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Abstract 

Lung cancer is the leading cause of cancer related deaths worldwide. Cancer is caused by an 

accumulation of genetic and epigenetic changes that leads to alterations in gene activity and 

phenotype. There is emerging evidence of the epigenetic events in initiation and progression 

of cancer. Tobacco smoking is the major cause of lung cancer, involving numerous 

carcinogens. An in vitro transformation model had previously been established at STAMI, 

where human bronchial epithelial cells (HBECs) were exposed to tobacco smoke carcinogens 

(benzo[a]pyrene, cigarette smoke condensate and N-methylnitrosourea) for up to 15 weeks. 

Two transformed cell lines (HBEC-2KT and HBEC-12KT) were used as models to 

investigate molecular changes associated with transformation. The first aim of this thesis was 

to investigate how transformation affected cell migration. The second aim was to investigate 

whether DNA methylation of FOXA1 and FOXA2 genes could explain their downregulation 

in transformed cells relative to non-transformed cells. 

 

Two methods, the manual in vitro scratch assay and a semi-automated technique using 

IncuCyte ZOOM, were used to study cell migration. Both methods involve creating a wound 

in the cell monolayer and further measure the cells migration into the wound during a set time 

period. Light microscope images were acquired after 0 and 12 hours for the manual method, 

and on an hourly basis for 24 hours for the semi-automated method. DNA methylation studies 

were carried out by bisulfite treatment of DNA followed by pyrosequencing. 

 

Transformed HBEC-12KT showed decreased migration compared to their control cells 

(DMSO). HBEC-2KT transformed cells also showed decreased migration compared to their 

control cells (DMSO) when analysed by IncuCyte ZOOM. However, an increased migration 

was observed when transformed HBEC-2KT were analysed by in vitro scratch assay. 

Previous gene expression analysis of transformed cell lines showed reduced expression of E-

cadherin (CDH1) and increased expression of N-cadherin (CDH2), which indicates a 

hallmark of EMT known as the cadherin switch. This was supported by downregulation of the 

FOXA1 and FOXA2 genes, which may be an essential step of EMT in cancer progression.  

 

DNA methylation levels in the FOXA1_pyro1 assay varied between 35-90 % in both 

transformed HBEC-2KT and their control cells (DMSO). DNA methylation levels in this 



 6 

assay were above 90 % in both transformed HBEC-12KT and their control cells (DMSO). 

DNA methylation levels in the FOXA1_pyro2 assay were above 80 % in transformed HBEC-

2KT and their control cells (DMSO), and above 70 % in transformed HBEC-12KT and their 

control cells (DMSO). Therefore, it is difficult to draw conclusions on whether methylation of 

FOXA1 is related to its expression since non-transformed cells already had high methylation 

levels in the studied CpG sites. In addition, it might be speculated that the inspected sites are 

not involved in gene silencing since control cells express the gene despite high levels of 

methylation. 

 

Both FOXA2 assays showed overall lower DNA methylation levels than the FOXA1 assays. 

In the FOXA2_cpg1 assay the DNA methylation levels were below 10 % in all of the 

transformed cell lines (HBEC-2KT and HBEC-12KT), and also their control cells (DMSO). 

Methylation levels in FOXA2_TSS ranged between 0-50 % for transformed HBEC-2KT and 

their control cells (DMSO). The majority of the transformed HBEC-12KT cells showed DNA 

methylation levels between 20-50 % in the FOXA2_TSS assay. Their control cells (DMSO) 

also showed DNA methylation levels in the same range. Thus, downregulation of FOXA2 

gene expression in transformed cell lines was in contrast to an overall low degree of DNA 

methylation and no outstanding changes in DNA methylation levels between non-transformed 

and transformed cell lines were observed. 

 

In conclusion, changes in migration between transformed and non-transformed cell lines were 

observed. It is, however, clear that cell migration and EMT are not directly linked in this in 

vitro transformation model. Based on bisulfite/pyrosequencing analyses, no outstanding 

changes in DNA methylation of the CpG sites studied between non-transformed and 

transformed cells were observed. Hence, based on the results presented in this thesis, no 

conclusions can be drawn to whether downregulation of FOXA1 and FOXA2 gene expression 

is related to DNA methylation of the regions studied. 
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Sammendrag 

Lungekreft er en ledende årsak til kreftdødsfall på verdensbasis. Kreft er forårsaket av 

akkumulering av genetiske og epigenetiske endringer. Dette vil føre til forandringer i 

genaktivitet og fenotype. Det kommer stadig nye bevis på at epigenetiske mekanismer er 

viktige for initiering og utvikling av kreft. Tobakk inneholder mange kreftfremkallende 

karsinogener og tobakksrøyking er den fremste årsaken til lungekreft. En in vitro 

transformasjonsmodell har tidligere blitt utviklet på STAMI, der humane bronkieepitelceller 

(HBECs) ble utsatt for karsinogener fra tobakk (benzo[a]pyren, sigarettrøyk kondensat og N-

methylnitrosourea) i opptil 15 uker. To transformerte cellelinjer (HBEC-2KT og HBEC-

12KT) ble brukt som modeller for å undersøke molekylære endringer knyttet til 

transformasjon. Det første målet med denne oppgaven var å undersøke hvordan 

celletransformasjon påvirket cellemigrasjon. Det andre målet var å undersøke om DNA-

metylering kan forklare nedregulering av FOXA1 og FOXA2 genene i transformerte celler i 

forhold til ikke-transformerte celler. 

 

To metoder, det manuelle in vitro sårhelings-assay og en delvis automatisert metode ved bruk 

av IncuCyte ZOOM, ble brukt til å studere cellemigrasjon. Begge metodene innebærer å lage 

et sår i cellens monolag, og videre måle cellemigrering inn i såret i løpet av en definert 

tidsperiode. Det ble tatt bilder med lysmikroskop etter 0 og 12 timer for den manuelle 

metoden, og på timesbasis i 24 timer for IncuCyte ZOOM-metoden. Studier av DNA-

metylering ble utført ved bisulfitt-behandling av DNA etterfulgt av pyrosekvensering. 

 

Transformerte HBEC-12KT viste redusert migrasjon i forhold til sine kontrollceller (DMSO). 

HBEC-2KT transformerte celler viste også redusert migrasjon i forhold til sine kontrollceller 

(DMSO) når analysert ved hjelp av IncuCyte ZOOM. På motsatt side ble det observert økt 

migrasjon av transformerte HBEC-2KT når de ble analysert med in vitro sårhelingsassay. 

Tidligere genuttrykksanalyser av transformerte cellelinjer viste redusert uttrykk av E-kadherin 

(CDH1) og økt uttrykk av N-kadherin (CDH2), noe som er kjent som den såkalte ”cadherin 

switch” og er et kjennetegn ved EMT. Nedregulering av FOXA1 og FOXA2 genene 

understøtter dette, og kan trolig være et viktig trinn for EMT i utviklingen av kreft. 
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Nivået av DNA-metylering i FOXA1_pyro1 assay varierte mellom 35-90 % i både 

transformerte HBEC-2KT og deres kontrollceller (DMSO). For transformerte HBEC-12KT 

og deres kontrollceller (DMSO) var nivået av DNA-metylering over 90 %. I FOXA1_pyro2 

assay var nivået av DNA-metylering over 80 % i transformerte HBEC-2KT og deres 

kontrollceller (DMSO), og over 70 % i transformerte HBEC-12KT og deres kontrollceller 

(DMSO). Det er derfor vanskelig å trekke konklusjoner om hvorvidt metylering av FOXA1 er 

relatert til genuttrykk siden ikke-transformerte celler allerede hadde høyt nivå av DNA-

metylering i de undersøkte CpG områdene. I tillegg kan det spekuleres i om de undersøkte 

områdene ikke er involvert i stilning av genet siden kontrollcellene (DMSO) uttrykker genet 

til tross for høye nivåer av DNA metylering. 

 

Begge assayene i FOXA2 genet viste generelt lavere nivåer av DNA-metylering enn FOXA1 

genet. I FOXA2_cpg1 var nivået av DNA-metylering lavere enn 10 % i de transformerte 

cellelinjene (HBEC-2KT og HBEC-12KT), inkludert deres kontrollceller (DMSO). DNA-

metyleringsnivåer i FOXA2_TSS varierte mellom 0-50 % i transformerte HBEC-2KT og 

deres kontrollceller (DMSO). Flertallet av de transformerte HBEC-12KT cellene hadde DNA-

metyleringsnivåer mellom 20-50 % i FOXA2_TSS assay. Kontrollceller (DMSO) viste også 

samme nivå av DNA-metylering. Dermed var nedregulering av FOXA2 genet i transformerte 

celle linjer i kontrast til generelt lave nivåer av DNA metylering. Det ble ikke observert noen 

betydelige endringer i DNA-metyleringsnivåer mellom ikke-transformerte og transformerte 

cellelinjer. 

 

Det ble observert endringer i migrasjon mellom ikke-transformerte og transformerte 

cellelinjer. Det er imidlertid konkludert med at celle migrasjon og EMT ikke er direkte 

sammenkoblet i denne in vitro transformasjonsmodellen. Basert på 

bisulfitt/pyrosekvenseringsanalysene ble det ikke observert noen betydelige endringer i DNA-

metylering i de undersøkte CpG områder mellom ikke-transformerte og transformerte celler. 

Derfor kan det, basert på resultatene i denne oppgaven, ikke konkluderes med om 

nedregulering av FOXA1 og FOXA2 er på grunn av DNA-metylering i de undersøkte 

regionene. 
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Abbreviations 

ANOVA  Analysis of variance 

ATP   Adenosine-5’-triphosphate 

Benzo[a]pyrene B[a]P 

bp   Base pair 

CpG   Cytosine-phosphate-guanine 

CAM   Cell adhesion molecule 

CDH   Cadherin 

Cdk   Cyclin-dependent kinase 

ChIP   Chromatin immunoprecipitation 

CSC   Cigarette smoke condensate 

DMSO   Dimethyl sulfoxide    

DNA   Deoxyribonucleic acid 

DNMT   DNA methyltransferase 

E-cadherin  Epithelial cadherin 

EMT   Epithelial-to-mesenchymal transition 

FOXA   Forkhead-box A 

GJIC   Gap junctional intercellular communication 

GTP   Guanosine-5’-triphosphate 

HBEC   Human bronchial epithelial cell 

IARC   International Agency for Research on Cancer 

MeDIP   Methyl-DNA immunoprecipitation 

mRNA   Messenger RNA 

miRNA  Micro RNA 

MNU   N-methylnitrosourea 

N-cadherin  Neural cadherin 

NNK   4-(methylnitrosoamino)-1-(3-pyridyl)-1-butanone 

NSCLC  Non-small cell lung cancer 

PAH   Polycyclic aromatic hydrocarbons 

PBS   Phosphate buffered saline 

PCR   Polymerase chain reaction 

RNA   Ribonucleic acid 

RWD   Relative wound density 
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SD   Standard deviation 

STAMI  National Institute of Occupational Health 

TGF-β   Transforming growth factor beta 

UTR   Untranslated region 
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1 Introduction 

1.1 Cancer 
Cancer is a major health problem for humans. According to Jemal et al. (2011), cancer is the 

leading cause of death in developed countries and the second leading cause in developing 

countries. However, there is an increasing problem of cancer in developing countries, due to 

aging and growth of the population. In addition, there is an increased adoption of cancer-

associated lifestyles in the developing countries, as for example smoking, physical inactivity 

and unhealthy diets. Worldwide, in 2008 there were about 12.7 million cancer cases and 7.6 

million cancer deaths (figure 1.1). Both estimated new cases and estimated deaths from 

cancer have increased the last years (Jemal et al., 2011; Parkin et al., 2005). 

 

 
As can be seen from figure 1.1, lung and bronchus cancer were the most commonly diagnosed 

cancer for men in 2008, and also the leading cause of cancer-related deaths worldwide. Breast 

cancer was the most commonly diagnosed cancer among women in 2008 as well as the 

leading cause of cancer deaths globally. Lung and bronchus cancer among men accounted for 

about 17 % of estimated new cases and 23 % of cancer deaths worldwide in 2008. Breast 

cancer in women accounted for about 23 % of new cases and 14 % of cancer deaths (Jemal et 

al., 2011).  

Figure 1.1: Estimated new cancer cases and deaths worldwide in 2008 (Jemal et al., 2011). 

FIGURE 2. Estimated New Cancer Cases and Deaths Worldwide for Leading Cancer Sites by Level of Economic Development, 2008. Source: GLOBOCAN
2008.

Global Cancer Statistics

72 CA: A Cancer Journal for Clinicians
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There is evidence of great variations in the risk of cancer according to geographical area. 

Most of the variations are due to risk factors in lifestyle and environment (Parkin et al., 2005). 

In 2008, the cancer incidence rates in the developing world were half the cancer incidence 

rates in the developed world, whereas the cancer mortality (number of deaths per 100 000 

persons per year) was the same. This might be due to later diagnosis and limited access to 

treatment in the developing world, which will have an adverse effect on cancer survival. 

Tobacco smoking is a major cause of cancer globally and there are also differences in the 

stage and degree of the tobacco epidemic. As for example in China, where they consume one 

in three of all the cigarettes produced in the world. This is due to both the huge population in 

the country and high prevalence of smoking among men in China (Jemal et al., 2011; 

Youlden et al., 2008).  

 

On the positive side, there has been a tremendous increase in the knowledge of the various 

molecular mechanisms and pathophysiology of human cancer during the past 20 years and so. 

These mechanisms might serve as new targets for drug development, that hopefully will be 

less toxic for the patients and have enhanced antitumor activity (Debeir et al., 2008).   

 

1.1.1 Lung cancer 

In 2008, lung cancer accounted for 13 % of total cases and 18 % of total deaths (Jemal et al., 

2011; Parkin et al., 2005). During the last years, there have been improvements in treatment 

of lung cancer but the prognosis still remains poor. The 5-year survival rate is only 15 % 

(Deutsch et al., 2012).  

 

There are two subtypes of lung cancer: small cell lung cancer (SCLC), which accounts for 

about 25 % of all lung cancers in Europe, and non-small cell lung cancer (NSCLC). NSCLC 

is divided into three histological types: squamous cell carcinoma, adenocarcinoma and large 

cell carcinoma. The most common are squamous cell carcinoma and adenocarcinoma. 

Squamous cell carcinoma is characterised by intercellular bridging and keratinization, but 

these morphologic features are difficult to detect in poorly differentiated tumours. 

Adenocarcinomas are highly heterogeneous and consist of a mixture of two or three histologic 

subtypes, as for example papillary adenocarcinoma and bronchioloalveolar carcinoma. Large 

cell carcinomas are poorly differentiated tumours, and shows no differentiation pattern for 
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classification into squamous cell carcinoma, adenocarcinoma or small cell carcinoma. 

Carcinomas arise from epithelia, which are cells that line walls of cavities and channels 

(Brambilla and Lantuejoul, 2008; Youlden et al., 2008; Weinberg, 2007). Lung tumours have 

a complex pattern of random cytogenetic and molecular genetic changes, and there are 

various substances that can increase the risk of development. A better understanding of 

mechanisms leading to lung cancer will provide a new insight into how to prevent the disease 

(Deutsch et al., 2012). 

 

Some risk factors for lung cancer includes exposure to carcinogens, both occupational and 

environmental, as asbestos, arsenic, radon and polycyclic aromatic hydrocarbons (PAHs), 

indoor pollution from cooking fumes and cigarette smoke (Jemal et al., 2011; Haugen and 

Mollerup, 2008). Tobacco smoking is the major cause of lung cancer, accounting for 80 % of 

the lung cancer burden in men and 50 % in women (Jemal et al., 2011). Inhalation of tobacco 

smoke can cause genetic and epigenetic changes in the respiratory epithelium during the 

process of carcinogenesis, as tobacco smoke holds numerous carcinogens (Tang et al., 2011). 

According to IARC Monograph Volume 83 (2004) PAHs, as benzo[a]pyrene (B[a]P), and 

tobacco specific nitrosoamines, as 4-(methylnitrosoamino)-1-(3-pyridyl)-1-butanone (NNK), 

are considered to be major lung carcinogens (Jemal et al., 2011). Activation of proto-

oncogenes and inactivation of tumour suppressor genes are some of the genetic changes that 

occur due to carcinogens in cigarette smoke (Tang et al., 2011). Hypermethylation of 

5’methylcytosine in CpG (cytosine-phosphate-guanine) islands in tumour suppressor genes is 

an important epigenetic event in the development of cancer. Promoter hypermethylation is 

important for the inactivation of many tumour suppressor genes in for example NSCLC. This 

can lead to loss of gene transcription and is a critical event in the initiation and progression of 

cancer (Lin et al., 2007). 

 

Lung cancer death rates for men in western countries are decreasing. However, in for example 

China and Africa, the smoking epidemic was established later and the prevalence of smoking 

is therefore still increasing in the majority of the areas. Females started smoking several 

decades after men, and lung cancers have a latency period of 20-40 years, hence the lung 

cancer trends of women are lagging behind and the cancer incidences are still increasing in 

many countries (Jemal et al., 2011; Klaassen and Watkins III, 2010).  
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1.1.2 Molecular biology of cancer 

Cancer is a class of diseases that is characterised by cellular mutation, increased proliferation 

and aberrant cell growth (Klaassen and Watkins III, 2010). Cells accumulate genetic and 

epigenetic changes that can lead to changes in gene activity and alter the phenotype. Over 

time, a cell population that ignores normal controls of proliferation will become cancer 

(Ponder, 2001).  

 

Cancer is caused by mutations in the genes that control proliferation or apoptosis. The vast 

majority arise as a consequence of chemical damage to DNA, and are referred to as genetic 

modifications. After DNA replication and subsequent cell division this damage is converted 

into a heritable change in DNA. Mutations giving cancer cells the ability to evade normal 

homeostatic mechanisms are the ones that are found in successful cancer cells (Bertram, 

2001). In the later years there has been emerging evidence of epigenetic events in initiation 

and progression of cancer. Epigenetics is defined as heritable changes in the activity of gene 

expression without altering the DNA sequence itself. Key mechanisms in epigenetics are 

DNA methylation, histone modifications, nucleosome positioning and regulation by non-

coding RNA (Jones and Baylin, 2002; Kanwal and Gupta, 2010). For example, methylation 

has several consequences for development of cancer. Cancer cells can enter cell cycle, avoid 

apoptosis and promote angiogenesis by methylations of genes involved in these processes. 

Also, it may lead to defects in DNA repair and loss of cell adhesion (Sharma et al., 2010). 

These processes will be dealt with in later paragraphs. 

 

Two important types of genes that play a role in development of cancer are proto-oncogenes 

and tumour-suppressor genes, that are involved in controlling cell growth and proliferation. 

Proto-oncogenes encode proteins that have functions in regulation of cell growth, apoptosis 

and differentiation. They can be activated to oncogenes by structural alterations, which can 

lead to cancer as they can cause cells ought to die to survive. This is characterised as a gain-

of-function mutation. Loss of function of tumour suppressor genes will contribute on the road 

to cancer, due to their role in inhibiting cell division and promote apoptosis when damage to 

cells cannot be repaired (Croce, 2008; Klaassen and Watkins III, 2010; Ponder, 2001).  
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1.1.3 Carcinogenesis 

Carcinogens are exogenous agents, physical or chemical, which cause neoplasia (autonomous 

growth of tissue). They can be genotoxic, meaning that they interact directly with DNA and 

damage its structure or non-genotoxic (epigenetic), which modify gene expression without 

damaging DNA (Bertram, 2001; Klaassen and Watkins III, 2010). A series of genetic and 

epigenetic alterations that lead to uncontrolled cell growth is the foundation of carcinogenesis 

(Tost and Gut, 2007). 

 

Carcinogenesis is the creation of cancer. This process involves a series of three definable and 

reproducible stages, known as initiation, promotion and progression (figure 1.2). 

 

 
Initiation is the first stage and it is a rapid and irreversible process that results in a stable and 

heritable carcinogen-induced mutation. Chemical carcinogens will bind covalently to DNA 

and form adducts. Carcinogens are known as initiating agents. The initiated cell undergoes 

selective clonal expansion and produces a preneoplastic lesion, a stage known as promotion. 

Tumour promoters function through various mechanisms, as gene expression changes, 

increasing proliferation and inhibiting apoptosis. This stage is reversed when tumour 

promoters are removed. A benign preneoplastic lesion is converted into neoplastic cancer 

during the non-reversible process of progression. Additional genotoxic events occur as the 

result of increased DNA synthesis and proliferation in the preneoplastic lesion. Autonomous 

growth, accumulation of chromosomal aberrations and karyotypic instability are hallmarks of 

progression (Klaassen and Watkins III, 2010).  

 

Figure 1.2: The process of carcinogenesis. Modified from Klaassen and Watkins III (2010). 
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1.1.4 Hallmarks of cancer 

The hallmarks of cancer are six biological capabilities cells acquire during the multistep 

development of human cancer and this contributes to complexities of neoplastic diseases. 

They include sustaining proliferative signal, evading growth suppressors, enabling replicative 

immortality, resisting cell death, induce angiogenesis and activate invasion and metastasis 

(figure 1.3). These hallmarks provide a solid foundation for understanding the biology of 

cancer (Hanahan and Weinberg, 2011). 

 

 

Cancer is a disease that involves dynamic changes in the genome. The basis is, as mentioned 

earlier, in mutations that result in activated oncogenes and the loss of function of tumour 

suppressor genes. Oncogenic mutations in the ras gene disrupt the Ras GTPase activity, 

which usually functions as a negative-feedback circuit to control cell proliferation. The 

tumour suppressor protein 53 (p53) is central in regulatory circuits for control of proliferation 

and promoting senescence and apoptosis. The p53 protein arrests cells with damaged DNA in 

the G1 phase of the cell cycle. Cancer cells circumvent apoptosis by the loss of p53, which is 

seen in more than 50 % of human cancers (Hanahan and Weinberg, 2000; Hanahan and 

Weinberg, 2011; Klaassen and Watkins III, 2010).  

 

• Production	  of	  growth	  factor	  ligands	  
• Elevating	  levels	  of	  receptor	  proteins	  at	  the	  surface	  of	  cancer	  cells	  

Sustaining	  proliferative	  
signals	  

• Circumvent	  programs	  that	  negatively	  affect	  cell	  proliferation	  via	  
tumour	  suppressor	  genes	  

Evading	  growth	  
suppressors	  

• Telomerase	  activity	  enhance	  resistance	  to	  senescence	  and	  apoptosis	  Enabling	  replicative	  
immortality	  

• Limit	  or	  circumvent	  apoptosis	  Resisting	  cell	  death	  

• "Angiogenic	  switch"	  is	  activated	  during	  tumour	  progression	  and	  
remains	  on	  Inducing	  angiogenesis	  

• Loss	  of	  E-‐cadherin	  
• Gain	  of	  N-‐cadherin	  

Activate	  invasion	  and	  
metastasis	  

Figure 1.3: The six hallmarks of cancer (Hanahan and Weinberg, 2011). 
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In order to generate macroscopic tumours cancer cells must obtain unlimited replicative 

potential. Telomeres are essential for protection of the ends of chromosomes. Telomerase is a 

specialised DNA polymerase, and its presence is correlated with resistance to both senescence 

and apoptosis (Hanahan and Weinberg, 2011).  

 

Invasion and metastasis are important for the malignancy of cancers. Metastases are the cause 

of 90 % of human cancer deaths. One of the alterations during the process is the loss of E-

cadherin (epithelial cadherin), a cell-to-cell adhesion molecule (Hanahan and Weinberg, 

2000; Hanahan and Weinberg, 2011). This will be described in detail in section 1.3. 

 

By acquisition of hallmark capabilities cancer cells can survive, proliferate and initiate 

metastasis. Various mechanisms contribute and they differ according to type of tumour and 

time during the process of carcinogenesis. Enabling characteristics associated with acquisition 

of hallmark capabilities are genomic instability and tumour-promoting inflammation. 

Genomic instability will lead to generation of random mutations, as chromosomal 

rearrangements, and the inflammatory state of premalignant and malignant lesions can serve 

to promote tumour progression. This shows the dual roles of the immune system in fighting 

diseases and promoting tumour formation. Inflammation by immune cells is designed to heal 

wounds and fight infections, but it can instead lead to its inadvertent support of hallmark 

capabilities. The process of inflammation will lead to an increased inflow of growth factors, 

survival factors, extracellular matrix-modifying enzymes and inductive signals for epithelial-

to-mesenchymal transition (EMT) (Hanahan and Weinberg, 2011). 

 

Evading destruction from immune cells and reprogramming energy metabolism are emerging 

hallmarks of cancer. The immune system can also act as a barrier to tumour formation and 

progression, and by evading the system cancer cells will not be eliminated. Cancer cells have 

a metabolic switch where they limit their energy production mostly to glycolysis, known as 

the “Warburg-effect”. This metabolic phenotype is characteristic for rapidly dividing cells. 

Hence, it must provide advantages during cell proliferation. A significant increase in uptake 

and utilization of glucose is documented in human tumours (Hanahan and Weinberg, 2011; 

Lunt and Heiden, 2011). 
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1.2 Chemicals in cigarette smoke 
Upon inhalation, chemicals in cigarette smoke are deposited in airways and lungs. Genotoxic 

carcinogens in cigarette smoke may have mutagenic effects on lung cells. Cigarette smoke is 

a complex mixture of chemicals, and how it causes lung cancer is depicted in figure 1.4 

(Hecht, 2012a; Pleasance et al., 2009). 

 
Cigarette smoke contains more than 5000 constituents, and only a few of them have been 

studied thoroughly considering toxic effects. International Agency for Research on Cancer 

(IARC) have evaluated more than 70 compounds for carcinogenicity and placed them in 

group 1 (carcinogenic to humans), 2A (probably carcinogenic to humans) or 2B (possibly 

carcinogenic to humans). Some of them are listed in table 1.1 (Hecht, 2012b). 

Figure 1.4: How cigarette smoking can cause the development of lung cancer. Modified from 

Hecht (2012a). 
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Table 1.1: Major groups of carcinogens in cigarette smoke classified by IARC, and some specific 

examples of chemicals within each group. IARC classify the carcinogens into groups: group 1 

(carcinogenic to humans), 2A (probably carcinogenic to humans) and 2B (possibly carcinogenic to 

humans). ND=not detected (Hecht, 2012b). 

Chemical group Specific examples IARC 

group 

Amount in 

mainstream cigarette 

smoke, per cigarette 

Polycyclic aromatic 

hydrocarbons (PAH) 

Benzo[a]pyrene (B[a]P) 1 1-15.2 ng 

Other hydrocarbons Naphthalene 2B 65-868 ng 

N-Nitrosoamines N’-nitrosonornicotine (NNN) 

4-(methylnitrosoamino)-1-(3-

pyridyl)-1-butanone (NNK) 

1 

1 

5-270 ng 

13-223 ng 

Aromatic amines 2-Naphtylamine 1 1.47-17.2 ng 

Aldehydes Formaldehyde 

Acetaldehyde 

1 

2B 

1.6-75.5 µg 

32-828 µg 

Phenolic compounds Caffeic acid 2B Present 

Nitrohydrocarbons Nitrobenzene 2B Present 

Miscellaneous organic 

compounds 

Acrylamide 2A 2.3 µg 

Metals and inorganic 

compounds 

Arsenic 

Cadmium 

1 

1 

ND-5.5 ng 

1.6-101 ng 

 

As for 2012, there was no regulation of harmful tobacco smoke constituents in the United 

States, but some countries have set maximum levels for certain harmful constituents, as tar, 

nicotine and carbon monoxide (CO). A proposal for lowering of toxicants in cigarette smoke, 

this regulation goes for example for acetaldehyde, formaldehyde, B[a]P and CO has been 

made (Hecht, 2012b). 

 

1.2.1 Polycyclic aromatic hydrocarbons (PAHs) 

PAHs are a group of genotoxic carcinogens present at high concentrations in tobacco smoke 

and various working environments. They are formed by incomplete combustion of organic 
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matter, and require metabolic activation to DNA-reactive intermediates as epoxides. Epoxides 

are mutagenic and carcinogenic. These substances react easily with DNA and form so-called 

adducts, with miscoding consequences during replication. DNA adducts are found at 

increased levels in the lungs of smokers, compared to non-smokers. B[a]P is classical PAH, 

and is metabolized to B[a]-7,8-diol-9,10-epoxide that is its ultimate carcinogen. It is known 

that B[a]P induces EMT-related gene expression in lung cancer cells (Hecht, 2012a; Yoshino 

et al., 2007). This will be discussed in section 1.3. 

 

1.2.2 N-methylnitrosourea (MNU) 

MNU, also known as nitrosomethylurea (NMU), is defined as a carcinogen. It is similar to 

NNK, which is a major lung carcinogen as mentioned earlier. It can induce benign and 

malignant tumours after administration by various routes. MNU has been shown to cause 

cancer in for example stomach, skin, kidney and nervous systems of animals (IARC, 1978). 

MNU is an alkylating agent, and attaches an alkyl group to DNA. It is also referred to as base-

damaging (Xu et al., 2011). By exposure to MNU, there are formed pro-mutagenic 

methylated purines in DNA. This has been proposed as a critical initiating event of 

carcinogenesis. MNU is not dependent on metabolic activation (Faustman-Watts and 

Goodman, 1984). 

 

1.2.3 Cigarette smoke condensate (CSC) 

CSC is the particulate fraction of cigarette smoke, and has tumour promoting, co-carcinogenic 

and genotoxic properties. Tumour promoters are found in the weakly acidic/neutral fraction of 

the condensate. CSC is commercially produced and is often used in in vitro carcinogenesis 

studies (DeMarini, 2004; Hecht, 2012a; Hellermann et al., 2002).  

 

Studies show that CSC induces a squamous morphology and growth inhibition in human 

bronchial epithelial cells, and that the effect is mostly pronounced when using the neutral 

fraction of CSC. Squamous cells are more flattened, hence adhered to the underlying matrix 

and they become less able to migrate. This effect was seen after longer exposures to CSC. 

Bronchial epithelium has three properties by which they undergo repair; attachment to matrix, 

migration and proliferation, and exposure to CSC will likely inhibit the ability to participate 

in the repairing process (Cantral et al., 1995). 
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Luppi et al. (2005) observed a dose-dependent increase in cell proliferation by exposure to 

low concentrations (0.25-1 AU/ml) of CSC for 24 hours by studying a human pulmonary 

muco-epidermoid carcinoma cell line. Concentration was expressed as arbitrary units (AU) 

per ml, and ten AU/ml corresponded to a mean of 5 % (vol/vol) CSC. Higher concentrations 

of CSC decreased cell proliferation. High concentrations of CSC can induce cell death 

because of the high concentrations of oxidants and other radicals produced during smoking 

and inflammation. CSC upregulates expression of genes encoding proinflammatory 

molecules. For example, CSC induces activation of NFκB (nuclear factor kappa-light-chain-

enhancer of activated B cells), which is a protein complex that has a role in regulation of 

proinflammatory responses (Hellermann et al., 2002; Luppi et al., 2005).  
 

Cell proliferation plays a role in epithelial wound closure in addition to cell migration, and 

CSC can also affect this. At higher concentrations (5 AU/ml) wound closure was totally 

inhibited in the above carcinoma cell line. However, at lower concentrations (1 AU/ml) a 

significant increase in wound closure was seen. By studying primary bronchial epithelial cells 

Luppi et al. obtained similarly results regarding wound closure. Conversely, it appears that 

cell proliferation does not contribute to wound closure in primary bronchial epithelial cells, in 

the same way as migration, due to that very few proliferating cells were present in the wound 

area. It has also been described that epithelial migration is inhibited by CSC (Luppi et al., 

2005). 

 

Finally, CSC is also known to decrease E-cadherin expression and promoter activity, and 

increase mesenchymal markers as N-cadherin, fibronectin and vimentin in both human lung 

adenocarcinoma and human bronchial epithelial lung. Hence, CSC appears to be contributing 

to EMT (Nagathihalli et al., 2012).  

 

1.3 Epithelial-to-mesenchymal transition (EMT) 
Epithelial layers are multicellular structures composed of closely associated and largely 

immobile cells. The structures are stabilized by E-cadherin, which will be discussed further 

down. By undergoing so-called epithelial-to-mesenchymal transition (EMT), epithelial cells 

acquire a mesenchymal phenotype that is characterised by loosely associated cells, which 

have the ability to move (Guarino et al., 2007).  
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EMT is a fundamental event in morphogenesis, due to its involvement in generation of tissues 

and organs during embryogenesis in both vertebrates and invertebrates. Essential features are 

disruption of intercellular contacts and enhancement of cell motility (figure 1.5). During this 

process, cells move around and switch between epithelial and mesenchymal states as a part of 

organ development. In adulthood, EMT is important during wound healing. In addition, EMT 

is also closely related to cancer progression, and it is observed in numerous types of epithelial 

cancer, as for example NSCLC (Byers et al., 2013). Transformed epithelial cells often acquire 

the abilities to invade other tissues, resist apoptosis and spread by acquiring the mesenchymal 

phenotype that is suitable for migration. This leads to reversible reprogramming of the cell, 

which is transcriptionally regulated. EMT-inducing transcription factors (EMT-TFs) are 

involved in migration and invasion, and also suppression of senescence and apoptosis and 

resistance to for example chemotherapy (Byers et al., 2013; De Craene and Berx, 2013; 

Guarino et al., 2007; Hanahan and Weinberg, 2011).  

 

 
Cells possessing invasive or metastatic properties have altered levels of proteins involved in 

tethering of cells to surrounding tissue, such as cell adhesion molecules (CAMs) and 

integrins. Members of immunoglobulin and calcium-dependent cadherin families are 

examples of the former, and the ladder includes proteins that link cells to the extracellular 

matrix (Hanahan and Weinberg, 2000; Hanahan and Weinberg, 2011). Cadherins belongs to a 

superfamily of proteins that functions in cell recognition, tissue morphogenesis and tumour 

Figure 1.5: Epithelial-to-mesenchymal transition 

(EMT) involves change from stationary to 

migratory phenotype. Modified from Guarino et al. 

(2007). 



 23 

progression. E-cadherin is the prototypical cadherin, other classical cadherins include type I 

P-, N- and R-cadherins and type II cadherins (cadherins 5-12) (Hazan et al., 2004). 

 

E-cadherin is encoded by the CDH1 (cadherin-1) gene, which is defined as a tumour 

suppressor gene. Methylation of the CDH1 promoter is a part of EMT. E-cadherin forms 

adherens junctions between adjacent epithelial cells and mediates intercellular interactions 

and is thought to regulate gap junctions. The molecule is thought to be a premise for gap 

junctional intercellular communication (GJIC), which is important for cell growth, 

differentiation of tissues and homeostasis. Studies show that GJIC was inhibited by tumour 

promoting agents and alterations in GJIC may be involved in carcinogenesis. GJIC is 

dependent on cell-cell adhesion, and E-cadherin maintains intercellular adherence junctions in 

epithelial cells. Loss of E-cadherin expression is associated with a decrease in intercellular 

adhesion. Hence, E-cadherin helps assemble cells and maintain quiescence, and increased 

expression is therefore associated as an antagonist of cell invasion and metastasis (De Craene 

and Berx, 2013; Hanahan and Weinberg, 2011; Jinn et al., 1998). Alterations in E-cadherin 

are the most widely observed modifications in cell-to-environment interactions in cancer. E-

cadherin function is lost in a majority of epithelial cancers. This can be due to mutational 

inactivation, repression of transcription by promoter DNA hypermethylation or proteolysis of 

the extracellular cadherin domain (Hanahan and Weinberg, 2000). Smokers also have low E-

cadherin levels (Nagathihalli et al., 2012). 

 

The neural cadherin (N-cadherin), encoded by the CDH2 (cadherin-2) gene, is found 

primarily in neural tissue and fibroblasts. A less stable and more dynamic adhesion of cells 

characterises the linkages mediated by N-cadherin. N-cadherin undergoes a switch in 

expression and it is upregulated in invasive tumour cell lines. The protein is a potent inducer 

of invasion and metastasis, and cells expressing N-cadherin show a more efficient migration. 

Changes in cadherin expression can be referred to as the “cadherin switch”, and is a crucial 

event in tumour progression. By switching from E-cadherin to N-cadherin a signalling 

program is activated that promotes invasive, motility and survival capacities of tumour cells. 

Collaboration between tumour cells and the microenvironment is also important for tumour 

progression, and the cadherin switch encourages this. In breast tumour cells it has been 

observed that N-cadherin facilitates adhesion of cells to endothelial monolayers in blood 

vessels (Gravdal et al., 2007; Hazan et al., 2000; Hazan et al., 2004). 
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1.3.1 Forkhead-box (FOX) family proteins 

FOX proteins are a family of transcription factors involved in regulation of cell growth, 

differentiation, embryogenesis and longevity. The FOX proteins bind DNA and are involved 

in transcriptional regulation and DNA repair. Mutations of FOX proteins are often associated 

with human diseases, due to its involvement in a variety of processes. They are involved in 

carcinogenesis as oncogenes or tumour suppressor genes. FOXA1 and FOXA2 proteins are 

expressed in lungs. Studies have shown that FOXA1 gene may be amplified in lung cancer, 

and in some cases of lung cancer this might lead to overexpression of the gene. This may 

indicate an oncogenic role of this gene in carcinogenesis. FOXA1 binds within highly 

condensed chromatin regions, mainly in enhancer regions, and activates FOXA1-dependent 

enhancers, which is accompanied by demethylation of DNA (Katoh et al., 2013; Lin et al., 

2002; Sérandour et al., 2011; Song et al., 2010; Wan et al., 2005).  

 

A study indicates that FOXA2 has a positive correlation with epithelial phenotype and a 

negative correlation with mesenchymal phenotype, due to the fact that FOXA2 protein levels 

correlated with epithelial cell markers (Tang et al., 2011). Transforming-growth factor β 

(TGF-β) has been shown to induce EMT via autocrine or paracrine mechanisms and is one of 

the most important regulators of EMT. It also increases lung cancer cells ability for migration. 

Studies indicate that FOXA2 is a key target for TGF-β in regulation of EMT in human lung 

cancer cells. By overexpressing FOXA2, TGF-β-induced EMT was suppressed. FOXA2 

might have a role as a tumour suppressor by repressing slug transcription through a conserved 

binding site in the slug promoter (figure 1.6). Slug is a transcription factor and a negative 

regulator of E-cadherin expression. Also, there is evidence of hypermethylation of FOXA2 

promoter in NSCLC and epigenetic mechanisms are likely to cause the loss of FOXA2 

expression in lung cancer (Basseres et al., 2012; Tang et al., 2011).  
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Studies have indicated that the downregulation of FOXA1 and FOXA2 genes is an essential 

step of EMT in progression of pancreatic cancer (Song et al., 2010). 

 

1.4 Cell migration 
Cell migration is an important mechanism for both unicellular and multicellular organisms 

(Glaß et al., 2012, Liang et al., 2007). Wound healing, immune responses and tissue 

formation during development all depend on movement of cells. During wound healing cells 

as neutrophils, macrophages and fibroblasts move to wound site and kill microorganisms and 

remodel damaged tissue (Ananthakrishnan and Ehrlicher, 2007; Glaß et al., 2012; Liang et al., 

2007). Cell migration is a multistep process involved in cancer progression, arthritis and 

atherosclerosis (Ridley et al., 2003). Tumour cells have retained the same basic migration 

machinery for cell migration as normal, non-neoplastic cells. This includes integrins, matrix-

degrading enzymes, CAM and cell-cell communication (Friedl and Wolf, 2003). 

 

Mesenchymal cells have the ability to migrate, and they do so in a process of multiple steps, 

involving cell polarisation, protrusion extension, cell elongation and contraction. It is a 

continuous cycle of interdependent steps, which allows the cells to translocate. First, the cell 

is polarised and a pseudopod (temporarily, cylindrical finger-like protrusion) is formed at the 

leading edge of the cell, which becomes attached to the extracellular matrix for stabilisation. 

Integrins support the adhesion to the extracellular matrix. This is followed by contraction of 

Figure 1.6: FOXA2 suppresses slug transcription, which again lead to EMT suppression. 

By treating A549 cells with TGF-β the FOXA2 protein was degraded, slug was actively 

transcribed and EMT was induced. Modified from Tang et al. (2011). 
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regions of the leading edge or the whole cell body. A traction force is generated that leads to 

forward gliding of the cell body (figure 1.7). Disassembly of adhesion is observed at the 

leading edge where it accompanies the formation of new protrusions, but also at the rear 

where it promotes the retraction of the cell. 

 
The cell protrusions vary in morphology and dynamics, but they all contain actin and a 

various set of structural and signalling proteins. Dynamic rearrangements of the actin 

cytoskeleton form protrusive structures and generate intracellular forces needed for cell 

translocation. Myosin motors pull the cell forward by a continuous repeated process of 

binding, power stroke and unbinding of actin filaments. This leads to generation of a 

contractile force known as acto-myosin contractile force and completion of the migration 

cycle (Ananthakrishnan and Ehrlicher, 2007; Debeir et al., 2008; Friedl and Wolf, 2003; 

Ridley et al., 2003; Yamaguchi et al., 2005). Migration can be either random or directed by 

external influences, as chemicals in the environment (Glaß et al., 2012). 

Figure 1.7: Schematic presentation of the process 

of cell migration. Modified from Ananthakrishnan 

and Ehrlicher (2007). 
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Cancer kills patients mainly because of migratory properties of its cells. This is the process of 

metastasis, where cell migration is an important underlying mechanism (Debeir et al., 2008; 

Glaß et al., 2012; Yamaguchi et al., 2005). It is valuable to understand the essential 

mechanisms as it will accelerate the process towards effective therapeutic approaches for 

treatment (Ridley et al., 2003). Migration and invasion into tissues and intravasation into 

blood and lymphatic vessels are necessary for metastasis of cancer cells. These cells acquire a 

phenotype associated with increased expression of several genes involved in cell motility, as 

vimentin and epidermal growth factor receptor (Wang et al., 2005; Yamaguchi et al., 2005).  

 

1.5 Epigenetic mechanisms 
Epigenetic changes are heritable, reversible changes in expression of genes without leading to 

alterations in the DNA sequence itself. Processes involved in epigenetic modifications are 

DNA methylation, histone modification, nucleosome remodelling, and gene regulation by 

micro-RNAs (miRNAs). These modifications regulate accessibility and compactness of 

chromatin, which is the organisation of genetic information in the form of DNA within a cell. 

This again will influence activation or silencing of genes, which will create an “epigenetic 

landscape” that regulates how the mammalian genome reveals itself in different cell types, 

developmental stages and diseases. Epigenetic patterns serves as a guardian of cellular 

identity and determines for example cell fate and gene activity (Esteller, 2007; Kanwal and 

Gupta, 2010; Sharma et al., 2010).  

 

DNA methylation is a post-replication modification, which is almost exclusively found on 

cytosines in the dinucleotide sequence CpG. In the genome there are CpG islands, which are 

regions rich in CpG dinucleotides preferentially located at the 5’end of genes. These regions 

span the 5’ end region (promoter/enhancer, untranslated region and exon 1) of many genes. 

Approximately 10 % of the CpG dinucleotide methylation sites in the human genome are 

within gene promoters, where interaction with other chromatin factors facilitates gene 

silencing when cytosine is methylated. In normal cells, the 5’ end region is often 

unmethylated. The modification is carried out by DNA methyltransferases (DNMTs). There 

are three main DNMTs: DNMT1, DNMT3a and DNMT3b. DNMT1 is the major maintenance 

enzyme and sustains existing methylation patterns. The enzyme does so by adding methyl 

groups to hemi-methylated CpG sites in DNA after replication. DNMT3a and DNMT3b are 
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de novo methyltransferases, and they target unmethylated CpG sites for initiation of 

methylation. They are highly expressed during embryogenesis, and minimally expressed in 

adult tissues. Methylation of cytosines is an essential mechanism during mammalian 

embryogenesis and development. Genome-wide de novo methylation is known to play a 

major role in establishing embryonic methylation pattern during early development. Studies 

show that early embryonic lethality occurs if DNMT3a and DNMT3b are inactivated. During 

tissue differentiation, de novo methylation also plays an important role in organising or 

compartmentalizing the genome to establish tissue-specific gene expression patterns (Aran et 

al., 2011; Kanwal and Gupta, 2010; Okano et al., 1999; Sharma et al., 2010; Tost and Gut, 

2007).  

 

CpG island methylation is also associated with X-chromosome inactivation during 

development, which is a mechanism to achieve dosage compensation of X-linked genes. Due 

to the fact that females have two X chromosomes compared to males that only have one X 

chromosome, this needs to be equalized. Methylation of the inactive X functions as a 

maintenance mechanism for X inactivation, where the promoter becomes methylated during 

development and leads to long-term transcriptional silencing (Avner and Heard, 2001; Okano 

et al., 1999; Sharma et al., 2010). 

 

Histones comprise the nucleosome core, and they can undergo post-transcriptional 

modifications as methylation, acetylation and phosphorylation that may change the 

accessibility of chromatin or recruit other effector proteins. This can lead to either repression 

or activation of gene activity. Histone deacetylation may mediate downregulation of E-

cadherin in NSCLC. Nucleosome remodelling may also regulate gene activity through 

changes in the chromatin structure, by altering accessibility of regulatory DNA sequences to 

transcription factors. Non-coding miRNAs also regulate gene activity, through 

posttranscriptional silencing. miRNAs consists of approximately 22 nucleotides. They base 

pair with 3’untranslated regions (UTR) of target messenger RNA (mRNA) and induce its 

degradation or inhibition of translation (Nagathihalli et al., 2012; Sharma et al., 2010). Any 

miRNA can bind to a broad spectrum of different mRNAs, as there are multiple conserved 

sites for a given miRNA in the same UTR of a gene. Hence, the miRNAs possess enormous 

and complex regulatory potential. In addition, the base pairing between mRNA and miRNA is 

localised to the 5’-proximal half of the miRNA (Ambros, 2004). 
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Changes in epigenetic modifications are common in many human diseases. Aberrant 

methylation of the promoter may lead to altered gene expression and this has been associated 

with cancer (Colella et al., 2003). Hypermethylation of tumour suppressor genes may lead to 

gene silencing and is a key feature of the pathogenesis of cancer. Oncogenes may be activated 

through hypomethylation, and this process may also increase genetic instability (Esteller, 

2007; Sharma et al., 2010).  

 

Epigenetic changes occur early during carcinogenesis and often underlie malignancy (Tost 

and Gut, 2007). In humans, methylation of cytosines within CpG dinucleotides is the most 

widely studied epigenetic modification, and it is considered to be a common hallmark of all 

types of human cancer (Esteller, 2007; van Eijk et al., 2012).  

 

Cigarette smoke may trigger methylation of CpG islands in promoters and cause inhibition of 

gene expression, which has been demonstrated for many genes, highlighting the fact that 

environmental factors may alter cellular phenotypes through induction of epigenetic 

modifications (Tekpli et al., 2012; Word et al., 2013; Xu et al., 2007). The predominant model 

states that increased DNA methylation cause a decrease in gene expression, particularly in 

CpG islands and promoter regions. Nevertheless, recent studies indicate that relationship 

between genetic variation, DNA methylation and gene expression is much more complex. 

Positive correlations between DNA methylation in the gene body (transcribed portion of 

genes) and gene expression have been identified in Arabidopsis thaliana and in a variety of 

human cell lines. Gene bodies have been shown to be hypermethylated compared with other 

fractions of the genome and it is suggested that gene-body methylation may play yet unknown 

functions in multicellular organisms. Functions as for example protecting the gene body 

through methylation, regulate transcription elongation rates or control alternative promoter 

usage are suggested to depend on gene-body methylation (Aran et al., 2011; Jjingo et al., 

2012; van Eijk et al., 2012).  

 

1.6 Immortal human bronchial epithelial cell lines (HBECs) 
Normal bronchial epithelial cells have a finite replicative potential. Transfecting specific 

genes into them has generated immortal HBECs that are valuable tools in studies of lung 

pathogenesis. In this thesis, HBECs that have been immortalized by insertion of cyclin-

dependent kinase 4 (Cdk-4) and human telomerase reverse transcriptase (hTERT) were used 
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(Ramirez et al., 2004). Cdks are heterodimeric complexes composed of both catalytic (kinase) 

and regulatory (cyclin) subunits. They are divided into two groups depending on their roles in 

cell cycle progression or regulation of transcription. Cdk-4 is a member of the first group and 

is a core component of the cell cycle machinery. It phosphorylates retinoblastoma protein 

(Rb) and further facilitates G1 to S (synthesis) transition in the cell cycle. In a 

hypophosphorylated state, Rb prevents cells to progress into S phase. Cyclin-dependent 

kinase inhibitor 2A (p16) is also a regulator of G1 progression, and belongs to INK4 family of 

cell cycle inhibitors. They act as inhibitors of Cdk-4 and 6. As cells age, p16 accumulates and 

associates with Cdk-4 and 6 to induce release of D-type cyclins, and then further arrest cells 

in G1. By overexpression of Cdk-4, this arrest is prevented and cells continue in the cell cycle 

(Ramirez et al., 2004; Shapiro, 2006). 

 

Telomerase is an enzyme that adds DNA sequence repetitions at the ends of chromosomes; 

the telomeres, and by this prevents progressive shortening of the ends. The telomerase 

hypothesis suggests that this is the mitotic clock, which regulates senescence in somatic cells. 

By expression of hTERT, telomere-dependent senescence can be bypassed and in 

combination with overexpression of Cdk-4 continuously replicating, immortal cell lines is 

generated (Ramirez et al., 2004). 

 

1.6.1 In vitro transformation model of HBECs 

An in vitro premalignant transformation model had been established in our lab, where HBECs 

(table 1.2) were exposed to tobacco smoke carcinogens (B[a]P, CSC or MNU) for up to 15 

weeks. Control cells were HBECs exposed to DMSO (table 1.3). The various doses of 

carcinogens were decided by toxicity tests of the cell lines, where the chosen doses should be 

as high as possible without causing too much toxicity (80 % or more of the cells should 

survive the dose given). 

 
Table 1.2: Characteristics of the donor patients of the HBECs used in this thesis. NSCLC denotes 
non-small cell lung cancer 
Cell line Age Gender Diagnosis Smoking history 

HBEC-2KT 68 M NSCLC Smoker 

HBEC-3KT 65 F No cancer Smoker 

HBEC-12KT 55 F NSCLC Previous smoker 
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Table 1.3: HBECs used in this thesis and the treatment they received. 
Cell lines Treatment 
HBEC-2KT control cells HBEC-2KT cells exposed to DMSO 
HBEC-2KT-CSC.L HBEC-2KT cells exposed to a low dose of CSC (1 µg/ml) 
HBEC-2KT-CSC.H HBEC-2KT cells exposed to a high dose of CSC (3 µg/ml) 
HBEC-12KT control cells HBEC-12KT cells exposed to DMSO 
HBEC-12KT-CSC.L-A HBEC-12KT cells exposed to a low dose of CSC (1 µg/ml), 

isolated from colony A 
HBEC-12KT-CSC.L-B HBEC-12KT cells exposed to a low dose of CSC (1 µg/ml), 

isolated from colony B 
HBEC-12KT-CSC.H HBEC-12KT cells exposed to a high dose of CSC (3 µg/ml) 
HBEC-12KT-B[a]P.L HBEC-12KT cells exposed to a low dose of B[a]P (0.33 µM) 
HBEC-12KT-B[a]P.H HBEC-12KT cells exposed to a high dose of B[a]P (1 µM) 
HBEC-12KT-MNU HBEC-12KT cells exposed to MNU (0.5 µM) 
 

During the transformation assay, cells were exposed to the treatments weekly; a control 

(DMSO) was also included. After 9, 12 and 15 weeks colony formation in soft agar was tested 

for the cell lines exposed to carcinogens. Transformation of cells leads to changes in 

phenotype, as for example anchorage independency. This capacity gives the cells abilities to 

form colonies in soft agar and these cells were defined as transformed. For the establishment 

of transformed cell lines, colonies from soft agar after 12 weeks exposure were chosen. One 

colony was chosen for all the cell lines, except for HBEC-12KT-CSC.L where two colonies 

were isolated (A and B). The colonies were isolated and seeded in soft agar a second time to 

ensure persistency of anchorage independent growth. Colonies were also formed after second 

time in soft agar. Four colonies were isolated from each treatment (2A, 2B, 2C and 2D) and 

seeded in single dishes to obtain clonal transformed cell lines (all cells originated from the 

same colony) (Sjøberg, 2012). The transformation model is depicted in figure 1.8, and the 

naming of the cells lines are explained in figure 1.9. 
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When transformed, these cell lines were suitable models for further investigations of 

molecular changes involved in the process of transformation. Earlier studies indicate that 

transformation is associated with changes in cellular morphology, from an epithelial to a 

mesenchymal-like shape, and also changes in migration capability of the cells, which indicate 

activation of EMT (Sjøberg, 2012). Gene expression analyses (figure 1.10) showed reduced 

Figure 1.8: Colony formation of transformed HBEC-2KT and HBEC-12KT in 

soft agar after 9, 12 and 15 weeks. After 12 weeks, colonies were isolated and 

seeded into soft agar a second time to ensure anchorage independent growth. 

From second time in soft agar, four colonies from each treatment were isolated. 

Figure 1.9: Naming of the cell lines used during this thesis. 
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expression of FOXA1, FOXA2 and CDH1 (E-cadherin) genes in HBEC-2KT and HBEC-

12KT transformed cells compared to control cells (DMSO). CDH2 (N-cadherin) gene had 

increased expression in all of the transformed cell lines of HBEC-2KT and HBEC-12KT 

compared to control cells (DMSO). These changes in the transformed cell lines are consistent 

with EMT. Audun Bersaas (staff engineer at STAMI) performed the gene expression 

analyses. 

 
 

1.7 Aim of the study 
The aim of this study was to investigate mechanisms involved in development of lung cancer. 

There was a special focus on epigenetic changes, which have proved to be important during 

the later years considering initiation and progression of cancer. HBECs were exposed to 

B[a]P, CSC and MNU in an already developed in vitro transformation model.  

 

The first aim was to investigate how transformation affected cell migration, and relate this to 

previous gene expression analyses in EMT-related genes as CDH1 and CDH2, and also 

FOXA1 and FOXA2 in transformed compared to non-transformed cells. 

 

The second aim was to investigate whether downregulation of FOXA1 and FOXA2 gene 

expression in transformed versus non-transformed cell lines could be explained by DNA 

methylation. 

Figure 1.10: Fold change of gene expression of FOXA1, FOXA2, CDH1 (E-cadherin) and 

CDH2 (N-cadherin) genes in in vitro transformed HBEC-2KT and HBEC-12KT. Numbers (log-

scale) denotes how much gene expression has decreased/increased compared to control cells 

(DMSO). 
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2 Materials and methods 

Various methods used during this thesis to study characteristics of transformed and non-

transformed HBECs are presented in figure 2.1 below. The transformed cell lines used have 

been exposed to B[a]P, CSC and MNU for 12 weeks. Control cells have been exposed to 

DMSO for 7 weeks. Untreated HBECs have been included in the cell migration analyses. 

 

 

2.1 General cell work 
All cell work was performed with ventilation in OAS LAF benches under sterile conditions, 

with the use of Bunsen burners and plastic pipettes. Information regarding the materials used 

during this thesis can be found in appendix A. General cell culture work as thawing of cells, 

passaging cells and freezing of cells is described in appendix B. The cells were grown on 

collagen-coated dishes, either 96- and 6-well plates or 100 mm plates. Information regarding 

collagen coating is also described in appendix B. When the cells had reached about 80 % 

confluence they were passaged.  

 

2.1.1 Cell lines and cell culture 

Cells were taken from the liquid nitrogen cell bank at STAMI and cultured in an incubator (37 

°C, 5% CO2 atmosphere) until further experiments. It was always used the lowest possible 

passage number of the cells. Untreated HBEC cell lines were grown in LHC-9 medium, 

supplemented with penicillin and streptomycin (1 %). Transformed HBEC cell lines and 

control cells (DMSO) were grown in LHC-9 medium, supplemented with penicillin and 

Figure 2.1: Overview of methods used. 
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streptomycin (1 %) and foetal bovine serum (FBS) (10 %). Fresh medium was given 

approximately twice a week. 

 

2.1.2 Seeding of cells for various experiments 

This is a general description of the procedure. Volumes of different solutions and reagents 

varied according to the experiment performed, this is an example when using 100 mm petri 

dishes.  

1. Starting material was always approximately 80 % confluent cell cultures. 

2. The media over the cells was removed, and the dishes were washed twice with 

phosphate buffered saline (PBS) (10 ml). 

3. Trypsin solution (1 ml) was added to the dishes. 

4. The cells were incubated (37 °C) until detachment from the petri dish. This was 

monitored in the light microscope. 

5. Medium (5 ml) was added and the cell suspensions were gently washed up and down a 

10 ml pipette for separation of cells and washing of petri dish. 

6. The cell suspension was transferred to a centrifuge tube and centrifuged (1000 rpm, 4 

minutes). 

7. The supernatant was discarded and the pellet was re-suspended in growth medium (5 

ml). 

8. Cell suspension (10 𝜇l) was mixed with trypan blue stain (10 𝜇l) in an eppendorf tube, 

and 10 𝜇l of this mix was added to a cell counting chamber slide. 

9. Cells were counted using Countess Automated Cell Counter. 

10. The cells were then added growth medium to obtain the appropriate density of the 

cells. 

11. Cells were seeded on appropriate plates. 

12. Plates were incubated (37 °C) for further use. 

 

2.2 Soft agar assay 
Growth in soft agar is an indication of cell transformation (anchorage independent growth). 

Tumour cell line A549 was used as a positive control in this assay. The soft agar assay is 

based on a top- and base-layer, where the base-layer (0.7 % agar) is made first. When the 

base-layer has congealed, a top-layer is added. The top-layer is made of a lower agar 
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concentration (0.35 %) where a specific number of cells are added. Two parallels were made 

for each cell line. To make the soft agar, the 3 % agar solution was kept in a water bath at 50 

℃ and when cells were added to the lower agar concentration the solutions were kept in a 

water bath at 40 ℃. It was important to work rapid and efficiently, due to the rapid 

solidification of agar solutions and in order to keep the cell at temperatures above 37 ℃ for as 

short time as possible. 

1. 1 g Difco Agar Noble was mixed with 33.3 ml PBS to obtain a stock agar solution of 3 

%. 

2. The agar solution was autoclaved on the program for liquids. 

3. Agar stock solution (3 %) was mixed with growth medium to obtain an concentration 

of 0.7 %, which formed the base-layer. 

4. 0.7 % agar solution (1.5 ml) was added to each well on 6-well plates and this was left 

to gel at 4 ℃ (30 minutes). 

5. Cells were trypsinised and counted. The cell suspension was diluted in medium to 

obtain 4x104 cells/ml. 

6. The diluted cell suspension was mixed with an equal volume of the 0.7 % agar 

solution to obtain a top-layer of 0.35 % agar. This layer would then have 2x104 

cells/ml. 

7. The top-layer (1 ml) was added over the base-layer. 

8. The plates were left to gel at 4 ℃ (30 minutes). 

9. The plates were then incubated at 37 ℃ for 3-4 weeks to evaluate appearance of 

colonies. 

10. After two days, 500 𝜇l fresh medium was added, and this was repeated once a week. 

 

2.2.1 Visualisation of colonies by crystal violet staining 

Crystal violet was used to visualise colonies in soft agar. When dissolved in water, crystal 

violet has a blue violet colour. The substance colours cell walls, and makes the cells easy to 

visualise in a light microscope. 

1. A crystal violet solution (0.05 %) was diluted 10x with autoclaved water to make a 

solution of 0.005 %. 

2. The 0.005 % crystal violet solution was added (500 𝜇l) to the soft agar plates, which 

were then incubated for 30 minutes (37 ℃). 
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3. Colonies were visualised in the light microscope and images were taken. 

 

2.3 DNA Isolation 
DNA was isolated using Wizard® Genomic DNA Purification Kit (Promega). This kit is 

designed for isolation of genomic DNA from various tissues and cells, one of them being cell 

cultures. The purification procedure includes four steps. The first step is lysis of cells and 

nuclei, followed by an RNase digestion step. The third step is salt precipitation, where cellular 

proteins are precipitated and leave high molecular weight genomic DNA in solution. The last 

step includes concentration and desalting of DNA by isopropanol precipitation (Wizard® 

Genomic DNA Purification Kit, Promega, 2010).  

1. Tissue culture cells grown on 100 mm dishes were trypsinised and counted. The cell 

suspension was diluted in medium to obtain a concentration of 3x106 cells. 

2. The solution was centrifuged at 16 000 g for 10 seconds, or 1000 rpm for 4 minutes if 

the volume was above 1.5 ml, at room temperature. 

3. The supernatant was removed and the pellet was washed with PBS (200 𝜇l) 

4. The solution was centrifuged as above. 

5. The supernatant was removed until there was 10-15 𝜇l left in the tube. 

6. Nuclei Lysis Solution (600 𝜇l) was added to lyse the cells. Lysate was transferred to 

eppendorf tubes if volume was above 1.5 ml. 

7. RNase Solution (3 𝜇l) was added to the nuclear lysate and the tube was mixed by 

inversion 2-5 times. 

8. The mixture was incubated at 37 ℃ for 30 minutes, and left at room temperature for 5 

minutes to cool down. 

9. Protein Precipitation Solution (200 𝜇l) was added to the mixture, which was then 

vortexed for 20 seconds. The sample was left on ice for 5 minutes. 

10. The tube was centrifuged at 16 000 g for 10 minutes at 4 ℃. 

11. The supernatant was transferred to an eppendorf tube with 600 𝜇l room tempered 

isopropanol. 

12. The solution was inverted until DNA formed a visible mass. 

13. The tube was centrifuged at 16 000 g for 1 minute at room temperature. 

14. The supernatant was discarded. 

15. Ethanol (70 %, room tempered) was added and the tube was inverted to wash DNA. 
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16. The tube was centrifuged at 16 000 g for 1 minute at room temperature. 

17. Ethanol was carefully removed from the tube containing DNA. 

18. The tube was inverted on a paper, and the pellet was left to dry for 10-20 minutes. 

19. DNA Rehydration Solution (50 𝜇l) was added. 

20. The tube was incubated at 65 ℃ for an hour, and the solution was gently mixed every 

15 minutes. 

DNA was stored at 4 ℃, until further applications as PCR amplification, bisulfite treatment 

and pyrosequencing. 

 

2.3.1 Quality and quantity of DNA 

NanoDrop spectrophotometer was used to assess the quality and quantity of DNA. NanoDrop 

utilizes a retention technology. A beam of light is passed through a droplet of sample and 

measures the intensity of light that is transmitted through it (NanoDrop 8000 

Spectrophotometer, V2.2 User Manual, Thermo Scientific). Absorption maximum of nucleic 

acids is 260 nm. The ratio OD260/OD280 can be calculated to assess purity of the solution. For 

DNA a ratio of 1.8 indicates that it is pure. A low ratio can be due to contamination by 

proteins or phenols. The ratio 260/230 is a secondary measure of nucleic acid purity. 260/230 

is usually in the range between 1.8 and 2.2, and if lower this can be an indication of the 

presence of co-purified contaminants (Barbas et al., 2007).  

 

2.4 Agarose gel electrophoresis 

Agarose gel electrophoresis separates DNA fragments of different size in an electric field. 

Smaller fragments migrate faster than larger ones (Reece, 2004). In this thesis, agarose gel 

electrophoresis was used to test if PCR products had the correct length and if there was only 

one product. It was also used to check quality and quantity of PCR products before carrying 

out the pyrosequencing. 

 

A DNA standard ladder was run alongside the samples during gel electrophoresis to estimate 

the size of unknown DNA samples and identify the band of interest. Different ladders were 

used, as for example 100 bp DNA ladder and ϕX174 DNA/HaeIII marker, which was used in 

this thesis. 
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1. 50X TAE buffer was diluted to 1X TAE buffer: 

a. 8 ml 50X TAE + 392 ml dH2O to make a small gel. 

b. 24 ml 50X TAE + 1176 ml dH2O to make a large gel. 

2. Agarose powder was weighed: 

a. 2.4 g SeaKem GTG Agarose in 120 ml 1xTAE buffer to make a 2 % gel for 

testing of PCR products for pyrosequencing. 

b. 1.5 g NuSieve 3-1 Agarose in 50 ml 1xTAE buffer to make a 3 % gel for 

genomic DNA testing. 

3. The mixture was heated in a microwave to make a clear solution. 

4. GelRed (7 µl for large and 2.5 µl for small gels) was added for staining of DNA. 

5. The solution was poured into a gel former containing a comb to form wells and left to 

set. 

6. The comb was removed, the gel was placed in aqueous buffer and DNA was loaded in 

the wells: 

a. PCR products for pyrosequencing: 1 µl sample. PCR products for 

pyrosequencing contained a CoralLoad Concentrate, so no loading buffer was 

necessary. 

b. Genomic DNA: 3 µl sample + 1 µl loading buffer. 

7. Large gels were run at 120 V and small gels at 100 V, both for about 1.5 hours. 

8. The gels were examined under UV-light to see the localisation of DNA bands. 

 

2.5 Cell migration assay 
Two methods were used to study cell migration. Both assays are based on observations that 

when a scratch is made in a cell monolayer, the cells at the edge of the newly formed opening 

will move towards it and close the wound (Glaß et al., 2012; Liang et al., 2007; Rodriguez et 

al., 2005). Using IncuCyte ZOOM, from Essen Biosciences, the method of studying cell 

migration was mainly automated. The other method used was the manual in vitro scratch 

assay.  

 

2.5.1 IncuCyte ZOOM 

The migration assay from Essen BioSciences can be used to assess the 2D migration potential 

of various cells. The IncuCyte ZOOM instrument was only in the house for a demo for three 
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weeks. A 96-well WoundMaker was used to create a cell-free zone in a monolayer, without 

disrupting the coating of the wells. ImageLock plates (Essen Biosciences) were used for this 

purpose. These plates had markers on the bottom of the plate that serve as a reference point 

for accurate picturing. After wounding fresh media was added to the wells and the 96-well 

plate was put in the IncuCyte ZOOM instrument to be monitored for a chosen time course. 

Usually for 24 hours. The instrument can automatically acquire images at a chosen interval 

during the experiment. When the assay was completed, images were analysed using 

IncuCyte’s integrated software, which provides ways to quantify both migration and invasion. 

The whole process is outlined in figure 2.2. 

 

 

1. 25 000 cells/well were plated on 96-Well ImageLock plates, which were left in the 

incubator to form a confluent monolayer (37 ℃, 1 day). 

2. Wounds were made using the 96-pin WoundMaker. 

3. Plates were washed twice with PBS (2*200 µl/well). 

4. Fresh media (100 µl) was added to the wells and the plate was placed in the IncuCyte 

ZOOM instrument inside the incubator. 

5. The plates were allowed to equilibrate within the instrument for minimum 15 minutes 

before the first scan. The software was set to take images every hour for 24 hours with 

“Scratch Wound” as the experimental type. 

 

Analysis of results 

For processing of the data an image collection was created using a representative number 

(three to five) of images. A Processing Definition was used to analyse the data, via a 

Figure 2.2: The process of making wounds using the Essen 96-Well WoundMaker for migration 

assay with IncuCyte ZOOM. Modified from Roddy et al. (Roddy et al., s.a.). 
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Processing Software Package in the instrument. The data from the migration assay was 

analysed using the metric Relative Wound Density (RWD), which is an algorithm that is a 

part of the IncuCyte software tool. It is robust across multiple cell lines. This algorithm 

measures cell density in the wound area relative to the cell density outside the wound area at 

every set time point. At t=0, the RWD is set to be zero. When the cell density inside the 

wound is the same as the cell density outside the initial wound the RWD is 100 % (Roddy et 

al., s.a.). Graphs were made using the software. 

 

2.5.2 In vitro scratch assay 

The manual in vitro scratch assay involved creating a scratch in the cell monolayer using a 

pipette tip, capturing images at regular intervals during the cell migration process and analysis 

of images to quantify percentage methylation. 

 

CellProfiler was used for analysis of the results. Different modules in the software process the 

cell images. The modules are placed in a sequential order to create a “pipeline”, typically 

starting with image processing, followed by object identification and at last, measurements.  

The modules are mostly automatic, but some of them are interactive, where the user can 

optimize for particular cell types and experimental conditions. The different modules can be 

mixed and matched for a specific usage and each of the modules settings can be changed 

according to the purpose (Carpenter et al., 2006).  

1. 5x105 cells/well were plated on 6-well plates, which were left to form a confluent 

monolayer (37 ℃, 3-4 days). 

2. Scratches were made in the cell monolayer with a yellow pipette tip, as shown in 

figure 2.3. The plates were marked on the bottom side according to figure 2.4 to 

ensure that the images were taken on the same place. The cells were washed once with 

PBS and fresh medium (2 ml) was added. 
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3. An initial light microscope image of each scratch wound was taken (0 hours). 

4. Plates were placed in an incubator. 

5. Another light microscope image was taken after 12 hours. 

6. The images were analysed using CellProfiler. 

 

Analysis of results 

Light microscope images of scratch wounds were analysed using CellProfiler. An example 

pipeline for wound healing at the CellProfiler web page was used as basis. By testing different 

combinations of the different algorithms we developed a pipeline suited for this study. 

Appendix C presents the development of the pipeline. Calculation of percentage migration 

was done using the formula: 

Figure 2.3: Schematic presentation of scratch 

making with a pipette tip in 6-well plates for the 

cell migration assay. 

 

Figure 2.4: How the plates were marked 

on the bottom side to ensure that images 

were taken at the same spot. Black lines 

denote the marking, yellow the 

scratching and a blue square where the 

images were taken. 
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2.6 DNA sodium bisulfite treatment 
Sodium bisulfite treatment of DNA is used to convert unmethylated cytosines to uracil 

through the process of deamination. Methylated cytosines will remain unchanged, and this 

allows cytosine to be distinguished from 5-methylcytosine. Methylation status of DNA is 

represented by a ratio of cytosine and thymine, as thymine will be incorporated in place of 

uracil during PCR (Dupont et al., 2004; Yang et al., 2004). 

1. The following solutions were prepared freshly: 

a. 6.07 g sodium metabisulfite in 12 ml dH2O 

b. 110 mg hydroquinone in 5 ml dH2O 

2. Solutions were mixed on an agitator until dissolved. 

3. A 6.3 M solution of sodium hydroxide (NaOH) was prepared freshly:  

1.26 g NaOH in 5 ml dH2O. 

4. The pH of sodium metabisulfite was adjusted to 5 by adding 750 µl NaOH. 

5. Hydroquinone (450 µl) was added to the sodium metabisulfite, and the solution was 

heated to 55 °C. 

6. DNA (1 µg in 20 µl TE-buffer) was spun down (30 sec, 3000 rpm) and the sample was 

denatured on a thermomixer at 95 °C, 400 rpm for 23 minutes. 

7. The sample was spun down at 3500 rpm for 30 seconds and added 2 µl NaOH, mixed 

and spun down (3000 rpm, 30 seconds). The sample was then incubated for 10 

minutes at 39 °C. 

8. Pre-warmed bisulfite/hydroquinone solution (416 µl) was added to the DNA sample, 

which was mixed well and spun down quickly. 

9. A cyclic reaction was run according to table 2.1: 

 

 

U0 = total area - occupied area at 0 hours 

U12 = total area - occupied area after 12 hours 

U! − U!"
U!

∗ 100 
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            Table 2.1: Setup for bisulfite treatment of DNA by cycling reaction 

Temperature (°C) Time (min)  

58 15 15 

cycles 95 1  

 

10.  4 sets of eppendorf tubes were prepared: 

a. 2 sets of tubes without lids, 1.5 ml. 

b. 2 sets of tubes with lids, 1.5 ml. 

11. DNA was cleaned using Promega Wizzard DNA Clean Up Kit. The Resin bottle was 

mixed well before use, and 1 ml Resin was added to one set of eppendorf tubes with 

lids. The bisulfite treated DNA was added to each tube, which was mixed by 

inversion. 

12. The filter and 10 ml syringe were linked together and attached to the vacuum pump 

station. The DNA/Resin mix was added to each syringe, vacuum was applied and the 

liquid was allowed to pass through the filter. Then, 2 ml 80 % isopropanol was added 

to each syringe, and DNA was now desalted in the filter. The syringes were discarded. 

13. The filters were transferred to clean 1.5 ml eppendorf tubes without lids and 

centrifuged (10 000 g, 2 minutes, room temperature). 

14. Again, the filters were transferred to clean eppendorf tubes without lids. 50 µl TE-

buffer (55 °C) was added directly to the filter and incubated 1 minute at room 

temperature. 

15. Filters were centrifuged at 10 000 g for 30 seconds and 12 000 g for 30 seconds to 

elute the DNA. The filters were discarded. 

16. NaOH (2.5 µl) was added. The sample was mixed and spun down. The samples were 

incubated at 42 °C for 20 minutes at 400 rpm on a thermomixer. This was the 

desulphonation step. 

17. Ammonium acetate (NH4OAc) (22.5 µl) and acrylamide (5 µl, 0.25 %) were added to 

an eppendorf tube with lid. The DNA was added to the mixture, mixed and spun 

down. 

18. Ice-cold (-80 °C) 96 % ethanol (1 ml) was added and the tubes were inverted 4x. The 

tubes were then incubated at -20 °C for 10 minutes. 

19. The tubes were centrifuged at 20 000 g for 15 minutes at -4 °C. 
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20. The supernatant was removed and cold (-20 °C) 70 % ethanol (1 ml) was added. The 

mixture was vortexed and spun down at 20 000 g for 15 minutes at -4 °C. The 

supernatant was removed and the washing step was repeated. 

21. The DNA was left to dry after final removal of supernatant. 

22. DNA was resuspended in elution buffer (25 µl) and incubated at 60 °C for 1-2 

minutes. The tubes were cooled down on ice, spun down and stored at -20 °C for later 

use. 

 

2.7 PCR using PyroMark PCR kit 
By using a thermal cycler, segments of DNA are amplified via the principle of PCR. 

Repetitive cycles of heating and cooling will amplify the DNA sequence flanked by two 

primers. There are three steps in each PCR cycle: denaturation, annealing and extension. 

Denaturation is the use of heating to separate two DNA strands. The temperature is lowered 

and the two primers bind to the target DNA in a process named annealing. Finally, DNA 

polymerase binds to the free 3’-end of the primers and start extending the DNA sequence 

(Reece, 2004). In this thesis, PCR was used to amplify desired segments of bisulfite treated 

DNA for further analysis by pyrosequencing. It was important that one primer was 

biotinylated for further isolation of PCR products by Sepharose beads. 

 

A challenge arises when amplifying bisulfite treated DNA, due to the presence of uracil and 

DNA mainly consisting of three bases: adenine, thymine and guanine. Due to the reduced 

complexity there is an increased risk of mispriming and nonspecific product can be formed. 

Qiagen has overcome this by a unique mastermix that ensures specific primer binding, 

prevents mispriming and minimizes the production of artefacts and redundant biotinylated 

primer, which can interefere with pyrosequencing. HotStarTaq DNA polymerase requires a 

15-minute activation step, which prevents formation of primer-dimers and misprimed 

products at low temperatures. The PyroMark PCR buffer has a unique combination of salts 

that ensures a high ratio of specific-to-nonspecific primer binding. CoralLoad Concentrate 

was added to ensure specific PCR and high yields of the amplified DNA. Q-solution 

facilitates amplification of templates high in secondary structures and GC content. The 

solution modifies the melting behaviour of DNA. Magnesium stabilizes DNA and raises the 

melting temperature (PyroMark PCR Handbook, 2009, Qiagen). 
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PyroMark Assay Design 2.0 was used to design primers. The software generates primer set 

that includes both PCR and sequencing primers and each set is given a quality score based on 

several parameters specific for the Pyrosequencing procedure. For this thesis four sets of 

primers were designed, Audun Bersaas (staff engineer at STAMI) did help with this. Two 

assays for the FOXA1 gene, named FOXA1_pyro1 and FOXA1_pyro2, and two assays for the 

FOXA2 gene, named FOXA2_cpg1 and FOXA2_TSS (their positioning is depicted in section 

3.4.1). Information regarding the different primers can be seen in table 2.2. The reverse 

primers had a biotinylated 5’-end. 

 

Table 2.2: Primers used for PyroMark PCR. 

Primers Position, 5’-3’ 
Length 

(bp) 
% GC Tm (°C) 

Amplicon 

(bp) 

FOXA1_pyro1 (forward) 120-140 21 42.9 59.7  

FOXA1_pyro1 (reverse) 383-361 23 43.5 59.4 264 

FOXA1_pyro2 (forward) 1201-1228 28 39.3 61.4  

FOXA1_pyro2 (reverse) 1346-1326 21 42.9 59.1 146 

FOXA2_cpg1 (forward) 9-29 21 42.9 55.7  

FOXA2_cpg1 (reverse) 259-234 26 50.0 60.0 251 

FOXA2_TSS (forward) 1216-1245 30 23.3 56.7  

FOXA2_TSS (reverse) 1552-1525 28 32.1 58.8 337 

 

1. A mastermix was made for each primer assay. Table 2.3 shows the setup for the 

different mastermixes and table 2.4 contains information regarding the different 

optimized conditions for the PCR reaction. 
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Table 2.3: PyroMark PCR-setup for the different FOXA pyrosequencing assays 

Reagents 

 

Volume/sample 

(µl): 

FOXA1_pyro1 

 

Volume/sample 

(µl): 

FOXA2_cpg1 

Volume/sample 

(µl): 

FOXA1_pyro2, 

FOXA2_TSS 

dH2O 6 3.75 5 

PyroMark PCR Master 

Mix, 2X 

12.5 12.5 12.5 

CoralLoad 2.5 2.5 2.5 

Q-Solution 0 2 0 

MgCl2, 25 mM 0 0 1 

Primer up, 10 pmol/µl 0.5 0.75 0.5 

Primer up, 10 pmol/µl 0.5 0.5 0.5 

Template DNA 3 3 3 

Total volume 25 25 25 

 

 

Table 2.4: PyroMark PCR-setup. For FOXA1_pyro1 and  

FOXA2_cpg1 the annealing step is at 60 °C, whereas for  

FOXA1_pyro2 and FOXA2_TSS the temperature is 58.5 °C. 

Step Temperature (°C) Time  

Activation 95 15 min  

Denaturation 94 30 sec  

47 cycles 

 

Annealing 60/58.5 30 sec 

Extension 72 30 sec 

Final extension 72 10 min  

 4 ∞  

 

2. Template-DNA was added. 

3. After completion of the PCR, 1 µl of the PCR products were used for agarose gel 

electrophoresis on a 2 % gel. 

4. The products were kept at -20 °C for further use. 
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2.8 Pyrosequencing 
Pyrosequencing is a based on a real-time sequencing-by-synthesis technology, and it relies on 

detection of pyrophosphate release when a nucleotide is incorporated during synthesis 

(Langaee and Ronaghi, 2005). The released pyrophosphate is converted to adenosine-5’-

triphosphate (ATP) by sulfurylase, which is sensed by the enzyme luciferase that converts 

ATP to light. The principle is illustrated in figure 2.5. 

 

 

The pyrosequencing software generated a dispensation order according to the known DNA 

sequence, and only one of the four bases (adenine, thymine, cytosine and guanine) was added 

at a time in terms of the dispensation order. Since the DNA sequence is already known, it is 

performed a re-sequencing of the DNA to determine the ratio of cytosine and thymine in CpG 

sites. From these results the software can decide the methylation percentage in each CpG site. 

 

The intensity of the light is proportional to the number of bases incorporated. Deoxyadenosine 

alpha-thio triphosphate (dATPαS) is added instead of deoxy-ATP (dATP), as it recognized by 

DNA polymerase but not luciferase. Before another nucleotide is added the previous one is 

degraded by apyrase. The process is repeated until the DNA sequence is determined (Dupont 

et al., 2004; Langaee and Ronaghi, 2005).  

Figure 2.5: When a nucleotide is incorporated by polymerase during synthesis a pyrophosphate 

is released. This molecule is further converted to ATP by sulfurylase, and luciferase further 

produces light. This is detected as peaks in the pyrogram. A double peak indicates incorporation 

of two nucleotides. Apyrase then removes the nucleotides (England and Pettersson, 2005). 
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In this thesis, pyrosequencing was used to determine the number of methylated cytosines in 

various CpG sites in isolated DNA. A summary of the procedure for this thesis is shown in 

figure 2.6 and the sequences to be analysed are presented in table 2.5. 

Figure 2.6: During bisulfite treatment unmethylated cytosine is converted to uracil, whereas 

methylated cytosine remains unchanged. PCR incorporated thymine in the place of uracil, and 

during pyrosequencing thymine will represent unmethylated cytosine. Methylated cytosine 

will remain cytosine through the whole procedure (England and Pettersson, 2005). 
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Table 2.5: Sequences to be analysed by pyrosequencing. Y stands for C/T, where levels of 

methylation are to be determined 

Assay Sequence to analyse 

FOXA1_pyro1 YGYGGGTATT TYGGGTAGTY GTTAGYGGAG GAAGYGGTTT 

YGTTTTTTTY GGAAGTTGTT TTTGTTATAT TYGTGGGGTT 

TGTTTTYGGY GTAGTTTYGT AGTATTTGAG 

FOXA1_pyro2 TYGTAGGYGT TTTYGGGGAG TATYGTTAGG YGATATTGGA 

TTGAATTTYG TAYGTATTTT AGTTAGGGAT TTAGGTTT 

FOXA2_cpg1 YGTTTTTTGT YGGTYGTTAG GTTYGYGGGA TYGATTYGAG 

TTTTTATTTA TTTT 

FOXA2_TSS YGGAAYGGTT TYGGGAGAAG YGYGGGGYGT AYGGTTTGGT 

YGTTTYGGTT TTTYGATTTT TTAGATATYG GTYGTTAGGG 

ATTYGTAGTG GGGYGGTYGG YGTTTGGYGT AAGTAGTTTT 

TTTAGTAGYG GTYGAYGGTT GGGAGGTTGA GATTTGTTTT TG 

 

The process of pyrosequencing consists of several steps: 

a. Testing the PyroMark Q24 Vacuum Work Station. 

b. Immobilization of PCR products on Streptavidin Sepharose beads. 

c. Separation of DNA strands and isolation of DNA strand to be sequenced. 

d. Attachment of samples to the sequencing primers, information in table 2.6. 

e. Preparation of PyroMark Q24 Gold Reagents and pyrosequencing. 

 

Table 2.6: Sequencing primers for pyrosequencing 

Sequencing 

primers 
Sequence, 5’-3’ 

Length 

(bp) 

% 

GC 

Tm 

(°C) 

FOXA_pyro1 GAG GAT TGT AGG GTG  15 53.3 45.9 

FOXA1_pyro2 AGG GAA AGT TGA ATT TTT 18 27.8 44.2 

FOXA2_cpg1 GGG TTT TTA TAG TGA TAG GG 20 40.0 47.0 

FOXA2_TSS GTT TTT TTT TGT TAT AGT TTA 

GAT T 

25 16.0 42.9 
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2.8.1 Testing the PyroMark Q24 Vacuum Work Station 

1. A container on the PyroMark Q24 Work Station was added 70 ml dH2O and the 

vacuum pump was started. 

2. The filter tips were lowered in the water and after 20 seconds the water should be 

absorbed. 

3. A 24-well PCR plate was added dH2O (100 µl) in each well. The filter tips were 

lowered in the plate and left there for 10 seconds. Proper absorption of water from all 

the wells was inspected. 

4. The procedure was repeated if there was any trouble during the absorption. If 

problems persisted the filters were changed. 

 

2.8.2 Immobilization of PCR products to Streptavidin Sepharose beads 

1. The bottle of Streptavidin Sepharose beads was carefully mixed to obtain a 

homogenous solution. 

2. A mastermix was made: 

Streptavidin Sepharose High Performance  2 µl per sample 

Binding buffer     40 µl per sample 

dH2O       14 µl per sample 

       56 µl per sample 

3. Mastermix (56 µl) was added to each well on the PCR plate. 

4. PCR products were added to the mixture. Figure 2.7 summarises this. 

5. The plate was sealed with a lid and incubated for 10 minutes at 20 °C and 1500 rpm 

on a thermomixer. 

6. Sepharose beads sedimented rapidly and the absorption by vacuum filters was done 

quickly after incubation (section 2.10.3, point 6). 
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2.8.3 Separation of DNA strands and clearing of samples in the PyroMark Q24 plate 

1. A mastermix per sequencing primer was made: 

Annealing buffer   24.25 µl per sample 

Sequencing primer (10 pmol/ µl) 0.75 µl per sample 

25 µl per sample 

2. Mastermix (25 µl) was added to wells on the PyroMark Q24 plate. 

3. The plate was placed properly in the vacuum work station (depicted in figure 2.8). 

Figure 2.7: Immobilization of PCR 

products to Streptavidin Sepharose beads 

(PyroMark Q24 User Guide). 
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4. In the five containers on the PyroMark Q24 vacuum station different solutions were 

added: 

1. 70 % ethanol (70 ml). 

2. Denaturation solution (40 ml). 

3. 1x Washing Buffer (50 ml). 

4. dH2O (70 ml). 

5. dH2O (70 ml). 

5. The filter tips were washed in container 5, and 70 ml dH2O was added again 

6. The PCR plate was placed in the vacuum workstation and the filter tips were slowly 

lowered into the plate to catch the beads with immobilized template. The filter tip 

holder was left there for 15 seconds. 

7. The filters were washed in: 

a. 70 % ethanol for 7 seconds. 

b. Denaturation solution for 7 seconds. 

c. Washing buffer for 16 seconds. 

8. It was important to ensure that the Sepharose beads were attached to the filters after 

washing. This was done by inspection by eye. 

Figure 2.8: Filling of the work station containers 

(PyroMark Q24 User Guide). 



 55 

9. The filters were held above the PyroMark plate while the vacuum was turned off. The 

filters were then lowered onto the plate and the tool was shaken for 30 seconds to 

release the beads. 

10. The tool was placed in container 4 and shaken for 10 seconds. 

11. The vacuum was turned on and the tool was washed twice with dH2O (70 ml). 

12. When finished, the tool was placed in the parking position. 

 

2.8.4 Attachment of sequencing primers to the samples 

1. The PyroMark Q24 plate was incubated for 2 minutes at 80 °C. 

2. The samples were left to cool down for 5 minutes at room temperature. 

 

2.8.5 Preparation of PyroMark Q24 Gold Reagents and pyrosequencing 

1. The freeze-dried enzyme and substrate (PyroMark Q24 Gold Reagents) were added 

filtrated water (620 µl) and left to dissolve for at least 10 minutes. 

2. Enzyme, substrate and nucleotides were added to the PyroMark Q24 cartridge 

according to the Pre Run Information report. 

3. The cartridge was then placed in the PyroMark Q24 sequencing instrument, along 

with the PyroMark Q24 plate. 

4. The run file was uploaded and the sequencing procedure was initiated. 

5. After the run the container was cleaned thoroughly and a pressure-test was performed 

to ensure that the needles in the bottom were not blocked. 

The pyrosequencing procedure is presented by the manufacturer in this video: 

http://www.labtube.tv/channel.aspx?v=137486&u=QIAGEN.  

 

2.8.6 Analysis of results 

The results were presented as pyrograms in PyroMark Q24 2.0.6.20 (figure 2.9). The software 

calculated the methylation percentage for each CpG site in the four different assays. The light 

signal is proportional to each incorporated nucleotide. Percentage methylation in CpG sites is 

calculated as the ratio of the signal height for methylated cytosine divided by the sum of the 

signal height of methylated and unmethylated cytosines. The methylation percentages were 

given a colour code based on the quality assessments for the variable position. According to 
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the PyroMark Q24, blue represent approved, yellow indicates approved, but under doubt and 

red indicates not approved. The instrument do the assessments based on how well the signals 

corresponds to the average signal from the reference sequence. We have chosen to present all 

data, with reservations that red coloured data points need to be inspected carefully. Blue and 

yellow are both considered reliable, and red are not considered in the analysis. Data from the 

pyrograms are represented as a graph where the methylation percentage is shown. 

 

 

2.9 Statistical Methods 
Statistical analysis was done using SigmaPlot 12.3 and p<0.05 was accepted as statistically 

significant. Comparison of multiple groups was performed using one-way ANOVA followed 

by post-hoc tests to identify which groups that differed from each other. One-way ANOVA 

followed by Holm-Sidak test was used on normal distributed data, and data that were not 

normal distributed was analysed using one-way ANOVA on Ranks followed by Dunn’s test. 
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B5: TYGTAGGYGTTTTYGGGGAGTATYGTTAGGYGATATTGGATTGAATTTYGTAYGTATTTTAGTTAGGGATTTAGGTTT

Figure 2.9: A pyrogram represented in PyroMark Q24 2.0.6.20. This is the result from 

FOXA1_pyro2 assay with DNA from HBEC-2KT-CSC.L. Peak height relates to the number of 

nucleotides incorporated Y represents C/T ratio. The analysis results are shown above each CpG 

site (blue background colour) and the colour around the percentage represents the quality of the 

analysis. Blue denotes approved. The sequence to be analysed is shown at the top. The bisulfite 

treatment controls are marked with yellow background colour.  
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3 Results 

3.1 Transformed cell lines 
The cell lines used for this study are HBEC derived cell lines exposed to various components 

present in cigarette smoke (B[a]P, CSC and MNU) for 12 weeks and selected two times in 

soft agar. HBECs exposed to DMSO for 7 weeks were used as control, as these were the only 

available control cells. HBEC control cells were also exposed to DMSO for 12 weeks 

followed by isolation of RNA and DNA and subsequent testing in soft agar, which resulted in 

no growth. Unfortunately, these control cells were not preserved for further experiments. An 

overview of the cell lines is presented in table 1.3. 

 

3.2 Soft agar assay 
HBEC-12KT control cells (DMSO) and untreated HBEC-12KT were tested for colony 

formation in soft agar. No anchorage-independent growth was observed for either cell lines. 

Colony formation was observed for the positive control (tumour cell line A549) (figure 3.1). 

 

 

3.3 Cell migration assay 
Cell migration is an important process for all living cells, especially during development and 

wound healing. This process is also essential for progression and metastasis of cancer cells. 

 

Two methods for studying cell migration were used in this thesis. Both involved the same 

basic procedure; make a wound in the cell monolayer, monitor wound-healing progression by 

Figure 3.1: A549 colonies in soft agar stained with crystal violet. 
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light microscope and capture images after a chosen time course. This was followed by 

calculation of migration capacity. The first method included the use of IncuCyte ZOOM, and 

is a semi-automated approach. Images were acquired on an hourly basis. The second method 

was an in vitro scratch assay that was performed manually. Images were obtained after 0 and 

12 hours. Following, the images and graphs are presented and at the end the migration data 

from both in vitro scratch assay and IncuCyte ZOOM are summarised (table 3.1). 

 

3.3.1 Cell migration analysis by IncuCyte ZOOM 

IncuCyte ZOOM is a light microscope instrument that acquires images automatically and can 

be placed in an incubator at the laboratory. By using specific ImageLock plates for the 

purpose of migration, images are taken at the exact same spot each time, as the plates have 

reference markers at the bottom, providing points to accurately locate the images. Scratch 

wounds were made using a special tool that ensured uniform wounds in the cell monolayer. 

Cells were seeded at a density of 25 000 cells per well in 96-well plates and grown to 

confluence in the incubator, which usually took about 24 hours.  

 

In the following sections are representative results of the IncuCyte migration assay presented 

by images taken 0, 12 and 24 hours after wounding. Only parallel A from second time in soft 

agar (2A) was used during experiments with IncuCyte ZOOM. Representative videos of 

HBEC-2KT control cells (DMSO), HBEC-2KT-CSC.L, HBEC-12KT control cells (DMSO) 

and HBEC-12KT-CSC.L-B can be found here: http://youtu.be/iZey1Fdq0z8, 

http://youtu.be/cs7vksAyk9E, http://youtu.be/KzgaZ6sQXVA, http://youtu.be/vpqJbVO5X7E 

respectively. Appendix D presents images from all cell lines analysed by IncuCyte ZOOM.  

 

Figure 3.2 represents the cell migration of HBEC-2KT control cells (DMSO) during 24 hours. 

A clean-cut scratch wound (time point 0 hours) was made, by Essen 96-well WoundMaker, in 

the confluent cell monolayer. After 12 hours, HBEC-2KT control cells (DMSO) had almost 

closed the wound and only a few open spaces were seen where the wound originally was 

made. After 24 hours the cells had migrated to a confluent monolayer again. 
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HBEC-2KT-CSC.L showed slower migration than their control cells (DMSO). This is 

illustrated in figure 3.3. Some migration of the cells after 12 hours could be observed. After 

24 hours the cells had practically closed the wound, but the initial location of the wound was 

still noticeable. 

 
Figure 3.4 illustrates migration of HBEC-12KT control cells (DMSO). Here, the wound was 

closed after 12 hours. At this time point, it seems as these cells had migrated to such a high 

extend that they “overpopulated” the wound; it looks like the cells migrated on top of each 

other. After 24 hours the cells were evenly distributed.  

Figure 3.2: Migration of HBEC-2KT control cells (DMSO) 0, 12 and 24 hours after wounding.  

Figure 3.3: Migration of HBEC-2KT-CSC.L 0, 12 and 24 hours after wounding. 
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Figure 3.5 illustrates migration of HBEC-12KT-CSC.L-B. These cells migrated slower 

compared to their control cells (DMSO). After 12 hours the wounding area was reduced in 

size. After 24 hours the wound was still not completely closed. 

 
Migration assay using IncuCyte ZOOM was repeated three times for the majority of the cell 

lines, except for untreated HBECs that were only analysed once. HBEC-12KT-CSC.L-A was 

examined four times. Number of parallels for each experiment is variable. The number of 

experiments and parallels depended on the limited availability of instrument usage, as well as 

errors during the procedure, as for example imperfect wounds and bubbles disrupting the 

calculations done by the instrument, which led to insecure data. All of the experiments for 

each cell line are represented in appendix E and a high degree of consistency can be observed 

Figure 3.4: Migration of HBEC-12KT control cells (DMSO) 0, 12 and 24 hours after wounding. 

Figure 3.5: Migration of HBEC-12KT-CSC.L-B 0 hours, 12 hours and 24 hours after wounding. 
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between the independent experiments. One representative was chosen for each cell line in the 

following presentations. Visual inspection of the overall trend of the data was used to decide 

which parallels were to be included in analyses. An example of this process is shown in 

appendix F. 

 

In figure 3.6, migration percentage during 24 hours is represented as relative wound density 

as a function of time (0-24 hours). Untreated HBEC-3KT closed the wound significantly 

faster than HBEC-2KT and HBEC-12KT 12 hours after wounding (p<0.050, one-way 

ANOVA with Holm-Sidak post test). Untreated HBEC-2KT and HBEC-12KT showed 

similar migration values. 

 

 
When comparing time courses for HBEC-2KT derived cell lines from the in vitro 

transformation experiment, the control cells (DMSO) migrated above 100 % from 13 to 24 

hours (figure 3.7). This was due to the calculation method used and is further explained in 

section 4.1.1. Untreated HBEC-2KT, HBEC-2KT-CSC.L and HBEC-2KT-CSC.H showed 

similar time courses and all had a significantly slower migration compared to control cells 

(DMSO) 12 hours after wounding (p<0.05, one-way ANOVA with Holm-Sidak post test). 

Figure 3.6: Relative wound density (%) of untreated HBEC-2KT, HBEC-3KT and HBEC-12KT 
over a time course of 24 hours. HBEC-2KT is denoted by blue circles, HBEC-3KT by blue 
triangles and HBEC-12KT by red squares. During the time period between 15 and 16 hours after 
initiation of the experiment the instrument had to reboot and hence lack of data points. Number of 
parallels (n) is denoted at the end of each curve. Error bars denote SD for each data point. 
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HBEC-12KT control cells (DMSO) showed a significantly faster migration compared to some 

of the transformed cells (B[a]P.L, B[a]P.H, CSC.L-A and CSC.L-B) 12 hours after wounding 

(p<0.05, one-way ANOVA on Ranks with Dunn’s post test). However, control cells (DMSO) 

did not show a significantly faster migration compared to HBEC-12KT-CSC.H, HBEC-

12KT-MNU and untreated HBEC-12KT 12 hours after wounding (figure 3.8). All of the 

transformed cell lines displayed similar migration patterns, but the figure may indicate 

somewhat faster wound closure of for example HBEC-12KT-CSC.H compared to HBEC-

12KT-CSC.L.  

Figure 3.7: Relative wound density (%) of HBEC-2KT and its transformed cell lines over a time 
course of 24 hours. Blue circles denote untreated cells and blue triangles denote control cells 
(DMSO). Transformed cell lines are denoted by pink triangles and red squares, low dose CSC 
and high dose CSC respectively. During the time period between 15 and 16 hours after initiation 
of the experiment the instrument had to reboot and hence lack of data points. Number of 
parallels (n) is denoted at the end of each curve. Error bars denote SD for each data point. 
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3.3.2 In vitro scratch assay 

Cells were seeded at a density of 5x105 cells/well in 6-well plates for the manually in vitro 

scratch assay and incubated for two till three days until a confluent monolayer was formed. 

The majority of cell lines were seeded in three wells within each experiment and three 

scratches were made in each well (a total of nine scratches). Six scratches were included in 

the calculations (n=6), due to errors during the experiment, as open spaces in the monolayer 

and debris in the wounding area. Cells originating from HBEC-2KT-CSC.H-2D and HBEC-

12KT-CSC.L-B were seeded in only one well (n=3). This was one of the first experiments 

performed (where cells were only seeded in one well), and as they showed an overall 

consistency they were not repeated. Light microscopy images were acquired at time point 0 

hours (immediately after the wounds were made) and after 12 hours incubation. The 

migration data were analysed and representative results are depicted below. 

 

HBEC-2KT control cells (DMSO) showed some migration 12 hours after wounding (figure 

3.9). HBEC-2KT-CSC.L (figure 3.10) migrated faster than its control cells (DMSO) during 

12 hours incubation. 

Figure 3.8: Relative wound density (%) of HBEC-12KT and its transformed cell lines over 
a time course of 24 hours. Blue circles denote untreated cells and blue triangles denote 
control cells (DMSO). Transformed cell lines are denoted by pink triangles, beige crosses, 
red squares, grey circles, blue green crosses and green squares; low dose CSC colony A and 
B, high dose CSC, low dose and high doses B[a]P and MNU respectively. During the time 
period between 15 and 16 hours after initiation of the experiment the instrument had to 
reboot and hence lack of data points. Number of parallels (n) is denoted at the end of each 
curve. Error bars denote SD for each data point. 
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Figure 3.9: Migration of HBEC-2KT control (DMSO) cells 0 and 12 hours 
after wounding. At the top are images acquired with a light microscope (10x 
magnification) and at the bottom are results from the software CellProfiler. 
Different blue colours represent areas covered by cells and black corresponds to 
open spaces. 

Figure 3.10: Migration of HBEC-2KT-CSC.L 0 and 12 hours after wounding. 
At the top are images acquired with a light microscope (10x magnification) and 
at the bottom are results from the software CellProfiler. Different blue colours 
represent areas covered by cells and black corresponds to open spaces. 
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HBEC-12KT control cells (DMSO) had entirely closed the wound 12 hours after wounding, 

and the wounding area appeared clearly oversaturated (figure 3.11). A monolayer of cells 

outside the wounding area could clearly be observed, but the CellProfiler software mistakenly 

analysed it as no cells; hence it became black. Thus, by visual inspection of the images it was 

concluded that HBEC-12KT control cells (DMSO) had completely closed the wound 12 hours 

after wounding. HBEC-12KT-CSC.L-B apparently migrated at a slower rate compared to its 

control cells (DMSO). There was some evidence of migration, as figure 3.12 shows, but not 

complete closure of the wound during the 12-hour duration of the experiment. 

 

 

Figure 3.11: Migration of HBEC-12KT control cells (DMSO) 0 and 12 hours 
after wounding. At the top are images acquired with a light microscope (10x 
magnification) and at the bottom are results from the software CellProfiler. 
Different blue colours represent areas covered by cells and black corresponds to 
open spaces. 
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Migration percentages were calculated from data obtained by CellProfiler according to the 

formula in section 2.7.2. Area occupied by cells was subtracted from total area (area occupied 

by cells and area not occupied by cells) to obtain uncovered area, at 0 hours and 12 hours 

after wounding. By using the wound area at 0 hours as a reference, the migration percentage 

for each cell line was determined by calculating the percentage cell coverage in the wounding 

area 12 hours after wounding. 

 

Figure 3.13 shows that untreated HBEC-2KT showed a significantly higher migration 

percentage than both untreated HBEC-3KT and HBEC-12KT 12 hours after wounding 

(p<0.05, one-way ANOVA with Holm-Sidak post test). Untreated HBEC-12KT also showed 

a significantly higher migration percentage than untreated HBEC-3KT 12 hours after 

wounding (p<0.05, one-way ANOVA with Holm-Sidak post test).  

Figure 3.12: Migration of HBEC-12KT-CSC.L_B 0 and 12 hours after 
wounding. At the top are images acquired with a light microscope (10x 
magnification) and at the bottom are results from the software CellProfiler. 
Different blue colours represent areas covered by cells and black corresponds 
to open spaces. 
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Four colonies of each of the transformed cell lines were analysed by in vitro scratch assay 

(2A, 2B, 2C and 2D). These represent four different colonies after the second selection in soft 

agar. In this case, when analysing results from the in vitro scratch assay the mean migration 

percentage was calculated for each of the colonies (2A-2D), resulting in one value for each 

colony. This gives four values used to represent the percentage migration of that transformed 

cell line. 

 

Untreated HBEC-2KT and its transformed cells had similar percentage migration 12 hours 

after wounding. In contrast, HBEC-2KT control cells (DMSO) showed a significantly slower 

migration 12 hours after wounding than the transformed cells (p<0.05, one-way ANOVA 

with Holm-Sidak post test) (figure 3.14). This is in contradictory to results obtained from 

IncuCyte ZOOM. Cells transformed with low dose CSC showed about 35 % increased 

migration, and those transformed with high dose of CSC about 20 % when analysed by in 

vitro scratch assay. 

 

Figure 3.13: Percentage migration of untreated HBEC-2KT, 

HBEC-3KT and HBEC-12KT 12 hours after wounding. Standard 

deviation is shown above the bars. Number of parallels is 6 for 

HBEC-2KT and HBEC-12KT, and 4 for HBEC-3KT. One-way 

ANOVA with Holm-Sidak post test was performed (p<0.05). 
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In figure 3.15 it can be seen that by transforming HBEC-12KT with various doses of CSC, 

B[a]P and MNU the migration capacity decreased significant to varying degrees compared 

with the control cells (DMSO) 12 hours after wounding (p<0.05, one-way ANOVA with 

Holm-Sidak post test). High doses B[a]P repressed the migration significantly (approximately 

90 %) compared with the other transformed cells. Low dose of CSC reduced migration with 

approximately 40 % as observed in colony A and approximately 70 % as observed in colony 

B. High dose of CSC and MNU repressed the migration with near 50 %, and low dose B[a]P 

reduced the migration with approximately 40 %. Untreated HBEC-12KT migrated close to 30 

% after 12 hours. 

Figure 3.14: Percentage migration of HBEC-2KT control cells (DMSO), untreated cells and its 

transformed cells (CSC.L and CSC.H) 12 hours after wounding. Standard deviation is shown 

above the bars. Number of parallels is 6 for DMSO and untreated cells, and 4 for transformed 

cell lines. One-way ANOVA with Holm-Sidak post test was performed and the following p-

values are marked: p<0.05=*, p<0.01=**, p<0.001=***.  
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Table 3.1 summarises the migration data acquired from both in vitro scratch assay and 

IncuCyte ZOOM. The migration percentages analysed by in vitro scratch assay is represented 

after 12 hours, whereas results from the migration analysis by IncuCyte ZOOM are 

represented after both 12 and 24 hours. In the comparisons of the two methods, the focus is on 

12 hours after initial wounding. As mentioned above, migration percentages from in vitro 

scratch assay were calculated from the mean of the four colonies (2A-2D) after second 

selection in soft agar. However, migration results from IncuCyte ZOOM only include colony 

2A. The in vitro scratch assay showed an overall similar migration percentage for all the 

colonies within each exposure group, and therefore colony 2A was chosen to represent the 

transformed cell lines during experiments with IncuCyte ZOOM. This was done due to the 

large amount of data that would be obtained and the time given to work with the instrument.  

 

Overall, great consistency was observed between migration percentages analysed by the two 

different methods (table 3.1). Untreated HBEC-2KT and transformed cells displayed in 

general similar migration percentages. However, regarding HBEC-2KT control cells (DMSO) 

there was a clear difference in migration percentage measured across the methods, from 32 % 

migration obtained by in vitro scratch assay and CellProfiler till 98 % migration calculated by 

Figure 3.15: Percentage migration of HBEC-12KT control cells (DMSO), untreated cells and 

its transformed cells (CSC.L-A , CSC.L-B, CSC.H, B[a]P.L, B[a]P.H and MNU) 12 hours 

after wounding. Standard deviation is shown above the bars. Number of parallels is 3 for 

DMSO, 6 for untreated cells, and 4 for transformed cell lines. One-way ANOVA with Holm-

Sidak post test was performed and the following p-values are marked: p<0.05=*, p<0.01=**, 

p<0.001=***. 
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the integrated software in IncuCyte ZOOM. Untreated HBEC-3KT also varied in migration 

percentage; 17 % migration was obtained by in vitro scratch assay and CellProfiler versus 74 

% measured by IncuCyte ZOOM’s integrated software. Among HBEC-12KT derived cells 

the migration percentages for untreated cells and two of the transformed cells (CSC.L-A and 

B[a]P.H) varied most between the two methods. Regarding the other transformed cells, there 

was an overall consistency. 

  
Table 3.1: Migration (%) of the HBEC control cells (DMSO), untreated cells and their transformed 
cells. Results from in vitro scratch assay 12 hours after wounding and migration assay using IncuCyte 
ZOOM 12 and 24 hours after wounding. 
 
Cell lines 

Migration (%) 
In vitro scratch assay IncuCyte ZOOM 

12h 12h 24h 
Untreated HBEC-2KT 62 50 90 
HBEC-2KT control cells (DMSO) 32 98 100 
HBEC-2KT-CSC.L  67 60 88 
HBEC-2KT-CSC.H 53 41 80 
    
Untreated HBEC-3KT 17 74 100 
    
Untreated HBEC-12KT 33 52 85 
HBEC-12KT control cells (DMSO) 100 86 100 
HBEC-12KT-CSC.L-A 62 39 76 
HBEC-12KT-CSC.L-B 32 42 82 
HBEC-12KT-CSC.H 49 60 99 
HBEC-12KT-B[a]P.L 61 49 91 
HBEC-12KT-B[a]P.H 13 48 86 
HBEC-12KT-MNU 53 58 85 
 

The width of the wounds for the in vitro scratch assay varied from 1.5-3.3 mm. Results from 

the migration images obtained by IncuCyte ZOOM showed a wound width of approximately 

0.7 mm. 

 

3.4 DNA methylation assay 
DNA methylation is essential in normal development in mammals. It is an epigenetic 

modification, and changes may alter the expression of genes and this has been associated with 

cancer. Pyrosequencing is a quantitative method of DNA sequencing and was used to 

examine DNA methylation levels in this thesis. Previous studies showed that expression of 

the FOXA1 and FOXA2 genes was significantly downregulated in transformed cell lines of 
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both HBEC-2KT and HBEC-12KT. The subject for this part of the thesis was to examine if 

altered FOXA expression could be explained by changes in DNA methylation of the genes. 

 

3.4.1 Assay design 

A total of four assays were used during the pyrosequencing procedure, designed by Audun 

Bersaas; engineer at STAMI. Two assays in the FOXA1 gene (FOXA1_pyro1 and 

FOXA2_pyro2) and two assays in the FOXA2 gene (FOXA2_cpg1 and FOXA2_TSS) were 

designed. Figure 3.16 shows the localisation of the assays in the genes, along with promoter, 

exons, CpG islands, primer pairs and position of transcription start site. Details about the 

assay designs are discussed in section 4.1.3. 

 

 
 

The number of CpG sites examined by the different assays was: FOXA1_pyro1; 12 CpG 

sites, FOXA1_pyro2 and FOXA2_cpg1; 7 CpG sites and FOXA2_TSS; 20 CpG sites. 

 

3.4.2 Pyrosequencing 

The bisulfite treatment and pyrosequencing procedure was repeated twice for the majority of 

the cell lines with the exception of methylase-treated DNA that was only performed once, and 

HBEC-2KT-CSC.L-2C (FOXA2_cpg1 and FOXA2_TSS) that was repeated three times. 

There was observed an overall good consistency between the independent experiments.  

 

Figure 3.16: Localisation of assays on the FOXA1 and FOXA2 genes, along 

with promoter, exons, CpG islands, primer pairs and position of transcription 

start site. 
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In the following section, results of the pyrosequencing analysis are presented. Data points are 

represented by colour codes as determined by the PyroMark Q24 software. Blue data points 

characterise approved data, but is in this study represented by individual colours on the graphs 

(purple, green or black) to differentiate between experiments. Yellow points represent that 

percentage methylation of the specific CpG site was approved under doubt and red points 

when not approved by the software. The software does the quality assessment based on how 

well the signals correspond to the average signal from the reference sequence. In this thesis, 

all data are included in the graphs. Unless otherwise stated red points were left out of the 

analysis, whereas blue and yellow were both considered approved and reliable. This is based 

on previous experiences with pyrosequencing analysis at STAMI. 

 

Pyrosequencing results from methylase-treated DNA 

DNA treated with the enzyme methylase was used as a positive control for the procedure 

(figure 3.17). DNA isolated from HBEC-2KT-CSC.L-2A was treated with methylase and 

included in the pyrosequencing experiments (this was the same positive control used by a 

fellow master student performing methyl-DNA immunoprecipitation (MeDIP)). There was 

observed an overall trend of high methylation, ranging from 90-100 %, at the different CpG 

sites, except for CpG 11 (44 %) in FOXA1_pyro1 (red point) and CpG 7 (80 %) in 

FOXA1_pyro2 (red point) assays. Also, in both FOXA2 assays there was observed an overall 

trend of high methylation percentages at the different CpG sites, except for some, which are 

considerably lower. In FOXA2_cpg1 assay CpG 3 (28 %) was remarkably lower than the 

other CpG sites. In FOXA2_TSS assay CpG’s 1, 2, 10 and 15-17 were below 50 % and lower 

than the other CpG sites examined in this assay. This experiment has only been performed 

once, and should be repeated to confirm the results. In FOXA1_pyro1 at CpG 11 the software 

informs that the signals do not correspond to the reference sequence. For FOXA2_TSS, the 

same reasons were given for the red points, and in addition, the CpG’s from 15-20 have high 

sum deviation in the variable positions. FOXA1_pyro2 and FOXA2_cpg1 assay was 

unsuccessful due to a notation of failed bisulfite conversion.  
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Pyrosequencing results from HBEC-2KT derived cell lines 

HBEC-2KT control cells (DMSO) (figure 3.18) showed an overall high methylation in all of 

the CpG sites in FOXA1_pyro1 assay ranging from 70-100 %, with the same decrease at CpG 

11 as methylase-treated DNA. This particular site is not reliable due to red points in two 

repeated measurements. HBEC-2KT cells exposed to a low dose CSC (figures 3.19-3.22) 

showed varying degrees of methylation across the FOXA1_pyro1 CpG sites examined. 

Overall, the majority of the methylation percentages ranged between 35-90 %. There was a 

tendency towards lower methylation at CpG 4 (10-15 %) and 9 (15-25 %, except parallel 2A), 

and partly 8 (10-20 %) in 2B and 2D. These cells also showed lower methylation at CpG 11 

compared with CpG sites close by. CpG 11 was a red data point for some of the parallels, as 

in many of the later analysis. HBEC-2KT exposed to a high dose CSC (figure 3.23) showed a 

general methylation percentage ranging from 70-100 % at CpG sites 1-5, 7 and 12 in 

FOXA1_pyro1 and 50 % methylation and below at CpG’s 6 and 8-11. 

 

In the FOXA1_pyro2 assay HBEC-2KT control cells (DMSO) (figure 3.18) and its 

transformed cells (figures 3.19-3.23) showed an overall high degree of methylation ranging 

from 80-100 %. All showed a tendency toward lower methylation in CpG 7 compared to 

Figure 3.17: Methylation percentage in CpG sites in methylase-treated DNA (from HBEC-
2KT-CSC.L-2A), across FOXA1 (top) and FOXA2 (bottom) genes. The location of the 
different assays is depicted in figure 3.16. PyroMark Q24 defines yellow squares as 
approved under doubt and red means the data is not approved. Blue is defined as approved 
and is here represented as the colour of the graph: purple. 
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adjacent CpG sites. This was considered reliable in 9 out of 12 experiments with HBEC-2KT 

derived cell lines. HBEC-2KT-CSC.L showed methylation of approximately 70 % in CpG 4. 

CpG’s 1 and 3 in HBEC-2KT-CSC.H also showed a trace of decreased methylation 

percentage in the range of 70-75 %. They were all considered reliable. 

 

FOXA2_cpg1 assay showed an overall methylation below 10 % for transformed HBEC-2KT 

cell lines (figures 3.19-3.23) and the control cells (figure 3.18). There was a tendency toward 

increased methylation at CpG 6 to varying degrees compared with the overall methylation 

degree in the assay, expect one of the experiments with HBEC-2KT-CSC.H. The indicated 

increased methylation was considered reliable in 9 of 11 experiments. In HBEC-2KT-CSC.L-

2D all of the sites were marked red and interpreted by PyroMark Q24 software as failed 

bisulfite conversion. 

 

In the FOXA2_TSS assay there was an overall very low methylation percentage among 

HBEC-2KT control cells (DMSO) (figure 3.18) and transformed cells (figures 3.19-3.23), 

ranging from 0-30 % for control cells (DMSO) and cells exposed to low dose CSC. In 

contrast, cells exposed to high dose CSC had methylation varying from 0-50 %. Control cells 

(DMSO) showed a tendency to increased migration at the last CpG sites, but this cannot be 

considered valid due to red data points (CpG’s 13-20) (some signals do not correlate with the 

references and also in some CpG sites there is high sum deviation in the variable position). 

Thus, in all of the following analysis, only the CpG’s 1-12 were considered reliable in the 

analysis of FOXA2_TSS CpG sites. HBEC-2KT-CSC.L-2A showed a methylation of 

approximately 15 % at CpG 5 compared to methylation below 10 % for adjacent CpG’s. CpG 

6 in HBEC-2KT-CSC.L-2C showed a methylation of 26 %, but this is not considered reliable 

due to that two repeated experiments show 1-3 % methylation in the same CpG site. HBEC-

2KT-CSC.H showed methylation varying from 0-36 % across the FOXA2_TSS assay. In 

CpG’s 2 and 7 an increased methylation compared to adjacent CpG’s was shown. 
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Figure 3.18: Methylation percentage in CpG sites in HBEC-2KT control cells 
(DMSO) across FOXA1 (top) and FOXA2 (bottom) genes. The location of the 
different assays is depicted in figure 3.16. The green and purple lines represent two 
independent bisulfite/pyrosequencing experiments on the same DNA sample. Yellow 
squares mean that the data from pyrosequencing are approved under doubt and red 
means the data is not approved. Blue is defined as approved and is here represented 
as the colour of the graphs: green and purple. 

Figure 3.19: Methylation percentage in CpG sites in HBEC-2KT-CSC.L-2A across 
FOXA1 (top) and FOXA2 (bottom) genes. The location of the different assays is 
depicted in figure 3.16. The green and purple lines represent two independent 
bisulfite/pyrosequencing experiments on the same DNA sample. Yellow squares mean 
that the data from pyrosequencing are approved under doubt and red means the data is 
not approved. Blue is defined as approved and is here represented as the colour of the 
graphs: green and purple. 
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Figure 3.20: Methylation percentage in CpG sites in HBEC-2KT-CSC.L-2B across 
FOXA1 (top) and FOXA2 (bottom) genes. The location of the different assays is 
depicted in figure 3.16. The green and purple lines represent two independent 
bisulfite/pyrosequencing experiments on the same DNA sample. Yellow squares mean 
that the data from pyrosequencing are approved under doubt and red means the data is 
not approved. Blue is defined as approved and is here represented as the colour of the 
graphs: green and purple. 
 

Figure 3.21: Methylation percentage in CpG sites in HBEC-2KT-CSC.L-2C across 
FOXA1 (top) and FOXA2 (bottom) genes. The location of the different assays is 
depicted in figure 3.16. The green, purple and black lines represent two independent 
bisulfite/pyrosequencing experiments on the same DNA sample. Yellow squares mean 
that the data from pyrosequencing are approved under doubt and red means the data is 
not approved. Blue is defined as approved and is here represented as the colour of the 
graphs: green, purple and black. 
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Figure 3.22: Methylation percentage in CpG sites in HBEC-2KT-CSC.L-2D across 
FOXA1 (top) and FOXA2 (bottom) genes. The location of the different assays is 
depicted in figure 3.16. The green and purple lines represent two independent 
bisulfite/pyrosequencing experiments on the same DNA sample. Yellow squares mean 
that the data from pyrosequencing are approved under doubt and red means the data is 
not approved. Blue is defined as approved and is here represented as the colour of the 
graphs: green and purple. 
 

Figure 3.23: Methylation percentage in CpG sites in HBEC-2KT-CSC.H across 
FOXA1 (top) and FOXA2 (bottom) genes. The location of the different assays is 
depicted in figure 3.16. The green and purple lines represent two independent 
bisulfite/pyrosequencing experiments on the same DNA sample. Yellow squares 
mean that the data from pyrosequencing are approved under doubt and red means 
the data is not approved. Blue is defined as approved and is here represented as the 
colour of the graphs: green and purple. 
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Pyrosequencing results from HBEC-12KT derived cell lines 

HBEC-12KT control cells (DMSO) (figure 3.24) and transformed cells (figures 3.25-3.33) 

also showed a high methylation percentage in the FOXA1_pyro1 assay, ranging from 70-100 

%, except in HBEC-12KT-B[a]P.L where one of the experiments showed overall lower 

migration percentages than the other experiments. As for HBEC-2KT derived cell lines, all of 

the HBEC-12KT derived cell lines also show a lower methylation of about 50-55 % at CpG 

11 (red point). HBEC-12KT control cells (DMSO), HBEC-12KT-CSC.L-A (figure 3.25), 

HBEC-12KT-CSC.H (figure 3.30), HBEC-12KT-B[a]P.L (figure 3.31) and HBEC-12KT-

B[a]P.H (figure 3.32) all showed a tendency of decreased methylation at CpG 9. This is 

considered a valid data point as set by the PyroMark Q24 software.  

 

FOXA1_pyro2 assay showed an overall methylation of 90-100 % in all of the transformed 

HBEC-12KT cell lines and their control cells (DMSO). At CpG 7 there was a tendency of 

decreased methylation to about 70-75 % for both control cells (DMSO) and transformed cells.  

 

There was observed low levels of DNA methylation of all the transformed HBEC-12KT cell 

lines and their control cells (DMSO) in the FOXA2_cpg1 assay, ranging from 0-6 %. In 

addition, there was a tendency toward higher methylation in some of the sites, as CpG 3 in 

control cells (DMSO), CpG 6 in HBEC-12KT-CSC.L-B (3.26-3.29), HBEC-12KT-B[a]P.H 

and HBEC-12KT-MNU (one of the experiments), and CpG 2 in HBEC-12KT-CSC.H (though 

not valid in one of the parallels). These represented only a minor increase compared with the 

overall methylation. 

 

The FOXA2_TSS assay showed fluctuating methylation across the CpG sites studied in 

HBEC-12KT control cells (DMSO) and their transformed cells. As for HBEC-2KT derived 

cell lines, there were also red data points at CpG’s 13-20 in this assay for HBEC-12KT 

derived cell lines. Thus, in all of the following analysis of HBEC-12KT derived cell lines, 

only the CpG’s 1-12 were considered in the analysis. The majority of the HBEC-12KT 

transformed cells lied at the same level as the control cells (DMSO), ranging from 20-50 % 

methylation. CpG 11 analysed in HBEC-12KT-CSC.L-B-2A, -2B and -2D showed above 70 

% methylation. The same cell line’s parallels 2A, 2B and 2C show methylation below 10 % at 

the first three CpG sites, and also CpG 4 in parallel 2A. Parallel 2D showed below 10 % 

methylation at CpG 3. HBEC-12KT-CSC.H also showed methylation below 10 % at CpG’s 1, 
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2, 4 and 5. HBEC-12KT-B[a]P.L showed methylation below 10 % at CpG’s 1, 2, 4 and one 

experiment in CpG 11, and HBEC-12KT-B[a]P.H at CpG’s 1-4.  

 

HBEC-12KT transformed with MNU (figure 3.34) showed different overall methylation 

percentage from the two independent experiments in the FOXA2_TSS assay; the results from 

the first experiment indicated about 20 % overall methylation, however there was red points 

at CpG’s 4-12 due to that signals did not correlate with the reference. Results from the second 

experiment ranged from 30-45 % methylation. There seemed to be a tendency towards lower 

methylation at CpG’s 1, 2 (in the first experiment), 3, 9, 11 and 12 compared to the other 

CpG’s. 

 

 

Figure 3.24: Methylation percentage in CpG sites in HBEC-12KT control cells 
(DMSO) across FOXA1 (top) and FOXA2 (bottom) genes. The location of the 
different assays is depicted in figure 3.16. The green and purple lines represent two 
independent bisulfite/pyrosequencing experiments on the same DNA sample. Yellow 
squares mean that the data from pyrosequencing are approved under doubt and red 
means the data is not approved. Blue is defined as approved and is here represented 
as the colour of the graphs: green and purple. 
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Figure 3.25: Methylation percentage in CpG sites in HBEC-12KT-CSC.L-A across 
FOXA1 (top) and FOXA2 (bottom) genes. The location of the different assays is 
depicted in figure 3.16. The green and purple lines represent two independent 
bisulfite/pyrosequencing experiments on the same DNA sample. Yellow squares 
mean that the data from pyrosequencing are approved under doubt and red means the 
data is not approved. Blue is defined as approved and is here represented as the colour 
of the graphs: green and purple. 
 

Figure 3.26: Methylation percentage in CpG sites in HBEC-12KT-CSC.L-B-2A across 
FOXA1 (top) and FOXA2 (bottom) genes. The location of the different assays is 
depicted in figure 3.16. The green and purple lines represent two independent 
bisulfite/pyrosequencing experiments on the same DNA sample. Yellow squares mean 
that the data from pyrosequencing are approved under doubt and red means the data is 
not approved. Blue is defined as approved and is here represented as the colour of the 
graphs: green and purple. 
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Figure 3.27: Methylation percentage in CpG sites in HBEC-12KT-CSC.L-B-2B across 
FOXA1 (top) and FOXA2 (bottom) genes. The location of the different assays is 
depicted in figure 3.16. The green and purple lines represent two independent 
bisulfite/pyrosequencing experiments on the same DNA sample. Yellow squares mean 
that the data from pyrosequencing are approved under doubt and red means the data is 
not approved. Blue is defined as approved and is here represented as the colour of the 
graphs: green and purple. 
 

Figure 3.28: Methylation percentage in CpG sites in HBEC-12KT-CSC.L-B-2C across 
FOXA1 (top) and FOXA2 (bottom) genes. The location of the different assays is 
depicted in figure 3.16. The green and purple lines represent two independent 
bisulfite/pyrosequencing experiments on the same DNA sample. Yellow squares mean 
that the data from pyrosequencing are approved under doubt and red means the data is 
not approved. Blue is defined as approved and is here represented as the colour of the 
graphs: green and purple. 
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Figure 3.29: Methylation percentage in CpG sites in HBEC-12KT-CSC.L-B-2D across 
FOXA1 (top) and FOXA2 (bottom) genes. The location of the different assays is depicted 
in figure 3.16. The green and purple lines represent two independent 
bisulfite/pyrosequencing experiments on the same DNA sample. Yellow squares mean 
that the data from pyrosequencing are approved under doubt and red means the data is not 
approved. Blue is defined as approved and is here represented as the colour of the graphs: 
green and purple. 
 

Figure 3.30: Methylation percentage in CpG sites in HBEC-12KT-CSC.H across 
FOXA1 (top) and FOXA2 (bottom) genes. The location of the different assays is 
depicted in figure 3.16. The green and purple lines represent two independent 
bisulfite/pyrosequencing experiments on the same DNA sample. Yellow squares mean 
that the data from pyrosequencing are approved under doubt and red means the data is 
not approved. Blue is defined as approved and is here represented as the colour of the 
graphs: green and purple. 
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Figure 3.31: Methylation percentage in CpG sites in HBEC-12KT-B[a]P.L across 
FOXA1 (top) and FOXA2 (bottom) genes. The location of the different assays is 
depicted in figure 3.16. The green and purple lines represent two independent 
bisulfite/pyrosequencing experiments on the same DNA sample. Yellow squares 
mean that the data from pyrosequencing are approved under doubt and red means the 
data is not approved. Blue is defined as approved and is here represented as the colour 
of the graphs: green and purple. 
 

Figure 3.32: Methylation percentage in CpG sites in HBEC-12KT-B[a]P.H across 
FOXA1 (top) and FOXA2 (bottom) genes. The location of the different assays is 
depicted in figure 3.16. The green and purple lines represent two independent 
bisulfite/pyrosequencing experiments on the same DNA sample. Yellow squares mean 
that the data from pyrosequencing are approved under doubt and red means the data is 
not approved. Blue is defined as approved and is here represented as the colour of the 
graphs: green and purple. 
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To summarise the results, CpG 11 in FOXA1_pyro1 showed generally lower percentage 

methylation compared with the other CpG sites in that assay. However, CpG 11 in 

FOXA1_pyro1 was in general a red point, so according to PyroMark Q24 this was not valid. 

Further, FOXA1_pyro1 showed generally higher percentage methylation in both HBEC-

12KT control cells (DMSO) and transformed cells, compared to HBEC-2KT derived cells 

where it was more fluctuating in methylation percentages. FOXA1_pyro2 assay generally 

showed a high degree of DNA methylation for all of the cell lines studied. In the CpG sites of 

FOXA2_cpg1 assay there was an overall low degree of DNA methylation in all the 

transformed HBEC-2KT and transformed HBEC-12KT, and their control cells (DMSO). This 

also applied to FOXA2_TSS in HBEC-2KT control cells (DMSO) and transformed cells. 

HBEC-12KT control cells (DMSO) and transformed cells showed more fluctuating 

methylation percentages in CpG sites in the FOXA2_TSS assay. Thus, no outstanding 

changes in DNA methylation were observed between non-transformed and transformed cell 

lines in the CpG sites studied. 

Figure 3.33: Methylation percentage in CpG sites in HBEC-12KT-MNU across 
FOXA1 (top) and FOXA2 (bottom) genes. The location of the different assays is 
depicted in figure 3.16. The green and purple lines represent two independent 
bisulfite/pyrosequencing experiments on the same DNA sample. Yellow squares 
mean that the data from pyrosequencing are approved under doubt and red means the 
data is not approved. Blue is defined as approved and is here represented as the colour 
of the graphs: green and purple. 
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4 Discussion 

The aim of this study was to investigate characteristics of in vitro transformed HBEC derived 

cell lines to look into how various carcinogens can affect the cells migration capability and if 

methylation of CpG islands in the FOXA1 and FOXA2 genes might be able to explain their 

observed downregulation. 

 

Immortalized HBEC derived cell lines used during this study are valuable tools for studying 

the multistage pathogenesis of lung cancer, and they offer several advantages. Especially the 

ability to genetically modify the cell lines, and study genetic and epigenetic alterations in lung 

cancer is invaluable. Also, immortalized cell lines do not have a finite replication potential as 

normal cells, due to shortening of telomeres, senescence and cell cycle arrest. The 

immortalized cells do not exhibit independent growth in soft agar, as studies show in section 

3.2. In addition, the HBECs maintain an intact p53 checkpoint and stability of the genome is 

preserved (Gazdar et al., 2010; Ramirez et al., 2004). 

 

However, there are limitations to using cell line models. It is important to keep in mind that 

genetic instability, selective growth advantages and lack of interaction with non-tumour 

components might influence the cell lines. Nevertheless, if cell lines with unlimited lifespan 

were not available, the knowledge of lung cancer would be much less advanced. It is 

important to keep in mind factors affecting the model, such as how well it resembles the 

original tumour, driver mutations and acquired differentiated properties during long term 

passage. Then, data can be interpreted from in vitro studies concerning lung pathogenesis 

(Gazdar et al., 2010). 

 

4.1 Discussion of methods 

4.1.1 Cell migration 

Two methods have been used to study cell migration in this thesis: the manual in vitro scratch 

assay and a semi-automated technique using IncuCyte ZOOM. In vitro scratch assay is 

commonly chosen as method for cell migration analysis, due to its advantages: easy set-up 

and materials needed are available in any laboratory performing cell culturing. In addition the 

method does to some extend mimic the migration of cells in vivo (Liang et al., 2007). Here, 
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cells were seeded at a density of 5x105 cells per well in a 6-well plate until a confluent layer 

of cells was formed. The wound was made using a pipette tip, and it was ensured that images 

were obtained from the exact same spot at 0 and 12 hours after wounding. Manually 

wounding with a pipette tip makes it challenging to ensure the same width of the wounds in 

every trial. Width of the wounds varied from approximately 1.3-3.3 mm. After images were 

achieved they were retouched to eliminate debris in the wound area. There are no indications 

that variations in wound width affected the results, as some cells with a wider wound in the 

cell monolayer showed higher migration percentages than some cells with a narrower wound, 

and conversely. 

 

The CellProfiler software was used to analyse cell migration data acquired from the manual in 

vitro scratch assay. To develop a suitable pipeline for the purpose of the study, different 

algorithms were tested by trial and error approach. The fully developed pipeline is presented 

in appendix C. After image analysis and data processing the results obtained were inspected 

by eye to ensure the functioning of the pipeline. For example, migration percentages from 

HBEC-12KT control cells (DMSO) were ambiguous. A confluent layer of cells could be 

observed from the cell images (figure 3.11), but the software analysed some of it as no cells. 

An oversaturation of cells in the wound area appears to have occurred showing a higher cell 

density in the middle, which contributes to a higher intensity. As speckles (areas of increased 

intensity in relation to its immediate neighbourhood) were chosen as the features to identify in 

the CellProfiler software, the area surrounding the oversaturated wound was not included as 

“features”, as it had lower intensity. 

 

The assay could be improved by the use of alternative softwares for data processing, as 

CellProfiler mainly relies on image brightness (Glaß et al., 2012). 

 

Cell migration was also analysed using the instrument IncuCyte ZOOM, which represents a 

semi-automated migration analysis. The method used is an extension and improvement of the 

scratch wound assay (Nelson et al., s.a.). One advantage of this method is the 96-well 

WoundMaker that creates smooth wounds of equal size. In addition there are markers at the 

ImageLock plates from Essen Biosciences, ensuring accurate imaging. Another advantage is 

that there is no need for retouching of images in the same way as with the in vitro scratch 

assay. Furthermore, the instrument automatically acquires images at set time intervals and 
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IncuCyte’s integrated software enables quantification of the migration percentage straight 

after images have been acquired and gives opportunities for on-going analysis. 

 

Migration above 100 % was observed for some cell lines. This might be due to the calculation 

method used. As mentioned in section 2.7.1, when using RWD, cell density in the wound area 

is measured relative to the cell density outside the wound area. But some cell lines, as for 

example HBEC-2KT control cells (DMSO), oversaturation of cells were observed in the 

wound area, together with small open spaces in the cell monolayer outside the wound area. 

Hence, the cell density inside the wound was greater than the cell density outside the wound, 

and hence migration percentages above 100 % were calculated. 

 

Disadvantages with the use of IncuCyte ZOOM that might cause downstream errors in the 

results were experiences. Instrumental errors, such as rebooting of the instrument for various 

reasons caused lack of data points. Also, during wound making, the WoundMaker sometimes 

introduced errors by imperfect wounds. Care had to be taken to avoid air bubbles during 

washing procedures and addition of fresh media, as they were difficult to remove and might 

have affected the results in a negative way. 

 

4.1.2 DNA methylation analysis 

Existing methods for analysis of DNA methylation have advantages and disadvantages. For 

example, the desired precision (quantitative versus qualitative data), screening or in depth 

analysis, number of samples and DNA quality and quantity will influence the choice of 

technique. The methods vary in accuracy, sensitivity, reproducibility and types of bias (Dahl 

and Guldberg, 2003; Laird, 2010). 

 

In this study, bisulfite treatment of DNA followed by pyrosequencing was the method of 

choice. Bisulfite sequencing has been rendered the most trustworthy method when it comes to 

identification of methylated cytosines in any sequence (Laird, 2010). Methods involving 

bisulfite treatment of DNA tends to be fairly accurate and reproducible. Compared with 

analyses using restriction endonucleases, methods relying on bisulphite treatment possess 

several advantages. Most importantly, the methylation status can be determined of virtually 

any CpG site in the genome. However, some sources of error exist, as incomplete bisulfite 

conversion of unmethylated cytosine to uracil, which may arise from incomplete denaturation 
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before bisulfite treatment or reannealing during conversion. To reduce the risk of reannealing 

the bisulfite reaction can be done in a thermocycler with repeated steps of heating. Besides 

that, overtreatment with bisulfite may degrade DNA, due to partial acid-catalysed 

depurination, and also lead to increased incidence of methylated cytosines converted to uracil. 

This will result in under-reporting of the methylation percentage. The incubation time also 

influences damage to template sequences. Four hour incubation with bisulfite has been 

reported to be sufficient for complete conversion (Dahl and Guldberg, 2003; Laird, 2010). 

 

Bisulfite-treated DNA can be used directly in a standard PCR reaction and further sequence-

analysed by for example pyrosequencing. Uracil (represent unmethylated cytosine) and 

thymine will be amplified as thymine, whereas 5’-methylcytosine will be amplified as 

cytosine (Dahl and Guldberg, 2003). The PCR procedure can be improved in various ways; 

one approach is by increasing the annealing temperature of the PCR reaction. After DNA has 

been bisulfite-treated, methylated DNA has a higher content of guanine and cytosine than 

unmethylated DNA, and this can favour secondary structures as hairpins (Shen et al., 2007). 

Sequence analysis of PCR products after bisulfite treatment is considered the gold standard 

for gene-specific methylation providing information about the methylation status of every 

cytosine within the target sequence (Dahl and Guldberg, 2003). Pyrosequencing can be used 

for quantitative determination of both global DNA methylation and gene-specific analyses. 

 

Restriction endonucleases, with different sensitivity to cytosine methylation, can be used to 

study methylation changes within their recognition site. Methylation of specific cytosines will 

render the DNA sequence insensitive to cleavage by one enzyme, but not the other. Usually 

the enzymes HpaII/MspI are used, where both enzymes cleave CCGG sites, but only MspI 

cleaves if internal cytosine is methylated. This makes these enzymes valuable tools for rapid 

DNA methylation analyses. When amplifying by PCR only the methylated sequence will 

result in PCR products. This method is suitable for a large number of samples, due to its 

simplicity, low cost and ease of interpretation. Limitations might be that this method only 

provides information about CpG’s within the cleavage site, furthermore, there is a risk of false 

positives due to incomplete digestion (Dahl and Guldberg, 2003; Oakeley, 1999). Several 

techniques have now been developed whose strategy is to interact directly with methylated 

DNA. A simple approach based on direct immunoprecipitation of methylated DNA has been 

developed (MeDIP) where monoclonal antibodies against 5’-methylcytosine are used to 

purify methylated DNA. The methylation status can be further studied by the use of specific 
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primers for the desired gene section followed by PCR. This method of analysis is excellent 

when there are regions with high CpG density, as in CpG islands. In contrast, when analysing 

promoters low in CpG dinucleotides this technique may not be suitable (Jacinto et al., 2008). 

 

Methylation-specific PCR takes benefit of the bisulfite-induced sequence difference in 

bisulfite-treated DNA. It is a widely used technique to investigate methylation status in 

specific CpG sites. Nevertheless, information obtained from this technique should be further 

validated by quantitative methods, and therefore methylation-specific PCR is best suited as a 

rapid technique to initially screen samples for methylation of specific genes (Dahl and 

Guldberg, 2003). 

 

In the future, nanopore sequencing might be the next revolution in high-throughput DNA 

methylation analysis, and will eliminate the need for bisulfite treatment by offering a potential 

for direct sequencing of 5’-methylcytosine in DNA (Laird, 2010).  

 

4.1.3 Assay design for pyrosequencing 

Two assays in both the FOXA1 gene (FOXA1_pyro1 and FOXA2_pyro2, figure 3.16) and the 

FOXA2 gene (FOXA2_cpg1 and FOXA2_TSS, figure 3.16) were designed for this study. The 

regions were chosen in accordance with ENCODE, taken into account especially results from 

earlier methylation studies in various cell lines and the binding of transcription factors (figure 

4.1 and 4.2). Further, a fellow master student at STAMI worked with MeDIP in a parallel 

thesis and we wanted the pyrosequencing assay to lie in the same areas so that the two 

approaches of examining DNA methylation could be compared. This was obtained for 

FOXA1_pyro1 and both FOXA2 assays. It was important to optimize the PCR conditions to 

ensure specific PCR products, especially the annealing temperature. For FOXA1_pyro1 and 

FOXA2_cpg1 the annealing step was set to 60 °C, whereas for FOXA1_pyro2 and 

FOXA2_TSS the temperature was 58.5 °C. The assays for the FOXA1 gene are located 

upstream of the gene, possibly in an enhancer region (figure 4.1).  
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FOXA1_pyro1 is located within a CpG island and there is proof of methylation in this area in 

A549 (human lung adenocarcinoma epithelial cell line), HepG2 (liver hepatocellular 

Figure 4.1: Localisation of FOXA1_pyro1 (red oval) and FOXA1_pyro2 (blue oval) assays 

represented by data from ENCODE (the gene, transcription levels, CpG islands (dark green lines), 

histone methylations, histone acetylation, methylation levels and transcription factor binding sites 

(grey)) is shown in A. In B there are zoomed in on the localisations of the assays. Both assays are 

located upstream of the gene. FOXA1_pyro1 is localized in a CpG island, whereas FOXA1_pyro2 

is not. DNA methylation is represented by red (100 % of molecule sequences are methylated), 

yellow (50 %) or green (0 %).  
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carcinoma cells), MCF-7 (human breast adenocarcinoma cells) and LNCaP (lymph node 

carcinoma of the prostate). Thus, we wanted to examine this area in HBEC derived cell lines 

as well. FOXA1_pyro2 is not located in a CpG island, but by considering data from 

ENCODE, hypermethylation in this region has been reported for the cell lines A549, HeLa-S3 

(human epithelial carcinoma cell line), HepG2 and MCF-7. Also, results indicate some 

methylation in LNCaP. Further, several transcription factor binding sites are shown to be 

located in this area via chromatin immunoprecipitation (ChIP) analyses. In both of the areas 

where the assays are located, normal breast and lung cells show no methylation, indicating 

that there might be a difference between cancer cells and normal cells. 

 

Assays for the FOXA2 gene also lie upstream of the gene (figure 4.2). FOXA2_cpg1 is 

located in a CpG island and there is several transcription factor binding sites in this area 

according to ENCODE data (figure 4.2). No methylation analyses are represented here in 

ENCODE. FOXA2_TSS is located immediately upstream of the gene in the promoter and is 

in a CpG island. According to ENCODE there is some indication of methylation in MCF-7 

and many transcription factor binding sites (ChIP analyses). For the FOXA2_TSS assay, data 

from Basseres et al. (2012) was also considered. Results from this study indicated methylated 

CpG dinucleotides in various lung cancer cell lines in CpG’s located in the area of the 

promoter. 
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Figure 4.2: Localisation of FOXA2_cpg1 (red oval) and FOXA2_TSS (blue oval) assays 

represented by data from ENCODE (the gene, transcription levels, CpG islands (dark green 

lines), histone methylations, histone acetylation, methylation levels and transcription factor 

binding sites (grey)) is shown in A. In B there are zoomed in on the localisations of the assays. 

FOXA2_cpg1 is located upstream of the gene in a CpG island, whereas FOXA2_TSS lies 

around the promoter and also within a CpG island. DNA methylation is represented by red 

(100 % of molecule sequences are methylated), yellow (50 %) or green (0 %). 
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4.2 Discussion of results 
Transformed cell lines (two from HBEC-2KT and six from HBEC-12KT) were established 

prior to this study. The cells had been exposed to various carcinogens over a time course of up 

to 15 weeks, followed by selection of colonies in soft agar. Hence, observed effects are results 

of earlier exposures that might have led to development of new, stable phenotypes. In 

addition, gene expression differences are expected to occur, which might be at least partly due 

to epigenetic mechanisms. Thus, methylation studies were conducted to investigate whether 

DNA methylation had a role in altered expression of the FOXA1 and FOXA2 genes in 

transformed cell lines. 

 

Anchorage independent growth is an indication of carcinogen-induced transformation, and is 

confirmed by growth in soft agar. HBEC-12KT control cells (DMSO) and untreated HBEC-

12KT did not form colonies in soft agar, which was also expected from earlier tests in our 

laboratory. HBEC-2KT control cells (DMSO) and untreated HBEC-2KT did not form 

colonies in soft agar either, as confirmed by earlier experiments (Damiani et al., 2008; 

Sjøberg, 2012). The soft agar assay selects for cells with acquired heritable changes, which 

would facilitate growth in the absence of attachment to a surface on the petri dish or flask 

(Freshney, 1987).  

 

4.2.1 Cell migration 

Cell migration is an important mechanism for tumour cells. By studying in vitro wound 

healing of transformed cells versus non-transformed cells one can get insight into how cell 

migration capacities are affected by various carcinogens. Untreated HBECs showed different 

migration characteristics across the two methods used to study cell migration. According to 

results by IncuCyte ZOOM, untreated HBEC-3KT migrated faster than untreated HBEC-2KT 

and untreated HBEC-12KT, the ladder two showing similar migration. Results from in vitro 

scratch assay indicated that untreated HBEC-2KT migrated faster than both untreated HBEC-

3KT and untreated HBEC-12KT. The migration assays with untreated HBECs have only been 

done once, so this needs to be repeated to be able to draw solid conclusions. The HBECs 

originate from different donors, thus their gene expression profiles may vary due to different 

genetic and epigenetic factors. However, all the untreated HBECs show relatively high 

migration compared with transformed HBEC derived cell lines. This might be due to 

additives in the media, such as L-glutamine and serum. L-glutamine has been documented to 
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play an essential role during cell proliferation and enhance the function of immune cells. In 

addition L-glutamine is important during injury, and creating a wound in the cell monolayer 

mimics the healing process during for example injury, as the cells migrate to close the wound 

(Newsholme, 2001). Serum contains TGF-β, which might have a role in cell migration and 

invasion as changes in the microenvironment upon its activity favour cell migration and 

capillary formation (Derynck et al., 2001). TGF-β is also known to induce EMT, which again 

is involved in cell migration (Tang et al., 2011). Untreated HBECs were grown in serum-free 

media, so TGF-β cannot trigger their migration. However, control cells (DMSO) and 

transformed cells are grown in media supplemented with serum, which might contribute to 

their observed migration. Control cells (DMSO) tend to have a more rapid migration than 

untreated HBECs, which might indicate that TGF-β in serum may be related to the observed 

increased migration. 

 

Transformed HBEC-2KT derived cell lines closed the wound approximately halfway during 

the 12-hour observation period, as was observed by both methods. HBEC-2KT control cells 

(DMSO) showed higher migration than the transformed cells when analysed by IncuCyte 

ZOOM, which is in contrast to data obtained from in vitro scratch assay, where migration by 

HBEC-2KT control cells (DMSO) apparently was much slower compared to transformed cell 

lines. However, these migration assays on HBEC-2KT control cells (DMSO) were only 

carried out once by in vitro scratch assay and thus it will be necessary to repeat the 

experiments on these cells to be able to draw solid conclusions. Also, due to equivocal results 

from the two migration analysis methods, further studies are needed to explain these results. 

HBEC-12KT control cells (DMSO) showed a more rapid migration compared to its 

transformed cell lines. Transformation of HBEC-12KT seemed to decrease the migration to 

varying degrees, as determined by both methods. Overall, the migration percentages of the 

HBEC-12KT transformed cells were in the range between 30-60 %. Migration of control cells 

(DMSO) was in the range between 85-100 %. 

 

EMT is indicated to be a process in the development of cancer cells due to the acquired 

potential of invasion and metastasis. In a study from 2007, B[a]P was shown to induce EMT-

related gene expression in A549 cells, which lead to a migratory phenotype (Yoshino et al., 

2007). Previous short-time exposure studies indicated that higher concentrations of CSC 

inhibited wound closure in primary bronchial epithelial cells, whereas exposure to lower 

concentrations of CSC resulted in a significant increase in wound closure (Luppi et al., 2005). 



 95 

A recent study indicated that CSC might silence the expression of genes involved in 

downregulation of EMT, which is characterised by increased cell migration (Veljkovic et al., 

2011). It can, however, not be excluded that the observed changes in migration capacity 

among transformed cell lines in the present study also might be related to the selection 

process in soft agar. In addition, in our laboratory we have tested five different in vitro 

transformed cell lines (HBEC-2KT-CSC.L-2A, HBEC-2KT-CSC.H-2A, HBEC-12KT-

CSC.L-A-2A, HBEC-12KT-CSC.H-2A, HBEC-12KT-B[a]P.H-2A) for growth in nude mice 

by subcutaneous injection (six mice per cell line).  The mice have now been observed for five 

months and there are no signs on formation of tumours. This is in accordance with Damiani et 

al. (2008), and indicates that additional genetic and epigenetic alterations are required to 

facilitate tumour formation. 

 

The transcription factors FOXA1 and FOXA2 are considered to be involved in 

carcinogenesis. Changes in their gene expression were observed with carcinogen-induced 

transformation. Thus, in previous experiments at STAMI the expression of several genes were 

observed to be altered upon transformation with B[a]P, CSC and MNU. A significant 

downregulation of FOXA1, FOXA2 and CDH1 genes was found in transformed cells 

compared to their control cells (DMSO). Contrary, an upregulation of the CDH2 gene in 

transformed cells compared to its control cells (DMSO) was found. Downregulation of the 

FOXA1 and FOXA2 genes might indicate EMT. This includes hallmarks as gain of 

mesenchymal phenotype and increased migration. In addition, a switch from E-cadherin 

(CDH1 gene) to N-cadherin (CDH2 gene) is characteristic for EMT. The process of EMT is 

closely related to cancer progression, and has been observed in NSCLC (Byers et al., 2013; 

Guarino et al., 2007). 

 

A observed change in phenotype from rounded, epithelial form of non-transformed cells to a 

more elongated shape of transformed cells was observed, consistent with EMT. However, our 

results did not confirm any increase in migration in the transformed cell lines compared to 

control cells (DMSO), except for in HBEC-2KT derived cell lines analysed by in vitro scratch 

wound. This suggests that not only EMT contributes to cell migration and also that 

transformation is not only dependent on EMT. Thus, other genetic and epigenetic changes 

might have been taking place in the transformed cell lines contributing to their overall 

diminished migration percentage compared to non-transformed cells. It is, however, clear that 

cell migration and EMT are not directly linked in this in vitro transformation model. 
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Oversaturation was observed for some cell lines during cell migration assays. This might 

indicate loss of contact inhibition, which is also observed in various types of cancer cells. 

Merlin is a protein that couples cell-surface adhesion molecules, as E-cadherin, to 

transmembrane receptor tyrosine kinases, as epidermal growth factor receptor. Hence, the 

adhesiveness of cadherin-mediated intercellular attachments is strengthened. In addition, 

Merlin sequesters growth factor receptors and limits their release of mitogenic signals 

(Hanahan and Weinberg, 2011). Oversaturation may also indicate that communication 

capabilities of the cells are lagging behind. Components of gap junctions are shown to induce 

cell contact growth inhibition via cell communication. Recent studies imply EMT-mediated 

loss of contact inhibition in hepatocarcinoma cells, indicating that cancer cells have the ability 

of oversaturation (Ke et al., 2008). 

 

4.2.2 DNA methylation 

Epigenetic mechanisms have been shown to be involved in carcinogenesis and DNA 

methylation analysis was carried out to study if hypermethylation was associated with the 

observed downregulation of the FOXA1 and FOXA2 genes in transformed cell lines. In the 

FOXA1_pyro1 assay, overall highly methylated DNA (above 70 %) was observed in 

transformed HBEC-12KT cell lines and their control cells (DMSO). However, DNA from 

HBEC-2KT derived cell lines showed varying methylation percentages in the CpG sites in 

this assay. Control cells (DMSO) and HBEC-2KT exposed to high dose CSC showed higher 

overall methylation than HBEC-2KT transformed by low dose CSC, where there in general 

was observed approximately 50 % methylation. However, HBEC-12KT-CSC.H showed a 

drop in DNA methylation in CpG’s 8-11. 

 

The CpG’s studied in the FOXA1_pyro2 assay showed an overall high degree of methylation, 

above 70 %, in both transformed cell lines (HBEC-2KT and HBEC-12KT) and their control 

cells (DMSO). Methylation in both of the FOXA1 regions studied has been indicated by 

previous studies in carcinoma cell lines as A549, HeLa-S3 (only in FOXA1_pyro2), HepG2 

and MCF-7 (ENCODE). Correspondingly, methylation studies in normal breast and lung cells 

do not indicate methylation in these CpG sites. This suggests a difference between normal and 

carcinoma cell lines in the degree of methylation. However, in this study, control cells 

(DMSO) from both HBEC-2KT and HBEC-12KT derived cell lines showed an overall high 
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CpG methylation in FOXA1. Thus, it is difficult to draw conclusion on whether the measured 

methylation levels are responsible for the observed downregulation of FOXA1. In addition, it 

cannot be deduced whether DNA methylation is a result of transformation as non-transformed 

cell lines already had high methylation levels in the studied CpG sites. 

 

An overall low DNA methylation was observed in FOXA2_cpg1 assay for both transformed 

cell lines (HBEC-2KT and HBEC-12KT) and their control cells (DMSO). According to 

ENCODE, no methylation data for this region has been reported yet. The CpG sites studied in 

the FOXA2_TSS assay in DNA from both transformed HBEC-2KT and control cells 

(DMSO) showed overall methylation levels below 50 %. DNA from transformed HBEC-

12KT and their control cells (DMSO) showed overall methylation levels between 20-50 % in 

the FOXA2_TSS assay. For HBEC-12KT-CSC.L-B, more than 70 % methylation in three of 

four colonies was observed in CpG 11 of the FOXA2_TSS assay. This might contribute to the 

observed downregulation of FOXA2 in the cell line, as this increase in methylation was not 

observed in the control cells (DMSO). In this region methylation has been observed in MCF-7 

cells (ENCODE). However, only minor or no DNA methylation in A549 and HepG2 has been 

observed. FOXA2 gene expression was downregulated despite no outstanding differences in 

DNA methylation between transformed and non-transformed cells. Thus, it might be 

speculated that DNA methylation in the inspected sites are not involved in gene silencing. In 

addition, there are many factors contributing to the regulation of gene expression, as 

transcription factors, miRNA, cell signalling, mRNA splicing and degradation (Chen and 

Rajewsky, 2007). Several studies indicate that hypermethylation at CpG islands in promoter 

has important roles in the progression of cancer and it is considered to be a common hallmark 

of many types of cancer. Methylation at CpG islands may lead to repression of normal 

functions (Esteller, 2007). It was found that the FOXA2 gene was methylated in two out of 

five transformed cell lines (Damiani et al., 2008). A study from 2012 showed that 48 % of the 

studied NSCLC cell lines had more than 10 % CpG dinucleotide hypermethylation in the 

FOXA2 promoter, and an inverse correlation between absence of FOXA2 mRNA or FOXA2 

protein and degree of hypermethylation was observed (Basseres et al., 2012). 

 

Generally, for the FOXA2_TSS assay there was red colour code for CpG’s 13-20 after 

analyses by the PyroMark Q24 software, and thus, these data points were not considered in 

the analyses. The instrument does a quality assessment and gives the CpG’s a colour code, as 

explained in section 2.10.6. Red indicates that the data are not approved. When inspecting the 
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results in the PyroMark Q24 software the red points at CpG’s 13-20 was due to signals that 

did not correlate with the expected references. Also, high sum deviation in the variable 

position was observed in some CpG sites. This might be related to incorrect incorporation of 

bases by DNA polymerase, due to the length of this assay (337 bp’s). According to the 

PyroMark PCR Handbook (2009) amplicons for CpG assays should ideally be shorter than 

200 bp’s. The amplicons for FOXA1_pyro1 and FOXA2_cpg1 were also longer than 200 

base pairs (264 and 251 bp’s, respectively), but in those cases that did not appear to interfere 

significantly with the quality of the data. An obvious further improvement would be to design 

a new sequencing primer situated a couple of CpG sites before CpG 13 in the FOXA2-TSS 

assay to be able to study DNA methylation levels in the remaining part of the region. This 

work is ongoing in the lab. 

 

In the present study, the whole procedure of bisulfite treatment of DNA followed by 

pyrosequencing for quantification of DNA methylation was repeated twice on all samples. 

Overall, a high degree of consistency between the data from the two independent analyses 

was observed. 

 

In a parallel master thesis MeDIP was used to assess the degree of methylation in the FOXA1 

and FOXA2 genes. In general, experiments with MeDIP resulted in overall lower methylation 

percentages compared with results obtained by pyrosequencing. Theoretically, there can be 

various reasons for the observed difference between the methods. First, it might be due to 

failed bisulfite treatment. However, this appears not to be the case in this present study as 

controls for bisulfite conversion are included and insufficient conversion would have resulted 

in red colour code. Second, differences could have been due to overtreatment with bisulfite. 

However, this would have lead to DNA damage and reduced or no PCR products, so this is 

also not a likely explanation for the differences across the two methods. Last, it might be 

related to positioning of the primers. Assays for FOXA1_pyro1 and FOXA1_C1 (MeDIP) 

overlap, so a big difference in methylation percentages would not be expected. However, 

FOXA1_pyro1 indicated high methylation as observed from pyrosequencing results, and this 

area also stood out in MeDIP analyses. This might indicate that the CpG’s studied in 

FOXA1_pyro1 has higher methylation than the other CpG’s examined. 

 

The FOXA2_cpg1 assay is located close to the FOXA2_C1 assay (MeDIP) and they are 

placed in the same CpG island. The FOXA2_TSS assay is located in the same CpG island as 
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the FOXA2_C3 assay (MeDIP). Hence, similar results could have been expected. Results 

from pyrosequencing showed an overall lower methylation in the CpG sites within FOXA2 

compared with FOXA1. Results from MeDIP analyses indicated higher methylation in the 

FOXA2_C1 assay compared to other CpG regions. In the FOXA2_cpg1 assay analysed by 

pyrosequencing results indicated less than 10 % DNA methylation in this area, which was 

lower than other CpG’s studied. Only HBEC-2KT-CSC.L-2B showed higher levels of 

methylation in the FOXA2_C3 assay compared to the other cell lines. Results from 

pyrosequencing in FOXA2_TSS indicated low DNA methylation for all the studies cell lines. 

It might be difficult to compare pyrosequencing and MeDIP considering methylation levels, 

as MeDIP results showed rather low methylation values. It is, along with MeDIP results, 

difficult to draw any conclusions for alterations in methylation between transformed and non-

transformed cell lines. This is rather unexpected especially regarding FOXA2, as Basseres et 

al. (2012) presented results suggesting that DNA methylation is correlated with 

downregulation of FOXA2 in lung tumours. 

 

4.2.3 Future work 

For future work, it would be interesting to perform gene expression analyses of DNMTs in the 

HBEC derived cell lines. DNMT1 has shown to be overexpressed in several cancers, 

including lung. Also, DNMT3a and 3b have shown to be overexpressed in tumours, and 

cooperates with DNMT1 (Damiani et al., 2008). Furthermore, it would be interesting to 

investigate whether cell adhesion genes are methylated during carcinogen-induced 

transformation of HBEC derived cell lines used in this study. Methylation of for example E-

cadherin has been observed in bronchial epithelial cells from smokers. Consequently, 

demethylation strategies might improve primary cancer prevention in smokers (Damiani et 

al., 2008). 

 

Additionally, it could be relevant to go into more detail about what other factors than DNA 

methylation that can contribute to alterations in expression of the FOXA1 and FOXA2 genes 

in the HBEC derived cell lines. Subjects of such studies could be transcription factors, cell 

signalling and microRNAs. 
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5 Conclusion 

The aims of this study were to investigate mechanisms involved in development of lung 

cancer. The first aim was to investigate how in vitro transformation by tobacco smoke 

carcinogens affected cell migration, and the second aim was to investigate whether DNA 

methylation could explain the downregulation of the FOXA1 and FOXA2 genes in 

transformed cell lines.  

 

Cell migration was shown to both decrease and increase in transformed cell lines relative to 

its control cells (DMSO). Two methods were used to study cell migration: the manual in vitro 

scratch assay and a semi-automated technique using IncuCyte ZOOM. However, it is clear 

that cell migration and EMT are not directly linked in this in vitro transformation model even 

though previous gene expression analyses indicated cadherin switch. Nevertheless, 

transformation of HBECs with tobacco-related carcinogens was shown to induce changes in 

cell migration. 

 

It might be speculated that the inspected sites in the FOXA1 gene not are involved in gene 

silencing since control cells express the gene despite high levels of methylation. Further, no 

outstanding alterations in DNA methylation in CpG sites were detected between non-

transformed and transformed cell lines. Consequently, it cannot be concluded whether DNA 

methylation caused the observed downregulation of the FOXA1 and FOXA2 genes in this in 

vitro transformation model.  
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A. Materials 
In the following tables is information regarding instruments (A.1), materials (A.2), cell 

culture media (A.3), chemicals (A.4), solutions (A.5), kits (A.6) and computer software (A.7) 

used during the work with this thesis. 

 

Instruments 
Table A.1: Instruments and their labels that were used in this thesis. 

Instrument Name/label 

Agitator Thermolyne Speci-Mix, Sybron, Thermolyne 

Autoclave Systec DX-90 

Cell Counter Countess Automated Cell Counter, 

Invitrogen 

Centrifuges Eppendorf Centrifuge 5702 

Sigma 2-6E 

Thermo Scientific MicroCL21 

VWR Galaxy Mini 

Centrifuges (Cooler) Eppendorf Centrifuge 5417R 

Sigma 4K15 

Heating Blocks Grand Instruments QBT2 

Eppendorf Thermomixer Comfort 

Imaging System Bio-Doc® 220 Imaging System, Benchtop 

UV Transilluminator, UVP 

Incubator Thermo Forma 

Binder 

IncuCyte ZOOM Essen BioScience 

Microscope Nikon Diaphoto light microscope 

PyroMark Q24 Qiagen 

PyroMark Q24 Vacuum Station Qiagen 

Spectrophotometer Eppendorf Biophotometer 

NanoDrop 8000 Spectrophotometer 

Thermal Cyclers (cDNA and PCR) Perkin Elmer Cetus DNA Cycler 480 

Techne TC-3000X 
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MJ Research, PTC-200, Peltier Thermal 

Cycler 

MJ Research, DNA Engine Dyad, Peltier 

Thermal Cycler 

Vacuum Pump 2511 Dry Vacuum Pump/Compressor, Welch 

Vacuum Station (Bisulfite procedure) Promega 

Vortex Heidolphreax 2000 

Whirlmixer Fision 

Water bath GFL (Gesellschaft für Labortechnik m.b.H) 

 

Materials 
Table A.2: Materials that were used in this thesis. 

Materials Manufacturer 

100 mm dishes NUNC, Nunclon surface sterile 

96- and 6-well plates NUNC, Nunclon surface sterile 

96-Well ImageLock Plates Essen BioScience 

96-Well WoundMaker Essen BioScience 

12 ml, 50 ml Falcontubes Falcon 

Cell Counter chamber slides Invitrogen 

Container for electrophoresis 2012 Maxiphor, Electrophoresis Unit, LKB 

Bromma 

DNA LoBind tubes (2 ml) Eppendorf Tubes 

Electronic Pipettes Pipetboy, Integra Biosciences 

Pipetus®-akku, Hirschmann Laborgerate 

Gilson 

Flat 8 Cap Strips Thermo Scientific 

Gel electrophoresis chambers BioRad 

Lid with wires (electrophoresis) BioRad 

Microsentrifuge tubes (0.5, 1.5 ml) Trefflab 

Multichannel Pipette Micronic Systems 

PCR plates Thermo Scientific 

Plastic film for 96-well plate MicroAmp, Applied Biosystems 
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Plastic Pipettes VWR 

PyroMark Q24 Plate Qiagen 

PyroMark Q24 Cartridge Qiagen 

Quarts kuvettes QS-Hellma 

Sterile filter Pall Corporation, Acrodisc Syringe filters 

Twist top vials, with cap Sorensen Bioscience Inc. 

Volt Source Gene Power Supply GPS 200/400, 

Pharmacia 

 

Cell Culture Media 
Table A.3: Cell culture media that were used in the thesis, including additives, manufacturer and 

catalogue number. 

Medium Additives Manufacturer Catalogue 

no. 

GIBCO® LHC-9 Serum-free 

medium 

 

L-glutamine, serum-free, 

phenol red 

Invitrogen 12680-013 

GIBCO® DMEM/F-12 15 mM HEPES buffer, 

L-glutamine 

Invitrogen 11039-021 

 

Chemicals 
Table A.4: Chemicals used in this thesis, their manufacturer and catalogue number. 

Chemical Manufacturer  Catalogue 

no. 

100 bp DNA ladder New England Biolabs  3231S 

Acrylamide Bio-Rad  161-0146 

Ammonium acetate BDH  100124T 

Benzo(a)pyrene (B[a]P) Sigma Aldrich  B-1760-1G 

Buffer EB (elution buffer) Qiagen  19086 

Chloroform Sigma Aldrich  C2432 

Cigarette smoke condensate (CSC) Murty Pharmaceuticals   

Collagen (PureCol) Advanced BioMatrix  5005B 
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Crystal Violet Sigma Aldrich  C3886 

Difco Agar Noble BD  214220 

Dimethylsulfoxide (DMSO) Koch Licht  2228-00 

EDTA Fluka Biochemika  03690 

Ethanol (rectified, absolute) Kemethyl  600051 

Fetal Bovine Serum (FBS) Gibco  10099-141 

GelRed Biotium Inc.  41003 

HEPES Sigma Aldrich  H9136 

Hydroquinone Sigma Aldrich  H9003 

Loading buffer Sigma Aldrich  G2526 

Sodium hydroxide (NaOH) Sigma Aldrich  S8045 

NuSieve® 3:1 Agarose Lonza  50090 

Phenol red Sigma Aldrich  P3532 

PhiX174 RF DNA Promega  5018402 

Propan-2-ol (isopropanol) Merck  2006617 

PyroMark Annealing Buffer Qiagen  979009 

PyroMark Binding Buffer Qiagen  979006 

PyroMark Denaturation Solution Qiagen  979007 

PyroMark Gold Q24 Reagents Qiagen  970802 

PyroMark Wash Buffer, 10x Qiagen  979008 

SeaKem® GTG® Agarose Lonza  50070 

Sodium Bisulfite, A. C. S reagent Sigma Aldrich  2439739 

Streptavidin Sepharose High Performance GE Healthcare  17-5113-01 

Penicillin Streptomycin Gibco  15 140-114 

Isol-RNA lysis reagent 5’ prime  2302700 

Trizma hydrochloride solution Sigma Aldrich  T3038 

Trypan Blue Stain  Invitrogen  T10282 

Trypsin Sigma Aldrich  T1147 
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Solutions 

All solutions were made with dH2O and solutions for cell culturing were sterile filtered before 

use. 
Table A.5: Solutions. 

Solution Content 

Ammonium acetate (10M) 77 g ammonium acetate, 100 ml dH2O, pH adjusted 

to 7.03, sterile filtered 

Antibiotic freezing (AF) media 76 % L-15 medium, 2 % 1M HEPES, 2 % PS, 20 

% FBS 

Collagen 1 % collagen solution (3.13 mg/ml), 99 % PBS 

DMSO for cell culture storage 50 % L-15 medium, 2 % 1M HEPES, 8 % DMSO, 

40 % FBS 

Ethylenediaminetetraacetic acid 

(EDTA) 

9.3 ml EDTA, 50 ml dH2O, pH adjusted to 8 

FBS Heat inactivated (56 ℃ for 45 minutes) 

HEPES 238.3 g HEPES, 1 ml 0.12 % phenol red in 1 L 

dH2O, pH 7.3 

Phenol red 125 g phenol red. 360 𝜇l 1M NaOH, 100 ml dH2O 

Phosphate Buffered Saline (PBS) 7.07 g NaCl, 0.20 g KCl, 1.94 g NaHPO4*H2O, 

dH2O to 1 L 

TAE buffer (50X) 242 g Tris base, 57.2 ml acetic acid, 100 ml EDTA 

(0.5 M, pH 8.0), dH2O to 1000 ml 

Tris-EDTA (TE) buffer 500 𝜇l 1M Tris pH 8, 10 𝜇l 0.5 M EDTA, dH2O to 

50 ml 

Trypsin (1 %) 50 ml trypsin, 50 ml PBS 

 

Kits 
Table A.6: Kits, their manufacturer and catalogue number. 

Process Kit Name Manufacturer 

(catalogue no.) 

cDNA synthesis qScriptTM cDNA Synthesis 

Kit 

Quanta (95047-500) 
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Genomic DNA isolation Wizard ® Genomic DNA 

Purification Kit 

Promega (A1125) 

DNA purification during 

bisulfite treatment 

Wizard® DNA Clean-Up 

System 

Promega (A7280) 

Pyro-PCR  PyroMark PCR Kit Qiagen (978703) 

 

Computer Software 
Table A.7: Computer software used during this thesis, including their function and manufacturer.  

Function  Software Manufacturer Location 

Assay design for RT-

qPCR 

 SDS Software 2.4  Applied 

Biosystems 

Carlsbad, 

California, USA 

Data analysis  SigmaPlot 12.3 Systat Software 

Inc. 

San Jose, 

California, USA 

IncuCyte ZOOM assay 

design and data analysis 

 IncuCyte ZOOM 

2012A 

Essen 

BioScience 

Ann Arbor, 

Michigan, USA 

Manual analysis of cell 

migration 

 Cell Profiler 2.0 Broad Institute Massachusetts, 

USA 

Pyrosequencing assay 

design and data analysis 

 PyroMark Q24 

2.0.6.20 

Qiagen Hilden, Germany 

Pyrosequencing primer 

design 

 PyroMark Assay 

Design 2.0 

Qiagen Hilden, Germany 

Writing and data 

analysis 

 Microsoft Office 

2007/2011 Excel 

and Word 

Microsoft 

Corporation 

Redmond, 

Washington, USA 
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B. General cell culture work 

 

Thawing of cells 

1. Cells were taken from a nitrogen tank at STAMI, and the ampoule was thawed in a 

water bath (37 °C). 

2. The cells were transferred to a centrifuge tube and LHC-9 medium (5 ml) was added 

3. The vial was centrifuged (1000 rpm, 4 minutes). 

4. The supernatant was discarded and the pellet was re-suspended in medium (3 ml). 

5. Cell suspension was transferred to a petri dish (100 mm), with added medium (5 ml) 

to make a total of 8 ml. 

6. The cells were incubated at 37 °C. 

 

Passaging cells 
1. The media over the cells was removed. 

2. Washed twice with PBS (10 ml). 

3. Trypsin (1 ml) was added to the plates. 

4. The cells were incubated (37 °C) until detachment from the petri dish, this was 

monitored in a light microscope. 

5. Medium was added (5 ml) and the cells were washed up and down for separation of 

cells and washing of petri dish. 

6. The cell suspension was transferred to a centrifuge tube and centrifuged (1000 rpm, 4 

minutes). 

7. The supernatant was discarded. 

8. The pellet was re-suspended in medium (volume depended on dilution) and 

transferred to a 100 mm petri dish, with added medium to make a total volume of 8 

ml. 

9. The cells were incubated at 37 °C. 

 

Freezing of cells 

Followed passaging cells to point 7. 

1. Cells were re-suspended in AF media (500 µl) and transferred to a twist top vial. 

2. DMSO freezing medium (500 µl) was added and the solution was mixed. 
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3. The ampoule was placed in an isolated box at -80 °C for 4-6 hours or overnight. 

4. The ampoule was further placed in a nitrogen tank for long-term storage. 

 

Collagen coating of petri dished 
1. PureCol was diluted in PBS to a total concentration of 0.03 mg/ml. 

2. Collagen was added to 100 mm petri dishes (3 ml), to each well in 6-well plates (1 ml) 

and 96-well plates (100 µl) to completely cover the dishes/wells. 

3. Incubated in the LAF-bench (room temperature) for minimum 2 hours. 

4. The collagen solution was removed and washed twice with PBS. 

Placed the dishes in the freezer (-80 °C). 
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C. CellProfiler pipeline 
A pipeline was developed in CellProfiler to analyse the migration data acquired from the 

manual in vitro scratch assay. Tested different combinations of algorithms to obtain the best-

suited pipeline for these particular experiments.  

First, the images were made into a grey scale; this was necessary for a later 

identification of objects. Edges and certain image features were enhanced to improve 

subsequent identification of the objects, speckles were chosen as the features to enhance. 

Speckles are an area of increased intensity in relation to its immediate neighbourhood and was 

considered to be best suited for this analysis due to increased intensity of cells. Subsequently, 

the image was smoothened to remove artefacts of a particular size. Primary objects could now 

be identified based on the image processing done. In the end, the total image area occupied by 

objects could be measured. This algorithm reports the sum of the areas of the objects defined 

by the identification algorithm. The data was exported to a spreadsheet and further processed 

for presentation of results. 

Below is an overview of the pipeline.  

 

- Load images 

- ColorToGray 

- SaveImages 

- EnhanceOrSuppressFeatures 

- SaveImages 

- EnhanceEdges 

- SaveImages 

- Smooth 

- SaveImages 

- IdentifyPrimaryObjects 

- SaveImages 

- MeasureImageAreaOccupied 

- ExportToSpreadsheet 
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D. Cell images from IncuCyte ZOOM 
Cells were placed in the instrument IncuCyte ZOOM and it was programmed to take images 

on an hourly basis for 24 hours. Images of HBEC derived cell lines 0, 12 and 24 hours after 

wounding are presented below (figure D.1-D.13). 

 

 
 

Figure D.1: Migration of untreated HBEC-2KT 0, 12 and 24 hours after wounding. 

Figure D.2: Migration of HBEC-2KT control cells (DMSO) 0, 12 and 24 hours after 

wounding.  
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Figure D.3: Migration of HBEC-2KT-CSC.L 0, 12 and 24 hours after wounding. 

Figure D.4: Migration of HBEC-2KT-CSC.H 0, 12 and 24 hours after wounding. 

 

Figure D.5: Migration of untreated HBEC-3KT 0, 12 and 24 hours after wounding. 
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Figure D.6: Migration of untreated HBEC-12KT 0, 12 and 24 hours after wounding. 

Figure D.7: Migration of HBEC-12KT control cells (DMSO) 0, 12 and 24 hours after 

wounding. 

Figure D.8: Migration of HBEC-12KT-CSC.L-A 0, 12 and 24 hours after wounding. 
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Figure D.9: Migration of HBEC-12KT-CSC.L –B 0 hours, 12 hours and 24 hours 

after wounding. 

Figure D.10: Migration of HBEC-12KT-CSC.H 0 hours, 12 hours and 24 hours after 

wounding. 

Figure D.11: Migration of HBEC-12KT-B[a]P.L 0 hours, 12 hours and 24 hours 

after wounding. 
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Figure D.12: Migration of HBEC-12KT-B[a]P.H 0 hours, 12 hours and 24 hours 

after wounding. 

Figure D.13: Migration of HBEC-12KT-MNU 0 hours, 12 hours and 24 hours after 

wounding. 
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E. Migration analysis of HBEC derived cell lines using IncuCyte ZOOM 
Migration assay using IncuCyte ZOOM was repeated several times. In the figures E.1-E.10 

below the consistency between the independent experiments of each cell line is noticeable. 

The chosen parallel is marked with a red circle. The parallel chosen is the one that best 

represents the independent migration assays for each cell line. Untreated HBECs (HBEC-

2KT, HBEC-3KT and HBEC-12KT) were only examined once and are not represented here. 

This is due to time pressure and experimental errors. 

 

 

Figure E.1: Three independent migration experiments with HBEC-2KT control cells (DMSO) 
over a time course of 24 hours. Migration is represented as relative wound density (%). The red 
ring denotes the parallel chosen as a representative for the three experiments. 

Figure E.2: Three independent migration experiments with HBEC-2KT-CSC.L over a time course 
of 24 hours. Migration is represented as relative wound density (%). The red ring denotes the 
parallel chosen as a representative for the three experiments. 
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Figure E.3: Three independent migration experiments with HBEC-2KT-CSC.H over a time 
course of 24 hours. Migration is represented as relative wound density (%). The red ring denotes 
the parallel chosen as a representative for the three experiments. 
 

Figure E.4: Three independent migration experiments with HBEC-12KT control cells (DMSO) 
over a time course of 24 hours. Migration is represented as relative wound density (%). The red 
ring denotes the parallel chosen as a representative for the three experiments. 
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Figure E.5: Four independent migration experiments with HBEC-12KT-CSC.L-A over a time 
course of 24 hours. Migration is represented as relative wound density (%). The red ring denotes 
the parallel chosen as a representative for the four experiments. 
 

Figure E.6: Three independent migration experiments with HBEC-12KT-CSC.L-B over a time 
course of 24 hours. Migration is represented as relative wound density (%). The red ring denotes 
the parallel chosen as a representative for the three experiments. 
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Figure E.7: Three independent migration experiments with HBEC-12KT-CSC.H over a time 
course of 24 hours. Migration is represented as relative wound density (%). The red ring denotes 
the parallel chosen as a representative for the three experiments. 
 

Figure E.8: Three independent migration experiments with HBEC-12KT-B[a]P.L over a time 
course of 24 hours. Migration is represented as relative wound density (%). The red ring denotes 
the parallel chosen as a representative for the three experiments. 
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Figure E.9: Three independent migration experiments with HBEC-12KT-B[a]P.H over a time 
course of 24 hours. Migration is represented as relative wound density (%). The red ring denotes 
the parallel chosen as a representative for the three experiments. 
 

Figure E.10: Three independent migration experiments with HBEC-12KT-MNU over a time 
course of 24 hours. Migration is represented as relative wound density (%). The red ring denotes 
the parallel chosen as a representative for the three experiments. 
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F. Parallels to include in migration analysis by IncuCyte ZOOM 
For various reasons some parallels were left out when analysing data acquired from IncuCyte 

ZOOM. An example can be seen in figure F.1 below, all parallels of HBEC-12KT-CSC.L-B 

and HBEC-2KT-CSC.L show the same overall trend on their graphs. Whereas for HBEC-

12KT, parallels with a red cross clearly deviate from the overall trend, hence they are left out. 

One parallel of HBEC-2KT-CSC.H is missing some data points for some reason. This is an 

instrumental error and the parallel is left out of the calculations. 

 

 
 

 

Figure F.1: Microplate graph from IncuCyte ZOOM. HBEC-12KT control cells (DMSO) is 
represented in red, HBEC-12KT-CSC.L-B in yellow, HBEC-2KT-CSC.L in green and HBEC-
2KT-CSC.H in blue. The red crosses denote the parallels not taken into account, for various 
reasons, during analyses. 


