superchilling rate samples was not significant

y storage time.
is well known that, recrystallization is a tempera-

t process, which is enhanced by temperature fluctu-
95; Syamaladevi et al., 2012). In addition, small ice

ermodynamically unstable, having a high surface–
nd therefore a high excess of surface free energy
, 2007; Mazur, 1984; Russell et al., 1999; Shenouda,
devi et al., 2012; Zaritzky, 2012). In superchilling
rystallization is a main challenge particularly be-

nd 1 of storage (before temperature equalization).
zation process should be expected during super-
due to isothermal conditions and accounting that

ce at the surface and water at the center of the sam-
s the development of ice crystals in white muscles

ters and surfaces of the superchilled salmon. The re-
tal in white muscle presented in this study were ta-
previous study (Kaale et al., 2013d). This work

ificant (p < 0.05) increase of the ice crystal sizes be-
illing process (day 0) and superchilled storage. The
ease of ice crystal sizes in superchilled products
two main factors: The first factor is the large differ-
the superchilling process temperature (�30 �C or
e superchilled storage temperature (�1.7 ± 0.3 �C)
re fluctuation).
emperature difference affected the growth of ice
ularly the small ones that were formed at the sur-

on fillets during shell freezing. The second factor
gradient effect that was created during the super-
s. These gradients were observed to result in slight
small ice crystals formed at the surface layer and

t water diffusion to larger ice crystals, resulting in
the number of ice crystals at the surface layer of
d salmon (Kaale et al., 2013d; Payne et al., 1994).
ent study, this large increase of ice crystal sizes
n) was not observed because the samples were

2 days of storage. Since, the same superchilling pro-
e were applied in Kaale et al. (2013d) and the pres-

elieve that the recrystallization in red muscle of pre-
llets would be observed between day 0 and 1. The
n in red muscle of post-rigor salmon fillet was also
ale and Eikevik (2013) between day 0 (superchilling
ay 1 (superchilled storage). It should also be noted
perature equalization (temperature at the surfaces
rature at the centers of the superchilled samples)
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and control of the temperature fluctuation during storage the
in
ag

Bevilacqua and Zaritzky (1982) reported that when temperature
, th
spec

Fig. 4. Micrographs of unsuperchilled and superchilled salmon tissues (faster and slower superchilling rates).
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crease of ice crystal sizes is not significant (P < 0.05) at any stor-
e times (Kaale et al., 2013c, 2013d; Kaale and Eikevik, 2013).

is constant
when the
e recrystallisation occurs at significant rate only
imen contains crystals with diameters less than
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4lm. However, temperatures fluctuation enhance recrystallisa-
on even if have larger diameters.

.3. Microstructure sizes in pre- and post-rigor muscles

Table 1 shows the means of ice crystals in pre- and post-rigor of
almon fillets during superchilled storage (days 7, 14 and 21)
hich are displayed with individual 95% confidence intervals for
mean based on the pooled standard deviation. The post rigor re-

ults presented in this study for comparison were taken from our
revious study (Kaale and Eikevik, 2013). The comparison was
one between 3 days because were the only corresponding days
etween pre- and post-rigor, (i.e. in post rigor (Kaale and Eikevik,
013) the analysis was performed at 0, 1, 3, 4, 7, 14, 21 and 28 days
hile in pre-rigor (this study) was performed at 2, 4, 7, 14, 21 and

9 days). The result indicated that, the size of ice crystals in pre-
igor red muscle was significant p < 0.05 smaller than in post-rigor
ed muscle during superchilled storage of salmon fillets (Fig. 7 and
able 1). Meanwhile, the storage days did not show significant dif-
rence p < 0.05. In addition, a larger number of small ice crystals
ere observed in pre-rigor muscles compared to post-rigor
uscles, which can be said that, large amount of water is inside
e muscle cells during superchilling process of pre-rigor muscle

nd the water is both inside and outside the cells in the post-rigor
uscle. More details on post rigor muscles can be found elsewhere
aale and Eikevik, 2013). These results are similar to those re-

orted by Kaale et al. (2013d), who observed that at the fast super-
hilling rate, a large number of small ice crystals were present
ithin the muscles during pre-rigor compared to post-rigor mus-

les. Thus, the location, size and distribution of ice crystals in mus-
le tissue is the function of superchilling rate (slow versa fast) and
tate of the muscle tissue (pre- and post-rigor muscle).

Figs. 8 and 9 show the micrographs in red and white muscles of
e salmon fillets. A significant difference between the size of ice

rystals formed in red and white muscles was observed in this
tudy, as well as in the previous study (Kaale and Eikevik, 2013).
igs. 8 and 9 show the ice crystals in the red muscles concentrated
long the lateral lines with white muscle on either side. It is clearly
hown that the size of ice crystals formed in red muscles is signif-
antly smaller than that in white muscles. The size of ice crystals
as 40 ± 11 lm and 121 ± 2 in red and white muscles, respectively,

fter 4 days of storage (Fig. 8) and 46 ± 5 and 119 ± 7 lm in red and
hite muscles, respectively, after 7 days of storage (Fig. 9).

Summary of the red muscle: The red muscle is characterized by
e following points: (1) the smallness and uniformity of size of
e fibers (2) smallness of size of the ice crystals formed in the
uscles and (3) most important of all, its enormous loading of
t (Greene, 1913; George, 1962). The study of George (1962)

learly shows that the red muscle, narrow fibers (NF) is more
aded with fat than white muscle, broad fibers (BF) in mackerel
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present between the fibers in a relatively small

dium-sized drops (Greene, 1913). In this study the
t exhibit any concerning features related to fat dur-
e believe that, the fat droplets would not appear in
e to the following reason: In the histology experi-
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Fig. 6. Micrographs during superchilling process and storage of pre-rigor white muscle of salmon fillets (faster superchilling rates) (from Kaale et al., 2013d study).
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Table 1
Equivalent diameters (lm) of the ice crystals of pre and post-rigor of salmon fillets with 95% confidence intervals (Cls) based on the pooled standard deviation.

Muscles          Mean  --------+---------+---------+---------+- 
F-post rigor  60.26              (----*-----) 
F-pre rigor   46.57    (-----*----) 

    --------+---------+---------+---------+- 
                            48.0      54.0      60.0      66.0 

Days     Mean  -----+---------+---------+---------+---- 
 7    52.64    (---------------*--------------) 
14    52.96     (---------------*---------------) 
21    54.65            (---------------*--------------) 

-----+---------+---------+---------+---- 
                 50.0      52.5      55.0      57.5 

Fig. 7. Micrographs of pre- and post-rigor at fast superchilling rate.

Intracellular ice crystals 

Fig. 8. Showing microstructure (day 4) in red and white muscles of pre-rigor
salmon fillet.

Connective tissue 

Intracellular ice crystals: white muscles 
Intracellular ice crystals: red muscles 

Fig. 9. Showing microstructure of white muscles both sides and red muscles (day 7)
lmon fillet.
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.1. Superchilling process

Fresh and high quality food is becoming increasingly important.
any studies have been done to find the good preservation tech-
ologies. Superchilling technology is an alternative for preserving
he freshness and maintaining the quality of food compared to
onventional chilling and freezing technologies (Kaale, Eikevik,
ustad, & Kolsaker, 2011). Several different performances/defini-
ions for superchilling are used, and have shown beneficial effects
storage of foods: Ando, Nakamura, Harada, and Yamane (2004)

efine it as the temperature zone below 0 �C but where ice crys-
als are not generated. Beaufort, Cardinal, Le-Bail, and Midelet-
ourdin (2009) defined superchilling as a technology where food
stored just below the initial freezing temperature. Bahuaud et al.

2008), Duun and Rustad (2008), Kaale, Eikevik, Bardal, Kjorsvik,
nd Nordtvedt (2013), Kaale, Eikevik, Bardal, and Kjorsvik (2013),
aale, Eikevik, Rustad, et al. (2013), and Stevik et al. (2010) have
erformed superchilling by shell freezing food products and then
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perature equalise during storage at a temperature
l freezing point. The advantage of shell freezing is to
erature equalisation (enhance heat transfer) within
ence good mechanism of ice crystal formation. The
the food product acts as an internal ice reservoir
tions or storage for short periods.
tential disadvantage of partially freezing foods is the
caused by ice crystal formation. The size and location
formed during partial freezing (1e3 mm) from the
ndent on the superchilling rate. Furthermore, these
mportant quality parameters such as texture, water
yanddrip lossupon thawing (Mittal&Griffiths, 2005).
n of the optimum method by which food should be
been the subject ofmanystudies.Recent studiesKaale
13) andKaale, Eikevik, Bardal, Kjorsvik, andNordtvedt
ikevik, Bardal, and Kjorsvik (2013), Kaale, Eikevik,
013) indicated that shell/partial frozen food products
ent freezer result in suitable properties of ice crystal
ize, distribution and shape provided that is done at a
erchilling. Bahuaud et al. (2008), Chevalier, Sequeira-
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009) found that the size, distributionand shapeof ice crystalshave a
ajor influence on the quality of food products.

2. Water holding capacity (WHC) and drip loss

A useful tool for describing the quality in muscle foods post-
ortem is to measure the WHC of the muscle (Olsson, Ofstad,
demel, & Olsen, 2003). The WHC of food products is an important
ality parameter as it affects both profitability and quality, because it
fects the weight change during transport and storage, the drip loss
ring thawing, the weight loss and shrinkage during cooking, and
e juiciness and tenderness of the meat (Duun & Rustad, 2007; den
ertog-Meischke, van Laack, & Smulders,1997;Huff-Lonergan, 2002;
ie, Izumo, & Mohri, 1996; Shaviklo, Thorkelsson, & Arason, 2010).
eWHC is closely related to textural properties, and a lowWHC has
ten been described as an effect of post-mortem structural changes
themuscle. Such alterations could be shrinkage of themyofilament
ttice, myosin denaturation and increased extracellular space (Duun,
08). Myofibrils are long rod-like organelles found in skeletal and
rdiac muscle that constitute approximately 80% of the volume of
e muscle cell (Huff-Lonergan, 2002; Huff-Lonergan & Lonergan,
05). Moreover, approximately 85% of the water in a muscle cell is
ld in the myofibrils (den Hertog-Meischke et al., 1997; Huff-
nergan, 2002; Huff-Lonergan & Lonergan, 2005).
Drip loss, or the release of water during thawing, implies
trient loss (Duun, 2008; Turan, Kaya, & Erkoyuncu, 2003). Drip
ss is usually expressed as a percentage of the initial weight of the
oduct (Huff-Lonergan & Lonergan, 2005). Most of the proteins
und in drip are water-soluble, sarcoplasmic proteins. It is noted
at, in general, muscle proteins in fish and shellfish are more
sceptible to partial freeze denaturation compared with land an-
al proteins (Benjakul & Visessanguan, 2010).
Our previous studies Kaale, Eikevik, Bardal, Kjorsvik, and

ordtvedt (2013), Kaale, Eikevik, Bardal, and Kjorsvik (2013),
aale, Eikevik, Rustad, et al. (2013) demonstrated that a high
perchilling rate results in a high rate of heat removal, which leads
the formation of a large number of small nuclei and thus a large
mber of small ice crystals that grow both within and outside
lls. Consequently, the cells maintain their integrity which in turn
inimises drip loss; maintain water holding capacity and other
ality parameters during thawing (Smith, 2011). However, this
vantage was reduced during superchilled storage by the rapid
owth in ice crystal size in the salmon fillets. Moreover, there were
rge differences between the ice crystal sizes at the surfaces and
ntres of the superchilled salmon fillets (Kaale, Eikevik, Bardal, &
jorsvik, 2013). An increase in the size of ice crystals during
perchilled storage may impart mechanical damage by physically
pturing cell walls, which may result in an increase in drip loss, a
duction of the WHC and changes in other quality parameters
lated to the damage of the cell structure.
Nevertheless, there are few studies showing the relationship
tween ice crystal development and quality of food during
perchilled storage. Most of the studies on superchilling have
cused on the physical, chemical and microbiological analysis
ndo et al., 2004, Bao, Arason, & Thórarinsdóttir, 2007; Duun &
stad 2007, 2008; Gallart-Jornet, Rustad, Barat, Fito, & Escriche,
07). Therefore, the objective of this study was to analyse the
HC at both the surfaces and centres of salmon fillets and drip loss.
ken together these results help to clarify the effect of ice crystal
velopment during the superchilled storage.

Materials and superchilling process

Salmon (Salmo salar) fillets (0.9e1 kg), were delivered by Lerøy
idnor (Hitra, Norway). The samples were vacuum-packed and
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r 24 h before the superchilling process to ensure a
rature in all samples. Superchilling was performed
ent Advantec Lab Freezer (JBT Food Tech, Rus-
E-251 09, Helsingborg, Sweden) at NTNU Energy’s
ondheim, Norway. The samples were superchilled
) at �30 �C and 227W/m2 K (at 2.5 kPa pressure
he fan in the impingement freezer) for 2.1 min to
ontent of 20%. A previously developedmodel (Kaale,
r, & Stevik, 2013) was used to predict the degree of
he experiments for measuring the surface heat
ent (SHTC) were also performed in an Impingement
reezer. A detailed experimental set up and the
to calculate the SHTC are explained elsewhere

, Kolsaker, et al., 2013). Once superchilled, the
were stored in a cold room at �1.7� 0.3 �C for 28
ts were analysed at each sampling time.

e trend during storage

ture, one of the critical parameters during super-
was strictly controlled during this study. The stor-
3� 54.5 cm) was designed with an internal heating
ure adequate temperature regulation. Three Pt100
sors were inserted into the storage box. One sensor
asure the air temperature, and the other two were
e the temperatures at the surface and centre of the
mple. The set-point temperature was �1.7 �C. The
inside the storage room, which was at a tempera-
ately 5 �C (temperature outside the storage box).

analysis

method similar to that proposed by Alizadeh,
amballerie, and Le-bail (2007) and Martino and
was used to observe the spaces left by the ice

tissue. Detail information in the method used will
here because the micrographs presented in this
n from the previous study (Kaale, Eikevik, Bardal, &
. However, the superchilling process and storage
n both studies except, this study analysedWHC and
(Kaale, Eikevik, Bardal, & Kjorsvik, 2013) analysed
of the salmon fillets.

ing capacity and drip loss

ss was determined for minced muscle by low speed
s described by the WHC method of Eide, Børresen,
. A centrifugal force of 270 g was used instead of
nn & Rustad, 2002). The LL is expressed as the
eight lost during the centrifugation of 2 g of minced
in. The analyses were run in quadruplicate. The
the mince was determined by drying a 2 g minced

C for 24 h. These analyses were run in duplicate.
tification of drip loss, the samplewas removed from
after thawing at 4 �C for approximately 24 h and

iquid in the bag was weighed. The calculation of the
ased on the initial sample weight after thawing.
re calculated from three triplicates.

nalysis

tions for the WHC at the two locations (surface and
drip loss with respect to the storage days were
- and two-way analyses of variance using Minitab
eneral linear model, (post-hoc test) under Tukey’s

14) 528e535 529



s
s

3

3
p

a
o
n
w
s
in
r
in
n
s
u
im

c
t

freezing point
superchilling p
centre of the sa

The temper
shown over on
ieved after 1 d
entire storage
Kjorsvik, 2013)

3.2. WHC durin

The WHC w
from the surfac

ed
ased
he s
he c
LL

LL w
ere
cen

diffe
the
day
obs
e in
he s
rlier
liqu
erch
sam
% a
.8e
e h
2 an
ted t
le a
uce
e, t
o th
ale
sal
nt freezer had suitable ice crystal properties like size,

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

1 3 7 14 21 28

Li
qu

id
 lo

ss
s 

(%
 o

f w
et

 w
ei

gh
t)

F
[g
[g
th
o

F
a

L.D. Kaale et al. / LWT - Food Science and Technology 55 (20530
imultaneously test was applied whenever the ANOVA results were
ignificant, p< 0.05.

. Results and discussion

.1. Thermal transition behaviour during the superchilled of food
roducts

The thermal transition behaviour of the superchilling process
nd subsequent storage in this study is the same as that reported in
ur previous work (Kaale, Eikevik, Bardal, & Kjorsvik, 2013) (results
ot shown). However, in this study we analysedWHC and drip loss
hile (Kaale, Eikevik, Bardal, & Kjorsvik, 2013) analysed ice crystal
izes in the salmon fillets during superchilled storage. The changes

the surface and centre temperatures of the samples were
ecorded after every 4 s during the superchilling experiments. The
itial freezing point of salmon fish was �1.1 �C, which was desig-
ated by the beginning of the freezing plateau at the centre of the
ample. The initial freezing point of the salmon was determined
sing separate samples that were completely frozen in the
pingement freezer for approximately 30 min.
After partial freezing (superchilling process), the surface and
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rey]. Standard error of the mean is shown as y-error bar (n¼ 3). (For interpretation of
e references to colour in this figure legend, the reader is referred to the web version
f this article.)
ore temperatures were approximately �6 and þ3.8 �C, respec-
ively. The temperature at the core was higher than the initial
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of the salmon which indicates that, during the
rocess there were no ice crystals formed at the
lmon fillet.
atureetime profile for superchilled storage was also
e day and the temperature equalisation was ach-
ay and it was maintained at �1.7� 0.3 �C for the
time explained elsewhere (Kaale, Eikevik, Bardal, &
.

g the storage of superchilled salmon fillets

as analysed at the surface (approximately 2e3 mm
e) and the centre of the superchilled samples. The
that the liquid loss decreased with storage time (i.e.
with storage time) both at the surface and in the

uperchilled samples (Figs. 1 and 2). The larger ice
entre of the superchilled samples were expected to
, but interestingly the opposite was found in this
as slightly lower at the centre than at the surface,
was no significant difference (p< 0.05) between the
tre of the superchilled salmon fillet. There were no
rences (p< 0.05) in the LL between 1 and 14 days of
surface samples. There was a significant difference
1 for the centre samples, but no significant differ-

erved between 3 and 14 days of storage. In contrast,
LL was significant at day 21, both at the centre and
uperchilled samples.
study of Atlantic salmon stored at �1.4 or �3.6 �C a
id loss was observed during the first two weeks (16
illed storage) (Duun & Rustad, 2008). However, the
ples were significantly higher, 9.3e3.8% at �1.4 �C
t �3.6 �C, than in our samples, 2.9e1.8% at the sur-
1.7% at the centres. The large LL in their study could
igher degree of superchilling in their samples, which
d 49� 5% at �1.4 and �3.6 �C, respectively. It has
hat the degree of superchilling between 5% and 30%
nd that a degree of superchilling above 30% will
d quality in food products (Stevik & Claussen, 2011).
he superchilling rate was generally much slower
e superchilling rate applied in this study. A recent
, Eikevik, Bardal, Kjorsvik, and Nordtvedt (2013) re-
mon fillets that were shell/partially frozen using an
d shape provided that the superchilling is executed

5 10 15 20 25 30

Storage time (days)

drip loss in salmon fillets during storage. Superchilled ( ), chilled
ozen reference ( ). Mean values and standard deviation are shown
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Fig. 4. Micrographs of unsuperchilled and superchilled salmon tissues.
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a high rate. These ice crystal characteristics have a major influ-
ce on food quality such asWHC, drip loss and textural changes. In
dition, impingement freezers have been identified as an alter-
tive to conventional freezing methods because of their high
rbulence characteristics, which enhance heat transfer and
erefore the quality of food product (Salvadori & Mascheroni,
02).
An increase in WHC with storage time has been observed in
veral other studies: on pork (Kristensen & Purslow, 2001), halibut
lsson et al., 2003) and arctic charr (Salvelinus alpinus) (Bao et al.,
07). Bao et al. (2007) claimed that decreases in the LL (increases
the WHC) may partly have been caused by a higher ratio of

osely bound water that was released as drip over time. Increases

in WHC wi
tivity in the

The WH
Since LL is h
microstruct
et al., 2003)
change in th
at the surfa
chilled stor
2) might b
superchilled

In the ch
cantly from
orage time may also originate from proteolytic ac-
scle during storage.
a useful tool for describing quality in muscle foods.
ly related to structural changes in the muscle/flesh
(Erikson, Misimi, & Gallart-Jornet, 2011; Olsson
results from our study indicated that no significant
otein network occurred between day 1 and 14, both
and centres of the salmon samples during super-
The significant decrease in LL at day 21 (Figs. 1 and
ue to proteolytic activity in the muscle during
rage.
d samples (stored at 4 �C), the LL increased signifi-
0 to day 7 p< 0.05. Then, there was a significant
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ecrease in LL from 14 to 21 days of storage compared to day 7. An
itial increase and subsequent decrease in LL has also been re-
orted by Olsson et al. (2003) and Kristensen and Purslow (2001). It
as been suggested that the increase in the WHC during storage is
ue to reduced water content described as the ‘‘leaking out’’ effect
Olsson et al., 2003). In this study, however, thewater content in the
almon was unchanged (71%) during the entire storage time.

.3. Drip loss during storage of superchilled salmon samples

The drip loss directly quantifies the loss of saleable weight and/
r the deterioration of appearance, and further facilitates surface
icrobial growth (Duun, 2008). Between day 1 and 14 days of

storage the
ples compa
difference p
storage. A
samples wa
1 and 2%
Guerin, Fjæ
ered as a m
in the chille
of storage
storage.

These re
perature is
p loss was significantly lower in superchilled sam-
to chilled and frozen samples (Fig. 3). No significant
.05 was found in drip loss between 1 and 14 days of
ificant increase in drip loss for the superchilled
served at day 21. However, drip loss values between
ot regard as high (Duun & Rustad 2008; Einen,
& Skjervold, 2002) therefore this cannot be consid-
problem in the superchilled samples. The drip loss
mples increased significantly (p< 0.05) after 7 days
the drip loss was higher than 2% after 14 days of

ts clearly demonstrate that the superchilling tem-
enough to substantially maintain the quality of
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od products but high enough to avoid significant levels of ice
ystal growth that can cause structural damage. In the study by
aale, Eikevik, Bardal, and Kjorsvik (2013), a significant increase in
e ice crystal sizes was observed. The ice crystal size in the
perchilling process (day 0) was significantly smaller compared
that during the storage of superchilled samples, in fact the ice
ystals in storagewere 4 times larger than at day 0 (Kaale, Eikevik,
rdal, & Kjorsvik, 2013). This is due to thermal behaviour within
e superchilled sample and accounting that we have both ice at
e surface and water at the centre, an important diffusion process
expected during the storage of the superchilled food. This should
oduce recrystallisation. In addition, temperature fluctuation
tween superchilling process at �30 �C and superchilled storage

storage of
fluctuation.

Prior to
from the su
(Fig. 4). No
superchillin
formed at
superchillin
integrity of
crystals at t
(Kaale, Eike
noted that
surfaces eq
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mperature at �1.7� 0.3 �C should also contribute to recrystalli-
tion. The influence of the storage temperature is well known,
artino and Zaritzky (cited by Blond & Meste, 2004) reported that
e mean ice crystal diameter, which was 10 mm in beef muscle
ozen at �40 �C, becomes equal to 40 mm after 150 h storage
�5 �C. Syamaladevi, Kalehiwot, Balasingam, and Shyam (2012)
ported a significant increase in ice crystal size during the

samples) and co
the increase of i
storage time (
Kjorsvik, 2013;
and Zaritzky (1
the recrystallisa
imen contains c

Fig. 5. Micrographs of superchilled salmon showing intracellular, extracellular spaces and di
on which was also attributed to temperature

erature equalisation, ice crystal growth progresses
e to the centre of the superchilled food products
crystals were formed at the centre during the

rocess (on day zero) (Fig. 4). The new ice crystals
centre during storage were large, due to slow
te and these crystals could therefore damage the
superchilled product. It was reported that the ice
entre were 3 times larger than those at the surface
Bardal, & Kjorsvik, 2013). However, it should also be
r temperature equalisation (temperature at the
to temperature at the centres of the superchilled

14) 528e535 533
ntrol of the temperature fluctuation during storage
ce crystal sizes was not significant (p< 0.05) at any
Kaale & Eikevik, 2013; Kaale, Eikevik, Bardal, &
Kaale, Eikevik, Rustad, et al., 2013). Bevilacqua

982) reported that when temperature is constant,
tion occurs at significant rate only when the spec-
rystals with diameters less than 24 mm. However,

stribution of ice crystals after 1 day of storage.
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emperatures fluctuation enhance recrystallisation even if have
rger diameters. The statistical analysis results for the ice crystal
izes are explained elsewhere (Kaale, Eikevik, Bardal, & Kjorsvik,
013).
The results found in this study might be due to; in fish and meat

issues, the destructive effect of ice crystal formation is minimised
ue to the elasticity of the cellular structure in muscle (Smith,
011). Nevertheless, the loss of quality in fish and meat is largely
ssociated with the loss of protein functionality. When ice is
rmed, there is an increased concentration of enzymes and an
crease in salt concentration in the remaining water, which cause
rotein denaturation and affect protein functionality (Shenouda,
980; Smith, 2011). During superchilling, protein denaturation
hould be minimal because only a small amount (5e30%) of the
ater is frozen which would result in less enzyme and salt con-
entration in the remaining water.
Superchilling technology comprises the: shell freezing of food

roducts followed by temperature equalisation during the super-
hilled storage. This technology allowed for a suitable mechanism
f ice crystal formation (Figs. 4 and 5) that did not seem to affect the
uality of food products compared to unprocessed product (chilled
amples). The results from this study corroborate by previous
tudies which have been reviewed by Kaale et al. (2011). The review
ummarises the quality and shelf life of superchilled foods and the
umerous benefits of applying superchilling technology to food
roducts were found.

. Conclusion

No significant differences were found in LL between surface and
entre parts of the superchilled samples. There were no significant
ifferences in the LL for the surface samples between 1 and 14 days
f storage. For the centre samples, there was a significant difference
the LL at day 1, but no significant differences were observed

etween 3 and 14 days of storage. In contrast, a significant
ecreased in LL was observed at day 21 both at the centre and
urface of the superchilled samples. No significant difference
p< 0.05) was found in drip loss between 1 and 14 storage days for
he superchilled samples. A significant increase in drip loss for the
uperchilled samples was observed at day 21.

The small changes in LL and drip loss found in this study during
uperchilled storage of salmon (S. salar) fillets might be due to the
equired degree of superchilling (approximately 20%) and high
uperchilling rate used in this study. These findings are significant
r the industry because it provides valuable information on the
uality of food products in relation to ice crystallisation/recrystal-
sation during superchilled storage.
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The influence of superchilling storage methods on the characteristics of ice 

crystal during storage of Atlantic salmon (Salmo salar). 

L. D. Kaale, T. M. Eikevik 

Norwegian University of Science and Technology (NTNU), Dep. Energy and Process Engineering, 

N-7491, Trondheim, Norway. 

Abstract 

The objective of this work was to study the influence of superchilling storage methods, shell freezing 

(i.e. initial surface freezing of salmon and the followed storage at -1.7 ± 0.3℃) and non - shell 

freezing (i.e. storage of salmon at -1.7 ± 0.3℃ without initial surface freezing/shell freezing) on the 

characteristics of ice crystal (location/distribution) during the superchilled storage of salmon. 

Physical measurements, water holding capacity and drip loss were also studied. Ice crystals were 

mainly formed in the extracellular space in non-shell frozen samples. Fine and well-distributed ice 

crystals were formed both intracellular and extracellular spaces in shell frozen samples. Liquid loss 

(LL) decreased with storage time in both superchilling storage methods. There was no significant 

difference p<0.05 in LL between shell and non-shell frozen samples. There was a significant 

difference of LL in day 1 for the non-shell samples, and no significant differences were observed 

between 7 and 21 days of storage. There was significant difference p<0.05 in the drip loss between 

shell frozen samples (1.62% as maximum) and non-shell frozen samples (1.41 as maximum). It is 

however, well known that the values between 1-2% of drip loss cannot be regarded as high. 

Nevertheless, since most of the ice crystals were formed in extracellular spaces in non-shell frozen 

samples, the cells in the surface layer might have been destroyed. The samples in this study were 

taken randomly from surface to the centre and therefore it was not possible to detect the destructive 

effect in this layer. In the future it is necessary to study quality parameters separately at different 

locations (surface and centre) within the superchilled product in order to see if the formation of 

extracellular ice at the surface layer has an effect on the quality of superchilled food. It is also 

necessary to perform biochemical and microbiological analyses in both methods in order to compare 

their capabilities of storing foods in relation to shelf life and the quality of the final superchilled 

food.  

Key words: Shell freezing/initial surface freezing, superchilling, salmon fish, liquid loss, drip loss 

 

 

 

 

 

 



1. Introduction 

1.1. Superchilling processes 

The superchilling process is defined as a method of preserving food by partial ice-crystallization. 

The superchilling involve the conversion of some water to ice, the amount depending on the degree 

of superchilling required. The degree of superchilling in this context has been defined as the amount 

of free water frozen (5 – 30 %) inside the food product. Provided that the temperature is not 

permitted to go below (-2℃), superchilled food will not become rigidly frozen (Ronsivalli and 

Baker, 1981). The superchilling process is a slow process which allows the formation of large 

extracellular ice crystals which may affect the quality of the superchilled product. However, this 

depends on how one defines the superchilling. The concept of superchilling has been under 

continuous development for the last 10-20 years (Claussen, 2011). Even today, superchilling 

of foods is performed in different ways. Ando et al. (2004) defines it as the temperature zone 

below 0℃, but where ice crystals are not generated. Beaufort et al. (2009) defined superchilling as a 

technology where food is stored just below the initial freezing temperature. Bahuaud et al. (2008); 

Duun and Rustad (2008); Kaale et al. (2013b); (2013c); (2013d); Stevik et al. (2010) have performed 

superchilling by shell freezing the food products (initial surface freezing), followed by the storage of 

food at 1 – 1.5℃ below its freezing point. The latter case, the purpose of the initial surface freezing 

is to enhance heat transfer which facilitates temperature equalization within the food and hence a 

good mechanism of ice crystals growth. After shell freezing (frozen layer 1 – 3 mm from the surface) 

the ice distribution equilibrates, and the product obtains a uniform temperature at which it maintains 

during storage and distribution. Figure 1 shows the temperature equalization during the superchilled 

storage of salmon (Kaale et al., 2013c).  This provides the food product an internal ice reservoir so 

that no external ice is required during transportation or short term storage. 
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Figure 1: Temperature-time profile during superchilling storage at -1.7 ± 0.3 ℃ 

1.2. Water holding capacity and drip loss 

During the superchilled storage of food products changes on the quality of food products may occur, 

such as the reduction of water holding capacity, the excessive increase of drip loss and other related 

quality parameters. These changes that occur in superchilled food products are the major concern for 

consumers. It is therefore important to assess the quality parameters, such water holding capacity, 

drip loss and other quality parameters during superchilled storage. The water-holding capacity 

(WHC) of food products is one of the most important factors as it not only affects economics but 

also their quality, because it affects the weight change during transport and storage, drip loss during 

thawing, weight loss and shrinkage during cooking, and the juiciness and tenderness of the meat (den 

Hertog‐Meischke et al., 1997; Duun and Rustad, 2007; Gholam et al., 2010; Huff-Lonergan, 2002; 

Irie et al., 1996). WHC is closely related to textural properties, and low WHC has often been 

described as an effect of post mortem structural changes in the muscle. Such alterations could be 

shrinkage of the myofilament lattice, myosin denaturation and increased extracellular space (Duun, 

2008). Figure 2 shows the overview of muscle structure.  



 

Figure 2: Schematic overview of muscle structure (den Hertog‐Meischke et al., 1997) 

Drip loss is also an important quality parameter to determine during the superchilled storage of the 

food products. High drip losses are undesirable because they are visually unattractive, lose soluble 

nutrients and flavour compounds, lose value due to weight loss, and results in dry, stringy texture 

(Duun, 2008; Kolbe and Kramer, 2007). The factors that affect the amount of drip include formation 

and size of ice crystals in the tissue, location of ice crystals, rate of thawing, internal pressure during 

freezing, irreversibility of water removal from cells (extent of water resorption), physiological status 

of tissue prior to partial freezing, and intrinsic water binding prior to partial freezing (Kolbe and 

Kramer, 2007).  

The location is one of the characteristics of ice crystal, and is designated by the formation of ice 

crystals either extracellularly or intracellularly depending on the superchilling rate. The 

characteristics of ice crystals have a strong influence on the quality of the final superchilled food. 

Therefore, the objective of this work was to study the influence of superchilling storage methods, 

(shell freezing verses non - shell freezing) on the characteristics of ice crystals (location/distribution) 

during the superchilled storage of salmon. Physical measurements, water holding capacity and drip 

loss were also studied.  

 

 

 



2. Materials and superchilling process 

Salmon fillets (Salmon salar) 1–1.2 kg, were delivered by Lerøy Midnor (Hitra, Norway). The 

samples were vacuum-packed and stored at 4℃ for 24 h before the superchilling process to ensure a 

constant temperature in all samples. For the shell frozen samples, the superchilling process (initial 

surface freezing) was performed in an Impingement Advantec Lab Freezer (JBT Food - tech, 

Rusthållsgatan 21, SE-251 09, Helsingborg, Sweden) at NTNU Energy’s laboratory in Trondheim, 

Norway. The samples were superchilled (partially frozen) at -30℃ and 227 W/m
2
.K (at 2.5 kPa 

pressure differences of the fan at the impingement freezer) for 2.1 min to achieve an ice content of 

20 %. The previous developed model (Kaale et al., 2013a) was used to predict the degree of 

superchilling. The experiments for measuring the surface heat transfer coefficient (SHTC) value 

were performed in an Impingement Advantec Lab Freezer. Details on the set-up of the experiments 

and the equation used to calculate SHTC is explained elsewhere (Kaale et al., 2013a). Once 

superchilled, the salmon samples were stored in a cold room at -1.7 ± 0.3℃ for 21 days. The non- 

shell frozen samples were also stored in the same temperature for comparison. Six fillets were 

analyzed at each sampling time (3 for shell freezing and 3 non-shell freezing). 

2.1. Temperature trend during storage 

The temperature, as one of the critical parameters during superchilled storage, was strictly controlled 

during this study. The storage box was designed (92 x 73 x 54.5 cm) with a heating element inside to 

ensure adequate temperature regulation. The Pt100 temperature sensor was used to measure the air 

temperature in the storage box during storage of the superchilled salmon fillets. The set-point 

temperature was -1.7℃. The box was placed in a storage room, which holding a temperature of 

approximately -5℃. 

2.2. Water holding capacity and drip loss 

Liquid loss (LL) was determined on minced muscle by low speed centrifugation as described by the 

water holding capacity method of Eide et al. (1982). A centrifugal force of 270 g was used instead of 

1500 g (Hultmann and Rustad, 2002). The LL is expressed as the percentage of weight of the mince 

lost during centrifugation of 2 g of sample for 5 min. The analyses were run in quadruplicate. Water 

content in the mince was determined by drying minced sample of 2 g at 105℃ for 24 h. The analyses 

were run in duplicate. 

For quantification of the drip loss, the sample was removed from the vacuum bag after thawed at 4℃ 

for approximately 24 hours and the liquid left in the bag was weighed. Calculation of the drip loss 

was based on the initial sample weight after thawing. Mean values were calculated from three 

triplicates. 

 



2.3. Microscopic analysis 

Two pieces were cut from the surface layer to the bottom layer of each superchilled sample (-1.7 ± 

0.3℃) transversally to the muscle fibre using a standard knife blade that was previously stored at -1.7 

± 0.3℃ This procedure was conducted in a walk-in freezer to ensure a perfect cold chain. In this 

study, a fixation method similar to those proposed by Alizadeh et al. (2007); Martino and Zaritzky 

(1988) was used to observe the spaces left by the ice crystals in the tissue. The samples were fixed 

by immersion in Clarke’s solution (absolute ethanol and glacial acetic acid, 3:1) at -1.7 ± 0.3℃ for 

24 h. The control (unprocessed) samples were fixed with the same solution but at 4℃. The fixed 

samples were then brought to room temperature and were dehydrated with absolute ethanol. The 

dehydrated samples were then embedded in paraffin. The embedded samples were cut transversally 

to the muscle fibre using a microtome (Autocut 2055, Leica Microsystems, Germany) into 4 μm 

thick slices. The sliced samples were then stained according to a method developed by Alizadeh et 

al. (2007) with some modifications: Neo-clear (Tissue Clear) was used for rehydration, the samples 

were immersed in 1% blue aniline for 1 min, and xylene was used before mounting. All the prepared 

slides were observed with a microscope (Zeiss Axioskop 2 plus, Zeiss Inc., Germany) fitted with a 

digital camera (Nikon DS-5M, Nikon, Japan).  

2.4. Statistical analysis 

The observations of the water holding capacity and drip loss with respect to storage days were 

analysed by one- and two-way analyses of variance using Minitab 16 software. A general linear 

model, (post- hoc test) under Tukey’s simultaneously test was applied whenever the ANOVA results 

were significant, p < 0.05.  

3. Results and discussion 

3.1. Thermal transition behavior during superchilled storage of food products 

Figure 3 shows the time - temperature profile during storage of the superchilled salmon. The 

temperature in the storage box was strictly controlled at -1.7 ± 0.3℃. The temperature in the samples 

was measured at each sampling time. After 1 day of storage (24 h) the temperature in non-shell 

frozen samples was -1.4 and -0.3℃ at the surface and centre, respectively. The temperature at the 

centre of non-shell frozen samples decreased slowly and after 21 days of storage, was about -0.78℃. 

In shell frozen samples, the temperature equalization was achieved within the samples after 1 day of 

storage (i.e. the surface and centre temperatures were the same after 1 day of storage). This result (in 

shell frozen samples) is similar with that reported by Kaale et al. (2013b; 2013c; 2013d).  
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Figure 3: Time - temperature profile during storage of the superchilled salmon fillet. 

 

3.2. Ice crystal evolution during superchilling process and following storage of the superchilled 

products. 

Pre-superchilled (unprocessed) salmon muscle was used as a control for the purpose of 

microstructure comparison with the superchilled samples. In non- shell frozen samples, the ice 

crystals were mainly formed in extracellular spaces (Figures 4) during superchilled storage. The 

location of the ice crystals depends mainly on the superchilling rate. The extracellular ice crystals 

observed in non-shell frozen samples are due to the slow superchilling rate, which is generally 

considered to form extracellular ice crystals. There were no ice crystals formed at the centres of non-

shell frozen samples for the entire storage time (after 21 days of storage) Figure 4. However, it was 

not clear how deep the ice crystals were formed from the surface. 
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Figure 4: Micrographs of unsuperchilled and superchilled salmon tissues (non-shell frozen samples), 

show extracellular ice crystals. 

It was also interesting to observe the formation of ice crystals in intracellular spaces though the 

superchilling rate was very low and there was no pre-treatment of the samples Figure 5.  
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Figure 5: superchilled salmon tissues (non-shell frozen samples) show intracellular and extracellular 

ice crystals. 

In shell frozen samples, the ice crystals were analysed on days 0, 1 and 14. The statistic results were 

not performed in this study because similar studies (Kaale et al., 2013b; 2013c; 2013d) with the same 

conditions (-30℃, 227 W/m
2
.K and 2.1 min) have been carried out, and the development of ice 

crystals was studied intensely. Figure 6 clearly shows that the ice crystals location in shell frozen 

samples was different from that in non-shell frozen samples. On day 0 (initial surface freezing), the 

ice crystals at the surface were smaller, and finely distributed inside and outside the cells. However, 

this advantage was reduced during superchilled storage due to the rapid increase of ice crystal sizes 



(recrystallization) Figure 6. In a similar study, Kaale et al. (2013a); (2013b); (2013c) reported that, 

the ice crystal size was 4 times larger after only one day of superchilled storage, compared to the size 

of the ice crystals during the superchilling process (day 0). This is due to the temperature fluctuation 

between the superchilling process -30℃ and superchilling storage temperature -1.7 ± 0.3℃. The 

influence of the storage temperature is well known, Martino and Zaritzky (cited by Blond and Meste, 

2004) reported that the mean ice crystal diameter, which was 10 µm in beef muscle frozen at -40℃, 

becomes equal to 40 µm after a 150 h storage at -5℃. Syamaladevi et al. (2012) reported significant 

increase of ice crystal sizes during storage of salmon due to temperature fluctuation.  
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Figure 6: superchilled salmon tissues (shell frozen samples) show intracellular and extracellular ice 

crystals. 

Prior to temperature equalisation, ice crystal growth progresses from the surface to the centre of the 

superchilled food products. No ice crystals were formed at the centre during the superchilling 

process (on day 0) Figure 6. Kaale et al. (2013b); (2013c); (2013d) reported that the ice crystals at 

the centre of the superchilled salmon were 3 times larger than those at the surface. This was due to 

the slow superchilling rate and thermal behaviour within the superchilled sample. Details on ice 

crystal development during superchilling process and storage are explained elsewhere (Kaale et al., 

2013b; 2013c; 2013d) 

3.3. Liquid loss (LL) and drip loss during storage of shell and non-shell frozen samples 

Quality changes have been studied with the focus on water holding capacity and drip loss. The 

results showed that liquid loss (LL) decreased with storage time (i.e. the increasing of water holding 

capacity with storage time) both for the shell and non-shell frozen samples Figure 7. However, LL 

and drip loss in shell frozen samples were analysed only on days 7 and 14 of storage because a 

similar study (Kaale et al., 2014) with similar conditions (-30℃, 227 W/m2.K and 2.1 min) has been 

carried out, and LL was studied intensely. There was no significant difference p<0.05 in LL between 

shell and non-shell frozen samples at 7 and 14 days of storage. There was significant difference of 

LL on day 1 in non-shell samples, and no significant differences were observed between 7 and 21 

days of storage. The increase in WHC (decrease in LL) with storage time has been observed by 

Kristensen and Purslow (2001) in pork, Olsson et al. (2003) in halibut muscle, Duy et al. (2007) 

during the superchilling of arctic charr (Salvelinus alpinus) fillets and Kaale et al.(2014) during the 

superchilled storage of Atlantic salmon. Duy et al. (2007) claimed that, the decreases in LL 

(increases in WHC) may partly have been caused by a higher ratio of the loosely bound water which 

was released as drip loss with time and proteolytic activity in the muscle during storage. 



Figure 7: Changes in liquid loss of salmon fillets during superchilled storage.  

WHC plays an important role in the partial freezing of food products because it relates to the quality 

of the final superchilled product. Since LL is highly related to structural changes in the muscle 

(Erikson et al., 2011; Olsson et al., 2003), the results from our study indicated that there was no 

significant change in the protein network that occurred during the storage time. In our previous study 

Kaale et al. (2014) there was also no significant difference between 1 and 14 days of storage 

however, the significant decreased of LL was observed on day 21 of storage. 

In the chilled samples, the LL was increasing from day 1 to day 3, p<0.05 and there was no 

significant difference between 3 to 7 days of storage. However, the LL decreased significantly 

(p<0.05) after 14 days of storage compared to day 7. The initial increase and subsequent decrease in 

LL has also been reported by Olsson et al. (2003); Kristensen and Purslow (2001) and in our 

previous study Kaale et al. (2014). It has been suggested that the increase of the WHC is due to 

reduced water content described as the ‘‘leaking out’’ effect (Olsson et al., 2003).  
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 Figure 8: Linear plot showing drip loss vs. storage time. 

Drip loss is an important meat quality aspect which is perceived by consumers as juiciness, 

appearance and colour of product (Kragten and Bee, 2010). Figure 8 shows the drip loss for the shell 

and non-shell frozen samples during superchilled storage, chilled and frozen references during 

storage. The drip loss in shell frozen samples was significantly higher than in non-shell frozen, 

chilled and frozen samples. The drip losses were 1.62 and 1.41% (as maximum values) in shell and 

non-shell frozen samples, respectively. It has, however, been reported that the values between 1-2% 

of drip loss cannot be regarded as high (Duun and Turid 2008; Einen et al., 2002) and cannot be 

considered as a major problem in superchilled salmon. There was also no significant difference 

between non-shell frozen and chilled samples. These results are different from those reported by 

Kaale et al. (2014) which observed that the drip loss between 1 and 14 days of storage was 

significantly lower in superchilled samples (shell frozen samples) compared to chilled and frozen 

samples. The drip loss directly quantifies the deterioration of appearance and further facilitates 

surface microbial growth (Duun, 2008). The changes of drip loss observed in this study compared to 

the previous one might be due to the good quality of the material.  Blond and Meste (2004) reported 

that the raw material quality is important, and this quality must be preserved during processing and 

storage. However, the age of the materials for both studies was not known. Nevertheless, since the 

drip loss was between 1-2%, the results from our study indicated that no significant change in the 

texture had occurred during superchilled storage.  

 

 

 



4. Conclusion 

There was no significant difference p<0.05 in LL between shell and non-shell frozen samples during 

superchilled storage (sampling days for both methods).There was a significant difference of LL in 

day 1 for the non-shell samples, and no significant differences were observed between 7 and 21 days 

of storage. There was a significant difference p<0.05 in drip loss between shell frozen samples 

(1.62% as maximum) and non-shell frozen samples (1.41 as maximum). It is however, well known 

that the values between 1-2% of drip loss cannot regarded as high. 

Nevertheless, since most of the ice crystals were formed in extracellular spaces in non-shell frozen 

samples the cells in the surface layer might have been destroyed. The samples in this study were 

taken randomly from the surface to the centre and therefore it was not possible to detect the 

destructive effect in this layer. In the future it is necessary to study quality parameters separately at 

different locations (surface and centre) within the superchilled product in order to see if the 

formation of extracellular ice at the surface layer has an effect on the quality of the final superchilled 

food. It is also necessary to perform biochemical and microbiological analyses in both methods in 

order to compare their capabilities of storing foods in relation to shelf life and the quality of the final 

superchilled food. If non-shell freezing method will give positive impact on the quality of the final 

superchilled food, this might be a good alternative of doing/performing superchilling because is 

cheaper than shell freezing method. Non-shell freezing does not need initial surface freezing (i.e. no 

need of freezer), will only need a flexible and effective storage facility. 
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