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Abstract

Offshore operations in the Arctic present several challenges, such as the threat of

icebergs colliding with offshore structures.This thesis will investigate methods of

estimating the shape and size of iceberg keel geometries. Accurate information of

iceberg size and geometry is important for forecasting future iceberg trajectories,

and for calculating local and global loads generated by an icebergs impact on

offshore structures. The iceberg shape and size is also useful for determining its

stability before a towing operation to avoid rope slippage or the iceberg rolling

over.

We have proposed a method on how iceberg surface data can be used in a towing

operation for predicting its stability. This has been done by using surface lengths

on icebergs to estimate their draft with a 95 % confidence interval based on pre-

vious surface length and keel draft data. The estimated draft has been used to

scale trapezoidal shapes to represent iceberg keels, and then used to calculate the

icebergs GZ curve. We discovered that the trapezoidal shapes gave poor shape

estimations for stability calculations. This was because the volume distribution of

a true iceberg was represented poorly, especially close to the water surface.

We utilized an artificial neural network (ANN) in order to estimate the shape

of an iceberg keel based on iceberg surface date. The (ANN) was made by 2D

iceberg keel geometries from surface data, because 3D iceberg data is scarce. The

original 2D iceberg continuous profile was reduced into 8 vertices for both sail and

keel geometry. This created an input matrix representing the sail geometry, and

a target matrix representing the keel geometry used to train the ANN with 42

2D iceberg samples. The ANN gave more accurate results than the trapezoidal

method.

We have also presented a case study on rebuilding reduced keel geometry data

using shape factors from an ANN . The objection of the case study was to reduce

iceberg data gathered by an AUV so that it can be transmitted real time to a

surface vessel for processing. It was difficult to evaluate the performance of the

ANN due to the low sample size, and because the shape factors used for estimation,

were also used to measure the performance.
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Sammendrag

Det er flere utfordringer ved å utføre marine operasjoner i de arktiske omr̊adene.

H̊andtering av isfjell er en slik utfordring, ettersom de utgjør en trussel for skip og

offshorestrukturer. Dersom isfjellene oppdages i tide kan de fjernes ved hjelp av

slepefartøy. Med utgangspunkt i dette vil vi i denne oppgaven fokusere p̊amåter

man kan estimere størrelsen og formen p̊aundersiden av isfjell. Dersom man vet

hvordan undersiden av et isfjell ser ut, kan man ved hjelp av en dynamisk modell

predikere hvordan isfjellet vil drive. Informasjon om undersiden av isfjellet kan

ogs brukes til å regne p globale og lokale laster skapt fra sammenstøt mellom

isfjell og offshorestrukturer. En tredje praktisk bruk av isfjellets geometri er ved

slepeoperasjoner, der isfjellets form kan brukes til å beregne isfjellets stabilitet.

Slik kan man unng at isfjellet velter, eller at slepetauet mister taket.

Vi har foresl̊att en metode der isfjellets overflate kan brukes for å predikere isfjellets

stabilitet. Dette har blitt gjort ved å bruke isfjellets diagonale overflatelengde

for å estimere dypgangen til isfjellet innenfor et 95 % konfidensintervall. Dette

intervallet er basert p diagonale overflatelengder med tilhørende dypganger fra et

spesifikt arktisk omr̊ade. Den estimerte dypgangen har s blitt brukt til å skalere

en trapezoideform for å representere isfjellets underside. Vi har deretter brukt

denne trapezoideformen til å regne ut isfjellels GZ-kurve for forskjellige rullvinkler.

Vi oppdaget at trapezoideformen ga d̊arlige estimater for stabilitetsbergeningene,

ettersom den representerte fordelingen av volumet d̊arlig, spesielt nær overflaten.

Et kunstig nevralt nettverk har blitt laget for å estimere 2D-profiler av undersiden

til isfjell utifra overflatedata. Vi har brukt 2D-data ettersom 3D-data ikke var

tilgjengelig. De originale, kontinuerlige 2D-profilene til isfjellene har blitt redusert

til kun 8 punkter for overflaten og 8 punkter for undersiden av isfjellet. De 16

punktene ble brukt til å lage en inputmatrise og en targetmatrise for å trene det

vi
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nevrale nettverket. Det nevrale nettverket ga bedre resultater enn trapezoideform-

metoden.

Vi har ogs̊apresentert en måte å gjenoppbygge en redusert isfjellgeometri ved bruk

av formfaktorer med et nevralt nettverk. Motivasjonen var å forenkle geometrien

innhentet fra AUVen, slik at den kan sendes sanntid via den hydroakustiske linken

til overflatefartøyet. Det var vanskelig å evaluere ytelsen til nettverket ettersom

datasettet vi brukte var svært begrenset, og ettersom vi brukte de samme form-

faktorene for å estimere som for å måle ytelsen til nettverket.
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Chapter 1

Introduction

The motivation for carrying out marine operations in the Arctic is triggered by

estimations of large amounts of undiscovered natural resources in the area. The

region above the Arctic Circle may account for as much as 20 % of the worlds

undiscovered oil and natural gas resources. Another motivation for carrying out

marine operations in the Arctic is exploring new shipping routes, which could

dramatically reduce the travelling distance and transit time for ship traffic. Ice

surveillance would then be crucial for route planning and safety.

When performing offshore operations in the Arctic, there are several challenges.

One of those challenges is the threat of icebergs on offshore structures and vessels.

Icebergs can exert extremely high loads on vessels, offshore platforms, and seabed

installations [Timco, 1999]. If an iceberg is detected, there are several ways to

relocate it, so it no longer poses a threat to the offshore structures. The most

common practice is towing. We can summarize the motivation for investigating

iceberg size and shape as:

• Accurate information of iceberg size and geometry is important for forecast-

ing future iceberg trajectories.

• The geometry and size of icebergs is also key components in calculating the

local and global loads that could be generated during an iceberg impact.

• The iceberg’s distribution of volume (shape) determines its stability. An

iceberg keel shape estimation can therefore help predict the stability of an

iceberg before a towing operation.

1



Chapter 1. Introduction 2

The overall objective of this thesis is to estimate the geometric shape of the ice-

berg keel from surface data. The shape estimation method will be a part of an

ice management system within ice surveillance. In Figure 1.2 we can see a pro-

posed schematic of an ice management operation. If we take Figure 1.2 as a basis

for management of icebergs, this research falls under the detection, tracking and

classification block.

Figure 1.1: Ice management schematic given by C-CORE [2007].

1.1 New developments

Today an underwater sensor platform is needed to gather information on iceberg

keels. Scientists have used underwater vehicles to scan icebergs using sonar. This

is time-consuming and requires a lot of resources.

We will propose an ice surveillance system where one first creates a large enough

data set of iceberg sail geometries and corresponding keel geometries to create a

statistical foundation for estimation. If estimation from the data set gives sufficient

estimations of the iceberg keel, the underwater sensor platform does not need to

be present all the time. The underwater platform can then just be present for a

limited period to build up a sufficient data set. The underwater sensor system can

instead work as a backup solution if iceberg keel estimations are not sufficient.
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The goal is to create a cloud-based neural network where industry stakeholders

and research institutions can share their iceberg data to a common server. This

data will be used as a statistical basis for estimation tools, such as a neural network

for estimating iceberg keel geometries. The network will increase its performance

the more data samples it has available. The community cloud may be organized

by one of the organizations itself or by incorporation of a third party.

During the last couple of decades, small unmanned aerial vehicles have become

an inexpensive platform to carry electro-optical (EO) and infrared (IR) cameras.

These unmanned aerial vehicles can be used to perform ice surveillance and create

digital elevation models of icebergs from photogrammetry.

Figure 1.2: Picture taken from the centre for Autonomous Marine Operations
and Systems (AMOS) illustrating aerial vehicles and a surface vessel.

1.2 Contributions

We have investigated how iceberg stability can be estimated by iceberg surface

lengths. This was done in 2D, but we have included a section on how the method

also can be applied to a 3D iceberg keel.
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Later on we will propose a neural network for function approximation that can es-

timate iceberg keel shapes from their corresponding sail shapes. The performance

of the network is dependent on the data size. Today the Program for Energy

Research and Development (PERD) database has gathered a comprehensive set

of iceberg data, but for this project to be viable, more data needs to be gathered,

especially on 3D iceberg sails and keels.

Finally we have investigated how the high resolution iceberg keel geometry data

can be simplified before being transmitted by an autonomous underwater vehicle

(AUV) to a surface vessel. The acoustic link between a surface vessel and AUV

is limited for a real-time marine operation. We will see how well the iceberg

keel geometry can be rebuilt by a neural network from only a few shape factors.

Perhaps the AUV will only need to transmit a couple of shape factors during an

operation instead of a high resolution geometry.

1.3 The online aspect

The motivation for this thesis is to create an estimation tool for iceberg keels to

use during marine operations. This means operating with a time constraint for

the estimation method. However, for a neural network the estimation itself does

not take a lot of computational time. It is the training algorithm of the neural

network that takes time. Therefore the training of the network and gathering of

iceberg data must happen offline before using it in marine operations. The online

time constraint for a neural network will be the communication link between the

mobile sensor platform and the computer onboard the surface vessel. Even if the

training algorithm used less computational time for an online operation, it would

not have any new keel data for the network to use.

However, if an AUV has gathered new keel data from icebergs with corresponding

sail data then the data can be added to the statistical basis. The network can then

be retrained offline with the new data before being used in a marine operation.
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1.4 Outline of the thesis

Chapter 2 gives background information on iceberg statistics, towing and use of

different sensors in the Arctic.

Chapter 3 describes some application of the use of iceberg keel geometry, and gives

an example of how it can be used in a towing operation.

Chapter 4 presents some theoretical background on artificial neural networks.

Chapter 5 presents a case study of estimating iceberg keel geometry from surface

data using an artificial neural network. We also discuss the results from the study.

Chapter 6 presents a case study on rebuilding reduced keel geometry data using

shape factors with a neural network. The motivation is to simplify the data

gathered by an AUV so that it can be transmitted real time to a surface vessel for

processing.

Chapter 7 gives a final conclusion of the work carried out in the thesis and gives

recommendations for further work.
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Definitions

Digital elevation model

A digital elevation model (DEM) is a digital model or 3D representation of a

terrain’s surface. A DEM can be represented as a raster (a grid of squares, also

known as a heightmap when representing elevation) or as a vector-based triangular

irregular network (TIN). DEMs are commonly built using data collected using

remote sensing techniques, but they may also be built from land surveying. DEMs

are often used in geographic information systems and are the most common basis

for digitally-produced relief maps.

First-year ice

Sea water freezes to create sea ice. All sea ice that has not survived one summer’s

melt is called first-year ice.

Photogrammetry

Photogrammetry is the science of making measurements from photographs, espe-

cially for recovering the exact positions of surface points. Moreover, it may be

used to recover the motion pathways of designated reference points located on any

moving object, on its components and in the immediately adjacent environment.

Spatial statistics

spatial statistics includes any of the formal techniques that study entities using

their topological, geometric, or geographic properties.

Geographic information system

A geographic information system (GIS) is a computer system designed to capture,

store, manipulate, analyze, manage, and present all types of spatial or geographical

data.

Computer vision

Computer vision is a field that includes methods for acquiring, processing, ana-

lyzing, and understanding images and high-dimensional data from the real world.
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Iceberg detection and monitoring

Detection of icebergs in a relevant proximity to the protected operation, vessel or

installation. The detected icebergs must be monitored continuously to evaluate

the threat. Detection and monitoring are performed by visual observation, marine

radars, aircraft radars and satellite (radar images). Radars also work in bad

weather and are essential for continuous monitoring.

Iceberg management system

The complete system with the aim to mitigate the risk of icebergs is called an

iceberg management system. The system consists of iceberg detection, monitoring

and evaluation of potential threats. If the iceberg is considered a threat, physical

iceberg management, called iceberg handling is needed.

Ice intelligence

An ice intelligence system is one of several required elements in an IM system. The

ice intelligence system has to ensure that all information regarding ice conditions

that might influence marine operations is collected and presented for relevant

personnel in due time. For ice intelligence, typically surface scouting tools such as

satellites, airborne recognizance, marine radars, drift buoys and visual observations

from icebreakers are used.

Ground sample distance

In remote sensing, ground sample distance (GSD) in a digital photo (such as

an orthophoto) of the ground from air or space is the distance between pixel

centers measured on the ground. For example, in an image with a one-meter

GSD, adjacent pixels image locations are 1 meter apart on the ground.[1] GSD

is a measure of one limitation to image resolution, that is, the limitation due to

sampling.
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3D reconstruction

In computer vision and computer graphics, 3D reconstruction is the process of

capturing the shape and appearance of real objects. This process can be accom-

plished either by active or passive methods. If the model is allowed to change its

shape in time, this is referred to as non-rigid or spatiotemporal reconstruction.

LIDAR

LIDAR, which stands for Light Detection and Ranging, is a remote sensing method

that uses light in the form of a pulsed laser to measure ranges (variable distances)

to the Earth. These light pulsescombined with other data recorded by the airborne

system generate precise, 3D information about the shape of the Earth and its

surface characteristics.

Visual Odometry

In computer vision, visual odometry is the process of determining the position and

orientation of a robot by analyzing the associated camera images.

Image processing

Image processing is any form of signal processing for which the input is an image,

such as a photograph or video frame; the output of image processing may be

either an image or a set of characteristics or parameters related to the image.

Most image-processing techniques involve treating the image as a 2D signal and

applying standard signal-processing techniques to it.

Computer stereo Vision

Computer stereo vision is the extraction of 3D information from digital images,

such as those obtained by a camera. By comparing the information about a scene

from two vantage points, 3D information can be extracted by examination of the

relative positions of objects in the two panels.



Chapter 2

Background

This chapter provides background information on icebergs, incident statistics, ice-

berg classification and towing in specific Arctic regions. The chapter will also

contain background information on the digital elevation models from Canadian

iceberg data. We will especially focus on the use of UAVs in the Arctic, and

describe sensors used for the mobile sensor platform.

2.1 Icebergs

Icebergs are fresh-water ice, composed of the glacier and ice-sheet ice that origi-

nally fell as snow. When the glacier edge reaches the sea, large pieces break off,

drift away and become icebergs [Palmer and Croasdale, 2013].

The lifespan of an iceberg can be divided into different stages [Wadhams, 2000].

The Arctic icebergs first calve from the narrow, steep mountain glaciers that drain

the Greenland ice sheet, other mountainous islands and the coasts of the Arctic.

These icebergs are usually smaller and more randomly shaped than Antarctic

icebergs, as the glaciers are narrow and fast flowing with crevasses [Wadhams,

2000]. The icebergs often get trapped in the fjords where their draft exceeds the

depth of the fjord. In the fjord, the temperature differences between depths may

change the profile of the iceberg. This results in the icebergs losing stability and

capsizing in their early lifespan [Wadhams, 2000].

Icebergs in the Grand Banks area of Canada are weathered and frequently tilted

and rolled. It has been implied by Timco [1999] that the surface length of the

9
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iceberg surface area can be used to determine the profile of the iceberg keel. The

stability of the iceberg must ensure a certain distribution of iceberg volume which

creates a relation between keel draft and length in the cross section.

Iceberg shape and size

A popular characterization of iceberg shapes is given in Figure 2.1. Although the

iceberg classification in Figure 2.1 is simple, it is not very useful for engineering

purposes as we will discuss in the next section. McKenna [2004] presents more

complex models which include keel shape, and sail to keel volume ratios.
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Figure 2.1: Different iceberg shape classifications.
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Icebergs can be extremely large. Excluding ice islands, the largest recorded iceberg

was observed off the Baffin Islands in 1882. The iceberg was 13 km × 6 km in size

with a freeboard of 20 meters [Wadhams, 2000]. However, most icebergs will be in

the range of 100-300 meters in diameter. Table 2.1 presents the size classification of

icebergs by mass. In Figure 2.2 we see iceberg size compared to offshore structures

and vessels.

Table 2.1: Table of iceberg classification based on mass height and length.

Type Mass [T] Sail height [m] Sail length [m]

Growler 500 〈 1 〈 5

Bergy bit 1,400 1-5 5-15

Small berg 100,000 5-15 15-50

Medium berg 750,000 15-50 50-100

Large berg 5,000,000 50-100 100-200

Very large berg 〉 5,000,00 〉 100 〉 200

Figure 2.2: A general classification of iceberg sizes [C-CORE, 2007].
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Discussion on iceberg classification

The iceberg classifications that are given by Keys [1986] and Figure 2.1 do not

classify iceberg shape with parameters one can measure. This is because named

classes do not contain a mathematical shape definition. One can argue that classi-

fication done by names are only useful if physical measurements are not available.

When only relying on eye-sightings, the traditional classification method is good,

and will give us a rough idea of how the shape is and will be useful in a colloquial

manner. However, for engineering purposes, the shape description given in Figure

2.1 is not useful for trajectory calculations, stability calculations or calculations

on local load impacts from an iceberg. The classes are not divided and defined by

measurable geometric parameters. For instance, in Figure 2.1 we see the classifi-

cation ”Dome iceberg”, which is described as an iceberg with a rounded top. The

question is then how to quantify this roundness and compare it to other classes.

One can ask, when does the shape change from a Dome shape to a tabular shape

iceberg? Since these definitions have not been established, it is difficult to justify

the use of creating a new classification model connected to physical parameters.

2.2 Iceberg incident statistics and towing

The presence of icebergs makes the extraction and exploration of oil and gas in

the Grand Banks area difficult. The threat caused by icebergs affects production

platforms, collection and offloading systems and exploration schedules [Timco,

2007]. Every year there is a risk involving icebergs that threaten marine operations.

The icebergs range from large icebergs with a mass of one million tons to small

growlers (see Figure 2.1 for definition). The strong wind and wave conditions

together with poor visibility can cause iceberg monitoring and handling of the

icebergs to be difficult. The main monitoring resources used are radar, fixed-wing

aircrafts, and remote sensing satelites. For iceberg handling, support vessels are

mostly employed for towing, although both explosives and water cannons have

been used to deal with icebergs [Timco, 2007].

The Program for Energy Research and Development (PERD) database of icebergs

contains 1750 records of 46 individual fields on iceberg management operations

conducted between 1973 and 2012 from the Grand Banks area and Labrador. The
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Iceberg operational data was separated from Labrador and Grand banks because

of the significantly different approaches to ice management in the two areas. This

is primarily related to the much larger ice zones associated with anchored rigs on

the Grand Banks.

In Figure 2.3 the number of icebergs crossing latitude 48 ◦ N (about 30 km north of

St. Johns) has been monitored by the U.S. Coast Guard International Ice Patrol.

Figure 2.3: Annual number of iceberg crossing 48 ◦ N gathered by the U.S.
Coast Guard International Ice Patrol.

There is a large intra-annual variability in iceberg occurrence. Figure 2.4 shows

the mean and median crossings in the period from 1946 to 2006. The greatest

averages occur in the months of April (130 crossings) and May (143 crossings),

while in September, October, November, and December there are almost no iceberg

sightings.
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Figure 2.4: Monthly number of iceberg crossing 48 ◦ N gathered by the U.S.
Coast Guard International Ice Patrol.

Iceberg towing

The PERD Comprehensive Ice Management Database (CIMD) was established

with the goal of gathering all logged iceberg data from Grand Banks and Labrador,

since the early 1970’s, into one centralized library. In this section, we present data

from this database, which is most relevant for iceberg towing.

In Figure 6.1 we can see what the ending reason, meaning how the iceberg opera-

tion was stopped, for 1750 recorded iceberg management operations.
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Figure 2.5: Data taken from the PERD Comprehensive Management
Database

Most iceberg management operations ended by tow release (58 %) which means the

operations ended because it achieved a desired result. The second most common

reason was rope slippage (23 %) and the third most common reason was rolling of

the iceberg (9 %). The report does not state whether or not a new attempt was

tried in unsuccessful operations.

Effect of tow force

Table 2.2 presents 873 records of tow force from the PERD CIMD. The report by

Timco [2013] claims that the success of iceberg operations is more dependent on

iceberg size and stability than tow force applied during operation. The probability

of operational success increases with the strength of the tow force, although there

is evidently an anomaly for forces above 100 tons. This can be explained by the

small number of occurrences for forces above 100 tons.
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Table 2.2: Tow force here is given in tons.

Tow success versus shape

In Table 2.3 the database shows success rates of 1750 iceberg operations when

comparing different iceberg shapes. The table defines two types of success; tech-

nical tow success and calculated tow success. Technical tow success is defined as

whether or not the iceberg changes course so it no longer causes a threat. Calcu-

lated tow success is defined by a number of criteria to each of which are assigned

separate values. The sum of this score rates the success of the operation [Timco,

2013]. The key fields are:

• Number of connection attempts.

• Vessel tow heading versus the iceberg course corrected.

• If there was a change in the iceberg drift course.

• If there was a change in the iceberg drift speed.

• The outcome of the operation.

The lowest calculated success rate is for wedged shaped icebergs with a 66.3 %

success rate. The highest success rate is for non-tabular shaped iceberg with 80

% success rate, but this might just be because its low samples size of 10 iceberg

tows. Timco [2013] does not state why the success rates vary between different

shapes. In general, the success rate does not vary a lot due to shape, where most

technical success rates are between 80 and 90 %.
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Table 2.3: Table of iceberg shape vs. tow success for Grand Banks and
Labrador.

Tow success versus size

In Table 2.4 we see the success rate of iceberg towing versus size. One of the

largest success rates are for very large icebergs, but this might be due to the low

sample size for very large icebergs. From large icebergs to growlers, we see a trend

that smaller icebergs have less success rate. This might be because the smaller

icebergs tilt easier causing tow slippage or rolling of the iceberg. However, the

report by Timco [2013] does not state a reason for the different success rates.

Table 2.4: Here we compare iceberg size versus tow success.
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2.3 Digital models of icebergs

The data is taken from the NRC-PERD Iceberg Sightings Database. The database

is a result of a major effort to collect visual and radar-detected iceberg sightings

from ships, offshore structures and satelites for the past 400 years. The database

is a compilation of iceberg sighting entries from the years 1619 to 2012 and has

become the industry standard for historical iceberg sightings in Newfoundland and

Labrador.

The database includes the date and time of sightings with geographic coordinates.

It also provides iceberg shape and size categories with dimensions if available along

with information about the source of the sighting.

Overview of database

• 3D geometry for 28 iceberg keels from sonar profiling.

• 3D geometry for 566 sails, from stereo photography (digital or image file).

• 2D profiles for 155 iceberg sails and keels (image files).

• 3D animations for full views of 76 icebergs.

Figure 2.6: Examples of 3D geometries from the iceberg shape database Timco
[1999] .
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Types of data in the PERD database

Here we will summarize the types of data which is available in the PERD database

[Timco, 1999].

Type 1: 3D data on iceberg keel and sails.

• This data has been gathered through three studies using sonar sidescan data.

The studies are: 1984 and 1985 Dobrocky sidescan sonar data, and Dynamics

Iceberg Grounding and Scouring (DIGS) project.

Type 2: Detailed 3D data on iceberg sails.

• Five projects have used stereo-photographs to obtain a total of 563 iceberg

topside contours.

Type 3: Cross sections of iceberg sails and keels.

• This is data gathered by photography and sightings, generating vertical pro-

files of the iceberg from two or four sides. The information was collected

during iceberg towing and is the data used in this thesis for verification of

the developed theory.

Type 4: Sketches of iceberg sails.

• There are three reports providing data on iceberg sails from hand drawn

contours.

2.4 Sensors and methods for computer vision on

mobile sensor platforms.

3D modeling is the process of developing a mathematical representation of any 3D

surface of an object. In this section we will discuss the use of computer vision for

creating a 3D model of an iceberg.

The use of computer vision involves several processes. Light falling on a scene,

is reflected, gathered by a lens and then turned into a digital image processed by

different algorithms to extract the required information. For the purpose of ice

surveillance, we want to use computer vision to create digital elevation models

(DEMs) of icebergs [Corke, 2011].
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McKenna [2004] states that iceberg shape data comes essentially from three sources:

• Ship based photographs.

• Aerial photogrammetry.

• Underwater sonar profiles.

The photographs provide accurate 2D profiles while photogrammetry can give

accurate 3D geometries for the proportion of the iceberg that extends above the

waterline. The underwater sonar can provide either 2D or 3D geometries. The

3D geometries are often created by point clouds by identifying the same pixel in

several photo frames, and then finding the distance to each pixel by triangulation.

Today iceberg surveillance relies on visual confirmation when weather conditions

permit. However, the regions infested with ice and icebergs are often characterized

by considerable fog, cloud, and precipitation. This renders visual detection useless,

leaving radar-based systems as the primary surveillance tool [C-CORE, 2007].

There are many radar-based surveillance systems that can be used for IM. Some

examples are microwave radar mounted on the support vessels, satelite radar,

shore-based high-frequency radar, and aircraft-based systems. Figure 2.7 contains

an overview of the available sensors for iceberg detection.

Figure 2.7: Overview of the available sensors for iceberg detection for a plat-
form [C-CORE, 2007].

In Figure 2.8 we see a comparison of the different attributes in terms of cost,

coverage, spatial, and temporal resolution [Haugen, 2014].
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Figure 2.8: A sensor platform parameter comparison by Haugen [2014].

Ice monitoring system

As mentioned, when monitoring icebergs in the Grand Banks there must be an ice

intelligence system in place to detect and track the icebergs close to the offshore

installations with sufficient confidence. There are several sensor platforms to use

for ice monitoring, each with different weaknesses and strengths. Sensors vary in

resolution, range, update frequency, and accuracy. With the resolution of remote

sensing, one often refers to the ground sample distance (GSD) which describes the

distance between two sampled pixels. It is important to have an adequate GSD

to be able to distinguish the object from the surroundings.

Sensor types

In this section, we present different sensor types available for gathering information

about ice and icebergs. We will comment on the strengths and weaknesses of the

different devices [Haugen, 2014].
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Laser

These devices emit laser pulses and measure the time of the round trips, this

will then give an estimate of the distance travelled. These devices can be used

for providing a topograph of the ice cover and icebergs. However, the laser is

vulnerable to clouds.

Thermal infrared (TIR)

These sensors measure emissions based on temperature and can help measure ice

surface temperature. This property can assist in determining ice motion, iceberg

detection, and flow size distribution. Since these sensors cannot penetrate cloud

covers, they can only be used as a complementary sensor in ice intelligence appli-

cations.

Active microwave

These devices emit electromagnetic signals toward the regions of interest and mea-

sure the reflections from the device again. There are three classes of frequently

used active microwave sensors in remote aerial sensing. Common for all three

methods is that they can penetrate clouds, polar darkness, and precipitation. The

three common active microwave classes are:

• Synthetic aperture radars (SARs) have a high spatial resolution that can

provide complex pictures of a region. This sensor class can distinguish be-

tween first-year and multi-year ice, and can differentiate water from ice. The

SAR sensors can be used in ice classification, determining ice motion and

ice deformation. However, interpretation of the SAR images can be difficult

depending on the environmental conditions.

• Scatterometer measures the energy backscatter from the target surface. This

can give sea ice data about ice roughness and dielectric properties of the

surface. The sensor’s weakness is its spatial resolution, which can be several

kilometers for scatterometers on satelites.

• Radar altimeters measure altitude above the terrain presently beneath an

aircraft by timing how long it takes a beam of a radio wave to reflect from

the ground and return to the plane. This method can be used to evaluate

the ice thickness and iceberg height by assuming hydrostatic equilibrium and
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an estimation of the ice density. The limitation of this device is its area of

measurement.
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Acoustic sensors

The sensors are usually used underwater, with upwards looking sonar. They can

create an underwater topography of the sea ice. It can also measure sea ice, and

iceberg drift and distinguish between first-year and multi-year ice. The disad-

vantage is limited coverage and propagation delays that vary with salinity and

temperature.

Meteorological suite

These are sensors that can measure temperature, wind velocity and humidity of

the atmosphere. This is data that can improve other estimates of sea ice, and

icebergs.

Oceanographic sensor suite

These are sensors that measure ocean temperature, salinity, and currents. This is

used to determine drift and heat flux of the ice and icebergs.

Overview of different sensor platforms

The ice intelligence design relies on different sensors working together for moni-

toring the iceberg. Table 2.9 presents an overview of the various sensor platforms

together with the different sensor types [Haugen, 2014].
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Figure 2.9: Overview of sensor platform and sensor type by Haugen [2014].

2.5 Unmanned aerial vehicles as a sensor plat-

form

One of the main reasons for the current interest in small unmanned aerial vehicles is

that they offer an inexpensive platform to carry electro-optical (EO) and infrared

(IR) cameras. Most small and miniature air vehicles currently deployed carry

either EO or IR cameras [Beard and McLain, 2012]. UAVs also demonstrate

flexibility in geographical coverage, spatial and temporal resolution [Haugen, 2014].

The UAV sensor platform can not compete with for example satelites on infor-

mation cost per area. However, satelites struggle with giving accurate height

estimations of icebergs and can not therefor create accurate digital elevation mod-

els. Nonetheless the UAV sensor platform has challenges regarding maintenance

costs, launch, and recovery systems when dealing with the hostile environment.

Such as extreme coldness, high wind speeds, and icing problems. The UAVs must

also be able to operate at all times, both night and day.

A vision based sensor platform with UAVs is equipped with the following sensors

for guidance navigation and control:
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• Accelerometers.

• Rate gyros.

• Pressure sensors.

• Magnetometers.

• GPS.

For using a vision based sensor platform in a marine operation we are relying on

a robust navigation system. Therefore we will briefly discuss GPS vulnerability in

the Arctic in the next section.

GPS Vulnerability in the Arctic

A standard UAV navigation system relies on GPS and an inertial navigation sys-

tem (INS). If the GPS signal falls out the state estimation solution by the INS

will be unusable after a couple of seconds. Especially for small UAVs that use a

low-cost INS. The UAV is therefore very vulnerable when only relying on the GPS

signal for its navigation system.

One solution to the GPS vulnerability is to combine information from the INS

and information from the video camera. Using visual odometry with an algorithm

that registers the onboard video to a geo-referenced satelite or an aerial image has

been proposed by Conte [2009].

Haugen [2014] discussed the use of a mobile sensor network for sea ice monitoring.

The idea is to use a network of unmanned aerial vehicles to exploit strengths of

each other as a sensor platforms. The UAVs will communicate with each other

and define its path planning and placement based on the other sensor devices in

the network.

Other assumptions and limitations

We have a challenge if the UAV images are taken at a flight altitude much larger

than the iceberg. It will then be difficult to distinguish the iceberg height compared

to the ground.
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When designing UAVs for Arctic operations, it is important to map the UAVs

capabilities in terms of maximum payload, range, weight, altitude, endurance,

range, and speed. These parameters determine which types of sensors the UAV

can carry, the length and range of each mission etc. In Norway, research is being

conducted at NORUT on the use of UAVs in the Arctic environment. Based on

the properties mentioned, there are three main classes of UAVs today. They are:

1. Aerostats is not very flexible in terms of range. However, its operational

costs and launch and recovery capabilities are good. See Figure (2.10).

2. Fixed-wing vehicles has complicated launch and recovery capabilities but

has a larger operational range.

3. Rotary-wing vehicles can land and take-off vertically, but has limited

operational range.

Figure 2.10: Picture of the OceanEye system by Maritime Robotics in Trond-
heim, this is tethered aerostat system that offers a surveillance solution for

demanding maritime environment.



Chapter 3

Application of Iceberg Keel

Geometry Estimation

In this chapter we will briefly describe how iceberg shape geometry can be used

for calculating iceberg trajectories, iceberg local and global load impacts, and

stability. In the last section there will be given an example of how this shape data

can be used for estimating the stability of an iceberg.

3.1 Iceberg shape geometry and trajectory cal-

culations

We can estimate an icebergs trajectory by creating a dynamic drift model. The

dynamic model is based on the momentum balance from Newton’s second law.

The momentum balance can be given as:

Mass× Acceleration = Air Stress+ Water Stress+ Coriolis Force

(3.1)

The dynamic model of iceberg drift is taken from Smith et al. [1987]. We assume

the iceberg will drift under the influence of the vector sum of air drag Fa , water

drag Fw, pressure gradient force Fp in the water, Coriolis force and possibly towing

force FT . With these forces the equation of motion in the body fixed frame is:

29
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M(a+ f × V ) = Fa + Fw + Fp + FT , (3.2)

where M represents both mass and added mass of the iceberg. The shape of the

iceberg affects both the air stress and water stress on the iceberg.

The iceberg’s projected area of the sail and keel is often used to calculate the drag

forces. Below we have given an example of how to calculate the drag forces from

air and water.

Wind drag

The wind drag is taken to be proportional to the square of the relative wind

velocity. u= U-V, where U and V are the wind and iceberg velocity vectors in

body frame. The wind drag force is given by:

Fa =
1

2
ρaCAAa | u | u. (3.3)

Here Aa is the cross-sectional area of the iceberg above the waterline in a vertical

plane normal to the wind, ρa is the air density. The air drag coefficient CA is

usually 1 for irregularly shaped objects at high Reynolds numbers.

To be able to give a correct estimate of the wind drag force we need to know the

cross-sectional area of the iceberg. It is therefore important to get an accurate

estimate of the iceberg’s projected area in different directions.

Water drag

The water drag force is modeled in the same way as the wind drag, but the iceberg’s

underwater area is subdivided into a number of depth layers to account for change

in projected area and the Ekman spiral. For each layer, we take the same velocity

relative to the iceberg. wi = Wi − V , and again use a quadratic drag law. Also

here the velocity is given in the body fixed frame.

Adding all the layers,we get the total drag force:

Fw =
1

2
ρCW |

∑
i

Ai | wi | wi | . (3.4)
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Where ρ is the density of water and Ai is the cross-sectional area in a vertical

plane of the ith layer below the waterline. A

3.2 Iceberg shape geometry and global loads

Timco [1999] presents four important factors when calculating iceberg impact loads

on structures:

• The mass of the iceberg for calculation of kinetic energy.

• The length and width of the iceberg for calculation of impact rates and pack

ice loads.

• The detailed 3D shape of the iceberg. When an iceberg has an impact against

a structure, the force is given by the area of contact and the crushing strength

of the ice. The integral of the ice load over the indentation is then equated

to the kinetic energy of the iceberg. It is assumed that the indentation

increases until the iceberg stops. The highest load during the indentation

can be found from the instantaneous area of contact and the pressure from

ice failure. Icebergs have been assumed to be spherical or ellipsoidal for

impact calculations. For a real iceberg, the contact area may increase more

slowly during indentation than it does for a sphere or ellipsoid, thus reducing

the impact loads. On the other hand, the contact area of a real iceberg may

build up faster than theory, which would increase the impact load.

• The moment of inertia of the iceberg. Most iceberg structure impacts are off

center so that the translational kinetic energy is absorbed in both crushings

of the ice and rotational kinetic energy. This reduces the ice load compared

to a direct impact.

3.3 Iceberg shape and stability

Icebergs, like ships, have six degrees of freedom when floating in the sea: heaving,

swaying, surging, rolling, pitching and yawing. We can therefore apply some of

the same theory used for ship motions for icebergs with minor modifications. For
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instance, the distinction between rolling and pitching is arbitrary for icebergs,

both can be considered rolling modes of oscillation.

At sea, wind and waves will excite the iceberg and give it a range of modes of os-

cillation. We are interested in how these rolling modes can amplify into instability.

The iceberg response to these forces will be strongest at the resonant frequencies

of its various oscillatory modes. The dynamics of rolling modes for icebergs are

calculated in the same way as for ships [Bailey, 1994]. However, we will not focus

on dynamic effects on iceberg stability in this thesis. For simplicity, we will assess

and predict static stability of an iceberg by using surveys of the iceberg’s surface

geometry. The calculations will be done based on 2D cross-sections of icebergs.

By removing a dimension, the problem is easier to work with. However, we will

add a section on how the 2D method can be extended to a 3D method.

Background

The stability of a floating body is determined by the relative movements of its

center of gravity and its center of buoyancy as it undergoes small changes in

orientation. Figure 3.1 shows a vertical cross-section of a body tilted with an

angle θ from its equilibrium position. We can see from the relative position of the

upward force of buoyancy and the equal and opposite force of gravity that we will

have a restoring moment. The restoring moment will have a lever called GZ. The

GZ curve is the curve of GZ against the angle of inclination and is an important for

describing the stability of a floating body. From GZ one may derive the moment

required to tilt an iceberg to a given angle of heel [Bass and Attwood, 1986].
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Figure 3.1: Iceberg cross-section taken from Bass and Attwood [1986].

For ships, the approximation of GZ is done by GM, which is the linearization of

the GZ curve at 0. However, for icebergs this assumption does not hold because

of the icebergs irregular shape. Icebergs can experience instability for roll angles

close to 0 as seen in Figure 3.2. Records from towing operations also state that ice-

bergs often experienced tow slippage when the icebergs heel more than 10 degrees

[Timco, 1999]. This means stability estimations close to zero roll are important,

and can often not be estimated by GM due the icebergs irregular shape.

Figure 3.2: Iceberg profiledata taken from Bass and Attwood [1986].
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3.4 An example of how iceberg shape data has

been used for stability estimation

An example will be given of how the geometric shape from icebergs can be used

for stability estimations. The goal is to estimate how hard we can tow the iceberg

before the iceberg rolls over, or the rope slips because the iceberg is tipping too

much.

We will now list some assumptions:

• We will calculate on 2D cross-sections of the iceberg, and neglect 3D effects

to make the problem simpler. This means we only investigate the stability

of the icebergs cross-sections.

• Neglect dynamic effects, and assume the iceberg is in static equilibrium.

• Seawater is set to 1025 kg
m3 and ice density to 920 kg

m3 , where we neglect any

variations in salinity.

• The 2D cross-section has its waterline where there is a static equilibrium

between the density of water and ice given in the previous bullet point.

Here we will summarize an approach to estimate the stability of an iceberg dur-

ing a marine operation. In the following sections there will be given a detailed

explanation of each bullet point below.

1. Gather relevant data from the iceberg we wish to estimate the stability of. In

the example given later on we have used surface length as the parameter to

base the estimations on. Surface length is the icebergs largest cross diameter

in the waterline.

2. Use a statistical method to extrapolate this data. We have used linear regres-

sion to determine a 95 % confidence interval of what the draft is. We have

chosen the deepest estimate to be conservative when calculating stability.

3. From the extrapolated data we estimate the keel shape. In this example we

create the iceberg keel from the draft estimate. We do this by assuming the

keel has a shape of trapezoidal.
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4. We then calculate the GZ curve from the estimated iceberg shape.

5. From the GZ value and estimated geometry we can determine the towing

force required to roll the iceberg over.

Gather information

First we gather information from the iceberg. We can use computer vision from

an UAV to create a digital elevation model (DEM) of the iceberg sail. However,

the Arctic is a very hostile environment. UAVs are therefore not always suited. In

Section 2.1 we briefly mention some challenges regarding an aerial sensor platform

for iceberg surveillance.

Estimation

From the surface data, for example a DEM, the surface volume together with

the iceberg density can be used to approximate the volume of the iceberg keel.

Also measurements, such as surface length can be used to give information of the

keel shape. This is because the surface geometry must satisfy iceberg stability

conditions.

Good stability estimations depend on determining the iceberg’s distribution of

volume. In this example we will predetermine the keel shape as a trapezoid, and

scale the trapezoid’s size depending on the estimated iceberg draft.

We estimate the iceberg draft (trapezoidal keel height) from using a statistical

relations between draft and surface length. The surface length is the longest

dimension across the iceberg’s surface area, as seen in Figure 3.3.
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Figure 3.3: Surface length used when creating a statistical relation with draft.

We use statistics given by the PERD database taken from the Hibernia field. In

Figure 3.4 we see how the draft correlates with the surface length for the Hibernia

icebergs.

Figure 3.4: Length vs. Draft for Hibernia icebergs taken from the Timco
[1999].

From the iceberg surface and keel data we have created a 95 % confidence interval

to give a conservative estimation of what the iceberg draft is.



Chapter 3. Application of Iceberg Geometry Estimations 37

Figure 3.5: Made a 95 % confidence interval from iceberg data taken from the
Iceberg Profiling Project by the Bedford Institute of Oceanography, 1984/85.

For the 2D model we have estimated the iceberg shape by making a trapezoid

from approximating the amount of area beneath the surface and estimating the

iceberg draft from the confidence interval. In Figure 3.7, we can see the estimated

trapezoids by estimating iceberg drafts from the linear regression model.

The reason for representing the shape by using a trapezoid is because we have

enough parameters. To create a more complex shape would require more param-

eters. In Chapter 5 we will use a neural network to give a more accurate shape

estimation.
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Figure 3.6: Here we have created different trapezoidal sizes based on draft
variations inside the 95 % confidence interval from iceberg data taken from the
Iceberg Profiling Project by the Bedford Institute of Oceanography, 1984/85.

Simulation

From the estimated keel shapes we calculate the iceberg stability at different roll

angles. A matlab script has been made to rotate the 2D iceberg profiles and

calculates the change in center of buoyancy and creates GZ curves for the different

shapes. In Figure 3.7 we can see the GZ curve for when the 2D profile is known

and when the profile is estimated. This shows that the iceberg with the greatest

draft is the most unstable one.
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Figure 3.7: Here we have a GZ curve for each of the trapezoidal size estimates
based on draft variations in the 95 % confidence interval. The iceberg data is
taken from the iceberg profiling project by the Bedford Institute of Oceanogra-

phy, 1984/85.

We also created a polar plot showing which direction the iceberg is most stable.

This was done by calculating the second moment of inertia of the iceberg surface

area to find the metacentric height (GM). However, this approximation is only

valid for small angles, and since icebergs due to their irregular shape, can be

unstable for small angles, this approximation is not a good estimate for iceberg

stability.

Towing force

From the GZ curves, we can calculate the restoring moment and find out at what

speed or force we can tow the iceberg. We can calculate the icebergs restoring

moment by:
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Restoring moment(θ) = −ρg∇GZ(θ). (3.5)

Here ∇ is the displacement of the iceberg in cubic meter [m3], g is gravity and ρ

is iceberg density.

The estimated restoring moment can be used during a towing operation to avoid

the iceberg’s angle of inclination becoming too large, in worst case resulting in

tow slippage or rolling. The limiting restoring moment can be used in a dynamic

model to find the speed at which the iceberg can be towed.

3.5 Discussion

In terms of predicting real iceberg stability, the dynamic effects need to be in-

cluded. Bailey [1994] proposes a way to predict towing force based on rolling

frequency ft of towing torque TT . Also by attaching an inertial measurement unit

on the iceberg and measuring the frequency of excitation would give more exact

stability estimations.

We initially assumed that larger draft would make the iceberg more unstable.

However, in Figure 3.7 we see that the blue GZ curve for the real iceberg 2D profile

is more stable than the green estimated iceberg GZ curve that has less draft. This

is because the shape close to the waterline has a larger effect on stability for small

perturbations than the iceberg draft. This shows that the distribution of volume

close to the surface is critical when estimating iceberg stability. The trapezoid

keel shape does not represent the iceberg shape accurately. The sudden slope

transition from iceberg sail to the keel with the trapezoid is non-physical and does

not exist for real icebergs. This is most likely because of how icebergs are made,

and how they eventually get rounder from rolling and changing their orientation

within their lifespan, before melting.

In the example we used a surface length from 2D iceberg profiles and estimated

the draft from a confidence interval. However, the confidence interval was based

on 3D icebergs and not 2D icebergs. So the confidence interval we used most likely

overestimated the iceberg draft.
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3D analysis

One approach to convert the 2D example to 3D would be to add a dimension by

multiplying the trapezoid with a width, making it a 3D trapezoid. We do this for

several cross-sections along the iceberg so that we create many thin 3D icebergs.

The thin 3D icebergs can then be added together creating the total iceberg keel

geometry.

The procedure would be to measure many surface lengths as seen in Figure 3.8.

Then we can estimate the draft based on the surface length and create a 2D

trapezoidal keel approximation for that cross-section. The trapezoid can then be

elongated to the next cross-sectional measurement, so that it becomes 3D. Finally

we can add up all the thin 3D keel estimations to a total. In (3.6) we have shown

how we can find the restoring moment from finding the GZ curve and displacement

from each trapezoid:

Restoring moment iceberg(θ) = −ρg
N∑
i=1

GZ(θ)i∇trapezoid,i(θ). (3.6)

In Figure 3.8 we can see how the surface length b2 can be used for draft estimation

of h. We can then do this for several surface lengths and add all the trapezoids

with a width L.
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Figure 3.8: How we can approximate 3D stability from 2D profile estimations
in one roll direction.

The 3D estimation will have the same problem as for the 2D case with estimating

the distribution of volume close to the surface. Also by choosing a trapezoid shape,

and elongating it, we will give an uneven 3D distribution of volume, which will

give an inaccurate stability estimation in different directions.

In Figure 3.9 we have made an illustration of how to use the 2D trapezoidal

estimations made earlier for a 3D stability calculation.
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Figure 3.9: How we can approximate 3D stability from 2D profile estimations
in one roll direction.

It is important to note that even by obtaining a more accurate estimation tech-

nique for iceberg keel geometry, the effect of the iceberg’s in-homogeneous density

distribution could still cause the predicted stability to be inaccurate.
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Chapter 4

Theoretical Background

This chapter will provide a theoretical background for modeling an artificial neu-

ral network (ANN) for function approximation. This is because we will design a

feedforward network for estimating iceberg keel geometry in the next chapter. A

feedforward network is a subset of the class of non-linear regression. The motiva-

tion for using a neural network instead of other statistical tools can be summarized

as:

• They are useful for situations where there is a lot of data, but little underlying

theory to describe the model. For icebergs, because of their irregular shape,

it is hard to model the connection between the sail profile and keel. Artificial

networks can find and use weak non-linear relations between data without

any prior assumptions about the problem space.

• Artificial neural networks are adaptive. The network can continuously be

trained with new information, and improve its estimations.

• Artificial networks are good at self-organizing information, and are relatively

simple to construct for data sets with many parameters.

A general description of a neural network is a machine that is designed to model

the way the brain performs particular tasks or functions [Haykin, 2001]. The

network we will use is an artificial neural network for machine learning. This is a

family of statistical learning algorithms inspired by the biological neural networks.

45
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Figure 4.1: Conceptual drawing of an artificial neural network [Gos].

In Figure 4.1 we show a simple illustration of a 3 layered artificial neural network.

The layer between the input and output layer has no interaction with the envi-

ronment and is known as the hidden layer. By adding more hidden layers we

increase the complexity of an ANN, and thus its computational capacity. The

added complexity will also increase the time to train the network. The final layer

that interacts with the output is known as the output layer.

Artificial neural networks are presented as systems of interconnected neurons that

send signals to each other. The connection between neurons can have numeric

weights that get tuned based on experience. This makes neural networks adaptive

to inputs. A neural network has commonly two characteristics:

• They consist of a set of adaptive weights where the numerical weights are

tuned by learning algorithms.

• They can approximate non-linear functions of their inputs.

4.1 Neuron model

As mentioned, the ANN consists of many neurons. These neurons can have one or

multiple inputs. To begin with, we can explain how a multi-input neuron works

as seen in Figure 4.2.
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In Figure 4.2 we have a multiple input neuron. We call the multiple inputs for a

vector p, where the individual inputs are given as p1, p2, . . . , pR. This vector is mul-

tiplied by a weight matrix W, consisting of individual weights, w1,1, w1,2..., w1,R.

The first indice of the elements in the weight matrix indicates the particular neu-

ron destination for the weight. The second index indicates the source from where

the signal is being transmitted to the neuron.

The product of W and p is a vector, Wp, where a bias b is added before this

term is sent to the summer. The summer output is n, and is often called ”the net

input.”

Figure 4.2: Multiple-Input Neuron from Hagan et al. [2002].

The net input n, can be calculated by:

n = w1,1p1 + w1,2p2..., w1,RpR + b. (4.1)

In matrix form the expression can be written as:

n = Wp + b. (4.2)

This net input is then sent to a transfer function f , which can produce the output

vector a. The neuron output can be written as:

a = f(Wp + ). (4.3)
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The output depends on which transfer function we chose. We will discuss transfer

functions in the next section.

4.2 Transfer functions

In Figure 4.2 we can see the transfer function, also known as an activation function,

shown by f . The transfer function may be a linear or a non-linear function of the

input n depending on what problem we want to solve with the artificial neural

network.

We use these functions in the hidden layer to introduce non-linearity into the

network. This is because a linear function of a linear function is again a linear

function. This capability to represent non-linear functions is what makes multi-

layered networks very powerful. Hornik, Stinchcombe, and White [1989] have

shown that a two-layered network, with a tan-sigmoid transfer function in the

hidden layer and a linear transfer function in the output layer, can approximate

any function of interest. This can be done with any degree of accuracy as long as

the network has enough neurons.

In the model presented in Chapter 6, we have chosen a tan-sigmoid function as the

non-linear transfer function and a linear purelin transfer function in the output

layer. This is one of the most common choices. We could almost use all types of

non-linear functions, but because of back-propagation learning the transfer func-

tion must be differentiable.

The sigmoid functions are also easier to train than for example threshold units.

This is because a small change in the weights will usually produce an equal relative

change in the outputs. While for a threshold unit a slight change in the weights

will often not produce a change in output. The tan-sigmoid function given by:

f(x) =
1

1 + e−x
. (4.4)
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4.3 Network architecture

One neuron is often not sufficient when dealing with many inputs. We can solve

this by having several neurons operating in parallel. We call this a ”layer” of

neurons [Hagan et al., 2002].

As mentioned, ANNs have three types of layers: input, hidden, and output. When

creating the neural network architecture we need to come up with values for the

number of layers of each type and also the number of nodes in these layers. How-

ever, the exact number of hidden layers S1 to use is something that can not be

known before training. Later on when designing the network for a particular case,

we will check the performance of the network for different numbers of neurons.

Figure 4.3: Illustration of network Architecture.

We have decided to only have one hidden layer for the network, to make it as

simple as possible. This will prevent having too many parameters to estimate,

especially given the low iceberg sample size.

4.4 Training the network

Here we will shortly introduce the learning technique that will be used later on.

It is called performance learning, which is one of several different classes of net-

work learning laws. In performance learning the network parameters (weights and

biases) are adjusted to optimize the performance of the network.
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Back-propagation

In 1969, Minsky [1969] presented a two-layered feed-forward network, but they

did not find a solution to the problem of how to adjust the weights and biases in

the network. A solution to this problem was presented by Williams and Hinton

[1986], Parker [1985] and Cun [1985]. The idea was to use the errors from the

output layers to back-propagate them and use it to determine the units in the

hidden layers. This is why the algorithm is called the back-propagation learning

rule.

The following section will explain the back-propagation algorithm. The explana-

tion is taken from Hagan et al. [2002].

Forward Propagation

As described earlier, the output from one layer is the input to the next layer. We

can calculate the final output aM from the following equations. M is the number

of layers in the network.

am+1 = fm+1(Wm+1am + bm+1) for m = 0, 1, ...,M − 1 (4.5)

The neurons in the first layer receive external input matrix P:

a0 = p, (4.6)

this provides the starting point for equation (4.5). The outputs of the neurons in

the last layer are considered the network outputs.

a = aM (4.7)

Performance Index

The back-propagation algorithm uses the mean square error as its performance

index. The performance index will later on be used to optimize the weights and

biases of the ANN.
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Each input matrix p to a network, has a target output matrix t. We find the

performance index by calculating the forward propagation matrix a, from a cor-

responding input matrix p. We can then calculate the mean square error between

the forward propagation matrix a, and the target output matrix t. The back-

propagation algorithm wants to adjust the parameters in order to minimize the

mean square error, F (x) :

F (x) = E[e2] = E[(t− a)2], (4.8)

where x is the vector of network weights and biases. If the network has multiple

outputs, the expression becomes:

F (x) = E[eTe] = E[(t− a)T (t− a)]. (4.9)

We will approximate the mean square error by:

F̂ (x) = (t(k)− a(k))T (t(k)− a(k)) = eT (k)e(k), (4.10)

where the expectation of the square error has been replaced by the squared error

at iteration k.

Levenberg-Marquardt algorithm

In this section, we will present the back-propagation method used later on. There

are several ways of minimizing the error and optimizing the weights and biases of

the network. However, some methods provide faster convergence than others. We

will use a back-propagation algorithm called Levenberg-Marquardt. It is based on

Newton’s method and is a standard numerical optimization technique.

The goal is to optimizing the performance index F(x). Where x is the vector of

network weights and biases. We will use Newton’s method for this:

xk+1 = xk −A−1
k gk. (4.11)

where Ak ≡ ∇2F(x)|x=xk
and gk ≡ ∇F(x)|x=xk

.
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If we assume F (x) is a sum of squares function:

F (x) =
N∑
i=1

v2i (x) = vT(x)v(x). (4.12)

then the j th element of the gradient would be:

[∇F (x)]j =
∂F (x)

∂xj
= 2

N∑
i=1

vi(x)
∂vi(x)

∂xj
. (4.13)

The gradient can therefore be written in the matrix form:

∇F (x) = 2JT(x)v(x), (4.14)

where:

J(x) =


∂v1(x)
∂x1

∂v1(x)
∂x2

. . . ∂v1(x)
∂xn

∂v2(x)
∂x1

∂v2(x)
∂x2

. . . ∂v2(x)
∂xn

...
...

...
∂vN (x)
∂x1

∂vN (x)
∂x2

. . . ∂vN (x)
∂xn

 (4.15)

,

is the Jacobian matrix.

Now we want to find the Hessian matrix. The k,j element of the Hessian matrix

are:

[∇2F(x)]k,j =
∂2F(x)

∂xk∂xj
= 2

N∑
i=1

{
∂vi(x)

∂xJ

∂vi(x)

∂xj
+ vi(x)

∂2vi(x)

∂xk∂xj

}
. (4.16)

In matrix form the Hessian can be expressed as:

∇2F(x) = 2JT(x)J(x) + 2S(x), (4.17)

where:

S(x) =
N∑
i=1

vi(x)∇2vi(x). (4.18)
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If we assume that S(x) is small, we can approximate the Hessian matrix as:

∇2F (x) ∼= 2JT (x)J(x). (4.19)

If we then substitute (4.19) and (4.14) into (4.11) we obtain the Gauss-Newton

method:

∆xk = xk+1 − xk = [Jt(xk)J(xk) + µkI]−1JT(xk)v(xk). (4.20)

The advantage of Gauss-Newton over the standard Newtons method is that we

do not need to calculate any second derivatives. However, a problem with the

Gauss-Newton method is that the matrix H = JTJ may not be invertible. We can

solve this by modifying the approximated Hessian matrix:

G = H + µI. (4.21)

To see how this matrix can be made invertible, we suppose that the eigenvalues

and eigenvectors of H are {λ1, λ2, . . . λn} and {z1, z2, . . . , zn}. Then

Gzi = [Hµ+ I]zi = Hzi + µzi = λizi + µzi = (λi + µ)zi. (4.22)

The eigenvectors of G are the same as the eigenvectors of H , and the eigenvalues

of G are (λi+µ). G can be made positive definite by increasing µ until (λi+µ) > 0

for all i, and therefore the matrix will be invertible.

By adding this change to the Hessian matrix, we get the Levenberg-Marquardt

algrorithm:

xk+1 = xk − [JT (xk)J(xk) + µkI]−1JT(xk)v(xk). (4.23)

We will not show how we calculate the Jacobian for this algorithm. See Hagan

et al. [2002] Chapter 13 for a detailed description.
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4.5 Generalization

A major advantage with neural networks is their ability to generalize. Generalizing

is when a trained network can classify data it has never seen before. The network

should perform well on both the training data and on new data. This concept is

called generalization [Hagan et al., 2002]. We want to design a simple network to

reduce the possibility of errors. We achieve this by creating a network that contains

the smallest number of free parameters, in the form of weights and biases. This is

done by reducing the number of neurons in the model.

To be able to evaluate generalization when designing a neural network we split

the data into three categories:

• Training samples.

• Validation samples.

• Test samples.

The training set is used to update the weights and biases of the network to mini-

mize the mean square error between the target outputs and the forward propagated

outputs. We use the validation set to see how well the network performs on new

data. The training should be stopped in the minimum of the validation set error.

At this point, the network generalizes best. If learning is not stopped the network

will overfit, which will decrease its performance on the new data. Finally, when

the network is finished with training, we can test the performance on the third

data set, the test set.

Given that the amount of data was unlimited, which means that the number of

data points is significantly larger than the number of network parameters, we

would not have a problem with overfitting. But because the training data we use

later on is limited we must investigate how we can improve generalization.

How to improve generalization?

We can improve generalization by either restricting the number of weights or

limiting the magnitude of the weights. There are several ways of improving gen-

eralization. We will look at an algorithm that can do this without changing the
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number of neurons. We will use a method called regularization that modifies the

performance index to include a term that penalizes network complexity.

When we increase the weights, the slope of the network function will also increase.

This means that when the weights are large, the functions created by the network

will have large slopes. This makes the network more likely to overfit. However,

if we can restrict the weights, then the network function will create a smoother

interpolation.

With every network we start with a training set consisting of inputs and corre-

sponding targets given by:

p1, t1,p2, t2, . . . ,pQ, tQ, (4.24)

where Q represents the number of inputs.

For the generalization calculations, we will assume that the target outputs are

generated by inputs with:

tq = g(pq) + εq. (4.25)

Here g(.) is a unknown function, and εq is a zero mean random variable white

noise. The objective when training the neural network is to approximate the

function g(.) while ignoring the noise, εq.

In 4.26 we can see the regularization term written as the sum of squares of the

networks weights. The ratio α
β

determines the complexity of the network.

F (x) = β

Q∑
q=1

(t− a)T (t− a) + α
n∑
i=1

x2i . (4.26)

How well the network generalizes is determined by the choice α and β. We will

use Bayesian analysis to estimate α and β. This method is called Bayesian regu-

larization.

The method we will present is from MacKay [1992].
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We first assume that the networks weights are random variables and then create

a probability function using Bayes rule. We chose the weights that maximize the

conditional probability of the weights given the data.

P (x|D, α, β,M) =
P (D|β,M)P (x|α,M)

P (D|α, β,M)
. (4.27)

Here x contains all the weights and biases in the network. D represents the training

data set and M describes the network model by how many layers, and neurons

are in each layer.

The probability density function P (D|β,M) represents the probability for the data

given, the set of weights x , the parameter β, and the choice of network M . By

assuming the noise term in 4.25 is independent and Gaussian distributed. We can

write the density function as:

P (D|β,M) =
1

ZD(β)
exp(−βED), (4.28)

here β = 1
2σ2

s
, where σ2

s is the variance of each element of ε. And

ZD(β) = (2πσ2
s)

N
2 = (

π

β
)
N
2 , (4.29)

where N is Q ×SM . Q is the number of inputs and M is the number of neuron

layers. The second term in the 4.29 allows us to incorporate prior knowledge

through its density function.

P (x|α,M) =
1

ZW (α)
exp(−αEW ), (4.30)

where α = 1
2σ2

W
, and σ2

W is the variance of each weight. Ew is the sum squared

weights and:

ZW (α) = (2πσ2
W )

n
2 = (

π

α
)
n
2 , (4.31)

where n is the number of weights and biases in the network.
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We do not need to be concerned with P (D|α, β,M), because it is not a function

of x and is a normalizing factor. We can now write (4.27) as:

P (x|D, α, β,M) =

1
ZW (α)

1
ZD(β)

exp(−(βED + αEW ))

NormalizingFactor

=
1

ZF (α, β)
exp(−F (x). (4.32)

To find the most probable values of the weights we should maximize the posterior

density P (x|D, α, β,M), which is equivalent to minimizing the regularized perfor-

mance index F (x) = βED + αEW . We will mark the weights that maximize the

posterior density function as xMP .

To see how we can find the unknown parameters, see Hagan et al. [2002], Chapter

13.
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Chapter 5

Case study: Estimation of Keel

Geometry from Surface Data

Problem statement: When performing marine operations in the Arctic, geom-

etry and size of an iceberg is necessary for calculating the icebergs trajectory and

stability. However, obtaining this data is not easy. Today we can use underwater

vehicles to scan the iceberg’s keel using sonar and then create 3D models from this

data. That said, operating underwater vehicles as a sensor platform demands a

lot of resources. We want to find a way to obtain accurate estimates of the iceberg

keel geometry without relying on an underwater sensor platform.

Proposed solution: The solution is to use iceberg sail data to estimate the keel

geometry. We will therefore not rely on an underwater sensor platform. The ice-

berg sail data can be estimated using an aerial sensor platform instead. However,

this method does need pre-existing data of iceberg sails and their corresponding

keels. Therefore the underwater sensor platform is required, but only for a limited

amount of time, until the data sets are good enough to build a statistical basis for

estimation.

When iceberg keel and sail data is obtained we can use a statistical tool for the

estimation. In this case we will build an artificial neural network. The goal is that

the neural network can generalize non-linear relationships between iceberg surface

shape inputs and iceberg subsurface outputs. We hope that this method will be a

part of the next generation ice management system.
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We will now explain how we prepare the iceberg data and select parameters for

the network.

5.1 Data collection and preprocessing

For this case 2D cross-sections of icebergs will be the statistical basis for the neural

network. Later on there will be a section on how the method can be extended to

a 3D case. Horizontal stereo cameras were used to obtain the 2D above water

dimensions of the icebergs, and a vertically lowered sidescan sonar was used to

obtain the iceberg draft and vertical profile of the iceberg’s underwater shape. We

have 42 2D profiles of iceberg sails and their corresponding keels from the PERD

database. The 2D profiles have been extracted from scanned images. In Figure

5.1 we see an iceberg profile before extraction.

Figure 5.1: Example of a 2D cross-section used from the PERD database.
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We detect and extract the outline of the iceberg 2D profile into coordinates. In

Figure 5.2 the detected outline is shown.

Figure 5.2: Image preprocessing of the 2D profiles from the PERD database.

For the 2D cross-section far left in Figure 5.2 the waterline is marked with a black

line. This waterline is the iceberg’s global waterline in 3D. For this case, we will

move the global black waterline for the cross-sections. This is so that the cross-

sectional area ratio satisfies Archimedes law. In (5.1) to (5.5) we can see how

the keel and sail volume ratio can be found. Where Fb is the buoyancy force of

the iceberg. Fg is the gravity force of the iceberg. ∇berg represents the displaced

volume of the iceberg and Vice represents the total iceberg volume.

∑
F = 0 (5.1)

Fb = Fg (5.2)

∇berg × ρwater = Vice × ρice (5.3)

∇berg

Vice
=

ρice
ρwater

(5.4)

(5.5)

When choosing a constant density ratio we have neglected variations in salinity in

both seawater and sea ice.

After extracting the outline coordinates they need to be reduced before being used

as input values for the neural network. We do this by using a Matlab code by Bone

[2014] which reduces the number of vertices in a closed polygon. It does this by

calculating the importance of each vertex based on angle and segment length and

then removing the least important one. The process is repeated until the desirable
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number of vertices is reached. For the neural network we have reduced the surface

and subsurface polygon to only 8 vertices. By reducing the number of vertices even

more, we would lose too much of the original shape. The MatLab program can be

found uploaded into a folder in DAIM. In Figure 5.2 we can see this transformation.

Figure 5.3: Preprocessing of iceberg data.

5.2 Selecting the architecture

Neural networks have 3 types of layers: input, hidden, and output. When creating

the neural network architecture we need to come up with values for the number

of layers of each type and also the number of nodes in these layers. However, the

number of hidden layers S1 is something that cannot be known before training.

In the next section we will come back to this.

For the network a tan-sigmoid transfer function will be used in the hidden layer,

and a linear output layer. This is a typical network for function approximation.

In Figure 5.4 we see the network architecture for the neural network.
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Figure 5.4: Illustration of network Architecture.

5.3 Training the network

The objective when training a neural network is to make it perform well on both

the training data, and new data. This concept is called generalization [Hagan

et al., 2002]. We also want to design a simple network. This means a model that

contains the smallest number of free parameters (weights and biases), which means

reducing the number of neurons in the model. Also by avoiding complexity we

reduce the possibility of errors and the time used to train the network.

Input matrix :

P = [16× 42]. (5.6)

Target matrix:

T = [16× 42]. (5.7)

We have divided the image data into three sample sets:

• Training samples 70 % (30 samples).

• Validation samples 15 % (6 samples).

• Test samples 15 % (6 samples).

(See section 4.5 for what the difference sets are for.)

First we trained the network using the Levenberg-Marquardt algorithm for dif-

ferent network sizes. We created a network with 3, 5 and 10 nodes where we
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calculated the mean square error and the regression value. If the number of neu-

rons are too many, the network might overfit the training data.

The mean square error is the average squared difference between outputs and

targets. Lower values are better, zero means no error. The regression value R

measures the correlation between outputs and targets. R equal to 1 means a close

relationship, and 0 means a random relationship. R can be calculated from (5.8).

R(a, T ) =
Cov(a, T )√

Cov(a, T )Cov(a, T )
(5.8)

The mean square error (MSE) and regression values (R) for the different networks

are found in Table 5.1, 5.2 and 5.3:

Samples [T] MSE [-] R [-]

Training 30 0.0194 0.932

Validation 6 0.0258 0.914

Testing 6 0.0273 0.907

Table 5.1: Levenberg Marquardt backpropagation algorithm of network with
3 hidden neurons.

Samples [T] MSE [-] R [-]

Training 30 0.0181 0.94

Validation 6 0.0364 0.876

Testing 6 0.0162 0.941

Table 5.2: Levenberg Marquardt backpropagation algorithm of network with
5 hidden neurons.

Samples [T] MSE [-] R [-]

Training 30 0.0210 0.932

Validation 6 0.0468 0.831

Testing 6 0.0373 0.871

Table 5.3: Levenberg Marquardt backpropagation algorithm of network with
10 hidden neurons.
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The errors from all three networks are similar. The network with 5 nodes gives

the best result and can be seen in Figure 5.5. A mean square error of 0.0162 from

the target samples and produced output seems high given that we have scaled the

data between 0 and 1.

Figure 5.5: 5 node network with 16 inputs (x,y -coordinates) and 16 targets
( x,y -coordinates) from Matlab.

In Figure 5.6 we can see the MSE plotted against number of epochs. An epoch is a

measure of the number of times all of the training vectors are used once to update

the weights. After only two epochs, we can get the best validation performance,

which is the best performance on new data. By stopping the network when we

reach the best performance on validation samples, the network will perform well

on new data without overfitting.

Figure 5.6: Performance plot of the training, validation and test set using the
Levenberg-Marquardt algorithm.
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In Figure 5.7 we see the distribution of error in a histogram for each output for a

10 node network using the Levenberg-Marquardt training algorithm. We see that

most sample outputs have close to 0 error from the targets. However, we have

some outliers, which give a bad shape estimation of the iceberg.

Figure 5.7: Histogram plot of errors by the training, validation and test set
by the Levenberg-Marquardt algorithm.

Figure 5.8 shows the plotted regression R values for the 5 node network. For all

sets, we can see there is a slight correlation error between target and outputs.

However, it does show, that the network has found a close relationship between

targets and outputs.
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Figure 5.8: Regression plot of training,validation and test set from Matlab.

We want the network to generalize well. In the previous section we created 3

different networks with 3, 5 and 10 neurons in the hidden layer. If the number

of neurons is too large, we might overfit the training data, and although we will

minimize the MSE on training data, it will perform poorly on new data. To ensure

the network has a good performance we will use an algorithm that can adjust the

numbers of parameters in the network so that it generalizes well. The method we

will use is called Bayesian regularization. See Section 4.5 for a description of the

algorithm.
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Training with Bayesian regularization

By using Bayesian regularization we get a larger training set because we do not

need a validation set. The performance for different network sizes will now be

compared as we did in the previous section when using the Bayesian regularization.

The number of effective parameters γ from each network size will be help us

evaluate the size of the network. This parameter is described in Chapter 5.

We have divided the data into three sets as in the previous section. Although we

do not need a validation set when using Bayesian regularization, we have included

a small set with two samples to show that the algorithm gives 0 MSE and 1 for R:

• Training samples 80 % (34 samples).

• Validation samples 5 % (2 samples).

• Test samples 15 % (6 samples).

The mean square error, regression coefficient R and the effective number of pa-

rameters γ will be compared for 4 different networks with nodes equal to 3,5,10

and 20. Afterwards we will evaluate the different sizes and see which network is

best.

Samples [T] MSE [-] R [-]

Training 34 0.00694 0.978

Validation 2 0 0

Testing 6 0.0428 0.866

Table 5.4: Levenberg Marquardt backpropagation algorithm of network with
3 hidden neurons.

Where the effective number of parameters γ = 96.1 of total 115.

Samples [T] MSE [-] R [-]

Training 34 0.00464 0.985

Validation 2 0 0

Testing 6 0.0165 0.949

Table 5.5: Levenberg Marquardt backpropagation algorithm of network with
5 hidden neurons.
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Where the effective number of parameters γ = 147 of total 181.

Samples [T] MSE [-] R [-]

Training 34 0.000993 0.996

Validation 2 0 0

Testing 6 0.0974 0.712

Table 5.6: Levenberg Marquardt backpropagation algorithm of network with
10 hidden neurons.

Where the effective number of parameters γ = 282 of total 346.

Samples [T] MSE [-] R [-]

Training 30 4.55× 10−17 1.00

Validation 2 0 0

Testing 6 0.0904 0.744

Table 5.7: Levenberg Marquardt backpropagation algorithm of network with
20 hidden neurons.

Where the effective number of parameters γ = 546 of total 676.

Networks with 10 neurons or more overfit with a bad performance on the test

data compared to the training data. We obtained the best result for a 5 neuron

network. Using only 5 neurons reduces the time needed to train the network. For

the 5 neuron network the MSE was 0.0165 and the correlation coefficient was close

to 1 being R = 0.949 for the test samples. In Figure 5.9 we see a high correlation

value for all the training samples for the 5 neuron network.
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Figure 5.9: Regression plot of errors by the training, validation and test sets
from Matlab.

Also in Figure 5.10 we see that the 5 neuron network has most of its errors close

to zero. The number of errors steadily decrease the further we are from zero.
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Figure 5.10: Histogram plot of errors by the training, validation and test sets
from Matlab.

In Figure 5.11 we see that both test and training data give steady results after

about 20 epochs.

Figure 5.11: Performance plot of errors by the training, validation and test
sets from Matlab.
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5.4 Geometric shape results

Now we will present iceberg keel shapes created by the network and compare these

results to the real geometric keel shape. We will use shape factors and area to

evaluate the estimated iceberg keel shape. We will also train the same network

several times, and use the average of the estimated keel shapes to compare with

the real keel geometry.

Shape factors

Shape factors are dimensionless quantities we can use to describe the shape of

an object, independent of its size. We will calculate the shape factors from the

iceberg dimensions, such as diameter, chord lengths, etc. Here we will give a brief

description of the shape factors used.

Aspect Ratio

The aspect ratio denotes the ratio of the major axis squared to the area. The

major axis is the keel’s greatest diameter. The formula for aspect ratio is given in

(5.9):

Aspect ratio =
Major axis

Area
(5.9)

Circularity

Circularity C, is defined as the degree to which the object is similar to a circle.

Circularity is a measurement of both the particle form and roughness. The further

away from a perfectly round and smooth circle the object becomes, the lower is

the circularity value. In (5.10) a definition is given:

Circularity =

√
4π × Area

P 2
(5.10)

The perimeter of the object, P, is defined as the total length of the objects bound-

ary.
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Convexity

The convexity shape factors rate how convex the geometry is by dividing the

convex perimeter of the object with the real perimeter. A convex hull of an object

can be thought of as a rubber band that surrounds the object.

Convexity =
Pconvex
P

(5.11)

In (5.11) Pconvex represents the convex perimeter, and P represents the original

perimeter of the object.

Solidity

We define solidity as the object area divided by the convex hull area as given in

(5.12).

This shape factor is also dependent on the convex hull like convexity.

Solidity =
Area

Areac
(5.12)

Areac is the convex hull area.

Results

We have tested the network by training a 5 node network and removing 4 iceberg

profiles (10 % of the total samples) to use for shape testing.

The original iceberg 2D cross-sections were normalized and reduced before apply-

ing them to the neural network. When comparing the results, we will therefore

call the original iceberg keel parameters for Real shape and the reduced keel

shape for Reduced shape. The estimated keel shape will be called Estimated

Shape.

Below in the different tables we will compare the shape factors Aspect ratio,

Solidity, Circularity, Convexity, and Area, with Real Shape, Reduced

Shape and Estimated Shape.
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Shape 1

Figure 5.12: 2D cross sectional iceberg shape estimate from the Artificial
Neural Network.

% Difference =
Estimated value−Real value

Real value
× 100 (5.13)

Area Aspect ratio Solidity Circularity Convexity

Simplified Real 0.5822 1.7463 1.0000 0.9426 1.0000

Estimated 0.5516 1.7625 1.0000 0.9412 1.0000

% Difference -5.2637 % 0.9316 % 0% -0.1550 % 0 %

Area Aspect ratio Solidity Circularity Convexity

Real 41.0445 ∗ 104 2.6341 0.9772 0.8392 0.9492

Estimated 0.5516 1.7625 1.0000 0.9412 1.0000

% Difference -32.99 % 3.35 % 12.15 % 5.35 %

We can not compare the difference between real and estimated area because the

estimated area has been normalized.
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Shape 2

Figure 5.13: 2D cross sectional iceberg shape estimate from the Artificial
Neural Network.

Area Aspect ratio Solidity Circularity Convexity

Reduced Shape 0.6307 1.7899 1.0000 0.9343 1.0000

Estimated Shape 0.5516 2.1366 1.0000 0.9215 1.0000

% Difference -14.4516 % 19.3722 % 0 % -1.3774 % 0 %

Area Aspect ratio Solidity Circularity Convexity

Real Shape 47.0221 ∗ 104 1.6954 0.9810 0.9026 0.9575

Estimated Shape 0.5516 2.1366 1.0000 0.9215 1.0000

% Difference 26.02 % 1.93 % -6.06 % 4.43 %



Chapter 5. Case study: Estimation of Keel Geometry from Surface Data 76

Shape 3

Figure 5.14: 2D cross sectional iceberg shape estimate from the Artificial
Neural Network.

Area Aspect ratio Solidity Circularity Convexity

Reduced Shape 0.6487 1.9277 1.0000 0.9214 1.0000

Estimated Shape 0.5732 1.8948 1.0000 0.9303 1.0000

% Difference -11.6398 % -1.7021 % 0% 0.9580 % 0 %

Area Aspect ratio Solidity Circularity Convexity

Real Shape 41.6332 ∗ 104 1.8835 0.9677 0.8918 0.9601

Estimated Shape 0.5732 1.8948 1.0000 0.9303 1.0000

% Difference 0.59 % 3.33% 4.31 % 4.15 %
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Shape 4

Figure 5.15: 2D cross sectional iceberg shape estimate from the Artificial
Neural Network.

Area Aspect ratio Solidity Circularity Convexity

Reduced Shape 0.5421 2.2036 1.0000 0.8851 1.0000

Estimated Shape 0.5626 2.1014 1.0000 0.9086 1.0000

% Difference 3.7861 % -4.6378 % 0% 2.6602 % 0 %

Area Aspect ratio Solidity Circularity Convexity

Real Shape 41.7370 ∗ 104 2.1953 0.9696 0.8354 0.9353

Estimated Shape 0.5626 2.1014 1.0000 0.9086 1.0000

% Difference -4.27 % 3.13 % 8.76 % 6.91 %
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5.5 Discussion and improvements

The overall goal was to see if a neural network could estimate the shape of an

iceberg keel, and also see how well the network performed. The idea was that

there exists a relation between iceberg sail geometry and keel geometry. The

arguments we use to justify such a relation are:

• We know there exist a relation to how much volume exist beneath the surface

from assuming a uniform density of ice.

• By assuming the iceberg is in equilibrium. The center of buoyancy and

center of gravity must ensure stability, which gives information about the

distribution of volume.

The distribution of volume is very hard to model, because iceberg equilibrium

stability can occur with many different distributions of volume. What we have

done is to create an artificial network that estimates the most likely distribution,

based on previous relations. As mentioned in the introduction, neural networks

are useful when the underlying problem is hard to model, which irregular shaped

icebergs are.

We estimated keel shapes from 4 different iceberg sails. When looking at Table

5.4 to Table 5.4 the network has an error of less than 15 % for most shape factors

and areas when comparing the reduced shape with the estimated shape. When

we compare the estimated shape with the real shape, the error is larger. This

is because we lose information when we reduce the geometry. For the different

estimated shapes we see that the shape factor for convexity and solidity are 1

or close to 1 for most cases. This is because we reduced the number of vertices

from the original iceberg shape. When we reduce the vertices by calculating the

importance of each vertex based on angle and segment length and then removing

the least important one, we end up with more convex shapes.

We can achieve more accurate shape estimations by adding more parameters in

the network. However, we would then need to increase the amount of neurons

in the network, meaning we would need a larger data set to train the additional

weights and biases.
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One can argue that the sample set consisting of 42 2D iceberg geometries are very

alike, and the shapes are not varied enough to give an actual representation of

how irregular and diverse icebergs are in real life. This is true when we are only

investigating 2D shapes compared to real life 3D geometries. It would be very

interesting to see how the network will adapt to a larger data set with greater

variation in geometry, and also the performance when we add a dimension to 3D.

Sensitivity towards stability

We will never achieve perfect results by estimation. However, it is interesting to

see if the estimates are good enough for trajectory and stability calculations. In

Figure 5.16 we have plotted the real geometry, the estimated geometry with a

neural network, and the estimated trapezoidal geometry as was done in Chapter

3.

Figure 5.16: This figure compares the real geometry in black with estimates
using different methods. Green is from estimating the keel to be a trapezoidal

shape, and red if from using a neural network.



Chapter 5. Case study: Estimation of Keel Geometry from Surface Data 80

We have compared the GZ curves from the different shapes in Figure 5.17. In

Figure 5.17 we see that the GZ curve from the neural network shape estimate

fits better than the GZ curve from the trapezoid estimate. It should again be

noted that the shapes and GZ values have been normalized and rescaled to make

calculations easier. Also the trapezoidal estimate is not based on the same statistic

as in Chapter 4, we have just used a factor that gives a fit for comparison.

Figure 5.17: This figure compares the GZ curves from the real geometry in
black, the trapezoidal shape estimate in green, and red from using a neural

network.

3D analysis

The reason for performing the case study in 2D is because we do not have enough

3D iceberg data. In this section we will show how the neural network model can

be generalized to a 3D iceberg model.

The challenge with creating a neural network to estimate a 3D keel is that the

number of parameters will increase by adding an extra degree of freedom. In the

previous case study we used (x,y) coordinates as input and target parameters for

the network. Here we will use 3 (x,y,z) parameters for input and target -matrices.

By increasing the number of parameters in the network, the network would have

to become larger, meaning more neurons. To train such a large network, we will
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need a large data set. From the Hodgson [1988] data we have 3 samples of 3D

icebergs, this is not enough data to train a network. However, we can show how

we would prepare the data.

In Figure 5.18 we can see a 3D model from Hodgson [1988]. This model is created

from 2047 (x,y,z) vertices. We create the geometry from a mesh by using Delaunay

triangulation.

Figure 5.18: This model is created from 2047 (x,y,z) vertices using Delaunay
triangulation.

The surface shown in Figure 5.19 is of the iceberg keel. This geometry is created

by a 904x 3 matrix, containing 904 (x,y,z) vertices.
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Figure 5.19: This iceberg sail geometry consist of 1756 faces and 904 vertices.

We must reduce the number of vertices in Figure 5.19 to limit the size of the neural

network and number of parameters to estimate. We do this by using Delaunay

triangulation in Matlab. In Figure 5.20 we can see the reduced geometry. It

consists of 17 vertices describing the geometry. This means we will have a [1× 51]

(17× x, y, xcoordinates) input matrix for each iceberg sail.
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Figure 5.20: The new reduced iceberg geometry sail consist of 17 vertices and
20 faces.

We do the reduction for the iceberg keel, creating the Target 51 parameters (17×
x, y, zcoordinates) large target matrix from 17 vertices. In Figure 5.21 we have

the original iceberg keel with 1143 vertices and in Figure 5.22 we have the reduced

iceberg keel geometry with only 17 vertices instead of using 904 vertices.
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Figure 5.21: Original iceberg keel with 1143 vertices and 2248 faces.

Figure 5.22: Reduced iceberg geometry for creating targets for the neural
network. The geometry consist of only 17 vertices and 20 faces.
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Create network

The next step would be to create a neural network for estimation. This is done

by using the [51× 1] input matrix representing vertices of the sail geometry with

a [51 × 1] target matrix of vertices representing the keel geometry. The network

can be trained by using the same backpropagation algorithm we used earlier,

the Levenberg-Marquardt algorithm. The number of vertices were found through

testing. We chose the least amount of vertices which still conserved most of the

original geometry. The number of vertices we then chose to use was 17.

Accuracy

We will see how accurate the prepared data is compared to the original iceberg

data. When using aerial stereo photographs the accuracy will be within ±2%,

while for the underwater water profiles the uncertainty is of about ±15% according

to a report by Hodgson [1988].

In Table 5.5 the measurement accuracy is compared with the accuracy loss when

reducing the number of vertices. The greatest total error is for the iceberg keel

due to the poor accuracy of underwater scans.

Original Sail Reduced Sail Original Keel Reduced keel

Volume 1.2213×106m3 1.1332×106 7.6350×105 7.4736×105

Accuracy from mea-

surements

±2% ±15%

Accuracy from reduc-

tion

-8.31 % 2.15 %

Total accuracy -10.31 % 17.15 %
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Improvements done to the neural network

Sample size

The neural network will perform better if we have a larger data set to train the

network with. In this case we only had 42 samples for training, validation, and

testing.

Network size

With a larger data set it would be interesting to see how we could optimize the

network size to give even better estimations.

Train again

The network can always be trained again and again. We noticed when building

the network that the mean square error varied each time we built, and retrained

the network.

Add constraints

In all the estimated geometries there is some error in the surface where the keel

does not match the surface geometry. This error can be removed by adding a

constraint to the network.



Chapter 6

Case study: Online Estimation of

Keel Geometry from an AUV

Communication Link

Problem statement: An AUV can gather high-resolution data such as high-

resolution sonar images and high-resolution snapshot camera images [Yoshida

et al., 2011]. We often want to transmit data to a surface vessel in real time

during a marine operation when the information is needed. However, the un-

derwater communication is limited. Especially in the Arctic due to a multipath

formation by the sound wave’s repeated interactions with the ice cover [O’Hara

and Collis, 2011]. If the AUVs uses an acoustic link, it may only transmit up to

80 kbps data at a limited range of 500 meters [Yoshida et al., 2011]. We want to

simplify the data gathered by the AUV so it can be transmitted real time to the

vessel for processing.

Proposed solution: The plan is to make the AUV calculate shape factors of the

iceberg keel to transmit back to the surface vessel. We can then use the shape

data with surface data taken from a UAV to predict the entire iceberg shape.

This data can then assist us in towing operations and in calculating the iceberg’s

trajectory. We want to see how well a neural network can reconstruct keel shapes

from iceberg keel shape factors.

In this case study 2D cross-sections are used for estimation. Later we will discuss

how the method could be applied to a 3D case.

87
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6.1 Preprocessing

We have used the same shape factors as in Chapter 5. The input matrix is 5

shape factors of 42 different iceberg keel, where the target is a matrix with 16 x y

-coordinates of 42 iceberg keels.

Input matrix:

P = [5× 42]. (6.1)

Target matrix:

P = [16× 42]. (6.2)

We have divided the image data into three sample sets:

• Training samples 80 % (34 samples).

• Validation samples 5 % (2 samples).

• Test samples 15 % (6 samples).

6.2 The network

We are using the same design on the network as in Chapter 6. We will have the

same number of layers and neurons.

Figure 6.1: Conceptual design drawing of network, with 5 neurons in hidden
layer.
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Training

10 node network:

Where the effective number of parameters γ = 282 of total 346.

Samples [T] MSE [-] R [-]

Training 34 0.00468 0.985

Validation 2 0 0

Testing 6 0.068 0.7869

Table 6.1: Levenberg Marquardt backpropagation algorithm with Bayesian
regularization of network with 10 hidden neurons.

5 node network:

Samples [T] MSE [-] R [-]

Training 34 0.0106 0.966

Validation 2 0 0

Testing 6 0.0233 0.924

Table 6.2: Levenberg Marquardt backpropagation algorithm with Bayesian
regularization of network with 5 hidden neurons.

3 node network:

Samples [T] MSE [-] R [-]

Training 34 0.0127 0.959

Validation 2 0 0

Testing 6 0.0535 0.825

Table 6.3: Levenberg Marquardt backpropagation algorithm with Bayesian
regularization of network with 3 hidden neurons.

A 5 node network gave the best results, since it performed well on the test data,

with a high correlation coefficient R.

Here we will give some performance plots.
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Figure 6.2: Performance plot of the 5 node network from Matlab.

Figure 6.3: Histogram plot of the 5 node network from Matlab.
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Figure 6.4: Regression plot of the 5 node network from Matlab.

Results

We have tested the network by training a 5 node network and removing 4 iceberg

profiles (10 % of the total samples) to use for shape testing.

The 2d cross-sections have been normalized and reduced before applying them to

the neural network. Therefore when comparing the results, we will call the original

iceberg keel parameters for Real shape and the reduced keel shape for Reduced

shape. The estimated keel shape will be called Estimated Shape.
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Below in the different tables we will compare the shape factors Aspect ratio,

Solidity, Circularity, Convexity, and Area, with Real Shape, Reduced

Shape and Estimated Shape. The equations can be found in Chapter 5.

The calculated difference in each table is calculated with (5.13).

Shape 1

Figure 6.5: Keel shape estimate from shape factors and area data. Plot from
Matlab.

Area Aspect ratio Solidity Circularity Convexity

Reduced Shape 0.5899 1.8697 1 0.9312 1

Estimated Shape 0.5974 1.7568 1 0.9314 1

% Difference 1.2691 % 1.7568 % 0% 0.0293 % 0 %
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Area Aspect ratio Solidity Circularity Convexity

Real Shape 41.1884 ∗ 104 1.6349 0.9653 0.8892 0.9346

Estimated Shape 0.5974 1.7568 1 0.9314 1

% Difference 7.45 % 3.59 % 4.74 % 6.99 %

Shape 2

Figure 6.6: Keel shape estimate from shape factors and area data. Plot from
Matlab.

Area Aspect ratio Solidity Circularity Convexity

Reduced Shape 0.5047 1.9693 1 0.9378 1

Estimated Shape 0.5205 2.0923 1.0000 0.9004 1.0000

% Difference 3.1211 % 6.2457 % 0% -3.98563 % 0 %
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Area Aspect ratio Solidity Circularity Convexity

Real Shape 41.1593 ∗ 104 1.8491 0.9468 0.8320 0.8918

Estimated Shape 0.5205 2.0923 1.0000 0.9004 1.0000

% Difference 13.15 % 5.66 % 8.22 % 12.13 %

Shape 3

Figure 6.7: Keel shape estimate from shape factors and area data. Plot from
Matlab.

Area Aspect ratio Solidity Circularity Convexity

Reduced Shape 0.6029 1.8615 1 0.9295 1

Estimated Shape 0.5720 1.7229 1 0.9462 1.0000

% Difference -5.1293 % -7.4489 % 0% 1.789 % 0 %
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Area Aspect ratio Solidity Circularity Convexity

Real Shape 41.5795 ∗ 104 1.7413 0.9655 0.8757 0.9356

Estimated Shape 0.5720 1.7229 1 0.9462 1.0000

% Difference -1.05 % 3.57 % 8.05 % 6.88 %

Shape 4

Figure 6.8: Keel shape estimate from shape factors and area data. Plot from
Matlab.

Area Aspect ratio Solidity Circularity Convexity

Reduced Shape 0.5571 1.7690 1 0.9446 1

Estimated Shape 0.5795 1.6820 1 0.9438 1.0000

% Difference 4.0219 % -4.9187 % 0% -0.0811 % 0%
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Area Aspect ratio Solidity Circularity Convexity

Real Shape 41.2893 ∗ 104 1.9719 0.9566 0.8622 0.9311

Estimated Shape 0.5795 1.6820 1 0.9438 1.0000

% Difference -14.70 % 4.53% 9.46 % 7.39 %

6.3 Discussion and improvements

The overall goal was to see if a neural network could recreate a keel geometry from

5 parameters using a neural network. The network was able to do this by using

shape factors and the area as input parameters. The error was within ±10% when

comparing the results to the real shape factors and areas. However, when looking

at the plot in Figure 6.6 , the volume distribution does not coincide close to the

surface. This would give bad stability estimates, since the volume distribution

close to the surface affects the initial stability a lot.

3D Analysis and improvements on the Neural Network

The shape factors used, in this case, can also be made for 3D geometries. The

challenge will be the same as for the case in Chapter 5. We will have more

parameters to estimate in the 3D case, this can create bad estimation if we do not

have a large data set to train the network

The improvements to the neural network would be the same as for the network in

Chapter 5.

6.4 Conclusion

Although a neural network can be used to reduce the geometry for transmitting

the geometry data underwater with some error, we believe this is not the way

to go. In a marine operation it is mainly trajectory calculations and stability of

an iceberg for towing we are interested in. Therefore it would be easier to have

a small computer onboard the AUV to directly calculate iceberg stability and

trajectory calculations with a high resolution keel geometry with additional local
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measurements, for example current measurements. The AUV would then only have

to transmit a couple of parameters describing the onboard calculated stability and

trajectory of the iceberg. In addition, if there is valuable data gathered from other

sensor platforms this data could be added together with the AUV data onboard

the surface vessel.



Chapter 6. Case study: Online Estimation of Keel Geometry from an AUV
Communication Link 98



Conclusion

In Chapter 3 we investigated the application of keel shape estimations for cal-

culating thfor a towing operation. When comparing the real GZ curve to the

estimated one, we had a large error. Using a predetermined geometry such as a

trapezoid and just scaling the trapezoid based on surface length did not give good

stability estimations. The method could be improved by using a neural network,

as was demonstrated in Figure 5.16, when comparing the GZ curves for the two

estimation methods.

The proposed solution to the case study in Chapter 5 worked by using a neural

network to estimate the keel shape, and was considerably more accurate than

the trapezoidal estimation method. However, many challenges arise when relying

on an aerial sensor platform which is needed to create the DEM. For example,

harsh weather conditions, landing and deploying an aerial vehicle, reduced range

and GPS vulnerability are just some of the challenges relying on an aerial sensor

platform for ice management.

In the final case study we investigated the use of a neural network to rebuild a

keel geometry from shape factors. The advantage of this method is so that less

information needs to be transmitted from the AUV to the surface vessel. Instead

of transmitting high-resolution data, the AUV could send important shape factors

instead. The network was able to reconstruct the geometry, but it was hard to

evaluate the accuracy apart from looking at the results visually, since we already

used shape factors for input parameters. During this case we realized that instead

of transmitting the entire geometry or parts of it, the AUV can use the high

resolution data together with current data and just send a vector back to the

surface vessel describing the icebergs drift direction. Onboard the vessel other

data can then be added, such as for example wind speed and surface geometry of

the iceberg, if available.
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Further work

To reach the goal of creating a cloud-based neural network where industry stake-

holders and research institutions can share their iceberg data, we need to further

explore the networks performance on 3D data. We also need to test the perfor-

mance of other estimation methods to see if a neural network is the best tool for

this specific problem.

In order to assist the AUV to transmit hydro acoustic data, the dynamic model

can be calculated onboard the AUV, where we only transmit the results from the

dynamic model. It would then be interesting to see how the results from this

dynamic model can be fused with data from other sensors onboard the surface

vessel.



Appendix A

Overview of objects and their shape factors from [Olson, 2011].

Figure A.1: Different objects with a number that indicates a shape factor in
the table below.
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Table A.1: Table showing different shape factors for the objects shown in the
previous figure.
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