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Nomenclature

α Lay angle

δ Axial deformation

∆tcr Critical time step

κ Curvature

ψ Angular coordinate

ψ
◦ Slip angle

ρ Material density

θ Angle of the cable end

A Tendon cross-section area

cd Dilatational wave speed

Ff Friction force

Lc Characteristic length of element

Lp Pitch length

Mbending Bending moment acting on the support cross section

Py Pressure in y direction

Pz Pressure in z direction

Qi Cross-section force resultant along axis i

qi Line load along axis i

Xi Coordinate along curve-linear tendon axis i

b Tendon width

E Young’s modulus



EI Bending stiffness

F(t) External force

I Area moment of inertia

L Cable length

m Mass

R Mean layer radius

r bending radius

t Thickness

v Velocity



1 INTRODUCTION 1

1 Introduction

Flexible pipes and umbilical cables are crucial elements in floating production
systems because of their slender structure and complex cross sections as well as
their area of application. While umbilical cables supplies energy (electrical and
hydraulic), chemical injections and bidirectional signal transmissions to remotely
installed equipment, the flexible pipes transports oil and gas from wells to sub-sea
components.

Figure 1: Flexible pipe and umbilical cable [1]

A typical flexible pipe is usually compsed of polymeric homogeneous
cylindrical layers, metallic (or carbon fiber) armouring layers and reinforced
interlocked metallic layers for burst and collapse strength. Umibilical cables on
the other hand have homogeneous layers and metallic armours together with
hydraulic hoses and cables in their central core [9] (figure1). The cables acts
strong and stiff in response to internal- and external pressure, tension and torque,
but in bending they are highly deformable [7].
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1.1 Project Objectives

One of the main objectives in this paper is to develop a method for turning a
dynamic analysis of a slender and complicated cable (umbilical) into a quasi-static
analysis. Because the model set up is defined in 3D it follows that the contact
computations are challenging. Therefor explicit FEM codes such as ANSYS LS-
Dyna or ANSYS Autodyn shall be used.

This overall main objective may be divided into more specific objectives such as:

• Perform a literature review on theoretical and experimental studies of stresses
in flexible pipes as well as the influence of bending stick-slip behaviour

• Develope a 3D model set up of a flexible cable and make use of the explicit
FEM codes of ANSYS LS-Dyna and ANSYS Autodyn to study the following

– Global stiffness parameters such as longitudinal-, torsional and
bending stiffness

– Investigate how to predict the stick-slip phenomenon as correctly
as possible, as well as investigate if a stick-slip behavior is present
during bending.

– Present and assess the resulting analyses times (CPU-time) of the
models developed.

1.2 Project structure

To achieve the above mentioned objectives, the modeling will be carried out in
a specific manner. This is because of the complexity associated with modeling
umbilical cables and because a quasi-static approach is sought.

A model of a umbilical cable can be considered large, hence the turn around time
may be very long. To practice intelligent use of the system resources to minimize
the CPU time and the number of increments, there exists several techniques.
These might be sub modeling, history output filtering, restart of analysis and/or
simplifications of the model. In this case, simplification of the model will be
carried out by simplification of the geometry.

The complexity of a umbilical cable is situated in the cross section of the cable,
which is why the analyses in this thesis starts with modeling a simple flexible
cable of structural steel. Further complexity is added gradually, which will involve
modeling one tendon wound around a inner sheath, and supported by another
sheath on the outside.
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To be able to analyse a possible stick-slip behavior of the tendon during bending,
a friction element is first modeled. This is only to obtain knowledge of the contact
tools available in ANSYS LS-Dyna, as well as the friction behavior between two
flexible solid elements in contact. Hence, a model like this will not mainly be
part of the results associated with the project objectives, but acts as an auxiliary
model.

After analysing the model with one tendon, and comparing the results with rel-
evant theory presented in the literature review, even more complexity is added
to form another model. This last model consists of two armouring layers with 30
tendons at each layer, wound around a inner sheath and supported by another
sheath on the outside as before.

In the section � Model set up � the four models now mentioned will be presented
in details, followed up by the results found during the analyses. The final results
will thereafter be discussed in a separate section. The final turn around time of
all the models is the a main focus during the whole process from the model set
up to the analyse settings.
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2 Literature Review

2.1 Quasi-static modelling of a dynamic problem

It is seen that in engineering research, Finite Element Method (FEM) is a pop-
ular computational tool, and one can basically choose between an implicit or
explicit approach. In practical applications, important differences between the
two methods is related to
stability and economy.

As mentioned in section 1.1 explicit FEM codes will be used, and if applying
explicit dynamics to model quasi-static events, special considerations need to be
taken in to account. Firstly, looking at a models natural time period is computa-
tionally impractical becuase it requires literally millions of time increments. To
be able to obtain an economical solution it is therefor necessary to artificilally
increase the speed of the process in the simulation while keeping the inertia forces
insignificant. Mass scaling and change of loading rates are amoung techniques
that can help reduce the simulation time.

One way of evaluating whether or not the results from an explicit simulation
reflect a quasi-static solution, is to examin the energy content provided. The
kinetic energy should not exceed a small fraction, typically 1-5%, of the internal
energy produced through the main part of the analysis.

2.2 Mass Scaling

With mass scaling it is possible to increase the size of the stable time increments,
hence reduce the simulation time. But, this may come at the expense of making
the inertia forces more dominant.

The explicit scheme is given to be conditionally stable [4], but one must take in
to account that there excist a critical time step ∆tcr that must not be exceeded
if mass scaling is implemented. Otherwise the explicit integration scheme fails
and becomes unstable. On the other hand we do not want a time step that is to
small as it makes the calculations too expensive. The critival time step is defined
by:

∆tcr = Le
cd
, where cd =

√
E

ρ
(1)
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Since changes in characteristic length and density of each element effets the size of
the time increment, it is important to mesh the model right. In ANSYS, the time
step used in an explicit dynamic analysis is constrained to maintain stability and
consistency via the CFL (Courant-Friedrichs-Levy) condition, that is, the time
increment is proportional to the smallest element dimension in the model and
inversely proportional to the sound speed in the materials used [2].

2.3 Hourglass mode

When making use of reduced integration eight node hexahedral elements in ex-
plicit dynamics (which is done in this project) “hourglass” modes of deformation,
also called zero energy modes, may occur. The strain rates and forces associated
with hexahedral elements only involve differences in velocity and/or coordinates
of diagonally opposite corners of the elements.

Figure 2: Example of distortion [2]

If an element distort in such way that if the above mentioned differences remains
unchanged, the strain will not increase within the element hence resistance to
distortion will not be present. This is illustrated in figure 2 where the two di-
agonals in the element to the left has the same lengths as in the element to the
right, even though the element distorts.

According to ANSYS 15.4 help system [2], it is possible to correct the presence
of hourglass instabilities in two ways, either by applying AUTODYN Standard-
or Flanagan Belytschko settings.

• AUTODYN standard is often refereed to as a viscous formulation, and
generates hourglass forces proportional to nodal velocity differences

• Flanagan Belytschko is invariant under rigid body rotation, and is rec-
ommended if large rotations of hexahedral elements are expected.

It is worth noting that the sum of the hourglass forces applied to an element to
correct its undesired behaviour is normally zero, and therefor the momentum of
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the system is unaffected by these forces. However, they act on the nodes of the
elements which implies why the energy associated with hourglass forces is stored
locally in the specific internal energy of the element.

2.4 The stick-slip phenomenon

Even though friction is common in mechanical systems, it is one of the most
challenging physical effects to include in an overall model. The two main reasons
for this is the difficulties associated with representing the interaction between
two surfaces generatating friction and the stick-slip phenomenon occurring due
to this interaction [6].

The basic understanding of stick-slip is that when two element are sliding relative
to each other, a spontaneous jerking motion occures. A simple example of a stick
slip situation is illustrated in the figure below

Figure 3: Simple Stick Slip Example

If the external force exceeds some breakaway force (i.e. static friction force) and
a relative velocity exists between the element and the ground, a sudden jump in
the velocity of the movement occurs and the element slides along the ground. A
friction force is then generated to oppose this motion, which can be assumed to
be nearly constant or mildly dependent on the relative velocity.

If the relative velocity approaches zero, the element that previously was in motion
starts to ’stick’ to the ground, and will finally stop moving, having virtually
zero relative velocity. The element will remain still until a force can exceed the
breakway force, and a sliding motion begins again. In other words, the element
may be alternating between sticking to the ground and sliding over it.
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2.5 The bending stick-slip model

The modeling approach of a umbilical cables subjected to bending as well as the
moment-curvature modeling of bending stick-slip behavior is the main topic of
this subsection. In literature, these topics have been less focused on by only
a few authors. Work done in [9] by Professor Svein Sævik from the Institute
of Marine Technology at NTNU will therefor provide the main motivation for
further investigation in this paper.

The axisymmetric bending model described in [9] is defined such that stresses due
to elastic bending of each tendon and friction stick-slip behavior between layers
can be described. This is initially done on element level and then implemented
into a standard beam finite element, a formulation that is referred to as the
moment model (MM). Although umbilicals undergoes large rigid body motions
induced i.e. ocean waves, the associated strains are within the elastic range of
material behavior and remain small.

According to [8], during one bending cycle the transverse tendon displacement is
rather small. Because of this we can assume that each tendon follows a loxodromic
curve which implies no transverse slip. In other words, the initial path of each
tendon is kept constant during bending.

Figure 4: Loxodromic and geodesic curves [9]

Further by assuming that the contact pressure and friction is constant along
the loxodromic path, both the resulting friction and contact pressure will be
influenced by the curvature [9] in terms of change in helix curvature and increase
of stress that results from friction.

At a certain point during the increased bending, slip will occur between layers
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because the shear stress at the neutral axis of bending exceeds the shear capac-
ity governed by friction. If we consider an arbitrary cross-section subjected to
bending about Z2, one part of the cross-section will be in a stick-region and the
other part will be in a slip-region. This is illustrated in the figure below.

Figure 5: Stick-Slip regiones of a cross-section [9]

where region I is the stick domain, and region II is the slip domain. The transition
between these two regions is described by the the angle

ψ0 = cos−1
(
β2c

β2

)
(2)

where β2c is the critical curvature and β2 is the bending curvature during plane
deformation. Because we assumed that all the tendons are moving
harmonically it is considered valid to use the critical curvature to estimate the
start slip curvature.
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Figure 6: Global and local element curvature quantities [9]

2.5.1 Critical curvature

Considering plane deformation only, the axial force Q1 in the tendon before slip
is given by

Q1 = −EA cos2 αR cosψβ2 (3)

The associated shear force q1 per unit length along the tendon is given by

q1 = EA cos2 α sinα sinψβ2 (4)

is found by differentiating equation 3 by the length coordinate X1 and applying
the relation ψ = sinα

R X1.

Figure 7: Simple coordinate system of an infinitesmall tendon element
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Knowing this, it is possible to define the critical curvature β2c by equating 4 by
the maximum possible shear stress q1c

β2c = q1c

EA cos2 α sinα (5)

2.6 Global stiffness parameters

2.6.1 Axial stiffness

The axial stiffness of a cable is its resistance of being compressed or elongated by
an axial force, and is found by

kaxial = LF (t)
δ

(6)

2.6.2 Bending stiffness

When cables are subjected to bending, the determination of the bending stiffness
is of importance. Even though it basically is a ’defined’ (auxiliary) quantity, it
helps you understand the bending process because it is based on a combination
of cross-sectional- and material values.

The bending stiffness is found from the relationship between applied bending
moment ∆M and the resulting curvature ∆κ of a cable, and is given by

kbending = EI = ∆Mbending

∆κbending
(7)

where the area moment of inertia of a cylinder is given by

I =
(
d4
outer − d4

inner

64

)
π

Assuming a constant curvature along the cable length, the curvature can be
defined by

κ = 1
r

= 2 · θ

L
(8)
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where r is the bending radius, θ is the angle at the cable end and L is the cable
length.

According to [9], the bending stiffness in the stick regime (no relative sliding
between a armour layer and a plastic layers) is found to be more or less the same
as for a steel pipe of similar dimensions.

2.6.3 Torsional stiffness

The torsional stiffness is defined as the rate of torsion moment required per torsion
angle normalized over the cable length, and is calculated as

ktorsion = ∆Mtorsion

∆θtorsion
(9)

where Mtorsion is the moment applied and θtorsion is the resulting torsion angle
per cable length in [rad/m].
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3 Model set up

The geometry of the models studied in this thesis are created in ANSYS-Design
Modeler 14.5.7, while the set up of the analyses are done in ANSYS Workbench
14.5.7. To solve the analyses, LS-DYNA is used.

For different models are developed and analysed:

• Model 1: A simple flexible cable of structural steel

• Model 2: A friction element

• Model 3 A flexible cable with one tendon

• Model 4 A flexible cable with two armour layers

Each model will be presented more carefully in the next sections, which implies
their geometric structure, mesh, contact definitions and their loading and bound-
ary conditions.
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3.1 Unit system and material properties

The unit system and material properties used throughout all the analyses are
presented in the tables below.

Property Unit
Time s
Distance mm
Mass kg
Velocity mm/s
Acceleration mm/s2

Force N
Moment Nmm
Pressure Mpa

Table 1: Unit system used throughout the analyses

Property Unit Structural steel
Young’s Modulus GPa 200
Poisson’s Ratio - 0,3
Density kg/m3 7850

Table 2: Material properties of structural steel

Property Unit Polyethylene
Young’s Modulus GPa 1,1
Poisson’s Ratio - 0,42
Density kg/m3 950

Table 3: Material properties of Polyethylene
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3.2 Geometry

The geometry of the four different models mentioned initially, will be presented
in this sub section. The stiffness behavior is set to flexible for all parts except for
additional elements in terms of two fixed rigid plates situated at the end of each
cable.

Model 1 and 2 are only assigned to the material of structural steel. Model 3 and
4 on the other hand, are assigned to both structural steel and polyethylene.

3.2.1 Geometry - Model 1

This model is of a flexible cable, and is based on a cylinder of structural steel
with geometrical properties tabulated in table 4. The aim of developing this
model is to analyse whether or not a simple flexible cable behaves according to
theory, hence to see how accurate ANSYS LS-Dyna is when handling such a
simple model.

Figure 8: Cross-section of model 1

ID Part ri [mm] ro [mm] t [mm]
1 Cylinder 85 90 5

Table 4: Dimensions of model 1

The geometry is modeled with three different cable lengths (Li; i = 1, 2, 3) where
L1 = 2000 mm, L2 = 4000 mm and L3 = 6000 mm for comparison purposes.
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3.2.2 Geometry - Model 2

As mentioned in section 1.2, the reason why this model is developed and analysed
is to see how well ANSYS LD-Dyna handles a simple case of frictional stick-slip.
Hence, the aim is to see if a box starts to slide over a fixed surface when subjected
to a force. The criteria for sliding is given to be

Pz ·µ ≥ Py (10)

The friction element model consists of a box (green) placed on a smooth surface
(brown). The geometry of the model is shown in the figure below, followed by a
table of its dimensions

(a) Front (b) Top

ID Part Hight [mm] Width [mm] Depth [mm]
1 Box 100 100 100
2 Plate 10 150 300

Table 5: Dimensions of parts in model 2
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3.2.3 Geometry - Model 3

Originally the tensile armour layers in a umbilical cable consists of helically wound
tendons to sustain tensile loads and internal pressure. The layers are normally
counter wound in pairs (ref figure 1), and the lay angle is typically between 20
and 55 dregrees [5].

The model consists of two simple flexible cylinders (one inner and one outer)
acting as coats, and one tendon wound around the inner coat. The coats are
assigned to the material of polyethylene while the tendon is of structural steel.

(a) Cross section of model 3
(b) Tendon wound around
the inner coating

ID Part ri [mm] ro [mm] t [mm]
1 Inner coat 80, 00 84, 50 4, 5
2 Tendon 84, 65 87, 85 3, 2
3 Outer coat 88, 00 92, 50 4, 5

Table 6: Dimensions of parts in model 3

For practical purposes there are modeled small gaps of 0,2 mm between the inner
coat and the tendon, and between the tendon and the outer coat.
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When modeling helically wound tendons one should take in to account at least
two pitch lengths (Lp), where a pitch length is defined by:

Lp = 2π· rm
tanα , where rm = ro + ri

2 (11)

Based on cable length L1 from model 1, and assuming the requirement of two
pich lengths, the lay angle is α = 28, 45◦ which is a likely presumption.

The cross section design of the tendon is shown in figure 11, where R71 and R70
are the inner and outer radius respectively (ref table 6), and the angle A73 is
12◦.

Figure 11: Armour thread design
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3.2.4 Geometry - Model 4

What differs this model from model 3 is that the initiated armour layer in model
3 now is completed with 30 tendons wound around the inner cylinder. This model
has also expanded to include another armour layers outside the first one, where
the inner layer is wound with a "left“ helical lay direction and the outer layer
with a "right“ helical lay direction.

(a) Cross section of model 4
(b) Inner and outer armour
layers

The tendons has the same cross section design as in model 3, but to make sure to
include a small gap between all the tendons, the angle A73 in figure 11 is reduced
to 11,6◦.

ID Part ri [mm] ro [mm] t [mm]
1 Inner coat 80, 00 84, 50 4, 5
2 Armour layer 1 84, 65 87, 85 3, 2
3 Armour layer 2 88, 00 92, 50 4, 5
4 Outer coat 88, 00 92, 50 4, 5

Table 7: Dimensions of parts in model 4
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3.3 Coordinate systems

The global coordinate system that is shown in figure 13 is representative for
model 1, 3 and 4.

Figure 13: Global coordinate system

The rigid plates connected to the cable ends are each assigned with its own local
coordinate system, which is shown in figure 14

Figure 14: Local coordinate system of rigid plates
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3.4 Mesh

There are certain requirements to take in to account when meshing explicit
applications. Consideration should be given to the number of elements in the
model and the quality of the mesh to give larger resulting time steps and therefore
more efficient simulations [2].

Since the cable geometry in model 1, 3 and 4, and the tendon geometry in model
3 and 4 is uniform with a single source- and target face, the mesh method is set to
sweep to generate pure hex meshes. This is preferred when handling a solid body
model as in this case. A hex mesh is based on reduced integration for first order
elements which means that there is only one integration point per element. As
mentioned in section 2.3, such elements are the most efficient and they minimize
the computational expenses of element calculations as well as they sometimes are
more accurate for slower transients [3].

Before the models are swept, the size of the mesh is controlled by the cross
section of the cable through edge sizing, where a number of divisions in the axial
direction is set. The amount of divisions are increased in model 3 and 4 to make
sure the tendons wound well around the inner coat. The sweep of the tendon(s)
and the coats are carefully applied with equal amount of divisions to make sure
the nodes between the two bodies initially lines up.This is done for better control
of tracking any relative displacement and/or velocity later on. More details of
the mesh controls is now presented in the following sub sections.
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3.4.1 Mesh - Model 1

ID/Part Size Control Value
1 Circumfurence divisions 40
1 Sweep direction spacing 35 divisions/meter
1 Radial mapped face sizing 2
Rigid plates Body sizing 75 mm

Table 8: Mesh controls for model 1

(a) Mesh of cross section (b) Mesh of cable end

(c) Mesh of entire body

Figure 15: Mesh of model 1

2000 mm 4000 mm 6000 mm
Numbers of elements 5618 11218 16818
Number of nodes 8584 16984 25384

Table 9: Number of elements and nodes in model 1
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3.4.2 Mesh - Model 2

This model is only meshed with body size control of 5 mm on both the box and
the plate. To capture the behavior of sliding as good as possible, it is important
to make sure that the nodes between the box and the plate initially lines up.
This can be seen to the left in figure 16

Figure 16: Mesh of model 2

Model 2
Numbers of elements 11600
Number of nodes 14934

Table 10: Number of elements and nodes in model 2
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3.4.3 Mesh - Model 3

ID/Part Size Control Value
2 Circumfurence divisions 3
1, 3 Circumfurence divisions 60
1, 2, 3 Sweep direction spacing 50 divisions/meter
1, 3 Radial face sizing 2
Rigid plates Body sizing 15 mm

Table 11: Mesh controls for model 1

(a) Mesh of tendon wound about the cylinder

Figure 17: Mesh of model 3

Model 3
Numbers of elements 98356
Number of nodes 149512

Table 12: Number of elements and nodes in model 3
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3.4.4 Mesh - Model 4

ID/Part Size Control Value
2, 3 Circumfurence divisions 3
1, 4 Circumfurence divisions 60
1, 2, 3, 4 Sweep direction spacing 50 divisions/meter
1, 4 Radial face sizing 2
Rigid plates Automatic -

Table 13: Mesh controls for model 4

(a) Mesch of cross section (b) Mesh of armour layers

(c) Mesh of armour layers wound about the inner coat

Figure 18: Mesh of model 4

1000 mm 1500 mm 2000 mm
Numbers of elements 22156 32284 42288
Number of nodes 44784 65190 85516

Table 14: Number of elements and nodes in model 4
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3.5 Contact definitions

The contact definition between parts in each model will be presented in this
section. It will appear that that the contact between the rigid plates and the cable
ends are set to bonded (model 1, 3 and 4). This contact may give unrealistically
stiff constraints at the cable sides, which is one of the reasons for why different
cable lengths are analysed.

3.5.1 Contact definitions - Model 1

Manual contact regions are created in this model. A bonded contact is set between
the cylinder ends and the rigid plates, with a maximum offset of 0,0001 mm and
a trim tolerance of 5,1488 mm. This means that the contacts created are not
breakable.

3.5.2 Contact definitions - Model 2

Manual contact regions are created. Between the box and the plate the contact
is set to frictional with a friction coefficient of µ = 0, 2. There is no distinction
between static or dynamic friction, which means that the friction coefficient is
0,2 regardless of whether the two bodies are sliding or sticking to each other.

3.5.3 Contact definitions - Model 3

Manual contact regions are created, and an overview of how the different bodies
are connected to each other is presented in table 15

Rigid plates Inner/Outer coating Tendon
Rigid plates - Bonded Bonded
Inner/Outer coating Bonded - µ = 0, 2
Tendon Bonded µ = 0, 2 -

Table 15: Interaction between parts in model 3

The frictional contacts have symmetrical behaviour as well as a trim tolerance of
3 mm.
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3.5.4 Contact definitions - Model 4

Manual contact regions are created, and an overview of how the different bodies
are connected to each other is presented in table 16.

ID Rigid plates 1 2 3 4
Rigid plates - Bonded Bonded Bonded Bonded
1 Bonded - µ = 0, 2 - -
2 Bonded µ = 0, 2 - µ = 0, 2 -
3 Bonded - µ = 0, 2 - µ = 0, 2
4 Bonded - - µ = 0, 2 -

Table 16: Interaction between parts in model 4

Also, a manually body interaction contact is created to make sure that all the
tendons within each layer are able to slide relative to each other. Similar to the
other frictional contacts created, the friction coefficient is set to µ = 0, 2, and is
constant throughout the analyses.
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3.6 Loading and boundary conditions

The behaviour of the cables are controlled by movement of the rigid plates
connected to the cable ends. By applying forces to these plates it is possible to
track the resulting reaction forces/moments or displacements which again make
it possible to extract the cable stiffness response.

3.6.1 Loading and boundary conditions - Model 1

Axial stiffness: To find the axial stiffness, model 1 is subjected to an axial
force of 50 kN. The rigid body constraint definitions of both the left- and right
rigid plate are set to fixed, except for the Z-component of the left rigid plate that
is set to free to allow deformation in this direction.

The force of 50 kN is applied in a linear load step, which is illustrated in figure
19.

Figure 19: Load step application of axial load - Model 1

During the second load step, the force is held constant, hence this load step is
named the constant load step. The annotation of “constant load step” will also
be used later on in relation to the other analyses.
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Bending Stiffness: To find the bending stiffness, both rigid plates are rotated
about the x-axis. The applied angle vary with the cable length which means that
the curvature is kept constant throughout all the bending analyses. The table
below shows the magnitude of the rigid body rotations of the different cable
lengths:

2000 mm 4000 mm 6000 mm
∆θ 5◦ 10◦ 15◦

The load step application of the curvature applied is illustrated in figure ??

Figure 20: Load step application of curvature - Model 1

where load step 1 is linearly ramped and load step 2 is held constant. The
following boundary conditions are applicable during this analysis:
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X Comp. Y Comp. Z Comp.
Left rigid plate Fixed Fixed Fixed
Right rigid plate Fixed Fixed Fixed

Rot. X Rot. Y Rot. Z
Left rigid plate Free Fixed Fixed
Right rigid plate Free Fixed Fixed

Table 17: Rigid body constraint during bending - Model 1

Torsional stiffness: To find the torsional stiffness, a rigid body rotation is
applied to the left rigid plate about the Z-axis with the following load step ap-
plication:

Figure 21: Step application of torsion - Model 1
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The corresponding boundary conditions are:

X Comp. Y Comp. Z Comp.
Left rigid plate Fixed Fixed Fixed
Right rigid plate Fixed Fixed Fixed

Rot. X Rot. Y Rot. Z
Left rigid plate Fixed Fixed Fixed
Right rigid plate Fixed Fixed Free

Table 18: Rigid body constraint during torsion - Model 1

3.6.2 Loading and boundary conditions - Model 2

This model is subjected to pressure at the top of the box (in negative y-direction)
and at one of the sides of the box (in z-direction) to provoke sliding. The load
steps of the two pressure forces are applied in the following way:

Figure 22: Step application of loading - Model 2

The pressure Pz differs from the pressure Py by the magnitude of µ = 0, 2, and
Pz is increasing during the load path until it reaches a value greater that Py.
Theoretically sliding should then occur at load step 5.

The flexible plate is set to be fixed at all time, to allow the box to slide on its
top surface.
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3.6.3 Loading and boundary conditions - Model 3

Model 3 is only analysed during bending, and the load step application is shown
in figure 23. Remark that the cable is subjected to an initial pre-tension of 5kN
to make sure that the tendon is in stick with the coats before the rigid body
rotation is applied.

Figure 23: Load step application of pre-tension and bending - Model 3

The boundary conditions applied to this model are:

X Comp. Y Comp. Z Comp.
Left rigid plate Fixed Fixed Free
Right rigid plate Fixed Fixed Fixed

Rot. X Rot. Y Rot. Z
Left rigid plate Free Fixed Fixed
Right rigid plate Free Fixed Fixed

Table 19: Rigid body constraints during bending - Model 3
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3.6.4 Loading and boundary conditions - Model 4

Below, the load step applications of bending and torsion is presented, as well
as the boundary conditions applied respectively. Notice that this model is also
initially subjected to a pre-tensional load og 5 kN.

Figure 24: Load step application of pre-tension and bending - Model 4

Figure 25: Load step application of pre-tension and torsion - Model 4
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The magnitude of the rigid body rotations of the different cable lengths analysed
are:

1000 mm 2000 mm 3000 mm
∆θ 2,5◦ 5◦ 7,5◦

and the boundary conditions applied are

X Comp. Y Comp. Z Comp.
Left rigid plate Fixed Fixed Free
Right rigid plate Fixed Fixed Fixed

Rot. X Rot. Y Rot. Z
Left rigid plate Free Fixed Fixed
Right rigid plate Free Fixed Fixed

Table 20: Rigid body constraints during bending - Model 4

X Comp. Y Comp. Z Comp.
Left rigid plate Fixed Fixed Free
Right rigid plate Fixed Fixed Fixed

Rot. X Rot. Y Rot. Z
Left rigid plate Fixed Fixed Free
Right rigid plate Fixed Fixed Fixed

Table 21: Rigid body constraints during torsion - Model 4
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4 Results

In this section, the results from all the analyses will be presented. A more detailed
discussion of the results will follow in section.

All the analyses are presented with system energy plots to validate the quasi-
static solution. 4.6.

4.1 Results - Model 1

This model is not subjected to pre-tension at this stage.

Three different analyses, axial-, bending and torsional stiffness analyses, have
been run, and each analysis is run with three different cable lengths, L = 2000
mm, L = 4000 mm and L = 6000 mm.

4.1.1 Axial stiffness

The results from the axial stiffness analysis are normalized over the cable length,
and found from average values of the axial deformation over the constant load
step.

Analysis 2000 mm 4000 mm 6000 mm
Axial deformation [mm] 0,18269 0,36621 0,54893
Axial stiffness [MN] 547,376 542,846 546,518

Table 22: Results from the axial stiffness analyses - Model 1

Because of initial problems with high hourglass energy, the axial stiffness analyses
have been run with the hourglass control setting; Flanagan-Belytschko Stiffness,
with an default hourglass coefficient of 0,03.

The axial deformation histories from the three different analyses are shown in the
figures below, where the constant load step presented in section 3.6.1 is situated
between 0,05 < t < 0,1. Further the system energies for all the bodies in the
respective analyses are presented, including the hourglass control setting.
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Figure 26: Axial deformation of left rigid plate - 2000 mm - Model 1

Figure 27: Axial deformation of left rigid plate - 4000 mm - Model 1
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Figure 28: Axial deformation of left rigid plate - 6000 mm - Model 1

Figure 29: System energies, all bodies - 2000 mm - Model 1
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Figure 30: System energies, all bodies - 4000 mm - Model 1

Figure 31: System energies, all bodies - 6000 mm - Model 1
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4.1.2 Bending stiffness

The theoretical bending stiffness of the geometry of model 1 is given by

kbending = EI = 2 · 1011
(
d4
o − d4

i

64

)
π = 2,106 MNm2 (12)

If extracting the bending moment reactions and the corresponding curvatures at
each load step (labeled with the sub indices 0, 1 and 2), the following values are
found:

Load step/Analysis 2000 mm 4000 mm 6000 mm
κ0 [1/m] 0 0 0
M0 [kNm] 0 0 0
κ1 [1/m] 0,9 0,9 0,9
M1 [kNm] 173 149,9 149,6
κ2 [1/m] 0,9 0,9 0,9
M3 [kNm] 180,8 166,9 183,6

Table 23: Bending moment reactions for the steps in the bending stiffness analyses

The results from the bending stiffness analyses are presented in the table below.
Note that the results are found from average values over the respective load
regions.

Load step/Analysis 2000 mm 4000 mm 6000 mm
k1,bending [MNm2] 2,0 2,0 2,095
k2,bending [MNm2] 2,07 1,91 2,103

Table 24: Results from the bending stiffness ananlyses - Model 1

The results from both load step 1 (ramped load region) and load step 2 (constant
load region) are close to equal the theoretical value of the bending stiffness.
Hence it does not make to much of a difference from which load step the results
are extracted from.

Further, the y-directional deformation-, x-moment reaction and the system ener-
gies for all the three cable lengths, is presented.
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Figure 32: Y-Directional deformation at end time - 2000 mm - Model 1

Figure 33: Y-Directional deformation at end time - 4000 mm - Model 1

Figure 34: Y-Directional deformation at end time - 6000 mm - Model 1



4 RESULTS 40

Figure 35: X-Moment reactions at left rigid plate - 1000 mm - Model 1

Figure 36: X-Moment reactions at left rigid plate - 4000 mm - Model 1
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Figure 37: X-Moment reactions at left rigid plate - 6000 mm - Model 1

Figure 38: System energies, all bodies - 2000 mm - Model 1
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Figure 39: System energies, all bodies - 4000 mm - Model 1

Figure 40: System energies, all bodies - 6000 mm - Model 1
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4.1.3 Torsional stiffness

Based on the applied load steps presented in section 3.6.1, these are the following
results from the torsional stiffness analyses:

Analysis 2000 mm 4000 mm 6000 mm
∆ θtorsion [Rad/m] 0,025 0,0125 0,008
∆ Mtorsion [kNm] 104,59 104,68 104,64
ktorsion [MNm2] 1,99 1,99 2,02

Table 25: Results from the torsional stiffness analyses - Model 1

The results are found from average values over the constant load region.

It can be seen that the torsional stiffness is approximately the same for the
different cable lengths analysed. Figure 41, 42 and 43 shows that all the analyses
have constant z-moment in the constant load region (0,1 < t < 0,2 sec), and that
the variation in moment reaction (∆M) in load step 1 is almost the same for all
the cable lengths.

Figures 44, 45 and 46 shows the system energies throughout the analyses.
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Figure 41: Z-Moment reaction at left rigid plate - 2000 mm

Figure 42: Z-Moment reaction at left rigid plate - 4000 mm
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Figure 43: Z-Moment reaction at left rigid plate - 6000 mm

Figure 44: System energies, all bodies - 2000 mm - Model 1
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Figure 45: System energies, all bodies - 4000 mm - Model 1

Figure 46: System energies, all bodies - 6000 mm - Model 1
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4.2 Results - Model 2

According to figure 47 the assumption presented in section 3.2.2 is satisfied, ie
the box starts to slide at load step 5 (indicated by a horizontal line at t = 0, 05
seconds).

Figure 47: Z-Velocity history of the box

Care has been taken when defining the load steps of the two pressure forces. If
the load steps of Py is not following the exact same load steps as the pressure
force Pz, undesirable sequence of events will occur. This is for example that the
box will start to slide before or after it should, or it does not slide at all. So,
even though Py is held constant between point 2 and 7 (ref figure 48, point 3, 4,
5 and 6 must be included to follow the path of Pz.

Figure 48: Exact same load step points applied
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4.3 Results - Model 3

This model differs from model 1 by the choice of material, as well as the geometry
is further developed to have a more complex cross section. Although, it is still
rather simple, and the aim of analysing this model with only one tendon, is to
capture an optionally stick-slip behavior of the tendon during bending.

Similar to model 1, there was initial detected problems with too high hourglass
energy. The hourglass control; Flanagan-Belytschko Stiffness was therefor applied
with an hourglass coefficient of 0,03.

Theory in section 2.5 claims that a slip angle of ψ0 is developed during bend-
ing. Therefor, three points of significance are analysed, and a relative interface
displacement between the tendon and the inner coat is tracked in all the points.

Figure 49: Points analysed - Cross-section view

Figure 50 illustrates how an excerpt from the model is chosen. Because of possible
end effects that may give unrealistic or wrong results, the section that is extracted
is situated in the middle of the cable.
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Figure 50: Excerpt from the stick-slip analysis - Model 3

In the bottom part of figure 50 the tendon section excerpted is highlighted, and
the three points from figure 49 is marked. The following three graphs shows
how the relative interface displacement between the tendon and the inner coat
develops in z-direction.

Figure 51: Z-Displacement point 1 - Model 3
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Figure 52: Z-Displacement point 2 - Model 3

Figure 53: Z-Displacement point 3 - Model 3
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As can be seen in figure 52 the relative interface displacement between the tendon
and the inner coat differs from each other at the time of approximately 0,08
seconds, that is after 0,03 seconds of bending, and the difference continue to
increase during the bending path. This is not the case in point 1 and 3, which
implies that the tendon actually slips in the assumed region.

In addition to the change in relative displacement, the plot in figure 54 shows
how the yz-stress of point 2 clearly differs from the yz-stress in the two other
point during bending (0,05 < t < 0,15 seconds)

Figure 54: YZ-Stress of tendon- Model 3

Here A25469 = Point 2, B25458 = Point 1 and C25481 = Point 3.



4 RESULTS 52

4.4 Results - Model 4

4.4.1 Axial stiffness

The axial stiffness for this model is found in the same way as with model 1, and
the results presented in table 26 are average values from the constant load step
of the pre-tension applied.

Analysis 1000 mm 2000 mm 3000 mm
Axial deformation [mm] 0,5317 1,1785 1,7651
Axial stiffness [MN] 9,41 8,49 8,49

Table 26: Results from the axial stiffness analyses - Model 4

The axial deformation histories from the three different analyses are shown in the
figures below. System energies for all the bodies are presented with the bending-
and torsional stiffness analyses, as the pre-tension load is a part of these analyses.

Figure 55: Axial deformation of left rigid plate - 1000 mm - Model 4
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Figure 56: Axial deformation of left rigid plate - 2000 mm - Model 4

Figure 57: Axial deformation of left rigid plate - 3000 mm - Model 4
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4.4.2 Bending stiffness

The results from the bending stiffness analyses are presented in the table below,
where the bending stiffness values found are average values from the ramped load
between load step 2 and load step 3.

Load step/Analysis 1000 mm 2000 mm 3000 mm
∆ M [kNm] 2,50 2,21 2,06
kbending [kNm2] 26,22 23,78 27,23

Table 27: Results from the bending stiffness analyses - Model 4

The Y-directional deformation and the system energies of the three different cable
lengths analysed are presented in the following figures.

Figure 58: Y-Directional deformation at end time - 1000 mm - Model 4

Figure 59: Y-Directional deformation at end time - 2000 mm - Model 4
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Figure 60: Y-Directional deformation at end time - 3000 mm - Model 4

Figure 61: System energies, all bodies - 1000 mm - Model 4
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Figure 62: System energies, all bodies - 2000 mm - Model 4

Figure 63: System energies, all bodies - 3000 mm - Model 4
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4.4.3 Torsional stiffness

Based on the applied load steps presented in section 3.6.4, these are the following
results from the torsional stiffness analyses:

Analysis 1000 mm 2000 mm 3000 mm
∆ θtorsion [Rad/m] 0,05236 0,05236 0,05236
∆ Mtorsion [kNm] 7,35 6,69 9,81
ktorsion [kNm2] 140,56 128,06 187,38

Table 28: Results from the torsional stiffness analyses - Model 4

Figure 64 shows how the cable end is rotated at the end time, and how the middle
part of the cable is deformed with respect to the fringe level at the right side.

Figure 64: Total deformation at end time - 3000 mm - Model 4
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Figure 65: System energies, all bodies - 1000 mm - Model 4

Figure 66: System energies, all bodies - 2000 mm - Model 4
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Figure 67: System energies, all bodies - 3000 mm - Model 4
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4.5 Solve time statistics

Common for all the analyses done is that they have all been run with a program
controlled memory allocation and with 6 CPU cores.

4.5.1 Model 1

Analysis 2000 mm 4000 mm 6000 mm
Axial stiffness 00:07:37 00:13:51 00:13:40
Bending stiffness 00:30:29 01:00:35 01:15:17
Torsional stiffness 00:14:12 00:25:25 00:23:26

Table 29: Run time statistics for the analyses performed of model 1

The analyses of axial- and torsional stiffness have been run with single solver
precision, while the bending stiffness analyses have been run with double solver
precision.

4.5.2 Model 4

Analysis 1000 mm 2000 mm 3000 mm
Bending stiffness 03:52:04 07:38:38 09:36:42
Torsional stiffness 04:09:33 06:47:39 10:06:48

Table 30: Run time statistics for the analyses performed of model 4

The run times of the bending stiffness- and torsional stiffness analyses include
the pre-tension load step, i.e. there has not been performed any re-start analyses.
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4.6 Discussion

Model 1 Analysing model 1 shows that ANSYS LS-Dyna gives good results
when handling such a simple model as a flexible cable of structural steel. Indepen-
dent of the cable lengths analysed, the results of the global stiffness parameters
were good. This was particularly evident for the analyses of the bending stiffness,
where the results were more or less equal to the theoretical bending stiffness.

Results from this model gives good indication of that ANSYS-LS dyna is capable
of handling such slender structures with an explicit approach within a loading
time interval of only 0,1 seconds. The CPU times presented in section 4.5 are
also considered reasonable, with the longest run time of 01:15:17 for the cable of
six meter.

Model 2 This model indicated that the contact tools of ANSYS LS-Dyna works
properly, and that can give good results when analysing frictional behavior be-
tween two flexible solid bodies. Several run were done, which led to the conclusion
that the load step set up was of high importance. If not, the box started to slide
or stick to the plate when it was not suppose to. Therefor, this auxiliary model
was of great help when modeling Model 2, a model developed to investigate ex-
actly this issue. Only then the frictional behavior of interest were between the
wound tendon and the coating during bending.

Model 3 An initially requirement was that the tendon had to be in the stick
domain before the bending could start, hence several pre-tension values were
tested before the final analysis were run. Initially the pretension of 100 kN was
to high, resulting in the tendon to penetrate and squeeze the inner cover of
polyethylene. This is illustrated in figure 68.

Figure 68: To high pre-tension - Model 3

In the end, the cable was subjected to a pre-tension force of only 5 kN which was
enough to get the tendon to stick to the inner cover and without effecting the
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geometry of it. The cable length analysed was chosen to be four meters. In this
way it was possible to analyse and capture the behavior of the wound tendon at
the mid point of the cable without the influence of any possible end effects.

Based on theory and the analysis of this model gave results indicating that there
do exist a stick/slip points after only 0,03 second of bending. But, further work
should still be done in this matter to be 100 % sure that this conclusion is valid.

Model 4 If assuming there do exist a distinct stick-slip point during bending,
this does not seem to influence the ability to calculate the bending stiffness.
Three cables where analysed, and all three of them gave bending stiffness values
in the same range. Also, the values found for the axial stiffness analyses gave
good results. Hence, the change in cable length did not effect the outcome of this
analysis. But, the analyses of the torsional stiffness did not give as consistent
results as desired, having a value range of 59,32 kN in total.

The longest CPU time was 10:06:48, and was from the torsion stiffness analysis
of the three meter long cable.

There were not found any correlation between a lay angle below α = 20◦ and
the ability to run a bending analysis without the tendons spreading appart like
they do in the figure below. But again, the observations done looking for this
correlation should be part of further work done.

Figure 69: Tendons spreading during bending
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