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Abstract

Content providers, such as enterprises and organizations who publish their con-
tent on the Internet, aim at making their content visible and easily accessible
to the users. The vast amount of data contained in databases impedes their
efforts, as users often find it challenging to navigate through the available data
and find the items that best suit their needs. It is therefore necessary for con-
tent providers to motivate users to explore the available data and assist them in
finding items that are interesting to them. State-of-the-art approaches such as
top-k queries are not appropriate for data exploration as they require the users
to be aware of the database structure and the content they are exploring.

In this thesis, we study the problem of enhancing the visibility of database
content through exploratory search and analysis. We propose exploratory algo-
rithms that return to the user a small number of results, which at the same time
provide a wide overview of the available content. In addition, we present algo-
rithms that identify items that are appealing to users and can be exploited for
offering users an insight of the available items and motivating them to explore
the database. In particular, the main contributions of the thesis are:

• We develop a framework for organizing and summarizing keyword search
results based on their textual content and temporal data.

• We introduce a new type of query, the eXploratory Top-k Join (XTJk)
query, which creates object combinations that are better suited to user
preferences than single objects, and we present algorithms for the efficient
processing of XTJk queries.

• We introduce the continuous influential query, which returns objects that
are continuously attractive to a large number of users for long periods, and
we present algorithms for the efficient retrieval of continuous influential
objects.

• We model the diversity of database objects based on user preferences, and
we propose efficient algorithms for selecting products that are attractive
to a wide range of users with diverse preferences.

• We describe the Best-terms problem which is the problem of increasing
the rank of a spatio-textual object through the enhancement of its tex-
tual description. We show that the problem is NP-hard and we present
approximate algorithms that retrieve high quality results.

The proposed approaches have been evaluated through extensive experimen-
tal evaluation. The experiments were conducted using both synthetic and real
datasets and demonstrate the efficiency of the proposed methods.
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Part I

Introduction and
Background

In Chapter 1, we discuss the motivation, present the main contributions, and
we give an outline of the remainder of the thesis. In Chapter 2, we present the
related work that is the basis of this thesis.
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Chapter 1

Introduction

Databases nowadays contain large volumes of data, and they are accessed by
numerous users on a daily basis. The large volume of data poses challenges to
both users accessing the databases and the companies or organizations managing
them. Users on one hand, find it challenging to navigate through the data
and explore the database content in order to find the information they are
searching for. Enterprises on the other hand, need to make their content visible
and accessible to the users and identify which objects in their database (e.g.
products) have a significant impact on the user basis and use this information for
promoting their products. In this thesis, we study the problem of enhancing the
visibility of database content through exploration and query analysis techniques.

This chapter is organized as follows: In Section 1.1, we present the motiva-
tion behind our research, while Section 1.2 presents the research questions. In
Section 1.3, we describe the methodology we followed during our research. In
Section 1.4, we present the main contributions of this thesis and in Sections 1.5
and 1.6 we list the papers resulted from this Ph.D. study. Finally, in Section
1.7, we describe the structure of the thesis.

1.1 Motivation

Most companies today invest significant resources on making their content visi-
ble on the Web and enabling users to browse the offered products and services.
Often, companies provide a plethora of different alternatives, which overwhelm
the user and make it extremely difficult for her to find the products she is inter-

5



Chapter 1. Introduction 6

ested in. The original target of increasing the visibility of the available products
is thus hindered by the abundance of products contained in the database. It is
therefore necessary to develop data exploration techniques that will enable users
to explore large databases and provide them with a wide, yet coherent overview
of objects that fit their preferences. In that way, the available solutions will be
more visible and easily accessible to the users.

In addition to helping users explore the database content, companies need to
motivate users to visit and browse their database by presenting them attractive
products. Analysis of user preferences can contribute in identifying products
with large influence on the user base. The identification of such products can
help a company plan its promotion and advertising strategy that will lead to
the attraction of new customers.

In this thesis, we study the problem of enhancing the visibility of the objects
contained in a database through exploratory search and analysis. To that direc-
tion, we propose search algorithms for providing users an informative overview
of the database content. We also propose analysis techniques for identifying
objects that are attractive to the users. In the following, we discuss the existing
challenges in exploratory search and preference query analysis.

1.1.1 Exploratory search

When users are searching in a database, they are usually unaware of the exact
database content. Quite commonly, they do not have a concrete idea of the
objects’ properties they are searching for but only certain preferences about
them. Consequently, they need to explore the database contents to find the
objects that best fit their preferences. For instance, if someone wishes to buy
a laptop, one may have a general idea about the desired characteristics, but an
exact description of the laptop is difficult to be strictly determined. Traditional
database queries are hard constraint queries, which return either exact matches
or nothing. In addition, hard constraint queries are in general quite complex,
and in order to produce useful results, they require the user to be aware of the
database content. They also often require the knowledge of a specific query
language and the structure of the queried database [55]. Moreover, hard con-
straints are quite likely to produce very small or extremely large result sets that
provide little insight of the available data. As a result, users are led to pose
repeatedly new queries until they retrieve a satisfying result set [64]. Therefore,
they are inappropriate for exploratory search as they pose significant difficulties
to users searching the database.
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Users experience frustration when they are not able to easily find the infor-
mation they need. In an attempt to make database content easily accessible,
several approaches have been proposed [23, 25, 34, 58, 79, 63, 125], which al-
low users to express their needs by posing preference queries using either sets
of keywords or by indicating their interest on the objects’ attributes they are
searching for. The query result is typically a list of objects, usually ranked
according to a function that measures the relevance or the performance of each
object with respect to the query. This type of queries are known in literature
as preference or top-k queries.

A key aspect that preference queries fail to capture in its entirety is the
fact that users performing exploratory search are generally unfamiliar with the
domain of the data they are searching, and they are possibly unclear about
their wishes [116]. A flat list of results provides little insight to the user about
the available information. In addition, the relaxation of constraints induced by
preference queries introduces ambiguity to the search, as each keyword query
could be associated with a large number of database queries. As a result queries
can produce a large number of redundant results, which the user has to filter out.
For example, the keyword query “Charlie Chaplin” on a movie database of an
entertainment provider such as Netflix, could be referring to films where Charlie
Chaplin participated as an actor or to movies and documentaries about Charlie
Chaplin’s life. Similar problems exist in cases where the number of the available
choices are too many for the user to process. For example, if a user is interested
in buying a laptop and she is interested in the price and certain upgradeable
characteristics (e.g., battery or disk size), it is possible that a combination of
an economic laptop with a number of accessory components is more preferable
than a single expensive laptop. Presenting, however, a large number of possibly
similar combinations between laptops and accessory products may confuse the
user and prevent her from easily acquiring an overview of the available solutions.

It becomes apparent that preference queries transfer the problem of un-
derstanding the structure and the content of a data collection from the query
formation to the query results. Most applications address such problems by
either presenting to users a large number of diverse results, or by limiting the
scope of search to a specific field, i.e., by implicitly adding constraints. In both
cases, the user acquires little insight of the available data, either because she is
confused by the overwhelming size of the data, or because the provided results
offer limited alternatives. Producers and service providers are directly affected
by this phenomenon, as the visibility of their products is compromised due to
omission of products or due to the inclusion of redundant results. It is therefore
essential for providers to balance between presenting a coherent set of results
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and offering a wide overview of the available alternatives, in order to increase
the visibility of the offered products.

1.1.2 Exploratory analysis of user preferences

Apart from providing users a wide overview of the available products, it is vital
for a company to be able to explore the connections between user preferences
and products. Analysis of user queries and the database content can provide in-
formation regarding products that are attractive to users and the characteristics
of the users who are attracted to them. Such information is of great importance
in market analysis and product promotion. Two characteristic cases are the
identification of products that are appealing to large number of users over long
periods of time, and products that are attractive to a wide range of users.

User preferences vary over time and it is essential for a product manufacturer
or a service provider to be able to identify products that are constantly highly
ranked in the search results of large number of users. This information can be
exploited for the more efficient promotion of products. For instance, different
promotion tactics can be followed for products that the users are continuously
interested in and for products that attract the users only for short periods of
time or they do not attract users at all.

Marketing analysis can also benefit from identifying products or groups of
products that are attractive to a wide range of users and potentially new cus-
tomers. When a user is visiting the website of a company, she has little infor-
mation about the available alternatives. A small number of possibly interesting
products would give her an insight of the database content, intriguing and help-
ing her to explore the database to find the desired item. Usually, only few items
can be presented in the front page of a web-shop or in an advertisement cam-
paign and these items should cover the preferences of different users in order to
attract as many customers as possible. It is therefore essential in such settings
to present a set of objects that can be appealing to a wide range of users with
diverse preferences.

Analysis of user preferences can also be used by a company to improve
its own visibility in the market. An increasing number of enterprises advertise
their products through third party e-commerce platforms such as Booking.com1.
These platforms serve as an intermediate between product manufacturers or
service providers and customers. The advertised companies are required to
provide descriptions of their products and services that are used by the catalog

1http://www.booking.com
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service to return to the users results (e.g., companies or services) relevant to their
preference queries. Quite often, the provided services and the user preferences
are connected to a specific location. For instance, a user could be looking for a
restaurant offering a specific type of food close to the city center or a hotel with
a gym that is also near a beach. In such settings, the visibility of a provider
is affected not only by the preferences of the user, but also by the services
offered by competing providers in the area. Analysis of user preferences can
provide information for services or products that a company should include
in its description in order to increase its visibility among the users using the
e-commerce platform.

1.2 Research questions

The primary research question studied in this thesis is the enhancement of the
visibility of the objects stored in large databases through exploratory search
and analysis. The research topic is quite broad and it is necessary to analyze
it in more specific questions. The questions researched in this thesis are the
following:

RQ 1 Keyword queries are inherently ambiguous and current keyword search
techniques in structured data return a large number of results, which
differ in content and structure. Users need to acquire a summarized
overview of the content and the structure of the returned results. The
provided summary should be significantly smaller than the result set,
yet informative about the underlying content. The generation of the
summarized result set should not induce a large processing overhead when
compared to the generation of the original results.

How can we summarize keyword search results on structured
data and provide users a coherent overview of the information
relevant to their query?

RQ 2 A large number of items in a database can be combined with one another
and produce combinations that fit better to user preferences than single
items. However, users are often not able to get a wide overview of the
available alternatives, due to the repeated appearance of the same items
in numerous combinations. User should be presented a small number of
combinations that cover at the same time a wide range of items and be
guided to a combination fitting their preferences. As the number of the
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possible combinations can be extremely high, it is important to avoid
generating similar combinations that are unlikely to be attractive to the
user.

How can we efficiently explore a large collection of combinable
objects?

RQ 3 User preferences are likely to change over time and the products that are
attractive to users may be different for different time periods. As the
number of products and the users accessing on-line product databases
are constantly increasing, it is essential to develop efficient algorithms for
discovering products that are constantly important for a large number of
users.

How can we efficiently identify objects that are constantly highly
ranked by a large number of users over a specific time-period?

RQ 4 Users can often be intimidated by the size of large data collections and be
reluctant to explore a product collection of which they have little or no
insight. Presenting attractive products to the users helps them explore
the product database. Similar to RQ 3, efficiency and scalability are
critical factors in the discovery of products that are attractive to a wide
user base.

How can we efficiently identify groups of products that attract
customers with diverse preferences?

RQ 5 The visibility of a product or a service is affected both by the terms used
for describing them and the descriptions of competing products or ser-
vices. Careful selection of features and terms in the description of an
object is important for maximizing its visibility in a competitive environ-
ment.

How can a description of a service or product be enriched to
improve its visibility?

1.3 Research method

Research methodologies vary significantly with respect to research area. In com-
puter science, research follows mainly two paradigms: a) the behavioral science,
and b) the design science [52]. Behavioral science, originating from natural
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science research, studies human and animal behavior. Under the scope of infor-
mation technology, it involves developing of theories describing the interaction
among people or organizations and information systems, and predicts or explains
the impact of information technology on individuals or groups. Design science
differs substantially from behavioral and in general, natural science. While nat-
ural science studies objects or phenomena in nature or society, design science
studies artificial objects and phenomena designed to meet certain goals [107].
In other words, natural science tries to understand reality while design-science
is a problem-solving paradigm trying to create artifacts that serve certain pur-
poses [52, 78].

In this thesis, we consider the design science paradigm to be the most appro-
priate for the purposes of our research, as the construction and the evaluation
of artifacts in the form of algorithms and prototypes is an inherent part of our
study of the aforementioned research questions. The research cycle for each of
the questions follows the design science cycle [107] and consists of the following
steps:

• Awareness of the problem. The first step includes the identification
of a problem, its description in natural language, and search for existing
solutions through an extensive literature review.

• Suggestion. The problem is strictly defined and existing solutions are
studied in order to analyze the weaknesses of current approaches and iden-
tify areas of improvement. Based on the problem properties and the analy-
sis of the current approaches, possible improvements are being suggested,
and a hypothesis is formulated regarding the performance effect of the
proposed improvements.

• Development. Based on the suggested improvements, new algorithms
are designed and implemented, which solve the problem as it was formu-
lated in the Suggestion step.

• Evaluation. During the evaluation procedure, we compare the proposed
algorithms against the state-of-the-art or the baseline in terms of efficiency
and effectiveness. We use real datasets that are applicable to the respective
topic. In cases where real data are unavailable or they are not adequate for
a thorough evaluation, we employ synthetic datasets widely used among
the research community.

In several cases, the performance of the evaluated algorithms is affected
in terms of effectiveness or efficiency by a large number of parameters.
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In order to be able to study the effect of each parameter, we perform
a series of experiments during the evaluation. In each experiment, one
parameter is considered to be varying while all other parameters have
constant values. The main parameters taken into consideration are data
cardinality, i.e., the number of objects in a database, weight cardinality,
i.e., the number of user preferences, dimensionality, i.e., the number of
dimensions for objects and user preferences, size of result set, and data
distribution in cases of synthetic datasets. The efficiency of the algorithms
is evaluated with respect to I/O, i.e., the amount of data accessed from
the disk, and processing time which is the total time needed to obtain a
complete result for a query.

• Transferring knowledge. The results are published in good venues.

1.4 Contribution

In this section, we describe the main contributions in terms of the research
questions posed in Section 1.2.

Creating summarized results of keyword search on structured data.
Keyword-based search is the most popular way to explore data in databases due
its simplicity and its intuitive nature. At the same time keyword queries are
ambiguous and when they are applied on structured or semi-structured data
the results may vary significantly in structure making it difficult for the user
to understand the results. Towards this direction, we propose a framework for
organizing the results into groups based on their content similarity and their
temporal characteristics. To further assist users to comprehend the results and
identify the results of their interest we provide summaries of the results as hints
for query refinement. The summaries are expressed as a set of important terms
in the result set. Our experimental results indicate that users are more satisfied
when results are organized with respect to content and time than when results
are simply ordered with respect to relevance.

Our framework answers to RQ 1 and is described in Chapter 3.

Exploratory top-k join queries. Quite often, many of the products that
users are searching for, can be combined with accessories which extend the prod-
ucts’ functionality or characteristics. To the user’s discomfort, not all products
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and accessories are combinable with one another and not all combinations are
appropriate for the user’s needs. To address this issue, we model this prob-
lem as an exploratory search problem and we propose a new type of query,
the eXploratory Top-k Join (XTJk) query, which returns to users a ranked list
of product combinations that fit best the given preferences. To maximize the
overview of the available solutions, we distinguish the products into main prod-
ucts (the products that the user is primarily interested in) and into accessories.
Users are presented with a list of main products combined with the optimal
set of accessories according to their preferences. Users have also the ability to
explore alternative combinations for the products they are interested in. We
introduce an efficient algorithm which exploits the properties of XTJk queries
and allows the early termination of query processing. The algorithm’s efficiency
is proved theoretically and verified through a detailed experimental process.

XTJk queries answer to RQ 2 and are described in Chapter 4.

Identifying objects that are continuously visible over a time period.
In applications such as market analysis, it is of great interest to product manu-
facturers to be able to identify the products with the highest impact. However,
user preferences vary over time and monitoring of the products’ popularity is
essential for discovering products which are consistently visible to the users.
We introduce the continuity score, which captures the impact of a product over
a period of time and the respective continuous influential query, which selects
products with high continuity score. We propose algorithms for efficient pro-
cessing of continuous influential queries, which provide early termination and
support incremental retrieval of a series of continuous influential objects. The
algorithms’ performance is evaluated through a detailed experimental study.

Continuous influential queries answer to RQ 3 and are described in Chapter 5.

Identifying sets of diverse objects using top-k queries. Discovering the
most diverse objects among an object collection has numerous applications in-
cluding market analysis and product promotion. Different from current ap-
proaches where the selection of diverse objects is based solely on their proper-
ties, we take into account the user preferences and we aim at finding the objects
which attract the most diverse sets of users. Since the problem is NP-hard, we
employ a greedy algorithm that considers the entire set of user preferences and
a more efficient approximate algorithm which does not require the evaluation of
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all preferences. We compare the proposed algorithms in terms of efficiency and
quality of the selected items through a thorough experimental evaluation.

Our approach computes efficiently a set of diverse objects based on user prefer-
ences and answers to RQ 4. It is described in detail in Chapter 6.

Feature-based object description optimization. Modern applications such
as Google Maps and TripAdvisor enable users to formulate spatio-textual queries,
using a set of keywords that describe their preferences and a desired location.
The result set of a spatio-textual query consists of a set of objects, which are typ-
ically service provides such as hotels that are relevant to the user preferences
and close to the desired location. In this context, the visibility of a service
provider is determined by both the user preferences and the location of compet-
ing providers offering the same services. It becomes thus essential for a service
provider to identify the keywords that will allow the described service to appear
in the results of as many users as possible increasing this way the visibility of
the provider.

We formulate the problem of increasing the visibility of a spatio-textual ob-
ject by enriching its textual description and we prove that it is NP-hard. We
present an approximate greedy algorithm of linear complexity with respect to
the number of user preferences and we introduce a novel algorithm for keyword
selection that improves the performance of query processing. We demonstrate
the efficiency of the proposed algorithms through a detailed experimental eval-
uation using real data.

Our approach computes efficiently a set of terms which improves the visibil-
ity of a spatio-textual object and answers to the RQ 5. It is described in detail
in Chapter 7.

1.5 Publications

In this section we present the scientific papers that resulted from this Ph.D.
study. For each paper, we refer to the corresponding chapter in which the
content of the paper is included.

Paper 1. A framework for grouping and summarizing keyword search re-
sults [41]. Orestis Gkorgkas, Kostas Stefanidis, and Kjetil Nørv̊ag. In Pro-
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ceedings of ADBIS, 2013.
The content of this paper is included in Chapter 3.

Paper 2. Efficient processing of exploratory top-k joins [44]. Orestis Gko-
rgkas, Akrivi Vlachou, Christos Doulkeridis, and Kjetil Nørv̊ag. In Proceedings
of SSDBM, 2014.
The content of this paper is included in Chapter 4.

Paper 3. Exploratory product search using top-k join queries [42]. Orestis
Gkorgkas, Akrivi Vlachou, Christos Doulkeridis, and Kjetil Nørv̊ag. Under
submission.
The content of this paper is included in Chapter 4.

Paper 4. Discovering influential data objects over time [43]. Orestis Gkorgkas,
Akrivi Vlachou, Christos Doulkeridis, and Kjetil Nørv̊ag. In Proceedings of
SSTD, 2013.
The content of this paper is included in Chapter 5.

Paper 5. Finding the most diverse products using preference queries [45].
Orestis Gkorgkas, Akrivi Vlachou, Christos Doulkeridis, and Kjetil Nørv̊ag. In
Proceedings of EDBT, 2015.
The content of this paper is included in Chapter 6.

Paper 6. Maximizing Influence of spatio-textual objects through keyword se-
lection [46]. Orestis Gkorgkas, Akrivi Vlachou, Christos Doulkeridis, and Kjetil
Nørv̊ag. In Proceedings of SSTD, 2015.
The content of this paper is included in Chapter 7.

1.6 Additional publications

In the course of this Ph.D. the following papers were published, but they are not
included in this thesis because they are not directly connected to its research
topic.

• Efficient processing of top-k spatial keyword queries [91]. João B. Rocha-
Junior, Orestis Gkorgkas, Simon Jonassen, and Kjetil Nørv̊ag. In Proceed-
ings of SSTD, 2011.



Chapter 1. Introduction 16

• Efficient community detection using power graph analysis [105]. George
Tsatsaronis, Matthias Reimann, Iraklis Varlamis, Orestis Gkorgkas, and
Kjetil Nørv̊ag. In Proceedings of LSDS-IR ’11, 2011.

1.7 Structure of the thesis

This thesis is organized into 4 parts. The first part gives an introduction to our
research topic and presents the technical background of the thesis. The second
and third parts present our research on increasing the visibility of database
content through exploratory search and exploratory analysis. In particular, the
second part focuses on exploratory search and the third part on exploratory
analysis. In the fourth part, we conclude the thesis and present directions for
future research. In the following, a detailed outline of the thesis is presented.

Part I Introduction and Background

Chapter 1 presents the motivation of our research and the research ques-
tions studied. We also describe the methodology followed and the
contributions of the thesis.

Chapter 2 describes the fundamentals regarding preference and keyword
queries on which this thesis is based.

Part II Exploratory Search

Chapter 3 presents a framework for summarizing and grouping keyword
search results in structured data based on their content and time-
related information.

Chapter 4 studies the problem of creating combinations of objects which
suit better to user preferences than single objects. It describes a
new type of query, the eXploratory Top-k Join query, and presents
algorithms for efficiently processing such types of queries.

Part III Exploratory Analysis

Chapter 5 describes the problem of identifying objects which are contin-
uously influential over a specific time-period. It introduces the notion
of the continuous influential objects and presents efficient algorithms
for the identification of continuous influential objects.
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Chapter 6 studies the problem of identifying objects which attract users
with diverse preferences. We determine the diversity among objects
based on the user queries on which they rank highly and we describe
efficient and scalable algorithms for identifying a set of r diverse
objects.

Chapter 7 focuses on the problem of increasing the visibility of a spatio-
textual object by enhancing its textual description through term se-
lection. We show that the problem is NP-hard and we propose two
approximate algorithms.

Part IV Conclusions

Chapter 8 presents the conclusions of our research and possible direc-
tions for future research.
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Chapter 2

Background

In this chapter, we describe the basic properties of preference and keyword
queries, and discuss briefly common processing approaches.

The chapter is organized as follows. In Section 2.1, we describe preference
queries in database systems, while in Section 2.2, we present the notion of reverse
top-k queries. In Section 2.3, we describe approaches for processing keyword
queries in structured data.

2.1 Preference queries

Preference is defined1 as “a greater interest in or desire for somebody/something
than somebody/something else.” In other words, preferences can be viewed as
soft constraints, which require a best possible match and not an exact match as
required by hard constraints posed by traditional database queries [64]. Pref-
erence queries have been extensively studied and many models have been sug-
gested. The suggested models can be divided in two categories, the qualita-
tive models and the quantitative ones [23]. Qualitative models typically rep-
resent preferences as binary relations. For instance, let us consider the ex-
ample database of Table 2.1 and a user wishing to buy a car. Given the at-
tribute color with domain dom(color) = {black,white, red,blue}, the prefer-
ences of a user could be expressed as a set of rules such as P1 = {black > white,
white > blue, red > blue} denoting that black is more preferable than white, and
red is more preferable than blue. Similarly, considering the domain dom(fuel) =

1Oxford Advanced Learner’s Dictionary

19
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Cars
id color fuel
c1 white diesel
c2 black diesel
c3 red gasoline
c4 blue electricity

Table 2.1: Qualitative preference queries example

{diesel, gasoline, electricity}, the same user could have the set of preferences
P2 = {electricity > diesel,diesel > gasoline}. Preference rules can also be ap-
plied on other preference rules indicating their importance. A rule of the form
P1 > P2 would indicate the importance of the fuel type over the color. Accord-
ing to those preferences, the best match for the user would be car c4 while the
second best would be c2.

In quantitative models, object properties are typically represented by a set
of real values. Each value represents the importance of a specific attribute or
the performance of the described object regarding the attribute [3, 54]. A hotel
database for instance, could contain a set of entries where each entry consists
of a set of values describing among other features the overall quality, value for
money, cleanliness, price per night and distance to the city center. Similarly,
in an article database, a value could be connected to a subject (e.g., politics or
sports) or a keyword (e.g., elections) and the weight would indicate the relation
between the article and the respective subject or keyword. A possible way for
a user to express her preferences, is to determine a set of constraints for each
attribute of interest. A user might pose a query for all hotels with a price
lower than 60 USD per night, an overall quality above 80%, and a distance
to the center shorter than 1 km. The result set of such a query could have a
size varying from being totally empty to being overwhelmingly large. The user
would have to perform multiple queries in order to be able to have an insight
about the data and to adjust the constraints in order to produce a satisfying
result set [64]. Even with adjusted constraints, the result set could be hard to
evaluate as there is no ordering imposed to the objects of the result set and
consequently, the user has to process the entire result set in order to identify
the object suited best to her needs.

Top-k queries [25, 34, 40] alleviate this problem by imposing a score value
to each object and selecting the k objects with the best score. Instead of a set
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of hard constraints, each user query is associated with a vector of weights where
each dimension of the vector represents the importance of a specific attribute
to the user and each object is associated with a score based on that vector. In
this way, the result set of a user query returns always a predefined number of
results.

In more detail, let S be a set of objects where each object o has a set of
real valued attributes A = {a1, . . . , ad} and is associated with a point in Rd
where the value o[i] of dimension i represents the weight of o for the respective
attribute ai. Similarly let w ∈ Rd be a vector expressing a user preference
where the value w[i] of each dimension i represents the importance to the user
of attribute ai. Each object o is assigned a score using a scoring function
fw : Rd → R, which is defined based on the user preference vector w. Often,
the function employed is monotonically increasing, i.e., fw(o1) ≤ fw(o2) if it
holds that o1[i] ≤ o2[i], 1 ≤ i ≤ d. In other words, assuming lower scores are
preferable, if o1 is no worse than o2 for all dimensions, the score of o1 will
be no worse than that of o2. When for two objects o1 and o2 it holds that
o1[i] ≤ o2[i], 1 ≤ i ≤ d and o1[j] < o2[j] for at least one dimension j we say that
o1 dominates o2. A direct consequence of the usage of a monotonic function is
the fact that if o1 dominates o2 then fw(o1) < fw(o2) for any preference w.

Given a preference vector w, a top-k query selects the k best objects in S
according to their score as calculated by the scoring function fw. A typical
top-k query can be expressed in SQL as follows:

SELECT *

FROM HOTELS

WHERE HOTELS.CITY=’Barcelona’

RANK BY 0.4*price+0.6*distance_to_center ASC

STOP AFTER k;

In the above example we have a 2-dimensional query where the user pref-
erence vector is equal to w = (0.4, 0.6) and the scoring function is the linear

function fw =
∑2
i=1 w[i]o[i]. More formally, a top-k query can be defined as

follows.

Definition 2.1. Top-k query [110]. Given a set of objects S, a positive
integer k and a user-defined weighting vector w, the result set TOPk(w) of a
top-k query is a ranked set of objects such that TOPk(w) ⊆ S, |TOPk(w)| = k
and ∀o1, o2 : o1 ∈ TOPk(w), o2 ∈ S − TOPk(w) it holds that fw(o1) ≤ fw(o2).

Returning to the aforementioned example, let us consider a set of hotels S
where each hotel is described by its price and distance to the center. The hotels
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Figure 2.1: Top-k example: lower is better

can be represented by a set of points in R2 and they are shown in Figure 2.1.
The light gray area indicates the area dominated by hotel A, while the dark
gray area indicates the area dominating A. For any monotonic function, any
object in the light gray area has a worse (higher) score than A, while any object
in the dark area has a better (lower) score than A. Any other object may have
either a better or worse score depending on the scoring function defined by a
preference vector w.

Given a hotel o1, a scoring function f and a preference vector w, the equation
fw(o) = fw(o1) defines a locus in R2 of all points o which have a score equal to

that of o1. Considering the linear scoring function fw =
∑2
i=1 w[i]o[i], lines l1

and l2 in Figure 2.1 illustrate the loci defined by the equations fw1(o) = fw1(A)
and fw2(o) = fw2(A) of two preference vectors w1 and w2 respectively. Each
locus divides the space in two half-spaces. Any object in the lower half-space
has a score lower than A while any object in the upper half space has a score
higher than A. Considering lower scores to be preferable, we can easily see that
A is in the TOP3(w1) set as it has a worse (larger) score than G and B but
better than any other point, and for w2 it belongs in the TOP2(w2) because its
score is the lowest of all points with the exception of G.
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2.1.1 Top-k queries on object combinations

It is quite common for user queries to involve not only single objects but com-
binations of objects as well. Travelers who explore a travel agency looking for
cheap combinations of flights and hotels for a vacation trip are a usual case of
users looking for a combination of services. This type of query is usually called
rank-join query in literature [37, 57, 96] and an SQL-like example of a rank-join
query is the following:

SELECT *

FROM HOTELS, FLIGHTS

WHERE HOTELS.CITY=FLIGHTS.DEST_CITY

RANK BY 0.33*HOTELS.price+0.33*FLIGHTS.price+0.33*HOTELS.rating

STOP AFTER k;

Considering a relational database, a rank join query is defined by a joining
condition over a set of relations and a ranking function fw. The result set of a
rank-join query is a set of k tuples where each tuple τ of the result set consists
of exactly one tuple from each relation participating in the join defined by the
query.

Definition 2.2. Rank-join query [57]. Given a join of n relations R =
R1 ./σ1

R2 . . . ./σn−1
Rn a scoring function fw and an integer k, the result set

of rank-join query is a set of tuples RJ such that |RJ | ≤ k and for each tuple
τ ∈ RJ it holds that τ = t1 ./σ1 t2 . . . ./σn−1 tn, τ ∈ R, ∀τ1, τ2 : τ1 ∈ RJ, τ2 ∈
R−RJ it holds that fw(τ1) ≤ fw(τ2).

2.1.2 Performance issues in top-k queries

Top-k queries are used widely by databases that are visited by numerous users [57,
58, 79]. Therefore, modern systems have to satisfy strict performance and scal-
ability requirements. Each system has different requirements but in general, the
requirements for a top-k search system are the following:

• Low I/O cost: During a top-k search the amount of data read from the
disk should be minimized.

• Low response time: The response time of a query should be minimized.
The response time includes the I/O cost and the CPU processing time.
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• Early return of the first result: The first results of a top-k query should be
returned as fast as possible. Early returns on top-k search allow users to
examine the first results while the rest of the results are being calculated
and they also allow the efficient pipelining of multiple top-k queries.

The main challenge in top-k search is the fact that each top-k query de-
termines a different ordering of the ranked objects. A naive way to answer a
top-k query would be to calculate the score of all objects and choose the best
k objects according to their score. Such an approach induces prohibitive cost
both in terms of I/O and CPU processing time, as all objects have to be ac-
cessed and evaluated. Moreover, the first results cannot be returned until all
objects have been evaluated. There have been several approaches for answering
top-k queries that focus on minimizing the number of accessed objects and the
early return of the first results [40, 58, 77]. Most approaches identify the k best
objects according to the scoring function by using either a set of ranked lists
over the queried set of objects [40, 56, 122] or an R-tree-like multi-dimensional
index [12, 103].

Algorithm 1 describes the generic framework followed by most approaches
in literature using ranked lists. The algorithm takes as input a set of objects
S, a scoring function fw defined by the preference vector w, and an integer k
denoting the number of desired results. It also requires as input a set of ranked
lists of the objects in S. Each list contains all objects in S ranked according to
a specific attribute ai or according to a preference vector w. In each iteration of
the loop, the algorithm initially reads an object o from a list Li and updates its
score fw(o) according to the function fw. In the following steps, it updates the
TOPk set of the k best objects retrieved, and calculates and maximum (worst)
score needed for any object to be included in the TOPk set and the minimum
(best) possible score fmin of any seen or unseen object not in the TOPk set.
When fmin becomes greater or equal to thres (line 11), the algorithm can safely
stop as it is certain that any unseen object cannot be included in the TOPk set.

The performance of the algorithms following this generic framework depends
on two factors. The first factor is the number of accessed objects until the
termination condition is satisfied and the second factor is the computational
complexity of the algorithm used for the estimation of the fmin value. As a
consequence, a significant part of the research in top-k queries is focused on
finding an efficient fmin estimation algorithm which will minimize the number
of accessed objects (access depth) and will also induce a low computational
cost. The efficiency of top-k search algorithms is evaluated based on the access
depth, i.e., the maximum number of objects accessed from each list and the total
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Algorithm 1 Framework for list-based top-k query processing techniques

Input: S: set of objects
L = {L1, . . . , Lr}: a set of ranked lists over S
fw: scoring function
k:number of returned results

Output: TOPk
1: fmin ← −∞
2: thres← +∞
3: V ← ∅ //visited objects

4: TOPk ← ∅
5: while fmin(V ) < thres do
6: i← choose a list to read from
7: o← read next object from Li
8: update the score of o
9: V ← V

⋃
{o}

10: update TOPk
11: thres← max(TOPk)
12: update fmin(V )
13: end while
14: return TOPk

processing time, factors which both reflect the efficiency of the fmin estimation
value.

Algorithms using R-tree-like structures start by accessing the root of the
tree and continue by expanding the node with the best possible score. All
visited nodes are maintained in a priority queue and the algorithm stops when
k objects have been retrieved. Algorithm 2 describes the framework of index-
based techniques [103]. The efficiency of index-based algorithms depends mainly
on the pruning abilities of the used index. A significant advantage of index-
based techniques is that they are I/O optimal [103] and that it is not necessary
to precompute a set of ranked lists in order to process a top-k query.

2.2 Reverse top-k queries

Top-k queries help users identify objects that are most suitable to their prefer-
ences by presenting to them a ranked set of k objects and thus prevent them
from examining a large number of results. Clearly, the visibility of an object
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Algorithm 2 Framework for index-based top-k query processing techniques

Input: I: multi-dimensional index
fw :scoring function
k: number of returned results

Output: TOPk
1: TOPk ← ∅
2: PQ← ∅ //Priority Queue

3: n← I.root()
4: PQ.push(n,n.bestScore(fw))
5: while PQ6= ∅ do
6: n←PQ.pop()
7: if n is a leaf entry then
8: TOPk ← TOPk

⋃
{n}

9: if |TOPk| = k then
10: return TOPk
11: end if
12: end if
13: for all child nodes e of n do
14: PQ.push(e,e.bestScore(fw))
15: end for
16: end while
17: return TOPk

o depends on the number of users for which o is in their query results. This
information is of particular interest for companies wishing to identify which of
their products are visible to the users and which products are shadowed by other
competitive products. Enterprises are also interested in identifying the group
of users to which a product is visible. Such information would help a company
to estimate and improve the visibility of current and new products and select
the appropriate user group for promoting a specific item.

Reverse Top-k queries [110] aim to identify the set of users for which an
object is visible. The monochromatic Reverse Top-k (mRTOPk) query describes
the preferences of the users to whom an object is visible. More precisely, given
a query object q, the result of an mRTOPk query is the locus of preferences w
for which q is in the TOPk(w) set.

Definition 2.3. Monochromatic Reverse Top-k query [110]. Given an
object q, a positive number k, and a set of d−dimensional objects S, the re-
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sult of a monochromatic Reverse Top-k query, mRTOPk(q) is the locus of
d−dimensional vectors w for which it holds that ∃o ∈ TOPk(o) such that fw(q) ≤
fw(o).

Returning to Figure 2.1, mRTOP2(A) is the locus of vectors for which it
holds that 0.278 ≤ w[1]/w[2] ≤ 1. For any other preference vector w, A is not
going to be in the TOP2(w) set because either B or C is going to have a better
score than A.

The mRTOPk query indicates the area of users who can see q in their TOPk
sets. It is however, not certain that a product with a non-empty locus will be
visible by any users as there might not be any users who have such preferences.
The bichromatic Reverse Top-k (bRTOPk or simply RTOPk) query avoids this
problem by calculating the exact set of users who can see q in their result sets
of their TOPk queries. A bRTOPk query takes as input a query object q, a set
of objects S, and a set of preferences W and it calculates the set of users to
whom q is visible.

Definition 2.4. Bichromatic Reverse Top-k query [110]. Given an object
q, a positive number k, and two datasets S and W, where S represents data
objects and W is a set of weighting vectors, a weighting vector w ∈ W belongs
to the reverse top-k result set (bRTOPk(q)) of q, if and only if ∃o ∈ TOPk(w)
such that fw(q) ≤ fw(o).

Returning to the example of Figure 2.1, the result set of a bRTOP2(G) query
for point G is the set {w1, w2} as G is in the top-2 set of both w1 and w2, while
the bRTOP2(A) set for point A is the set {w2}, as A is in the top-2 set of w2

but is not in the top-2 set of the w1 vector.
The cardinality of the bRTOPk(o) set of an object o is referred in literature

as influence score [112] of o and is denoted as f Ik (o). The influence score of an
object o, is indicative of the visibility of an object, as it shows the number of
users who see o in their result sets. Objects that have a high rank in the result
sets of many users are more likely to be preferred over objects that are ranked
lower, and they are possibly not visible to the users. To that direction, Vlachou
et al. [112] introduced the top-m influential query, which given a set of objects
S and of preferences W , returns the set of m objects with the highest influence
score.

Definition 2.5. Influence Score [112]. Given a positive integer k, a dataset
S and a set of preferences W, the influence score f Ik (o) of a data object o is
defined as the cardinality of the reverse top-k query result set of object o: f Ik =
|bRTOPk(o)|.
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Definition 2.6. Top-m Most Influential Data Objects [112]. Given a
positive integer k, a dataset S and a set of preferences W, the result set ITOPmk
of the top-m influential query is a ranked set of objects such that ITOPmk ⊆ S,
|ITOPmk | = m and ∀oi, ojoi ∈ ITOPmk oj ∈ S − ITOPmk it holds that f Ik (oi) ≥
f Ik (oj).

2.3 Keyword search in structured data

Keyword search is one of the most popular querying methods because of its
simplicity, intuitiveness, and the abstraction it offers with respect to the struc-
ture of the data. While in text databases information is organized in docu-
ments, in relational databases information is scattered in tuples of different
relations. As a result, tuples from different relations have frequently to be com-
bined in order for the desired results to be produced. There have been many
approaches for searching in relational databases and combining tuples of multi-
ple relations [4, 8, 11, 51, 53, 55, 62, 86, 88]. In the following, we are going to
present the generic framework that most of the existing approaches adopt.

2.3.1 Keyword search framework

Let D be a database containing a set of relations R = {R1, . . . Rn}, and GdS
be a directed schema graph that captures the primary-foreign key relationships
in the database schema. Each node of the graph corresponds to a relation Ri
while two nodes Ri, Rj are connected with an edge Eκ = (Ri, Rj) if and only
if there is a primary-foreign key relationship Ri → Rj . We denote as GuS the
undirected version of GdS . Given a keyword query Q = {q1, . . . , qn} of m terms,
graph GuS is used to create Joining Trees of Tuples (JTTs) which are trees of
tuples connected through primary-foreign key relationships.

Definition 2.7. Joining Tree of Tuples (JTT). Given an undirected schema
graph GuS, a Joining Tree of Tuples (JTT) is a tree of tuples T , such that for
each pair of adjacent tuples ti, tj, ti ∈ Ri, tj ∈ Rj there is an edge (Ri, Rj) in
GuS and it holds that (ti ./ tj) ∈ (Ri ./ Rj).

Total JTT: A JTT is called total with respect to a query Q if it contains all
terms of Q.

Minimal JTT: A JTT T is called minimal with respect to a query Q if and only
if no tuple can be removed from T and T to remain total.
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Author
aid name
a1 John Smith
a2 Peter Jones
a3 James Hicks
a4 George Backs

Paper
pid title
p1 Keyword Queries in Databases
p2 Database Queries
p3 Exploratory Search in Databases
p4 Keyword Search in Relational Data

Writes
wid aid pid
w1 a1 p1
w2 a1 p3
w3 a2 p4
w4 a2 p2
w5 a3 p4

Cites
wid pid cites pid
c1 p1 p2
c2 p1 p4
c3 p4 p3
c4 p2 p3

(a) Database

Author Writes Paper Cites

(b) Schema graph

a1

Smith

w1 p1

Databases

c1 p2 w4 a2

Jones

a2

Jones

w4 p2 c4 p3

Databases

w2 a1

Smith

(c) JTT

Figure 2.2: Sample Database

Typically the result of a keyword query Q is a set of total and minimal
JTTs with respect to the query, a strategy that considers valid results to be
JTTs containing all terms of the query and no excessive tuples.

As an example, consider the database in Figure 2.2. The database contains
4 relations where each table has as primary key an id field. Figure 2.2(b)
shows the GdS graph describing the primary-foreign key relationships between
the relations. Given a keyword query Q = {Smith, Jones, Databases}, Figure
2.2(c) shows two valid results of the query. The first result shows a paper written
by Smith which contains the term “Databases” and cites a paper of Jones, while
the second result shows a paper written by Jones which cites a paper of Smith
containing the term “Databases”.

JTT generation methods. In literature there are two basic paradigms for
generating JTTs, namely the instance-based approaches and the schema-based
approaches [86]. In instance-based approaches, a graph GI = (VI , EI) of the
database instance is constructed and maintained. The node set of the graph
consists of the tuples of the database, and two tuples ti ∈ Ri, tj ∈ Rj are
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A{Smith} W{} P{Databases} C{} P{} W{} A{Jones}

A{Jones} W{} P{} C{} P{} W{Databases} A{Jones}

Figure 2.3: JTS example

connected by an edge if and only if there is an edge (Ri, Rj) in GuS and (ti ./
tj) ∈ (Ri ./ Rj). The edges of GI can be weighted or unweighted depending on
the approach. Given a keyword query Q, most instance-based algorithms locate
tuples that contain at least one term of the query and for each tuple they create
a JTT with a single node. The JTTs are then expanded until they become total
or until they exceed a predefined size. In the former case, they are added to the
result set, while in the latter, they are discarded as not valid results.

Schema-based approaches use the directed schema graph GdS in order to
create Joining Trees of TupleSets (JTSs) [55] which are translated into SQL
queries. A JTS is essentially a tree that describes the relational algebra that
joins a sequence of relations in order to produce a set of minimal and total

JTTs [88]. Given a keyword query Q, each node R
{X}
i of a JTS is described by

a relation Ri and a subset X of Q, and corresponds to the relational algebra
expression σX∧¬{Q−X}Ri. Each edge of a JTS corresponds to a join between
the tuplesets of two nodes. Figure 2.3 shows the JTSs for generating the JTTs
illustrated at Figure 2.2(c). Note that an empty set of keywords corresponds to
a tupleset that includes all tuples that do not contain any term of the query. In
that way node A{Smith} corresponds to the set of tuples in Authors relation that
contain the term “Smith” but not the terms “Jones” and “Databases”, while
node P {} defines the set of tuples in Papers relation that do not contain any
of the terms “Jones”, “Smith” or “Databases”. JTSs are translated into SQL
queries, which generate the JTTs that constitute the result set of the keyword
query. Both schema-based and instance-based approaches generate equivalent
result sets but they follow different ranking strategies.

Result ranking. Typically, results are ranked based on their size. In general,
JTTs consisting of few nodes are considered to be more relevant to a query Q
than JTTs consisting of more nodes. Due to their translation to SQL queries
schema-based techniques have limited ranking capabilities while instance-based
techniques support various methods of ranking. Most of them use the inner and
outer degree of the nodes of the instance graph GI [8, 11].



Part II

Exploratory Search
In this part, we present algorithms which provide users means for exploratory
search enabling them to acquire a wide overview of the database content. In
Chapter 3, we propose a framework for grouping summarizing keyword search
results on relational data, while in Chapter 4, we introduce the eXploratory
Top-k Join query which presents to the users combinations of objects fitted to
their preferences.
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Chapter 3

A Framework for Grouping
and Summarizing Keyword
Search Results

Keyword queries are inherently ambiguous, and when applied in structured
data, they produce large numbers of results, which vary both in content and
structure. In this chapter, we describe a framework for organizing keyword
search results into groups, which contain results of similar content and similar
temporal characteristics. Each group is described by a summary that provides
the user with information about the content of the group assisting the user to
comprehend the query results.

3.1 Introduction

Keyword-based search is extremely popular as a means for exploring information
of interest without using complicated queries or being aware of the underlying
structure of the data. Existing approaches for keyword search in relational
databases use either the database schema (e.g., [4, 55]), or the given database
instance (e.g., [11]) to retrieve tuples containing the keywords of a posed query.
For example, consider the movie database instance depicted in Figure 3.1. For
the keyword query Q = {comedy, J. Davis}, the results are the comedy movies
Deconstructing Harry and Celebrity both with J. Davis.

33
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Movies

idm title genre year director

m1 Annie Hall drama 1977 W.Allen

m2 Interiors drama 1978 W.Allen

m3 Manhattan drama 1979 W.Allen

m4 Broadway Danny Rose comedy 1984 W.Allen

m5 The Purple Rose of Cairo comedy 1985 W.Allen

m6 Hannah and her Sisters comedy 1986 W.Allen

m7 Deconstruting Harry comedy 1997 W.Allen

m8 Celebrity comedy 1998 W.Allen

Plays

idm ida

m1 a1
m2 a1
m3 a1
m4 a2
m5 a2
m6 a2
m7 a3
m8 a3

Actors

ida name gender dob

a1 D. Keaton female 1946

a2 M. Farrow female 1945

a3 J. Davis female 1955

Figure 3.1: Database instance

Given the huge volume of available data, keyword-based searches typically
return result sets of size which is prohibitive for the users to process. Thus, a
significant part of the database content is practically not visible to the users.
Previous approaches mostly focus on ranking the results of keyword queries
to help users retrieve a small piece of them. Such approaches include, among
others, adapting IR-style document relevance ranking strategies (e.g., [53]) and
exploiting the link structure of the database (e.g., [11]). Still, this flat ranked
list of data items provides a narrow overview of the available information as it
limits severely the amount of data presented to the users and does not make it
easy for them to explore and discover important items relevant to their needs.

We consider an alternative presentation of the results of queries expressed
through sets of keywords. In particular, we add some structure to the ranked
lists of query results. Our goal is to help users receive a broader view of the
query results, give the users the opportunity to learn about data items that they
are not aware of, and increase in this way the visibility of the database content.

Towards this direction, we organize the keyword query results into groups,
trying to have groups that exhibit internal cohesion and external isolation. This
way, it is easier for the users to scan the results of their queries. Our primary
focus is on producing informative, expressive and meaningful groups containing
results with similar content that refer to similar temporal characteristics. For
example, assume the database instance of Figure 3.1 and the keyword query
Q = {W. Allen, female}. Intuitively, for this query, we can construct three
groups of results; the first group refers to the movies Annie Hall, Interiors and
Manhattan, the second group refers to the movies Broadway Danny Rose, The
Purple Rose of Cairo and Hannah and her Sisters and the third one to the
movies Deconstructing Harry and Celebrity. Each group contains movies with
the same actress (content similarity) that are produced at the same time period
(temporal similarity).
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To help users refine their queries, we provide them with summaries over the
groups of their query results. The summary of a group presents the most im-
portant keywords associated with the specific group of results. For instance, for
the above constructed groups, we may have the summaries {drama, D. Keaton},
{comedy, M. Farrow} and {comedy, J. Davis}.

Finally, we evaluate the effectiveness of our approach. Our results indicate
that users are more satisfied when the results are presented in groups and sum-
marized.

In a nutshell, we make the following contributions:

• We introduce a framework that offers a different way for presenting the
results of keyword-based searches.

• We exploit the content of results along with their temporal characteristics
to produce groups of results with similar content referring to the same
time periods. Summaries for the groups of results are presented to users
as hints for query refinement.

• We present the results of a user study comparing our framework to a
standard keyword search technique.

The rest of the chapter is organized as follows. Section 3.2 describes the
related work, while Section 3.3 describes our framework for grouping and sum-
marizing the results of keyword-based searches. In Section 3.4, we present our
evaluation findings and finally, Section 3.5 presents the drawn conclusions.

3.2 Related work

In this section, we provide an overview of the related research literature.

Keyword Search. Keyword search in relational databases has been the focus
of much current research. Schema-based approaches (e.g., [4, 55]) use the schema
graph to generate join expressions and evaluate them to produce tuple trees.
Instance-based approaches (e.g., [11]) represent the database as a graph in which
there is a node for each tuple. Results are provided directly by using a Steiner
tree algorithm. Based on [11], several more complex approaches have been
proposed (e.g., [51, 62]). There have also been proposals for providing ranked
keyword retrieval, which include incorporating IR-style relevance ranking [53],
authority-based ranking [8], automated ranking based on workload and data
statistics of query answers [17] and preference-based ranking [99, 101].
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Our approach is different, in that we propose grouping keyword search re-
sults to help users receive the general picture of the results of their queries. A
comparison between a flat ranked list of results and a clustering web search
interface shows that the users of the clustering approach view more documents
and spend less time per document [126]. However, the relevance of the viewed
documents is unknown. [87] presents an approach for clustering keyword search
results based on common structure patterns without taking into account the as-
pect of time. Recently, [5] introduced a prototype and framework for interactive
clustering of query results. This technique is applied in document collections,
while our work focuses on structured data.

Tag clouds. Summaries of keyword queries results resemble the notion of tag
clouds. A tag cloud is a visual representation for text data. Tags are usually
single words, alphabetically listed and in different font size and color to show
their importance1. Tag clouds have appeared on several Web sites, such as Flickr
and del.icio.us. With regard to our approach for summaries, data clouds [67] are
the most relevant. This work proposes algorithms that try to discover good, not
necessarily popular, keywords within the query results. Our approach follows
a pure IR technique to locate important, in terms of popularity, keywords.
From a database perspective, [35] introduces the notion of object summary for
summarizing the data in a relational database about a particular data subject,
or keyword. An object summary is a tree with a tuple containing the keyword
as the root node and its neighboring tuples containing additional information
as child nodes.

Faceted search. Finally, our work presents some similarities with faceted
search (e.g., [9, 94]). Faceted search is an exploration technique that provides a
form of navigational search. In particular, users are presented with query results
classified into multiple categories and can refine the results by selecting differ-
ent conditions. Our approach is different in that we do not tackle refinement.
[30, 100] present a different way for database exploration by recommending to
users items that are not part of the results of their query but appear to be
highly related to them. Such items are computed based on the most interesting
sets of attribute values that appear in the results of the original query. The
interestingness of a set is defined based on its frequency in the results and the
database.

1http://en.wikipedia.org/wiki/Tag cloud
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m7 Deconstructing Harry comedy 1997 W.Allen m7 a3 a3 J.Davis female 1955

Figure 3.2: JTT result for the query Q = {comedy, J.Davis}

3.3 Framework

Let D be a database with a set of n relations R = {R1, R2, . . . , Rn}. We assume
that some relations in R include, in addition to their base attributes, a time-
related attribute B that represents the time that a tuple was inserted in the
database. We consider W to be the potentially infinite set of all keywords and
a keyword query Q to consist of a set of keywords, i.e., Q ⊆ W . Our goal
is twofold; first, we focus on organizing into groups the results of a keyword
query based on their content similarity and the similarity on the values of their
time-related attributes and then, we highlight the important keywords in the
produced groups of results.

3.3.1 Keyword search

Typically, the result of a keyword query is defined with regards to joining trees
of tuples (JTTs), which are trees of tuples connected through primary to foreign
key dependencies. For example, the JTT of Figure 3.2 represents a JTT for the
keyword query Q = {comedy, J. Davis}. The size of a JTT is equal to the
number of its tuples. In this case, the aforementioned JTT has a size equal to
3. We consider as valid results JTTs which are both total and minimal, i.e., it
is required for a valid JTT to contain all terms of the query and no sub-tree of
a valid JTT to be total as well.

As described in Section 2.3 each JTT in the result set corresponds to a JTS,
namely a tree at schema level. The above JTT corresponds to the schema level
tree Movies{comedy}−Play{}−Actors{J.Davis}, where each RXi consists of the
tuples of Ri that contain all keywords of X and no other keyword of Q. Several
algorithms in the research literature aim at constructing JTSs for a query Q as
an intermediate step of the computation of the final results (e.g. [4, 55]). We
adopt the approach of [55] in which all JTSs with size up to l are constructed.
In particular, given a query Q, all possible tuple sets RXi are computed, where
RXi = {t|t ∈ Ri ∧∀ax ∈ X, t contains ax ∧∀ay ∈ Q−X, t does not contain ay}.
After selecting a random query keyword az, all tuple sets RXi for which az ∈ X
are located. These are the initial JTSs with only one node. Then, these trees
are expanded either by adding a tuple set that contains at least another query
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keyword or a tuple set for which X = {} (free tuple set). These trees can be
further expanded. JTSs that contain all query keywords are returned, while

JTSs of the form RXi −R
{}
j −RYi , where an edge Rj → Ri exists in the schema

graph, are pruned, since JTTs produced by them have more than one occurrence
of the same tuple for every instance of the database.

3.3.2 Keyword search result vector representation

Our effort focuses on grouping results based on their content and some temporal
information associated with them. Regarding the content of a JTT, we may
think of a JTT as the equivalent of a “document”. Then, the textual content
of a JTT T can be represented by a term-vector uT . For a query Q with result
Res(Q), let A be the set of keywords appearing in the JTTs of Res(Q). The
importance score xi,j of a keyword ai in A for the JTT Tj of Res(Q), is defined
with respect to the TF-IDF model [27]. Specifically, for each ai in A for Tj , xi,j
is equal to: xi,j = tfi,j ∗ log(N/dfi), where tfi,j is the number of occurrences of
ai in the JTT Tj , dfi is the number of tuples in D that contain ai and N is the
cardinality of the result set Res(Q). Formally, a JTT-vector for a specific JTT
is:

Definition 3.1. JTT-vector. Let Q be a keyword query with query result
Res(Q) and A be the set of keywords appearing in the JTTs of Res(Q). The
JTT-vector of a JTT Tj in Res(Q) is a vector uTj = {(a1, x1,j), . . . , (am, xm,j)},
where ai ∈ A, |A| = m, and xi,j is the importance score of ai for Tj, 1 ≤ i ≤ m.

Many times, two JTTs may contain very similar information. Next, we will
exploit similarities between JTTs in order to construct groups of similar results.

3.3.3 Finding groups of keyword search results

We consider that each database relation includes in its schema a time-related
attribute B. In case a relation does not contain time-related data, we consider
a virtual time-related attribute B = 0 for all tuples in the relation. Then, for
a tuple ti of a relation Rj , 1 ≤ j ≤ n, we refer to the value ti[Rj .B] as the
age of ti. Naturally, time-related attributes of the database relations may vary.
For instance, for a relation containing movie titles, the production year is a
time-related attribute associated with the age of each tuple and for a relation
with actors the respective attribute is the date of birth. For two tuples ti, tx
of the relations Rj , Ry, we say that ti is more recent than tx, if and only if,
ti[Rj .B] > tx[Ry.B], 1 ≤ j, y ≤ n.
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Given a joining tree of tuples T , we define its age with respect to the age
of the tuples appearing in the tree. In particular, the age of T is determined
by the age of the most recent of its tuples. The motivation behind this, is that
before the insertion of the most recent tuple the tree did not exist. For example,
let Movies.B be the attribute year of the relation Movies, Actors.B be the
attribute dob (date of birth) of the relation Actors while each tuple ti of the
relation Play has value ti[Play.B] equal to 0. Then, the age of the JTT of
Figure 3.2 is 1997 which is the most recent date in the JTT and the production
year of the movie. Formally:

Definition 3.2. Age of JTT. Given a JTT T with tuples t1 ∈ Rj1 , . . .,
tp ∈ Rjp , 1 ≤ j1, jp ≤ n, the age of T, ageT , is:

ageT = max
1≤i≤p

{ti[Rji .B]}

Our goal here is to detect groups of JTTs. Each group contains JTTs that:
(i) have similar content, and (ii) are continuous in time, which means that
their age values increase. A straightforward way for quantifying the similar-
ity between two JTTs, is to use a cosine-based definition of similarity, which
measures the similarity between their corresponding vectors.

Definition 3.3. Cosine JTT Similarity. Given two JTTs T1 and T2 with
vectors uT1

= {(a1, x1,1), . . . , (am, xm,1)} and uT2
= {(a1, x1,2), . . . , (am, xm,2)},

respectively, the cosine JTT similarity between T1 and T2 is:

simc(T1, T2) =
uT1 · uT2

||uT1
||||uT2

||
=

∑m
i=1 xi,1 × xi,2√∑m

i=1(xi,1)2 ×
√∑m

i=1(xi,2)2

Given the similarity between JTTs, we focus on the grouping process. A
group of JTTs is expressed as a set of JTTs. The JTTs of a group Gj define a
time interval described by two time instances Gj .s and Gj .e; Gj .s denotes the
starting point of the interval and corresponds to the age of the oldest JTT in
the group, while Gj .e denotes the ending point of the interval and corresponds
to the age of the most recent JTT. For example, for a group Gj consisting of
the JTTs (i) (m1, Annie Hall, drama, 1977, W. Allen) – (m1, a1) – (a1, D.
Keaton, female, 1946), (ii) (m2, Interiors, drama, 1978, W. Allen) – (m2, a1)
– (a1, D. Keaton, female, 1946), and (iii) (m3, Manhattan, drama, 1979, W.
Allen) – (m3, a1) – (a1, D. Keaton, female, 1946), Gj .s = 1977 and Gj .e =
1979.

Similarly to the JTT-vector, we define the Group-vector which describes
the content of a group. In particular, the Group-vector of a group Gj is an
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aggregation of all vectors of the JTTs belonging to Gj . For a query Q with
result Res(Q), let A be the set of keywords appearing in the JTTs of Res(Q)
and Gj be a group of JTTs in Res(Q). The importance score si,j of a keyword
ai in A for the group Gj is equal to: si,j = aggrTw∈Gj (xi,w), where aggr is an
aggregation function such as average, sum, maximum or minimum of the values
xi,w of the JTTs of Gj .

Definition 3.4. Group-vector. Let Gj be a group of JTTs belonging to the
query result Res(Q) of a query Q and A be the set of keywords appearing in
the JTTs of Res(Q). The Group-vector of Gj is a vector uGj = {(a1, s1,j), . . . ,
(am, sm,j)}, where ai ∈ A, |A| = m, and si,j is the importance score of ai for
Gj, 1 ≤ i ≤ m.

Given the query result Res(Q) of a query Q, our aim is to partition the
JTTs ofRes(Q) into non-overlapping groups. Our definition for non-overlapping
groups takes into account both time and content overlaps. Specifically, two
groups are: (i) non-overlapping with respect to time, if their time intervals are
disjoint, and (ii) non-overlapping with respect to content, if they do not contain
common JTTs.

Definition 3.5. Non-overlapping Groups. Let Gi, Gj be two groups of
JTTs with time-intervals [Gi.s, Gi.e], [Gj .s, Gj .e]. Gi, Gj are non-overlapping
groups, if and only if: (i) (Gi.s > Gj .e and Gi.s > Gj .s) or (Gj .s > Gi.e and
Gj .s > Gi.s), and (ii) Gi ∩Gj = ∅.

To partition the joining trees of tuples into non-overlapping groups, we em-
ploy a bottom-up hierarchical agglomerative clustering method. Initially, the
JTT Partitioning Algorithm (Algorithm 3) places each JTT in a cluster of its
own. Then, at each iteration, it merges the two most similar clusters. The sim-
ilarity between two clusters is defined as the minimum similarity between any
two JTTs that belong to these clusters (max linkage). That is, for two clusters,
or groups, G1, G2: sim(G1, G2) = minTi∈G1,Tj∈G2

{simc(Ti, Tj)}.
Clearly, two clusters, or groups, G1, G2 can be merged if they are non-

overlapping groups. But this is not enough. For constructing groups with JTTs
with growing age values there is also a need to ensure that, for the groups G1,
G2, there is no other group G3 with time interval between the time intervals of
G1 and G2. We refer to such groups as merge-able groups. Formally:

Definition 3.6. Merge-able Groups. Let Gi, Gj be two groups of JTTs with
time-intervals [Gi.s, Gi.e], [Gj .s, Gj .e]. Gi, Gj are merge-able groups, if and
only if: (i) Gi, Gj are non-overlapping groups, and (ii) @Gp with time interval
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[Gp.s, Gp.e], such that, the groups Gi, Gp and Gp, Gj are non-overlapping, and
(Gp.s > Gi.e and Gj .s > Gp.e) or (Gp.s > Gj .e and Gi.s > Gp.e).

Thus, in overall, we proceed in merging two groups only if the groups are
merge-able. The algorithm stops either when a single cluster containing all the
JTTs of Res(Q) has already produced or when no more clusters can be merged.
As a final step, the algorithm selects to return the clusters of the iteration that
present the maximum clustering quality. The clustering quality Ci, computed
after merging the two clusters of a specific iteration i, is:

Ci =

Ki∑
j=1

∑
∀Tp∈Gj

uTp · uGj (3.1)

where Ki is the number of clusters after the merging operation of iteration i.
The selected iteration is the one that constructs K∗ clusters, such that:

K∗ = argmaxi(Ci − λKi) (3.2)

where λ is a penalty for each additional cluster.
Algorithm 3 presents a high-level description of the JTT Partitioning Algo-

rithm. As a final note, consider that alternatively we can pre-specify the number
of clusters K∗ and directly select to return the clusters of the iteration that pro-
duces the K∗ ones. Instead, in this work, to ensure high clustering quality, we
opt for following the above described procedure, even if the resulting processing
cost is high.

We illustrate our approach with the following example. Assume the keyword
query Q = {W. Allen, female}. For the database instance of Figure 3.1, the
result set Res(Q) consists of the JTTs of Figure 3.3 while the ages of the trees
are the highlighted dates. Applying the JTT Partitioning Algorithm results in
producing three groups G1, G2 and G3 with trees {T1, T2, T3}, {T4, T5, T6} and
{T7, T8}.

3.3.4 Summaries of keyword query results

In this section, we describe the notion of group summaries that put in a nutshell
the results within groups of keyword searches. In general, group summaries
provide hints for query refinement and can lead to discoveries of interesting
results that a user may be unaware of.

Let Res(Q) be the query results of a query Q and A be the set of keywords
appearing in the JTTs of Res(Q). Let also G1, . . . , Gz be the groups of JTTs



Chapter 3. Grouping and Summarizing Keyword Search Results 42

Algorithm 3 JTT Partitioning Algorithm

Input: A set of JTTs.
Output: A set of groups of JTTs.

1: Create a group for each JTT
2: Repeat
3: i = 1
4: Locate the two merge-able groups with the maximum similarity
5: If there are no merge-able groups or only one group exists then
6: End loop
7: Else
8: Merge the two groups
9: Compute Ki, Ci

10: i++
11: Select the partitioning that constructs K∗ groups

T1 :

T2 :

T3 :

T4 :

T5 :

T6 :

T7 :

T8 :

m1 Annie Hall drama 1977 W.Allen m1 a1 a1 D. Keaton female 1946

m2 Interiors drama 1978 W.Allen m2 a1 a1 D. Keaton female 1946

m3 Manhattan drama 1979 W.Allen m3 a1 a1 D. Keaton female 1946

m4 Broadway Danny Rose comedy 1984 W.Allen m4 a2 a3 M. Farrow female 1945

m5 The Purple Rose of Cairo comedy 1985 W.Allen m5 a2 a3 M. Farrow female 1945

m6 Hannah and her Sisters comedy 1986 W.Allen m6 a2 a3 M. Farrow female 1945

m7 Deconstructing Harry comedy 1997 W.Allen m7 a3 a3 J. Davis female 1945

m7 Celebrity comedy 1998 W.Allen m8 a3 a3 J. Davis female 1945

Figure 3.3: Grouping example

produced for Res(Q). Our goal is to compute an importance score si,j for each
keyword ai in A for each group Gj , 1 ≤ j ≤ z. Then, for each group Gj , the
top-k keywords, that is, the k keywords with the highest importance scores are
used as a summary of the JTTs in Gj . Formally:

Definition 3.7. Group Summary. Let Gj be a group of JTTs belonging to
the query result Res(Q) of a query Q and A be the set of keywords appearing
in the JTTs of Res(Q). The group summary SGj , SGj ⊆ A, of Gj is a set of k
keywords, such that, si,j ≥ sp,j, ∀ai ∈ SGj , ap ∈ A− SGj .
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For example, for the keyword query Q = {W. Allen, female}, the group
summaries of the produced groups G1, G2 and G3, for k = 2, are SG1

= {drama,
D. Keaton}, SG2 = {comedy, M. Farrow} and SG3 = {comedy, J. Davis}.

To provide users with more detailed summaries that include some informa-
tion about the schema of the results, we extend the notion of group summaries
to take into account the relations that a keyword belongs to. Specifically, for
each group Gj , instead of reporting the set of the k keywords with the high-
est importance scores, we report these keywords along with their associated
relations. This way, users obtain an overview about the possible origination
and meaning of the keywords. We refer to these summaries as enhanced group
summaries. Formally:

Definition 3.8. Enhanced Group Summary. Let Gj be a group of JTTs
and SGj be the corresponding group summary of Gj with keywords a1, . . . , ak.
The enhanced group summary EGj of Gj is a set of k pairs of the form (ai, Pi),
such that, there is one pair ∀ai ∈ SGj and Pi is the set of relations that contain
ai for the JTTs of Gj.

Returning to our previous example, the enhanced group summaries of G1, G2

and G3 are represented as EG1
= {(drama, {Movies}), (D. Keaton, {Actors})},

EG2
= {(comedy, {Movies}), (M. Farrow, {Actors})} and EG3

= {(comedy,
{Movies}), (J. Davis, {Actors})}, respectively.

Based on the summaries of the produced groups of results, we define the
summary of the query result as a whole, as follows:

Definition 3.9. Query Result Summary. Let G1, . . . , Gz be the groups of
JTTs produced for the query result Res(Q) of a query Q. The query result
summary SQ is a set of z group summaries, SQ = {SG1

, . . . ,SGz}, such that,
SGj is either the group summary SGj or the enhanced group summary EGj of
Gj, 1 ≤ j ≤ z.

That is, for Q = {W. Allen, female}, the query result summary SQ taking
into account the group summaries is {{drama, D. Keaton}, {comedy, M. Far-
row}, {comedy, J. Davis}}, while for the enhanced group summaries we have
the summary {(drama, {Movies}), (D. Keaton, {Actors}), (comedy, {Movies}),
(M. Farrow, {Actors}), (comedy, {Movies}), (J. Davis, {Actors})}.

We could also consider other versions for summaries. For instance, assume
that the importance of each keyword is computed separately for each relation.
Then, we may report important keywords with respect to their relation-specific
scores or keywords for relations of high user interest.



Chapter 3. Grouping and Summarizing Keyword Search Results 44

Summary-based exploratory keyword queries. Besides presenting sum-
maries to the users and offering, this way, a side means for further exploration,
we can also use the summaries to directly discover interesting pieces of data that
are potentially related to the users information needs. Specifically, to locate such
related information, special-purpose queries, called summary-based exploratory
keyword queries, can be constructed. The focus of these queries is on retrieving
results highly correlated with the results of the original users queries.

We employ the keywords of summaries to emerge new interesting results.
An exploratory keyword query for a query Q consists of a set of keywords,
that is a subset of the keywords in a group summary Gj of Q that frequently
appear together in the JTTs of Gj . There are also other ways for construct-
ing exploratory queries that qualify different properties. For example, sets of
keywords that frequently appear in the result and, at the same time, rarely
appear in the database ensure high surprise, or unexpectedness, as a measure
of interestingness, as surprise used in the data mining literature (e.g., [98]).
Recently, exploratory queries are used for exploration in relational databases
through recommendations [30].

3.4 Evaluation

To demonstrate the effectiveness of grouping and summarizing keyword search
results, we conducted an empirical evaluation of our approach using a real movie
dataset2 with 30 volunteers with a moderate interest in movies. The schema of
our database is shown in Figure 3.5 while the size of the database is 1.1 GB.

We run our experiments for queries of different sizes, i.e., number of key-
words, and keywords of a different selectivity. We presented the results to the
participants using two methods, 1) without any grouping (baseline method)
and 2) with groups produced by our approach (grouped method). In the base-
line method, for each query, we presented an enhanced group summary of the
whole result set, considering the whole result set as one group. To help the
users understand the context of the significant terms we presented them also
the attribute value in which a significant term appeared in. We give also the
participants the ability to examine the set of produced JTTs. The results, i.e.,
the JTTs, are ranked based on their size that corresponds to the relevance of
the trees to the query. In the grouped method, the participants are initially
presented the groups of JTTs which were formed on the same results that were
presented in the baseline. The groups are indicated to the participants by the

2http://www.imdb.com/interfaces
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Organizing results in periods

Please press "Proceed" after you have finished examining all periods.
Proceed

Check the summary of each period by selecting a period and then pressing
"Show Period"

Single years appear with normal fonts, longer periods appear with bold.
Focus mainly in longer periods.

1962-1969  1971-1971 1972-1985 1986-1989  1990-1990
 1991-1991  1992-1992 1995-1997  1998-1998 1999-2002
2003-2009  2010-2010  2011-2011

Show Period

Here are the most important results we have found for period
1962-1969

Lazenby, George
Is a(n): actor

Chitty, Erik
Is a(n): actor

Casino Royale
Is a(n): movie title

Thunderball
Is a(n): movie title

Cooper, Terence
Is a(n): actor

Connery, Sean
Is a(n): actor

More Details Less Details

Figure 3.4: Sample of results for the query “James Bond male actors”
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mid	   %tle	   year	   keywords	   mid	   genre	  

mid	   aid	   character	   aid	   name	   gender	   dob	  

mid	   did	   did	   name	   gender	   dob	  

Movies Genres 

Actors 

Directors Movies2Directors 

Movies2Actors 

pid	   mid	  

Movies2Producers 

Movies2Writers 
wid	   mid	  wid	   name	   gender	  

pid	   name	   gender	  

Writers 

Producers 

Figure 3.5: Movies database schema

time period each group covers. When a participant focuses on period he/she is
provided with the summary of the group’s content and the results belonging to
that group.

The participants were asked to evaluate the quality of the results. For char-
acterizing the quality, we use four measures: (i) group coherence, which evalu-
ates the similarity of the results content inside a group , (ii) baseline summary
quality, which evaluates how descriptive is the summary of the baseline method
for the whole result set, (iii) group summary quality, which evaluates how de-
scriptive is the summary of each group, and (iv) usefulness evaluation, that
evaluates if the participant found the grouping method more helpful than the
baseline method.

For grading the grouping, the participants were asked to evaluate for each
group if the movies in the group fit well together. We used 3 values: not coherent
(0), quite coherent (1), and very coherent (2). The users were also asked for
each summary if it was descriptive of the result and if it was helpful for them to
understand the content of the results. The summaries were also graded using
three values: not descriptive (0), quite descriptive (1), and very descriptive (2).
The degree of overall usefulness was graded with two values: our method is not
helpful (0), and our method is helpful (1). Each query was evaluated by at least
3 participants while 95% of the queries were evaluated by at least 4 and 75%
by at least 8. On average, there were 8 evaluators per query.

Group coherence. Table 3.1 shows the average values of the coherence mea-
sure for each query as they were estimated by the participants. According to the
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Query Average group coherence

“Daniel Craig” movies 1.50

“James Bond” movies 1.50

“James Bond” male actors 1.50

“Woody Allen” female actors 1.27

“Clint Eastwood” movies 1.50

“Peter Jackson” male actors 1.75

“Peter Jackson” movies 1.33

“Denzel Washington” Action 1.88

“Julia Roberts” Comedy 1.71

“Julia Roberts” movies 1.75

“Kevin Spacey” drama 1.27

“Jack Nicholson” female actors 1.44

“Al Pacino” movies 1.45

“Al Pacino” male actors 1.50

“Al Pacino” directors 1.50

“Stanley Kubrick” actors 1.75

“Stanley Kubrick” movies 1.60

“Lord of The Rings” Tolkien 1.30

“Robert De Niro” directors 1.60

“Francis Ford Coppola” male actors 1.75

Table 3.1: Group coherence evaluation for each query

average group coherence value, that is 1.52, the participants found the grouping
of the results to be meaningful and helpful for them to understand the results.

Summary quality. Table 3.2 reports the average values of the quality mea-
sures for each query (we omit the detailed per person scores due to space limita-
tions). As it can be seen, in 90% of the queries the quality of group summaries
was better than (or equal to) the quality of the baseline summary according
to the participants. This comes to complete accordance with the percent of
participants (85%) who found our approach helpful. We can also draw the con-
clusion that while in all queries the majority of participants found the grouped
summaries to be quite or very descriptive, the baseline summary was evaluated
as quite or very descriptive in only 30% of the queries.

Time overhead. Finally, we study the overall impact of grouping and sum-
marizing keyword search results in terms of time overhead for the above query
examples. In particular, we measured the time needed to build the JTTs and
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Baseline Group

Query summary quality summary quality Usefulness

“Daniel Craig” movies 0.75 1.50 0.75

“James Bond” movies 0.70 1.60 0.90

“James Bond” male actors 1.00 1.50 0.75

“Woody Allen” female actors 0.82 1.45 0.82

“Clint Eastwood” movies 1.36 1.57 0.86

“Peter Jackson” male actors 0.50 1.75 1.00

“Peter Jackson” movies 1.67 1.67 0.67

“Denzel Washington” Action 1.13 1.88 1.00

“Julia Roberts” Comedy 0.88 1.43 0.86

“Julia Roberts” movies 1.13 1.75 0.88

“Kevin Spacey” drama 0.64 1.28 0.82

“Jack Nicholson” female actors 0.22 1.56 0.89

“Al Pacino” movies 1.00 1.45 0.82

“Al Pacino” male actors 0.50 1.63 0.88

“Al Pacino” directors 0.50 1.50 1.00

“Stanley Kubrick” actors 1.00 2.00 1.00

“Stanley Kubrick” movies 1.50 1.30 0.80

“Lord of The Rings” Tolkien 1.36 1.20 0.60

“Robert De Niro” directors 0.30 1.60 0.90

“Francis Ford Coppola” male actors 1.00 2.00 1.00

Table 3.2: Summary quality evaluation for each query

the time needed for creating the groups and summaries. The additional com-
putational cost of our approach is small in comparison with the generation of
the actual keyword search results. On average, the additional time consumed
for creating the summaries and groups was a magnitude smaller than the JTT
building time, and in no case was the creation of groups and summaries sig-
nificantly more expensive in terms of time than the building of the JTTs. For
example, the time overhead for the query {Stanley Kubrick, movies} is 3.7%
and for the query {Francis Ford Coppola, male actors} is 9.5%.

3.5 Conclusion

In this chapter, we considered an alternative way for presenting the results of
a keyword query. We proposed a framework for organizing the results into
groups that contain results with similar content that refer to similar temporal
characteristics. We employed summaries of results to help users refine their
searches. A summary of a result set is expressed as a set of important attribute
values in the result set. Finally, we evaluated the effectiveness of our approach.
Our usability results indicate that users are more satisfied when results are
organized with respect to content and time than when results are simply ordered
with respect to relevance.



Chapter 4

Exploratory Product Search
Using Top-k Join Queries

Typically, when users are searching for a product in a database, they are pre-
sented with a ranked list of products. Frequently, a large number of the products
can be combined with accessories and produce combinations that have improved
properties compared to single products. In most cases however, the number of
possible combinations between the products is practically infinite, and present-
ing to the user a large set of combinations would result in confusing her and
limiting her overview of the available main products of interest. In this chap-
ter, we propose a new type of query, the Exploratory Top-k Join query, which
presents the user the available options organized according to the products of
her interest.

4.1 Introduction

Nowadays, product databases contain large collections of objects, where each
object is characterized by a number of different properties such as price or
weight. In many cases, products can be combined with accessories and form
combinations with enhanced or extended properties generating in this way nu-
merous options for the users. For instance, a computer may be combined with
additional RAM parts and SSD disks for extra memory and storage capacity.
Similarly, a travel agency can offer a rented car with a small additional fee, when
a user selects certain hotels that are away from the city center. The plethora

49
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of different items and combinations make it challenging for users to explore the
available options and find the products that suit their needs.

Ranking queries, such as top-k [25, 34, 58] and rank-join queries [37, 57, 77]
assist users to find the products that are interesting to them by selecting a
small set of items or combinations that are highly ranked according to their
preferences. As described in Chapter 2, in such queries products are typically
modeled as multi-dimensional points, where each dimension corresponds to a
specific attribute and the respective value indicates the presence or the perfor-
mance of a product regarding this attribute [18, 40, 115]. User preferences are
modeled as multi-dimensional vectors w, where each component (weight) of the
vector denotes the importance of the respective attribute for the ranking of the
objects [56, 79, 119]. The weight values could either be explicitly declared by the
user through an interactive user interface [56], or be indirectly estimated [97].
Each item or combination is assigned a score, frequently using a linear scoring
function [16, 79, 104, 122, 123, 129] of the form fw(o) =

∑d
i=1 w[i]o[i] that as-

signs scores to products, where o[i] is the normalized value of the i-th attribute
of a product o. However, both top-k and rank-join queries present to the users
a very limited overview of the available alternatives. Top-k queries, on one
hand, focus solely on the products the user is interested in, and ignore the fact
that combinations can be better suited to users than single objects. Rank-join
queries, on the other hand, focus on fixed-size combinations and do not con-
sider that adding an accessory product does not necessarily result into a more
preferable combination. In most cases, when main products are combined with
accessory products some not-appealing attributes (e.g., price or weight) may
increase. In addition, they often return similar combinations and thus they
present to the user a very limited view of the available products of her interest.

To this end, we propose a new type of query, the eXploratory Top-k Join
(XTJk) query. The XTJk query aims at assisting the user to explore the avail-
able options by providing her a wide range of the products she is interested
in, presented in attractive combinations. In particular, an XTJk presents only
one combination (the best) per main product focusing on the products that the
user is interested in, without ignoring possible combinations that may result
to a more preferable solution. Different from a rank-join query, where the user
specifies the items to be combined, the combination of main and accessory prod-
ucts is performed automatically based on the user preferences. As a result, the
user is not required to be aware of the available accessories, but she still is pre-
sented with interesting combinations. In addition to providing a wide overview
of main products, an XTJk query provides the ability to the user to retrieve
more combinations for a specific main product with minimal processing cost,
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id CPU RAM SSD price battery weight RAM SSD
score (GB) (GB) (USD) (hours) (kg) type type

c1 3346 4 0 -539 4 -2.7 1 1

c2 3346 8 256 -1119 6.5 -2 1 2

c3 3941 12 256 -1199 8 -2.5 0 0

c4 3997 8 0 -1348 13 -2 2 1

Laptops

mid RAM price RAM
(GB) (USD) type

m1 4 -71 2

m2 4 -45 1

m3 8 -81 1

Memory

sid SSD price SSD
(GB) (USD) type

d1 240 -143 1

d2 512 -300 1

d3 120 -83 2

SSD

Figure 4.1: Sample product database

Top-3 query

c3
c4
c2

Rank-join query

{c2,m3, d3}
{c4,m1, d2}
{c4,m1, d1}

Figure 4.2: Top-k and rank-join query results

and organizes efficiently the results into groups based on the product the user
is interested in.

Consider the example in Figure 4.1, which displays the database of an e-shop
selling computers, and a user wishing to buy a laptop. We can assume that the
user preference vector is equal to w = (0.1, 0.2, 0.1, 0.3, 0.2, 0.1) and the score of

each laptop is equal to fw =
∑d
i=1 w[i]o[i], where o[i] is the normalized value of

the i-th attribute of product o. A top-3 query and rank-join query would return
the results shown in Figure 4.2. Both queries do not return the optimal results,
as they do not take into account the fact that other combinations may have
better scores. Table 4.1 displays the ranking of all possible combinations, and
indicates that both queries do not return the best results. In addition, a rank-
join query displays two very similar results, limiting the variety of the search
results regarding the available products that the user is interested in (laptops).
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rank id

1 {c2,m3}∗
2 {c2,m3, d3}
3 {c4,m1,d2}∗
4 {c4,m1, d1}
5 {c4,m1}
6 {c3}∗
7 {c2,m2}
8 {c2,m2, d3}
9 {c1,m3,d2}∗

. . .

14 {c4}
15 {c2}

. . .

Table 4.1: Ranking of
all possible
combina-
tions

XTJk results

{c2,m3}∗
{c4,m1,d2}∗
{c3}∗

{c2,m3}∗

{c2,m3, d3}
{c2,m2}
{c2,m2, d3}
{c2}
{c2, d3}

Alternative results
for c2

Figure 4.3: Grouped results

Presenting a ranked list of all possible combinations does not help the user
to acquire an insight about the available products, as the top-3 combinations
(Table 4.1) involve only two laptops.

We argue that a user would be more interested in the combinations presented
by an XTJ3 query as displayed by the first table of Figure 4.3. Notice, that an
XTJk query takes into account all possible combinations, and presents to the
user only the best combination for each main product. Upon user request, more
combinations for a given product can be presented to the user, providing to her
a wide, yet not overwhelming view of the available options. Figure 4.3 displays
the case where a user wishes to explore alternative combinations for computer
c2. The alternative combinations are organized according to the product of
interest of the user, assisting her to explore the available options.

State-of-the-art techniques for processing rank-join queries [37, 57, 96] re-
turn the k highest ranked combinations according to a user-defined preference
function. However, the user must be aware of the contents of the database and
has to specify at query time the form of combinations. Hence, adaptations of
such techniques exhibit suboptimal performance when applied to our problem.
Furthermore the eXploratory Top-k Join is essentially a “star join” of the main
product relation and the additional product relations, and existing techniques
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do not exploit the structure of this join type to achieve performance gains. We
show how the structure of such queries can be exploited in order to produce effi-
cient query processing algorithms. The proposed algorithms explore all possible
joins without computing the entire set of possible combinations, and return the
correct result.

To summarize, we make the following contributions:

• We propose the use of the pull-bound framework [95] for processing eX-
ploratory Top-k Joins, and we provide a baseline algorithm that processes
eXploratory Top-k Join (XTJk) queries, by adapting a state-of-the-art
rank-join algorithm [57].

• We analyze the properties of eXploratory Top-k Joins and we propose an
efficient algorithm (XRJN) that relies on an effective bounding scheme
and a plain round-robin pulling strategy.

• We provide strong theoretical guarantees on the performance of our algo-
rithm, namely we prove that XRJN is instance-optimal.

• We present a new algorithm (XRJN*), by introducing a pulling strategy
that prioritizes access to relations in a deliberate manner, in order to
reduce the overall processing cost.

• We propose an extension of the XTJk query that retrieves multiple com-
binations for each main product organized in groups.

• We perform an experimental evaluation that demonstrates the efficiency
of our approach.

The rest of this chapter is organized as follows: Section 4.2 reviews the
related work. In Section 4.3 we formally define the XTJk query. Thereafter,
in Section 4.4, we present a baseline technique to answer an XTJk query. In
Section 4.5, we provide a more efficient algorithm that exploits the characteris-
tics of the combinations in order to produce faster converging upper and lower
bounds. Section 4.6 describes the generation of multiple combinations per main
object. The experimental evaluation is presented in Section 4.7 and we conclude
in Section 4.8.

4.2 Related work

Our work is related to top-k and join queries as well as package recommendation.
In the following, we present an overview of the related research work.
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Top-k queries. Top-k queries have been well-studied in the last years to
enable ranked retrieval of objects based on user preferences. Top-k queries where
first studied by Fagin [34]. Das et al. [25] introduced an algorithm using views.
Ge et al. [40] follow a similar approach using precomputed views but their goal
is to improve the performance on batch top-k queries. Their approach shows
a special interest as they avoid linear programming for calculating the upper
bound. For a thorough overview of top-k queries we refer to [58].

Rank-join queries. Rank join queries were first studied by Natsev et al.
who introduced the J* algorithm [83]. Ilyas et al. proposed the HRJN* algo-
rithm [57] which outperforms J*. Mamoulis et al. [77] introduced the LARA-J
and LARA-J* algorithms, which use lattices in order to store partial join results.
The performance of LARA-J* is better than HRJN* with respect to access depth
but the algorithm induces processing cost which is higher than that of HRJN*.
Finger et al. [37] and Schnaitter et al. [95, 96] study the problem of finding tight
bounds for terminating the rank-join algorithms. They also proposed the a-
FRPA algorithm, a hybrid approach between a tight bound and HRJN*, which
has improved performance over HRJN* in low data dimensionality. In higher
dimensionality the performance advantage is minimal and and the performance
of the algorithm is on the same levels as HRJN*. Martineghi et al. [80] study the
problem of joining results produced by different sources on the Web for which
the access cost varies. They assume that both sorted and random access are
available and propose an algorithm for determining an efficient pulling strat-
egy at compile time which takes into account the access cost for each source.
Habich et al. [50] address the problem of increasing the overall performance of
multiple top-k queries over joins. Their main difference is that while the pre-
vious approaches assume that the data are sorted according to the preference
queries, they propose a strategy where they avoid sorting the relations for each
top-k query by using a global sorting for merge-joins of the tuples or by using
a variation of the hash-join algorithm. Agrawal et al. [1] discuss the subject of
confidence aware rank-join algorithms. Xie et al. [121] study the problem of rank
joins with aggregation constraints while in [75] Lu et al. introduce the top-k,m
queries. Given a set of groups where each group contains a set of attributes,
they study the problem of finding the best combination of attributes. They
focus on ranking combinations of attributes and not combinations of objects.
Zhang et al. [127] study the problem of finding the best combinations of objects
on a graph. Khalefa et al. [63] optimize the performance of preference joins with
the use of pruning techniques. Jin et al. study the problem of multi-relational
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skylines [60] and skylines over equi-joins [61], while Doulkeridis et al. [28] study
the problem of rank-join queries over distributed systems.

Our main difference with the aforementioned approaches is that we do not
assume that combinations should have a fixed number of elements but combi-
nations of any size can be eligible. In addition, we examine a specific case of
joins where all additional objects are combined with a main object. This case
of “star”-join has specific characteristics that allow us to improve the perfor-
mance of the processing of such joins. Moreover, we are considering only the
best combination of each main object. This enables us to offer a wider view of
the available main objects, which are the objects the user is primarily interested
in.

Package recommendation. Our work is also related to package recommen-
dation [85, 93, 120]. Xie et al. [120] study the problem of creating the best
package out of a set of items given a specific budget. However, the objects are
not related to each other and the problem they address is to create the most
attracting package of objects for a user. Combinability of objects is not taken
into account and it is assumed that all combinations are possible. Guo et al. [48]
try to find packages that are not dominated by other packages. They focus on
packages of the same size. Roy et al. [93] suggest a method of constructing
combinations based on a central object and a set of satellite objects but they do
not take into account preference vectors. Their effort focuses on creating and
presenting a number of packages that maximizes the variety of the contained
satellite objects and satisfies at the same time a budget constraint.

Our main differences from the aforementioned approaches are that we are
focusing on maximizing the preference score of the main objects rather than
creating combinations which satisfy a certain constraint. In addition, we do not
assume a static combination size but we consider it to be dynamic. Finally,
we do not assume that all combinations are possible but we evaluate the join
conditions at the same time. None of the aforementioned approaches examine
all these conditions simultaneously.

4.3 Problem definition

In this section, we formally define the XTJk query and all necessary structures
used both for the problem definition and the description of the respective algo-
rithms. Table 4.2 summarizes the main symbols used.
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Symbol Explanation
EM the main relation
Ei an additional relation to EM
HE set of accessed objects of relation E
o object of EM
p object of any relation EM or Ei
c a combination of objects
fw(p), fw(c) score of an object p and combination c
m(c) the main object of a combination
cmp the most promising combination
C(EM ) all possible combinations with EM as main relation
B(EM ) all candidate combinations with EM as main relation
XTJk(w) top-k candidate combinations
ALT (o) set of alternative combinations for a main object o

Table 4.2: Table of symbols

4.3.1 Object combinations

Let D be a database of objects and EM be a relation in D that is connected to a
set of relations E = {E1, . . . , En} of D. EM has a set of d real valued attributes
AEM = {a1, . . . , ad} and each relation Ei contains a subset AEi ⊆ AEM of these
attributes, i.e., it holds that ∀Ei ∈ E , AEi

⋂
AEM 6= ∅. Each object in a relation

E ∈ E
⋃
{EM} is represented as a d-dimensional point p ∈ Rd where p[i] ∈ R

if ai ∈ AE and p[i] = 0 if ai 6∈ AE . We refer to EM as main relation and to
the rest of the relations as additional relations. The objects of the relations are
called main and additional objects.

Using the main and the additional objects we can form combinations where
each combination has exactly one main object and at most one object from each
additional relation. We say that an object of the main entity relation o ∈ EM
and a object p ∈ Ei of an additional relation Ei are combinable if there is a join
of the form o ./ p ∈ EM ./ Ei.

Definition 4.1. Combination. Given a main relation EM and a set of rela-
tions E, we define as a combination a set of objects c such that:

• ∃o ∈ c : o ∈ EM , |EM
⋂
c| = 1,

• ∀p ∈ c, p 6= o it holds that ∃Ei : o ./ p ∈ EM ./ Ei and
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• ∀pi, pj ∈ c, i 6= j, pi ∈ Ei, pj ∈ Ej it holds that Ei 6= Ej.

We use the notation m(c) to denote the main object of a combination c,
and C(EM ) to denote the set of all possible combinations that can be formed
using EM as main relation. Note that a main object can participate in many
combinations, but each combination has only one main object.

Using the example database in Figure 4.1, if a user wishes to buy a laptop
and she is interested in CPU, RAM, SSD size and price, then the main relation
of her query is Laptops and the additional relations are Memory and SSD. Any
other attributes not specified in the query can be considered irrelevant. The
set of objects {c2,m3, d3} is a valid combination, while {c1,m1} is not since
c1 and m1 are not combinable. Table 4.1 shows some of the combinations in
C(Laptops), which is the set of all possible combinations with Laptops as the
main relation.

4.3.2 Ranking combinations

We can now extend the notion of a top-k query in order to take into account not
only single objects but also combinations. We therefore define the Exploratory
Top-k Join (XTJk) query, which returns the top-k combinations with distinct
main objects. We consider a user query to be a d-dimensional preference vector
w targeted to relation EM , and each dimension w[i] of the query to represent the
importance of the respective attribute to the user. Without loss of generality we
assume that w[i] ≥ 0,

∑d
i=1 w[i] = 1 and if a user is not interested in a specific

attribute ai of the main objects then w[i] = 0. Given a preference vector w
targeted to the main relation EM , the score of a combination c is defined as:
fw(c) =

∑d
j=1 w[j]

∑
p∈c(p[j]).

An XTJk query lists the k main objects with the best combinations and
thus each main object can appear at most once in the query’s result set. The
following definition formally defines the XTJk query.

Definition 4.2. XTJk query. Given a main relation EM , a set of additional
relations E, a preference vector w and an integer k, the result set XTJk(w) of
an Exploratory Top-k Join query is a set of combinations such that:

• XTJk(w) ⊆ C(EM ) and |XTJk(w)| = k,

• ∀c1, c2 ∈ XTJk(w) it holds that m(c1) 6= m(c2),

• ∀c1 ∈ XTJk(w), c2 ∈ C(EM ) − XTJk(w) one of the following necessarily
holds:
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– fw(c1) ≥ fw(c2) or

– ∃c′ ∈ XTJk(w) : m(c′) = m(c2) and fw(c′) ≥ fw(c2).

Returning to our example, Table 4.1 lists the ranked set C(EM ), while the
result of an XTJ2 query are the combinations {c2,m3} and {c4,m1, d2}. There
is a combination {c2,m3, d3} which has a better score than {c4,m1, d2}, but it
is omitted since it shares the same main object (c2) with the top-1 result.

4.3.3 Theoretical properties

In the following, we present some properties of the combinations that help us
to reduce the search space of the XTJk query.

A combination that no other tuple can be added to and improve the score
of the combination is called total combination. A total combination does not
necessarily contain objects from every additional relation. Given the fact that
in the general case p ∈ Rd, the score of an additional object could be negative,
and the addition of such an object to a combination would make the score of the
combination worse. In such cases a total combination may not contain objects
from all additional relations. We should note that a main object may also have
a negative score, however, a combination should always contain a main object,
even if its score is negative.

As mentioned before, each object of the main relation can participate in
many combinations. However, for each main object we are interested only in
the combination with the best score, i.e., the candidate combination.

Definition 4.3. Candidate combination. Given a main object o of the main
relation EM , the candidate combination c is a combination such that ∀c′ 6= c :
m(c′) = m(c) = o it holds that fw(c) ≥ fw(c′).

We denote the set of all candidate combinations as B(EM ). Obviously
B(EM ) ⊆ C(EM ). Returning to our example, Table 4.1 lists the set C(EM ),
while the set of the candidate combinations B(EM ) is indicated with a star (*).

Lemma 4.1. A candidate combination is total.

Proof. By contradiction. Assume that the candidate combination c of
object o is not total. Then, there exists a combination c′ 6= c, such that m(c) =
m(c′) = o and it holds that c′ = c on p, where p is an additional object, and also
fw(c′) > fw(c). This contradicts with Definition 4.3. �

The opposite does not hold. There can be many total combinations with
the same main object and no other common object, but only one of them can
be candidate combination as well.
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Lemma 4.2. It holds that XTJk(w) ⊆ B(EM ).

Lemma 4.2 is easy to be proven and it shows that it is sufficient to examine
only candidate combinations during processing of a XTJk query.

4.4 Pull-bound framework

Based on the framework described in Algorithm 1 of Chapter 2, we present a
pull-bound framework for XTJk queries. The pull-bound framework is based
on the assumption that access to the objects of each relation is provided in
descending order of score1. The score of an object pi is equal to fw(pi) =∑d
j=1 w[i]pi[j] and it is essentially the contribution to the total score of the

combination it belongs to. In other words, for any relation, if object p1 is
accessed before p2, this means that fw(p1) ≥ fw(p2).

The general structure of the family of algorithms that comply with this
framework is shown in Algorithm 4. Their difference lies on (a) the bounding
technique, which calculates the upper bound of the possible score of any unseen
combination, and (b) the pulling technique, which determines the next relation
to access.

In the following, we first introduce our pull-bound framework for process-
ing XTJk queries. Then, we adapt an existing rank-join algorithm, namely
HRJN* [57], in order to be able to process exploratory top-k joins. Since the
calculated bounds play an important role on the behavior of the pulling strategy,
we are going to analyze the bounding technique first. We employ the modified
HRJN* algorithm as a baseline to compare the performance of our algorithms.

4.4.1 XTJk framework

As shown in Algorithm 4, the pull-bound framework consists of a loop that
is executed until k join results have been produced and no unseen tuple can
produce a join result with better score. In the first step, the next relation to be
accessed is selected (line 3) based on a pulling strategy. Given a pulled tuple p
from that relation, we update the set of produced combinations (line 6). Finally,
the lower bound is set as the score of the k-th join result (line 7), and the upper
bound of any unseen join result is computed (line 8) based on the bounding
scheme.

1Usually this is achieved by the use of multidimensional indexes or materialized views.
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Algorithm 4 Pull-Bound Framework

Input: EM : main relation
E : additional relations

Output: XTJk(w)

1: B̂(EM )← ∅ //Set of produced candidate combinations

2: while |B̂(EM )| < k OR LB < UB do
3: E ←chooseRelation(E

⋃
{EM})

4: p← E.pullTuple()
5: HE ← HE

⋃
{p} //add p to the accessed objects

6: B̂(EM )←update(HEM ,HE 1 . . . , t, . . . ,HEn)

7: LB ←kBest(B̂(EM ))

8: UB ←upperBound(B̂(EM ))
9: end while

10: return topK(B̂(EM ))

Now, we focus on how the combinations are generated (line 6). Since we
are interested only in candidate combinations, the method update() combines a
newly pulled object with a combination only if that is beneficial for the combi-
nation. The generated candidate combinations are maintained as a set B̂(EM )
which contains the best seen combination for each main object. In detail, if
the accessed tuple p refers to a main object, the method update() finds the best
additional objects of the already accessed tuples which are combinable with p,
creates the combination and adds it to B̂(EM ). If tuple p refers to an additional
object, then we add this object to all combinations that the tuple can be added
to, i.e., to all combinations that p is combinable with the main object of the
combination and the addition of p results to an improved score of the combina-
tion. In that way we ensure that B̂(EM ) contains only the best combination of
each main object, considering of course only the accessed tuples.

As a result, the set B(EM ) is computed incrementally in Algorithm 4, which
means that in worst case where all objects of the relations are accessed, then
B̂(EM ) will be equal to B(EM ). However, in practice, the algorithm will halt
much earlier, thus avoiding the cost of materializing the set B(EM ).

4.4.2 Modified HRJN* algorithm

Bounding scheme. Our pull-bound framework evaluates a XTJk query by
estimating the upper bound of the score that any unseen tuple can produce
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and terminates when the k-th best join result found is better than the upper
bound. Recall that the upper bound (UBHRJN∗) of the HRJN* algorithm is
the maximum value produced if we combine the worst seen tuple of any relation
with the best seen tuples of the remaining relations [57]. For the additional
relations, we include the best tuples only if their score is positive and they
can increase that way the total score of the combination. We must include
however the score of the best tuple of the main relation since its presence in the
results is necessary. The bounding scheme of HRJN* is formally described in
Equations 4.1-4.3.

UBEM = fw(HEM [last]) +
∑
E∈E

u(fw(HE [1])) (4.1)

UBEi = fw(HEM [1]) + fw(HE i[last])+ (4.2)

+
∑
E∈E
E 6=Ei

u(fw(HE [1]))

UBHRJN∗ = max
E∈E

⋃
{EM}

(UBE) (4.3)

The notation HE denotes the set of accessed objects of relation E and by
HE [1],HE [last] we denote the first and last accessed tuples. The function u(x)
returns x if x > 0 and 0 if x ≤ 0. The complete algorithm that calculates the
bound is described in Algorithm 5.

Theorem 4.1. (Correctness of bound) The modified version of HRJN* provides
a correct solution to the Exploratory top-k join problem.

Proof. We assume that HRJN* stops after having accessed d0 tuples for
EM and di tuples for each additional relation Ei. Let ck = {EM [j0], E1[j1], . . . ,
En[jn]} be the k-best combination , i.e., LB = fw(ck) and let the upper bound
be UB = UB(Eζ), Eζ ∈ {EM}

⋃
E . Since the algorithm has stopped then the

following condition holds:

fw(ck) ≥ UB (4.4)∑
Ej [ij ]∈ck

fw(Ej [ij ]) ≥ fw(Eζ [dζ ]) +
∑

Ej∈E
⋃
EM

Ej 6=Eζ

fw(Ej [1]) (4.5)

Based on Equations 4.1-4.3 we conclude that Inequality 4.5 holds for any
relation Eζ ∈ E

⋃
{EM}. Let us assume that there is a non-total combination
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Algorithm 5 HRJN* Bound

Input: EM : main relation
E : additional relations

Output: UBHRJN∗
1: UB ,bound = −∞
2: for all E ∈ E

⋃
{EM} do

3: if E = EM then

4: bound=fw(HE [last]) +
∑
E′∈E

u(fw(HE [1]))

5: else
6: bound=fw(HE [last]) + fw(HEM [1])+∑

E′∈E
E′ 6=E

u(fw(HE [1]))

7: end if
8: if bound> UB then
9: UB ← bound

10: E becomes the next relation to pull from
11: end if
12: end for
13: return UB

c′ which if combined with an unseen tuple will become better than ck. Conse-
quently, after joining c′ with the unseen tuple it will hold that fw(c′) > fw(ck).
Since c′ contains an unseen tuple, it contains a tuple Eτ [dτ +x] of a relation Eτ .
The maximum score of c′ is therefore given by either Equation 4.1 if Eτ = EM
or in the opposite case, by Equation 4.2 where we consider the last tuple to be
Eτ [dτ + x]. We have assumed that c′ is better than ck, therefore, if we substi-
tute Eζ with Eτ in Inequality 4.5 then we get that fw(Eτ [dτ +x]) ≥ fw(Eτ [dτ ])
which is not true because we are accessing the objects in descending order of
score. This contradicts with the assumption that a non-total combination com-
bined with an unseen object may produce a top-k result. We reach therefore
the conclusion that no unseen object can produce a better combination after
the stopping criterion of HRJN* is satisfied. �

Pulling strategy. The set of bounds calculated by HRJN* in Algorithm 5
is used to decide which is the next relation to pull from. The intuition indicates
that we should pull from the relation that produced the highest bound since
this relation plays an important role in the upper bound of the algorithm. If we
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pull from the other relations, the upper bound will not be reduced significantly
and the algorithm will not terminate fast. Therefore the decision on which is
the next relation to pull is taken in line 10 in Algorithm 5.

4.5 Exploratory rank-join (XRJN)

In this section, we propose the eXploratory Rank-Join algorithm (XRJN ), which
also follows the pull-bound framework. We propose a tighter bounding scheme
(Section 4.5.1), we prove its correctness (Section 4.5.2), and we show that the
bounding scheme of XRJN has strong theoretical guarantees on its performance,
namely that it is instance-optimal (Section 4.5.3). In addition, we present a
lazy method to compute the bound more efficiently (Section 4.5.4), and we
analyze the complexity of the proposed algorithm (Section 4.5.5). Finally, we
present a pulling strategy that is beneficial for the proposed bounding scheme
(Section 4.5.6).

4.5.1 Bounding scheme

At a random state of the algorithm, let HE denote the objects of a relation E
that have been accessed so far, and B̂(EM ) the set of all combinations that have
been created so far. Recall at this point that only one combination per main
object is created and that an additional object is added to a combination only
if this produces a better score for the combination. There are two bounds we
should consider, denoted as UBEM and UBcomb respectively, and our bounding
scheme computes their maximum:

UBXRJN = max(UBEM ,UBcomb) (4.6)

The first bound (UBEM ) determines the upper bound of any unseen combi-
nation, i.e., any unseen object of the main relation EM . In the best case, the
next object to be accessed from the main relation will be combined with the
best objects of the additional relations except for those that have a negative
score. Obviously, the upper bound for any unseen object of the main relation
is the same with the upper bound calculated by the baseline and its value is
calculated by Equation 4.1.

The second bound (UBcomb) represents the best score of a seen main product
combined with at least one unseen additional object. For any seen main object,
there exists exactly one combination in B̂(EM ). Any retrieved main object that
cannot be combined with any of the accessed additional objects will be added
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to B̂(EM ), as a combination with a single main object. A combination c in

B̂(EM ) is total based on the seen tuples if its score cannot be improved further.
In other words, c is total if for all relations Ei either (a) there exists pi ∈ Ei such
that pi ∈ c, or (b) Ei is exhausted (all tuples have been accessed) or HEi[last]

is negative. In the following, we refer to a combination c of B̂(EM ) that is not
total as non-total combination and we refer as missing relation of c all relations
Ei for which (a) or (b) does not hold.

Let c be a non-total combination and Ei be a missing relation of c, then
c can be combined with an unseen object of Ei and therefore the maximum
contribution of Ei is equal to fw(HE i[last]). Thus, the upper bound of the
score for a non-total combination c can be computed be adding for every missing
relation Ei the score of the last accessed object of Ei. We call most promising
combination, the non-total combination cmp which has the highest upper bound
on its score. The upper bound UBcomb of all seen main products is determined
by the upper bound of the score of the most promising combination.

Equation 4.7 defines formally the most promising combination while Equa-
tion 4.8 calculates the respective upper bound2.

cmp = argmax
c∈B̂(EM )
c not total

fw(c) +
∑
E∈E

E missing relation

u(fw(HE [last]))

 (4.7)

UBcomb = fw(cmp) +
∑
E∈E

E missing relation

u(fw(HE [last])) (4.8)

Example 4.1. Assume the objects shown in Table 4.3 where EM is the main
relation, E1, E2 are the additional relations and we are looking for the top-1
combination. The table shows the scores of the objects according to a given
vector w. The two signs (*,+) show two possible combinations. We assume
that we read the tuples in a round-robin fashion. The id of each tuple is the
row number and the relation letter it belongs to (e.g., EM [1], E1[3] ,etc.). After
having read the first row, we have one combination c1 = {EM [1]} and the upper
bound UB is equal to UB = fw(EM [1])+fw(E1[1])+fw(E2[1]) = 22. The lower

2We should note that this bound is the same for all additional relations, Therefore we call
it UBcomb because it depends on the current combinations and the last objects accessed.
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id EM E1 E2

1 10∗ 7+ 5
2 10 6 4
3 8 6∗ 3
4 7+ 5 3∗,+

5 6 5 3
6 5 5 3
7 4 3 2
8 3 3 2
9 2 2 1
10 1 1 1

Table 4.3: Example

bound is the best score of any combination found so far which is the score of the
main object EM [1], thus LB = fw(EM [1]) = 10.

When the second row is read, the combination c2 = {EM [2]} is formed and
the upper bound of any unseen combination involving any unseen main object
is still equal to UBEM = 22. The most promising combination is c1 = {EM [1]}
and the upper bound of its score is equal to UBcomb = fw(c1) + fw(E1[2]) +
fw(E2[2]) = 20. At this point we are not considering the tuples E1[1], E2[1]
because if any of them were combinable with EM [1] or EM [2] the combination
would have been formed. Of the two bounds we pick the maximum and therefore
the upper bound is equal to UB = 22.

Our algorithm continues by creating the combination c3 = {EM [3]} and then
the combination c1 is updated and becomes equal to c1 = {EM [1], E1[3])}. After
the third row is read, the most promising combination is c1 and therefore the
upper bounds are formed as following: UBEM = 20,UBcomb = 19. The lower
bound LB is now equal to LB = 16 due to the update of c1.

After the fourth row has been read then we have that UBEM = 19. The com-
binations created are c1 = {EM [1], E1[3], E2[4]}, c2 = {EM [2]}, c3 = {EM [3]}
and c4 = {EM [4], E1[1], E2[4]}. The lower bound is now equal to LB = 19.
The most promising combination is c2 since both c1 and c4 are total. The upper
bound for the combinations UBcomb is is equal to UBcomb = 18 and therefore
UB = UBEM = LB and so the algorithm stops.

According to the HRJN* bound, the upper bound at the fourth row would be
equal to UBE1 = fw(EM [1]) + fw(E1[4]) + fw(E2[1]) = 20 and therefore extra
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Algorithm 6 Bounding Scheme of XRJN

Input: EM : main relation
B̂: set of all generated combinations

Output: UBXRJN

1: UBEM ← fw(HEM [last]) +
∑
E∈E

u(fw(HE [1]))

2: for all c ∈ B̂(EM ) and c not total do
3: c.UB ← c.score
4: for all E ∈ missingRelations of c do
5: c.UB ← c.UB + u(fw(HE [last]))//max. possible score for each combination

6: if UBcomb < c.UB then
7: cmp ← c
8: UBcomb ← c.UB
9: end if

10: end for
11: end for
12: return max(UBEM ,UBcomb)

tuples would be read until E1[7] and E2[7] were accessed where the upper bound
would become equal to UB = 19. At this point it is clear why the new bounding
technique offers a tighter estimation of the bound. First, the HRJN* bound
technique is overestimating the score of the unseen combinations because it uses
uncombinable tuples, and second, because it does not exclude main objects of
total combinations whose score cannot be improved.

4.5.2 Algorithm and correctness

Algorithm 6 calculates the upper bound of the score for any unseen combination.
In line 1, we calculate UBEM which is the upper bound of any combination
involving any unseen objects of the main relation.

In line 2, we evaluate the already created non-total combinations which
can be combined with any unseen tuples. For each non-total combination c in
B̂(EM ) we calculate the upper bound of its score by adding the score of the
last seen tuples for all missing relations of c. The combination with the highest
upper bound of its score (c.UB) is the most promising combination (lines 2–11).
UBcomb is equal to the score of the most promising combination. The upper
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bound UB returned by the algorithm is the maximum of these two bounds
(line 12).

Theorem 4.2. (Correctness of bound) The XRJN algorithm provides a correct
solution to the XTJk query.

Proof. Let us assume that the algorithm has halted, after having accessed
d0 tuples for the relation EM and di tuples for each relation Ei ∈ E , therefore
UB ≤ LB . Let now c′ be an unseen combination for which it holds that fw(c′) >
LB .

If the unseen combination c′ contains an unseen main object, then the score
of the combination will be at most equal to UBEM , thus fw(c′) ≤ UBEM . Since
UBEM ≤ UB ≤ LB it holds that fw(c′) ≤ LB which contradicts with the
assumption fw(c′) > LB . The contradiction that we have reached is due to our
assumption that c′ contains an unseen main object and it is better than LB .

Alternatively, let us assume that unseen combination c′ contains an already
accessed main object, which means that there exists a non-total combination
c ∈ B̂(EM ) that will be combined with at least one unseen additional object
and produce c′. In the following we assume that c has been combined with an
unseen object from only one relation Ej and c′ was created. Similarly, we can
prove the general case of more than one relations. Let Ej [dj + x] be the first
combinable object with c. Then the score of c′ when joined with the unseen
tuple will be equal to: fw(c′) = fw(c) + fw(Ej [dj + x]) ≤ fw(c) + fw(Ej [dj ]).
From Equation 4.8 we conclude that fw(c′) ≤ UBcomb ≤ UB ≤ LB . However
in the beginning we assumed that fw(c′) > LB and this is a contradiction.
We conclude that an unseen combination cannot have a greater score than the
score of the k-th combination in B̂(EM ), thus our algorithm returns always the
correct result set. �

4.5.3 Instance optimality

Instance optimality is defined by Fagin et al. [34] as follows. Given a class
of algorithms A and a set of databases D, an algorithm A ∈ A is instance-
optimal if ∀B ∈ A and ∀D ∈ D it holds that cost(A,D) = O(cost(B,D)). This
means that there are constants c1, c2 such that cost(A,D) ≤ c1cost(B,D) + c2.
Constant c1 is referred to as optimality ratio.

Lemma 4.3. HRJN* is not instance optimal for the XTJk query.

Proof. Based on the definition of instance optimality it is sufficient to show
that the cost of HRJN* is not bounded for one instance database D′ compared
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to an algorithm A. Thus, we construct a dataset for which the cost of HRJN*
is not bounded compared to XRJN. Denoting the database of Table 4.3 as
D, we consider a database D′. Each relation EM , E1, and E2 of D′ has the
same first 4 tuples as D. Thus, XRJN will return the correct answer after
accessing the first 4 tuples of each relation but HRJN* does not terminate and
will continue reading more tuples. Let us assume that the relations of D′ contain
more than 4 tuples such that EM [i] = EM [4], E1[i] = E1[4], E2[i] = E2[4] for
i > 4. HRJN* has to access at least all tuples of relation E2 before terminating,
while XRJN needs to access only the first four rows. Since relation E2 can be
arbitrarily long the cost of HRJN* cannot be bounded and therefore HRJN* is
not instance optimal. �

Theorem 4.3. XRJN is instance optimal with optimality ratio n + 1 where n
is the number of additional relations.

Proof. Let A be a random deterministic algorithm solving correctly the
XTJk query for a vector w. The algorithm halts after having accessed d0 tuples
for EM and di tuples for each additional relation Ei. We define ck to be the k
best candidate combination discovered by A with score fw(ck) and dmax to be
equal to dmax = max

0≤i≤n
(di). We will show by contradiction that XRJN will halt

after accessing at most dmax tuples from each relation.
Let us assume that XRJN has accessed dmax tuples from each relation and

has not halted. At this point XRJN has processed at least all combinations eval-
uated by A and therefore it holds that LBXRJN = fw(ck). Under the assumption
that XRJN has not halted, there are two cases to be examined.

The first case is that the upper bound of XRJN at that step is defined by an
unseen object of the EM i.e., UBXRJN = UBEM and it holds that LBXRJN <
UBXRJN and since LBXRJN = fw(ck) it also holds that fw(ck) < UBXRJN. As
algorithm A is deterministic, it must halt at the same step for all instances of
relations that have the same seen tuples HEM and HE i. We can construct a
relation EM such that HEM [d0+1] is combinable with the first tuples of all addi-
tional relations HE i[1] and fw(EM [d0 + 1]) = fw(EM [d0]). For the combination
c′ defined by {HEM [d0+1],HE 1[1], . . . ,HEn[1]} it holds that fw(c′) = UBXRJN,
thus fw(ck) < fw(c′). Therefore A has halted incorrectly, which leads us to a
contradiction.

In the second case it holds that UBXRJN = UBcomb and LBXRJN < UBXRJN.
Let cmp be the most promising combination found by XRJN and o = m(cmp) be
the main object of cmp. An instance of our databaseD can be constructed in way
that ∀Ei : @pi ∈ cmp, pi ∈ Ei it holds that fw(Ei[dmax]) = fw(Ei[dmax+1]) and
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all Ei[dmax+1] tuples are combinable with o. In this case, when dmax+1 tuples
have been read from all relations a new combination c′mp is produced by updating
cmp and adding the newly pulled tuples. It holds that fw(c′mp) = UBXRJN and
therefore also fw(ck) < fw(cmp). Thus, c′mp belongs to the result set and A has
halted incorrectly, which leads us to a contradiction.

We conclude that XRJN will halt after accessing at most dmax tuples from
each relation. Thus, the cost of XRJN in terms of accessed tuples is at most
cost(XRJN, D) = (n+ 1) ∗ dmax, while the cost of algorithm A is cost(A,D) =∑

0≤i≤n di. We can derive that cost(XRJN, D) ≤ (n + 1) ∗ cost(A,D) since
dmax ≤

∑
0≤i≤n di. Hence XRJN is instance optimal with optimality ratio

n+ 1. �

4.5.4 Lazy upper bound evaluation

The processing cost of the XRJN* upper bound is determined by the size of
the B̂(EM ) set as it is necessary to search the entire set every time we need
to find the most promising combination. However, we can reduce the overall
cost of the calculation if we postpone the accurate calculation of the upper
bound until it is absolutely necessary. To achieve that, we calculate the highest
possible score of a combination when the combination is updated and we update
the most promising combination if necessary. This approach does not take into
consideration the fact that when a tuple is read, it affects the maximum possible
score of possibly all non-total combinations and not only the updated ones. As
a result, it is possible that the most promising combination is a combination
which was not updated and therefore UBcomb and consequently UBXRJN are
underestimated. The solution to this problem is to calculate the upper bound
UBcomb without updating the most promising combination until UBXRJN ≤
LB . When the inequality holds, Algorithm 6 is executed the upper bound is
accurately calculated and if it still holds that UBXRJN ≤ LB , XRJN* halts.

4.5.5 Cost and complexity analysis

Both algorithms described so far follow the pull and bound paradigm presented
in Algorithm 4. The I/O cost is mainly determined by the depth each relation
is accessed, therefore we expect XRJN to access fewer objects than HRJN*
because XRJN provides a better estimation of the upper bound than HRJN*.

The processing cost of each repetition of the pull and bound framework
loop is determined by the cost of the lower and upper bound calculations and
the cost of updating the candidate combinations. The cost for updating the
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combinations isO(1) for HRJN*. The cost for updating a combination for XRJN
is O(|E|) because the update of a combination c is followed by a calculation of
the maximum possible score of c performed by the lazy evaluation. The top-k
results are stored in a priority queue. The cost of updating the queue is equal
to O(logk) while the cost of checking the first element of the queue is equal to
O(1). Each time a combination is updated it is necessary to verify that the
combination is not inserted twice in the queue. The check is performed in O(1)
time using a hash table on the elements of the queue. The cost of the upper
bound calculation for HRJN* is O(|E|) as we have to calculate |E| + 1 upper
bounds for each tuple update. The cost for XRJN is in the best case equal to
O(|E|) which is the cost of updating the upper bound for the most promising

combination while in the worst case the cost is equal to O(|B̂XRJN(EM )|) which
is the cost of identifying the most promising combination when the lazy upper
bound evaluation produces an upper bound smaller than the lower bound and
there is at the same time a large number of non total combinations. The latter
however will rarely be the case because frequent updates will create fast total
combinations which can be ignored during the upper bound evaluation while in
case of infrequent updates the most promising combination is unlikely to change.

The loop in the pull and bound framework is repeated at most |E+1||B̂(EM )|
times for each algorithm. Therefore, the overall cost for HRJN* is equal to
O(|B̂HRJN*(EM )|(|E| + logk)) while for XRJN it is in the best case equal to

O(B̂XRJN(EM )|(|E| + logk)). In the worst case the cost for XRJN is equal

to O(|B̂XRJN(EM )|2) as the dominating cost is that of the upper bound cal-
culation. The complexity analysis indicates that the processing cost of both
algorithms is highly affected by the size of the combinations B̂(EM ) created by
each algorithm. XRJN is expected to generate a significantly smaller number of
combinations and therefore we expect XRJN to be more efficient than HRJN*
despite the fact that each processing step of XRJN has a higher processing cost
than that of HRJN*.

In the following, we will introduce an improved pulling strategy which will
reduce the cost of upper bound calculation and ultimately improve the perfor-
mance of XRJN.

4.5.6 The XRJN* pulling strategy

The objective of the pulling technique is twofold. The first goal is the early
convergence of the lower and upper bound in order to minimize the access depth
(number of accessed objects) for each relation. The lower bound is increased
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Algorithm 7 XRJN* Pulling strategy

Input: EM : main relation
E : additional relations

Output: E ∈ E
⋃
EM : next relation to pull from

1: if UBEM > UBcomb or cmp = null then
2: return EM //cmp = null: no not total combinations

3: end if
4: R← EM
5: max← −∞
6: for all missing relations E of cmp do
7: u←# of non-total combinations not combined with E
8: if u > max then
9: max← u

10: R← E //relation with the highest # of uncombined tuples

11: else if max=u then
12: if fw(HE [last]) > HR[last] then
13: R← E //in case of tie choose the relation with the best last seen score

14: end if
15: end if
16: end for

by the formation of total combinations and is stabilized as soon as the top-k
combinations have been formed. The algorithm however, will not halt as soon
as the top-k combinations are discovered, but when it is certain that no better
combinations can appear. This will be ensured by the decrease of the upper
bound. The upper bound is affected by the formation of total combinations
since the main objects that participate in total combinations can be excluded
from the calculation. The upper bound is also affected by the scores of the last
accessed objects. Therefore we should aim at accessing first the relations that
have high score according to the user’s preferences.

The second goal of the pulling technique is to reduce the processing cost of
calculating the upper bound and updating the already formed combinations.
As mentioned before, the processing cost of both procedures is determined by
the number of non-total combinations existing in each step of the algorithm.
Therefore the goal of the pulling technique should be to pull objects from the
relations in such order that the number of non total combinations is minimized.
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Based on the above observations we propose the pulling strategy described
in Algorithm 7. We refer to this variation of XRJN as XRJN*. If UBEM >
UBcomb, the algorithm reads from the main relation, while in the opposite case
it reads from an additional relation. In this way, the upper and lower bound
converge faster, as on each step the highest upper bound is reduced. If the
algorithm chooses to read from an additional relation, it examines only the ad-
ditional relations which can improve the score of the current most promising
combination cmp, i.e., it examines only the missing relations of cmp. The al-
gorithm selects the additional relation with the highest number of uncombined
non-total combinations while ties are solved by choosing the relation with the
highest last seen score fw(HE [last]). By reading from a relation not combined
with cmp, it is ensured that the maximum score of cmp and therefore UBcomb

will be updated and therefore the upper and lower bound will converge more.
At the same time, the algorithm tries to maximize the number of non-total
combinations which will be updated. Updating a large number of non-total
combinations leads to the formation of total combinations and the increase of
the lower bound, which forces the upper and lower bounds to converge. More-
over, the fewer non-total combinations exist, the smaller the processing cost of
UBcomb will be.

4.6 Providing more results

In this section, we generalize the proposed XTJk query, by retrieving k groups of
combinations, where each group contains combinations of the same main object.
Given a user-defined parameter m, we can extend the notion of the XTJk query
and present to the user a group of top-m alternative combinations for each main
object. Essentially, we relax the constraint of presenting only one combination
per main object, and present k groups of combinations. This generalization is
motivated by practical applications, where a user is interested in one or more
main objects and wishes to explore more options regarding those objects.

To this end, we define as set of alternative combinations ALT (o) the m
combinations of o with the highest scores, while the score of ALT (o) is defined
as the score of the best combination of o. Then, the generalized XTJk,m query
returns the k sets ALT (o) with the highest score.

Viewed from a different perspective, each main object forms a group of
combinations, and an XTJk query identifies k such groups of combinations and
presents the best combination of each group. Under this perspective, each
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Algorithm 8 Update Combination

Input: Object o, Tuple t, E: relation of t
1: ALT ′ ← ∅
2: if c

⋂
E = ∅ and fw(t) > 0 then //t is the first combinable tuple of E with o

3: for all c ∈ ALT (o) do
4: c′ ← c

⋃
{t}

5: ALT ′ ← ALT ′
⋃
{c′}

6: end for
7: else
8: c← replace(TOP1(ALT (o)), t, E) //replace the respective tuple of c with t

9: if fw(c) > fw(TOPm(ALT (o))) then //if the new combination will be in the

top-m alternatives

10: for all (c′ ∈ ALT (o)) and (c′
⋂
E = c

⋂
E) do //for all c′ that contain the

best combinable tuple of E

11: c′ ← replace(c′, t, E)
12: ALT ′ ← ALT ′

⋃
{c′}

13: end for
14: else
15: mark c as finished for relation E
16: end if
17: end if
18: ALT (o)← TOPm(ALT (o)

⋃
ALT ′)

candidate combination is the best combination of the group it belongs to, and it
can be viewed as the primary combination in order to be distinguished from the
remaining alternative combinations of the group. Each group contains a unique
primary combination, and therefore, given a main object o and the respective
primary combination c, we refer to each group by referring to the primary
combination.

In order to be able to discover a group of m combinations for each main
object of the result set, both the algorithm updating the combinations and the
stopping criterion of the algorithm need to be modified. When a new main
object is accessed, a new combination c is created as well as a set of alternative
combinations ALT (o) with c being its only element. When a new additional
tuple is accessed, the sets of alternative combinations ALT (o) of all main objects
o that are combinable with t need to be updated.
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Algorithm 8 describes the update procedure of the set of alternative com-
binations ALT (o) of a main object o, when an additional tuple is added. We
denote as TOPi(ALT (o)) the i-th combination sorted by their score. Given
a main object o and a new accessed tuple t of a relation E, if TOP1(ALT (o))
does not contain a tuple from E, then t is combined with TOP1(ALT (o)). If the
result produces a combination with higher score (fw(t) > 0), then all combina-
tions in ALT (o) need to be updated (line 4) since t is the first combinable tuple
of E. Thus, the new tuple t is also used to generate a set of new alternative
combinations ALT (o) by adding t to all existing alternative combinations. The
new set of combinations ALT (o) consists of the already existing and the newly
generated combinations and only the top-m elements are maintained.

In the opposite case, when c already contains a tuple from E, a different
approach is followed. First, we create a new combination by replacing the tuple
of TOP1(ALT (o)) that belongs to relation E with the new tuple t. The score
of this combination is an upper bound of the score of any combination that
contains t. If this score is smaller than the score of the m-th already retrieved
combination, then no combination that contains t can be added to ALT (o). In
this case, ALT (o) is not modified. In addition, we do not need to access any
more tuples of E, as the remaining tuples will create combinations with worse
score. If a tuple t ∈ E does not create an alternative combination which belongs
to the TOPm(ALT (o)) set, then no other tuple of E needs to be combined with
c and therefore we consider c to be finished for E. Otherwise, given a new
tuple t ∈ E the algorithm creates new alternative combinations by replacing
the respective tuple of E in all combinations c′ of ALT (o) that share the same
tuple of E with TOP1(ALT (o)) (for which it holds that c

⋂
E = c′

⋂
E, i.e., the

alternative combinations which contain the same tuple of E as c does). When
all updates have been made, only the top-m combinations need to be kept.

Naturally, the stopping criterion in Algorithm 4 has to be altered. In more
detail, once the lower bound becomes higher than the upper bound, the algo-
rithm stops updating the bounds and accesses the additional relations until the
top-m alternative combinations for each main object have been found. The
pulling strategy is modified in order to facilitate the creation of the alternative
combinations after the k objects with the highest score have been found. At
each pulling step, the algorithm chooses a random main object o which is not
finished for at least one additional relation and pulls a tuple from a random
additional relation for which o is not finished for. The main relation does not
need to be accessed any longer as the k best products have already been found.
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4.7 Experimental evaluation

In this section, we present the results of the experimental evaluation. All algo-
rithms were implemented in Java and the experiments run on an AMD Opteron
4130 Processor (2.60GHz), with 32GB of RAM and 2TB of disk.

Datasets and metrics. For the dataset D, we used both synthetic and real
data collections. For the synthetic data we used one uniform and one Zipfian
distribution. In particular, for the uniform distribution all object values for all
relations and dimensions were generated independently using a uniform distri-
bution generator. Each additional relation has a random subset of attributes of
the main relation and contains at least one positive and one negative attribute
but in total it contains no more than d− 1 attributes where d is the number of
attributes of the main relation. Each additional relation has a unique combina-
tion of attributes. Each additional relation has also a joining attribute which
does not participate in the ranking of each object while the main relation has |E|
joining attributes, one for each additional relation. The values for the joining
attributes are decided based on the join selectivity value σ. For two relations
L,R the join selectivity is equal to σ = |L ./ R| |L× R|−1 [49]. If a joining at-
tribute has σ−1 different values, then the join contains σ−1σ2|L| |R| = σ|L| |R|
tuples which gives us a join selectivity of σ.

All positive attributes of the main and the additional relations were normal-
ized in the interval [0, 10000] while the negative attributes of the main relation
were normalized in the interval [−10000, 0]. The negative attributes of each
additional relation were scaled according to the number of attributes each rela-
tion had, in order to make the cost of an object proportional to the potential
improvement of the main object. In particular, for an additional relation Ei the
negative attributes take values in the interval [−10000 |AEi | |AEM |−1, 0] where
|AEi | is the number of attributes included in the relation. Although this might
seem counter-intuitive, it is quite common for the attributes of accessory objects
to have a value range of positive attributes similar to the respective attribute
of the main object while their cost is lower. For instance the capacity of hard
disks as separate components has similar range as the capacity of disks in lap-
tops. The price of a hard disk however, is lower than a laptop’s price carrying a
similar disk. Finally, the cardinality of each additional relation is equal to the
cardinality of the main relation.
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For the Zipfian distribution we used the generator provided by the Apache
Commons project3. The datasets were generated by giving as parameters the
maximum value of an attribute (1000) and the value of the exponent character-
izing the distribution. The positive and negative attributes of all relations were
generated similarly to the uniform distribution.

In addition, we used the real datasets HOUSE4 (Household) and NBA5.
HOUSE consists of 127930 6-dimensional tuples, representing the percentage
of an American family’s annual income spent on 6 types of expenditure: gas,
electricity, water, heating, insurance, and property tax. NBA consists of 17265
5-dimensional tuples, representing a player’s performance per year. The at-
tributes are average values of: number of points scored, rebounds, assists, steals
and blocks. In both relations all attributes were normalized in the interval
[0, 10000]. In each experiment random attributes were considered as negative
attributes taking values in the interval [−10000, 0]. Each additional relation was
created by selecting a random subset of the scoring attributes of the main rela-
tion and copying the respective data. Similarly to the uniform distribution, the
negative attributes were scaled according to the number of attributes of each
additional relation and each additional relation has at least one positive and
one negative attribute and at most d− 1 attributes in total, while each relation
has a unique subset of attributes.

The metrics under which we evaluated the implemented algorithms were: a)
execution time required by each algorithm, and b) total tuples accessed (depth).
We should stress that we do not focus our performance analysis on the size of
the data as the performance of the algorithms depends mainly on the number of
additional relations, the join selectivity and the distribution of the values of the
relations’ attributes. We employed a best-case scenario regarding I/O accesses
where relations are sorted for each query, stored on the disk, and accessed
sequentially. This strategy minimizes the cost of the I/O accesses and allows
us to study the minimum performance difference of the proposed algorithms.
In practice, access to each relation will be achieved through other means such
as materialized views [40] or multi-dimensional indexes [103], which will induce
higher cost in terms of I/O and increase the performance gap between HRJN*
and XRJN.

3http://commons.apache.org/proper/commons-math/
4http://usa.ipums.org/
5http://www.databasebasketball.com/
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Figure 4.4: Pulling strategy evaluation: varying |E|

Experimental procedure. We run a series of experiments varying the pa-
rameters of a) the number of additional relations (|E|) in the interval [3-7], b)
dimensionality (d) in the interval [4-8], c) number of returned results (k) in
the interval [5-100], d) selectivity (σ) [0.001-0.05], and e) the number of neg-
ative attributes [1-3]. For the Zipfian distribution we varied the value of the
characteristic exponent s in the interval [0.1-1.0]. Each experiment was run
under 5 different dataset instances and 100 queries were used for evaluating the
performance of the algorithms.

The default setup for the experiments was: |E| = 5, d = 6, |EM | = 100K,
k = 10, σ = 0.001 and each relation has one negative attribute. The number of
preference queries for each setting was equal to |W | = 100. Both the dataset
and the preferences set followed the uniform distribution.

4.7.1 Pulling technique evaluation

The first series of experiments focuses on evaluating the pulling technique de-
scribed in Section 4.5 and here we compare XRJN against XRJN*. XRJN
uses round robin as pulling strategy, while XRJN* uses the pulling strategy
described in Algorithm 7. Figures 4.4 and 4.5 indicate that XRJN* provides
an advantage both in processing time and number of accessed tuples. XRJN*
pulling strategy forces the upper and lower bound to converge faster, by prior-
itizing the update of the most-promising combination and by aiming to reduce
the highest upper bound. However, the aggressive update of the most-promising
combination induces more frequent invocation of the exact upper bound calcula-
tion. As a result, the processing-time gain is smaller than the access-depth gain,
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Figure 4.5: Pulling strategy evaluation: varying d
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Figure 4.6: Sensitivity analysis: varying |E|

fact that becomes more obvious as the number of additional relations increases
(Figure 4.4).

4.7.2 Sensitivity analysis

In this section, we provide a detailed sensitivity analysis by varying different
parameters that influence the performance of our proposed algorithms. We start
by comparing the most important parameters, namely the number of additional
relations, the dimensionality of the relations, the number of returned results and
the join selectivity of the relations. In addition we examine the performance of
the algorithms on a Zipfian distribution.

Varying |E|. As we increase the number of additional relations, the number
of accessed tuples and the processing time of all approaches increase. Figure 4.6
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Figure 4.7: Sensitivity analysis: varying d
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Figure 4.8: Sensitivity analysis: varying k

indicates that XRJN* access consistently less objects than HRJN* and XRJN
and the performance of XRJN* is less affected by the increase of the number
of additional relations. Due to the improved bounding technique XRJN* and
XRJN access nearly an order of magnitude less tuples than HRJN*. The perfor-
mance of HRJN* is dependent both on the convergence of the upper and lower
bound and on the rate the formed combinations become total. If there are many
non total combinations then for each accessed tuple there will be an increased
processing cost for finding the combinations that the tuple can be added to. On
the other hand, XRJN* aims at creating complete combinations fact that helps
the lower bound to increase fast and also reduces the updating cost.

Varying dimensionality. Similar conclusions can be drawn when we vary
the dimensionality. Figure 4.7 indicates that XRJN and XRJN* are nearly an
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Figure 4.9: Sensitivity analysis: varying σ (log scale)

order of magnitude more efficient than HRJN* with respect to time and depth
access.

Varying k. The same conclusions hold when we change the number of re-
turned results. Figure 4.8 shows the performance of all algorithms. It is note-
worthy that the processing cost for HRJN* is increasing significantly as k is
increased. The processing cost for XRJN* also increases but with a slower rate
and in all cases it remains nearly an order of magnitude less than HRJN*. The
same applies for the access depth, where HRJN* accesses more tuples as k in-
creases. Except for the increased number of accessed tuples, the increase of k
causes more combinations to be created and evaluated. HRJN* and XRJN cre-
ate an arbitrary number of non-total combinations which have to be maintained
and updated when a new tuple is accessed. XRJN* on the other hand minimizes
the effect of the increased number of non-total combinations through its pulling
strategy and therefore is less affected by the increase of the result set size.

Varying selectivity σ. As expected, join selectivity plays an important role
in the performance of both algorithms. As Figure 4.9 indicates, when the value
of join selectivity increases the performance gap between the HRJN* and XRJN*
increases as well. The reason lies in the fact that XRJN exploits the fact that
total combinations are formed faster as selectivity increases by considering only
non total combinations in the upper bound calculation. In addition, frequent
combination updates allow XRJN* to reduce the cost of upper bound calculation
as the size of B̂XRJN*(EM ) is small for high selectivity values. In total, XRJN*
benefits from higher selectivity values in two ways; the upper bound of XRJN*
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Figure 4.10: Sensitivity analysis: varying # of negative attributes
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Figure 4.11: Sensitivity analysis: Zipfian distribution

converges to the lower bound much faster than the upper bound of HRJN* and
the cost of the upper bound calculation drops as selectivity rises.

Varying the number of negative attributes. Figure 4.10 illustrates the
performance of all algorithms as we vary the number of negative attributes.
When the number of negative attributes increase, the number of tuples which
cannot improve a combination increase as well. Naturally, all algorithms benefit
from that fact. HRJN* is affected more than XRJN and XRJN* because when
an additional tuple with negative score is read, the non accessed part of the
relation can be safely discarded. The upper bound of XRJN allows both XRJN
and XRJN* to terminate before the tuples with negative score are accessed
and therefore their performance is not affected significantly by the number of
negative attributes. They remain however in all cases significantly more efficient
than HRJN*.
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Figure 4.12: NBA: varying |E|
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Figure 4.13: HOUSE: varying |E|

Zipfian distribution. We evaluated our algorithms against a Zipfian distri-
bution as well. Figure 4.11 illustrates the performance of the algorithm against
different values of the the exponent characterizing the distribution. As the value
of the exponent increases, the performance of the all algorithms remains rela-
tively unaffected. In all cases the XRJN and XRJN* remain almost an order of
magnitude more efficient than HRJN* both in respect of processing time and
accessed tuples.

Real datasets. The results using the real datasets are in accordance with the
results of the synthetic ones. As the number of additional relations increases, the
performance gain in terms of accessed tuples increases as well. Figures 4.12(b)
and 4.13(b) show that processing time and the number of tuples accessed by
HRJN* increases much faster than in the case of XRJN*. XRJN* is up to 10
times more efficient for both HOUSE and NBA datasets. We should note at
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Figure 4.14: NBA: varying k
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Figure 4.15: HOUSE: varying k

this point that the default value of the join selectivity parameter for the NBA
dataset was set to σ = 0.01 due to the small size of the dataset.

Figures 4.14 and 4.15 depict the behavior of the algorithms when varying
parameter k. Both XRJN and XRJN* are more efficient than HRJN* regarding
the access depth. It is noteworthy that XRJN* is not only more efficient than
HRJN* but also the performance of XRJN* is minimally affected by the increase
of parameter k. On the contrary Figures 4.14(b) and 4.15(b) indicate that the
cost of HRJN* increases linearly with respect to k.

Figures 4.16 and 4.17 illustrate the performance of the algorithms when
varying the join selectivity σ. All algorithms behave as expected based on the
evaluation of the uniform distribution. It is worth noting that the performance of
XRJN* improves much faster than HRJN* both in terms of processing time and
in terms of access depth. Similarly to the case of the uniform distribution sets
the XRJN* forces the upper and lower bound to converge faster than HRJN*
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Figure 4.16: NBA: varying σ (log scale)
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Figure 4.17: HOUSE: varying σ (log scale)

as it aims towards creating total combinations fast, fact that helps the lower
and upper to converge.

Figures 4.18 and 4.19 illustrate the performance of the algorithms when
varying the number of negative attributes. The performance of the algorithms
varies due to the random selection of the negative attributes in each run of the
experiments. Nevertheless, XRJN and XRJN* perform in all cases significantly
better than HRJN*. Especially in the case of the HOUSE dataset both XRJN
and XRJN* are nearly an order of magnitude more efficient than HRJN*.

Alternative combinations generation. We tested both algorithms using
the default experimental setup. Figure 4.20 illustrates the performance of the
two algorithms when a set of m combinations is presented for each main product.
As expected the processing cost rises as the number of combinations per main
object increases. Interestingly, while the access depth increases for XRJN*, it
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Figure 4.18: NBA: varying # of negative attributes
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Figure 4.19: HOUSE: varying # of negative attributes

remains stable for HRJN*. As HRJN* accesses 4 times more tuples than XRJN*
to discover the best combination for each main object, it has already accessed
enough tuples to form the alternative combinations before the lower bound
exceeds the upper bound. Therefore, the only extra cost for HRJN* is that of
calculating the top-m alternative combinations. In contrast, XRJN* utilizes a
more efficient bounding scheme which allows the algorithm to identify the best
combination for each main object after accessing a much smaller number of
tuples than HRJN*. Consequently, XRJN* needs to continue reading from the
relations after the lower bound has exceeded the upper bound in order to form
the top-m combinations. As a result, the access-depth for XRJN* rises as the
number of alternative combinations increases. In all cases however, it remains
up to 4 times more efficient in terms of access-depth and up to 3 times more
efficient in terms of processing time than HRJN*.
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Figure 4.20: Varying the number of alternative combinations

4.8 Conclusion

In this chapter, we address the problem of discovering the top-k combinations
between a single main product relation and several additional relations that
can be joined with the former one. Our approach tries to balance between
finding the best combinations and giving the user the ability to explore the
products of the database and the possible combinations between them, without
the need to specify which relations will be joined to the main relation. To this
end, we define the Exploratory Top-k Join query and we present a pull-bound
framework for query processing. We propose a bounding scheme that exploits
the properties of the formed combinations in order to efficiently calculate the
result. The resulting algorithm has strong theoretical guarantees, namely it is
instance-optimal. We also propose a more effective pulling strategy than plain
round-robin, which further boosts the performance of query processing. In
our experimental evaluation, we show that our algorithms perform consistently
better than an adaptation of a state-of-the-art rank-join algorithm.



Part III

Exploratory Analysis of
User Queries

In this part, we present exploratory analysis algorithms that aim to identify
objects that are interesting and potentially attractive to a wide range of users.
In Chapter 5, we present the notion of the most continuous influential object
and we describe algorithms for processing the respective query, while in Chapter
6, we present algorithms for identifying objects that are attractive to diverse
groups of users. In Chapter 7, we propose algorithms for improvement of the in-
fluence score of spatio-textual objects, through an enhancement of their textual
description.
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Chapter 5

Discovering Influential Data
Objects over Time

Users typically access online databases through top-k queries, which return to
them a ranked list of the k best products according to their preferences. Natu-
rally, it is important for product manufacturers to identify which of their prod-
ucts are consistently ranked highly in user queries and therefore are visible to
a large number of users over long periods of time. In this chapter, we study
the problem of identifying database objects that have constantly a high influ-
ence score for long time periods. To take into account the temporal dimension,
we define the continuous influential query, which retrieves the product that
remains influential for the longest temporal range within a time horizon. We
present algorithms for efficient processing and retrieval of continuous influential
data objects that support incremental retrieval of the next continuous influential
data object. The performance of the presented algorithms is evaluated through
a detailed experimental study.

5.1 Introduction

As already described, top-k queries help users navigate and explore online
databases by presenting them a small set of products which best fit their pref-
erences. From the perspective of the product manufacturers, top-k queries are
of great interest as well, since the visibility of a product clearly depends on the
number of different top-k queries for which it belongs to the respective top-k

89
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result sets. The reason for this is twofold: 1) users usually consider only a few
of the presented products and ignore the remaining ones, and 2) products that
appear in the top-k result sets are far more likely to be chosen by a potential
customer, because those products are better suited to the customers’ prefer-
ences. Intuitively, a product that appears in as many as possible top-k query
result sets, has a higher visibility and therefore also a higher impact on the
market. This relationship between products and queries is captured by reverse
top-k queries which return the set of user preferences for which a given prod-
uct is in the result set of the respective top-k queries. Naturally, reverse top-k
queries lead to defining the most influential products based on the cardinality
of their reverse top-k result sets [112]. Identifying the most influential products
from a given set of products is important for market analysis, since the product
manufacturers can estimate the impact of their products in the market.

An important aspect that affects the impact of a product that has not been
taken into account yet, is the fact that user preferences change over time. The
customers’ criteria can differ significantly over time for various reasons. For ex-
ample, in online marketplaces, new customers pose queries and new preferences
are collected. In addition, users who have already posed queries will disconnect
after some time. As user preferences change over time, a product that appears
consistently in the top-k results of as many customers as possible, thus satisfy-
ing many customers’ criteria at any time, has a higher impact on the market
than a product that is absent from those results.

In this chapter, we study the problem of finding the product that belongs
consistently to the most influential products over time, the continuous influential
product. This is an important problem for many real-life applications. For
example, products that are constantly interesting to a large number of customers
have a potentially large impact on the market, and advertising them in the first
page of an online marketplace can attract more customers and motivate them to
explore the product database and potentially increasing this way the visibility
of the products in the database. Continuous influential objects can be exploited
also in promoting alternative products or services as well. For instance, routes or
destinations in a city which are continuously preferred by drivers and therefore
congested could be identified. A service offering navigation through GPS could
identify parts which are constantly congested and take this information into
consideration when proposing a route to a driver.

In the following, we first define formally the problem of continuous influential
objects and provide a baseline algorithm that sequentially scans all time intervals
in order to retrieve the most continuous influential object. Then, we provide a
bounding scheme in order to facilitate early termination of our algorithms and
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avoid processing time intervals that do not alter the result set. Summarizing,
the main contributions are:

• We study, for the first time, the problem of identifying the data object
that has the highest impact over time.

• An appropriate score of influence (called continuity score) based on the
reverse top-k query is defined to capture the product impact over a period
of time.

• We derive upper and lower bounds for the continuity score of a given
object that lead to efficient algorithms for retrieving the most continuous
influential object. Two different algorithms are presented that provide
early termination based on the bounds, but follow different strategies in
order to terminate as soon as possible.

• We conduct a detailed experimental study for various setups and demon-
strate the efficiency of our algorithms.

The rest of this chapter is organized as follows: Section 5.2 provides an
overview of related work. In Section 5.3, we provide the necessary preliminaries,
while in Section 5.4, we formulate the problem statement. Section 5.5 presents
a baseline algorithm for finding the data object that belongs consistently to the
most influential products. Section 5.6 provides the foundation for our bounding
scheme and describe the two threshold-based algorithms. Our experimental
results are presented in Section 5.7. Finally, in Section 5.8, we present the
conclusions of our study.

5.2 Related work

The problem of discovering influential objects over time is closely related to
top-k, reverse top-k, and influential top-m queries.

Top-k queries. Recent approaches to efficient processing of top-k queries [16,
25, 40, 54] use materialized views of already processed queries in order to effi-
ciently compute new queries by reducing the amount of data points examined
to produce the result. Methods using precomputed results perform better in
cases of static data. Efficient maintenance of materialized queries is discussed
in [123, 124]. Other approaches use threshold-based algorithms [18, 34, 47, 79]
and they exploit the use of multiple-sources. For a thorough overview we refer
to the excellent survey by Ilyas et al. [58].
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Reverse top-k queries. Vlachou et al. [110] were the first to address the
problems of monochromatic and bichromatic reverse top-k queries. The monochro-
matic reverse top-k query of an object q returns a locus in the space of the
weighting vectors, since only the data objects are given. Any weighting vector
inside that locus defines a top-k query and the object q belongs in the result set
of this query. In the bichromatic, both the objects and the weighting vectors are
given, and the result is the set of weights for which the query point is among
the top-k highest ranked objects. Bernecker et al. [10] study reverse queries
through a unified approach. The authors examine the Inverse ε-Range, Inverse
k−NN and Inverse Dynamic Skyline queries using a three-filter approach. The
first two filters use only the query points whose number is usually small and the
third query accessed the dataset points in ascending order of maximum distance
from the query points.

Influential objects were introduced by Vlachou et al. [112]. As influential
are considered the objects that appear in the top-k sets of many weight vectors.
Arvanitis et al. [7] try to discover attractive products to users using the principle
of skyline sets [13]. Several approaches [81, 118, 119] try to find the area where
a product should be more visible.

Temporal queries. Jestes et al. [59] study the problem of performing top-k
queries on a time window. They assume that the values of the objects change
over time and instead of performing instant top-k queries, they retrieve the top-
k objects by ranking them after aggregating their scores in a query interval. Lee
et al. [68] discuss the idea of objects that appear continuously in top-k queries
over data streams. They focus on discovering objects that appear continuously
on a moving window of time. In [106] the authors study techniques for durable
top-k search in document archives, where the aim is to identify documents that
are consistently in the top-k results of a given query. Kontaki et al. [66] study
the problem of discovering the objects that remain the most dominant over a
data stream. Our main difference towards these approaches is that they consider
the ranking functions to be static while the values of the objects are changing
while we consider the exact opposite.

Other work related to top-k and time includes processing of top-k queries on
temporal data where the aim is finding the top-k objects at a particular time [70],
monitoring top-k queries over sliding windows [82], and efficient processing of
a large number of continuous top-k queries by exploiting clusteredness in user
preferences [125]. Moreover, in [111] the authors define the distance-based re-
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Symbol Description

T Time domain of V intervals {T1, T2, . . . , TV }
D d-dimensional dataspace
S Set of data objects
ts(w), te(w) Start and end of validity of w
fw Preference function associated with w
k Value of top-k
m Number of most influential objects retrieved
cis(o) Continuity score of object o
L(o), U(o) Lower and upper bound: L(o) ≤ cis(o) ≤ U(o)

Table 5.1: Overview of symbols

verse top-k query and study how to monitor efficiently the distance-based reverse
top-k result set over a set of mobile devices.

5.3 Preliminaries

Let D be a dataspace with d dimensions and S be a set of data objects on D.
A data object is represented as a point o = {o1, . . . , od} where oi is the value of
the ith attribute. We refer to Table 5.1 for an overview of the main symbols.

5.3.1 Time-invariant case

We remind at this point that given a monotonic scoring function f : S → R, a
top-k query returns the k best objects o ∈ S ranked according to their scores. We
denote the result set of top-k query defined by a weighting vector w as TOPk(w).
One of the most commonly used scoring functions is the linear function, where
for a given data object o and a weighting vector w, its score fw(o) is equal to

the weighted sum of the individual values of o: fw(o) =
∑d
i=1 w[i]o[i], where

w[i] ≥ 0 (1 ≤ i ≤ d).
Geometrically, in the Euclidean space an object o ∈ S can be represented as

a point and a linear top-k query can be represented by a vector w. Consider the
dataset S depicted in Figure 5.1(a), and the query w = (0.75, 0.25). In the d-
dimensional space, the hyperplane (line in 2d) which is perpendicular to vector
w and contains a point o defines the score of point o and all points lying on the
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Figure 5.1: Top-k and reverse top-k query examples

same perpendicular hyperplane have the same score based on w. The rank of
a point o based on a weighting vector w is equal to the number of the points
enclosed in the half-space defined by the perpendicular hyperplane that contains
the origin of the data space. In Figure 5.1(a), o2 is the top-1 object for this
query, since no other data object is enclosed in the corresponding half-space.

Given a dataset S of objects, a set W of weighting vectors, an object q and
an integer k, a reverse top-k query returns all weighting vectors w ∈W for which
q ∈ TOPk(w). We denote the result set of weighting vectors as RTOPk(q). As
mentioned in Chapter 2 the cardinality of the RTOPk(q) set of an object q is the
influence score of q and we denote it as f Ik (q). A top-m influential query returns
the object with the highest influence score, i.e., the m objects that appear in
the top-k results of most user queries.

In Figure 5.1(b), a dataset S is depicted together with two different weighting
vectors w1 and w2. Assume that a reverse top-3 query is posed, while the query
object is o4. Then, w1 belongs to the reverse top-3 query result set, since only
2 objects are contained in the underlined half-space by w1. However, w2 does
not belong to the reverse top-3 query result set, since there exist 3 objects in
the underlined half-space by w2.

5.3.2 Temporal model

We model the time domain T as an ordered set of V disjoint time intervals
that cover the complete domain, i.e., T = {T1, T2, . . . , TV } and Ti

⋂
Tj = ∅ for

i 6= j. We denote the start and end of time interval Ti with ts(Ti) and te(Ti)
respectively. Then, it also holds that te(Ti) = ts(Ti+1), and that ts(T1) and
te(TV ) denote the start and end of T respectively. Obviously, the number of
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time intervals V is user-specified and application-dependent, and its exact value
depends on the desired level of detail for monitoring temporal changes.

In order to model the interval that a user is online, we associate the weighting
vector representing the user preferences with a time interval. Thus, given a
weighting vector w, we denote the start of this interval as ts(w) and its end
as te(w). We are now ready to define the validity of a weighting vector with
respect to a time domain T that consists of time intervals.

Definition 5.1. Validity of weighting vector. Given a time domain T =
{T1, T2, . . . , TV } and a weighting vector w, the validity of w with respect to T is
the interval [ts(Ti), te(Tj)), where ts(w) ∈ Ti and te(w) ∈ Tj.

Based on Definition 5.1, we consider as the validity period of a weighting
vector w the interval defined by the start and end of the time intervals (Ti and
Tj) that enclose ts(w) and te(w) respectively. Henceforth, we will use ts(w) to
refer to ts(Ti) and te(w) to refer to te(Tj).

5.4 Problem definition

Given a time domain T = {T1, T2, . . . , TV }, we define a total order ≺ such that
Ti ≺ Tj if te(Ti) ≤ ts(Tj) for any Ti, Tj ∈ T . Furthermore, we use ITOPmk (Ti)
to refer to the result set of the top-m most influential objects by taking into
account only the weighting vectors that are valid in the interval Ti.

In order to identify products that are consistently highly ranked for multiple
users as time passes, we define the continuity score of an object o ∈ S.

Definition 5.2. Continuity score. Given a dataset S, a set of weighting
vectors W , and a time domain T = {T1, T2, . . . , TV }, the continuity score cis(o)
of an object o ∈ S is the maximum number of consequent intervals Ti for which
o belongs to the top-m most influential data objects, i.e., o ∈ ITOPmk (Ti).

The continuity score of an object is practically a measure of the object’s
aggregated influence over time. As we are interested in discovering the object
with highest continuity score, we derive the definition of the most continuous
influential data object in a straightforward way.

Definition 5.3. Most continuous influential data object. Given a dataset
S, a set of weighting vectors W , and a time domain T = {T1, T2, . . . , TV }, the
most continuous influential data object o ∈ S is the object for which it holds
that @o′ ∈ S such that cis(o′) > cis(o).
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We are now ready to define formally the problem of discovering the most
influential object over time. Another closely related problem is the one of dis-
covering a ranked set of the most influential objects over time.

Definition 5.4. Most continuous influential object. Given a dataset S, a
set of weighting vectors W , and a time domain T = {T1, T2, . . . , TV }, find the
most continuous influential object o ∈ S.

Definition 5.5. Top-N continuous influential objects. Given a dataset
S, a set of weighting vectors W , a time domain T = {T1, T2, . . . , TV }, and
an integer N , find the ranked set of the N most continuous influential object
{o1, o2, . . . , oN} ∈ S.

In this chapter, we focus our attention to Problem 5.4 and present our algo-
rithms for solving this problem. However, our algorithms can be extended in a
straightforward way to solve also Problem 5.5.

5.5 Sequential interval scan

A baseline algorithm for solving Problem 5.4 is to compute the ITOPmk (Ti)
sets for all time intervals Ti of T and simply follow a counting approach of
the appearance of any data object o in consequent intervals. Then, the most
continuous influential object is the one that appears in the ITOPmk (Ti) sets for
the maximum number of consequent intervals. In the following, we refer to this
algorithm as Sequential Interval Scan (SIS ).

Intuitively, in each iteration, SIS examines the next consequent interval
Ti ∈ T and computes the set of most influential objects ITOPmk (Ti) within Ti.
For each retrieved object o ∈ ITOPmk (Ti), we maintain its current continuity
score, which is derived based on the processed intervals so far. We use the
concept of an alive object to refer to any object retrieved in a previous interval
Tj(j ≤ i) that is influential in all intervals between Tj and Ti and also belongs
to the most recently processed ITOPmk (Ti) set; we also refer to objects that
stopped being influential at some intermediate interval between T1 and Ti as
dead objects. To ensure correctness, SIS needs to maintain the alive objects and
only a single dead object, which is the one with the highest continuity score
among all other dead objects. After having examined all intervals, the most
continuous influential object is either the alive object with the highest score
among alive objects or the dead object.

Algorithm 9 presents the pseudocode of SIS. In more detail, in each iteration
(lines 2–15) the ITOPmk (Ti) set for the next time interval Ti is computed. Dead
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Algorithm 9 Sequential Interval Scan (SIS )

Input: S: set of data objects,
T = {T1, . . . TV }
k,m: the parameters of the ITOPmk queries

Output: o: the most continuous influential object
1: A← ∅; d←null; //A: alive objects, d: dead object

2: for i = 1 . . . V do
3: I ← ITOPmk (Ti);
4: for all o ∈ A and o /∈ I do
5: A← A − {o} //remove dead objects

6: d← objMaxScore({d}
⋃
{o}) //select the object with the highest score

7: end for
8: for all o ∈ I do
9: if o ∈ A then

10: o.incScore() //increase score

11: else
12: A← A

⋃
{o} //add new objects

13: end if
14: end for
15: end for
16: o← objMaxScore(A

⋃
{d})

17: return o

objects are identified and removed from the list A of alive objects, and also
the dead object d with the highest score is found using function objMaxScore()
(lines 4–7). Then, the retrieved influential objects in Ti are examined, and if
an object belongs to A (i.e., was and remains alive) then its score is increased
by 1(function incScore(), line 10). Also, for any retrieved object that was not
alive in the previous iteration we add it to the list of alive objects A (line 12).
When all time intervals of T have been examined, the algorithm terminates and
reports as most continuous influential object the object with maximum score
among the alive objects and the dead object (line 16).

The main shortcoming of SIS is that it needs to evaluate the ITOPmk query
for all |V | time intervals. In the following, we study how to derive appropriate
score bounds, in order to find the most continuous influential object without
processing all ITOPmk queries.
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5.6 Algorithms with early termination

SIS relies on processing multiple consequent intervals of T to produce the most
continuous influential object. In fact, all our algorithms rely on the evalua-
tion of multiple ITOPmk queries in different intervals Ti, in order to find the
most continuous influential object, however these intervals are not necessarily
consequent. In this sense, our algorithms treat the ITOPmk computation as
black-box, hence any existing techniques that solve efficiently the problem of
identifying influential objects can be directly exploited by our algorithms.

Let us assume that at some point during query processing, a subset of (not
necessarily consequent) intervals of T has been processed. We define the follow-
ing sets for any retrieved data object o.

Definition 5.6. Given a data object o, a set of processed intervals {Ti} and a
set of corresponding result sets {ITOPmk (Ti)}, we define:

• T +(o) is the set of intervals {Ti}, such that Ti ∈ T +(o) if o ∈ ITOPmk (Ti)

• T −(o) is the set of intervals {Ti}, such that Ti ∈ T −(o) if o /∈ ITOPmk (Ti)

• LB(o) is a maximal sequence of intervals {Ti, Ti+1, ..., Tj}, such that ∀Tz ∈
LB(o) : Tz ∈ T +(o)

• UB(o) is a maximal sequence of intervals {Ti, Ti+1, ..., Tj}, such that ∀Tz ∈
UB(o) : Tz ∈ T − T −(o)

We emphasize that according to Definition 5.6, T +(o) and T −(o) are sets
of intervals, i.e., they may contain non-consequent intervals. Instead, the se-
quences LB(o) and UB(o) contain consequent intervals, and moreover they are
of maximal size, i.e., and there exists no other longer sequence of intervals with
the same properties respectively.

By exploiting the above sets and sequences, we derive an upper and a lower
bound on the score of any candidate most continuous influential object.

Lemma 5.1. (Score bounds): The continuity score of object o is bounded by the
lower bound L(o) and the upper bound U(o), i.e., L(o) ≤ cis(o) ≤ U(o), where
L(o) = |LB(o)| and U(o) = |UB(o)| are the lengths of the sequences LB(o) and
UB(o) respectively.

Proof. By contradiction. Let us assume that cis(o) < L(o). Then it holds
that there exists a sequence of processed intervals of length |LB(o)| such that for
each time interval Ti of LB(o) it holds that Ti ∈ T and o ∈ ITOPmk (Ti), which
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leads to a contradiction since cis(o) is defined by the sequence of maximum
length (according to Definition 5.2). Similarly, the assumption cis(o) > U(o)
leads to a contradiction, because for each time interval Ti of the sequence that
defines cis(o), it holds that Ti /∈ T −(o) for any set of processed intervals {Ti}.
In other words, the sequence of intervals whose length defines cis(o) is always
smaller or equal to the sequence UB(o) whose length defines U(o), hence cis(o) ≤
U(o) which is a contradiction. �

The lower bound L(o) of o is equal to the continuity score of the object o,
if we take into account only the time intervals that have been processed so far.
The upper bound U(o) of o is the continuity score of the object o, if we assume
that for any time interval Ti that does not belong to T − the object o belongs
to ITOPmk (Ti) (because optimistically for all unprocessed time intervals, o may
belong to the most influential objects).

Theorem 5.1. (Early termination condition): The data object o is the most
continuous influential object, if for any other data object o′ it holds that L(o) ≥
U(o′).

Proof. By contradiction. Let us assume that o is not the most continuous in-
fluential object, even though it holds that L(o) ≥ U(o′). Thus, there must exist
another object o′ which is the most continuous influential object (i.e., cis(o) <
cis(o′)). Then, it holds that L(o) ≤ cis(o) ≤ U(o) and L(o′) ≤ cis(o′) ≤ U(o′).
From these inequalities, we derive that L(o) ≤ cis(o) < cis(o′) ≤ U(o′) and
finally that L(o) < U(o′), which is a contradiction. �

The intuition of the above condition for early termination is that if an object
has a continuity score based on some processed time intervals that is definitely
higher than the score of any other object, then it can be safely reported as the
most continuous influential object, because the score of any other object cannot
increase sufficiently in the remaining time intervals.

Algorithm SIS is oblivious of the derived bounds and examines all time inter-
vals following a brute-force approach. Hence, we propose two algorithms, termed
Early Termination Interval Scan (TIS ) and Early Termination Best-First In-
terval (TBI ) that exploit the bounds to provide early termination. However,
despite using the same concept of bounding, TIS and TBI follow different strate-
gies in order to terminate as soon as possible. TIS aims to maximize as quickly
as possible the lower bound of the current most continuous influential object o
and therefore examines time intervals sequentially. Instead, TBI aims to reduce
the upper bound of any object o by breaking the longest unprocessed sequence
of time intervals.
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Algorithm 10 Early Termination Interval Scan (TIS )

Input: S: set of data objects
T = {T1, . . . , TV }
k,m: the parameters of the ITOPmk queries

Output: o: the most continuous influential object
1: i← 1, upperBound ← 0, lowerBound ← −1, A← ∅
2: while lowerBound<upperBound do
3: I ← ITOPmk (Ti)
4: i = i+ 1
5: o←objMaxScore(A

⋃
{d})//select the object with the highest score

6: lowerBound ← o.score()
7: for all o ∈ A and o /∈ I do
8: A← A − {o} //remove dead objects

9: d← objMaxScore({d}
⋃
{o})

10: end for
11: for all o ∈ I do
12: if o ∈ A then
13: o.incScore() //increase score

14: else
15: A← A

⋃
{o} //add new objects

16: end if
17: end for
18: o′ ←objMaxScore(A−{o})
19: upperBound= max(o′.score()+(V − i), d.score())
20: end while
21: return o

5.6.1 Early termination interval scan

In this section, we describe the Early Termination Interval Scan (TIS ) algo-
rithm. Similar to the SIS algorithm, TIS processes sequentially the time in-
tervals of time domain T . However, the significant advantage of TIS lies in
the fact that it can terminate early and report the most continuous influential
object o without processing the ITOPmk query for all V time intervals Ti.

Intuitively, the main objective of TIS is to increase the lower bound of any
retrieved object, by scanning the time intervals sequentially. Notice that only
consequent time intervals may lead to a higher lower bound. TIS takes advan-
tage of the fact that it processes the time intervals sequentially and computes
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the L(o) and U(o) without maintaining the sets T −(o) and T +(o). The lower
bound is defined as the continuity score of the current most continuous influ-
ential object, which can be computed by maintaining only the alive and dead
objects similar to SIS. For TIS, the upper bound is defined as the maximum
value of the score of the dead object, or the second highest score of the alive
objects plus the number of remaining time intervals.

Although these bound definitions of TIS are simpler than the ones of lower
and upper bound in Lemma 5.1, it can be easily shown that they are equivalent.
The reason for their simplicity is that TIS examines intervals sequentially, which
is a special case of interval selection and the computation of the bounds can be
simplified. Instead, the bound definitions of Lemma 5.1 and Definition 5.6 apply
in the general case of selecting any interval for processing next (not necessarily
in a sequential manner).

Algorithm 10 contains the pseudocode of TIS. In each iteration, the next
interval of the time domain T is examined, and the result set ITOPmk (Ti)
is computed. For each retrieved object, a score is maintained, which is the
maximum number of consequent intervals for which this object belongs to the
respective ITOPmk sets. The retrieved data objects that belong to the most
recent ITOPmk set are considered to be alive, while we also keep track of the
dead object with the highest score.

In more detail, as long as the termination condition does not hold (lines 2-
20), the ITOPmk set for the next time interval is computed and the alive and
dead objects are updated (lines 7-10, 13, 15), similarly to the case of the SIS
algorithm. Furthermore, in each iteration, the current most continuous influen-
tial object o is found (line 5). The current score of o defines the lower bound
(line 6), as any other point must have a higher score to become the most contin-
uous influential. Also, the alive object o′ with the second highest score is found
(line 18)1. The maximum possible score of any object (regardless of whether
it has been retrieved or not) is equal to maximum value between the score of
the dead object and the score of o′ plus the number of remaining unprocessed
intervals. This is because any object that is still alive may be (in the best case
scenario) in the ITOPmk set for all remaining time intervals. Also, the score
of the dead object cannot be increased further. Notice that if the same object
appears in the ITOPmk set, it is considered to be a new alive object. Any new
alive object can appear only in the V − i remaining time intervals. Thus, if
the termination condition holds, no object can exceed the score of the currently

1In the extreme case where A−{o} = ∅ we assume that o′.score = 0.



Chapter 5. Discovering Influential Data Objects over Time 102

most continuous influential object and the algorithm safely reports this object
as the result.

It should be noted that TIS reports the most continuous influential object
over a time domain, however it does not report its score accurately. One can
draw parallels with Fagin’s NRA algorithm [34], which produces the top-k ob-
jects from ranked lists but without guaranteeing accuracy of scores. In order to
calculate the exact continuity score of the most continuous influential object,
we need to proceed until we find an interval where the object does not belong
to the ITOPmk set.

5.6.2 Early termination best-first interval

In the following, we describe the Early Termination Best-first Interval (TBI )
algorithm. The most important difference to TIS is that TBI follows a differ-
ent strategy with respect to interval selection, namely TBI does not process
intervals sequentially.

For each retrieved object o, TBI maintains the two sets T +(o) and T −(o)
that correspond to the processed time intervals for which o belongs to or not to
the most influential data objects respectively. This information is sufficient to
derive the lower bound L(o) and upper bound U(o) of o. The algorithm first
computes the influential objects ITOPmk (T1) and ITOPmk (TV ). The following
example demonstrates the information maintained by TBI at this point.

Example 5.1. Let us assume that V = 6, m = 2, and that ITOPmk (T1) =
{o1, o2} and ITOPmk (T6) = {o2, o3}. Then, TBI maintains the following sets:
T +(o1) = {T1}, T −(o1) = {T6}, T +(o2) = {T1, T6}, T −(o2) = ∅, T +(o3) =
{T6}, T −(o3) = {T1}. In addition, the derived bounds are: L(o1) = 1, U(o1) =
5, L(o2) = 1, U(o2) = 6, L(o3) = 1, U(o3) = 5.

TBI iteratively selects a time interval that has not yet been processed and
computes the influential objects in the selected time interval. Then, the bounds
of retrieved objects can be updated as indicated in the following.

Example 5.2. Continuing the previous example, assume that the next interval
that is processed is T3 and ITOPmk (T3) = {o2, o4}. Then, the following sets
are maintained: T +(o1) = {T1}, T −(o1) = {T3, T6}, T +(o2) = {T1, T3, T6},
T −(o2) = ∅, T +(o3) = {T6}, T −(o3) = {T1, T3}, T +(o4) = {T3}, T −(o4) =
{T1, T6}. In addition, the bounds are updated as follows: L(o1) = 1, U(o1) = 2,
L(o2) = 1, U(o2) = 6, L(o3) = 1, U(o3) = 3, L(o4) = 1, U(o4) = 4.
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The remaining challenge is how to select the most beneficial time interval
for the next influential query to be processed, i.e., the time interval that will
lead the algorithm to terminate as quickly as possible. TBI follows a best-first
approach by selecting the time interval that will split the longest UB(o) sequence
for any o in the queue. Intuitively, this ”breaks” long sequences of unknown
time intervals, in an attempt to reduce the upper bound of any data object.

In more detail, the next interval to be processed is selected in the follow-
ing way. Given a candidate data object o and the corresponding UB(o) =
{Ti, ..., Tj}, the middle time interval Tz is computed such that z = i+

⌈
j−i
2

⌉
. If

Tz /∈ T +(o) then Tz is the next interval. Otherwise, it means that Tz has been
already processed and in this case the sequence {Ti, ..., Tz} is tried to be split by
finding the middle interval Tz′ of it. If also Tz′ ∈ T +(o), then the middle interval
of {Tz, ..., Tj} is examined if it qualifies for being the next interval. This is done
recursively by examining always the longest sequence until an interval is found
that does not belong to T +(o). Note that it is guaranteed that such an interval
exists, because otherwise L(o) = U(o) and the algorithm terminates. Intuitively,
computing ITOPmk (Tz) may break the longest sequence UB(o) in two smaller
sequences if o /∈ ITOPmk (Tz), thus reducing the upper bound, which will allow
the algorithm to terminate faster.

During query processing, TBI keeps the retrieved data objects in a priority
queue. The queue is sorted in descending order based on the upper bound U(o)
of each object o, so that immediate access to the object with the highest upper
bound is provided. Algorithm 11 presents the pseudocode of TBI. First, the
intervals T1 and TV are processed and the retrieved objects are inserted in the
queue (lines 1–4). The lower and upper bounds are initiated based on the object
located at the head of the queue (lines 5, 6). In each iteration, we remove from
the queue the object o (candidate object) with maximum upper bound U(o)
(line 8). Note that the candidate object is not necessarily the object with the
highest continuity score based on the processed partitions (which is the lower
bound), and there may exist another object o′ that has a higher score (lower
bound) currently. But it is guaranteed that the algorithm cannot terminate at
this iteration even if o′ was processed next, because it holds that L(o′) ≤ U(o′)
and U(o′) ≤ U(o) so that the termination condition cannot hold. Thus, TBI
does not process unnecessary time intervals.

After selecting the candidate o with the highest upper bound, TBI recur-
sively selects the middle interval to be processed (line 9) and processes the query
(line 10). Afterwards, the queue is updated (line 11), which means that every
object in ITOPmk (Ti) is either added to the queue (if it is the first time that
it was retrieved) or the existing object is updated by changing the correspond-
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Algorithm 11 Early Termination Best-first Interval (TBI )

Input: S: set of data objects
T = {T1, . . . , TV }
k,m: the parameters of the ITOPmk queries

Output: o: the most continuous influential object
1: I ← ITOPmk (T1)
2: PQ.update(I) //Priority Queue based on upperBound

3: I ← ITOPmk (TV )
4: PQ.update(I)
5: upperBound = U(queue.peek())
6: lowerBound = L(queue.peek())
7: while lowerBound<upperBound do
8: o← queue.dequeue()
9: i = nextInterval(UB(o)) //find next interval

10: I ← ITOPmk (Ti)
11: PQ.update(I)
12: upperBound = U(queue.peek())
13: lowerBound = L(o)
14: PQ.enqueue(o) //add o back to queue

15: end while

ing T + set. Moreover, for every object in the queue that does not belong in
ITOPmk (Ti), the set T − is updated.

The algorithm terminates when it holds that the candidate object o has
L(o) ≥ U(o′),∀o′ ∈ queue. This is the termination condition (line 7), which
means that o has a higher lower bound than the upper bound of the current
head object o′ in the queue.

In principle, we can also free part of the memory during the processing of
the algorithm, by evicting candidate points that will never become the most
continuous influential object. The condition for eviction is if a candidate object
o has U(o) ≤ L(o′), where o′ is another candidate object.

5.7 Experimental evaluation

In this section, we present the results of the experimental evaluation of all pro-
posed algorithms. All algorithms were implemented in Java and the experiments
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Parameter Values

Dimensionality d 2, 3, 4, 5

Cardinality of S 10K, 50K, 100K

Cardinality of W 100K, 300K, 500K

Data distribution of S RL, UN, CO, AC

Data distribution of W UN, CL

m 5, 10, 15

k 5, 10, 15

V 50, 100, 150

σW 0.01, 0.5, 0.1

Table 5.2: Experimental parameters and values

run on 2x Intel Xeon X5650 Processors (2.66GHz), 128GB. The index structure
used was an R-tree with a buffer size of 100 blocks and the block size is 4KB.

Datasets. For the dataset S, we employ both real and synthetic data collec-
tions, namely uniform (UN), correlated (CO) and anticorrelated (AC) are used.
For the uniform dataset, the data object values for all d dimensions are generated
independently using a uniform distribution. The correlated and anticorrelated
datasets are generated as described in [13]. To simulate the real-life scenario
where no data object has optimal (i.e., minimum) values in all dimensions, we
use the concept of a cut value C that prevents data from being generated in the
area [0, C]d. In addition, we use two real datasets, NBA and HOUSE, which
were described in Section 4.7.

For the dataset W of the weighting vectors, two different data distributions
are examined, namely uniform (UN) and clustered (CL). The clustered dataset
W is generated as described in [112] and models the case where many users share
similar preferences. In more detail, first CW cluster centroids that belong to
the (d-1)-dimensional hyperplane defined by

∑
w[i] = 1 are selected randomly.

Then, each coordinate is generated on the (d-1)-dimensional hyperplane by fol-
lowing a normal distribution on each axis with variance σ2

W , and a mean equal
to the corresponding coordinate of the centroid. To perform our experiments,
we consider a set of V = 100 time intervals and assign a weighting vector w to
a time interval Ti (1 ≤ i ≤ 100) uniformly at random.

We conduct a thorough sensitivity analysis varying the dimensionality (2-
5d), the cardinality (10K-100K) of the dataset S, the cardinality (100K-500K)
of the dataset W the value of k (5-15), the value of m (5-15), and the number of
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intervals V (50-150). Unless explicitly mentioned, we use the default setup of:
|S| = 50K, |W | = 300K, d=3, k=10, m=10, V=100, and uniform distribution
for S and W . For the clustered dataset W we use CW = 5 and σW = 0.1, and
try different values of σW . The experimental parameters and the tested values
are also shown in Table 5.2.

Algorithms. We evaluate the proposed algorithms, namely: a) sequential in-
terval scan (SIS ) algorithm, b) early termination interval scan (TIS ) algorithm,
and c) early termination best-first interval (TBI ) algorithm. The algorithm em-
ployed for the underlying computation of most influential objects is the branch-
and-bound algorithm proposed in [112].

Metrics. Our metrics include: a) the total execution time, b) the number
of I/Os, c) the number of top-k evaluations, and d) the number of processed
time intervals by each algorithm. Notice that we do not measure the I/Os that
occur by reading W , since this is the same for every algorithm and does not
affect their relative performance. For our experiments on synthetic data, we
report the average of each metric over 10 different instances of the dataset. We
generate the different instances by keeping the parameters fixed and changing
the seeds of the random number generator. We adopt this approach in order to
factor out the effects of randomization.

5.7.1 Performance of query processing

In the following we analyze the performance of the described algorithms with
regard to the aforementioned parameters.

Effect of dataset size |S|. Figure 5.2 illustrates the performance of all al-
gorithms when we vary the dataset cardinality. For all metrics, TBI outper-
forms both TIS and SIS. In terms of time (Figure 5.2(a)), TBI is significantly
faster than the other algorithms, and more importantly, its gain increases as
the dataset size increases. This is strong evidence that TBI scales gracefully
with |S|. Similar observations can be made for the I/O metric depicted in Fig-
ure 5.2(b). In Figure 5.2(c), we depict the number of top-k queries that were
processed by the ITOPmk evaluations. Clearly, this metric is not significantly
affected by increasing |S|, thus all algorithms present relatively stable values.
Figure 5.2(d) depicts the number of processed intervals by each algorithm, which
is a factor that affects all other metrics. SIS always processes the complete set
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Figure 5.2: Effect of varying data cardinality |S|

of V intervals. TIS improves the performance of SIS, by exploiting the bounds
and allowing for early termination. It should be clarified that TIS cannot pro-
cess fewer than V/2 intervals to produce the correct result. Thus, in this setup
(V = 100), TIS would in best case process 50 intervals. Still, TBI outperforms
all other algorithms, which indicates that its best-first strategy for selecting the
next interval performs more efficiently.

The advantage in the performance of TIS against SIS lies on the fact that
TIS terminates when it is certain that the object with the highest continuity
score cannot be surpassed. The advantage of TBI over TIS lies on the way the
two algorithms calculate the lower and upper bounds of the continuity score of
the objects. As mentioned before TIS and TBI calculate the lower and upper
bounds of the score of each object. However, TIS tries to increase the lower
bound until it is equal to the upper bound, while TBI follows the opposite
strategy. In TIS, the lower bound of each alive object is increased each time by
one interval. The upper bound of all dead objects decreases each time by one.
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Figure 5.3: Effect of varying cardinality of weighting vectors |W |

However, since TBI chooses to process and split the largest unseen interval, it
manages to reduce the upper bound of the objects significantly in the first steps
of the algorithm’s execution. In the best case, every 2λ+1 − 1 steps the upper
bound will have been reduced to |V |/(2λ+1), while for TIS the upper bound in
the best case will have been reduced to |V |− (2λ+1−1). Obviously, in the early
steps of TBI the upper bound diverges the lower bound faster than in TIS.

Effect of varying cardinality of weighting vectors |W|. In Figure 5.3,
we study the effect of increasing the size of |W |. First, with respect to time
(depicted in Figure 5.3(a)), we observe that time increases linearly with |W |
for all algorithms. This is expected, since the size of W determines the number
of user preferences, which is the number of potential top-k queries that may
be evaluated. In Figure 5.3(a), a similar trend is observed for the number
of processed top-k queries, which also increase linearly with |W |. When the
induced I/Os are considered, we see in Figure 5.3(b) that all algorithms show
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Figure 5.4: Effect of varying m

a stable performance irrespective of |W |. Recall that we only measure the I/O
induced on dataset S, and this metric does not depend on W . Hence, this
explains the stability of the measured I/O values. Figure 5.3(d) shows the
processed intervals by each algorithm. Also in this setup, TBI performs better
than its competitors. It can be also observed that the size of W does not affect
the number of processed intervals. The observations made for varying the data
cardinality hold also here. The increased computation cost in respect of time is
due to the fact that the complexity of the ITOPmk queries increases when the
weight cardinality rises.

Effect of varying m. Figure 5.4 shows the effect of increasing m, which is
the number of retrieved influential objects, on the three algorithms. TBI has
a significant performance advantage over SIS and TIS when the value of m is
relatively small. When m increases, we observe that all algorithms demonstrate
similar performance. The reason for this behavior is that for larger values
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Figure 5.5: Effect of varying k

of m we observe that there exist data objects that have maximum continuity
score equal to V . In other words, some data objects are influential in all V
intervals. In this degenerate case, no algorithm can perform better than SIS,
since all intervals must be processed in order to safely report the most continuous
influential object.

Effect of varying k. Figure 5.5 depicts the obtained results for varying the
value k of top-k queries. As k increases, all algorithms need more time to
produce the result set as depicted in Figure 5.5(a).

For smaller values of k, objects are not likely to appear in the results of a
large number of queries, fact that reduces the influence score of all objects and
naturally the influence score of the most influential objects. As a consequence,
a large number of objects achieve the maximum influence score and as a result
all algorithms perform similarly because again there exist objects with maxi-
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Figure 5.6: Effect of varying V

mum continuity score, which can only be reported when all intervals have been
processed. For higher values of k TBI performs better than all other algorithms.

Effect of varying V. In Figure 5.6, the results of an experiment for increased
number of intervals V are depicted. Based on Figure 5.6(a), we observe that
TIS has a bigger advantage over SIS for small number of intervals, while TBI
benefits more from large number of intervals. The reason is that the more the
time intervals the smaller the possibility for an object to be influential in all of
them. This fact is exploited by TBI which manages to reduce the upper bound
fast in the first loops of its execution, and thus the lower bound and the upper
bound converge fast and allow TBI to finish earlier that SIS and TIS. Contrary
to the upper bound, the lower bound is expected to increase slowly when the
time domain is partitioned with high granularity since many objects (including
the one with the highest continuity score) are likely to disappear and re-appear
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Figure 5.7: Effect of varying the data distribution of S

from the ITOPmk influential sets, and consequently the convergence between
the lower and upper bounds is delayed.

Effect of different data distributions of S. Figure 5.7 compares the per-
formance of the three algorithms when the set of data objects S follow different
distribution, namely uniform (UN), correlated (CO) and anti-correlated (AC).
Notice that we use log-scale in Figure 5.7(b). Clearly, the cost of all algorithms
(in terms of time and I/O) increases for AC. This is due to the more expensive
processing of the underlying computation for influential data objects in the case
of AC. However, as depicted in Figure 5.7(d), the difference between the algo-
rithms is significant in terms of processed intervals. Also, notice that TBI is
not significantly affected by the challenging AC data distribution and processes
comparable number of intervals, irrespective of the data distribution of S.
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Figure 5.8: Effect of varying the standard deviation for clustered dataset W.
Performance of the three algorithms for different values of standard
deviation

Effect of clustered dataset W. Figure 5.8 shows the results of using a
clustered dataset W for different values of σW . Smaller values of σW correspond
to more clustered datasets, or in other words the weighting vectors are more
compact with respect to the cluster centroids. For smaller values of σW , TBI
performs better than the other algorithms. However, an interesting observation
is that when σW increases, the performance of TIS tends to be similar to TBI.

Effect of increasing dimensionality. Figure 5.9 illustrates the results for
varying the number of dimensions. With respect to time (Figure 5.9(a)) and
I/O (Figure 5.9(b)), the performance of all algorithms degrades with increased
dimensionality. However, notice that TBI is less affected by the increased di-
mensionality, compared to the other algorithms. With respect to the number of
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Figure 5.9: Effect of varying dimensionality d

Algorithm Time(sec) I/O Top-k queries Proc. Intervals
SIS 710.23 7720 3011907 100.0
TIS 626.61 6801 2650585 86.9
TBI 417.40 4556 1779292 59.4

Table 5.3: Experimental results of real dataset NBA

processed top-k queries (Figure 5.9(c)) and number of processed intervals (Fig-
ure 5.9(d)), we observe that these metrics increase with dimensionality in the
case of TIS. When TBI is considered, these metrics drop for increased values
of n. This means that TBI manages to process fewer top-k queries and fewer
intervals as n grows, however each top-k processing costs on average more for
increased d, which explains why both time and I/O increase for TBI too.
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Algorithm Time(sec) I/O Top-k queries Proc. Intervals
SIS 522.86 8056 3001495 100.0
TIS 500.53 7575 2902970 93.8
TBI 496.10 7555 2820868 91.8

Table 5.4: Experimental results of real dataset HOUSE

Experiments with real datasets. Tables 5.3 and 5.4 show the results ob-
tained for the two real datasets employed in our study, namely NBA and HOUSE
respectively. In both cases, the observed values closely follow the results and
conclusions drawn from synthetic data. TBI outperforms the other two algo-
rithms for both NBA and HOUSE. This gain is more clear in the case of NBA,
where TBI needs almost half the time of SIS to identify the most continuous
influential object.

5.8 Conclusion

In order to make users consider and buy products, visibility of products in on-
line marketplaces is important. In this chapter, we have studied the problem of
finding the products that belong consistently to the most influential products
over time. The influence score is based on reverse top-k queries, and the aim
has been to find those products that are among the most influential products
over a longer time period, i.e., continuous influential products. In order to be
able to determine efficiently those products, we have studied the properties of
the proposed score and derived appropriate bounds that lead to efficient algo-
rithms for solving the challenge. We have conducted a thorough experimental
evaluation that demonstrated the efficiency of our algorithms.
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Chapter 6

Finding the Most Diverse
Products using Preference
Queries

In the previous chapter, we discussed how user queries can be analyzed with
respect to time in order to identify objects that are continuously appealing to
the users. Although such objects are likely to attract a large number of users,
companies such as product manufacturers typically address customers with a
wide range of preferences. Products that are consistently popular, do not nec-
essarily address users with diverse preferences. In this chapter, we study the
problem of identifying sets of objects which are attractive to users with different
preferences. We model this problem as a diversity problem, where each object
is represented by its reverse top-k result set, and seek r objects that maximize
their diversity value. Since the problem is NP-hard, we employ a greedy algo-
rithm that takes as input the reverse top-k result sets of all candidate objects.
To further improve performance, we also design a more efficient approximate
algorithm that does not require the computation of all reverse top-k sets. Our
experimental evaluation demonstrates the performance of the proposed algo-
rithms and quality of the selected diverse objects.

117
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User Preferences:

User w[1] w[2] w[3] Top-k

Bob 0.1 0.2 0.7 p1
Tom 0.1 0.3 0.6 p1
Jack 0.3 0.1 0.6 p2
Max 0.8 0.1 0.1 p3

Products:

Product p[1] p[2] p[3] Reverse top-k

p1 1 2 6 Bob,Tom

p2 2 1 6 Jack

p3 6 5 2 Max

Table 6.1: Example of product database and user preferences

6.1 Introduction

Product manufacturers are interested in advertising to users a small set of items
that will motivate them to browse the available products. Analyzing therefore
the top-k queries posed by the users is necessary, in order to select and promote
products that are appealing to a wide range of users. For instance, consider an
electronic marketplace that wishes to advertise r products on its front page aim-
ing to attract as many new customers as possible. Advertising diverse products
that are attractive to different existing customers increases the probability that
a new customer finds one of those products attractive. The strategy of adver-
tising the r most influential products [112], i.e., the r products that attract the
highest total number of customers, does not necessarily lead to a set of diverse
products, and it may fail to attract many new customers, since such products
may be attractive to customers with similar preferences.

Consider for example the set of user preferences and products depicted in
Table 6.1, where maximum values in product attributes are preferable. Assume
that the goal is to advertise two products for attracting new customers. Our
proposed method selects the r = 2 most diverse products based on user pref-
erences, which in our example is the set {p1, p3}. This set is more probable to
attract more new customers because p1 and p3 satisfy more diverse preferences.
For example, a customer with similar preferences to Jack is highly probable to
be attracted also to p1, even though it is not the best option for her on the
market. This is because both p1 and p2 satisfy users that have high preference
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for the third dimension (expressed with a high weight w[3]). On the other hand,
p3 satisfies users that have totally diverse preferences compared to p1 and p2,
namely, users such as Max that prefer the first dimension.

In this chapter, we introduce the problem of finding the r most diverse
products based on user preferences. The user preferences are captured by the
reverse top-k set of each product. We model this problem as a dispersion prob-
lem [89] using as distance function the dissimilarity of the reverse top-k sets.
In this sense, the set of r objects with the maximum diversity is returned to
the user. Consequently, the selected objects are appealing to many different
customers with dissimilar user preferences. Existing solutions for identifying
diverse objects rely solely on product attributes and largely overlook the user
preferences [108]. On the other hand, approaches that identify r objects with
high total number of customers [71, 112], often fail to discover truly diverse
products that can be appealing to new customers with different preferences
than those of the existing ones.

To summarize the main contributions are:

• We study the novel problem of finding the r most diverse products based
on user preferences. We model this problem as a dispersion problem and
define an appropriate distance function that captures the dissimilarity of
products based on their reverse top-k sets.

• As dispersion problems are known to be NP-hard [33], we use a greedy
algorithm that retrieves r diverse products, after computing the reverse
top-k sets of the products efficiently.

• To improve the performance of our algorithm, we propose an alternative
algorithm that progressively computes an approximation of the reverse
top-k sets of a limited set of candidate products and retrieves a set of r
products of high diversity.

• We present maintenance techniques for updating the r most diverse prod-
ucts in the case of dynamic data in a cost-efficient way. In addition, we
generalize our approach to support any set-based similarity function.

• We demonstrate the efficiency and achieved diversity of our algorithms
using both synthetic and real-life datasets.

The rest of this chapter is organized as follows: Section 6.2 reviews the re-
lated work. In Section 6.3, we formally define the r-Diversity problem. There-
after, in Section 6.4, we present a greedy algorithm applied on the reverse top-k
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sets. In Section 6.5, we provide a more efficient algorithm that iteratively com-
putes an approximation of the reverse top-k sets and refines the set of most di-
verse products. Section 6.6 addresses the case of dynamic data, while Section 6.7
generalizes our approach for set-based similarity functions. The experimental
evaluation is presented in Section 6.8, and we conclude in Section 6.9.

6.2 Related work

In this section, we provide an overview of the related research literature.

Reverse top-k queries. Vlachou et al. first introduced the reverse top-k
query in [110]. Two versions of the reverse top-k query were presented, namely
monochromatic and bichromatic. Based on the geometrical properties of the
monochromatic reverse top-k query, an algorithm for the two dimensional case
was proposed. For computing bichromatic reverse top-k queries, an algorithm
(called RTA) was proposed that exploits the fact that similar queries share
common results, in order to avoid evaluating the top-k queries for all user pref-
erences. Thereafter, several papers have studied the problem of efficient reverse
top-k computation. An efficient algorithm for the two-dimensional monochro-
matic reverse top-k that relies on a novel index was proposed in [20]. In [40],
efficient evaluation of multiple top-k queries is studied, which in turn enables
the computation of the reverse top-k set of a query point. The proposed method
avoids evaluating the top-k queries one-by-one by grouping similar queries and
evaluates them in a batch. This approach is suitable for processing many reverse
top-k queries at once. An approach for processing a large number of continuous
top-k queries has appeared in [125]. The proposed framework can be employed
to process reverse top-k queries efficiently, however, it requires to build an index
over the k-th ranked objects of each query that results in high pre-processing
cost. Vlachou et al. [113] proposed a novel branch-and-bound algorithm for re-
verse top-k queries, where both the object datasets and the preferences set are
indexed using an R-tree.

Product impact and visibility. Several papers have proposed methods that
aim to quantify the impact of products in the market. DADA [69] aims to
help manufactures position their products in the market, based on three types
of dominance relationship analysis queries. Creating competitive products has
been studied in [115]. Customer identification and product positioning has been
recently studied in [7], where the attractiveness of a product is defined based
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on the concept of reverse skyline query. Nevertheless, in these approaches user
preferences are expressed as data points that represent preferable products,
whereas reverse top-k queries examine user preferences in terms of weighting
vectors. Miah et al. [81] study a different problem, namely how to select the
subset of attributes that increases the visibility of a new product. Product pro-
motion is studied in [118, 119], where the aim is to find the most interesting
regions for promotion of a product. Only a few papers have proposed methods
for retrieving interesting products by using the reverse top-k queries. In [112],
the influence of a product is defined as the size of its reverse top-k set. Then, an
algorithm was presented to efficiently retrieve the m most influential products.
Discovering k products with maximum number of customers has been studied
in [71], where the number of customers is estimated as the size of the reverse
top-k set. The problems studied in [71, 112] differ from the diversity problem
described in this chapter. Both approaches focus on maximizing the number
of existing customers and ignore the similarity of the retrieved reverse top-k
sets. These approaches fail to take into account the fact that attracting new
customers requires promoting products that are attractive to customers with
diverse preferences. Koh et al. [65] consider as products packages consisting of
multiple components. They study the problem of creating and selecting pack-
ages from an existing pool of components such that the number of potential
customers is maximized. Similarly to the aforementioned approaches, the num-
ber of potential customers is estimated using reverse top-k sets, yet they do not
study the diversity of the result set.

Diversity in databases. Many approaches have been proposed for retrieving
a set of diverse objects. Angel et al. [6] study the problem of retrieving k docu-
ments relevant to a query q, but are also diverse with each other. The diversity
is computed based on document similarity metrics. Drosou et al. [32] study the
problem of finding the k most diverse objects in a continuous data stream. Di-
vDB, a system that provides query result diversification, was presented in [109].
Result diversification based on dissimilarity is studied also in [31]. Estimating
the diversity of a set of points that fulfill a special property has been studied
mainly for selecting representative skyline points. For instance the diversity of
two skyline points can be defined as the distance between them [102] or by using
their sets of dominated points [72, 108]. More specifically, in [102] the authors
define the set of representative skyline to be a set of k objects that maximize
the minimum Euclidean distance between any two of the k points. In [72], the
representative skyline points are defined based on the distinct number of domi-
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Symbol Description

S Set of data objects

D Subset of S (D ⊆ S)
p,q Data objects/products (p, q ∈ S)
W Set of weighting vectors

w A weighting vector (w ∈W )

fw Preference function associated with w

k Value of top-k

TOPk(w) Top-k data objects based on w

RTOPk(p) Reverse top-k result set for object p

cp Centroid of vectors in set RTOPk(p)

δ(p, q) Cosine distance between centroids cp, cq
δ(u, v) Cosine distance between vectors u, v

div(D) Diversity value of a set of objects D

D∗ Optimal solution of the r-Diversity problem

Dr(S) Approximate solution of the r-Diversity problem

Table 6.2: Overview of symbols

nated points. Valkanas et al. [108] estimate the diversity of two skyline points
by calculating the Jaccard distance of their respective sets of dominated points.
The main difference to our work is that the definitions of diversity in the above
approaches rely on the attribute values only and cannot exploit the existing user
preferences.

6.3 Problem definition

Given a space Rd, we assume that we have a set of data objects S where each
object o ∈ S can be represented as an d-dimensional point o = (o[1], . . . , o[d])
where o[i] ∈ R. Each point o can be regarded as an object of a database and
each dimension of the point as a specific numerical attribute. Without loss of
generality, we assume that larger values are preferable.

We model a user query as a top-k query where the result set of each user
query is a ranked set of k objects which have the highest score according to a
scoring function f : S → R+. A function commonly used is the linear function of
the form f(o) =

∑d
i=1 w[i]o[i] where w[i] ≥ 0. Such functions can be represented
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by an d-dimensional weighting vector w = (w[1], . . . , w[d]). In such cases we
denote the function that results from w as fw.

When w represents the preferences of a user over the objects in S we call
this vector preference vector or simply preference. We remind at this point that
if we have a set of preferences W ⊆ Rd over a set of products S ⊆ Rm then for
a given product q, we say that the result set of a reverse top-k query is a set
RTOPk(q) that consists of all the preference vectors w for which it holds that
q ∈ TOPk(w).

Let p and q denote two products (data objects) from a product database S.
Also, given a set W of customer preferences (weighting vectors) and an integer
k, let RTOPk(p) ⊆ W and RTOPk(q) ⊆ W denote the reverse top-k sets of p
and q respectively. We also define a distance function δ : S × S → R+ as:

δ(p, q) = fδ(RTOPk(p), RTOPk(q))
that determines the dissimilarity of any two objects p and q based on their cor-
responding reverse top-k sets. Notice that this is a radically different approach
from existing initiatives that define the distance of two objects based on the
objects’ attributes only.

The problem of selecting the r most diverse products from a given set S can
be viewed as a dispersion problem [32, 33, 89, 108], where the aim is to find
r objects such that an objective function of their distance δ is optimized. The
dispersion sum problem maximizes the sum of pairwise distances between the r
selected products and it has been proved that it is NP-hard by reduction from
the clique problem [33].

Definition 6.1. r-Diversity Problem. Given a set of data objects S and
a distance function δ measuring the dissimilarity between two objects, the r-
Diversity problem is to identify a subset D∗ ⊆ S such that:

D∗ = arg max
D⊆S
|D|=r

∑
p,q∈D
p 6=q

δ(p, q)

The remaining challenge is to define an appropriate function fδ that captures
the dissimilarity of the reverse top-k result sets. Hence, the function fδ takes as
input two sets of weighting vectors and computes their dissimilarity. We employ
a function that relies on the concept of a centroid of a set of vectors.

Definition 6.2. Centroid of RTOPk. Given a set of data objects S, a set of
weighting vectors W , and an object p ∈ S such that RTOPk(p) 6= ∅, we define
as the centroid of p the vector:

cp =
1

|RTOPk(p)|
∑

w∈RTOPk(p)

w
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Figure 6.1: Example of dissimilarity function

Since each RTOPk set corresponds to exactly one data point, the respective
centroid corresponds to exactly one data point as well. Therefore, each data
point can be mapped to exactly one centroid vector and vice-versa.

Definition 6.3. Dissimilarity function fδ. Given a set of data objects S, a
set of weighting vectors W , two objects p, q ∈ S, and their respective centroids
cp and cq, the distance of p and q is defined based on the cosine similarity of
the centroids:

fδ(RTOPk(p), RTOPk(q)) = 1− cos(cp, cq)

The advantage of using the centroid cp instead of the actual set of vectors
RTOPk(p) is that the centroid is a compact and accurate representation of
the set, which in turn allows efficient processing of the dissimilarity function,
compared to other dissimilarity metrics that operate on sets of arbitrary size.
As a distance function, we use the function δ(p, q) = 1 − cos(cp, cq). In a
slight abuse of notation, we also use δ(u, v) = 1− cos(u, v) to denote the cosine
distance between any two vectors u and v.

Example 6.1. Figure 6.1 shows an example of the reverse top-k sets RTOPk(p) =
{w1, w2, w3} and RTOPk(q) = {w4, w5}, which belong to products p and q re-
spectively. In the Euclidean space, a linear top-k query can be represented by
a vector w [110]. The magnitude of the query vector does not influence the
query result, as long as the direction remains the same, therefore without loss
of generality we assume that

∑d
i=1 w[i] = 1. In the 2-dimensional space, all

weighting vectors belong to the line as depicted in Figure 6.1. Moreover, top-k
queries defined by similar weighting vectors w are expected to produce similar
result sets [110]. Thus, the weighting vectors of the reverse top-k set of p are
expected to lie nearby on the line. Furthermore, for a hypothetical weighting
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vector which lies on the line between w1 and w3, it is expected that p is highly
ranked, and therefore it is highly probable that this vector would belong to the
reverse top-k set of p.

The centroid of the weighting vectors captures the above intuitions, and the
angle between two centroids represents the dissimilarity of the weighting vectors.
Obviously, different functions for set dissimilarity (hence also for measuring
distance) are supported by our approach, including (for instance) the Jaccard
similarity of the reverse top-k sets. Nevertheless, the Jaccard similarity fails to
capture the locality of the weighting vectors.

Furthermore, we define the diversity div(D) of a set of objects D ⊆ S.
Notice that the set D∗ with the highest diversity value div(D∗) among all r-sets
of points in S, is the optimal solution for Problem 6.1. The diversity value
div(D) is normalized in [0,1].

Definition 6.4. Diversity value Given a set of points S, a subset D ⊆ S of
size r, and set of vectors W , we define as diversity of D:

div(D)=
2

r(r − 1)

∑
p,q∈D
p6=q

(1− cos(cp, cq))

6.4 Algorithms with centroid computation

The process of discovering r diverse products Dr(S) from a set of products
S consists of two main steps: (1) identifying a set C of candidate centroids
that correspond to candidate products for inclusion in the most diverse prod-
ucts (Section 6.4.1), and (2) selecting r of these candidates as the most diverse
products (Section 6.4.2).

Each candidate centroid in cp ∈ C corresponds to exactly one product p ∈ S,
and it is the centroid vector of the RTOPk(p) set of p. More formally C =
{cp|p ∈ S,RTOPk(p) 6= ∅, cp is centroid of RTOPk(p)}. Obviously, products
that are not preferable for any customer are ignored.

Algorithm 12 describes the afore-described method and returns a set of r
diverse products. In line 1, the candidate centroids C are computed using any
of the methods that will be described in Section 6.4.1. As the set of centroids
C may be large depending on the data distribution, a sample R of fixed size s
is created by picking centroids uniformly at random (line 2). Finally, in line 3,
the second step entails solving the r-Diversity problem by applying a greedy
algorithm, called Diverse Product Selection Algorithm (DPSA), on the sampled
set of centroids R, as will be described in Section 6.4.2.
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Algorithm 12 r-Diverse Products

Input: S: set of products
W : set of weighting vectors
k: value of top-k and reverse top-k
s : size of initial sample
r : required number of diverse products

Output: Dr(S): the set of r most diverse products of S
1: C ← CandidateCentroids(S, W , k)
2: R←random subset of C with |R| = s
3: Dr(S)← DPSA(C,R, r)
4: return Dr(S)

6.4.1 Retrieving the candidate centroids

Different alternatives exist in order to compute the set C of candidate centroids.
In the following, we present three alternative methods for determining the set
C. Notice that all methods produce an identical set C of centroids.

The most straightforward method is to perform a reverse top-k query for
each product p in S and compute the centroid vector of each set RTOPk(p)
using Definition 6.2. We denote this approach Rtopk . Its processing cost is
basically determined by the computation of |S| reverse top-k queries. Since
any existing algorithm for reverse top-k processing can be employed for the
underlying reverse top-k computation, this method is quite generic.

An improvement of the first method is derived based on the observation that
some products have empty reverse top-k sets (i.e., they do not belong to the top-
k result of any weighting vector). Hence, it is possible to avoid processing some
reverse top-k sets. To achieve this, we exploit the progressive result generation
of the algorithm in [112], which is able to retrieve objects in decreasing order of
the sizes of their reverse top-k sets. We denote this method as Itopk based on
the fact that the algorithm [112] has been proposed for retrieval of influential
objects. As a result, we avoid processing a reverse top-k query for objects with
empty reverse top-k sets, thus improving the performance of Rtopk .

The third method exploits the observation that it may be more efficient to
process all top-k queries, instead of processing multiple reverse top-k queries.
Thus, we perform a top-k query for each preference vector w ∈W , which makes
straightforward the computation of the reverse top-k sets of any data object, and
hence also their respective centroids. In fact, the top-k sets do not need to be
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maintained until all top-k queries have been processed, but instead the centroids
can be calculated progressively. For each retrieved object in the top-k result set,
the centroid is updated by adding the new vector w to its previous centroid,
while also the number of vectors per object is maintained. After finishing all
top-k queries, for each centroid the coordinates are divided by the cardinality
of the reverse top-k set. Since top-k queries for all vectors in W are processed,
we call this method all top-k, i.e., Atopk . An advantage of Atopk is that the
processing cost in terms of top-k evaluations is fixed, namely |W | top-k queries,
in contrast to Rtopk and Itopk where in the worst case the top-k evaluations
can be up to |W | · |S|. Thus, the efficiency of Atopk is influenced slightly by
the cardinality of S, in contrast to Rtopk which computes the reverse top-k set
even for products with empty reverse top-k sets.

6.4.2 Diverse product selection algorithm

After having computed the centroid vectors of all non-empty reverse top-k sets,
the next step is to find the r most diverse centroids and the products that
they represent. As already mentioned, the r-Diversity problem is defined as a
dispersion problem that is known to be NP-hard [33]. Thus, computing the
optimal solution for the r-Diversity problem is not feasible even for relatively
small datasets. Hence, we employ an algorithm that efficiently computes an
approximate solution of high quality [29]. More specifically, we use a greedy
algorithm, called Diverse Product Selection Algorithm (DPSA), that iteratively
selects the next centroid that maximizes the value of the objective function. Its
pseudocode is depicted in Algorithm 13.

Description. The algorithm takes as input the set of candidate centroids C,
a random sample set R of the candidate centroids that is going to be used, and
an integer r which is the desired number of most diverse products. It returns an
approximate set Dr(S) of the r most diverse products and their centroids. The
sample R is typically much smaller in size than C, in order to reduce the cost of
the first part of the algorithm, which is to find the two most distant vectors in
R (line 2) and add them to the result set Dr(S) (line 3). Then, the algorithm
iteratively selects the next centroid cq until r centroids have been retrieved (loop
in line 4). Each time, the selected centroid is the one that maximizes the sum of
distances from the already selected most diverse vectors Dr(S). Notice that R is
used only for the initialization of Dr(S) (line 3), while the remaining centroids
are selected from C.
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Algorithm 13 Diverse Product Selection Algorithm DPSA()

Input: C : set of candidate centroids
R : sample of C
r : required number of diverse products

Output: Dr(S): the set of r most diverse products of S
1: cp1, cp2 ← cp1, cp2 : ∀cpi, cpj ∈ R : δ(cp1, cp2) ≥ δ(cpi, cpj)
2: C ← C − {p1, p2}
3: Dr(S)← {p1, p2}
4: while |Dr(S)| < r do

5: cq = arg max
c′q∈C

(∑
p∈Dr(S) δ(c

′
q, cp)

)
6: Dr(S)← Dr(S)

⋃
{q}

7: C ← C − {q}
8: end while
9: return Dr(S)

Complexity. The selection of the two most diverse products (seeds) has a cost
O(|R|2) = O(s2). The remaining part of the algorithm has a cost of O(r2|C|)
and therefore the total cost is equal to O(s2 + r2|C|). If no sample is used
(s = |C|) in the seed selection then the algorithm will have a cost of O(|C|2).

Implementation details. In each loop iteration of the DPSA algorithm (lines
4-8), the algorithm calculates the sum of distances between a centroid vector
cq ∈ C − Dr(S) and the centroid vectors in Dr(S). As described above this
procedure has a cost of O(r2|C|). In the case of the cosine distance, we can
reduce this cost to O(r|C|) by exploiting the properties of the cosine function.
As shown in Equation 6.1 the sum of distances of cq to all centroids in Dr(S)

is equal to |Dr(S)| −
cq
|cq|
· cDr(S). In that way, it is only necessary to calculate

the centroid of Dr(S) before each loop iteration.

∑
p∈Dr(S)

δ(cq, cp) =
∑

p∈Dr(S)

1− cos(cq, cp)

= |Dr(S)| − cq
|cq|
·
∑

p∈Dr(S)

cp
|cp|

(6.1)

= |Dr(S)| − cq
|cq|
· cDr(S)
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6.5 Selective top-k algorithm

The main drawback of the previous algorithm is that it requires the computa-
tion of all centroids, which has a significant processing cost regardless of the
employed method for candidate centroid computation. In particular, depending
on the cardinality of W and S, the computation of the centroids may be time-
consuming. In order to alleviate this shortcoming, in this section, we propose
a method that fuses the centroid computation with the selection of diverse ob-
jects. Our goal is to efficiently compute an approximation of the centroids (by
evaluating only a handful of carefully selected top-k queries), which is sufficient
to produce a set of r products with high diversity.

6.5.1 Centroid approximation

Conceptually, the proposed algorithm uses a series of iterations, where each iter-
ation consists of three parts: (1) select a weighting vector wi in order to process

the top-k query it defines, (2) compute an approximation Ĉ of the centroid-set
C, based on the results of all already processed top-k queries, and (3) select
diverse products by invoking the DPSA algorithm (Section 6.4.2) with input
the approximate centroid-set. In each iteration, a top-k query based on wi is
executed. Some objects p ∈ TOPk(wi) may not have been retrieved before and

those are added to the centroid-set Ĉ. For the remaining objects p ∈ TOPk(wi)
the approximate centroid is updated, since wi is added to their reverse top-k
sets. In fact, the reverse top-k sets are not maintained, but the centroid of an
object is computed progressively as in the case of Atopk . Thus, in each iter-
ation the centroid-set is only an approximation of the candidate centroids C
computed by Algorithm 12 because (a) C may contain more centroids as some
objects may not have been retrieved yet and (b) the centroids of an object p
are estimated based on a limited set of top-k queries only. However, in each
iteration, the candidate-set is enriched with the results of the next top-k query.
Additionally, a set of r diverse products Dr(S) is computed based on the cur-
rent set of centroids. Finally, the selection of the next weighting vector to be
processed is based on maximizing the sum of distances to the set of centroids
defined by Dr(S).

The main idea of our algorithm is that the maximum cosine distance (i.e.,
maximum diversity) of two objects is bounded by the maximum cosine dis-
tance of any two weighting vectors. Let us assume that w1 and w2 are the two
weighting vectors with the maximum cosine distance (the most diverse). Let
us further assume that there exist two products p1 and p2 for which holds:
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Algorithm 14 Selective Top-k Algorithm

Input: S: set of products
W : set of weighting vectors
k: value of top-k and reverse top-k
s : size of initial sample
r : required number of diverse products
steps : number of iterations (steps ≥ r)

Output: Dr(S): the set of r most diverse products of S
1: W ′ ←random subset of W with |W ′| = s
2: w1, w2 ← w1, w2 : ∀wi, wj ∈W ′ : δ(w1, w2) ≥ δ(wi, wj)
3: Ĉ ← ComputeCentroids(

⋃
x=1,2 TOPk(wx))

4: Dr(S)← DPSA(Ĉ, Ĉ, 2)
5: i = 2
6: while i < steps do
7: i+ +

8: wi = arg max
w∈W

(∑
p∈Dr(S) δ(cp, w)

)
9: Ĉ ← ComputeCentroids(

⋃
x=1...i TOPk(wx))

10: Dr(S)← DPSA(Ĉ, Ĉ,min(i+ 1, r))
11: end while
12: return Dr(S)

RTOPk(p1) = {w1} and RTOPk(p2) = {w2}. Then, it holds that for 2-
Diversity problem the optimal solution is {p1, p2} and their diversity equals to
1−cos(w1, w2), since cpi = wi. If more weighting vectors belong to RTOPk(p1)
then the diversity between {p1, p2} decreases. Therefore, our algorithm starts
by evaluating the top-k queries for the most diverse weighting vectors. In each
step, the most diverse weighting vector to the current most diverse centroids is
selected, as each centroid may summarize several weighting vectors.

6.5.2 Algorithmic description

Algorithm 14 shows the pseudocode of the proposed algorithm that uses a lim-
ited set of top-k queries only. We call this algorithm Selective Top-k Algorithm
and denote it with Stopk .
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Description. The first major difference to Algorithm 12 is that the initial
centroid computation is avoided. First, the algorithm computes a random sam-
ple W ′ (of size s) of W (line 1) and the two most dissimilar weighting vectors
w1 and w2 of W ′ are selected (line 2). Notice that the sample W ′ is produced
uniformly at random, thus, it follows the distribution of W and is used only for
the initialization of Ĉ. Applying the initialization step on W would result in
a cost of O(|W |2), while with the sample it is reduced to O(|W ′|2). Next, the

top-k queries for w1 and w2 are processed and a set Ĉ of centroids is computed
from the resulting merged set of products (line 3). Notice that Ĉ is computed
based solely on the products retrieved thus far by the two top-k queries. These
centroids form the candidate set for finding the most diverse products. In the
following step, Algorithm 13 is invoked with input the candidate set, and the
two most diverse products are retrieved and placed in Dr(S) (line 4). Note that

Ĉ is much smaller than C, thus DPSA algorithm is applied on Ĉ and no random
sample is required.

In each iteration, the most dissimilar weighting vector wi to the centroid
vectors cp (p ∈ Dr(S)) is selected (line 8). For this wi, the respective top-k

query is executed and the candidate list Ĉ is updated as before (line 9). Then,
the DPSA algorithm is invoked again to produce a new set of diverse products
(line 10). The same procedure is repeated for at least r steps. Notice that
when the iteration counter i is smaller than r, the algorithm produces i diverse
products, and only when i becomes greater than r does the algorithm return r
diverse products.

In order to improve further the approximation of the centroids more itera-
tions can be applied. The number of iterations (steps) is a system parameter
that captures an interesting trade-off between the diversity of the result set and
the processing time. Small values of steps increase the efficiency of the algorithm
by reducing its processing time. In the experimental evaluation, we demonstrate
that a small number of iterations is sufficient to produce results with diversity
comparable to that of Algorithm 12, with significantly lower processing cost.
Notice that in the extreme case that the number of iterations of Stopk is set
equal to the cardinality of W and also no sampling is used (s = |W |), the set of
diverse products and number of required top-k queries will be the identical with
Atopk . Nevertheless, in this case, Stopk will have the computational overhead of
applying multiple times the DPSA algorithm and finding the diverse weighting
vectors.

Example 6.2. Table 6.3 shows an example of the execution of Stopk for r = 2.
We assume that in the initialization step vectors w1 and w2 are selected. Fur-
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Initialization step:

TOPk(w1) = p1, p2, p3, TOPk(w2) = p2, p4, p5

cp1 = w1, cp2 = 1
2 (w1 + w2),

cp3 = w1, cp4 = w2, cp5 = w2

First step:

TOPk(w3) = p3, p4, p5

cp1 = w1, cp2 = 1
2 (w1 + w2), cp3 = 1

2 (w1 + w3)
cp4 = 1

2 (w2 + w3), cp5 = 1
2 (w2 + w3)

Second step:

TOPk(w4) = p1, p2, p6

cp1 = 1
2 (w1 + w4), cp2 = 1

3 (w1 + w2 + w4),
cp3 = 1

2 (w1 + w3), cp4 = 1
2 (w2 + w3),

cp5 = 1
2 (w2 + w3), cp6 = w4

Table 6.3: Example of Stopk

thermore (assuming k = 3), the top-3 results for the selected vectors are depicted.

After the initialization step, the sets of approximate centroids Ĉ contains 5 cen-
troids (namely cp1 , ..., cp5), which correspond to the data points that have been

retrieved by at least one top-k query. Algorithm 13 is applied on Ĉ and we as-
sume that cp1 and cp4 are the two most diverse vectors. In the first iteration
of Stopk, the most diverse (according to cp1 and cp4) weighting vector of W is

selected. In this step, w3 is selected and the approximate centroids Ĉ are updated
based on TOPk(w3) as depicted in Table 6.3. Again, Algorithm 13 is applied

on Ĉ and cp1 and cp4 are identified as the two most diverse vectors. Stopk con-

tinues with a second iteration by evaluating w4. In this step, cp6 is added to Ĉ
as it belongs to TOPk(w4). Again, Algorithm 13 will be invoked and the most
dissimilar weighting vector of W will be selected. The same procedure continues
until steps iterations have been executed.

Complexity. To perform a cost analysis of the algorithm, we need to identify
its basic cost factors. These factors include the initial computation of the two
most dissimilar vectors (O(s2)), the processing cost of steps top-k queries, the
cost of determining the next most dissimilar weighting vector (O(steps ·r · |W |))
(line 8), and the cost induced by invoking the DPSA algorithm steps times.
The cost of processing steps top-k queries will always be much cheaper than
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Algorithm 12, which needs to process W top-k queries (in the case of Atopk)
to perform the centroid computation. It should also be noted that the calls to
the DPSA algorithm are much cheaper, because it operates on Ĉ which is much
smaller than C. Overall, the cost of the algorithm is s2 + steps · r · |W |, since
these are the dominant cost factors, and the complexity is linear with respect
to W (O(steps · r · |W |)), when steps is small (r is typically small anyway).

6.6 Maintenance

In this section, we present techniques for maintaining the diverse set of products
in the case of dynamic data. In fact, the methodology of Stopk (Algorithm 14)
can be applied to maintain the r-diverse products. We consider two cases: (1)
new products are inserted in the product database, and (2) new preferences (in
the form of weighting vectors) are added in the customer preference database.
Both cases actually occur in online shops, when new products appear in the
market and new customer preferences are extracted from social sites.

In order to support product insertions efficiently, we exploit the top-k queries
that where computed during the computation of Ĉ. Let W ∗ be the set of
weighting vectors for which the top-k queries have been computed. We maintain
for each weighting vector w ∈ W ∗ the score of the k-th product. When a new
product pnew is inserted in the database, we check for each query w ∈ W ∗ if
pnew has a better score than the k-th product. If this does not occur for any
w ∈W ∗, we can safely ignore pnew, as it does not affect the determination of the
diverse products. On the other hand, if pnew becomes top-k for some weighting
vector w, we compute the new centroids only for the affected products (i.e.,
pnew and the products pi that used to be at the k-th rank, but were evicted by
pnew) and update the set Ĉ. We then apply DPSA algorithm on Ĉ and produce
a new set of diverse products. Note that in the first case, we can ensure that
the result set is the same as in the case where Stopk would be executed on the
updated dataset, but this does not hold for the second case. The similarity of
the centroids before and after the update can be used in order to decide when
the Stopk algorithm should be invoked to have a result set of higher quality.

In order to be able to handle new preferences effectively, during the compu-
tation of the diverse product we maintain the minimum (min) of all maximal
sums of distances between a centroid and any selected weighting vector (i.e.,
the expression in line 8 of Algorithm 14). In the case of a new weighting vec-
tor wnew, we follow the same principle as Algorithm 14 to decide whether the
respective top-k query should be evaluated. If

∑
p∈Dr(S) d(cp, wnew) is larger
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than min, then the top-k query for wnew is computed, the set of centroids Ĉ
updated and DPSA algorithm is executed on Ĉ to produce a new set of diverse
products. Intuitively, when vector wnew induces small changes to the set of cen-
troids, we do not need to recompute the r-diverse products as wnew would not
have been selected by Stopk in any case. Again, the retrieved diverse products
are not the same as if Stopk would be executed on the updated weighting vector
set, therefore a threshold on the similarity of the centroids before and after the
update may trigger executing Stopk to get a set of higher quality.

6.7 Supporting other set-based similarity func-
tions

In general, our approach is applicable also for other functions that compute
the similarity between sets of vectors. In such a case, our algorithms would
not calculate centroids (which is simply a representation of a set of weighting
vectors), but would instead directly operate on the reverse top-k sets of products.

Following this line of thought, Ĉ would represent a set of approximate reverse
top-k sets (instead of a set of centroids) and the computation of the most diverse
sets becomes independent of the similarity or distance function.

In more technical terms, Algorithm 12 would not calculate centroids but
would only maintain the reverse top-k sets, and Algorithm 14 would not compute
centroids incrementally but would simply update the approximate reverse top-k
sets of products based on the executed top-k queries. Then, Algorithm 13 can
be directly applied to the reverse top-k sets.

For instance, one popular similarity function is the Jaccard similarity, which
is defined as the size of the intersection divided by the size of the union of two
sets. Our approach readily supports the Jaccard similarity on reverse top-k sets,
as outlined above. Notice that the advantage of the cosine similarity compared
to Jaccard for the problem of finding diverse products is that it returns more
fine-grained similarity values. For example, in the case of disjoint sets, the
Jaccard similarity value equals to zero, and does not distinguish between the
sets. Instead, the cosine similarity of the centroid vectors allows us to distinguish
between them by returning a non-zero value. Moreover in the case of a set A
that is a subset of another set B (A ⊆ B), the Jaccard similarity is equal to
|B|−|A|
|B| which can get arbitrarily close to the maximum value. In such cases,

using the Jaccard similarity would not be helpful, as it would lead to selecting
A product that is covered by another one. The centroid vectors reduce this
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Parameter Values

Datasets
UN, CO, AC, CL
HOUSE

Data cardinality

1K, 5K, 10K (Diversity quality)
5K, 10K, 30K (Scalability Analysis)
100K, 200K, 500K (Sensitivity Analysis)
17265, 127930 (Real datasets)

Weight cardinality
1K, 5K, 10K (Diversity quality)
5K, 10K, 30K (Scalability analysis)
100K, 200K, 500K (Sensitivity analysis)
100K, 200K, 500K (Real datasets)

# results(r)
3, 4, 5 (Diversity quality)
10 (Scalability analysis)
5, 10, 30 (Sensitivity analysis)
5, 10, 30 (Real datasets)

# top-k results(k)

10, 20 (Diversity quality)
5, 10, 30, 50 (Scalability analysis)
5, 10, 30, 50 (Sensitivity analysis)
5, 10, 30, 50 (Real datasets)

# dimensions(d)
3 (Diversity quality)
3 (Scalability analysis)
3, 4, 5, 6 (Sensitivity Analysis)

Table 6.4: Parameter values with default values presented in bold

problem (they do not eliminate it) by choosing sets that are selected by distant
user preferences.

6.8 Experimental evaluation

In this section, we present the results of the experimental evaluation. All al-
gorithms were implemented in Java and the experiments run on 2x Intel Xeon
X5650 Processors (2.66GHz). The algorithms are disk-based and the index
structure used was an R-tree with a buffer size of 100 blocks, where the block
size is 4KB. The main parameters and values used through the experiments are
presented in Table 6.4.

Datasets. For the dataset S, we use both synthetic and real data. We examine
four different synthetic data distributions, namely uniform (UN), correlated
(CO), anticorrelated (AC) and clustered (CL). For the uniform dataset, the
data object values for all d dimensions are generated independently using a
uniform distribution. The correlated and anticorrelated datasets are generated
as described in [13]. The clustered dataset was created as follows: first 5 cluster
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centroids were selected randomly. Then, each coordinate is generated on the d-
dimensional space by following a normal distribution on each axis with variance
σ2
S = 0.345, and a mean equal to the corresponding coordinate of the centroid.

In addition, we use the dataset HOUSE (Household), which is described in
Section 4.7. For the dataset W of the weighting vectors, we used a uniform
(UN) distribution.

Algorithms. We implemented the three algorithms for centroid computation
(Rtopk , Itopk , and Atopk) coupled with the DPSA algorithm as described in
Section 6.4, and the selective top-k algorithm (Stopk) described in Section 6.5.
We also implemented an exact algorithm (denoted opt) that finds the optimal
solution, but obviously cannot scale well. For reverse top-k processing, Rtopk
uses the state-of-the-art BBR* algorithm [113], while Itopk uses the BB algo-
rithm [112]. In all algorithms, the dataset is indexed by an R-tree and for the
top-k query processing we employ a state-of-the-art branch-and-bound algo-
rithm [102].

Metrics. The metrics under which we evaluated the implemented algorithms
were: (a) execution time required by each algorithm, (b) I/O accesses, (c)
achieved diversity values. We also measured the number of processed top-k
queries, but in the interest of space we do not report them since they follow ex-
actly the I/O metric. We measure only the I/O induced on the dataset S, since
the I/O on W are caused by sequential access and accessing data sequentially
is much faster than the random accesses of S.

We conduct an experimental study varying the parameters of dimensionality
(3-6), cardinality (1K-500K) of S, cardinality (1K-500K) of W , value of k (5-50),
value of r (3-30), sample size |W ′| (0.001|W |-0.1|W |), and number of steps (100-
1000). Each experiment was repeated 10 times over different instances of the
datasets with the same parameters and different seed to the random generator,
in order to factor out the effect of randomization. Average values are reported
in all cases.

Evaluation methodology. Our evaluation was divided in three parts. In the
first part (6.8.1), we compare the algorithms Atopk and Stopk against the exact
algorithm (opt) in order to evaluate the quality of approximation of diversity.
In the second part (6.8.2), we evaluate the performance of Stopk against the
algorithms that rely on centroid computation (Rtopk , Itopk , and Atopk). In
the last part (6.8.3 and 6.8.4), we perform a thorough sensitivity analysis of
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Figure 6.2: Comparison to optimal diversity value

Atopk (which proved to perform best among the three algorithms with centroid
computation) against Stopk . We should stress here that the diversity of the
result set of Stopk is calculated using the whole set of preferences W , and not
only the vectors used for the identification of the most diverse products.

6.8.1 Quality of diversity

The purpose of this series of experiments is to study the loss of diversity com-
pared to optimal solution when using our algorithms Atopk and Stopk . Thus,
we compare to the optimal diversity produced by an exact algorithm (opt),

which examines all possible
(|S|
r

)
combinations of products exhaustively to find

the optimal solution. Recall that Rtopk and Itopk produce exactly the same
result set as Atopk and therefore have also the same diversity. The default setup
for this series of experiments was: d=3, |S| = 5K, |W | = 5K, k = 10, r = 5,
s = 0.1 · |W |, steps = 100, S:UN, and W :UN.
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Figure 6.3: Performance of all algorithms when varying |W |

Figure 6.2 depicts the diversity values for varying different parameters, namely
|S|, |W |, r and k. The diversity achieved by the greedy algorithm (Atopk) is
in most cases quite close to optimal, while Stopk results in similar diversity
values. As we can observe, our approximate algorithms perform very well in
comparison with the exact algorithm. In the worst case, when the size of the
objects dataset is only |S|=1000 objects(Figure 6.2(a)), the maximum difference
in diversity is 19%. As the datasets grow in size, the diversity of the result set of
the approximate algorithms approaches the optimal diversity. It is noteworthy
that as the number of returned objects (r) increases, the diversity value drops.
This behavior is expected, as the more points we select the smaller their average
distance will become.

We omit the figures comparing the performance of our algorithms to opt ,
since, as expected, our algorithms outperformed the exact approach by 1-4
orders of magnitude in terms of execution time.

6.8.2 Scalability analysis

In this series of experiments we compare the performance of the algorithms with
centroid computation (described in Section 6.4) in terms of execution time and
I/O. We also include the Stopk algorithm in the charts for completeness. The
default setup for this series of experiments is d=3, |S| = 10K, |W | = 10K,
k = 10, r = 10, S:UN, W :UN, steps = 100, s = 0.01 · |W |.

Varying |W|. As Figure 6.3 illustrates, Atopk and Stopk outperform by orders
of magnitude the Rtopk and Itopk algorithms in terms of execution time. This
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Figure 6.4: Performance of all algorithms when varying k

difference is not reflected in the measured I/O, because of the use of the buffer of
the R-tree. When the number of issued top-k queries is considered, both Rtopk
and Itopk process at least one order of magnitude more top-k queries than
Atopk and Stopk . This processing cost is responsible for their slow runtime.
We note that even though both Rtopk and Itopk are more efficient than Atopk
when a single reverse top-k query or a small number of influential points is
needed, they are less efficient when they are run repeatedly multiple times. In
this case, Atopk has a benefit and performs better. In particular, Rtopk has
no memory of the completed executions for different queries, and therefore it
computes repeatedly the top-k results of many preference vectors. On the other
hand, Itopk performs fewer reverse top-k queries than Rtopk , but shares the
same shortcoming for those reverse top-k queries that it processes. Therefore, it
faces the same problem as the Rtopk , however in not such great extent. Similar
conclusions are drawn when varying the data cardinality |S|. The performance
of the algorithms is much less affected by the increase of data cardinality, as
during the execution of the top-k queries very few data objects are accessed.

Varying k. Figure 6.4 illustrates the effect of varying parameter k. Atopk
consistently outperforms Rtopk and Itopk in terms of time, while Stopk improves
further the performance in terms of both time and I/O. Atopk , Rtopk and Itopk
have the same performance in terms of I/O due to the R-tree buffer employed
during query processing. Furthermore, for all algorithms, both time and I/O
increase for increasing values of k.
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Figure 6.5: Varying |S|

Since Atopk consistently outperforms the two other algorithms (Rtopk and
Itopk) that rely on centroid computation, we use only Atopk in the remaining
experiments as representative of this family of algorithms.

6.8.3 Sensitivity analysis

In this section, we provide a detailed sensitivity analysis by varying different
parameters that influence the performance of our proposed algorithms. The
default setup for this series of experiments is d = 3, |S| = 100K, |W | = 100K,
k = 30, r = 10, S:UN, W :UN, steps = 500, s = 0.01 · |W |.

Varying |S|. Figure 6.5 illustrates the performance of Atopk and Stopk for
increasing cardinality of the dataset S. We observe that Stopk retrieves a set
of r objects with similar diversity compared to the set retrieved with Atopk .
Stopk performs constantly better than Atopk with respect to time and I/O.
In particular, the processing time of Stopk is minimally affected by the size of
S while the processing time of Atopk increases linearly. Regarding I/O, there
is a slight deterioration in the performance of Stopk due to the fact that the
increased size of the dataset causes more misses when reading from the buffer
of the R-tree. The same holds for Atopk , but in this case the phenomenon is
enhanced by the large number of top-k queries performed.

Varying |W|. Figure 6.6 studies the behavior of Atopk and Stopk with respect
to the cardinality of the dataset W . We observe that Stopk achieves similar
values of diversity compared to Atopk while it constantly performs better with
respect to both time and I/O. Figure 6.6(b) indicates that affects the processing
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Figure 6.6: Varying |W |
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Figure 6.7: Varying d

time of both Stopk and Atopk . Atopk needs to perform more top-k queries
while Stopk is affected as it needs to search longer for diverse preferences in
W . Regarding I/O, Stopk is minimally affected as the number of top-k queries
executed are not affected by the size of |W |. On the contrary the I/O accesses
of Atopk increase linearly with respect to |W | as more top-k queries need to be
executed.

Varying d. For increased dimensionality, as depicted in Figure 6.7(a), the
diversity value of Stopk compared to Atopk is influenced more than for the other
parameters. Recall that the diversity between the products was calculated for
Stopk using all vectors in W and not only the ones used for the identification of
the products. However, the processing time of Stopk remains almost unaffected
while it increases significantly for Atopk . Regarding I/O, the performance of
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Figure 6.8: Varying data distribution
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Figure 6.9: Varying r

Stopk deteriorates slower than in the case of Atopk . Note that both Figures
6.7(b) and 6.7(c) are in log scale in the y-axis.

Varying dataset distribution. The efficiency of the proposed algorithms
was evaluated against 4 different distributions (UN,CL,CO,AC). In all cases,
Stopk achieved diversity values similar to the ones achieved by Atopk . The case
of anticorrelated data is of particular interest, as Stopk performs an order of
magnitude better with respect to time and several orders of magnitude with
respect to I/O. We should note that in most cases the diversity achieved by
Stopk is almost equal to the one achieved by Atopk and in some cases it is even
slightly higher. This happens because Stopk locates the most diverse preferences
and based on them it identifies the most diverse products. Atopk on the other
hand, bases the search for most diverse objects on the centroids of the RTOPk
sets of the products.
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Figure 6.10: Varying k
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Figure 6.11: Varying steps

Varying r. Figure 6.9 examines the effect of varying the number r of retrieved
products on our algorithms. First, we observe in Figure 6.9(a) a decreasing
tendency of the diversity value as r increases for both algorithms, which is
expected as also the diversity value of the optimal solution will decrease as the
most diverse products are selected first. As far as the performance is considered,
in Figure 6.9(b), the time of Atopk is not influenced by the increase of r, because
Atopk computes all top-k queries independently of the size of the result set r
and the computational cost of DPSA algorithm is not significant compared to
the cost of the top-k queries. Stopk is also not significantly affected, since the
values of r are relatively small, and the algorithm is executed steps times in any
case. Still, Stopk remains always much faster than Atopk .

Varying k. In Figure 6.10, we gradually increase the parameter k of the re-
verse top-k queries from 5 to 50. In Figure 6.10(a), we notice that the diversity
value is stable as k increases, which seems counter-intuitive at first. By in-
creasing k, the size of the reverse top-k set increases for some objects and more
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Figure 6.12: Varying W ′

objects have a non-empty reverse top-k set. However, this does not influence
the diversity value significantly, as the most diverse centroids may not change.
Figure 6.10(b) depicts the time obtained for different values of k. Although we
witness a small deterioration in the performance of both algorithms, Stopk con-
sistently outperforms Atopk . Processing top-k queries is more time-consuming
for higher values of k and the DPSA algorithm gets slower with increasing k
because the number of candidates for finding the diverse objects increases. We
should add however, that the effect of parameter k has much smaller impact
on the performance of Stopk because Stopk performs a small number of top-k
queries.

Varying steps. The steps parameter is an essential parameter for the Stopk
algorithm as it balances the efficiency of the algorithm and the diversity the
algorithm achieves. Recall that Stopk performs only steps top-k queries, which
is only a small fraction of the |W | top-k queries that Atopk performs. On the
other hand, Stopk executes also steps times DPSA algorithm on a small set
of approximate centroids, which is not necessary for Atopk . In Figure 6.11,
we observe that the diversity achieved using very few vectors is quite close
to the diversity achieved by the Atopk algorithm. As we increase the steps
parameter, the achieved diversity increases marginally. However, the execution
time increases proportionally with the increase of the steps parameter. This
experiment verifies that a small value of steps is sufficient to produce results of
high diversity in a very efficient way.

Varying sample size |W′|. The size of sample of preferences from which we
select the two initial centroids plays an important role in the performance of
the Stopk algorithm. The complexity of the selection process is O(|W ′|2) and
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Figure 6.13: HOUSE dataset: varying |W |

therefore a large sample can have significant impact on the performance of the
algorithm. However, as shown in Figure 6.12, the increased cost in performance
is not accompanied by an increased gain in diversity. The reason behind this
fact is that once the sample is large enough to offer a good representation of
the whole set of preferences, further enlargement will not help significantly in
finding better initial centroids.

6.8.4 Results on real data

We have also performed an evaluation of our algorithm using a real dataset. The
conclusions drawn are overall in accordance with the conclusions made by the
evaluation with synthetic data, thus verifying our findings. The default setup
for this series of experiments is |S| = 127930, |W | = 100K, k = 30, r = 10,
W :UN, steps = 500, s = 0.01 · |W |. The size of the dataset used and the high
complexity of the exact algorithm (opt) did not allow the exact algorithm to
terminate and therefore we did not include its performance results in this series
of experiments.

Analysis for varying |W|, k, and r. Figures 6.13-6.15 depict performance
of the two algorithms. For all values of the varying parameters Stopk achieves
diversity values close to the ones of Atopk . For both algorithms, we notice a
drop in the diversity values when r is increases which is expected as analyzed in
6.8.1. With respect to processing time, it is evident that both parameters |W |
and k play a significant role in the performance of Atopk . This does not come
as a surprise as the processing cost of Atopk is dominated by the processing cost
of the top-k queries needed for the computation of the centroids of the RTOPk
sets for each product. On the contrary, Stopk is much less affected by those
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Figure 6.14: HOUSE dataset: varying k
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Figure 6.15: HOUSE dataset: varying r

parameters as it performs a limited number of top-k queries. The increase of
parameter r has little effect in both algorithms. The performance difference
with respect to I/O is in all cases larger than two orders of magnitude. Only
exception is for k < 10 where Stopk is one order of magnitude more efficient.

6.9 Conclusion

In this chapter, we address the problem of selecting the r most diverse products
based on customers’ preferences. The reverse top-k set of each product is rep-
resented by its centroid and the distance between centroids is then expressed
using cosine distance. In order to find products that are attractive to customers
with dissimilar preferences, we define the r-Diversity problem as a dispersion
problem applied on the products’ reverse top-k sets. As dispersion problems are
known to be NP-hard, we propose two approximate algorithms that solve the
problem. The first algorithm computes the reverse top-k sets and then applies
a greedy algorithm that retrieves a set of products of high diversity. The sec-
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ond applies the greedy algorithm on an approximation of the reverse top-k sets
by evaluating only some carefully selected top-k queries. In our experimental
evaluation, we study the performance of the proposed algorithms and the diver-
sity of the retrieved products in various experimental setups. In particular, we
demonstrate that our algorithms both achieve diversity values close to optimal
and are very efficient in practice.
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Chapter 7

Maximizing Influence of
Spatio-Textual Objects

In the previous chapters, we studied the problem of analyzing user preference
queries in order to identify objects that can attract the interest of users and mo-
tivate them to explore the database content of a service provider or a product
manufacturer. Nowadays however, there is an increasing number of platforms
that offer the users the ability to explore the products or services of a large
number of providers by merging in unified catalogs the offered products or ser-
vices. In such cases, it not uncommon for user preferences to include a spatial
location associated with the desired product or service. For example, given a
database of hotels annotated with features (in the form of keywords), tourists
can pose spatio-textual queries, which combine spatial distance and textual rel-
evance and retrieve a set of hotels ranked according to their distance from a
user specified location and textual similarity to the query keywords. In this
context, a challenging problem is to select a bounded set of at most b keywords
to describe the facilities of a spatial object, in order to make the object appear
in the top-k results of as many users as possible. In this chapter, we study
this problem, called Bests-terms and we show that it is NP-hard. Hence, we
present a greedy approach and a graph based algorithm for keyword selection.
By means of a thorough experimental evaluation using real data, we compare the
two algorithms and we demonstrate the efficiency of the graph based approach.

149
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7.1 Introduction

Spatio-textual search has attracted increased attention recently, due to the nu-
merous applications that provide value-added services to the users by combining
spatial location with textual relevance. Given a database of geographical points
of interest that are annotated with textual information (also called spatio-textual
objects), the objective of a spatio-textual query is to retrieve a ranked set of top-
k spatio-textual objects that are close to the query point and have high textual
similarity to the query keywords. As a notable example, consider hotels that are
annotated with their facilities (e.g., in the form of keywords) and tourists that
search for hotels close to some location of interest and a set of query keywords
indicating desired facilities (for example “pool” or “Wi-Fi”).

An interesting problem encountered in real-life applications that rely on
spatio-textual retrieval is how to improve the ranking of a spatio-textual object
for as many users as possible. For instance, for a newly established hotel at
some location, the question is how to enrich its textual annotation in order to
maximize its rank for many different users. To address this challenging prob-
lem, we capitalize on reverse top-k queries [110], which retrieve the set of users
that have a given object in their top-k results. We model the problem as a
maximization problem of the cardinality of the reverse top-k result set, and
we explore the different combinations of keywords that will increase the query
object’s rank for many users, when added to its textual annotation. We call
this problem Best terms problem, we show that it is NP-hard, and we present
a greedy solution that serves as baseline. Then, we propose a novel algorithm
that boosts the performance of query processing, by deliberately selecting key-
words that increase the score of the query object for many users simultaneously.
Finally, we present the results of our experimental evaluation that verifies the
performance gains of our algorithm.

In summary, our main contributions are outlined below:

• We formulate the novel problem, called Best terms, of increasing the rank
of a spatio-textual object for many different users, by enriching its textual
description.

• We show that the Best terms problem is NP-hard and we provide a base-
line solution.

• We propose an efficient query processing algorithm that significantly out-
performs the baseline consistently.
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• We provide an experimental evaluation that demonstrates the merits of
our approach.

The rest of this chapter is structured as follows: Section 7.2 provides an
overview of the related work. Section 7.3 presents the necessary background
and preliminary concepts. Then, in Section 7.4, we formally describe the prob-
lem statement. Section 7.5 presents the baseline algorithm, while Section 7.6
describes our efficient query processing algorithm. Section 7.7 shows the exper-
imental evaluation, and Section 7.8 presents the conclusions.

7.2 Related work

In this section, we provide an overview of the related research literature.

Keyword recommendation. Zhang et al. [128] present a method for recom-
mending keywords for advertisements in keyword search results using Wikipedia.
They focus mostly in cases where the advertisement (target) consists of short-
text web pages that contain inadequate textual content to describe the adver-
tised entity. Based on the fact that a large number of entities are described in
Wikipedia, they use Wikipedia articles relevant to the advertised entity in order
to recommend keywords to connect to the target. Fuxman et al. [38] follow a
different approach. They suggest keyword queries to advertisers using logs that
store the queries posed by the users and the URLs of the result set that were
selected by the users. Some of the URLs are also connected to a set of concepts.
The target of the authors is to connect the set of concepts to the queries using
the Markov Random Field model and suggest the most relevant queries for each
concept to the advertisers. Ravi et al. [90] propose variety of methods for auto-
matic generation of bid phrases. Among others, they introduce the usage of a
translation model that extends a predefined mapping between bidding phrased
and target web pages. Papadimitriou et al. [84] study the problem of mapping
an advertisement in a set of URLs based on keyword queries. In particular, they
assume that each advertisement is mapped to a set of keyword queries and their
aim is to map each advertisement in a set of URLs that will be representative
of the results produced by the attached keyword queries. Choi et al. [21] create
a representative summary of the advertisement based on the context of the ad-
vertised material. Their method is making use of co-occurrence and semantic
vectors in order to enrich the ad context and create a representative set of terms.
Cholette et al. [22] study the problem of finding optimal bids in search based
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algorithms. Agrawal et al. [2] introduce an approach for recommending bid
phrases from a given ad landing page by classifying a set of labels generated by
click logs. Their classifier has logarithmic complexity and can efficiently make
predictions on large sets of labels.

The aim of the aforementioned approaches is to identify potentially relevant
queries to the advertised products and form bid phrases based on the identified
queries. Our approach is inherently different, because the above techniques try
to predict relevant queries and do not consider the relevance of the advertised
product in relation to similar products. In addition, they do not consider top-
k search criteria as the appearance of a product in a search result is decided
mainly on the bidding strategy. On the contrary, our aim is to enhance the
description of a spatio-textual object and to increase the number of queries for
which the target product appears in the top-k list of the search results. In this
effort, we take into consideration not only the user preferences, but also the rest
of the spatio-textual objects that are relevant to those queries.

Spatial keyword search. Spatial keyword search has been well studied dur-
ing the recent years and several index structures have been introduced for ef-
ficient search. A detailed evaluation of existing spatio-textual indexes can be
found in [19]. Felipe et al. [36] introduced the IR2-tree index, which integrates
a bitmap signature on each node of an R-tree describing the textual content of
the subtree rooted at the node. Cong et al. [24] introduced the IR-tree and its
variants. The IR-tree is based on the R-tree structure as well. Each node of the
tree is associated with an inverted index containing the textual information of
the children of the node. Rocha et al. [91] proposed the S2I index, which uses
different strategies for frequent and infrequent terms. The spatial distribution
of a frequent term is stored in an aggregated R-tree (aR-tree), where each node
contains an aggregated value of the impact of the term on the objects contained
in the subtree rooted at the node. Cao et al. [15] introduced the concept of pres-
tige, where a spatio-textual object has a higher prestige if it is collocated with
other textually similar objects. They calculate the prestige of a spatio-textual
object based on a graph, where each node corresponds to an object and two
nodes are connected if and only if their textual similarity and spatial proximity
exceed certain thresholds. Deng et al. [26] suggested an approach of finding a
set of spatio-textual objects that are relevant to a spatio-textual query and at
the same time they fulfill a desired spatial property. In particular, their aim is
to identify a keyword-cover of optimal score, where a keyword cover is defined
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a set of objects where each object is associated with exactly one term of the
spatio-textual query.

Ying Lu et al. [76] and Jiaheng Lu et al. [74] studied the problem of reverse
spatial and textual k nearest neighbor search, where, given a query point q, the
objective is to locate the set of spatio-textual objects, for which q is among the
k nearest neighbors. The distance between the objects is a linear combination
of the textual and the euclidean distance of the objects. The authors introduce
the IUR-tree, which is an adaptation of the IR-tree. Each node of the IUR-tree
contains the union and the intersection of the terms contained in the objects in
the subtree rooted at the node. Our approach is different, as we do not evaluate
the similarity between elements of a set of spatio-textual objects, but our aim
to increase the relevance and therefore the visibility of an object against a set of
user preferences, which constitutes a different set from that of the spatio-textual
objects that our query object belongs.

Wu et al. [117] proposed the W-IR-tree, which is similar to the IR-tree but it
differs in the way it is constructed. While the IR-tree places the objects in leaf
nodes based on their distance, the W-IR-tree partitions the objects based pri-
marily on their textual relevance. The W-IR-tree shows improved performance
for batch queries, where objects are considered relevant to the query only if they
contain all terms of the query. The W-IR-tree cannot be applied in our case, as
we consider it possible for a spatio-textual object to be relevant to a user query
even if it does not contain all terms of the query.

7.3 Preliminaries

Let D be a set of spatio-textual objects, where each object o is represented by
a tuple of the form o = 〈o.T, o.L〉, where o.T is a set of keywords describing
the features of o and L is a point in R2 describing the location of o. We denote
as A =

⋃
o∈D o.T to be the set of all keywords in D. For a given object o, we

consider the size of o to be equal to |o.T |, namely the size of an object is the
number of terms it contains.

7.3.1 Top-k spatial keyword queries

Let u be a user preference query on D, where u is represented by the a tuple
u = 〈u.T, u.L, α〉, u.T ⊆ A is the text describing the user’s desired features,
u.L ∈ R2 denotes the desired location, and α ∈ [0, 1] denotes the importance
of location over matching the desired features. Given a preference u, we can
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assign a score to each object using the following equation:

f(o, u) = α× δ(o.L, u.L) + (1− α)× θ(o.T, u.T ) (7.1)

where δ(o.L, u.L) is the spatial distance, and θ(o.T, u.T ) is the textual distance
between the object o and the user preference u. Given an integer k, we can
return the top-k spatio-textual objects according to their score. We assume
that lower scores are better, both spatial and textual distances are normalized
in the interval [0, 1] and f(o, u) = 1.0 if θ(o.T, u.T ) = 1. The latter assumption
implies that objects that are not textually relevant to the query cannot be
considered as a valid result.

The textual relevance we employ is the normalized intersection of terms
between the description of a spatio-textual object o.T and a user preference
keyword set u.T , i.e., θ(o.T, u.T ) = 1 − |o.T

⋂
u.T ||u.T |−1. Although in large

documents different textual similarity functions are more appropriate, the in-
tersection is more representative in cases of feature selection. For instance if a
user is looking for a hotel with a restaurant and a pool, any hotel offering more
features (e.g. restaurant, pool, bar) than the ones specified by the user should
not be less textually relevant than a hotel that offers only the features specified
by the user preference (restaurant, pool).

The cardinality of the RTOPk set of a query-object q is called influence
score of the object and we denote it as f Ik (q). The influence score indicates the
number of users to whom q is visible.

7.3.2 IR-tree

We employ a state-of-the-art index structure to process spatial keyword queries,
namely the IR-tree [24]. The IR-tree is an R-tree, where each node is associated
with an inverted index of the objects contained in the respective sub-tree rooted
at the node. In more detail, each leaf node contains an inverted index of the
spatio-textual objects contained in the node. The leaf node is characterized by
a spatio-textual pseudo-object that consists of a minimum bounding rectangle
(MBR) enclosing all objects of the node and a pseudo-document consisting of
the union of all the terms contained in the children of the node. Each non-
leaf node contains an inverted index of the spatio-textual pseudo-objects of the
children nodes it contains. Non-leaf nodes are also characterized by spatio-
textual pseudo-objects, which are constructed similarly to the pseudo-objects
of the leaf nodes.
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7.4 Problem definition

Let D be a set of spatio-textual objects and U be a set of preferences. We assume
that the location of the spatio-textual objects cannot change. Therefore, the
problem of maximizing the influence score of a spatio-textual object q can be
viewed as the problem of selecting a set of terms that maximize the influence
score of q by increasing the textual similarity between q and the user preferences
in U . Ideally, according to the textual relevance function described in Section 7.3
the textual description of q should be enhanced with the addition of the entire
vocabulary of the user queries. This is in most cases practically impossible,
therefore, we study the problem of finding a set of b terms, which when added
to the textual description of q, they maximize the influence score of q. We refer
to this problem as Best-terms query.

Definition 7.1. Best-terms query. Given a set D of spatio-textual objects, a
set of terms A =

⋃
o∈D o.T , a set of queries U , a scoring function f , an integer

k, a spatio-textual object q = 〈q.T, q.L〉, and an integer b, the set BT is a set of
terms such that BT ⊆ A, BT

⋂
q.T = ∅, |BT| ≤ b and ∀T ⊆ A, |T | ≤ b it holds

that f Ik (q1) ≥ f Ik (q2) where q1 = 〈q.T
⋃

BT, q.L〉 and q2 = 〈q.T
⋃
T, q.L〉.

The Best-terms problem is NP-hard. We show that by studying a special case
of a Best-terms query, namely the respective decision problem of finding whether
there exists a set of terms T with |T | ≤ b such that f Ik (〈q.T

⋃
T, q.L〉) = |U |.

Definition 7.2. Best-terms (decision problem). Given a set D of spatio-
textual objects, a set of terms A =

⋃
o∈D o.T , a set of queries U , a scoring

function f , an integer k, and a spatio-textual object q = 〈q.T, q.L〉 ∈ D, decide
if there is a set BT such that BT ⊆ A, BT

⋂
q.T = ∅, |BT| ≤ b for which it

holds that f Ik (q1) = U where q1 = 〈q.T
⋃

BT, q.L〉

We will show that the decision problem of Definition 7.2 is NP-complete by
reducing the set cover problem to the decision problem using the restriction
technique [39].

Definition 7.3. Set cover problem. Let U be a set of elements (universe)
and T = {T1, . . . , Tn} be a collection of sets where

⋃n
i=1 Ti = U . The set cover

problem decides if there is a subset of T , T ′ ⊆ T of size |T | ≤ b such that T ′
is a cover of U .

Theorem 7.1. The decision problem of Best-terms is NP-complete.
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Proof. Let an oracle machine select the BT set for a query object q. We set
p = 〈q.T

⋃
BT, q.L〉 and by performing a TOPk query for each user preference

we can calculate the RTOPk(p) set and the influence score f Ik (p) of object p in
polynomial time. Therefore the solution can be verified in polynomial time and
our problem belongs to the NP class.

We set U a to be a set of users and D = {q}, where q.T = ∅. We define
a collection T = {T1, . . . , T|A|} of sets, one for each term ti in A where a user
u belongs in Ti only if ti ∈ u.T . If we consider k = 1, then, for all users
that q.T

⋂
u.T = ∅ it holds that q 6∈ TOPk(u) since q is not relevant to u.T .

If q.T
⋂
u.T 6= ∅ then q ∈ TOPk(u) as it is the only object. Therefore any

selection of a term ti is equivalent of selecting a subset of Ti of U . The set
cover problem is consequently reduced to Problem 7.2, as it can be seen as a
special case of Problem 7.2. Problem 7.2 is therefore NP-complete. Best-terms
is at least as hard as Problem 7.2, which leads us to the conclusion that the
Best-terms problem is NP-hard. �

7.5 The best term first (BTF) algorithm

Since the Best-terms problem is NP-hard, an exact solution is infeasible, even
for medium-sized datasets. Motivated by this observation, in this section we
describe a greedy algorithm, termed Best Term First (BTF), that provides an
approximate solution to the Best-terms problem. BTF operates in an iterative
way consisting of b steps, and on each step it adds to the query object the term
that induces the highest increase in influence score.

7.5.1 Algorithm description

Algorithm 15 describes the BTF approach in more detail. BTF takes as input
an IR-tree index containing the set of spatio-textual objects D, and an IR-tree
index containing the set of user preferences U . BTF works in b iterations, and in
each iteration the best term (i.e., the term that induces the maximum increase
in the influence of q) is selected and added to the terms of the query object.

Initially, BTF creates a pseudo-preference q′ defined by q and using α = 1,
which indicates that q′ uses only distance to data objects, not textual similarity,
for ranking. The role of q′ is to enable traversing the preference dataset solely
based on distance to the query object q. This imitates a sorted access to the
preferences, yet this is achieved by means of the IR-tree index on U , without
having to sort U .
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Algorithm 15 Best Term First (BTF) Algorithm

Input: U :set of users
D: set of objects
q:query point
b : number of new terms

Output: BT: set of new terms
1: C ← ∅, buffer ← ∅
2: q′ ← 〈q.T, q.L, 1〉
3: bestCandidate← q
4: for i = 0; i < b; i+ + do //repeat until b new terms have been found

5: for all t ∈ A− q.T do
6: C ← C

⋃
{〈bestCandidate.T

⋃
{t},bestCandidate.L〉}

7: end for
8: u←next(U,q′)
9: while u 6= null do

10: τ ← max
p∈buffer

(f(p, u)) //in the first iteration buffer is empty, so we set τ ←∞

11: if ∃c ∈ C : f(c, u) ≤ τ then
12: buffer← TOPk(u)
13: τ ← max

p∈buffer
(f(p, u))

14: for all c ∈ C do
15: if f(c, u) ≤ τ then
16: I(c)← I(c) + 1
17: end if
18: end for
19: end if
20: u←next(U,q′)
21: end while
22: bestCandidate← argmax

c
(I(c))

23: end for
24: BT← bestCandidate.T-q.T
25: return BT

In each iteration, BTF first creates a set C of candidate spatio-textual ob-
jects, one for each term that can be added to q. The size of C is equal to
|A − q.T |. In lines 10,11 the algorithm exploits the sorted access to the prefer-
ence dataset, in order to avoid processing some top-k queries. More accurately,
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given the current user preference u, the score of the last retrieved spatio-textual
objects is compared with the scores of the candidate objects C, and if no can-
didate object has a better score than the k-th ranked spatio-textual object, the
user preference is ignored (pruning condition) as no candidate object can be in
its TOPk set. Otherwise, the top-k query needs to be executed and its TOPk
result set is stored in the buffer. All candidate objects that are no worse than
the k-best element of the calculated TOPk set belong also to the TOPk set of u
and therefore their influence score is increased. When all user preferences have
been examined, the object with the highest influence score is selected and a
new set of candidate objects is created based on that object. The procedure is
repeated b times until an object with b new terms is created. The b terms that
were selected constitute the resulting BT set.

Although BTF adopts a greedy technique to select the b terms, the use
of sorted access to dataset U together with the pruning condition reduce the
number of processed top-k queries, thereby saving computational costs.

7.5.2 Complexity analysis

The cost of the BTF algorithm is determined by the cost of selection of each
of the b terms. As the main factors that affect the cost of term selection are
the construction of set C with cost O(|A|), and the cost Ctopk of processing a
top-k query which in worst case will be processed |U | times. Thus, the overall
complexity of BTF is:

CBTF = O(b(|A|+ |U |Ctopk))
However, in practice the number of processed top-k queries is much smaller than
|U |.

7.6 Graph based term selection

BTF extends the textual description of a spatio-textual object iteratively, which
forces the algorithm to scan the preferences set U multiple times. In this section
we present a novel algorithm, named Graph Based Term Selection (GBTS),
which examines the set of preferences only once and creates a graph of terms
that provides an estimation of the influence gain any combination of terms may
provide.

Essentially, GBTS consists of two separate algorithms. The first algorithm,
named Graph Construction (GC), creates a graph connecting the terms that
when added to the spatio-textual query object q, they can induce an increase
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in its influence score. The second algorithm, named Best Subgraph Selection
(BSS), traverses the graph in a deliberate manner, in order to identify the sets
of terms that will induce the highest increase in the influence score of q.

7.6.1 Graph construction algorithm

Given a set of objects D, a set of user preferences U and a spatio-textual object
q, we denote as Û(q) the subset of all preferences u (Û(q) ⊆ U) for which q is
does not belong in the TOPk(u) set and at most b terms are needed for q to
be added to TOPk(u). The Graph Construction algorithm builds a weighted
graph G = (V,E), where each node of the graph represents a candidate term,
and the weights on edges indicate the maximum increase in the influence score
of q that can be induced, if the respective set of terms is added to q.

In more detail, for each examined user preference u, the algorithm adds to
graph G a node for each previously unseen term. The edges connecting the
nodes and the weights of the edges are determined by the number of terms λ
that need to be added to u for it to be included in RTOPk(q). The value of λ
is calculated based on Equation 7.2, where fmax(q, u) is the worst score that q
is required to have in order to be in the TOPk(u) set and derives directly from
Equation 7.1.

fmax(q, u) = α× δ(q.L, u.L) + (1− α)× |q.T
⋂
u.T |+ λ

|u.T |
(7.2)

• If λ=1, the algorithm adds a loop edge with weight equal to 1 to each
term t that is not contained in q. If the edge already exists, the weight is
simply added to the weight of the existing edge.

• If λ > 1, thus more than one terms are necessary for q to be included
to TOPk(u), the procedure is slightly different. Let T = u.T − q.T =
{t1, . . . , tn} be the terms that are included in u but not in q. For each
pair of terms in u.T −q.T , the algorithm adds an edge with weight we. As
before, if an edge already exists, the weight is added to the existing edge.

Since we add λ terms that correspond to
λ(λ− 1)

2
pairs of terms, the weight

of each edge we is set to 2 (λ(λ− 1))
−1

, which is a normalization that makes the
sum of weights added equal to 1. Intuitively, we add a total weight of 1 to each
subgraph G′ = (V ′, E′) where V ′ ⊆ T and |V ′| = λ, indicating the potential
increase in the influence score of q if the terms contained in G′ were added to q.
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Algorithm 16 Graph Construction (GC) Algorithm

Input: U :set of users
D: set of objects
q:query point
b : number of new terms

Output: G = (V,E): resulting graph
1: V = ∅, E = ∅, buffer← ∅,G = (V,E) //graph initialization

2: q′ ← 〈q.T, q.L, 1〉
3: u← next(U, q′)
4: while u 6= null do
5: buffer← TOPk(u)
6: τ ← max

p∈buffer
(f(p, u))

7: if f(q, u) > τ then //if q 6∈ TOPk(u)

8: T ← u.T − q.T
9: V ← V

⋃
T

10: λ← max

(
1,

⌈(
1− τ − aδ(q, u)

1− a

)
|u.T | − |q.T

⋂
u.T |

⌉)
//from Eq. 7.2

11: if λ ≤ 1 then
12: E ← E

⋃
{e = (ti, ti, 1) : ti ∈ T}

13: else if 1 < λ ≤ b then

14: E ← E
⋃{

e =

(
ti, tj ,

2

λ(λ− 1)

)
: ∀ti, tj ∈ T and ti 6= tj

}
15: end if
16: end if
17: u←next(U,q′)
18: end while
19: return G

Algorithm 16 describes the construction of the term graph G. Similarly to
Algorithm 15, GC traverses the preferences based on their distance to q. For
each user preference u, if q is not in the TOPk(u) set, GC updates the node
set of G and calculates λ, the number of terms that need to be added in q
for it to be included in the TOPk(u) set (line 10). A non-positive value of λ
indicates that u is located near q but q.T

⋂
u.T = ∅ and therefore q is not

included in the TOPk(u) set. The addition of any term will allow q to be added
to TOPk(u) set and therefore one loop edge is added to each term t for which
it holds t ∈ u.T − q.T . If more than one terms are necessary to be added in
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user terms min terms to be added
u1 t1, t2, t3 1
u2 t2, t4, t5 2
u3 t2, t3, t5, t6 3
u4 t1, t3, t6 3

User terms

(a) The term-sets for the users

t3t1 t2

t4t5t6

1 11

1

0.33

1
1.33

0.33

0.33
0.66

0.33

0.33

0.33

(b) The resulting graph

Figure 7.1: Example Graph: The nodes of the suggested solution are colored
with light gray

q (λ > 1), GC adds all necessary edges in the graph. The algorithm continues
until all user preferences have been examined.

The size of the graph depends on the number of distinct terms contained in
Û(q). The terms correspond to the features extracted from the textual descrip-
tions of spatio-textual objects that describe the offered facilities. In practice,
we have noticed that the vocabulary for the targeted applications is limited and
therefore the graph is expected to fit in the main memory.

Example 7.1. As an example, let the user preferences in Figure 7.1(a) be the

Û(q) set for b = 3, i.e., the set of user preferences that can be added to the
RTOPk(q) set if 3 more terms are added to the spatio-textual object q. We also
assume that the shown terms for each user preference are not included in q.
The first step of the algorithm is the evaluation of the user preference u1. The
algorithm adds to the graph the nodes t1, t2, and t3. Since only one term needs
to be added to q for u1 to be added to RTOPk(q), it adds one loop edge with
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Algorithm 17 Best Subgraph Selection (BSS) Algorithm

Input: G = (V,E): graph
b: number of desired terms

Output: BT:set of new terms
1: Q← ∅ //Priority Queue

2: BT← ∅
3: for i = 0; i < b; i+ + do
4: ti ← next node of G with the highest degree
5: Gti ← expandNode(ti)
6: Q.add(sumOfWeights(Gti),Gti)
7: end for
8: while |BT| ≤ b do
9: GS ←Q.pop()

10: add to BT the b− |BT| highest degree nodes from GS
11: end while
12: return BT

weight 1 to all terms. On the next step u2 is processed and two more nodes
(t4, t5) are added to the graph. For each pair of terms contained in u2 we add
an edge to the graph with weight equal to 2(λ(λ− 1))−1, where λ is equal to 2,
which is the number of terms needed to be added to q for u to be in RTOPk(q).
When u3 is processed, t6 is added to the graph, and for each pair of terms in u3

an edge with weight 1/3 is added to the graph. Finally, u4 is processed and the
graph is updated accordingly.

7.6.2 Best subgraph selection algorithm

When the graph has been created, the Best Subgraph Selection algorithm (BSS)
chooses as seed nodes the b nodes (terms) of the graph with the highest degree
and creates b subgraphs, each containing one node. Next, each subgraph is
expanded by adding at each step the highest degree node that is adjacent to
a node of the subgraph. The expansion of each subgraph is continued until
each subgraph has b nodes or the subgraph cannot be expanded. Finally, the
subgraph with the highest sum of edge weights is selected as the solution and
the set of terms included in the subgraph are the ones that constitute the BT
set.
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Algorithm 17 describes the algorithm of the term selection. Initially an
empty priority queue (Q) is constructed. Subsequently, at line 4 the algorithm
chooses as seed the highest degree node ti that has not yet been selected and
constructs the subgraph Gti (line 5). The subgraph is constructed by repeatedly
selecting the highest degree node adjacent to the Gti until |Gti | = b or until no
nodes can be added to Gti . When each subgraph is constructed, it is pushed
to Q. The sorting key of Q is the sum of weights of the edges in the subgraph.
The BT set is constructed by selecting the subgraph with the highest sum of
edges and adding the terms of the subgraph to BT. If the subgraphs contain
less than b terms, more subgraphs are pulled from the priority queue until BT
contains b terms. In such cases we add from each subsequent subgraph to BT
the b− |BT| highest degree nodes of the subgraph.

Example 7.2. Continuing the previous example, during the execution of BSS,
3 subgraphs are created with seed nodes the terms t2, t5 and t3. We denote the
respective subgraphs as Gti where ti is the seed node of the subgraph. Each
subgraph Gti is extended to the highest degree node adjacent to Gti . In the
case of Gt2 , the subgraph is expanded by adding first node t5, which is the node
with the highest degree adjacent to t2 and subsequently with node t3 which is
the highest degree node adjacent to either t2 or t5. After the addition of t3, the
size of Gt2 becomes equal to 3 and therefore the expansion stops and the next
subgraph is processed. In the case of the example all subgraphs produce the same
result which includes the light gray nodes in Figure 7.1(b). The nodes contained
in the result are the ones to be added to q.

7.6.3 Complexity analysis

The overall complexity of the Graph Based Term Selection is determined by the
two algorithms that comprise it.

CGBTS = CGC + CBSS
GC consists of two parts: the processing of |U | top-k queries and the addition

of edges Û(q) times. The addition of an edge is done in constant time and

therefore the cost of GC is equal to: CGC = O(|U | · Ctopk + Û(q)).

BSS also consists of two parts: the construction of b subgraphs, and the
selection of nodes (terms) from the best of these subgraphs. The main cost of
BSS is the construction of the b subgraphs, which is O(b · (b3 + logb)). The
cost of expanding a single-node subgraph b times and finding the highest degree
node is equal to O(b3), while the cost of insertion to the priority queue is equal
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to O(logb). The node selection is in worst case O(b · logb), though in practice it
is logb. Hence, we derive: CBSS = O(b · (b3 + logb)).

Consequently, the overall complexity of Graph Based Term Selection is:
CGBTS = O(|U | · Ctopk + Û(q) + b · (b3 + logb))

7.7 Experimental evaluation

In this section, we present the results of the experimental evaluation. All al-
gorithms were implemented in Java and the experiments were executed on an
AMD Opteron 4130 Processor (2.60GHz), with 32GB of RAM and 2TB of disk.

Datasets and metrics. For the dataset D of spatio-textual objects, we used a
set of 200000 descriptions of hotels from the site of Booking.com1. The dataset
contains 188 distinct features. The set of preferences U was generated using
a uniform distribution for creating the location and the α parameter of each
preference, while the terms were randomly chosen from the vocabulary gener-
ated by processing the set of hotels. The location of the user preferences was
bounded in the MBR defined by the set of hotels. We also tested our algorithm
against a Zipfian distribution of terms. We used the Zipfian distribution gener-
ator provided by the Apache Commons project2. The metrics under which we
evaluated the implemented algorithms were: a) increase in the influence score
∆I, b) number of I/O’s performed by each algorithm, and c) processing time.

Experimental procedure. Both datasetsD and U were indexed using an IR-
tree, where the maximum capacity of each node was 100 entries. We employed
a buffer that was fixed at the size of 4MB, both for the tree index and for
the inverted files. The performance of the proposed algorithms was evaluated
through a series of experiments varying the parameters of a) the cardinality
of D in the interval [10K, 200K], b) the cardinality of U , [10K, 200K], c) the
number of returned results per user preference k, [5, 50], d) the maximum size of
user preferences, [1, 5], and d) the number of returned terms for a query object
b, [2, 5]. For the Zipfian distribution we varied the value of the characteristic
exponent s in the interval [0.1, 1.0]. The default setup for the experiments was:
|D| = 20K, |U | = 20K, k = 10, b = 3 and each the maximum preference size

1http://www.booking.com
2http://commons.apache.org/proper/commons-math/
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Figure 7.2: Evaluating the quality of results

was set to 5. For each experiment a random set of 20 query objects was selected
from D.

Quality evaluation. We compared the proposed algorithms against an ex-
haustive algorithm, which examines all

(|A−q.T |
b

)
term combinations3 and cal-

culates the optimal set of terms BT. Due to the high processing cost of the
exhaustive algorithm even for small values of b, we employed datasets of limited
size. The default setting for this series of experiments was |D| = 100, |U | = 1000,
and b = 3. The set of objects D, consisted of a random set of hotels from the
area of Catalonia in Spain, and they were selected from Booking.com. The set
of preferences U , follows a uniform distribution in Figures 7.2(a) and 7.2(b),
and a Zipfian distribution in Figure 7.2(c). Figure 7.2 indicates that both algo-
rithms achieve an increase in the influence score that is very close to the optimal
value. The execution time of the exhaustive algorithm was in all cases orders of
magnitude larger than the execution time of BTF and GBTS.

Varying |D|. Figure 7.3 illustrates the performance of the algorithms as we
vary the number of spatio-textual objects. Figure 7.3(a) indicates that both
algorithms perform similarly with respect to the increase of the influence score.
As the number of objects increases, the gain in influence score drops as more
spatio-textual objects compete for the same number of user-preferences, and
therefore it becomes harder for a query object to increase its influence score.
Figures 7.3(b) and 7.3(c) indicate that the I/O accesses and the processing time
for both algorithms increase when the dataset size raises. As the dataset size
increases, the cost of a single TOPk query increases as well and therefore both

3Based on the adopted similarity function, the addition of a term does not have a negative
effect on the influence score. In the general case, an exact algorithm should examine 2|A| term
combinations.
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Figure 7.3: Varying data cardinality
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Figure 7.4: Varying preferences cardinality

algorithms are affected by the dataset size. The effect on BTF is larger than
in GBTS, as BTF accesses the data multiple times in order to create the set of
new terms.

Varying |U|. Figure 7.4 depicts the performance of both algorithms as more
preferences are processed. When the number of preferences increases there are
more user preferences that can be added to the RTOPk set of an object with an
addition of a new set of terms, and therefore the gain in influence score increases
as well. The processing cost for both algorithms is expected to raise for a larger
number of user preferences, as more preferences have be to examined. Both
processing time and I/O cost raise faster for BTF than for GBTS. In particular
the processing cost for BTF grows almost by a factor of b faster than GBTS,
because BTF has to process the set of preferences b times in order to identify
the set of new terms.

Varying k. When the size of the TOPk set of each preference increases, the
cost of a single TOPk query increases as well. Figure 7.5 indicates that the
increased I/O and processing cost of a TOPk query affects both algorithms but
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Figure 7.5: Varying k
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Figure 7.6: Varying b

similarly to the increase of datasets’ size the effect on BTF is magnified by a
factor of b. The influence score gain increases as well, since with the increase of
k more objects can be included in the TOPk set of a user preference, and the
necessary increase in the text similarity for a query object q to be added to a
TOPk set of a user preference u becomes smaller.

Varying b. Figure 7.6 illustrates the performance of the algorithms as we
vary the number of new terms added to each query object. It is noteworthy
the fact that both algorithms behave similarly with respect to the increase of
the influence score. The cost of BTF raises linearly with respect to b, which
is expected as it has to process the data b times before returning the resulting
BT set. On the other hand, GBTS remains unaffected by the increase of the b
parameter as it has to access the preferences set only once.

Varying max preference size. Figure 7.7 indicates that as the maximum
preference size increases, the possible gain of influence score for a spatio-textual
object drops. The reason lies in the fact that for a large user preference u,
more terms are required to be added to a spatio-textual object q, for q to enter
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Figure 7.7: Varying max preference size
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Figure 7.8: Varying zipf distribution

the TOPk(u) set. Larger queries require more complex TOPk queries on the
indexes and consequently the performance of both algorithms is affected. As
expected, the increased cost of the TOPk queries affects BTF by a larger degree
than GBTS.

Zipfian distribution. It is quite usual for the terms of user-preferences to
follow a Zipfian distribution. We tested our algorithms against a set of user pref-
erences where the occurrences of terms follow a Zipfian distribution. Figure 7.8
illustrates the experimental results. Similarly to the uniform distribution, GBTS
outperforms BTF in terms of I/O accesses and processing time while producing
the same gain in influence score. In cases where the exponent of the Zipfian dis-
tribution takes high values the gain in influence score raises significantly. Such
behavior is expected, because when a small number of distinct terms appear in a
large number of user preferences, adding those terms to a spatio-textual object
will result in a significant increase of its influence score, since the addition of
those terms will allow it to enter the TOPk set of many user preferences.
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Figure 7.10: Varying data cardinality

Scalability analysis. We evaluated the performance of GBTS against larger
datasets to evaluate the scalability of our approach. BTF is not included in the
results as it needed excessive time to produce results. The experimental results
shown in Figure 7.9 indicate that the processing time of GBTS grows logarithmi-
cally with respect to the size of the dataset while the I/O cost increases linearly.
In the first TOPk queries we have an increased number of I/Os, however after
a certain number of queries, several nodes of the IR-tree are buffered and as a
result the subsequent TOPk queries induce a limited number of I/O accesses.
Figure 7.10 illustrates the performance of GBTS with respect to the cardinality
of user preferences set. Both the processing time and the I/O increase linearly
with respect to time.

7.8 Conclusion

In this chapter, we address the challenging problem of increasing the influence
of a spatio-textual object, by enriching its textual description with at most
b carefully selected keywords. In this way, the spatio-textual object’s textual
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relevance to user queries is increased, with the ultimate objective being for the
object to become part of the top-k result for many different users. We provide
a formal problem statement that is novel and relies on concepts related to top-
k and reverse top-k queries. We show that the problem is NP-hard, and we
present a greedy solution to the problem. Then, we propose a more efficient
algorithm that achieves results of comparable quality, but with significantly
lower processing cost. We demonstrate the performance gains of the proposed
approach by means of a thorough experimental evaluation that includes real
data.



Part IV

Closing Remarks
In this part, we discuss the conclusions drawn in this thesis and directions for
future research.
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Chapter 8

Conclusion

In this chapter, we summarize the thesis and its contributions, and we present
directions for future research.

8.1 Contributions

In this thesis, we have studied the problem of enhancing the visibility of database
objects through exploratory search and exploratory analysis of preference queries.
We have described algorithms, which instead of presenting to the users a list of
results, they organize search results into groups, helping users to have a wide
overview of the data content related to their query. In addition, we proposed
algorithms for exploratory analysis of preference queries that reveal objects or
features that have a potential of being attractive to a wide range of users. This
information can be used by companies or organizations that wish to attract
new users and make their products or data more visible to their user-base. In
summary, the main contributions of this thesis are the following:

• We proposed a framework for summarizing and grouping keyword search
results on relational data based on their content and the temporal data of
the tuples constituting the results. The search results are organized into
non-overlapping periods according to their content. The number of the
defined periods is determined by a hierarchical agglomerative algorithm.
Each group is described by a set of characterizing terms, which functions
as a summary of the results. The framework was tested against a group
of users who evaluated its usefulness in understanding the results.
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• We introduced algorithms for answering preference queries using combina-
tions instead of single items. The proposed algorithms create combinations
of variable size between main and accessory objects. The user is presented
combinations consisting of different main objects, while she has the ability
to refine her search by focusing to the combination or item she is most
attracted and discover more combinations of the same main object. The
efficiency of our algorithms was proven theoretically and demonstrated
through a thorough experimental evaluation.

• We presented algorithms for the identification of objects that are con-
stantly attractive for a large number of users over a specified period of
time. We capitalized on reverse top-k queries to identify influential ob-
jects and we presented algorithms which can be combined with any top-k
or reverse top-k technique for the efficient calculation of continuously in-
fluential objects. The proposed algorithms focus on the early identification
of the most continuous influential object while they support incremental
retrieval of the next continuous influential objects. The performance of
the algorithms was evaluated through a detailed experimental procedure.

• We studied the problem of diversity as a problem of identifying objects
that appear on the results of users with diverse preferences, i.e., objects
with diverse RTOPk sets. We proposed algorithms that can efficiently cal-
culate sets of diverse objects and we studied their efficiency, performance
and scalability in a variety of experimental settings.

• We studied the problem of maximizing the influence score of a spatio-
textual object by enhancing its textual description. We showed that select-
ing a set of terms which maximize the influence score of a spatio-textual
object is NP-hard, and we presented two approximate algorithms. The
performance of the presented algorithms was evaluated through a detailed
experimental study.

8.2 Future work

Our work can be extended in multiple directions. In the following, we present
an outline of the open challenges regarding exploratory search and analysis.

Exploratory search in spatial and spatio-textual data. The evolution
of geo-location technologies and Internet providing services has led to the gen-
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eration of an abundance of data containing spatio-textual information. The
available information varies from points of interest such as hotels or gasoline
stations, to public transportation data and detailed navigation services. This
increasing amount of data can be exploited to provide to users detailed infor-
mation about the places they are interested in. Many structures and algorithms
have been proposed for processing spatio-textual [24, 91] and spatial-preference
queries [92], while spatio-textual joins of two or more relations have also been
studied [14, 73]. Current techniques however, provide limited search capabilities
as they return lists of single objects or fixed-structure combinations. Usually,
these lists are ranked according to their distance from the query location or
a specific attribute (e.g., price). However, user preferences are quite complex,
consisting of multiple criteria, which are not all equally important and possibly
are better satisfied with a combination of objects. For instance, a tourist visit-
ing a city may be looking for a cheap, clean, central hotel with breakfast. If the
tourist does not find a central hotel satisfying her criteria, a possible solution
could be a central hotel with a coffee-shop nearby, or a less central hotel close to
a metro station. Such options include combinations of spatial objects that the
user may not be aware of and she might need several queries to find a solution
that fits her needs. Exploratory tools need to take into account the complex-
ity of the users’ preferences and the multiple ways spatio-textual objects can
be combined and provide the users a comprehensive overview of the available
solutions.

Exploratory search on dynamic data and data streams. An important
factor that should be taken into account is the increasing volume of generated,
stored and processed data. Nowadays, users create a large number of informa-
tion such as posts, reviews and comments. This user generated data can be
exploited in order to provide the users a better overview of the content they
are exploring. In order to be able to handle efficiently the increase volume
of data, a large number of data management systems use NoSQL databases.
However NoSQL databases offer limited search capabilities in order to provide
high data availability and most existing approaches assume that documents are
static, i.e., the documents do not change over time [114]. Consequently, a sig-
nificant part of the generated information is not readily available to the users
who are searching the database content. Additional limitations arise from the
distributed nature of those systems and the lack of database schemas, facts that
induce a high computational cost during the generation of object combinations.
We believe that current techniques need to be modified and new techniques
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should be developed to ensure efficiency and scalability in exploratory search in
distributed and highly dynamic environments.

Analyzing exploratory queries. Exploratory search poses new challenges
in data analysis as well. During the analysis of user preferences, it should be
taken into account the possibility that users may be presented with object com-
binations instead of single objects. This consideration changes utterly the way
the visibility of an object is determined and estimated, since an object may not
be highly ranked as a single object, but it can participate in a highly ranked
combination. Our plans are to examine how current techniques for processing
reverse top-k queries and influential top-m queries can be improved and ex-
tended in order to take into account the possibility of evaluating combinations
in addition to single objects.

Exploring Big Data. Today, a large number of enterprises and organizations
receive vast amounts of data, generated by traditional sources, social media and
user queries. A significant part of this data contains spatio-temporal and textual
information. Due to the large volume, the high velocity and possibly the short
life-span of the incoming data, it is hard to create an index that stores spatial,
temporal and textual information and is efficient at the same time in search,
updates and resource usage. A recent study [19] is indicative of the fact that
search efficiency and index size in spatio-textual data are conflicting with one
another. These restrictions impede the exploration and analysis of the available
data. Our aim is to propose new algorithms and structures that will allow
users to explore large volumes of highly dynamic data and enable enterprises to
analyze both data and user queries in order to make their content more visible
and easily accessible among a vast amount of information.

8.3 Outlook

Today, information is generated in an accelerating rate by a wide range of sources
varying from enterprises and organizations to simple users. Users have difficul-
ties exploring the available data and finding the information they are interested
in, fact that has a direct effect on enterprises since their database content is not
visible to the users. In this thesis, we have proposed algorithms for exploratory
search that allow users locate objects they are interested in. In addition we
presented algorithms for exploratory analysis that allow enterprises and organi-
zations to identify objects and object properties that are attractive to users.
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The modern era poses new challenges in data exploration as data become
larger in volume and richer in context, while user preferences become more
detailed and complicated containing often space- and time-related data. It is
therefore necessary to develop new techniques for exploratory search and ex-
ploratory analysis that will enable efficient exploration of large collections and
highly dynamic streams of data containing spatial, temporal and textual infor-
mation.
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