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Abstract
Force identification in structural dynamics is an inverse problem concerned with find-

ing loads from measured structural response. The main objective of this thesis is to

perform and study state (displacement and velocity) and force estimation by Kalman

filtering. Theory on optimal control and state-space models are presented, adapted to

linear structural dynamics. Accommodation for measurement noise and model inaccura-

cies are attained by stochastic-deterministic coupling. Explicit requirements for discrete

time-invariant steady filter convergence are derived. From a finite element model and

measurement data, unbiased estimation of state and force history is performed by an

augmented Kalman filter, based on minimizing error variance.

A numerical example on a system with two degrees of freedom displays adequate fil-

tering capabilities. Experimental validation is performed on a simply supported beam

instrumented with accelerometer and three strain gauges. The studies demonstrate suc-

cessful identification of impact forces with both collocated and non-collocated sensors.

The corresponding state estimation displays good accuracy. Limiting the number of mea-

surements is tested. The minimal observation setup (one accelerometer and one strain

gauge) is analytically stable, but results are found to be significantly deteriorated, even

with collocation. Moreover the influence of model errors is investigated, imposed as ran-

dom contributions in mass and stiffness matrices. The estimation of impact forces and

states show fair robustness against moderate mass and stiffness deviations.

A short case study on the offshore Hanko channel marker is presented, exposed to moving

sea ice. A finite element model is created, instrumented with a tiltmeter and three

accelerometers. Numerical simulations show identification of ice forces is viable, but

heavily relies on the model representation accuracy.
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Sammendrag
Kraftidentifisering i konstruksjonsdynamikk er et invers problem hvor laster finnes fra

målt konstruksjonsrespons. Hovedformålet i denne avhandlingen er å studere estimer-

ing av kraft og tilstand (forskyvning og hastighet) ved bruk av Kalmanfilter. Opti-

mal kontrollteori og tilstandsrom-modeller presenteres, tilpasset lineær konstruksjons-

dynamikk. Målestøy og unøyaktighet i modeller imøtekommes med innføring av en

stokastisk-deterministisk systembeskrivelse. Eksplisitte kriterier for stabil konvergens i et

diskret tids-invariant filter utledes. En elementmodell sammen med måledata gir via et

utvidet Kalmanfilter forventningsrette estimat av tilstands- og krafthistorikk. Estimatet

er basert på minimum varians i forventet feil.

Numeriske eksempler på et to-frihetsgradsystem viser adekvat effektivitet i filtrering.

Eksperimentell verifisering av metoden er gjort på en fritt opplagt bjelke, instrumentert

med akselerometer og tre strekklapper. Undersøkelsene demonstrerer vellykket identi-

fisering av støtkrefter både med kolokaliserte og ikke-kolokaliserte sensorer. Tilhørende

tilstandsestimat har høy nøyaktighet. Effekten av å redusere antall målinger studeres. I

en minimal konfigurasjon (ett akselerometer og én strekklapp) er identifiseringen fortsatt

analytisk stabil, men resultatene er signifikant forringet, selv med kolokaliserte sensorer.

Videre undersøkes påvirkningen av modellfeil på resultatene. Manipulering av masse- og

stivhetsmatrisene utføres ved bruk av tilfeldig støy. Filteret viser robusthet mot modellfeil

av moderat størrelse, estimert støtkraft samt tilstand er i liten grad påvirket.

Til slutt presenteres en saksstudie av leilykten Hanko utenfor Finlands kyst, utsatt for

krefter fra is i bevegelse. En elementmodell etableres, instrumentert med ett tiltmeter og

tre akselerometer. Numeriske simuleringer viser at identifisering av iskreftene på lykten

er mulig, men er svært avhengig av elementmodellens nøyaktighet.
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ŝk|k−1 Prior (prediction) estimate of s
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Chapter 1

Introduction

1.1 Motivation for research

Identification of loads is an area of interest within the field of structural dynamics. Struc-

tural design and related codes, dynamic analysis, risk and reliability assessment all rely

upon knowledge and characterization of external loads. Loads from wind, ice, waves,

earthquake, impact forces and vehicle/bridge interaction are cases receiving attention in

the academic scene. The past fifty years have seen increasing research and advancement in

techniques. Measuring loads directly is often not feasible due to structure size, large force

magnitudes and practical instrumentation difficulties in general [1, 2], whereas measuring

structural response is far more convenient. This opens up for the problem of identifying

loads using measured response, which comprise the core matter in this dissertation. This

thesis is written in collaboration with international research center SAMCoT (Sustain-

able Arctic Marine and Coastal Technology). Ice mechanics comprise an entire field of

civil engineering, dealing with ice-structure interaction. Offshore structures located in

Arctic zones face challenges being exposed to sea ice in motion. With Arctic exploration

and development advancing, especially in the interest of the hydrocarbon resource in-

dustry, there is a desire to study and understand the behavior of structures subjected

to ice actions. This calls for identification of ice loads, playing an important role in the

ice-structure analysis. Observational studies have been performed worldwide on Arctic

structures, but many related issues are not fully understood and remain uninvestigated.
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CHAPTER 1. INTRODUCTION

1.2 Scope of thesis and approach to study

In the next chapter we aim to derive and present a comprehensive theoretical basis for

the methods to be applied later. We also seek to review how the general theory adapts

to structural dynamics, currently not extensively explored. This will be followed by

numerical and experimental studies of force identification. The methods will be stud-

ied meticulously to gauge and refine their performance. The combined theoretical and

experimental findings should make important contributions to the current understand-

ing. The ultimate goal is to perform simulations of ice force estimation on the Hanko

channel marker, located in the Gulf of Bothnia. Despite the existence of interdiscipline

schemes coupling ice material models and structural dynamics, detailed considerations of

ice behavior are disregarded. Research on ice material mechanics is left for others, rather

focusing on the structural aspect. For this reason most of the theory and methods will

generally apply to any force identification, regardless of its nature. The author hopes the

methods can be further developed and new results unfolded. If techniques prove applica-

ble, they could be employed on a diverse range of dynamic cases. Methods are naturally

of greater value if applicable to a broader field of utility.

This thesis will cover theory from the field of optimal control and state-space models,

which may be unfamiliar to structural engineers. This field has existed about 50 years

and during this time been developed to be suitable for a variety of applications, in the

later years also structural dynamics. The state-space formulation has advantages making

it especially suitable for integrating classical linear dynamics with stochastic features.

The methods to be presented are mostly based on the work of others, although some

new ideas will be explored upon. The bulk part of the methods can be straight forward

implemented, but detailed usage and fine tuning requires a comprehensive understanding

of the underlying theory. This especially applies to their statistical foundation. Even

though much of this part is not directly discussed in analysis, a deep comprehension will

nevertheless provide a more solid platform for decision-making, improving algorithms and

assessment of results. Much the work effort lies in reviewing the fundamental basis. Since

most civil engineers, including the author, do not have an inherent background in sta-

2



1.2. SCOPE OF THESIS AND APPROACH TO STUDY

tistical approaches to engineering, stochastic processes and state-space problems, these

subjects will be elaborated upon thoroughly in the theory. The reader is assumed to al-

ready be familiar with conventional mechanics and structural dynamics. Less explanatory

emphasis is given on these topics even though their importance remains vital.

3
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Chapter 2

Theory

2.1 The inverse problem and identification techniques

The idea of force identification is using structural response combined with a system

model to find loads. This is known as an inverse problem, in contrast to the classic

design case of finding response from a given load, called a forward problem. Inverse

problems receive much interest in general engineering and have been studied thoroughly,

as analogous problems appear in other fields, e.g. heat conduction and signal processing.

The inversion requires a mathematical relation connecting the measured quantities and

the unknown variables, often via differential equations. Another kind of inverse problem,

namely system identification from known response and force will not be covered here. In

addition to the response, the system model and boundary conditions will throughout this

thesis generally be treated as known.

Principles of classic force identification are briefly mentioned here. Methods can usually

be divided into time domain methods and frequency domain methods. Formulations in

the time domain are usually done by equilibrium equations on and relies on time sampled

observations [3]. Deconvolution of an impulse response integral can be employed to solve

for a force history. Conventional deconvolution is severely prone to computational erro-

neousness [4], thus requiring improved methods to give satisfactory results. A frequency

domain solution is classically obtained by a Fourier transformation. This assembles a

frequency response function (FRF) matrix, relating system response to input load fre-

5



CHAPTER 2. THEORY

quencies. The output, namely structural response, is given together with its frequency

spectrum. From this, one can apply the inverse FRF matrix to find the corresponding

force spectrum. An inverse Fourier transform then produces the force history. Unfortu-

nately, the FRF matrix inversion is generally ill-conditioned, especially close to resonant

frequencies [5]. In fact, the inverse problem itself is in practice often ill-posed, and ordi-

nary numerical methods fail to treat the problem sufficiently. A variety of measures for

stability improvement have been developed, but these fall outside the scope of this thesis.

In classical mechanics theory, which can be regarded as deterministic, one has absolute

belief in measurements and the system description. That is, their values are believed

to be unconditionally true. Stochastic methods rather employes a statistical description

of the system, in practice opening for the possibility of imperfections and considering

their influence on the solution. As a consequence, variables are not necessarily of abso-

lute value, but instead defined by some statistical properties. The concept of noise can

then be introduced and handled adequately. Later, this concept will be integrated by

coupling classical dynamics with statistics arriving at a so-called stochastic-deterministic

description of a problem.

2.2 State-space models

2.2.1 Introduction

State-space techniques are a branch of optimal control, a field of engineering analyzing

dynamic systems with inputs and outputs. First developed in the 1960s, state-space tech-

niques have since successfully been adapted to numerous applications, among others clas-

sical mechanics, electromechanics, cybernetics, biology, fluid mechanics and economics.

The state-space representation operates by taking in and interpreting system inputs, then

manipulating the system by imposing upon it a desired behavior through a control phase,

ultimately leading to system outputs. In the field of structural dynamics, system outputs

often include displacements, rotations, strains or stresses and their time derivatives, while

inputs are forces or moments. The control phase algorithm is comprised of or derived

6



2.2. STATE-SPACE MODELS

from a set of differential equations or relations describing system dynamics. Examples of

this include force equilibrium or Euler-Lagrange equations. Although methods for dealing

with non-linearity exist, the content of this thesis is limited to linear systems.

The majority of notations and conventions of the entire state-space formulation to be

presented are adopted and patterned after Lourens [6].

2.2.2 Classical state-space formulation

The set of equilibrium equations in a linear dynamic system with nDOF degrees of freedom

(DOFs) is commonly formulated as:

Mü(t) +Cu̇(t) +Ku(t) = f(t) = Spp(t) (2.2.1)

The nDOF -dimensional vector u contains the DOFs, generally displacements or rotations.

M , C and K represents the mass, damping and stiffness matrices. The external force f

is factorized into Sp and p. Sp is a time-independent force application matrix assigning

the force histories contained in p to the designated DOFs. This is of convenience allowing

p later to be identified having less elements than f . The number of unknown forces is

taken as np.

The state vector x(t) defined in Eq. (2.2.2) can be regarded as information on the system

behavior at an instant. Its dimension ns is 2 × nDOF . The relations in Eq. (2.2.3) can

be derived from Eq. (2.2.1) together with the redundant equation Mu̇−Mu̇ = 0. The

symmetric matrices P and Q in Eq. (2.2.4) contains system properties only.

x(t) =

u(t)

u̇(t)

 (2.2.2)

P ẋ(t) +Qx(t) =

Sp
0

p(t) (2.2.3)
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CHAPTER 2. THEORY

P =

C M

M 0

 , Q =

K 0

0 −M

 (2.2.4)

Solving for ẋ(t), the state equation on continuous form Eq. (2.2.5) is obtained. Ac andBc

in Eq. (2.2.6) follow from blockwise matrix inversion. Upon inspection one now sees the

original system Eq. (2.2.1) of nDOF second order ordinary differential equations (ODEs)

is transferred into a system of 2× nDOF coupled first order ODEs [7].

ẋ(t) = Acx(t) +Bcp(t) (2.2.5)

Ac =

 0 I

−M−K −M−C

 , Bc =

 0

−M−Sp

 (2.2.6)

Accelerations, velocities and displacements are assumed to be measured at discrete loca-

tions and collected in the vector y(t), linked to original DOFs through selection matrices

Sa,Sv and Sd as stated in Eq. (2.2.7). Options of including strain gauge (SG) measure-

ments through finite element (FE) strain-displacement formulations are feasible if strain is

linear in displacements, supported by both Euler-Bernoulli and Timoshenko beam theory.

Measurements are also referred to as observations. The number of system observations

(and the dimension of y) is nd.

y(t) = Saü(t) + Svu̇(t) + Sdu(t) (2.2.7)

Rewriting Eq. (2.2.1) and (2.2.7), the observation equation on continuous form Eq. (2.2.8),

along with (2.2.9) are obtained. The equation pair Eq. (2.2.5) and (2.2.8) together con-

stitute the continuous state-space representation of a linear system. The block diagram

in Fig. 2.1 shows a graphic interpretation of the time-continuous progression. Intelligi-

bly, the state-space formulation merely provides the state variables as function of time

(output) for a given initial state and force history (input). The calculated state variables

can then serve as an initial state at an advanced point in time, repeating the process.

y(t) = Gcx(t) + Jcp(t) (2.2.8)
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2.2. STATE-SPACE MODELS

Gc =
[
Sd − SaM−K Sv − SaM−C

]
, Jc = SaM

−Sp (2.2.9)

Bc

∫
Gc

Jc

Ac

p(t) ẋ(t) x(t) y(t)

x0

+

+ ++

Figure 2.1: Block diagram of continuous state-equation process. Created from Williams II and

Lawrence [7].

Numerically, a discrete formulation is advantageous, since measurements in practice must

be sampled at distinct points in time. Dividing the time domain into finite time incre-

ments ∆t, the state response at time tk = k∆t can be recursively calculated from a known

force history and specified initial conditions. The subscript notation rk = r(tk) for time-

varying discrete variables are hereafter used. In existing literature Eq. (2.2.5) is often

solved arriving at the state response expressed in Eq. (2.2.10), or an equivalent form.

This discretization assumes zero-order hold on p (i.e. forces is kept constant throughout

each time step). This can unfortunately prove inaccurate if the sampling frequency is low

compared to the force rate, e.g. in the case of an impact load. As measure of improvement,

we put forward a solution based on a first order hold on p, whose complete derivation

is done in Appendix A. The solution in Eq. (2.2.11) effectively adds a correction term

proportional to the average force rate.

xk+1 = Axk +Bpk (2.2.10)

xk+1 = Axk +Bpk + F (pk+1 − pk)
∆t

(2.2.11)

A = eAc∆t , B = (A− I)A−1
c Bc , F = A−1

c (B −Bc∆t) (2.2.12)

9
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yk = Gxk + Jpk , G = Gc , J = Jc (2.2.13)

Computational load is virtually unaffected since the matrix F need only be calculated

initially. The notation eZ is the matrix exponential ∑∞k=0
Zk

k! , converging unconditionally.

Using the matrix exponential for solving is preferable over other methods such as central

differences or Newmark schemes, as it proves to give better accuracy and stability [6]. The

discrete observation history in Eq. (2.2.13) attains a form congruent to the continuous

case.

2.2.3 Stochastic-deterministic considerations

In a fully deterministic system, the output can be calculated exactly (up to numeric

precision) given an initial state. In reality this approach fails as systems cannot be

considered fully deterministic. All factors influencing the system cannot be identified,

thus rendering the system description erroneous. The ability to handle noise is also of

great importance, as all type of measurements will be contaminated with noise or have

uncertainties. This advocates the introduction of a stochastic-deterministic model.

A legitimate presumption is noise not showing any predictable dynamic pattern, as this

would indicate linear dynamic relations ignored in the system description [8]. Noise

is therefore taken be white, i.e. its frequency spectrum is completely flat. To satisfy

unpredictability, noise is assumed to arise from a stochastic process. The most common

noise characterization is zero mean Gaussian (normal) distributed, also called Gaussian

white noise. Mathematically, a discrete white noise vector ε can be expressed as [9]:

E[εk] = 0

E[εkεTl ] =


0 k 6= l

Σ k = l

This translates as zero mean and zero autocovariance, except for the case of zero time-

shift. Furthermore, Σ is often adopted as diagonal only [10, 11], implying no correlation

between the individual elements of εk within time k.

10



2.2. STATE-SPACE MODELS

The stochastic-deterministic state-space system Eq. (2.2.14) and (2.2.15) are identical to

the classical discretization Eq. (2.2.11) and (2.2.13), except for added noise. The model

noise wk added to the state accounts for the fact that the system description is imperfect.

Similarly, υk is the observation noise, attributed to inaccuracies in measurements. These

noise processes are white and accordingly have the properties stated above. Their vector

covariances are defined as E[wkw
T
k ] = Q and E[υkυTk ] = R.

xk+1 = Axk +Bpk + F (pk+1 − pk)
∆t

+wk (2.2.14)

yk = Gxk + Jpk + υk (2.2.15)

2.2.4 Augmented state-space formulation

Up till now, the input forces has been treated as well-known. Since the aim is to identify

forces, the augmented state-space model is introduced, as presented by Lourens [6]. The

classic state and the force together constitute the augmented state vector xa as expressed

in Eq. (2.2.16). The change in force over one time step is assumed to be a realization

of the white noise process ηk, with vector covariance E[ηkηTk ] = S. Otherwise known

as a Gaussian random walk, the precept in Eq. (2.2.17) allows for an easy probabilistic

characterization, but has shortcomings. The force is not random in a purely statistical

sense, but rather a realization of underlying processes with a distinct pattern governed

by laws of psychics [4].

xak =

xk
pk

 (2.2.16)

pk+1 = pk + ηk (2.2.17)
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Ga
xa
k+1 yk+1+

ζk

+

xa0

υk+1

+

Delay
xak

Observation noise

+
Aa

+

Model noise

+
Aa

Figure 2.2: Block diagram of time-discrete stochastic augmented state system.

The transformation from the classic to the augmented model unveils the new time discrete

stochastic relations Eq. (2.2.18) and (2.2.19), also schematized in Fig. 2.2.

xak+1 = Aax
a
k + ζk , Aa =

A B

0 I

 , ζk =

wk + F
∆t
ηk

ηk

 (2.2.18)

yk = Gax
a
k + υk , Ga =

[
G J

]
(2.2.19)

The covariance properties of the augmented state noise ζk is collected in the matrix Qa:

Qa = E[ζkζTk ] =

E

 F
∆t
ηk +wk

ηk

 [( F
∆t
ηk)T +wT

k ηTk

]
=

Q+ F
∆t
S F T

∆t
F
∆t
S

S F T

∆t
S

 (2.2.20)

Even though ηk and wk are assumed uncorrelated, the first order hold on p results in

the augmented state noise linked to both the model noise and the force noise. It should

be noted this also implies greater uncertainty in the augmented state than without the

F -terms. To obtain the zero order hold, F can be set to 0 and all equations will still

apply as they stand. While the presented system descriptions are mathematical correct,

they are only accurate up to the trueness of their presumptions. If the system behaves

different from the statistical description, satisfactory results may not be obtained. Q, R

and S can without difficulties be assumed to vary with time, they can e.g. for time tk be

taken as functions of states at tk−1, but this was not pursued here.
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2.3. ESTIMATION THEORY

2.3 Estimation theory

2.3.1 Prediction, filtering and smoothing

Consider a dynamic system with measurements available. The system exhibits causal

behavior, i.e. system outputs at any instant do not depend on subsequent inputs, as true

for the state-space model. The states and measurements are noisy containing random

contributions assumed to arise from some probability distribution. Henceforth the system

is unpredictable, as strictly its behavior can only be described statistically. Stochastic

interference renders attempts of exact calculations futile. An understanding of the gov-

erning probabilistic processes is therefore important. Based on this knowledge, estimates

can be calculated. In this context, an estimate is a ”best guess”, meaning it is the most

correct gauged by some set criterion. In practice minimization of a cost or error penalty

function, or maximization of an objective function is used.

tk−1 tk tk+1

Smoothing

Filtering

Prediction

Information availability

Time

Figure 2.3: Three fundamental estimation concepts.

Prediction, filtering, and smoothing are fundamental concepts in estimation theory, here

defined according to Anderson and Moore [12]. A graphical interpretation is showed

in Fig. 2.3. Let s(t) be a time-dependent variable estimated from noisy measurements

b(t) (s and b not representing the same quantity), assuming a discretized time domain.

Filtering is the technique of estimating s(t) using information (state and measurements)

right up to and including time t. Along the same line, a prediction is a forecast estimate,

where s(t) is estimated using only information up to time t− θ (θ > 0). Prediction has

the obvious major advantage of peeking into the future, but comes at the cost of less

accuracy, especially dealing with high noise. Analogously, weather forecasts can in effect

predict a few days ahead, but predictions months into the future will be too inaccurate for

most practical purposes. Smoothing is the distinct opposite of prediction. In a smoothing

problem, s(t) is estimated using information up to time t + τ (τ > 0). In other words,
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real time system monitoring is not possible, hindered by a time delay τ . More accuracy

is however expected with availability of additional measurements. Considering noise, the

extra information provided (i.e after t) is not redundant even if the system is causal.

While smoothing can be a powerful tool, its applications is not further addressed here.

2.3.2 Prior and posterior estimate

The state-space model together with the Kalman filter (presented below) provides esti-

mates. An estimate of a variable s is denoted by ŝ. s can represent physical quantities

such as displacements and forces or abstract quantities such as standard deviation or

mean. In estimation, s is taken to be a random variable even though it represents a

quantity classically considered absolute. Estimates of random variables will depend on

observations sampled in time. The prior (latin: a priori) estimate predicts state values

at time step k given observations up to the previous step k − 1. The posterior (latin:

a posteriori) estimate is a refinement or updated value of the prior estimate, using ob-

servations extending up to the current step k. The subscript notation ŝk|k−1 and ŝk|k

denotes the prior and posterior estimate of s at step k, respectively. Conforming with

the preceding section, the prior and posterior estimates are one-step prediction and filter

estimates, respectively. Indices can be shifted linearly without loss of generality. While

other conventions exist in literature, the use of the aforementioned notation will be kept

consistent hereafter.

2.4 The Kalman filter

2.4.1 Derivation of the filter equations

The Kalman filter was developed in early 1960s by primarily Rudolf E. Kálmán [13]. To

initiate the derivation, assume the linear relation:

x̂ak|k = x̂ak|k−1 +Lk(yk − ŷk) , ŷk = Gax̂
a
k|k−1

The interpretation is coherent: the posterior estimate equals the prior estimate plus an
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added correction term. This correction includes a weighing matrix Lk and the innovation

(yk−ŷk). The innovation tells how much the real observation yk differs from our predicted

observation ŷk. ŷk is an unbiased estimate taken from Eq. (2.2.19), remembering the zero

mean noise assumption. The weighing matrix is a measure of how much we trust our

observations. An optimal weighing is derived later this section.

We aim for an unbiased estimate of xak, i.e. E[xak − x̂ak|k] = 0. Gauging the error of the

posterior estimate, conveniently denoted ef k, it is simply:

ef k = xak − x̂ak|k

= xak − [x̂ak|k−1 +Lk(yk −Gax̂
a
k|k−1)] (using defn. of posterior estimate)

= xak − [x̂ak|k−1 +Lk(Gax
a
k + υk −Gax̂

a
k|k−1)] (using defn. of measurement)

= (I −LkGa)(xak − x̂ak|k−1)−Lkυk

The error covariance matrix defined as Pk|l = E[(xak − x̂ak|l)(xak − x̂ak|l)T ] contains the

covariance of estimate errors, where the estimates x̂k|l at time step k are found using

observations up to time l. Along the covenance stated in the Section 2.3.2, Pk|k−1 and

Pk|k must equal the covariance of prior and posterior estimate errors, respectively. Pk|k
can be expressed by Pk|k−1 via recursive manipulation:

Pk|k = Cov[xak − x̂ak|k]

= Cov[(I −LkGa)(xak − x̂ak|k−1)−Lkυk]

= (I −LkGa) Cov[xak − x̂ak|k−1](I −LkGa)T +LkCov[υk]LTk

= (I −LkGa) Pk|k−1(I −LkGa)T +LkRLTk

= Pk|k−1 −LkGaPk|k−1 − Pk|k−1G
T
aL

T
k +LkGaPk|k−1G

T
aL

T
k +LkRLTk

The error of the prior estimate is denoted epk. Repeating the procedure above (and here
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evaluated at time k + 1) it can be written as:

epk+1 = xak+1 − x̂ak+1|k

= Aax
a
k + ζk −Aax̂

a
k|k (using the defn. of exact state and prior estimate)

= Aa(xak − x̂ak|k) + ζk

And its error covariance is accordingly:

Pk+1|k = Cov[xak+1 − x̂ak+1|k]

= Cov[Aa(xak − x̂ak|k) + ζk]

=AaCov[xak − x̂ak|k]AT
a + Cov[ζk]

=AaPk|kA
T
a +Qa

In finding an optimal Lk, one must define a norm for gauging the quality of an estimate.

The Kalman filter aims to find a minimum mean square error (MSE) of the posterior

estimate, equivalent to minimizing the diagonal sum of E[(xak − x̂ak|k)(xak − x̂ak|k)T ] =

E[ef kef
T
k ] or min tr(Pk|k). This is also referred to as a least squares (LS) solution or

minimum-variance unbiased (MVU) estimator. By searching for a minimal point for Lk,

hereby called the Kalman gain, is found:

∂tr(Pk|k)
∂Lk

= −2(GaPk|k−1)T + 2LkR+ 2LkGaPk|k−1G
T
a = 0

Lk = Pk|k−1G
T
a [GaPk|k−1G

T
a +R]−1

Substituting Lk back into Pk|k, a simplification is obtained:

Pk|k = Pk|k−1 −LkGaPk|k−1

To find a prior estimate, we resort to Eq. (2.2.18), erasing the noise term of zero ex-

pectancy:

x̂ak+1|k = Aax̂
a
k|k
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This completes the derivation and the equations forming the entire Kalman filter algo-

rithm are assembled below.

Lk = Pk|k−1G
T
a [GaPk|k−1G

T
a +R]−1 (2.4.1a)

x̂ak|k = x̂ak|k−1 +Lk(yk −Gax̂
a
k|k−1) (2.4.1b)

Pk|k = Pk|k−1 −LkGaPk|k−1 (2.4.1c)

x̂ak+1|k = Aax̂
a
k|k (2.4.2a)

Pk+1|k = AaPk|kA
T
a +Qa (2.4.2b)

The equations are separated into two sets: measurement update Eq. (2.4.1) and time

update Eq. (2.4.2). With this, the predictor-update process of estimation should be

more apparent, and is visualized in the diagram in Fig. 2.4. The prior estimate is cal-

culated first, in effect propagating system dynamics one step ahead in time. Further

measurements is then applied in the update, optimizing the solution yielding the poste-

rior estimate. The posterior estimate is optimally unique in minimizing the MSE [12].

Uniqueness of the solution is a general condition for well-posedness of inverse problems

[14]. For reasons of summing non-coinciding units (e.g. m, m/s and N), the MSE of

the augmented state must be considered dimensionless. Different formulations can be

found in literature and indexes may be shifted. The Kalman filter usually presented in

a non-augmented form employing a Kalman gain denoted Kk with the linear connection

Kk = AaLk. The approach presented here is fully equal by means of optimization.

Lk
+

Ga

–

yk x̂a
k|k

x̂a
k|k−1

Aa
x̂a
k+1|k

Delay

Posterior
estimate

Prior
estimate

+ Innovation Correction
+

Kalman gain

Observation

x̂a
−1|0

Initial
estimate

Figure 2.4: Block diagram of Kalman filter implementation. Calculation ofLk is done externally.
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2.4.2 Filter considerations

An advantage of the Kalman filter is its explicit formulation and the algorithm having

a constant number of computations in each step, avoiding the need for iterations to find

an optimal estimate. The recursive form is also beneficial, not directly using all available

data, allowing for easier implementation and faster calculation.

Regarding initial values, it is evident P0|−1 and x̂a0|−1 must be supplied to initiate the

algorithm. Chan et al. [15] suggested letting P0|−1 be of high magnitude, diagonally

∼ 1010, effectively treating errors in the first steps as large and imposing the filter to

ignore the first estimates. With an increasing number of observations, the initial estimate

becomes less important. Running short time series, the estimation is more sensitive to

failure in supplying a correct initial estimate. As the number of steps approaches infinity,

the results become independent of the initial estimate, provided that P0|−1 is positive

definite [8] (sufficiently satisfied by a diagonal matrix).

One notable case is that of high observation noise: In the limit R→∞ the Kalman gain

Lk → 0, so the measurement update has zero influence. The opposite is also true. If

υk = 0 orR = 0 the the observations is trusted more. Working with a set of observations,

one must therefore try to make an educated guess about noise magnitude. Calibration

and characterization (white or colored) of noise can be done by sampling during constant

inputs [10]. A simple verification of the Kalman filter performance can be done by looking

at the innovation yk −Gax̂
a
k|k−1 [16]. This should be a white process because failure to

predict measurements exactly stems from white noise itself. If this fails to be true, there

are indications of design errors. Looking for peaks in a spectral density chart can reveal

interference at certain frequencies not covered in the white noise description.

Another point worth noting is x̂ak|k depends on yk, but Pk|k does not, meaning the error

covariance can be calculated before the filter for estimates is run (referred to as an offline

calculation) [12]. The role of the error covariance can be further investigated. The filter

can reach a steady state, where the covariances Pk|k and Pk|k−1 does not change for each
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iteration. The same is therefore true for the Kalman gain by its definition in Eq. (2.4.1a).

It might be convenient finding the steady state matrices prior to analysis, providing the

filter with the steady state matrix initially for optimal performance. With the assumption

Pk|k = Pk|k−1 ≡ P∞ and by using Eq. (2.4.2b), one arrives the so-called discrete Lyapunov

equation [16]:

AaP∞A
T
a − P∞ +Qa = 0

The associated solution P∞ =
∞∑
m=0

(Aa)m Qa (AT
a )m is only valid if Aa is stable. This

requires Aa having eigenvalues strictly inside the unit circle [8], which is violated by

the fact that Aa always has np eigenvalues equal to 1, associated with the unknown

forces [6]. While this is not generally the case for the non-augmented A, the augmented

system must be considered unstable. A weaker assumption is Pk|k 6= Pk|k−1, but both

still asymptotically reaching their respective steady state values. From this the so-called

discrete algebraic Riccati equation (DARE) is derived (see Appendix B):

Qa − Pk|k−1 +AaPk|k−1A
T
a −AaPk|k−1G

T
a (GaPk|k−1G

T
a +R)−1GaPk|k−1A

T
a = 0

which can be solved for Pk|k−1, followed by Pk|k from Eq. (2.4.1c). In Appendix B we

show that the existence of an asymptotically steady solution, and hereby a bound on the

expected error, requires the following three criteria to be satisfied:

1. rank

A− λI
G

 = ns , where λ is an eigenvalue of A and |λ| ≥ 1.

2. The system (A,B,G,J) must have no transmission zero equal to 1.

3. nd ≥ np

We also argue that the first criteria always will be fulfilled in a structural dynamic system.

Not only for performance optimization, covariance matrices also reveals the expected er-

rors, which prior to filtering can indicate whether or not satisfactory accuracy is obtained.

In solving in a linear system Zx = b, Z−1 need not be calculated explicitly. Solving

numerically for x will generally give better numerical stability [10]. This principle is
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done is all MATLAB implementations by the syntax x = Z \ b. The performance of an

implemented Kalman filter can still suffer for a number of reasons. Program round-off

errors, large matrix dimensions, high condition numbers and numerical inversion problems

are some well-known issues [10]. The latter is especially true if one has little confidence

in the initial error estimation, so P0|−1 � R, leading to zero Kalman gain if precision

is poor. Loss of symmetry in covariance matrices is a sign of numerical instability. To

induce stability, methods of matrix decomposition or factorization is often introduced.

These issues and related remedies are however not specifically addressed any further,

other than keeping in mind possible effects.

2.4.3 Probabilistic origins and relation to Bayesian statistics

A justification for choosing the Kalman filter optimization as minimum MSE is the con-

nection to maximum likelihood estimation (MLE). Suppose data is sampled from a joint

probability density function (PDF) pθ, a function of the system parameter set θ. MLE

then resolves a suitable set θ such that the likelihood of the observed realizations is maxi-

mized. In other words, a model is formed on basis of agreeing with sample data. Provided

that the uncertainties (noise) is Gaussian, the MSE approach gives the same result as a

MLE approach [17]. In the current setting, the parameter set defining the joint PDF are

properties of the state variables and the sample data is observations.

The Kalman filter is also related to Bayesian statistics, a field of mathematics dealing

with conditional probabilities. Suppose x and y are random variables, dependent on each

other. With information on y available, the PDF of x is modified. For scalars, with f

being a joint PDF, this is often written:

fX|Y (x|y) = fX,Y (x, y)∫
S fX,Y (x, y) dx = fX,Y (x, y)

fY (y) (x ε S , fY (y) 6= 0)

The PDFs of x before and after this information is provided is called the prior and

posterior PDF. In the Kalman filter, the measurement update is conditioned on the

information from the current timestep. Since x̂ak|k is linear in the Gaussian variable yk,

x̂ak|k will itself be Gaussian [12, 16]. x̂ak|k is in reality a conditional mean estimate (i.e. first
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non-central moment of the posterior PDF), statistical optimal in estimating the state by

minimizing the MSE. For scalars, this yields:

x̂ = E[X|Y = y] =
∫
S
x fX|Y (x|y) dx =

∫
S
x
fX,Y (x, y)
fY (y) dx

This way of constructing a posterior PDF in light of new information is also called

recursive Bayesian estimation. It can be shown the conditional mean minimizes the

expected Bayes risk, where the expected error penalty relies on the error squared [16, 18].

Since estimates are generated from PDFs, one could construct confidence intervals rather

than a single estimate value, also expressing the estimate uncertainty. The posterior

and prior estimate are both unbiased conditional mean estimates. It can be shown that

the best linear estimator, in terms of minimizing the expected squared error, is always

unbiased [10]. In a linear problem with Gaussian variables, a probabilistic approach

with recursive Bayesian estimation therefore becomes equivalent to the Kalman filter.

Bayesian estimation can also be formulated on a general case with arbitrary distributions,

whose result is more complicated and computational heavy. The most relevant PDFs are

summed up below [18], where ya:b means the observation sequence {ya · · ·yb}.

p(xak|xak−1) = N (Aax
a
k−1,Qa)

p(yk|xak) = N (Gax
a
k,R)

p(xak|y1:k−1) = N (x̂ak|k−1,Pk|k−1)

p(xak|y1:k) = N (x̂ak|k,Pk|k)

To visualize statistics of the filter process, a scalar example is presented. We try to

estimate a quantity x, initially equal to 10 and changed each step with a noise contribution

∼ N (0, Q), where Q = 5 × 10−3. This example is overly simple and cannot directly be

related to force identification applications, but demonstrates some statistical features of

the Kalman filter. (Note: here, in the absence of an input, the augmented form is not

really necessary). Also, this gives a helpful graphical illustration of PDFs, which is less

viable for systems with more variables. Direct unbiased observations of x are provided,

called y. These are contaminated with white noise, y ∼ N (x, 1.5), so R = 1.5. To give
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an useful interpretation, let x be a 1D position changed by some random factor and y

noisy coordinate readings. Initial estimates are set to x0|−1 = 6 and P0|−1 = 1. The filter

process over 50 samples is visualized in Fig. 2.5 and 2.6. The filter estimate starts too

low due to the biased initial estimate, then approaching the true value. The uncertainty

(Pk|k) decreases by more samples, converging towards Q
2 (
√

1 + 4R
Q
− 1) = 0.0841.
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Figure 2.5: Estimation process of x.
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Figure 2.6: Posterior estimate error covariance.

Of particular interest is the PDFs shown in Fig. 2.7. Note the change in uncertainty

(bell curve height) over both step update and over multiple steps. The posterior PDF is

more always more narrow than the prior PDF, meaning the uncertainty in our estimate

is reduced with receiving a measurement. This does not however guarantee the posterior

estimate always is more correct than the prior, we only expect it to be more correct by

means of minimum MSE. Looking at step k = 10, we arrive at such a situation, with the

posterior estimate moving further away from the true value. This is caused by the quite

low observation y10 = 7.923, fooling the estimate update by high (negative) noise. The

statistical description of the system must naturally be as accurate as possible. Providing

false information can damage the filter performance, as confidence in the estimates is

based on the system behaving in accordance with its statistical description provided

by the analyst. This is particularly important for noise covariance matrices. Notably,

the solution is generally less sensitive to changes in Q and R than compared to S [6].

For practical purposes, several parallel observations in desired. Statistically, multiple

observations having particular high noise at the same time is less likely than just one
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Figure 2.7: PDFs provided by the Kalman filter at three different steps. The (conditional mean)

estimates are the values associated with the vertical lines.

observation encountering the same noise. Multiple measurements should therefore give

better results.

2.5 Requirements for sufficient identification

2.5.1 Observability

Observability is a relevant concept in states-space problems. It concerns whether one are

able to reconstruct the states uniquely from an observation sequence. This is influenced

by the number and type of observations and their location in the system. A general re-

quirement for observability in the non-augmented state-space problem can be formulated

as [6]:

rank



G

GA
...

GAns−1


= ns

where it is recalled ns = 2 × ndof is the dimension of the (non-augmented) state vector.

This is normally not achieved in most structures, as it would require a great number of
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sensors carefully distributed. In practice this means all modes cannot be detected. In the

particular case of force identification, the remaining states (i.e. displacements and veloci-

ties) are of less interest. If the number of forces (np) do not exceed the number of modes

excited, and at least np modes are distinguishable from the acceleration measurements, a

relaxed observability criteria is fulfilled [19]. The number of accelerometers must also be

equal or greater than np. These results stems from the rationale that only modes excited

by the force are of importance in identification.

J also plays an active role, as the magnitude of its elements directly signify how much

the unknown forces influences the observations through Eq. (2.2.13) [6]. Accelerometers

collocated with the forces will generally give the best results. Furthermore, they should

not be placed at zero-points of a mode. J is contained in Ga, whom the Kalman gain Lk
is a multiple function of, heightening the effect of its magnitude. This possibly poses a

numerical problem, specially in through the matrix inversion. We look at an identification

case of a single force in located in DOF no. p with an arbitrary number of accelerometers

j, placed in DOFs no. a1 . . . aj. Repeating Eq. (2.2.9), J written out reads:

J = SaM
−Sp =


0 · · · 11,a1 · · · 0

...

0 · · · 1j,aj
· · · 0





M−1
1,1 M−1

1,2 · · · M−1
1,nDOF

M−1
2,1 M−1

2,2 · · · M−1
2,nDOF

... ... . . . ...

M−1
nDOF ,1 M−1

nDOF ,2 · · · M−1
nDOF ,nDOF





0
...

1p,1
...

0



=


0 · · · 11,a1 · · · 0

...

0 · · · 1j,aj
· · · 0




M−1

1,p
...

M−1
nDOF ,p

 =


M−1

a1,p

...

M−1
aj ,p

 =
[
M−1

p,a1 · · ·M
−1
p,aj

]T

For a simply supported beam with one force fixed midspan and one accelerometer, the

scalar value of J = M−1
a,p is shown in Fig. 2.8. This confirms the proximity of the ac-

celerometer is important. Since M−1
a,p = M−1

p,a , the accelerometer and force nodes can

be swapped yielding the same numerical result. Moreover, a finer mesh will seemingly

increase influence with collocated sensors, but deteriorates rapidly with increased gap.
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Figure 2.8: J on a simple supported beam with respect to varying accelerometer placement,

with a single unknown force fixed midspan. The beam is for simplicity constructed by 2D 4

DOF Euler-Bernoulli elements. End nodes are omitted.

From the linearity in the logarithmic plot, the decrease in J is close to exponential.

A finer mesh will however allow for an increase in possible sensor and force locations,

and likely give a better model representation. There exists a possibility that a biased

mesh, i.e. refined near sensors or force locations, generally will give better results without

having to refine the whole model, thus not substantially increasing computational load.

Development of such an optimal mesh distribution is uncharted area.

2.5.2 Stability

The system must have sufficient stability for the system inversion to be unique. The

stability depends on the so-called transmission zeros λj [6], satisfying:A− λjI B

G J


x0

p0

 =

0

0



To demonstrate why this is destructive, note that:

Ax0 +Bp0 ≡ x1 = x0λj

Here, Eq. (2.2.10) and not (2.2.11) have been used since pk+1 − pk is treated as noise

term in system inversion. Assuming a force on the form pk = p0λ
k
j (k ≥ 0), the further
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response reads:
x2 = Ax1 +Bp1

= Ax0λj +Bp0λj

= x0λ
2
j

...

xk = x0λ
k
j

and for observations (Eq. (2.2.13)):

yk = Gxk + Jpk

= Gx0λ
k
j + Jp0λ

k
j

= (Gx0 + Jp0)λkj

= 0

This can be interpreted as zero observations despite nonzero force and response. This

clearly poses a problem since this force can be included to any event without influencing

the observational data. Since the presence of such a force cannot be told, uniqueness in

inversion (system reconstructability) is not achieved. If |λj| > 1, the response will grow

unbounded rendering the system unstable. If |λj| < 1, the force and response will converge

towards zero and asymptotic convergence is obtainable. The system is marginally stable

in the case of |λj| = 1, notably occurring if only collocated acceleration data is present,

disenabling identification of static components [19]. By including displacement or strain

measurements the 0 Hz component is restored. Discretization, type and location of

measurements will affect the transmission zeros. Instability is in addition displayed by

increasing tr(Pk|k) [6], accounting for expected errors.

2.6 Current methods and existing research

Numerous offshore light houses and channel markers in the Gulf of Bothnia have been

studied since 1973 to identify ice loads [20]. Methods of analysis mentioned by Bjerkås [20]

include monitoring of structural response and hindcast calculations. Hindcast calculations

involve evaluation of load actions based on structural deterioration or damage assessment
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(e.g. permanent deformations, friction slip or fractures), consequently yielding a max

load and not a time history. This method is therefore of less interest here. Response

measurements is more in line with the methods used in this thesis.

Lourens [6] developed the augmented Kalman filter used throughout this thesis. A nu-

merical simulation of a multiple input multiple output (MIMO) cantilever was presented.

Two simultaneous forces were identified using 10 accelerometers sampling at 10 kHz.

Both estimation of forces and displacement response were found to be good. With in-

cluding strain measurements the results improved, attributed mainly to the removal of

low-frequency (i.e. quasi-static) drift. Experimental validation was performed on a sim-

ply spring-supported beam. The identification was done by a joint input-state estimator,

developed by Gillijns [21]. This can briefly be described as an algorithm structured

as the Kalman filter, but with no assumptions on force characteristics needed. This

opposes the force as a Gaussian random walk introduced in Eq. (2.2.17). R and Q

were constructed from percentages peak values in observation data and states, respec-

tively. Purely deterministic methods were found to perform inferiorly in comparison with

stochastic-deterministic, as expected. Subject to sine loads of multiple frequencies, the

augmented Kalman filter performed similarly to joint input-state estimator, compared

by error root mean square (RMS).

Ma et al. [22] presented a stochastic state-space formulation together with a Kalman filter

finding displacements and velocities. This was accompanied by a separate LS scheme for

estimating time-discrete forces. Sampling at 20 kHz, numerical simulations demonstrated

ability to accurate estimate impulse forces in both single degree of freedom (SDOF) and

multi degree of freedom (MDOF) systems. The same method was repeated by Ma and

Lin [23] on a physical cantilever, treated as a SDOF system. The estimation of periodic

and random excitation forces from displacement measurements were accurate at 6666

Hz sampling. Later, Ma et al. [11] expanded on this, looking into MIMO systems. A

numerical example on a cantilever were performed, identifying continuous harmonic forces

at multiple nodes, triangular and rectangular impulses as well as random forces. In this

formulation, forces at all system nodes were identified, including the ones not subject
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to external loads. This differs from the augmented Kalman filter, where only forces at

certain DOFs are considered, selected through Sp, see Eq. (2.2.1). Disregarding this

principle could potentially, due to noise, lead to getting nonzero forces in nodes known to

be unloaded. Based on the results from the harmonic force, Ma et al. concluded this not

to be of concern. Dealing with wind loads varying in time and space across a structure,

the formulation might be necessary. R and Q were obtained by numerical calibration.

Overall results showed the method to perform satisfactory, be capable of handling noise

and provide accurate estimates.

Wind loads have also been researched in a Kalman filter setting. Hwang et al. [24]

studies loads in a modal space, with a reduced number of modes. Through numerical

demonstrations on both SDOF and MDOF systems, acceleration measurements were

found to give more stable load estimation than displacements or velocities. This was

attributed to noise amplification for the latter in the frequency range above resonance.

The results were little affected by noise levels estimating a random load, but highly

sensitive in the case of a harmonic input.

Hollandsworth and Busby [25] experimented with identification of impact forces on a

cantilever, using a state-space formulation together with a dynamic programming LS

solution. Results showed the best estimation were obtained with the accelerometer close

to the location of the unknown force. Refining the FE model from 10 to 20 elements,

little difference in results were found.

Other identification methods, both in time and frequency domain, can be found in litera-

ture. Many of these are based concepts similar to the ones presented here, including but

not limited to state-space formulations, LS schemes, optimality principles and Kalman

filter variations. These were however not considered relevant enough or outside the pre-

defined scope, and is not discussed here.
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Chapter 3

Analysis and results

3.1 Simulated two DOF mass-spring system

3.1.1 System description

k1

m1

u1 u2

c1

k2

c2

m2

Figure 3.1: Mass-spring system with viscous damping.

A numerical simulation on a two DOF mass-spring system was performed, whose system

properties are listed below and sketched in Fig. 3.1. The simulation aimed to to identify

forces and reconstruct the states using a state-space model and a MATLAB-implemented

Kalman filter, and through this investigate the filtering capabilities.

k1 = 300× 103 N/m c1 = 2 Ns/m m1 = 1.0 kg

k2 = 400× 103 N/m c2 = 1 Ns/m m2 = 1.5 kg

The undamped natural frequencies were found to be f1 = 48 Hz and f2 = 149 Hz. A

positive triangular load with amplitude 400 N and period 4×10−3 s was applied in u2 over

the time interval 0 ≤ t ≤ 10−1 s. The system was set to rest at initial time. A numerical

solution was then found by Eq. (2.2.11) and (2.2.13), here claimed to be "exact" because
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of its accuracy, practically not deviating from an analytical solution. Displacements and

accelerations were measured in both DOFs sampling at fs = 10 kHz. This renders the

observation vector, selection matrices and force application matrix as:

y =



u1

ü1

u2

ü2


Sa =



0 0

1 0

0 0

0 1


Sv =



0 0

0 0

0 0

0 0


Sd =



1 0

0 0

0 1

0 0


Sp =

0

1



This system has no transmission zeros and fulfills full observability. White noise were

added to the observations. The elements (denoted subscript i) of the noise vector εk were

simulated as expressed in Eq. (3.1.1), an approach used by Lombaert et al. [26]. This

construes as a random variable rk drawn from a standard normal distribution scaled by the

factors γ and σi (i.e. the standard deviation of the exact measurement time series itself).

The latter ensures noise deviation to correspond to the deviation of the measured quantity.

Another possible approach is using the RMS instead of the standard deviation [3]. The

two essentially become equivalent in the event of zero mean. The non-dimensional factor

γ regulates noise magnitude, in this case set to 5% and 10%. For illustrative purposes,

an exemplified noise process in u1 and its frequency spectrum is shown in Fig. 3.2 and

3.3.

εi, k = γσirk , σi = σ(yi) , rk ∼ N (0, 1) (3.1.1)

x̂a0|−1 was set to 0 and P0|−1 to 10−8 on diagonal entries, expected to quickly update

over the first few steps. Model noise, Q = I × 10−10, was added to the forward solution

to resemble a real case. R and S were fixed to I × 10−10 and 1, respectively.

3.1.2 Force estimation

The resulting displacement and force estimation is shown in Fig. 3.4 and 3.6 for the two

noise levels. The force estimation can for both cases be considered accurate, which is

reasonable in such a simple system with multiple observations. The ratio of two DOFs
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Figure 3.2: White noise process in u1. Noise level is 5%.
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Figure 3.3: Frequency spectrum of white noise. Fluctuations is a result of the noise being a

particular (time finite) realization of a random process.

and four observations will obviously not sustain moving to real structures. The influence

of noise level can be noticed by the intermediate fluctuations. For both noise levels the

differences between prior and posterior state estimates are small, with apparently over-

lapping curves. Although not shown, velocity estimates were found to be very accurate,

more so than displacements.

The scalar measures of error (epk)Tepk and (ef k)Tef k (i.e. sum of squared errors (SSE)

within one time step) are used in Fig. 3.5 and 3.7 to demonstrate the filter ability to

reduce errors in measurement update. At 5% noise, it is easy to see the posterior estimate

outperforms the prior. For 10% noise level, the difference is more subtle, but still visible.

The SSE is of particular interest, as the algorithm is based on minimizing it in each step.

A comparison of SSE vs noise level can be found in Table 3.1, where a 2% noise simulation

also have been included. Note that these values stem from one noise realization. In order

to create an unbiased measure of performance, one would have to repeat simulations along
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Monte Carlo principles. At 5% noise in Fig. 3.5, one can notice errors in both estimates

drop close to zero even time intervals. This stems from the assumption Eq. (2.2.17) of the

force rate as random process with zero mean, when in fact here it is constant (positive

or negative). At points where the force rate is changing sign (peak or valley), the prior

estimate accidentally becomes very good due to its one time step lag. This must therefore

be regarded a coincidence, and will not generally be true for other data. The same effect

can be found at higher noise levels.

It should also be remarked the square error is dominated by the force. Errors in velocities

and displacements are significantly smaller, further emphasized by squaring. The main

measurement update is also done in the force. This can at first sight suggest the filter

is biased towards correcting one variable (the force) at the expense of others, as it con-

siders absolute errors and not their relative value. A quick fix would be constructing a

diagonal weighing matrix W and modifying the optimality criteria such that tr(WPk|k)

is minimized. If this is done, the Kalman gain will remain unchanged by its derivation in

Section 2.4.1, thereby givingW zero influence. This implies the expected state errors are

minimized individually and not just as a whole, thereby acquitting the filter from being

biased towards the force. In addition, displacements are scaled byK in Eq. (2.2.1), which

tends to even out error magnitudes in a force equilibrium sense.

Noise level 1
N

N∑
k=1

(epk)Tepk
1
N

N∑
k=1

(ef k)Tef k

2% 1211 304

5% 1356 364

10% 1451 505

Table 3.1: Noise levels vs time average SSE.
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Figure 3.4: State and force estimation at 5% noise.
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Figure 3.5: Square error of estimates vs time at 5% noise.
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Figure 3.6: State and force estimation at 10% noise.
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Figure 3.7: Square error of estimates vs time at 10% noise.
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The trace of Pk|k−1 and Pk|k in Fig. 3.8 clearly converges after few iterations. Their

respective asymptotic values 1.9383 and 2.9384 can be precalculated in accordance with

Appendix B. The main difference between the two is associated with S = 1. Note

that these values are shared by both noise levels, as they do not directly depend on

measurements. The measurement updates in u1 and in the force are graphed in Fig. 3.9.

The periodic square wave patterns in velocity and force stems from the periodic force of

constant rate. The displacement updates in u1 differs from this, and its white character

can be explained by the domination of white noise added to direct measurements in this

variable.
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Figure 3.8: Trace evolution, rapidly converging towards steady values.
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Figure 3.9: Measurement update in Kalman filter for three of the five states at 5% noise.

35



CHAPTER 3. ANALYSIS AND RESULTS

Additionally, a force random force was identified, with estimates in Fig. 3.10. The force

was taken as an actual Gaussian random walk, fulfilling the presumption in Eq. (2.2.17).

The force rate variance in generation was 100 N2 (i.e. S = 100), and the observation

noise set to 5%.
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Figure 3.10: State and force estimation of a random force, with 5% noise contamination.

S was still taken as 1 in filtering, meaning the filter was supplied with false information.

Refer to Fig. 3.10 for the estimation results. Even when the filter is lied to (here by a

factor 100), the force identification is sufficient. Since S is undervalued, abrupt changes

in the force (i.e. a Gaussian realization in the tails of the bell curve) is not fully detected,
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as a consequence of its statistical unlikeliness in a Bayesian sense. The largest force

estimation errors are associated with such high force rates. This agrees with the fact

that S can be seen as a form of regularization, controlling the smoothness of the solution

[6]. Lourens also explained that given the existence of an optimal S-value, the force

estimation is relative insensitive to S within an optimal range. For comparison with the

triangular force, the force measurement update is graphed in Fig. 3.12, clearly with more

white characteristics. The SSE over a short time interval is shown in Fig. 3.11. The

effectiveness of the measurement update is clearly visible, especially in reducing large

errors in the prior estimate.
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Figure 3.11: Detail of SSE in random force estimation.
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Figure 3.12: Measurement update force correction in the random force case, notably white.

In all, the force identifications on this system can fairly be considered sufficient, as

expected. In a larger system, the susceptibility to numerical problems will be higher and
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the ratio nd
nDOF

smaller. Although not apparent from the graphs, the estimated force

has a small time lag. In numerical cantilever experiments (mentioned in Section 2.6),

similar phenomenon was observed by Ma et al. [11], although forces were found from a

separate LS scheme and not by a Kalman filter directly. From cross-correlation between

the estimated and exact forces, the time lag was found to be three steps. Time series

were therefore shifted manually by Ma et al. before evaluating errors. This principle can

be crucial, supported by hypothetical case in Fig. 3.13. As a consequence of time lag, the

SSE in estimate 2 is approximately twice than for estimate 1. Contrary one could still

argue estimate 1 represents a better identification, as it fits the exact curve quite well if

time shifted.
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Figure 3.13: Two hypothetical force estimations.
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3.2 Impact force on simply supported beam

3.2.1 Setup and model

A simply supported aluminum (alloy 6082 T6) beam (with end overhangs) were set up in

the laboratory, with the purpose of identifying a single impact force. This force originated

from a hammer with an internal load cell (Brüel & Kjær 8208 Modal sledge hammer,

sensitivity 0.225 mV/N). The setup is pictured in Fig. 3.14. Material and mechanical

properties are listed in Table 3.2. The H-cross section geometry was measured by a

vernier caliper. Any entailing inaccuracies was neglected and left to later calibration and

model noise. The beam rested on steel trestles fixed with 70 kg dead weight. F-clamps

on the lower flanges were used to pin the beam at supports, taken as zero rotational

constrain.

Figure 3.14: Left: beam rigged in laboratory. Right: detail of pinned support.

Ax (Axial area) 1.86×103 mm2

Ay (Vertical shear area) 4.20×102 mm2

Az (Lateral shear area) 1.44×103 mm2

Iyy (Weak axis) 1.73×106 mm4

Izz (Strong axis) 5.16×106 mm4

It (Torsion) 1.88×104 mm4

Elastic modulus 69.0 GPa

Shear modulus 25.5 GPa

Poisson’s ratio 0.35

Density 2700 kg/m3

Distance NA-max y 60 mm

Distance NA-max z 60 mm

Table 3.2: Beam properties.

A FE model was created, discretizing the beam evenly in elements of length 125 mm,

39



CHAPTER 3. ANALYSIS AND RESULTS

whose mesh is visualized in Fig. 3.15. To gain the mass and stiffness matrices, C1-

continuous elements were used. These are based on Timoshenko beam theory with cubic

shape functions and accounts for shear flexibility [27]. The reason for generating system

matrices manually and not via FE software is due to strain compatibility. Exact shape

functions are needed in the strain-displacement relation derivation establishing Sd. In

FE software, these are often not elucidated, export of matrices is not available or hidden

internal nodes are added beyond the user’s insight.

Figure 3.15: Mesh of FE model, with node numbering from 1 to 33. Support nodes 5 and 29

marked together with strain observation nodes.

Boundary conditions were enforced by removing the translational DOFs at the sup-

ports from the system matrices entirely rather than assigning large stiffness. The latter

would raise the condition number ofK thereby cause numerical problems. Removing ele-

ments obstructed the original uniform DOF numbering, calling for an automatic metadata

scheme to keep track of the right DOFs in analysis. Although the system matrices were

initially assembled in a 3D formulation, all axial, torsional and weak axis bending DOFs

were condensed out to speed up computations, greatly depending on matrix dimensions.

Therefore, unless stated otherwise, all modes referred to subsequently are strong axis

excitations.

Three strain gauges, whose fixed positions on the lower flange can be seen in Fig. 3.16,

together with a movable accelerometer were taken as observations. Both sensor types are

pictured in Fig. 3.17. The accelerometer were of type Kistler (8703A50M5, sensitivity 10

mV/gn, range ±50 gn). Sd was constructed as described by Nord et al. [28].
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Figure 3.16: Placement of strain gauges. The accelerometer is here placed in the middle. All

dimensions in mm.

Figure 3.17: Left: Modal hammer. Middle: strain gauge glued to underside of the lower flange

and secured with tape. Right: accelerometer clamped to lower flange.

3.2.2 Initial calibration and preparations

Static calibrations of strain gauges were performed by loading the beam midspan with 10,

30, 60 and 68 kg. The strain readings were compared to the theoretical value in the lower

flange by Euler-Bernoulli beam theory, whose result is tabulated in Table 3.3. Average

values over an extended time were used to eliminate noise contributions, discussed further

below. From this it was found the strain gauges gave severely undervalued readings. All

strain readings were therefore upscaled by 40% (error ratio mean) in calculations. The

source of this defect remains unclear, but it is likely the strain-voltage gauge factor was

wrong.

Initially it was evident the strain readings were particularly noisy and it was not clear if

identification was practically viable, even with stochastic methods, let alone determinis-

tic methods. To illustrate, sampling at 1200 and 2400 Hz, the strain noise midspan had

approximate "amplitude" 2×10−6 and 4×10−6. This is equivalent to a 1.5 and 3 kg static
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Ratio theoretical/measured strain

Load [kg] SG1 SG2 SG3

10 1.40 1.33 1.29

30 1.38 1.56 1.40

60 1.38 1.46 1.38

68 1.34 1.43 1.36

Table 3.3: Static calibration of strain gauges.

load, respectively, which must be regarded as considerably strong disturbance. The noise

was found to increase severely with sampling frequency, such that the real strain values

from a 1000 N force at 4800 or 9600 Hz would practically drown and be inseparable from

the noise. Sampling was therefore limited to 1200 and 2400 Hz. All measurements were

detrended before analysis in the sense of removing the noise mean to eliminate uncon-

trollable initial offsets. Noise variance sampled at zero load was found to be ∼1×10−14.

To find the noise source, or at least investigate its characteristics, a frequency trans-
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Figure 3.18: Welch power spectrum estimate of noise.

formation were done. A power spectral density chart is seen in Fig. 3.18. The noise is

seemingly prominent in the frequency range 130-200 Hz. This could indicate the beam is

excited when at "rest", thus noise not coming from the measurement equipment itself. To

eliminate this possibility, the beam was loaded with 50 kg midspan, lowering the natural

frequencies (discussed later this section) f1 by 59% and f2 by 23%. With the noise spec-

trum not changing in this setup, it was concluded the noise did not origin from system
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modes. Upon closer inspection it was also discovered the noise in SG1, SG2 and SG3 was

all correlated with coefficient r ≈ 0.85. This strong interdependence suggests electrical

wiring configuration is the source. The capability of handling fast sampling dynamics was

also likely limited. The acceleration noise was uncorrelated with the others (r < 0.01).

The strain was also observed to be sensitive to simple mechanic interaction (e.g. walk-

ing or door slams) in near proximity, meaning traffic or ventilation could be prominent

external disturbances. It is important to remember the test environment here was quite

controllable, contrary to a real structure, so one might as well accept such circumstances.

The natural frequencies were found from frequency analysis of free vibrations induced by

a load ensured to excite the first three modes. These were compared to the (undamped)

eigenfrequencies from the FE model. K were then scaled such that f1 coincided with

its empirical equivalent. This equals scaling the elastic modulus directly. The calibrated

frequencies is listed in Table 3.4. Errors in higher modes were not treated further, as

system identification was not the main objective per se. Moreover, the first mode is the

main contributor during vibrations. This method is feasible and just as simple for real

structures, whose susceptibility to model errors is unavoidable.

No. Measured [Hz] FE, unscaled K [Hz] Error [%] FE, scaled K [Hz] Error [%]

f1 42.8 45.1 -5.6 42.8 0.0

f2 157.8 162.8 3.2 154.5 -2.1

f3 297.4 292.4 -1.7 277.4 -6.7

Table 3.4: Calibration of natural frequencies.

The scaled stiffness matrix was used throughout analysis. The associated lowermost

mode shapes can be seen in Fig. 3.19. Notably, the second mode has zero amplitude

midspan, while for the third the same occurs at third points. Sensors placed at zero

points of modes will not be able to observe the corresponding mode. All four lowermost

modes have at least two sensors at nonzero nodes.

The damping matrix was created from Rayleigh damping (i.e. mass and stiffness propor-
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Figure 3.19: First four modes of the beam. Note the alternating symmetry/antisymmtry.

tional damping) [29], fed with the frequencies 42.8 and 154.5 Hz and assumed 1% critical

damping.

3.2.3 Conventional force identification

A forward solution was found from the measured hammer forces (using Eq. (2.2.11)), in

turn generating measurements (using Eq. (2.2.13)), back-calculating the force with the

Kalman filter. 5% noise was added to the generated observations by the method in Section

3.1.1. The assumption of a piecewise linear force (first order hold) can be seen in Fig. 3.20

to have great significance. Over the impact duration, the generated acceleration data has

severe errors for the zero order hold case (F = 0) because of high force rates. Even though

only the real measurements are ultimately used in force identification, comparisons are

important to gauge performance. The generated data from on a first order hold decently

traces the real measurements throughout the series. Although not shown here, the same

phenomenon occurred at 2400 Hz with local relative errors of ∼ 500%.

Identifications termed "aXX-pYY-fZZZZ" refer to accelerometer and force located in node

XX and YY, respectively, sampled at ZZZZ Hz. First, a series of identifications with

varying force location and accelerometer fixed midspan is presented. All available obser-

vational data (acceleration and three strains) were included. Identification with reduced

amount of sensors is discussed in Section 3.2.5. A numerical measure of error, e.g. SSE,

was considered unfeasible here. Numerically comparing different series would require a
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Figure 3.20: Comparison of real and generated measurement data at 1200 Hz sampling. Force

and accelerometer collocated midspan (node 17).

standard establishing equal conditions with respect to noise, time series length, as well

as the location, duration and magnitude of the hammer impact. Accepting that fully

eliminating bias was not practically possible, the quality of the force identification were

rather judged by the analyst.

x̂a0|−1 was unbiasedly supplied as 0, and P0|−1 as I × 10−10. Q was set to I × 10−14, and

R to diagonal 10−14, with 0.85 × 10−14 on the strain cross terms to accommodate for

the correlated noise. S was calibrated to 10. Impacts were commenced in the middle,

collocated with accelerometer, moving towards the end, striking in node 15, 13, 11, 08,

and 02, see Fig. 3.21. Nodes opposite remained untouched due to near symmetry.

SG1Acc.SG3
SG2

02 08 11 13 15 17

Figure 3.21: Nodes hit with hammer.

The resulting force estimations is shown sequentially in Fig. 3.22 – 3.29 for both 1200 and

2400 Hz. Any difference between the two sampling frequencies are hard to distinguish.

The advantages of faster sampling is balanced with increase in noise. The best results are

obtained with collocated force and accelerometer. Lack of impact amplitude recognition is

45



CHAPTER 3. ANALYSIS AND RESULTS

seemingly a larger problem than the opposite (overestimation). While there is generally

good agreement between the measured and estimated forces during impact, there are

prominent force fluctuations before and after. This can be contributed the particularly

noisy strains. Larger fluctuations subsequent to impact is a phenomenon also observed

by Lourens [6] among others. Fluctuations are also present in the force estimate from

generated observations, but with smaller magnitude, and mostly as a result of the 5%

generated noise, which is white. The same phenomenon mentioned on the random load

in Section 3.1.2 can be observed here, but more clearly: if S is taken too low, the

full amplitude of the impact is not recognized. The easiest way of resolving this is by

increasing S, but comes at the cost of larger fluctuations, since S regulates the expected

force rate intensity. Alternatively, one could customize an intelligent time-varying S = Sk

for this case. Initially letting Sk = 1, followed by an increase when impact is detected

(e.g. predicted force p̂k|k−1 > 100 N), and resetting to 1 in the free vibration phase. This

type of approach could certainly reduce errors, but requires information on the force prior

to analysis, which may not be obtainable.

In case p17 and p13 the estimates from real observations perform better than estimates

from generated observations, seemingly contra intuitive since the latter is just a back-

calculation of the force. The incidents can be explained by information supplied to the

filter (e.g. noise magnitude and correlation) are mainly calibrated to accommodate for the

real observations. Both these cases notably also benefits from collocation. Identification

case p02 was expected to be most difficult, with the force located beyond the support.

Although this node should have little influence on the accelerometer, it has significant

amplitude in the first mode, at least guaranteeing first mode excitations, meaning some

acceleration signal will be registered. Strikingly, the force is decently identified, with

results similar to case p08 and p11. Referring to Fig. 2.8 and related discussion, it

remains unknown how a finer mesh would affect the estimation.

There is seemingly also increasing time lag and reduction in amplitude with moving

towards the beam end. The lag is a common feature for identifications with increasing

force-sensor distance, and finite elastic wave speed inputs causes a delayed influence on
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sensors [6]. The number of lag steps can be assessed as nlag = s fs
val

, with s as the

force-sensor distance and val ≈ 3000 m/s, amounting approximately 1.5 steps for case

a17-p02-f2400. This corresponds to 10% of the load duration and is close to the difference

between the real and generated estimate in Fig. 3.29. Seeing that the estimation from

generated observations, which effectively has infinite wave speed, also suffers from time

lag, the problem mainly lies within the filter itself. The reduction in amplitude can also

be caused by the proximity to the supports. The supporting steel trestles were observed

to vibrate slightly, meaning some energy is dissipated. Real observations was also found

smaller than their generated counterparts for case p02, further approving this belief. The

problem therefore relates to the model, or arguably the laboratory setup, and not the

methods themselves.

The force frequency spectrum is shown for case p17 and p15 in Fig. 3.23 and 3.25, display-

ing similar characteristics. The estimated force has more spurious noise-like contributions

in the low frequency range compared to the measured force. Mismatch in magnitude is

largely present for components above 300 Hz, but constitute low values and are beyond

the third mode, thus having little impact on the system.

The largest transmission zeros in the six cases presented here were in the order of λmax ∼

10−9−10−6. Recalling from Section 2.5.2 its influence on stability, convergence in inversion

can be considered good and any unstable parts are practically unnoticeable after few steps.

Although not explicitly shown here, the same is displayed in tr(Pk|k), rapidly converging

to its asymptotic value, ranging approximately 25 − 65. Good stability is also expected

with using all available measurements.

47



CHAPTER 3. ANALYSIS AND RESULTS

Force estimation a17−p17−f1200

0.4 0.6 0.8 1 1.2 1.4

−800

−700

−600

−500

−400

−300

−200

−100

0

Time [s]

F
o

rc
e

 [
N

]

 

 

Hammer load cell

Filter estimate from real obs.

Filter estimate from gen. obs.

0.49 0.495 0.5 0.505 0.51 0.515 0.52 0.525

−800

−700

−600

−500

−400

−300

−200

−100

0

Time [s]

F
o

rc
e

 [
N

]

Force estimation a17−p17−f2400

0.4 0.6 0.8 1 1.2 1.4

−1600

−1400

−1200

−1000

−800

−600

−400

−200

0

Time [s]

F
o

rc
e

 [
N

]

 

 

Hammer load cell

Filter estimate from real obs.

Filter estimate from gen. obs.

0.49 0.495 0.5 0.505 0.51 0.515 0.52 0.525

−1600

−1400

−1200

−1000

−800

−600

−400

−200

0

Time [s]

F
o

rc
e

 [
N

]

Figure 3.22: Estimation of force in node 17. Collocated with accelerometer and SG2.
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Figure 3.23: Force spectrum comparison at 1200 Hz sampling.
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Figure 3.24: Estimation of force in node 15.
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Figure 3.25: Force spectrum comparison at 2400 Hz sampling.
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Figure 3.26: Estimation of force in node 13. Collocated with SG3.
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Figure 3.27: Estimation of force in node 11.
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Figure 3.28: Estimation of force in node 08.
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Figure 3.29: Estimation of force in node 02.
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The estimation of displacements and velocities are of lesser interest here, but worth men-

tioned briefly and inspected for their general correspondence with the forward solution.

If the impact duration τ is short compared to the first natural period T1, the total force

impulse
∫ τ

0 p(t) dt will be more important than amplitude or time lag concerning response.

The displacement after impact will be in the order of τ 2, but the velocity is one order

lower (τ), hence the system response can be treated as free vibrations caused by an initial

velocity ≈ 1
M∗

∫ τ
0 p(t) dt. In the case examined here τ

T1
≈ 3 − 5, thus not adhering fully

to this principle. The displacements for cases a17-p13-f2400 and a17-p02-f2400 is shown

in Fig. 3.30 and 3.31, respectively. The estimates quite agree with the forward solution

in the former, as expected with accelerometer proximity and collocation with SG3. In

the latter, both first and second mode vibrations are recognized, although the second

quickly diminishes. Amplitudes does not fully concur, partly attributed to the aforemen-

tioned energy dissipation at supports. The advantage of calibrating the model to get f1

right is apparent, very little phase lag is acquired throughout the history. Velocities are

not shown here, but had similar relative accuracy. In all, the state estimation must be

considered sufficient.

State estimation a17−p13−f2400

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85

−5

0

5

x 10
−4

DOF 02y

Time [s]D
is

p
la

c
e
m

e
n
t 
[m

]

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85

−1

0

1

x 10
−3

DOF 17y

Time [s]D
is

p
la

c
e
m

e
n
t 
[m

]

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85

−5

0

5

x 10
−4

DOF 25y

Time [s]D
is

p
la

c
e
m

e
n
t 
[m

]

 

 

Forward solution.

Filter estimate.

Figure 3.30: State estimation of selected DOFs for case p13. Collocated with SG3.
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State estimation a17−p02−f2400

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85

−2

0

2

x 10
−4

DOF 02y

Time [s]D
is

p
la

c
e
m

e
n
t 
[m

]

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85

−5

0

5

x 10
−4

DOF 17y

Time [s]D
is

p
la

c
e
m

e
n
t 
[m

]

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85

−2
0
2
4

x 10
−4

DOF 25y

Time [s]D
is

p
la

c
e
m

e
n
t 
[m

]

 

 

Forward solution.

Filter estimate.

Figure 3.31: State estimation of selected DOFs for case p02.

3.2.4 Parameter study: model uncertainty

Real structures can be difficult to model because of sheer structural complexity. For this

reason, a parameter study was performed. The purpose was to investigate the effect of

modeling errors on the force identification. By such errors lies the main interest in stiffness

and mass deviations. Deviations in system matrices cannot be inflicted as Gaussian

variables directly, even if symmetry is maintained, due to high eigen-sensitivity. Naive

random contributions causes loss of positive definiteness, and forms negative or imaginary

eigenvalues. A as remedy, a Wishart distribution (multivariate Gamma distribution) was

used. For the details omitted here, refer to works by Adhikari [30]. The undistorted mass

and stiffness matrices are here termed M0 and K0. Their distorted equivalents M and

K, in this context by definition random variables, are unbiased, i.e. E(M−1) = M−1
0 and

E(K−1) = K−1
0 . Furthermore, the DOF-parameter in the Wishart PDF were chosen such
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that same is true for the inverse: E(M−1) = M−1
0 and E(K−1) = K−1

0 . Symmetry is

also maintained. The level of distortion, measured by the normalized standard deviation

(defined by the Frobenius norm) were supplied as:

σ2
M = E(||M −M0||2F )

E(||M0||2F ) = 0.12 σ2
K = E(||K −K0||2F )

E(||K0||2F ) = 0.12

The damping matrix, likely already inaccurate, was regenerated via Rayleigh damping,

and not treated further. 10 Wishart realizations were generated and run on case a17-

p02-f2400 and a17-p13-f2400, deliberately chosen as non-collocated with accelerometer

to challenge the filter. To better illustrate the distortion level, the matrix element ratio

sample standard deviations were found to be:

Sσ

(
Mij

M0, ij

)
= 0.0688 Sσ

(
Kij

K0, ij

)
= 0.0575 i, j = 1, 2 . . . nDOF (M0, ij, K0, ij 6= 0)

which is a reasonable from a practical perspective. Likewise, deviations from the original

(FE-model) natural frequencies f0, i were:

Sσ

(
f1

f0, 1

)
= 0.0190 Sσ

(
f2

f0, 2

)
= 0.0204 Sσ

(
f3

f0, 3

)
= 0.0193

Covariance matrices remained as R = I × 10−14 and S = 10. To obtain the best results,

Q was calibrated to I × 10−13 to accommodate for model errors, one magnitude increase

from the preceding section. Compared to the undistorted model, the estimations seen in

Fig. 3.32 and 3.33 are able to recognize the impact force quite well. If the objective is

purely limited to impact identification, the results are satisfactory. The distorted models

have an one step time lag compared to the undistorted and the amplitude is consistent.

The largest inconvenience is the ringing subsequent to impact, which must regarded

severe and clearly varies with each realization. This can be explained by the model

error directly. The system does not vibrate as anticipated by the model since change

in mass and stiffness gives deviations in frequency and phase. The algorithm therefore

imposes a correction by presuming this is caused by an external force with harmonic

characteristics. Since the ringing clearly origins from model errors here, this suggests the
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Figure 3.32: Force estimation in node 13 from 10 distorted models, compared with undistorted.
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Figure 3.33: Force estimation in node 02 from 10 distorted models, compared with undistorted.

similar phenomenon for the undistorted model (preceding section) occurs for the same

reason, albeit on a smaller scale. Taking into account M0 and K0 are not exact per

se, referring to Table 3.4, the total model errors are effectively larger than implied just

by the distortion itself. The impact force estimations can therefore be considered fairly
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robust to model errors.

The displacement estimation does not suffer the same inaccuracies as forces. As pictured

in Fig. 3.34, they are virtually unaffected by the inflicted model errors. This can be

supported by the fact that displacements are directly linked to measurements, while

unknown forces always remain indirectly coupled.
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Figure 3.34: State estimation in distorted models, compared with undistorted and forward

solution.

3.2.5 Force identification with reduction of observations

For practical reasons, it is often desired to limit the number of sensors on a structure

to a necessary minimum. This raises the issue of finding an acceptable compromise

between identification performance versus amount of observational data. As discussed in

Section 2.5.2, at least one accelerometer is required for marginal stability, and additional

displacement data gives asymptotic stability. Identification was performed with the

setups shown in Fig. 3.35, i.e. two configurations with limited strain gauges and one

with all sensors active. The filter was run with impact force located in the same nodes as
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Acc.SG3 SG1
SG2

Acc.SG3 SG1 Acc. SG1

Figure 3.35: Three configurations of active sensors.

Section 3.2.3, see Fig. 3.21, but at 2400 Hz sampling only. The six force estimates is shown

alongside in Fig. 3.36 – 3.41. Moderate loss of amplitude is associated with removal of

strain gauges, especially collocated ones. More prominent is the force fluctuations, which

for all cases increases with when less strain data is present. The force-accelerometer

distance also positively correlates to greater fluctuations. An interesting result for five of

the six cases is the small difference between three and two strain gauges. The main loss

of accuracy comes moving from two to one strain gauges. Another phenomenon worth

noting with a single strain gauge is the spurious positive initial amplitude, peaking almost

simultaneous with the real impact, but incoherently with wrong sign. This result can also

be connected to the large force-sensor distance, with SG1 is located in the opposite beam

half, thus causing a sensor delay of a few steps. The force is strongly connected to

acceleration and furthermore, as explained in Section 3.2.2, the strain measurements has

poor quality. For this reason the acceleration data is the main contributor to a correct

identification, thereby giving middling estimates of the impact itself without numerous

strain readings. As a closing remark, some of these results must be interpreted with

caution because of the strain inaccuracies. Some deceptive results can rise from removing

or including flawed data. To validate the findings one must acquire better data, or

alternatively generate data through a simulation.
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Figure 3.36: Force estimation in node 17. Collocated with accelerometer and SG2.
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Figure 3.37: Force estimation in node 15.
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Figure 3.38: Force estimation in node 13. Collocated with SG3.
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Figure 3.39: Force estimation in node 11.
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Figure 3.40: Force estimation in node 08.
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Figure 3.41: Force estimation in node 02.
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3.3 Case study: simulation of Hanko channel marker

3.3.1 Model and description

The Hanko channel marker is located in the Gulf of Bothnia in shallow water (depth

approximate 14 m) and is fixed to the seabed. The marker is subjected to ice actions

in the winter season. A 3D visualization is shown in Fig. 3.42. The lowermost part

is concrete, while the conical and supersurface tube is steel with decreasing thickness

towards the top. An idealized 1200 kg mass is seated in the uppermost 2.7 m. A FE

model was created by C1-continuous beam elements. The structure was meshed into 58

elements ranging 0.3− 0.5 m and limited to 2D due to axisymmetry.

Figure 3.42: Side view and isometric transparent view of Hanko rendering. Vertical scale in

meter, with origin at seabed and ice level at +14.50 m.

Boundary conditions were enforced as zero rotation and translation at seabed level.

Rayleigh damping was used to generate the damping matrix. Any fluid interaction

(e.g. aeroelasticity or inertia) was not included. The model mode shapes are shown

in Fig. 3.43, and the corresponding natural frequencies listed in Table 3.5. f1 matches a

value attained in earlier studies [31], while the rest are slightly higher than anticipated.

For ice load identification, there is a desire to determine whether an instrumentation

configuration will be sufficient for analysis. The planned sensor locations are shown in

62



3.3. CASE STUDY: SIMULATION OF HANKO CHANNEL MARKER

Fig. 3.44. The point in question is specifically if the tiltmeter will contribute sufficiently.

The corresponding value of J (accelerometer influence) is shown in Fig. 3.45 with the ice

force assumed to work in a single node. Maximum is reached with collocation at ice level,

but this position is infeasible for practical reasons. The influence shows the same pattern

of exponential decay as observed in Section 2.5.1.
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Figure 3.43: Mode shapes of FE model.

No. FE model [Hz]

f1 4.3

f2 14.1

f3 30.9

f4 62.5

Table 3.5: Natural frequencies of FE model.

3.3.2 Force identification and response

Ice load calculation in accordance with ISO19906 [32] is done in Appendix C. The design

load is a sawtooth wave with period corresponding to the first natural frequency. With

no real data available, all measurements were generated from a forward solution and

polluted with 5% noise. Sampling were done at 4000 Hz. The filter was supplied with

unbiased initial state estimates and the asymptotic Pk|k (see Appendix B) in calculations

to eliminate the stabilization phase of ∼ 102−103 steps. Even though identification with

accelerometers only is stable in the sense that all transmission zeros are� 1, a satisfactory

convergence in the error (i.e. tr(Pk|k)) is not attained. A tiltmeter is therefore necessary,

and particularly for detection of static components. R was fixed with diagonal elements

1 for acceleration and 10−8 for tilt. Model noise from the distribution N (0, 10−14) was

added to the forward solution, so Q = I × 10−14. Comparing the two identifications

63



CHAPTER 3. ANALYSIS AND RESULTS

Ice level

Accelerometer

Accelerometer

Accelerometer

Tiltmeter

Figure 3.44: Planned location of sensors.
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Figure 3.45: Accelerometer force influence.

with force rate levels S = 106 and S = 108 in Fig. 3.46 and 3.47, typical features of force

regularization is displayed. In the former, the lag is very persistent and the force minimum

is shifted almost half a period. The sawtooth load rate is very high (∼ 1300 kN/s), and

the filter struggles to keep up with abrupt changes. An increase in S to 108 improves

this, e.g. the vertical descent in Fig. 3.47 is almost traced. As seen before, this results

in a consistent increase of intermediate fluctuations since the solution is less smoothed.

Ultimately, estimates do not judge the force character, but only considers statistical

likeliness of data. Repeatable patterns of errors also occur, which can originate from

the structural response itself, being first mode dominant. From the frequency content in

Fig. 3.48, the filter estimate (for S = 108) agrees fairly with the exact force at frequencies

up to the third mode, mismatch is happens mostly above 40 Hz. This could be due to

the limited number of accelerometers, mostly recognizing the 3 lowermost modes. Some

challenges also arises from the fact that discontinuities in a theoretical sawtooth wave

are traced by high frequency components in a Fourier series sense. The system was also

observed to be highly sensitive to the level of model noise. With a decrease in model
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noise the estimated force almost traced the exact solution.

The state response at ice level and top is shown in Fig. 3.49, with the accompanying

spectrum in Fig. 3.50. The response at top is characterized by first and second mode

excitations, while the response at ice level is more directly influenced by the force itself,

and therefore has a wider force content. Larger errors in response are also found in nodes

close to ice level since the effect of the force is not easy to predict. These errors displays

as larger deviations in the spectrum. The movement at the top is less dominated by

the force and more by time propagation of dynamics, which is easier predicted. This

touches the core of the main drawback with the current force identification formulation:

p̂k|k−1 must always be taken as p̂k−1|k−1 because no knowledge on the force propagation

is provided in the formulation (i.e. E[ηk] = 0). Any estimated change in the force giving

p̂k|k therefore always relies only on measurement update. The predicted measurements

(Gax̂
a
k|k−1) used in the measurement update step is generated under the assumption that

the force remains unchanged. The erroneousness is transferred further, thereby looping

the problem.

For a simple validation of the case and model, the structural velocity is inspected. The

velocity amplitude at ice level can be taken as 0.4 m/s (see DOF 32y in Fig. 3.49), corre-

sponding to an ice sheet velocity of approximately 0.3 m/s (see Appendix C). This agrees

well with previous observations at the channel marker and other locations along Finnish

coast [31]. The results strongly suggest identification with the presented sensor config-

uration is viable. The tiltmeter contributes sufficiently for a satisfactory identification

to be obtainable. Since the identification is sensitive to model noise, a FE model must

be designed and calibrated with attention to details. The fact that model noise is more

troublesome to quantify than sensor noise does not lessen this problem. Non-structural

mass must be included. Half the structure is also located subsurface, and fluid interfer-

ence is not covered by the model. Fortunately the lower part is stiffer and, as displayed

in the mode shapes, has smaller response.

An animation of the estimated structure response can be found as a digital attachment.
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Figure 3.46: Ice force identification with S = 106.
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Figure 3.47: Ice force identification with S = 108.
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Figure 3.48: Spectrum of force filter estimate vs exact force (S = 108). Non-logarithmic detail

of low range frequencies right.
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Figure 3.49: State estimation (S = 108) at ice level (DOF 32y) and structure top (DOF 59y).
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Figure 3.50: Spectrum of displacements at ice level (DOF 32y) and structure top (DOF 59y).
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Chapter 4

Conclusion

4.1 Main results and research findings

This thesis on structural dynamics set out to identify loads from structural response. The

main goal was to apply and validate the presented methods by numerical and laboratory

experiments, and perform simulations of state and force estimation on the Hanko channel

marker. The state-space representation of a linear structural dynamic system, modified

to an augmented form, has been derived. Classical dynamics have been combined with

stochastic considerations (noise), such that a Kalman filter can provide MVU estimates of

displacements, velocities and forces. A new discrete solution to the state-space problem

was presented, giving better accuracy in cases of high load rates. Requirements for

system stability and observability as well as steady convergence have been elaborated

upon. Moreover, force-accelerometer influence relations have been studied, in which

maximum influence was found with sensor-force collocation, decreasing exponentially in

non-collocation.

Laboratory tests on a simply supported beam were done with acceleration and strain

measurements. Single impact forces were successfully identified and in agreement with

forces measured by a load cell. The main weakness in the tests was high level correlated

non-white noise in strains, from which the results suffered considerably. Tests with collo-

cated force and accelerometer gave in general better identifications than non-collocated,

confirming the theory and results obtained in prior studies. The same trend was observed
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with strain gauges, where close proximity to the force improved results slightly. Further-

more, the influence of model errors was studied. The assignment found introduction of

random errors in mass and stiffness to decrease the impact identification moderately, be-

sides create spurious force fluctuations. Estimation of displacements and velocities was

more robust and virtually unaffected by a faulty model. Lastly, identification was at-

tempted with only two or one strain gauges in addition to the accelerometer. Although

these configurations had stable system reconstructability, the results were severely af-

fected. The main outcome on force identification were loss of impact amplitude, increased

time lag and spurious fluctuations. This was particularly the case with one strain gauge

only. The role of the high strain noise in these cases remains unclear.

Numerical simulations on the Hanko channel marker, instrumented with three accelerom-

eters and a tiltmeter, has demonstrated the feasibility of ice force identification. Moder-

ate errors were found in identification of a sawtooth wave load. The estimated response

agreed well with a forward solution. Simulations were performed on a 2D model, but

the problem formulation suggests a 3D model will yield results of similar character. The

analysis results emphasized the necessity of an accurate FE model to absolutely limit

model errors in order to obtain identifications with satisfactory precision.

The applied methods perform in general satisfactory if used with care, yet some drawbacks

have been noted. It is now possible to state the force identification consistently suffers

from the lack of sufficient prediction. This originates from the precept of the force as

a Gaussian random walk with zero mean. Specification of a cumbersome force rate

parameter S is required, controlling the force smoothness. This consequently indirectly

imposes a behavior which can be undesired or does not fit the true nature of the force.

Any assumptions on the force are problematic to justify since the force is, by problem

definition, unknown. This is the most severe shortcoming of the method, and a complete

reformulation on this point would certainly improve results.
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4.2. REMARKS AND RECOMMENDATIONS FOR FUTURE RESEARCH

4.2 Remarks and recommendations for future research

In the experimental tests on the simply supported beam the time domain was roughly

separated into a short force application phase (with little response) and a free vibrations

phase (with zero force). Since the filter estimates jointly response and load, it would

be interesting to see an experiment with long duration force identification, where the

both force and response are nonzero for prolonged periods. This requires load cells

with ability of registering non-instantaneous loads, alternatively utilizing e.g. a rotational

device whose inertia force can be calculated.

Controllable laboratory tests are in general helpful to validate ideas before being applied

to real structures. The laboratory research in this assignment did not include systems

of intricate nature. A further step could be modification by introducing a geometric

stiffness, analogous to cable-stayed bridges. If a geometric stiffness matrix is included in

the model, would this suffice? Future work also needs to assess the effect of FE meshing

on the estimation results and the force-accelerometer influence.

It should also be mentioned the joint input-state estimator referred to in Section 2.6

estimates the force purely from measurements, thereby possibly avoiding the problematic

force assumptions stumbled upon here. A final remark concerns ideas emerged during

studies of the algorithm, and especially remedies for the weak point of force prediction.

As an expansion on the first order hold solution of the state-space equation, one could

rewrite Eq. (2.2.14) and (2.2.15) to:

xk+1

yk

 =

A B̃

G J̃


xk
p̃k

+

wk

υk


where

p̃k =

 pk
pk+1

 B̃ =
[
B − F /∆t F /∆t

]
J̃ =

[
J 0

]

such that
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CHAPTER 4. CONCLUSION

x̃ak+1 =

xk+1

p̃k+1

 = Ãax̃
a
k +

wk

Ψk

 yk = G̃ax̃
a
k + υk

where

Ãa =

A B̃

0 I

 G̃a =
[
G J̃

]
p̃k+1 = p̃k + Ψk

in other words a Kalman filter doubly augmented with force components. Supplying

all necessary matrices, could one perform an identification on the new augmented state

vector x̃ak? Notably, this also involves an one step prediction of the force, giving two

estimates for a single time step. How would the prediction and filter estimate differ? One

can recognize the generality of the stability criteria in Section 2.5.2 still holds, but with

B and J modified to B̃ and J̃ . Can this type of formulation change the transmission

zero stability criteria? As a remark, this was tested at the beam in Section 3.2 with

accelerometer data only, interestingly adjusting the largest transmission zero from 1−103

to 10−7 − 10−6. Does this imply the system is unstable transformed into a stable one,

or does one meet other hinders later? Sadly, A and G remain unchanged, thereby not

affecting observability. Furthermore, the new force vector has dimension 2×np, requiring

a double amount of sensors. Time limitations left this further investigated.
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Appendix A

State-space ODE solution assuming

input first order hold

The load p is assumed to vary linearly in the time interval tk < τ < tk+1. Interval length

is fixed to tk+1− tk = ∆t. Some notations are adopted from Lourens1. Useful properties:

eZt ≡
∞∑
k=0

(Zt)k
k! (A.0.1)

e±ZtZ =
[ ∞∑
k=0

(±Zt)k
k!

]
Z =

∞∑
k=0

(±1)k(Z)k+1tk

k! = Z

[ ∞∑
k=0

(±Zt)k
k!

]
= Ze±Zt (A.0.2)

Z−1e±ZtZ = Z−1Ze±Zt = e±Zt

Z−1e±Zt = e±ZtZ−1
(A.0.3)

d(eZt)
dt

= ZeZt (A.0.4)

∫
eZtdt = Z−1eZt +C0 (A.0.5)

1E.-M. Lourens. Force identification in structural dynamics. PhD thesis, Katholieke Universiteit

Leuven - Faculty of Engineering, Leuven (Belgium), 2012.
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State-space equation on continuous form and solution by integrating factor:

ẋ−Acx = Bcp

e−Act[ẋ−Acx] = e−ActBcp

d(e−Actx)
dt

= e−ActBcp∫ (xk+1,tk+1)

(xk,tk)
d(e−Actx) =

∫ tk+1

tk

e−AcτBcp dτ

=
∫ tk+1

tk

e−AcτBc[pk + τ − tk
∆t

(pk+1 − pk)] dτ

=
∫ tk+1

tk

e−Acτ dτ Bcpk

+
∫ tk+1

tk

e−Acτ
τ − tk
∆t

dτ Bc(pk+1 − pk)

(A.0.6)

First integral, right side of Eq. (A.0.6):

∫ tk+1

tk

e−Acτ dτ

=−A−1
c [e−Acτ ]tk+1

tk

=−A−1
c [e−Ac(tk+∆t) − e−Actk ]

=−A−1
c e−Actk [e−Ac∆t − I]

(A.0.7)

Second integral, right side of Eq. (A.0.6):

∫ tk+1

tk

e−Acτ
τ − tk
∆t

dτ

= 1
∆t

[
−
∫ tk+1

tk

e−AcτA−1
c dτ − [e−Acτ (τ − tk)A−1

c ]tk+1
tk

]
=−1
∆t

[e−Acτ (τ − tk)A−1
c + e−AcτA−1

c A
−1
c ]tk+1

tk

=−1
∆t

e−Actk [e−Ac∆t(∆tA−1
c +A−1

c A
−1
c )−A−1

c A
−1
c ]

=−1
∆t

e−Actk [∆te−Ac∆tA−1
c + (e−Ac∆t − I)A−1

c A
−1
c ]

(A.0.8)
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Integral left side of Eq. (A.0.6):
∫ (xk+1,tk+1)

(xk,tk)
d(e−Actx)

=[e−Actx](xk+1,tk+1)
(xk,tk)

=e−Actk+1xk+1 − e−Actkxk

=e−Actk [e−Ac∆txk+1 − xk]

(A.0.9)

All integrals in Eq. (A.0.6) assembled, forming a discretization:

e−Actk [e−Ac∆txk+1 − xk] = −e−ActkA−1
c [e−Ac∆t − I]Bcpk

+ −e
−Actk

∆t
[∆te−Ac∆tA−1

c + (e−Ac∆t − I)A−1
c A

−1
c ]Bc(pk+1 − pk)

e−Ac∆txk+1 − xk = −A−1
c [e−Ac∆t − I]Bcpk

+ −1
∆t

[∆te−Ac∆tA−1
c + (e−Ac∆t − I)A−1

c A
−1
c ]Bc(pk+1 − pk)

xk+1 = eAc∆txk −A−1
c eAc∆t[e−Ac∆t − I]Bcpk

+ eAc∆t

∆t
[∆te−Ac∆tA−1

c + (e−Ac∆t − I)A−1
c A

−1
c ]Bc(pk+1 − pk)

= eAc∆txk −A−1
c [I − eAc∆t]Bcpk

+ −1
∆t

[∆tA−1
c + (I − eAc∆t)A−1

c A
−1
c ]Bc(pk+1 − pk)

= eAc∆txk + [eAc∆t − I]A−1
c Bcpk

+ A−1
c [−∆tBc + (eAc∆t − I)A−1

c Bc]
(pk+1 − pk)

∆t
(A.0.10)

Final result:

xk+1 = Axk +Bpk + F (pk+1 − pk)
∆t

(A.0.11)

A = eAc∆t , B = (A− I)A−1
c Bc , F = A−1

c (B −Bc∆t) (A.0.12)
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Appendix B

Kalman filter steady state covariance

and augmented system detectability

Covariance matrices R and Qa are taken as time-invariant. The assumed asymptotic

conditions are no change in covariance matrices over time steps, i.e. Pk|k−1 ≡ Pk+1|k and

Pk|k ≡ Pk+1|k+1 .

Covariance time update:

Pk+1|k = AaPk|kA
T
a +Qa

Pk|k = A−1
a (Pk+1|k −Qa)A−Ta

Pk|k = A−1
a (Pk|k−1 −Qa)A−Ta

(B.0.1)

Covariance measurement update:

Pk|k = (I −LkGa)Pk|k−1 (B.0.2)

Kalman gain:

Lk = Pk|k−1G
T
a [GaPk|k−1G

T
a +R]−1 (B.0.3)
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Setting Eq. (B.0.1) and (B.0.2) equal, inserting Eq. (B.0.3):

A−1
a (Pk|k−1 −Qa)A−Ta = (I − Pk|k−1G

T
a [GaPk|k−1G

T
a +R]−1Ga)Pk|k−1

Pk|k−1 −Qa = Aa(I − Pk|k−1G
T
a [GaPk|k−1G

T
a +R]−1Ga)Pk|k−1A

T
a

Pk|k−1 −Qa = AaPk|k−1A
T
a −AaPk|k−1G

T
a [GaPk|k−1G

T
a +R]−1GaPk|k−1A

T
a

(B.0.4)

Arriving at the final result, the discrete-time algebraic Riccati equation (DARE):

0 = Qa − Pk|k−1 +AaPk|k−1A
T
a −AaPk|k−1G

T
a [GaPk|k−1G

T
a +R]−1GaPk|k−1A

T
a

(B.0.5)

which can be solved in MATLAB by the syntax

[Pp, Z1, Z2] = dare(ATa , GT
a , Qa, R)

where Pp contains the steady state values of the covariance matrix Pk|k−1. The asymptotic

Pk|k (and the converging value of tr(Pk|k)) can preferably be found from Eq. (B.0.2),

alternatively by Eq. (B.0.1) but avoiding explicit inversion, as this commonly shows to

give large numerical errors. The steady Kalman gain is given from Eq. (B.0.3).

The existence of a DARE solution requires the augmented pair (Aa,Ga) to be detectable.

This can be validated by the Popov-Belevitch-Hautus (PBH) rank test 1:

rankΛPBH ≡ rank

Aa − λI

Ga

 = ns + np (B.0.6)

or expanded and denoted with dimension for convenience:

rank


Ans×ns − λIns×ns Bns×np

0np×ns (1− λ)Inp×np

Gnd×ns Jnd×np

 = ns + np (B.0.7)

for all complex valued λ. We argue that detectability for the augmented system is equiv-

alent to satisfaction of the following three criteria:
1J. P. Hespanha. Linear Systems Theory. Princeton University Press, Princeton, New Jersey, 2009.

84



1. The pair (A,G) must be detectable, i.e. rank

A− λI
G

 = ns , where λ is an

eigenvalue of A and |λ| ≥ 1.

2. The system (A,B,G,J) must have no transmission zero equal to 1.

3. nd ≥ np

The argument, inspired by sensor fault detection in cybernetics 2, goes as follows:

For all λ /∈ eigenvalue of Aa:

rank

Ans×ns − λIns×ns Bns×np

0np×ns (1− λ)Inp×np

 = ns + np

if

rank

Ans×ns Bns×np

0np×ns Inp×np

 = ns + np

which is true if rankA = ns or equivalentlyA has ns distinct eigenvalues, which is follows

from the last result in this appendix. For all λ ∈ eigenvalue of Aa, rank [Aa − λI] 6=

ns + np. Specifically if λ 6= 1, the submatrix [ 0 (1 − λ)I ] has np columns mutually

independent and independent of the first ns columns in ΛPBH . The first criterion implies:

rank

Ans×ns − λIns×ns

Gnd×ns

 = ns

thus giving ΛPBH rank ns + np. In the case of λ = 1, which can be shown to always be

an eigenvalue of Aa, [ 0 (1− λ)I ] vanishes. The PBH test is then only fulfilled if:

rank

Ans×ns − Ins×ns Bns×np

Gnd×ns Jnd×np

 = ns + np (B.0.8)

2S. M. Joshi, O. R. González, and J. M. Upchurch. Identifiability of additive actuator and sensor

faults by state augmentation. Journal of Guidance, Control, and Dynamics, 37(3):941–946, 2014.
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This is only true if 1 is not a transmission zero of the system (A,B,G,J). If it is not, the

matrix above will have full rank, i.e. ns + min(nd, np) , necessitating the third criterion

nd ≥ np.

Furthermore, we claim in the following that the first criterion always will be satisfied in an

ordinary structural dynamic system. Let αj = a+ bi be an arbitrary eigenvalue of Ac∆t

and λj = c+di be an arbitrary eigenvalue of A. Let D = diag(α1 . . . αns) advocating the

eigen decomposition eAc∆t = P eDP−1, with P composed of the eigenvectors of Ac∆t.

The eigenvalue problem for A is:

det(A− λjI) = 0

det(eAc∆t − λjI) = 0

det(P eDP−1 − λjI) = 0

det(eD − λjI) = 0

which implies the intermediate result eαj = λj for singularity. We further look into the

condition |λj| < 1:

|λj| < 1

|c+ di| < 1

|ea+bi| < 1

|ea(cos b+ i sin b)| < 1

ea
√

cos2 b+ sin2 b < 1

ea < 1

a < 0

meaning Ac∆t must have strictly negative real part eigenvalues. We hereafter omit the

positive factor ∆t and inspect the eigenvalues βj of Ac:

86



det(Ac − βjI) = 0

det

 −βjI I

−M−1K −M−1C − βjI

 = 0

det(βjM−1C + β2
j I +M−1K) = 0

det(β2
jM + βjC +K) = 0

recognized in the frequency domain as the damped eigenvalue problem associated with

the complex solution of nDOF conjugate pairs 3:

βj = −ζjωj ± iωj
√

1− ζ2
j

where ωj and ζj are the undamped natural frequency and critical damping ratio is mode

j, respectively. ζj > 0 and ωj > 0 for all j implies a < 0, which was to be shown.

Therefore, all eigenvalues of A lie within the unit circle, automatically satisfying the first

criterion.

3G. Lallement and D. J. Inman. A tutorial on complex eigenvalues. In Proceedings - SPIE The

International Society For Optical Engineering, pages 490–490, 1995.
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Appendix C

Calculation of ice load on Hanko

channel marker

ISO199061 provides guidance for determining ice loads. The static global ice load ex-

pressed in Eq. (C.0.1) is an empirical formula based on full scale measurements and gives

an upper bound.

FG = CR( h
h1

)n(w
h

)mhw (C.0.1)

where

CR [MPa] is an ice strength coefficient

w [m] is the projected width of the structure

h [m] is ice sheet thickness

h1 = 1 [m] is the reference thickness

m = −0.16 is a coefficient

n =


−0.5 + h/5 if h < 1.0 m

−0.3 if h ≥ 1.0 m
is a thickness dependent coefficient

The Hanko channel marker has diameter w = 0.8 m. For a winter of moderate severity,

the expected ice thickness is h = 0.15 m according to regional specific guidelines in
1ISO/FDIS 19906:2010, Petroleum and natural gas industries - Arctic offshore structures, 2010.
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ISO19906. CR is taken as 2.8 MPa, a conservative estimate. This yields FG = 626 kN.

The code stipulates a simplified method for determining dynamic response. A sawtooth

ice load function (see Fig. C.1) with frequency f , assumed equal to the natural frequency

fn ≤ 10 Hz is applied. The amplitude of the fluctuating component, ∆F , is defined in

Eq. (C.0.2). The peak value Fmax can be set equal to global ice load FG from equation

Eq. (C.0.1). q is here set to 0.5 for simplicity.

Figure C.1: Load history given in ISO19906.

∆F = qFmax = qFG (C.0.2)

This resembles idealized load conditions during frequency lock-in, a dynamic phenomena

in ice-structure interaction. The corresponding ice sheet velocity vt can be approximated

as:

vt = u̇ca
β

(C.0.3)

with u̇ca as the structural velocity amplitude at ice level and β = 1.4 as a factor of

proportionality2.

2T. Kärnä. Simplified modeling of ice-induced vibrations of offshore structures. In Proceedings of

16th International Symposium on Okhotsk Sea & Sea Ice, pages 114–122, 2001.
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