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1 BAKGRUNN 

 

Betongdammer skal være både velte- og glidesikre. Vi har per i dag 

ikke god nok kunnskap om hvordan ruhet, fortanning og heft påvirker 

den reelle skjærstyrken mellom betongdam og fjellfundament. Vi står 

derfor i fare for å bygge og fornye konstruksjoner uten å kjenne den 

reelle kapasiteten mot gliding. Det kan føre til konstruksjoner som 

enten ikke er sikre nok eller er unødvendig kostbart dimensjonert. 

 
Med eksisterende beregningsmetoder basert på gjennomsnittsverdier av 

spenning, styrke og helling er det ikke mulig å få et tilfredsstillende svar på 

betongdammers reelle sikkerhetsfaktor mot glding Sg. Det er derfor 

nødvendig å utføre supplerende beregninger, basert på ordinær 

statikk/fasthetslære eller på numeriske regnemodeller. Slike metoder og 
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modeller kan gi interessante svar, spesielt vurdert opp mot dagens forenklede 

beregningsmetoder. 

 

Våren 2012 ble det gjennomført direkte skjærtester på prøvestykker av betong 

og granitt ved LTU (Luleå). Dette materialet muliggjør kalibrering av en 

numerisk beregningsmodell, og danner dermed grunnlaget for dette arberidet. 

 

 
2 ICOLD 
 

Mye av arbeidet med dammer og damsikkerhet i verden organiseres innenfor 

ICOLD – International Commision on Large Dams. Det finnes egne grupper 

som arbeider med betongdammer og stabilitet og det finnes en stor mengde 

litteratur på området. Det er naturlig at ICOLD blir bindeleddet ut mot 

internasjonal praksis og at nivået på litteraturen publisert i ICOLD danner 

basis for oppgaven. 

 

3 GJENNOMFØRING AV OPPGAVEN 
 

Arbeidet med oppgaven kan deles inn i fire faser: 

3.1 Bakgrunnsmateriale 

Resultat fra laboratorie-forsøk, tidligere rapporter, tegninger, artikler, bøker, 

programdokumentasjon, materialegenskaper m.m. danner 

bakgrunnsmaterialet for oppgaven. Materialet skal lede fram mot beregninger 

som kan vise hvordan krefter og spenninger opptrer ved et glidebrudd. 

Eksisterende metoder og modeller som f.eks. FEM-modeller må vurderes 

dersom det er tilgjengelig. Enkle modeller for beregninger på oversiktsnivå 

må også vurderes. Norske forhold og regelverk skal tas hensyn til i oppgaven, 

slik at det som vurderes har sterk relevans til lette platedammer i Norge. 

3.2 Etablering av regnemodeller 

Situasjoner og forutsetninger som skal regnes på må defineres og verifiseres. 

Det må lages en plan for hvilke metoder og modeller som skal benyttes til 

beregningene. I samarbeid med Statkraft og NORUT i Narvik skal det 

etableres et arbeid som fører fram til hvordan den reelle sikkerhetsfaktoren 



 

 

 

Postadresse Telefon +47 73 59 47 51 Besøksadresse Side iii av 120 

NO-7491 Trondheim Telefaks +47 73 59 12 98 S. P. Andersens vei 5                            Masteroppgave Øystein Eltervaag 

Org. nr.  974 767 880 

kan finnes og hvor stor denne er. Ulike forutsetninger og situasjoner skal 

regnes i modellene, slik at resultatene blir relevante for norske platedammer. 

3.3 Resultat 

Resultat fra beregningene må sammenlignes med kjente forhold og det må 

vises hvordan dette påvirker sikkerheten til en damkonstruksjon. Det må i 

hovedsak skilkes mellom situasjonene: 

1. Tilfredsstillende sikkerhet 

2. Ikke tilfredsstillende sikkerhet, krever tiltak 

3. Brudd på konstruksjonen 

3.4 Konkludering 

Arbeidet skal lede fram mot en regnemodell som som inkluderer alle 

relevante forhold ved et glidebrudd. Arbeidet skal også vise hvordan 

sikkerheten vil endre seg med endrede forutsetninger og vilkår. Det må vises 

hvordan resultatene fra beregninger gir føringer for valg av eventuelle tiltak 

for forsterking, der dette er nødvendig med tanke på damsikkerheten. 

 

4 KONTAKTPERSONER 
 

NTNU    Kjell H. Holthe, Professor, formell veileder 

NTNU    Leif Lia, Professor, medveileder 

NORUT   Gabriel Sas, Dr.Ing, medveileder 

Statkraft   Trond Bjertnes og Anne Marit Ruud 

 

Det vil i tillegg være aktuelt å knytte kontakt med fagmiljø som er aktive 

innenfor studier av betongkonstruksjoner som Sintef Betong, EnergiNorge, 

NVE m.fl. 
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5 RAPPORTFORMAT, REFERANSER OG ERKLÆRING 

 

Oppgaven skal skrives i et tekstbehandlingsprogram slik at figurer, tabeller, 

foto osv. får god rapportkvalitet. Rapporten skal inneholde et sammendrag, en 

innholdsliste, en liste over figurer og tabeller, en litteraturliste og 

opplysninger om andre relevante referanser og kilder. Oppgaven skal leveres i 

B5 format som pdf i DAIM og trykkes i tre eksemplar som leveres 

faglærer/institutt. 

Sammendraget skal ikke overstige 450 ord og skal være egnet for elektronisk 

rapportering.  

Masteroppgaven skal ikke leveres senere enn mandag 10. juni 2013. 

 

Trondheim, 15. januar 2013 
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ABSTRACT 
Sliding failure of lightweight concrete dams occur if the horizontal forces 

subjected to the dam exceeds the shear capacity of one or more sliding planes 

in the dam’s structure or foundation. Thus, sliding is a result of a shear failure 

in the dam or foundation. 

The scope of this Thesis is to investigate how surface roughness influences 

the shear capacity of possible sliding planes in lightweight concrete dams, and 

in this way affect the stability of dams regarding sliding failure. By studying 

physical shear tests conducted by Simen Liahagen in 2012 it has been found 

that the shear capacity of a sliding plane is governed by two failure 

mechanisms. 

For a bonded interface, sliding is a result of a material failure in one or both of 

the adjoining materials. For an un-bonded interface, the capacity might be 

governed by both the frictional capacity of the roughness at the interface and 

local material failure in parts of the roughness. From the analyses of 

Liahagen’s shear tests it was found that what failure mode that governs the 

capacity is dependent on both the normal stress and the inclination of the 

interface roughness. 

The shear tests indicate that if the surface roughness is not cut-off, it 

contributes to the shear capacity in two ways. Firstly, the macro-roughness, or 

asperities, along the sliding plane increase the shear capacity by tilting the 

plane of the actual sliding failure. Secondly, the micro roughness along the 

asperities is cut off for a sliding failure. This contributes to the total shear 

capacity more than tilting the sliding plane. 

By comparing the theoretical formulations for shear capacity used in today’s 

guidelines to the shear tests it has been found that this theory do not represent 

the shear capacity sufficiently. Trough finite element analyses a better 

representation of the tests has been achieved, especially regarding the 

influence of micro roughness. 

The approach from analyzing the tests has been further developed to enable 

assessment of the sliding stability of a full scale dam. The results show that 

the roughness gives a notable increase in the stability for sliding. However, 

further tests and calibration are needed to utilize the full potential of this 

method.
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SAMMENDRAG 
 

Glidebrudd i  lette betongdammer forekommer hvis de horisontale kreftene 

dammen blir utsatt for overstiger skjærkapasiteten langs mulige glideplan i 

dammen eller fundamentet. Dermed kan glidning ses på som et resultat av 

skjærbrudd i damkonstruksjonen. 

Målet med denne oppgaven er å undersøke hvordan overflateruhet langs 

potensielle glideplan i en betongdam påvirker skjærkapasiteten, og på denne 

måten påvirker dammens totale glide-stabilitet. Gjennom studier av fysiske 

skjærtester gjennomført av Simen Liahagen i 2012 er det oppdaget at 

skjærkapasiteten langs et glideplan styres av to bruddmekanismer. 

For et glideplan med heft vil glidinig oppstå som et resultat av et 

materialbrudd langs planet eller i et av planets tilstøtende materialer. For et 

glideplan uten heft, bestemmes kapasiteten av både motstanden mot gliding 

over ruheten og lokale materialbrudd i deler av denne overflateruheten. 

Liahagen’s tester indikerer at hvilken av disse mekanismene som bestemmer 

kapasiteten avhenger både av normalspenningen langs planet men også av 

helningsvinkelen til ruheten. 

Skjærtestene viser at dersom ikke ruheten skjæres av, vil den øke kapasiteten 

på to måter. For det første vil ruheten øke helningsvinkelen til det faktiske 

glideplanet.  For det andre vil mikro-ruhet langs overflaten bli skåret av, som 

øker den totale skjærkapasteten ytterligere. 

En sammelinkning av det teoretiske grunnlaget om brukes for å beregne 

glidestabiliteten av betongdammer i dag med de fysiske testene viser at 

teorien ikke representerer den faktiske skjærkapasiteten tilstrekkelig. 

Elementanalyse viser bedre overensstemmelse med testene, spesielt med 

tanke på innvirkningen av mikroruhet. 

Metoden fra analyseringen av testens har blitt videreutviklet for å kunne 

vurdere glidestabiliteten til en fullskala dam. Resultatene viser at ruheten 

bidrar til vesentlig økning i glidestabiliteten, men det kreves flere tester og 

ytterligere kalibrering for å utnytte denne metodens fulle potensial.
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1. INTRODUCTION 
 

This Master’s Thesis is a continuation of the work done in the author’s 

specialization project: “Sliding Stability of Lightweight Concrete Dams – 

Contribution from Surface Roughness”. The focus in the project was to 

establish the theoretical foundations for sliding stability. In addition a study 

on the possibility of applying finite element analyses on sliding stability 

problems was carried out. 

The project forms the literature study for this Thesis, in which the focus lies 

on application of finite element analyses to sliding stability problems. 

 

1.1 Background 

In Norway, the stability of a dam is reconsidered every 15 or 21 years, 

depending on the consequence of a dam break for the given dam.  The 

purpose of this reconsideration is to assess the constructional safety of a dam 

with respect to accepted safety levels. In the past 40-50 years, since the large 

hydropower development époque in Norway, the level of required safety has 

increased. This result in situations where dams constructed in this period no 

longer are considered stable and expensive rehabilitations are needed. 

Trough the work with the specialization project it was discovered that sliding 

failure is governed by two different mechanisms. Sliding failure occurs either 

as a result of exceeding the frictional capacity along an unbounded sliding 

plane, or as a result of shear-failure in intact material. The Mohr-Coulomb 

criterion used in today’s guidelines is only able to describe the mechanism of 

material failure, and is therefore not sufficient for assessing the sliding 

stability of concrete dams. 

Furthermore the sliding stability is today only assessed trough simplified hand 

calculations where the shear and normal stresses are averaged over the entire 

sliding plane. There are reasons to believe that this method do not represent 

the sliding failure with sufficient realism. 
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1.2 Objectives 
The general scope for this Master’s Thesis is to develop a better approach to 

sliding stability assessments of lightweight concrete dams. The objective is to 

further analyze how a sliding failure elapse, what mechanisms that govern 

shear capacity, and to investigate how these mechanisms can be included in 

the stability calculations. 

 

1.3 Method 

The method for obtaining more realistic stability assessments for sliding 

failure consists of three steps. Initially the governing mechanisms for sliding 

failure are investigated trough analyses of twelve shear tests conducted by 

Simen Liahagen in 2012. The shear capacity of these tests is then compared to 

the theoretical foundations obtained through the author’s Project work to 

understand and quantify the effect of the different mechanisms. From this 

analysis the properties of the sliding plane is found.  

The properties of the sliding plane are used as input parameters in finite 

element analyses. By comparing the results from these analyses to the actual 

results from the tests the quality of the numerical models can be assessed. The 

numerical models developed from the tests are in turn applied to a full scale 

dam to show how this method provides a more realistic capacity for sliding 

failure. 

 

1.4 Extent and limitations 
Due to late arrival of the license for the finite element software ATENA (mid 

April) the focus has been on establishing running models. Achieving 

trustworthy results from these numerical models proved to be much more 

time-consuming than anticipated. Thus, only the effect of surface roughness is 

studied. Contribution from rock bolts, or combinations of bonded and un-

bonded sliding planes   are not investigated. 

In total, eleven of the twelve shear tests from Liahagen (2012) are analyzed, 

along with three analyses of a section of dam Ipto. 
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1.5 The structure of this Thesis 
The Thesis consists of seven chapters. In chapter 2 preceding Master’s Theses 

on the subject are presented. This chapter also contains a brief summary of the 

numerical analyses conducted in the author’s project work. The theoretical 

foundations for sliding failure and the criteria for shear capacity found trough 

the literature study in the author’s project work are presented in chapter 3.  

Chapter 4 contains preliminary analyses of Liahagen’s tests. Pictures from the 

tests have been thoroughly studied in order to capture how the failure 

precedes, and what failure mode governs the shear capacity of the different 

tests. A comparison between the formulations for shear capacity found in 

chapter 3 and the test results are carried out. Based on this, an approach for 

how to describe the observed shear capacity for these tests are developed. 

The development of the numerical models is described thoroughly in chapter 

5. This chapter contains descriptions of the material models, the geometry and 

loading of the models, and the troubleshooting of the analyses.  

The results are presented and discussed in chapter 6. By comparing the 

numerical results to the results of the actual tests the discrepancies become 

visible. By analyzing the source of these discrepancies the usability of the 

numerical models can be further investigated. 

In the final chapter the conclusions from the work with this Thesis are 

presented along with suggestions for further work. 
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2. PRECEDING WORK 
 

This chapter contains a brief presentation of preceding work on the topic. The 

purpose is to shed light on the work done by previous students at NTNU, and 

in such a way put this Thesis into context.  

In the fall of 2009 Olav Jørstad wrote a specialization project on sliding 

stability of buttress dams at IVT, NTNU. Based on his findings two Master’s 

Theses on the topic were initiated in 2012. One was written by Peter Stølen 

(Stølen 2012), the other by Simen Liahagen (Liahagen 2012). The scope for 

these two Theses was to investigate the influence of bond and surface 

roughness on the stability for sliding of concrete dams, trough shear tests and 

numerical models. 

 

2.1 Stølen’s Master’s Thesis 

The scope for this Thesis was to assess the sliding stability of Målset dam, a 

buttress dam in the Sogn og Fjordane county in Norway. The stability was 

assessed through hand calculations and finite element analyses (FE-analyses).  

In his Thesis, Stølen analyzed several sections of the dam which is considered 

unstable by the calculation methods used today. The sliding stability was 

reassessed using the shear friction method, the limit equilibrium method, 

multiple wedge analyses and combined sliding and overturning method. These 

methods are thoroughly described in Stølen’s Master’s Thesis (2012) and also 

in Jørstad (2009). A brief description is given in APPENDIX A. 

The results of the hand calculations showed that the dam does not satisfy the 

acquired safety levels for sliding stability. This is in line with reassessments 

of the dam’s stability conducted in 2006 by Norconsult, although the results 

of these calculations are somewhat more conservative. The results from the 

different calculation methods gave corresponding results for sliding planes 

with low inclinations, but differed for sliding planes with high inclination. 
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The numerical modeling was performed using the Check finite element 

software ATENA, which is also used in this Thesis. A description of ATENA 

is given in chapter 5. 

One section (Section 4) of the dam was chosen as a reference for numerical 

modeling. This section has a height of 6.7 meters, which makes it very 

interesting with respect to contribution from rock bolts
1
. The dam and 

foundation was modeled with linear 2D triangle-elements with one integration 

point. For the interface between the dam and the foundation linear rectangular 

contact-elements with two integration points were used. The mesh is showed 

in figure 2.1 below. The reinforcement and rock bolts were modeled as 1D-

elements. The material parameters used in this model is presented in 

APPENDIX B.  

 

Figure 2.1: Element mesh (Stølen 2012). 

The loading of the model consisted of the gravitational load of the dam, the 

hydrostatic water pressure, ice forces and an uplift pressure along the base of 

the dam. The uplift pressure proved hard to model, but this was cleverly 

                                                      
1
 According to the Norwegian guidelines for concrete dams, contribution from rock 

bolts in the stability calculations are only allowed for dam sections that are less than 7 

meters tall (NVE 2005). 
2
 In the tables in Liahagen’s Thesis (and Eltervaag 2012) this value is printed as 30 



 

 

PRECEDING WORK  

 

6   

 

solved by reducing the density of the concrete plate on the upstream end of 

the dam. 

The stability was assessed by increasing the hydrostatic load until the 

interface material became completely plasticized. The maximum hydrostatic 

load divided by the standard hydrostatic load was interpreted as the factor of 

safety towards sliding. Due to complications with ATENA only analyses of 

interfaces with bond was conducted. The plasticization of the interface is 

shown in figure 2.2. 

 

Figure 2.2: Plasticization of the interface (Stølen 2012). 

A complete plasticization of the interface was interpreted as a failure in the 

bond between the dam and the foundation. The results were presented in load 

– displacements graphs as shown in figure 2.3 and 2.4 below. The graphs 

show the relationship for a dam-section with a cohesive parameter of 0.1 MPa 

both with and without contribution from rock-bolts.  

 

Figure 2.3: Load-Displacement for dam-section with rock-bolts (Stølen 2012). 
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Figure 2.4: Load - Displacement without rock-bolts (Stølen 2012). 

These results are interesting for two reasons. Firstly they indicate that rock-

bolts will contribute to an increased sliding stability, and secondly they show 

that the dam will have some rest capacity after the bond is broken. Stølen 

explains this rest capacity as dry friction, which is very much in line with the 

theory first presented by Patton (1966) (see Chapter 3). 

Contribution from surface roughness was not directly analyzed. However, the 

shear-stress distribution at the dam base after bond failure was studied. For all 

cases Stølen observed a stress concentration where the foundation is tilted 

upwards, as shown in figure 2.5 below. This indicates that the surface 

roughness will influence the rest capacity of the dam. 

 

Figure 2.5: Shear stress at dam base (Stølen 2012). 
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2.2 Liahagen’s Master’s Thesis 
During his Master’s Thesis Simen Liahagen conducted twelve direct shear 

tests at Luleå Tekniska Univeristet (LTU). In these tests, granite samples were 

slid against concrete samples under a constant normal pressure.  

The test rig consists of a rigid steel frame with dimension 2.5 by 2.5 meters. 

This frame supports a vertically mounted hydraulic jack and the lower part of 

the so called “shear box” in figure 2.6. The shear force is applied by two 

horizontally mounted jacks to the upper part of the shear box. This system 

(the red part in figure 2.6) is connected to the steel frame by springs which 

allows the moving parts to rotate approximately 10˚ relative to the shear 

direction.  The jacks are able to provide a force of 500kN horizontally and 

vertically to the shear box (Liahagen 2012). 

 

Figure 2.6: The test rig at LTU (Liahagen 2012). 

The internal dimensions of the shear box’s two parts is 285 x 270 x 130mm (l 

x b x h).  To mount a sample in the shear box it is casted in a form to match 

the exact dimensions of the box. 
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The samples had the following dimensions: 240 x 240 x 130mm (l x b x h).  

The geometry of the interface between the rock and concrete is shown in 

figure 2.7. Pictures of the samples studied in this report are presented in 

APPENDIX C. 

The compressive strength of the granite was 283 MPa. The concrete was 

casted on top of the rock samples, and by applying a thin plastic foil to the 

rock samples, bond was prevented in ten of the twelve samples. The concrete 

was mixed at site, and had a compressive strength of 58 MPa. 

 

Figure 2.7: Profiles of test samples (Liahagen 2012). 

The tests were conducted with four samples with geometry 1, three samples 

with geometry 2 and 3 respectively, and two samples with geometry 4.  Two 

of the tests, one with geometry 1 and one with geometry 4 was conducted 

with adhesive bond. The results are shown in table 2.1below 
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Table 2.1: Test results from Liahagen (2012). 

Sample i 

[˚] 

N 

[kN] 

V 

[kN] 

δH 

[mm] 

σn 

[MPa] 

τmax 

[MPa] 

ϕmax 

[˚] 

δHmax 

[mm] 

Notes 

1.1 40 27.52 90.53 4.00 0.48 1.57 73.08 15.23  

1.2 40 46.91 131.19 3.03 0.81 2.28 70.32 15.44  

1.3H 40 72.47 299.17 3.58 1.26 5.20 76.41 5.07 Bond 

1.4 40 68.49 183.42 1.44 1.19 3.18 69.52 26.34  

2.1 20
2
 27.57 50.74 6.39 0.48 0.88 61.48 24.99  

2.2 20 47.77 100.59 2.86 0.83 1.75 64.60 21.98  

2.3 20 68.36 162.83 2.30 1.19 2.83 67.23 20.07  

3.1 10 24.82 35.38 9.78 0.43 0.61 54.95 33.16  

3.2 10 45.98 58.70 6.55 0.80 1.02 51.93 32.94  

3.3 10 67.65 85.43 2.83 1.17 1.48 51.63 33.23  

4.1H 0 67.85 240.00 2.49 1.18 4.17 74.24 14.59 Bond 

4.2 0 67.23 52.04 33.23 1.17 0.90 37.74 33.23  

 

Where i is the asperity inclination, N and V are the normal and horizontal 

forces respectively, δH, is the horizontal displacement at peak shear capacity, 

σn, is the normal stress, τmax is the peak shear capacity, and δHmax is the total 

horizontal displacement. The ϕmax value has been calculated from the 

measured normal and shear forces as 

1

max tan
V

N
   

  
 

    (2.1) 

By studying this parameter, it is clear that the surface roughness contributes to 

the shear capacity, especially for joints without bond. 

Unfortunately the work of Liahagen was heavily delayed due to complications 

in receiving the rock samples. The result of this delay was a very limited 

timeframe for analyzing and interpreting the results. This makes it hard to 

utilize the full potential of these shear tests in further studies.  

 

                                                      
2
 In the tables in Liahagen’s Thesis (and Eltervaag 2012) this value is printed as 30 

degrees. However, from the surrounding text and figures it appears that the samples 

actually had an inclination of 20 degrees. 
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2.3 Recap of FE-analyses from the Project 
In the specialization project simple 2D FE-analysis was conducted using the 

finite element software ABAQUS developed by Dassault Systèmes.  The 

analyses were based on the shear test 3.3 and 4.2 from Simen Liahagen (2012) 

described in section 2.2. 

These two tests were chosen for modeling due to their relative simple 

geometry, and because they were run with equal normal pressure. The 

purpose was to assess whether FE-analyses was able to present sliding over a 

rough surface.  

The geometry of the samples used in the shear tests were modeled as 2D plane 

parts in ABAQUS. The models were meshed with modified quadratic triangle 

elements (CPS6M). The element size was set to 5 mm. Both rock and 

concrete was modeled with the Concrete Damaged Plasticity material model. 

The material parameters were based on sample descriptions by Liahagen 

(2012), however values for all the needed parameters were not found. 

Therefore additional values have been estimated based on generalized 

approximations from Eurocode 2 and Nilsen and Thidemann (1993). The 

material properties are presented in table 2.2. 

Table 2.2: Material parameters. 

Material Concrete Rock 

Young’s Modulus [GPa] 33 100 

Poisson’s Ratio 0.2 0.2 

Compressive Yield Stress [MPa] 30 200 

Compressive Failure Stress [MPa] 58 280 

Inelastic strain at compressive failure 0.0035 0.001 

Tensile Failure Stress [MPa] 3.8 4.0 

Dilation Angle
3
 31 35 

 

The models were loaded by a normal pressure on top and a prescribed 

deformation field on the upper left side. The lower parts of the models were 

constrained vertically along the base and horizontally along the left side. 

Contact was modeled using finite sliding (surface to surface) in ABAQUS. 

                                                      
3
 Dilation angle used in ABAQUS is denoted β which can be found from the expression: tan(β) = sin(ϕ) 

where ϕ is the basic friction angle. 
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For further descriptions see Eltervaag (2012). The loading and geometry of 

the models are shown in figure 2.8. 

 

Figure 2.8: Loading of the models. 

The results of the analyses compared to the actual tests are shown in figure 

2.9 and 2.10 below. 

 

Figure 2.9: Comparison of FEM results and test results for test 3.3. 
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Figure 2.10: Comparison of FEM results and test results for test 4.2. 

As previously mentioned the goal for these analyses was to evaluate whether 

FE-analyses could be used to assess sliding stability for concrete dams. The 

results presented in the figures above left the author optimistic regarding the 

usability of FE-analyses.  

However, as shown in the figures the representation is not exact. It is believed 

that the “dip” in the numerical results shown in figure 2.8 is due to the 

prescribed displacement used to impose the horizontal force. When the upper 

part reaches the top of the asperities, the top part will slide down on the other 

side. The prescribed displacement now holds the upper part back from this 

movement, thus the reactions become negative. For further details see 

Eltervaag (2012).  

Another issue with the models from the project is the material representation, 

and finding a better material model for rock and concrete is needed to obtain 

trustworthy results from FE-analyses. Developing more representative 

numerical models for sliding stability is the scope for this Master’s Thesis.  
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3. THEORY 
 

This chapter presents the theoretical background for sliding failure 

mechanisms for concrete dams. The chapter is based on the literature study 

conducted in the author’s Project work, and contains selected topics which 

describe the mechanisms for sliding failure. For the sake of report structure, it 

has been emphasized only to present literature which is directly relevant for 

the analyses conducted in this Thesis. However, some peripheral formulations 

are also given. The reason for this is that several established stability 

assessment methods are of empiric nature, and even though they are not 

directly used in this Thesis, they provide a foundation for comparison.  

For a further description of both the presented formulations and further 

theoretical foundations, see Eltervaag (2012). 

 

3.1 Assessing stability towards sliding 
According to Norwegian rules and regulations stability regarding sliding for 

concrete dams must be verified along several possible sliding planes both in 

the dam and in the foundation (NVE 2005). The sliding stability of such a 

plane can be described in different ways (see APPENDIX A) but the 

principles are the same. In Norway the shear friction method is used, where 

the stability is expressed by a factor of safety (FS). For a horizontal sliding 

plane this factor is found from the following equation (NVE 2005). 

tanc A V
FS

H

  





      (3.1) 

Where c is a cohesive parameter, A is the plane’s area, V and H are the 

vertical and horizontal forces subjected on the plane respectively. The 

frictional behavior of the plane’s surfaces is expressed by tan (ϕ). In other 

words, the factor of safety is calculated from the averaged normal stress and 

shear capacity of the sliding plane. 
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3.1.1 Shear capacity and failure mechanisms 

The shear friction method is based on the Mohr-Coulomb criterion for 

describing the shear capacity of the sliding plane. This criterion states that the 

shear capacity, τ, is linearly dependent on the applied normal force, σ, trough 

a material specific frictional parameter tan(ϕ) plus a cohesive parameter, c. 

This can be expressed as follows (Johansson 2009). 

tanc         (3.2) 

Note that in the formulations for shear capacity compressive normal stresses 

are positive, and eventual tensile stresses have negative sign. Today it is 

generally accepted that the shear capacity for non-continuous brittle materials 

is not sufficiently described by the Mohr-Coulomb criteria (Johansson 2009), 

however the criteria is still in use much due to its simple formulation. 

In the 1960’s it was recognized that the failure envelope for rock mass (rocks 

with joints and faults) was curved. One of the major contributions to this 

understanding was when Patton (1966) derived a bi-linear failure criterion 

from experiments with “saw-toothed” rock specimens shown in Figure 3.1. 

Patton observed that sliding occurred at lower levels of normal stress than 

what was needed to cut off the saw-toothed geometry. This failure mechanism 

can be described on the form: 

tan( )b i         (3.3) 

Were ϕb is the material specific friction angle (simply denoted ϕ in the Mohr-

Coulomb relation) and i is the angle of the saw-teeth, called the asperity 

inclination or dilation angle. 

When the normal stress exceeded a certain value the saw teeth were cut off at 

their base. Patton (1966) explained this as a change of governing failure 

mode, from a sliding failure along the material interface, to a failure in the 

material itself. The shear capacity regarding this material failure is described 

by: 

tan( )x rc         (3.4) 
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Where cx is the bond of the failing material, and ϕr is the residual friction 

angle of the failure plane. The shear envelope obtained from these expressions 

is shown in Figure 3.1 below. 

 

Figure 3.1: Patton's bi-linear failure criterion (Johansson 2009). 

As seen in Figure 3.1 the relation first described by Mohr and Coulomb is still 

valid as long as the sliding plane is subjected to relative high (compressive) 

normal stresses. In other words, the shear capacity of the sliding plane when 

the asperities are cut off can be described by applying the frictional and 

cohesive parameters of the failing material to Mohr-Coulomb’s criterion. 

According to Patton (1966) the bi-linear failure envelope illustrates that there 

are two possible failure mechanisms for the rock specimens he studied. The 

first mechanism is sliding over the asperities (saw-teeth), and occurs at low 

normal stresses. The second is shearing through the asperities, and occurs at 

relatively high normal stresses. The bend in the failure envelope shown in 

Figure 3.1 is caused not by a switch of failure mode, but due to a change of 

ratio between the two failure modes occurring simultaneously (Patton 1966). 

These different failure modes have also been described by Fredrik Johansson. 

In his Doctorial Thesis (Johansson 2009) he developed a conceptual model to 

describe sliding failure along rough unfilled rock joints. The model describes 

the sliding failure for one idealized asperity, and is then transformed to 

describe the failure along a full sized joint.  
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In the model for the idealized asperity Johansson (2009) identifies three 

failure modes, sliding along the side of the asperity facing the load, shear-

failure along the base of the asperity, and tensile failure in the rock-base of the 

asperity. A sketch of an idealized asperity is shown in figure 3.2 

 

Figure 3.2: Principle sketch of an idealized 2D asperity (Johansson 2009). 

To describe sliding along the loaded face of the asperity (the left side in 

Figure 3.2) Johansson uses Patton’s formulation for shear capacity for low 

normal stresses (transformed from stresses to forces). 

tan( )bT N i       (3.5) 

For a shear failure along the base of the material the equations for material 

failure (Mohr-Coulomb and Patton’s equation for high normal stress) is used. 

2 tan( )i sp iT c L N        (3.6) 

For a tensile failure to occur in the rock-base, the vertical tensile stresses must 

exceed the tensile capacity of the rock. To calculate the average tensile stress 

in the rock, Johansson assesses the moment-equilibrium about point O in 

Figure 3.2. 
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2(3 4 )

2 tan( )

ci ti aspL
T

i

   



   (3.7) 

To illustrate these failure modes Johansson calculated an example for granite 

rock. Input values were as follows: uniaxial compressive strength: σci = 150 

MPa, tensile strength: σti = 10MPa, ci = 20 MPa, φi = 60˚, φb = 30˚ and the 

basic length Lasp is set to 10 millimeters. The results are shown in Figure 3.3. 

 

Figure 3.3: Different failure modes for an idealized asperity (Johansson 2009). 

Based on the example over it appears that the maximum asperity angle in 

order to get sliding failure is 35˚, and that tensile failure requires an asperity 

angle of 60˚. It must be noted that both Johansson’s and Patton’s equation for 

sliding failure along asperities assumes no bond along the sliding surface. 

The results shown in figure 3.3 indicate that not only the normal stress affect 

the failure mechanism, but also the inclination of the asperities.  This means 

that for a granite asperity with an inclination of 40˚, the failure is most likely 

governed by shearing even for relatively low normal stresses. 
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3.1.2 New methods for assessing stability towards sliding 

Today, only the Mohr-Coulomb criterion is included in the stability 

calculations in Norway. In other words the contribution from surface 

roughness is overlooked. However, a new set of guidelines have been 

proposed in Sweden (Johansson et. Al 2012) which aims to present a more 

realistic assessment of the stability towards sliding. 

These new guidelines include the two different failure modes of sliding along 

the surface and shearing off the surface roughness in the calculation of shear 

capacity. This is done by applying the Mohr-Coulomb criterion for sliding as 

a result of material failure, and including the dilation angle for sliding along 

an interface. The equations in the proposed guideline were originally 

presented as relations between shear and normal forces, which are in line with 

the current stability calculation methods. As seen in the previous section the 

shear capacity on the other side, is generally given as stress- relations. For the 

sake of consistency the equations in the new proposed guidelines also will be 

presented on stress-form. 

The Authors identify three types of potential failure planes to be assessed: 

sliding along the dam-foundation interface, sliding along existing joints in the 

rock foundation and sliding as a result of failure in the rock mass.  

Sliding along the dam-foundation interface is called failure type A. The 

failure along this sliding-plane can be calculated in two ways, depending on 

whether the interface is bonded or not. For failure without bond (Type A1) the 

shear capacity can be calculated as: 

tan( )b i         (3.8) 

For an interface which is completely or partially bonded the shear capacity is 

only calculated from the part of the surface with actual bond. The failure shear 

capacity (Type A2) can be calculated as: 

tan( )a a bc          (3.9) 

Where the subscript, a, denotes that only the cohesive parameter and normal 

force for the bonded part of the interface should be used. The proposed 

guideline emphasizes that the contribution from bonded and un-bonded parts 
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of the interface not can be added together. The reason for this is that a bonded 

interface will have much higher resistance towards lateral displacements 

compared to an un-bonded interface (Johansson et al 2012). 

For a sliding failure along an existing rock joint in the foundation (Type B) 

the guideline suggest that the shear capacity should be calculated as for 

interfaces without bond.  

tan( )bj ji         (3.10) 

However, the basic friction and dilation angle governing this failure mode is 

connected to the rock joint. Thus the subscript, j, is introduced. 

For a sliding failure as a result of a material failure in the rock mass (Type C) 

the capacity is found similar as for bounded interfaces.  

tan( )r rc         (3.11) 

For this failure mode the cohesive and frictional parameters are related to the 

rock which is indicated by the subscript, r. 

Johansson et. Al (2012) suggest that for the rock-concrete interface, the 

dilation angle can be found from field-measures of the larger asperities. If this 

is not possible they suggest studying pictures from the construction time. For 

dilation angles of joints in the rock mass field-measures of large scale 

asperities is suggested.  
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3.2 Alternative formulations 
Another great contributor to the understanding of the shear capacity in rock 

mass is Nick Barton. Trough his work (Barton 1973, Barton and Choubey 

1977 and Barton and Bandis 1982) empirical formulations for the dilation 

angle of rock joints were establishes.  

The major advantage with this approach is that the dilation angle can be found 

from a sample of the rock foundation. This is beneficial if the foundation 

geometry either is unknown or highly schistose with no clear failure plane. 

The dilation angle can be found as 

10log
'n

JCS
i JRC



 
   

 
   (3.12) 

Where σn’ is the applied normal stress, JRC is the Joint Roughness Coefficient 

(presented in tables) and JCS is the joint wall compressive strength.  

Another benefit with the empirical approach is that scale effects on the surface 

roughness can be assessed. In short these effects are caused by how well the 

interface is mated, especially how well the smaller asperities are aligned. A 

small sample will have the necessary degree of freedom to rotate slightly, 

which can result in a better mated interface than what is found from samples 

at larger scales (Bandis et. Al 1981). The scale effects are presented more 

thoroughly in the authors project (Eltervaag 2012). 

Through experimental work Fishman (2007, 2008 and 2009) launched a 

hypothesis of a new failure mode for concrete dams, called the Limit Turning 

Mode. Through his experiments Fishman found that failure of a concrete dam 

would happen over three stages. At stage one cracks will form at the upstream 

end of the dam.  Due to continued horizontal loading these cracks will grow, 

and the compressive zone at the downstream end of the dam increases. At 

stage two the stresses in this zone has reached the material strength of the 

foundation and the rock is crushed. If the loading continues the crushed zone 

and the cracks will meet forming a continuous joint in the foundation. The 

dam has now reached stage three and is free to rotate independently of the 

rock foundation. 

  



 

 

PRELIMINARY ANALYSES  

 

22   

 

4. PRELIMINARY ANALYSES 
 

In this chapter Liahagens tests are analyzed. These analyses serve two 

purposes. The primary objective is to get a better understanding of how the 

sliding failure develops, and what failure mode that governs the shear 

capacity. This enables a more correct description of the actual failure, which 

in turn provides better input parameters for numerical analyses of sliding 

failure. 

Initially an approach was attempted where the basic friction angle was taken 

as the average from the tests. However, this method gave poor results. Thus a 

more profound analysis of the tests is conducted to obtain better values for the 

properties governing sliding failure. The test results are compared to the 

failure criteria described in chapter 3 to get an impression of how well the 

theory matches the tests. This comparison presents new insight in the 

development of failure, and provides more accurate values for the parameters 

governing the shear capacity of the sliding plane. 

 

4.1 Finding the basic friction angle form test 4.2 
Test 4.2 was the only test with a flat horizontal interface and no bonding 

between rock and concrete. This test was loaded with a normal force of 67.23 

kN, and experienced a horizontal displacement of 33.23 mm. The load-

displacement curves for both normal and shear forces are shown in figure 4.1. 
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Figure 4.1: Load - displacement relations for test 4.2 (Liahagen 2012). 

The test shows peak shear capacity of 52.04 kN at approximately 33 mm of 

displacement. This is not in line with the other tests, where the peak shear 

capacity is reached after only a few millimeters of displacement. From 

Liahagens Thesis no explanation of this irregular behavior is found, and this 

“peak” is therefore disregarded in these analyses.  

Liahagen investigated the rock and concrete samples after the test and 

described a significant wear of the contact surfaces. This indicates that the 

reduction of shear capacity from five to fifteen millimeters of displacement 

might be explained as cut-off of micro roughness along the interface. 

Assuming that the micro roughness is similar for all of the samples, the basic 

friction angle can be found from applying the Mohr-Coulomb criterion with 

zero cohesion to the forces at about four mm of displacement. Since the area 

is equal for normal and shear stresses this can be calculated directly from the 

forces: 

1 1 49.56
tan( ) tan tan 36.397

67.23
b b

V V

N N
      

        
   

 (4.1) 
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A basic friction angle of 36.397˚ is somewhat lower than the expected value 

of 45˚ which is used by NVE (2005) and found in tables for granite (Barton 

and Chowbey 1977). A possible explanation for this might be that the 

preparation of the rock sample gives a smoother surface compared to natural 

rocks. The basic friction angle is believed to be material specific (Patton 1966, 

Johansson 2009) and is included in both the Mohr-Coulomb criteria as well as 

in Patton’s equations. 

After the micro roughness is cut off, the shear capacity is reduced. From the 

curves this residual shear capacity is found to be approximately 46 kN. 

Following the assumption that the micro roughness is similar for all of the 

samples the residual friction angle is found similarly to the basic friction 

angle. This gives a residual friction angle of 34.38˚. 

The effect of micro roughness cut-off might be evaluated trough equation 3.6, 

which essentially is the Mohr-Coulomb criterion. In this way, the micro 

roughness is represented by a cohesive parameter. The friction angle to be 

used in this calculation must be the residual one, as this was found from the 

test after the “cohesion” was broken. 

tan( )
tan( ) residual

residual

V N
V c A N c

A




 
       (4.2) 

 

Inserting values for the maximum shear capacity, 49.56 kN, normal force, 

67.23 kN, and joint area (240 by 240 mm which equals 0.0576 m
2
) this 

cohesive parameter is found to be 62 kPa. 

The results also show a gradual build-up of shear capacity, which indicates 

that the samples might slide a certain distance before shearing of the micro 

roughness starts. One explanation for this can be that the samples contained 

grooves with length in the sliding direction of up to 5 mm. In this way the 

micro roughness could have been moving within these grooves without 

contributing to the shear capacity. However, for this to be the case a similar 

behavior should be seen in the other tests as well, which in general is not 

found. Thus, a more probable explanation for this effect is errors in the test 

setup and/or calibration of the monitors used for this actual test.  
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4.2 Failure of test series 3 
Test 3.1, 3.2 and 3.3 (hereafter referred to as test series 3) has an interface 

asperity-inclination of ten degrees. The load-displacement curves for these 

tests are shown in figure 4.2 below. In this test series only test 3.1 shows a 

gradual increase of shear capacity. 

 

Figure 4.2: Load-displacement relations for test series 3 (Liahagen 2012). 

Studying pictures of the tests (see APPENDIX B) it appears that the failure 

mode for these tests is sliding over the asperities. According to the theory, the 

peak shear capacity for this failure mode is best described by applying the 

basic friction angle to Patton’s equation (equation 3.3). In table 4.1 this 

criterion is compared to the actual tests and the Mohr-Coulomb criterion used 

in today’s guidelines. 

Table 4.1: Comparison of peak shear capacity for test series 3. 

From Liahagen Mohr-Coulomb Patton 

Sample i 

[˚] 

N 

[kN] 

V 

[kN] 

 V [kN] Error 

[%] 

V [kN] Error [%] 

3.1 10 24.82 35.38  18.29 48 26.06 26 

3.2 10 45.98 58.70  33.89 42 48.28 18 

3.3 10 67.65 85.43  49.86 42 71.04 17 
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The error is found as the difference between the calculated shear force and the 

exact shear force observed by Liahagen. 

100 [%]calculated exact

exact

V V
Error

V


     (4.3) 

These results show that even though the peak shear force obtained from 

Patton’s equation does not match the observed one from Liahagen, it 

improves the accuracy significantly compared to using the Mohr-Coulomb 

criterion. 

All these tests show a decline in shear capacity after the initial failure, even 

though the normal force actually increased somewhat (approximately 5 kN) as 

the samples moved up the asperities. This decline is as for test 4.2 described 

as micro roughness cut-off.  

At 20 mm of displacement the samples slides over the asperities and the 

normal force changes from a stabilizing to a driving force. Hence the residual 

shear capacity is found at approximately 18 mm of displacement in figure 4.2. 

In the table below the residual capacity for test series are compared to 

Patton’s equation using the residual friction angle instead of the basic friction 

angle. In table 4.2 the normal force applied in the tests have been increased 

according to the actual test. 

Table 4.2: Comparison of residual shear capacity for test series 3. 

From Liahagen  Patton 

Sample i 

[˚] 

N 

[kN] 

V 

[kN] 

   V [kN] Error [%] 

3.1 10 27.7 30.6    27.1 11 

3.2 10 49.2 50.4    48.1 4.5 

3.3 10 71.3 69.7    69.8 0.1 

 

The results from Patton’s equation fits better for residual shear capacity 

compared to the peak capacity. The reason for this might be that the initial 

micro roughness has greater variance from sample to sample than anticipated. 

When the micro roughness is cut-off this variance is excluded.  
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As for test 4.2 the cutting of micro roughness might be described by equation 

3.6. However, for these tests the baseline of the micro roughness is not 

horizontal but inclined to the angle of the asperities.  

The gross shear capacity can then be assessed by the shear friction method for 

inclined sliding planes which is given in the Norwegian guidelines (see 

APPENDIX A) 

tan( )
cos (1 tan tan )

c A
V

FS
H

 
  


  

 





  (4.4) 

However, the inclination of the sliding plane which in the above equation is 

denoted α is identical to the inclination angle of the asperities, i. Also, when 

assessing the shear capacity the factor of safety, FS, can be set to 1.0. Thus 

the following equation for peak shear capacity is obtained: 

tan( )
cos (1 tan tan )

residual

residual

c A
V N i

i i





   

 
  (4.5) 

The cohesive parameter, c, is only active on the front side of the asperities. 

Thus, the area, A, is only half of the total interface. From the geometry in 

figure 2.7 this area is found to be 29 238 mm
2
 for test series 3. Applying the 

values for initial shear force, V, initial normal force, N, residual friction angle 

and inclination angle from Liahagens test the cohesive parameters in table 4.3 

are found. 

Table 4.3: Cohesive values for micro roughness for test series 3. 

Test Cohesion [kPa] 

3.1  309 

3.2  382 

3.3  536
 

 

The cohesive parameters presented in the table above can be seen as the 

varying micro roughness among the tests. Compared to test 4.2 these values 

are much higher. An explanation for this might be that due to the interface 

geometry the contact area is much smaller, resulting in increased wear.  It 
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should also be noted that the cohesive parameters increase for increasing 

normal forces. As argued by Patton in section 3.1.1 of this Thesis, one reason 

for this might be that for the actual failure of the samples with low normal 

forces, more sliding over than shearing off the micro roughness occurs. For 

the tests with high normal force the failure will be totally dominated by 

shearing. 

As shown in figure 3.3 the shear resistance for roughness cut-off is equal for 

all asperity angles, while for sliding failure it increases with increasing angles. 

This indicates that for an interface with varying asperity angles, the steeper 

ones will be cut off while the ones with lower inclination will slide. The more 

shearing failure to occur, the higher the total shear capacity of the interface 

will be. The result of this is that the cohesive parameter for describing the 

shearing will increase with higher normal stress. 

 

4.3 Failure of test series 2 
Test series 2 consists of test 2.1, 2.2 and 2.3. Also for these tests the normal 

force increased as the samples were displaced horizontally. The load 

displacement relationship is presented in figure 4.3. 

 

Figure 4.3: Load-displacement relations for test series 2 (Liahagen 2012). 
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As seen in figure 4.3 above also this test series exhibits decrease in shear 

capacity for further displacement after peak capacity. From the pictures in 

APPENDIX B it is found that for these tests the peak capacity is reached for 

sliding prior to cutting off the asperities. The residual capacity is governed by 

sliding over these cut off asperities.  

This shearing of asperities is somewhat surprising compared to the results 

from Johansson in figure 3.3 where shearing failure did not govern the sliding 

failure for inclinations below 35˚. However, the input values in that 

calculation was chosen to represent sliding of two samples of granite 

(Johansson 2007). From USBR (1977) the cohesive parameter of intact 

concrete is given as ten percent of the compressive strength, and the internal 

friction angle is suggested to be 45˚. From Liahagen (2012) the compressive 

strength of the concrete used in the tests is found to be 58 MPa.  

Applying these values to equation 3.5 and 3.6, and updating the normal force 

and residual friction angle to match test series two, the diagram in figure 4.4 is 

obtained for the shear capacity for one single asperity in Liahagens tests.  

 

Figure 4.4: Sliding and shearing failure capacity for test series two. 
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From the figure above it is seen that the governing failure mode is influenced 

both by the normal force and the inclination angle of the asperities. 

Unfortunately these calculations cannot describe the partly shearing of the 

asperities which is seen in this test series, but it gives an indication that the 

larger the normal force, the more likely a shearing failure becomes. It should 

also be mentioned that the shear parameters are given very coarsely in USBR 

(1977) so these calculations should be seen as indications rather than exact 

predictions. 

As for test series 3 the theoretical peak shear capacity found from Patton’s 

equation and the Mohr-Coulomb criterion has been compared to the actual 

test results in table 4.4. 

Table 4.4: Comparison of peak shear capacity for test series 2. 

From Liahagen Mohr-Coulomb Patton 

Sample i 

[˚] 

N 

[kN] 

V 

[kN] 

 V [kN] Error 

[%] 

V [kN] Error [%] 

2.1 20 27.57 50.74  20.32 59 41.49 18 

2.2 20 47.77 100.59  35.21 65 71.89 28 

2.3 20 68.36 162.83  50.39 69 102.88 37 

 

Also for test series 2 the results are improved by including the asperity angle 

in the calculations, however the error is larger compared to test series three. 

In order to compare how well the theory fits for the residual capacity, the 

actual inclination angle after the asperities have been cut must be estimated. 

The asperities are cut with great variation, and it is hard to find exact values 

for the final asperity angle from the pictures. It is assumed that for test 2.1 the 

total asperity angle is reduced by approximately 5˚, for test 2.2 the reduction 

is around 10˚, and for test 2.3 the residual sliding plane is close to horizontal. 

The increase in the normal force is included in the comparison shown in table 

4.5 below. The forces are found for 17 mm displacement for test 2.1 due to 

some shearing which appears to have reduced the tip of the asperities so that 

sliding over occurred somewhat prior to 20 mm. For test 2.2 and 2.3 the 

values have been found from 20 mm of displacement. 
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Table 4.5: Comparison of residual shear capacity for test series 2. 

From Liahagen  Patton 

Sample i 

[˚] 

N 

[kN] 

V 

[kN] 

   V [kN] Error [%] 

2.1 15 33.6 39.5    39.2 0.7 

2.2 10 55.5 35.4    54.3 53 

2.3 0 74.34 44.37    50.9 31 

 

The table above indicates that this way of assessing the shear capacity gives 

large errors when the interface degradation exceeds a few degrees. When the 

asperities of the interface deforms the continued sliding follows a new and 

smother sliding plane. The new sliding plane is so decomposed that the 

residual friction angle might differ significantly from the one calculated from 

test 4.2. This combined with the insecurity in residual inclination angle are 

believed to be the source of the errors presented in table 4.5. 

Also for this test series, the effect of the cutting of asperities can be estimated 

trough equation 4.4, but due to the poor confidence in the residual values, 

large errors are to be expected. The cohesive values from this calculation is 

based on an intact interface where only the side facing the displacement (A 

=0.03066m
2
) contributes to the shear capacity. The results are presented in 

table 4.6. 

Table 4.6: Cohesive values for micro roughness for test series 2. 

Test Cohesion [kPa] 

2.1  282 

2.2  781 

2.3  1552
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4.4 Failure of test series 1 
The load displacement relationship of test 1.1, 1.2 and 1.4 are shown in figure 

4.5 below. 

 

Figure 4.5: Load-displacement relations for test series 1 (Liahagen 2012). 

From the pictures it appears that the governing failure mode for these tests are 

shearing off the asperities. The peak shear capacity can then be found from 

equation 3.6, which describes cutting off the asperities. The pictures show that 

the concrete asperities fail prior to the rock. Thus the shear capacity of the 

concrete governs the failure.  

As for the other test series the results from calculations based on the Mohr-

Coulomb criterion and Patton’s equation have been compared. However for 

this test series the Mohr-Coulomb criterion are presented for material failure 

in the concrete alone, while Patton’s equation is used to assess sliding over the 

initial asperities. From the pictures it is found that the asperities are cut off 

close to their base, so the residual sliding plane becomes approximately 

horizontal. Thus the area, A, for cohesive contribution to the shear capacity of 

the concrete material becomes 240 mm x 240 mm, which leads to a cohesive 

contribution of 334.08 kN for this test series. The comparison is shown in 

table 4.7 below. 
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Table 4.7: Comparison of peak shear capacity for test series 1. 

From Liahagen Mohr-Coulomb Patton 

Sample i 

[˚] 

N 

[kN] 

V 

[kN] 

 V [kN] Error 

[%] 

V [kN] Error [%] 

1.1 40 27.52 90.53  361.60 332 113.73 26 

1.2 40 46.91 131.19  380.99 190 193.86 48 

1.4 40 68.49 183.42  402.57 119 283.04 54 

 

The table above show that neither the Mohr-coulomb criterion nor Patton’s 

equation are able to describe the failure for these tests. However, the input 

values for the Mohr-Coulomb criterion appears to be given rather 

approximately. For instance the USBR lists the cohesive parameter as “about 

ten percent of the compressive strength”. Thus, more realistic results might be 

obtained by treating the shearing of the asperities in the same way as for 

shearing of micro roughness.  

For this test series the residual sliding plane is horizontal, thus the shear 

capacity can be found as done for test 4.2. The cohesive parameters obtained 

from this calculation are presented in table 4.8. 

Table 4.8: Cohesive values for macro roughness for test series 1. 

Test Cohesion [MPa] 

1.1  1.24 

1.2  1.72 

1.3  2.37
 

 

As for test series three this method gives higher cohesive parameters for 

higher normal forces. For this calculation the basic residual friction angle 

from test 4.2 has been used. The relevance of this might be debated due to the 

distortion for the interface. This is discussed in section 6.1.4. 
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4.5 Failure of tests with bond 
Liahagen conducted two tests with bond. Test 4.1H with horizontal interface 

and test 1.3H with 40˚ asperities. The load displacement relations for these 

tests are shown in figure 4.6. For these two tests the normal force was kept 

constant through the testing. 

 

Figure 4.6: Load-displacement relation for test with bond (Liahagen 2012). 

The failure of these tests is of a more brittle character compared to the tests 

without bond. The failure mechanism for these tests naturally fit the Mohr-

Coulomb criteria. From the pictures it is found that test 4.1H cuts off the 

interface between rock and concrete and follows a horizontal sliding plane. 

For test 1.3H the failure plane is declined and goes from the rock to the 

concrete. 

Values for the cohesive and friction parameters are hard to estimate since test 

1.3H was stopped before stable readings of the residual capacity were 

achieved. However, the brittle characteristics of the failure suggest that the 

residual capacity for test 1.3H is in the range of the readings at about 5mm.  

The drop in shear capacity as the bond fail coincides for the two tests and 

gives good estimate for the cohesion. The failure of the cohesion reduces the 
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capacity with 200 kN, which translates to a cohesive parameter of 3.47 MPa 

for the Mohr-Coulomb criteria. The friction angles can be found from the 

post-peak capacity, and equals approximately 30˚ for test 4.1H. For test 1.3H 

the residual capacity is assumed to be around 100 kN, and the friction angle 

about 54˚. 

However, due to the declined failure plane of test 1.3H the assumption of 

100kN rest capacity could be too high. This in turn inflicts errors in the 

estimation for friction angle, which then also might be too high. The Author 

remains suspicious of the estimates for test 1.3H since the data from the test 

are highly deficient. 

 

4.6 Discussion 
The results found in this chapter are summarized in table 4.9 below: 

Table 4.9: Results from hand calculations. 

Sample Inclination 

[˚] 

Failure mode Cohesion 

[kPa] 

Residual 

inclination [˚] Peak Residual 

1.1 40 

40 

40 

40 

20 

20 

20 

10 

10 

10 

0 

0 

Shearing 

“ 

“ 

“ 

Sliding 

“ 

“ 

“ 

“ 

“ 

Shearing 

Sliding 

Shearing 

“ 

Sliding 

Shearing 

“ 

“ 

“ 

Sliding 

“ 

“ 

“ 

“ 

1245 

1720 

3470
4
 

2371 

282 

781 

1552 

309 

382 

536 

3470
5
 

62 

0 

0 

0 

0 

15 

10 

0 

10 

10 

10 

0 

0 

1.2 

1.3H 

1.4 

2.1 

2.2 

2.3 

3.1 

3.2 

3.3 

4.1H 

4.2 

 

The test results show that for a bonded interface the shear capacity is not only 

dramatically higher compared to un-bonded interfaces, but also well described 

by the Mohr-Coulomb criterion used in today’s guidelines. Nevertheless, the 

                                                      
4
 With basic friction angle of 54˚ 

5
 With basic friction angle of 30˚ 
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Mohr Coulomb criterion shows an average error of 107%
6
 for un-bonded 

samples. 

For un-bonded interfaces, it appears that the residual behavior is reasonably 

well described by applying the residual friction and inclination angles to 

Patton’s equation (average error 17%). This fits the assumption of a material 

specific basic friction angle after the roughness is cut off.   

The peak capacity is not so well described by applying the basic friction angle 

to Patton’s equation (average error 27%). The reason for this is believed to be 

variations in micro roughness among the tests. However, the peak capacity is 

well described by applying the residual friction angle, and adding a cohesive 

parameter which takes the shearing of micro or macro roughness into account.  

For test series 2 and 3 the Mohr-Coulomb and Patton criteria underestimate 

the capacity, while for test 1 they give too high values. This indicates that the 

simplified calculations not always will give conservative estimates. 

Interestingly, even after the surface micro roughness is worn down the shear 

capacity is higher for the inclined interface of test 3.3 with equal normal load 

as test 4.2. In other words: the increase in residual shear capacity of test series 

3 shows that only to consider the mean inclination of the sliding plane does 

not take the contribution from roughness sufficiently into account. For the 

tests where the interface is demolished this naturally depends on the residual 

inclination of the initial asperities. 

Compared to figure 3.3 it appears that shearing trough the asperities happens 

for a lower asperity angle than 35˚. For test series 2 with 20˚ asperity angle it 

appears to be a change in governing failure mode, at least for relatively high 

normal stresses. At 40˚ the shearing failure mode is completely dominating 

the shear capacity and the failure behavior. 

The softening behavior succeeding the roughness cut-off is not described in 

any of the criteria, and will be hard to include in hand calculations. Including 

cohesive softening is possible in numerical models, which enables the analyst 

to model a progressive sliding failure development which is not captured 

trough the conventional hand calculations.  

                                                      
6
 If test series 1 is excluded the average error is reduced to 54%. 



 

 

 NUMERICAL MODELS OF SLIDING STABILITY 

37  

 

5. NUMERICAL MODELS OF SLIDING STABILITY 
 

Following the advice of co-supervisor Gabriel Sas, the finite element software 

ATENA has been used for the numerical models. ATENA is a software 

package developed by Cervenka Consulting, tailor-made for analyzing 

concrete structures containing sophisticated material models. For the work 

with this Thesis the version ATENA-Science has been used, which enables 

pre and post-processing in the software GiD developed by CIMNE 

International, Center for Numerical Methods in Engineering.  

This chapter is subdivided into eight sections. The first seven present the 

stages in the modeling of Liahagen’s tests, while the last section presents the 

modeling of dam Ipto. 

To model contact in ATENA, special contact elements are required. The 

properties of these elements serve both as physical parameters but also as 

numerical tools in the analyses. Thus, the contact formulations are presented 

extensively. 

 

5.1 Geometry 
The tests from Liahagen were initially modeled in 3D with a width of 240 mm 

normal to the loaded direction. However, due to vast numerical problems with 

these analyses the strategy was changed to 2D plane stress models as in the 

project. The sliding/shearing failure is a two dimensional problem, so 2D 

models should be sufficient to represent the actual shear tests. The advantage 

with 2D models is that the number of elements is reduced which again reduce 

the computational time. This has been very beneficial for the troubleshooting. 

The 2D tests have been given a steel frame to avoid numerical troubles when 

applying the loads directly to the concrete. The model of test 3.3 in GiD is 

shown in the figure below. 
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Figure 5.1: 2D geometrical model of test 3.3 

The contact parameters were assigned to separate contact-volumes (3D) or 

surfaces (2D). The contact-volume only expands two dimensions and the 

contact surface only one. These geometrical features serve simply for 

assigning the contact boundary-conditions.  

Due to numerical problems the analyses of test series one had to be modeled 

somewhat different than what was anticipated. For these tests the analyses 

with asperities crashed shortly after the concrete started to crack, and thus no 

failure history could be obtained. The failure of these models is presented 

further in section 6.1.4.  To obtain a failing history, this test series is modeled 

with a flat interface and using the cohesive parameters from chapter four.  
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5.2 Modeling contact in ATENA 
ATENA uses interface elements to model contact between two parts in a 

model. An interface in ATENA is defined by a pair of lines (surfaces for 3D 

analyses). These lines can either share the same position, or they can be 

separated by a gap. According to the ATENA users manual (Cervenka et. Al 

2013) the interface can exist in two states: 

 Open State: No interaction of the contact sides. 

 Closed state: Full interaction of the contact sides. In this state friction 

sliding along the interface is possible, as long as the interface 

element(s) have been assigned a friction model. 

To model the behavior of the interface elements ATENA uses the Penalty 

Method. For this purpose the following constitutive matrix of the interface is 

defined (Cervenka et. Al 2013) 

0

0

tt

nn

F K u

F K v





     
      

    
F Du    (5.1) 

in which Δu and Δv are the relative displacements of the interface sides in the 

local coordinate system: r,s, aligned with the gap orientation (see figure 5.3). 

Ktt and Knn are the shear and normal stiffness respectively. These coefficients 

can be regarded as the stiffness of one material layer having a finite thickness. 

In other words high values of Ktt and Knn correspond to a high penalty-number 

(Cervenka et. Al 2012). Fτ and Fσ are forces at the interface again referred to 

the local coordinate system. The typical behavior for the interface material 

model in shear and tension is shown in figure 5.2 below. 
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Figure 5.2: Typical interface behavior in shear and tension (Cervenka et. Al 2012). 

There are two additional stiffness values, Knn
min

 and Ktt
min

, that needs to be 

specified for the Interface material. These values are only used for numerical 

purposes after the failure of the interface material. Theoretically, after the 

interface is broken its stiffness should be zero. However, this would lead to an 

indefinite global stiffness (Cervenka et. Al 2012). The ATENA theory manual 

(Cervenka et. Al 2012) recommends setting these values between 0.01 and 

0.001 times the initial ones.   
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Figure 5.3: Sketch of interface elements in ATENA (Cervenka et. Al 2012). 

Derivation of gap elements is presented here according to Cervenka et. Al 

(2012) for the linear 2D interface element CCIsoGap<xxxx> showed in figure 

5.3. The element has two degrees of freedom (d.o.f) defined in r,s and relative 

displacements Δu and Δv are defined as follows 

1 2

1 1
(1 ), (1 )

2 2
h r h r     

2 1,4 1 2,3

2 1,4 1 2,3

h u h uu

h v h vv

     
           

u  
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1

1

2
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31 2 2 1
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4

0 0 0 0

0 0 0 0
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vh h h h

uh h h h

v

u

v

 
 
 
 
 

           
 
 
 
 
  

u Bu (5.2) 

The rest of the derivation follows the same path as other elements, with 

stiffness 
T dV K B DB  and internal force-vector 

T dV Q B F . The 

interface element stiffness-matrix, is integrated numerically in two Gauss 

points (Cervenka et al 2012). Both K and Q are established according to the 

local coordinate system. Thus, they must be transformed to global coordinates 

before they can be assembled in the problem's governing equations. 

The stiffness is depending on the gap state. If the normal force Fσ exceeds the 

tensile strength of the interface Rti, the gap is considered open. The 

corresponding constitutive law, stress free interface, can be written as: 

0

0

F

F





   
   
  

    (5.3) 

The stiffness coefficients are set to small but nonzero values; 
op

ttK and
op

nnK  . If 

the normal force does not exceed the tensile strength, the gap is considered 

closed. For this situation the stiffness coefficients should be set to large 

values. According to Pryl (2013) the stiffness coefficients in the closed state 

should be chosen according to thickness-comparable neighbor quadrilateral 

elements. A good starting point is advised to be ten times the stiffness of the 

stiffest neighboring elements, i.e: 
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10
neighbor

nn tt

E
K K

element size
      (5.4) 

For contact in open state the values can be chosen approximately 1000 times 

smaller (Pryl 2013). 

The properties for the contact elements used in ATENA are governed trough 

interface materials in GiD. An example of the material description used in this 

Thesis is shown in figure 5.4 below.  

 

Figure 5.4: Material parameters for the Interface material for test 3.3 in GiD. 

The material parameters are set according to the procedure described in 

chapter four. Thus, the friction parameter is equal for all the tests calculated as 

tan(ϕresidual), and the cut-off of surface micro-roughness is included  trough a 

cohesive parameter. Pryl (2013) advises a relation where the value of the 

tensile strength, ft, is set as half of the cohesive value in order to avoid 

numerical problems. For all the analyses run in this Thesis, these parameters 

are set according to this relation. 
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As previously mentioned, the modeling of concrete cut-off for test series one 

and two proved hard to model. For test series one the general approach has 

been to give the interface a large cohesive value, and then gradually decrease 

the concrete tensile strength and onset of crushing to get failure. However, by 

modeling this test series with a flat interface, and include the cut-off of the 

asperities trough a cohesive parameter, the sliding failure history has been 

obtained. The cohesive values used in the models are presented in table 5.2. 

The interface material model enables a user specified softening behavior of 

the cohesive parameter. The softening parameters have been found for the 

individual tests by studying the original load-displacement graphs from 

Liahagen and are presented in APPENDIX D. The gradual increase of shear 

capacity prior to the micro roughness cut-off could be included trough the 

softening functions. However, since this behavior only is seen in test 3.1 and 

4.2 it is assumed that it is caused by errors in the test setup and therefore 

disregarded. 

 

5.3 The material models 
As in the project both the concrete and rock have been modeled as concrete. 

The decision for modeling the rock as concrete is based on the behavior of the 

actual rock samples. Through discussions with co-supervisor Gabriel Sas and 

Dobromil Pryl at Cervenka Consulting it was decided that this behavior is 

more in line with the available material models for concrete than rock. As 

described in section 5.1, the models have been made with a steel frame which 

is modeled as an elastic material. The materials are shown in figure 5.5. 

Naturally the interface material with no expansion in the x-y plane is 

invisible, but it is located between the ROCK+ and the CONCRETE+ 

materials. 
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Figure 5.5: Illustration of the material allocation in GiD (test2.3). 

 

5.3.1 The concrete material model 

Concrete is a brittle material with significantly higher strength in compression 

than in tension. Under tensile loading cracks typically form normal to the 

load, while for compressive loading micro cracks develop in planes parallel to 

the load (Sas et. Al 2013). As shown in figure 5.6, the material exhibit 

hardening behavior after the elasticity limit for compression is reached. The 

material hardens with a decreasing slope of the stress-strain curve until the 

compressive strength is reached. After the compressive strength is reached the 

curve drops significantly and eventually crushing failure occurs at some 

ultimate strain (Sas et. Al 2013). 
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Figure 5.6: Uniaxial concrete behavior (Cervenka et. Al 2012). 

Both rock and concrete is modeled with the Cementious2 material model in 

GiD. This model is based on the CCxDNonLinCementious material model in 

ATENA which is a fracture-plastic material model that combines constitutive 

models for both tensile and compressive behavior of concrete. The tensile, 

(fracture) behavior of concrete is based on the classical orthotropic smeared 

cracking formulation and crack band model (Cervenka et. Al 2012). The 

material model uses a Rankine failure criterion, exponential softening, and it 

can be used as a rotated or fixed crack model. The compressive behavior of 

concrete is described through a plasticity model for concrete crushing. This is 

a hardening/softening plasticity model based on the Menétrey-William failure 

surface. This model uses a return mapping algorithm for the integration of 

constitutive equations (Cervenka et. AL 2012). 

 

The combined model is similar to multi surface plasticity, but in addition it 

enables modeling of physical changes such as crack closure. Also tensile and 

compressive strength reduction after crushing is included. For a more 

thorough description of the CCxDNonLinCementious material model see 

APPENDIX E. 

The material parameters found in Liahagen (2012) were not sufficient to 

describe the materials in ATENA. Some additional values have been found 

from Eurocode 2 and Nilsen and Thidemann (1993), but not all that were 

needed. ATENA enables the user to model concrete according to the 
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Eurocode directly by just inputting the strength-class. This has provided 

default values for the missing parameters. The material parameters are listed 

in table 5.1 below. 

Table 5.1: Material parameters for concrete material models 

Material Concrete Rock 

Young’s Modulus [GPa] 37 100 

Poisson’s Ratio 0.2 0.2 

Tensile strength [MPa] 4.1 0.733 

Compressive Failure Stress [MPa] 58 280 

Fracture Energy [MN/m] 1.03x10 
-4

 1.05x 10
-5 

Plastic strain -0.00147 -0.000296 

Onset of crushing [MPa] 

Critical compressive displ. [m] 

Density [kton/m
3
] 

-8.61 

-0.0005 

0.0023 

-1.54 

-0.0005 

0.0023 

 

5.3.2 The steel material model 

The steel is modeled by the SOLID Elastic material model in ATENA. In this 

model the steel material is simply elastic, with no maximum strength. The 

material description from GiD is shown in figure 5.7. 

 

Figure 5.7: Material description for steel in ATENA 
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The purpose of the steel material is to act as a linear buffer between the 

applied forces and the highly nonlinear concrete material in order to avoid 

numerical instability in the models. The response of the steel frame is of no 

interest for the results. Hence this crude material representation is believed to 

be sufficient. 

 

5.4 Loading and Boundary Conditions 
In GiD the loading is imposed trough accumulating intervals, which can be 

sub divided into load steps. To obtain a constant force trough multiple 

intervals an applied load must be removed in the succeeding interval. It 

should be noted that this only applies to loads and not supports, as they have 

to be applied in each interval.  

The models are loaded over four intervals. In the first interval the vertical 

pressure on the upper part has been applied as a line-load along with boundary 

conditions and monitoring points. These monitors are needed to generate the 

load-displacement curves. An example of this interval is shown in figure 5.8: 

 

Figure 5.8: Loading and BC's of interval 1 for test 3.3. 
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The line-load for the different tests has been found by distributing the applied 

vertical force form Liahagen (2012) over the length of the samples (240mm). 

The applied line-loads are presented in the table below. 

Table 5.2: Loading of the models. 

From Liahagen Modeled in ATENA 

Sample i 

[˚] 

δHmax 

[mm] 

N 

[kN] 

ϕmax 

[˚] 

 i[˚] δH 

[mm] 

Cohesion 

[kPa] 

Q 

[kN/m] 

1.1 40 15.23 27.52 73.08 0 20 1245 114.667 

1.2 40 15.44 46.91 70.32 0 20 1720 195.458 

1.4 40 26.34 68.49 69.52 0 20 2371 285.357 

2.1 20 24.99 27.57 61.48 20 20 282 114.875 

2.2 20 21.98 47.77 64.60 20 20 781 199.042 

2.3 20 20.07 68.36 67.23 20 20 1552 284.833 

3.1 10 33.16 24.82 54.95 10 20 309 103.417 

3.2 10 32.94 45.98 51.93 10 20 382 191.583 

3.3 10 33.23 67.65 51.63 10 20 536 281.877 

4.2 0 33.23 67.23 37.74 0 20 62 280.125 

 

In the second interval the pressure is removed and the horizontal force is 

applied trough prescribed deformation of ten millimeter at the left edge of the 

upper steel frame. Also in this interval master-slave boundary conditions are 

introduced along the upper edge. This interval is not active in the actual 

analyses. However, these master-slave boundary conditions are important to 

achieve plane horizontal displacement of the upper part.  The loading of 

interval 2 is shown in figure 5.9 below. 
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Figure 5.9: Loading and BC's of interval 2 for test 3.3. 

Interval three and four are identical to interval two, except that the master-

slave boundary conditions are removed. 

 

5.5 Meshing 
GiD offers two principally different strategies for meshing, structured or 

unstructured. However, the structured meshing algorithm is only applicable 

for models with simple, conventional geometry. In other words only test with 

a horizontal interface could be meshed with this algorithm. For consistency, 

the unstructured meshing algorithm has been used. The 2D models have been 

meshed with plane stress elements with a thickness (depth) of 240 mm. 

When choosing elements both linear and quadratic variants of 

triangles/tetrahedral and rectangle/hexahedra have been tested. The linear 

triangle and rectangle elements are only able to present constant strain. Due to 

this simple representation of strains, these elements are known to produce 

overly stiff results, especially in bending (Cook et. Al 2002). In addition the 

linear elements may present spurious shear strain in plane strain problems 

which absorbs energy and also gives an overly stiff solution (Cook et. Al 
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2002). By refining the mesh, these problems may be overcome, but according 

to Cook et. Al (2002); convergence is slow.  

It was quickly discovered that the linear elements gave too stiff results. For 

test 4.2 the initial 2D analyses with linear elements gave approximately 80% 

higher values for shear force compared to the analyses with quadratic 

elements. Compared to the actual results from Liahagen the quadratic 

elements gave the best match. For this reason the linear elements were 

abandoned and the rest of the analyses were run with quadratic elements. 

As mentioned above the fineness of the mesh might improve the results of an 

analysis, especially when using linear elements. The goal for mesh fineness is 

to achieve the necessary accuracy by using only as many degrees of freedom 

(d.o.f) as necessary (Cook et. Al 2002). The simplest (and most 

unsophisticated) method to find out if the mesh is sufficient is to refine the 

mesh and run one more analysis with the new, finer mesh. If the results 

matches the ones obtained by the slightly courser mesh, this courser mesh is 

adequate. 

By applying this simple test, it was found that an element size of 

approximately 1mm along the concrete – rock interface was sufficient. The 

mesh is shown in figure 5.10. 

 

Figure 5.10: Mesh of test 2.2. 
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5.6 Analysis steps 
Each of the intervals from GiD can be used to generate specific loads pr step 

in ATENA. This is done trough two parameters, the Interval Multiplier and 

Number of Load Steps. In figure 5.11 below the data for interval three of test 

3.3 is shown. 

 

Figure 5.11: Interval Data. 

The applied load in this interval is a prescribed displacement of 1 mm. The 

total displacement is therefore 10mm spread out over 100 load steps. 
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5.7 Ill-conditioning 
Due to its uncomplicated geometry, test 4.2 from Liahagen (2012) was 

modeled first. However, getting results for this simple model proved harder 

than anticipated. The main problem was that the results (visualized by a load-

displacement diagram) changed each time the model was analyzed. Many 

strategies were attempted to find the root of this instability, which heavily 

delayed the project. In the end a solution was found by reducing the interface 

stiffness Knn and Ktt. 

The instability in the analyses is an indication of an ill-conditioned system. 

This possibility was pointed out by Dobromil Pryl at Cervenka Consulting. 

Ill-conditioning is a term for situations where the computational accuracy 

(number of digits) is consumed when computing the stiffness matrix (Cook et. 

Al 2002). In other words; ill-conditioning is a result of very large and very 

small numbers in the same matrix. The common reason for ill-conditioning is 

a situation where stiff regions are supported by much more flexible regions. In 

the following it will be explained how use of the penalty method may lead to 

such situations. 

Following Cook et. Al (2002); constrains in a system are imposed according 

to the following relation 

 Cd Q 0     (5.5) 

Where d is a vector containing the degrees of freedom (d.o.f).  C contains the 

d.o.f to be retained or “condensed out” and Q contain eventual prescribed 

values of d.o.f. When using the penalty method the constraint relation (5.5) is 

written as 

 t Cd Q     (5.6) 

So that when t = 0 defines satisfaction of the constraints. The usual potential 

energy function Πp can be expanded to include a so called penalty function 

t
T
αt /2 where α is a diagonal matrix of penalty numbers. The expanded 

potential energy function can be written as 

1 1

2 2

T T T

p   d Kd d r t αt    (5.7) 
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The penalty of violating constrains increases with increasing α. From the 

above equations and the minimum condition    / 0p  d  the following 

is obtained 

 T T  K C αC d r C αQ    (5.8) 

In which 
TC αCcan be called a penalty matrix. If α is zero the constraints are 

ignored, and as α grows d changes so that the constraints are more nearly 

satisfied. However, a large α-matrix may lead to situations where the stiffness 

in the contact elements becomes vastly greater than the stiffness in the 

surrounding elements. This can again lead to numerical problems due to ill-

conditioning. 

In ATENA the penalty numbers are given by the analyst in form of initial 

stiffness of the interface material. As described in section 5.4 it is advised that 

this stiffness is approximately ten times the stiffness of neighboring elements. 

The resulting interface stiffness according to this estimate, with Erock = 

100 000 MPa and element sizes of approximately 1mm close to the interface 

then becomes 1 x 10
9
.  

This resulted in numerically unstable results, and reducing the values for 

interface material stiffness has been the most influential parameter for 

achieving stable results. However, in order to satisfy the contact constraints 

large penalty numbers are required. Therefore many analyses were conducted 

to find the highest possible interface material stiffness which presented 

reliable, stable results. 

The process of finding this interface stiffness had to be conducted manually. 

Naturally this procedure was very time-consuming, but considering the 

improvement of the results, it was necessary. In general values of Knn in the 

area of 10
4
 and Ktt around 10

3
 have proven to provide a good balance between 

analysis stability and proper results. The fine tuning of these parameters was 

enabled trough comparison with the results from the tests. The updated 

stiffness-values are presented in the table below: 
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Table 5.3: Interface stiffness values 

Sample Knn 

[MN/m
3
] 

Ktt     

[MN/m
3
] 

Knn
min

 

[MN/m
3
] 

Ktt
min

 

[MN/m
3
] 

1.1 1.00x10
4 

6.00x10
2 

1.00x10
2 

6.00
 

1.2 1.00x10
4 

2.00x10
3
 1.00x10

2
 2.00x10

1
 

1.4 1.00x10
4 

2.00x10
3 

1.00x10
2 

2.00x10
1 

2.1 1.00x10
4 

1.00x10
3 

1.00x10
2 

1.00x10
1 

2.2 1.00x10
4 

2.00x10
3 

1.00x10
2 

2.00x10
1 

2.3 1.00x10
4 

3.00x10
3
 1.00x10

2
 3.00x10

1
 

3.1 1.00x10
4 

2.00x10
3 

1.00x10
2
 2.00x10

1
 

3.2 1.00x10
4 

2.00x10
3
 1.00x10

2
 2.00x10

1
 

3.3 1.00x10
4 

2.00x10
3 

1.00x10
2 

2.00x10
1 

4.2 1.00x10
4 

6.00x10
3 

1.00x10
2 

6.00x10
1 

 

The effect of too soft interface stiffness is illustrated in figure 5.12 below. 

 

 

Figure 5.12: Influence of interface material stiffness for test 4.2. 
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5.8 Modeling a full scale dam 
For a full scale dam, the modeling of each asperity is overly labor-intensive. 

Thus a simplified approach may be applied. To avoid modeling the exact 

interface, the formulation presented by Patton (1966) where the asperity angle 

is included in the frictional parameter is applied. In chapter four it is seen that 

this formulation alone does not describe the peak shear capacity sufficiently. 

To improve this, the cohesive parameter representing the cut-off of micro 

roughness is included. This leads to the following hybrid formulation for 

shear capacity 

tan( )n residualc i         (5.9) 

To check the validity of this formulation, equation 5.9 has been applied to test 

series two, three and four from Liahagen. The results of these calculations are 

showed in the table below. 

Table 5.4: Shear capacity from equation 5.9. 

test i 

[˚] 

N 

[kN] 

V 

[kN] 

 Φb 

[˚] 

Cohesion 

[kPa] 

Acoh. 

[m
2
] 

Vcalc 

[kN] 

Error 

[%] 

2.1 20 27.57 50.74  34.38 287 0.030658 47.13 7 

2.2 20 47.77 100.59  “ 781 “ 90.62 10 

2.3 20 68.36 162.83  “ 1552 “ 142.99 12 

3.1 10 24.82 35.38  “ 309 0.029238 33.32 6 

3.2 10 45.98 58.70  “ 382 “ 56.16 4 

3.3 10 67.65 85.43  “ 536 “ 81.87 4 

4.2 0 67.23 49.56  “ 62 0.0576 49.57 0.02 

 

The results in table 5.4 show that equation 5.9 represents the shear capacity 

reasonably well. The errors are calculated according to equation 4.3 and show 

increasing errors for increasing asperity inclination. All the calculated shear 

forces are lower than the ones obtained in the actual tests. However, due to the 

great variance in the cohesive parameter it is decided to only use the value 

from test 4.2 which is 62 kPa in the further analyses. This is the lowest 

observed value for the cohesion, and is in that way a conservative estimate.  

To illustrate this approach a section of dam Ipto has been modeled. This dam 

is a concrete gravity dam located in Nordland County in northern Norway, 

and does not meet the stability requirements for neither sliding nor 
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overturning. For the modeling a 5.5 meters high section is chosen. The 

geometry and loading are found from the reconsidering report (Sweco 2007), 

and a sketch of the geometry is shown in figure 5.13 below. In the numerical 

models the protective wall at the dam crown has been excluded.  

 

Figure 5.13: Dam Ipto (Sweco 2007) 

It must be emphasized that the scope for the following analyses is to illustrate 

how the roughness will influence the calculated stability of a dam. The results 

obtained are therefore not to be seen as correct assessments of the stability 

towards sliding for the Ipto dam. 

The model uses the same rock and concrete material models as used in the 

models of Liahagen’s shear tests. However, the material parameters for the 

concrete are changed to represent a C20/25 which is believed to be more in 

line with the actual dam.  The material parameters for the concrete are listed 

in the table below: 
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Table 5.5: Material parameters for C 20/25 concrete in ATENA 

Material parameters 

Young’s Modulus [GPa] 30 

Poisson’s Ratio 0.2 

Tensile strength [MPa] 2.2 

Compressive Failure Stress [MPa] 28 

Fracture Energy [MN/m] 5.5x10 
-5

 

Plastic strain -0.000933 

Onset of crushing [MPa] 

Critical compressive displ. [m] 

Density [kton/m
3
] 

-4.62 

-0.0005 

0.0023 

 

As seen in figure 5.14 below the ice is modeled as a separate material. This is 

done for the same reason as the steel frame was added to the models of 

Liahagen’s tests, and the ice is modeled with the same steel material model as 

used in those models. 

 

Figure 5.14: Model of Dam Ipto. 

 

The section has been modeled with two different frictional parameters for the 

interface, representing zero and ten degrees asperity inclination. To assess the 

effect of micro roughness the models have been analyzed with a cohesive 
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parameter of both 62 and 1 kPa. For convenience the analyses have been 

labeled A, B and C, and the interface parameters for each test are presented in 

table 5.6 below. 

Table 5.6: Interface parameters 

Analysis Name Φb [˚] i [˚] Cohesion 

[kPa] 

Tensile 

Strength [kPa] 

A 34.38 0 1 0.5 

B 34.38 10 1 0.5 

C 34.38 10 62 31 

 

For these models the normal and tangential stiffness of the interface (Knn and 

Ktt) was initially set according to the Troubleshooting manual (Pryl 1013). As 

for the models of Liahagen’s tests this gave unstable analyses. For this dam, 

there are no tests to calibrate against. In other words the exact capacity is not 

known. Thus, a parametric study on the influence of Knn and Ktt had to be 

conducted. The parametric study is presented in APPENDIX F, and for the 

further analysis parameters giving the lowest shear capacity from this study is 

used. Hence, the analyses are run with values of 2.5*10
5
 an 1.04*10

5
 

[MN/m
3
] for Knn and Ktt respectively, and a mesh size of 400mm. To better 

illustrate the difference in shear capacity from including the cohesion, no 

cohesion softening has been used in these analyses. 

The section is loaded in successive load intervals each containing 50 or 100 

load steps to resemble the actual load history of a dam. The principle of the 

loading is to apply the loads as they would appear for a newly constructed 

dam and is showed in table 5.6 below. To get the failing history of the dam 

extra loads in form of increasing ice forces are applied. However, due to the 

brittle characteristics of the interface material failure the analyses crash when 

the shear capacity was reached. To overcome this problem a conditional break 

criterion is applied (see APPENDIX G) along with very small loads per step 

from this point. As a result, the amount of “extra” ice forces has to be adjusted 

for each analysis individually.  
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Table 5.7: Applied loads of the dam section. 

Load Interval / 

Load Steps 

Load description Horizontal load [kN] Vertical load [kN] 

1 / 1 – 50 Own weight of dam - 367 

2 / 51 - 150 Hydrostatic pressure 150 38 

3 / 151- 250 Uplift - - 137 

4 / 251 – 350 Ice 100 - 

Total number  of 

load steps varies 

for each analysis 

Increased Ice varies - 

 

The results are obtained from monitors of reactions at the supports and 

monitors of displacement at the dam. The loading, monitors and constraints of 

load interval one are shown in figure 5.15 below. 

 

Figure 5.15: Imposed conditions in load interval one. 
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6. RESULTS AND DISCUSSION 
 

In this chapter the results from the finite element analyses are both presented 

and discussed. The reason for combining the discussion and the presentation 

of results in one chapter is to reduce the risk of misunderstandings and 

confusion by processing the results of the shear test analyses completely 

before presenting the results from the analyses of dam Ipto.  

The chapter is subdivided in three sections. In the first section the results from 

the analyses of Liahagen’s tests are presented along with brief comments. In 

section 6.2 the results are thoroughly discussed in order to assess the quality 

and usability of the numerical models. I the last section the results from the 

full scale dam is presented. 

 

6.1 Comparison of Liahagen’s tests 

Co-supervisor Gabriel Sas provided the excel files with results from 

Liahagen’s shear tests. The results from the numerical analyses have been 

computed by monitoring the horizontal displacement and reaction-force along 

the loaded edge of the model. The load-displacement curves from the analyses 

are presented in the same diagrams as the curves from the actual tests. For the 

sake of report consistency the results are presented in the same order as done 

in chapter four. 
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6.1.1 Test 4.2 

The results from the analyses of test 4.2 are compared to the exact values in 

the load-displacement diagram shown in figure 6.1 below. 

 

Figure 6.1: Test 4.2 

From figure 6.1, it is seen that both the peak and residual shear capacity is 

well described by the approach and parameters found in chapter four. 

However, the actual peak shear capacity
7
 is reached for a somewhat larger 

displacement compared to the numerical values. The reason for this 

discrepancy is that cohesion stiffening not is included in the numerical model 

as described in section 5.2.  

 

6.1.2 Test series 3 

The load-displacement curves from test series three are shown in figure 6.2 to 

6.4 below. In line with the discussion in chapter four it is chosen to stop the 

displacement at 20 mm, when the concrete sample slides over the asperities. 

These tests show pure sliding failure with no shearing of the concrete or rock 

material. 

                                                      
7
 When disregarding the “peak” at 33 mm of displacement as done in chapter four. 
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Figure 6.2: Test 3.1 

  

Figure 6.3: Test 3.2 
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Figure 6.4: Test 3.3 

The figures above show that the parameters found from chapter four provide a 

good match for the peak shear capacity. The residual capacity is not so well 

described. A possible reason for this is that the increase in normal force from 

the actual tests not is included in the analyses.  Alternatively the interface for 

test 3.1 and 3.3 are more heavily degraded for these tests compared to test 4.2, 

which in return results in a somewhat lower residual friction angle for these 

tests. In the same way test 3.2 might experience less degradation of the 

interface compared to test 4.2. Test 3.1 shows some of the stiffening behavior 

as test 4.2 and requires even more displacement to reach full capacity. 

 

6.1.3 Test series 2 

The tests in series two experience both a sliding and shearing failure. 

However for the numerical analyses only sliding failure is obtained. The 

reason for this is believed to be related to the material parameters and will be 

discussed further for test series one below. The results are presented I figure 

6.5 to 6.7 below. 
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Figure 6.5: Test 2.1 

 

Figure 6.6: Test 2.2 
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Figure 6.7: Test 2.3 

For this test series the residual capacity is well represented for a displacement 

of about 15 mm, but does not describe the further decline of capacity 

following this point. The reason for this is believed to be that the models do 

not express the shearing failure explained in chapter four, which leads to a 

larger residual asperity inclination and a higher residual capacity. The peak 

shear capacity is well described, and the expected errors mentioned in section 

4.3 are not seen. The reason for this is also believed to be that the shearing of 

material is not represented. 

 

6.1.4 Test series 1 

The tests in series one all experienced a shearing failure of the concrete 

asperities, and not sliding along the interface. This failure mode has been hard 

to obtain from the numerical models. The main reason for this is that the 

analyses crash after the material starts to crack due to instability problems 

with zero or negative Jacobian for the stiffness matrix. This error message is 

an indication of an ill-conditioned system (Pryl 2013) 
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As described in chapter five, the strategy for obtaining material failure has 

been to apply an interface with high cohesive values, and gradually reduce the 

tensile strength and the onset of cracking for the concrete material. In figure 

6.8 the concrete material failure is shown. The blue field in the left part 

indicates that the tensile strength of the material is reached. The black dots in 

this area represent cracks in the concrete. 

 

Figure 6.8: Cracking of concrete material for test 1.1 

One attempt was also made to model test 1.4 without interface material. The 

failure of this model is shown in figure 6.9 

 

Figure 6.9: Material failure for test 1.4. 

Due to the numerical instability problems only the peak shear capacity was 

obtained from these analyses. However, this capacity is governed by the 

concrete material parameters alone, and not by the interface parameters. From 

Liahagen, only the compressive strength was given for the rock and concrete 

materials, thus the tensile strength and onset of crushing have been found 

from the default values. 

For a concrete with compressive strength of 58 MPa, the default value of 

tensile strength is 4.1 MPa in ATENA.  However, to obtain the peak shear 

capacity described by Liahagen, the tensile strength needed to be reduced to 

1.5 MPa. Since the actual value for tensile strength not given, the validity of 

these results are hard to assess.  
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The results from the analyses with flat interface are presented in figure 6.10 to 

6.12. The load displacement curves are marked with a * to indicate that these 

results are obtained trough analyses with simplified interface geometry. 

 

Figure 6.10:Test 1.1 

 

Figure 6.11: Test 1.2 
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Figure 6.12: Test 1.4 

These results show good representation of both the peak and residual shear 

capacity, even though the failure mode is not described correctly. This 

indicates that a simplified approach to the geometry might give sufficient 

results as long as the cohesive parameter can be calibrated by physical tests.  

From section 4.4 it was suspected that this method would give large errors due 

to the representation of the residual sliding plane by the residual friction angle 

found from test 4.2. It appears that these suspicions were groundless as the 

residual capacity is sufficiently described in the numerical models. 
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6.1.5 Tests with bond 

Due to the difficulties regarding representation of material failure results from 

test 1.3H has not been achieved. In figure 6.13 the results from the analysis of 

test4.1H is shown. 

 

Figure 6.13: Test 4.1H 

The peak value is not reached for this analysis, but the representation of the 

residual shear capacity is good. The failure of the actual test is completely 

brittle, and a large part of the capacity is lost in one instant. For the numerical 

models this introduces complications in the iterations at this point. In order to 

avoid numerical problems a small ductility is applied trough cohesion 

softening. 
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6.2 Discussion of the numerical results  
In general it is seen that the procedure and values found in chapter four gives 

a good representation of both the peak and residual shear capacity. Coupled 

with a softening behavior of the cohesive parameter the shear capacity for the 

failure history of the actual tests has been represented sufficiently. Sufficient 

representation of the concrete asperity cut-off observed in test series one and 

two has not been achieved.  

The procedure from chapter four should give results that match both the peak 

and residual shear capacity from the tests exact. However, studying the 

numerical results, it is clear that some errors still occur. The difference 

between the peak shear capacity from the laboratory tests and the numerical 

analyses are listed in table 6.1. 

Table 6.1: Error in peak shear capacity from the numerical models. 

From Liahagen Modeled in ATENA 

Sample Vmax[kN]  Vpeak [kN] Error 

[kN] [%] 

1.1 90.53 

131.19 

183.42 

50.74 

100.59 

162.83 

35.38 

58.70 

85.43 

240.00 

49.56 

  89.91 0.62  0.68 

1.2   125.80 5.39 4.11 

1.4   173.21 10.41 5.68 

2.1   50.81 0.07 0.14 

2.2   100.57 0.02 0.02 

2.3   162.08 0.75 0.46 

3.1   34.65 0.73 2.06 

3.2   57.56 1.14 1.94 

3.3 

4.1H 

  83.65 1.78 2.08 

225.75 14.25 5.94 

4.2   49.52 0.04 0.08 

 

The error-% is calculated with respect to the actual value from Liahagen, 

according to equation 4.3. On average the error is around 2% with a 

maximum of 6% for two analyses. Compared to the results from the Mohr-

Coulomb and Patton criteria in chapter 4 this is a great improvement. 

The reason for these errors is hard to pin-point. One possible source is 

inaccurate readings of the residual capacity in Liahagens tests. This value 
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influences the cohesive value calculated in chapter four and can in such a way 

affect both the representation of peak and residual shear capacity. Due to the 

fact that stable analysis with cracking of concrete was not obtained, the 

residual capacity is only describing the capacity as long as the interface 

asperities are intact. This explains why the residual capacity is not well 

represented for test series two. For test series one this problem is avoided as 

the interface is modeled with the inclination of the residual sliding plane from 

the actual tests.   

Another source of error might be the values of Knn and Ktt. As described in 

section 5.2 these parameters both govern the physical behavior of the 

interface, but also acts as penalty numbers for the contact constraints. These 

parameters were determined based on a balance between stability of the 

analyses and proper results. The course parametric study of the influence of 

these parameters presented in section 5.7 indicates that setting these 

parameters too low will reduce the shear capacity of the numerical models. 

Hence, further fine tuning of these parameters might give a somewhat more 

accurate representation of the shear capacity. 

It is hard to determine why the material failure in the concrete not was 

obtained. Proper input values for the tensile strength and onset of crushing 

would improve the material models and ease the refinement of these. With so 

many parameters lacking, a full parametrical study would be needed to fine-

tune the materials. For this Thesis the time-frame did not allow such extensive 

testing. 

The results from the analyses show that the actual shear capacity of the tests 

are better represented through numerical modeling than the formulations 

available for hand calculations. Especially the possibility to represent the 

softening behavior after peak shear capacity is reached is a large benefit.  

The costs for achieving such improved results are that the interface geometry 

must be modeled exact and that physical tests are needed to calibrate the 

models. 
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6.3 Results from full scale dam analyses 
The results of the analyses of dam Ipto are presented in figure 6.14 below.  

 

Figure 6.14: Results from analyses of dam Ipto. 

As seen in figure 6.14, the effect of macro and micro roughness is an 

increased shear capacity. In table 6.2 the factor of safety is calculated by 

dividing the shear capacity found from the analyses on the horizontal design 

load (water pressure and ice force), similar to what is done in the shear 

friction method used today.  

Table 6.2: Factor of safety from finite element analyses. 

Analysis Name N Vcapacity Vdesign Factor of safety 

A 268 188 250 0.75 

B 268 252 250 1.01 

C 268 326 250 1.30 

 

It must be emphasized that these analyses only serve as an example, as the 

input parameters for the interface is taken from Liahagen’s tests, and therefore 

cannot be expected to represent the actual conditions at the dam site. 
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The shear capacity is stress related and one of the arguments of assessing the 

stability of sliding by finite element analyses is that the hand calculations only 

consider the average stresses under the dam section. As mentioned in section 

5.8 the Ipto dam is considered unstable towards both sliding and overturning. 

Thus the interface stresses are analyzed to give a more realistic assessment of 

the dam’s total stability. 

Studying the displacements and stresses at the interface, analysis A show a 

regular sliding failure, while analysis B and C show a combination of 

overturning and sliding. The reason for this is that with an increased shear 

capacity, larger ice forces are needed to get failure. Due to the location of the 

ice, increasing this load will affect the stability towards overturning as well as 

sliding. 

This combined failure mode cause high tensile stresses at the interface. The 

tensile stresses first appear at the upstream end of the interface at around load 

step 150 and propagate towards the downstream end as the loading increases. 

In figure 6.15 the shear stresses at the interface for the last load step of 

analysis C is shown (note that the displacements are magnified with a factor 

of 100).  

 

Figure 6.15: Interface shear stresses for analysis C (numbers in MPa). 
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As shown in figure 6.15 above, only a small part at the downstream end of the 

dam transfers shear stresses, which means that only this small part have 

compressive stresses. This redistribution of stresses might explain the 

somewhat more ductile behavior of analysis B and C compared to analysis A.  

The fact that the shear capacity is reached in combination with an overturning 

failure are in line with the theory presented by Fishman (2007, 2008 and 

2009) and indicates that the sliding and overturning stability of a concrete 

dam is linked, at least for gravity dams. A thorough assessment of the Ipto 

dam’s stability towards overturning falls outside the scope for this Thesis, but 

investigating the combined failure of overturning and sliding could form an 

interesting foundation for further work. 

If equation 5.9 was transferred to force-form and included as the shear 

capacity in the shear friction method (equation 3.1) the factors of safety would 

have been higher compared to the numerical results for analyses B and C. 

Especially the effect of micro roughness seems to give a smaller contribution 

in the analyses. 

The source for this reduction is that tensile normal stresses are inputted in 

equation 5.9 with a negative sign. For contact elements with tensile stresses 

the shear capacity is reduced until the stresses reach the tensile strength of the 

element (illustrated in figure 5.4.), in other words, the effect of cohesion is 

greatly reduced as most of the elements along the interface show tensile 

stresses. This effect is not accounted for in the hand calculations as the net 

normal force is positive (compressive). 

Even though these analyses show that the effect of micro roughness trough the 

cohesion parameter is reduced, it still has an influence on the peak shear 

capacity. In Liahagens tests the contribution from micro-roughness exhibit 

great variance, which indicates that for a full scale dam extensive sampling 

and testing might be required to obtain a proper input value for the cohesion 

parameter. It should also be noted that from the literature study in the author’s 

project work it was found that the shear capacity of an interface might be 

scale dependent.  
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The amount of input parameters needed combined with possible scale effects, 

leads the Author to believe that large scale physical tests of dam sliding might 

be necessary to utilize the full potential of the finite element analyses. 

As seen is section 5.8, the governing equation for shear capacity used in this 

model (equation 5.9) show around ten percent error for the peak shear 

strength when compared to the tests from Liahagen. Compared to the errors 

listed in table 6.1 thid method is clearly not as accurate as the analyses of the 

tests, but still better than the available methods for hand calculations.  
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7. CONCLUSIONS 
 

The analyses of the shear tests conducted by Simen Liahagen show that to 

describe the shear capacity of a sliding plane, more sophisticated formulations 

are needed compared to the ones used today. 

The shear capacity of a sliding plane is governed by two failure mechanisms. 

For a bonded interface, sliding is a result of a material failure at one or both of 

the adjoining materials. For an un-bonded interface, the capacity might be 

governed by both a sliding failure over the roughness and a material failure in 

parts of the roughness. From the analyses of Liahagen’s shear tests it is found 

that which failure mode that govern the capacity is dependent on both the 

normal stress and the inclination of the interface roughness. 

The shear tests indicate that if the surface roughness is not cut-off, it 

contributes to the shear capacity in two ways. Firstly, the macro-roughness, or 

asperities, along the sliding plane increase the shear capacity by tilting the 

plane of the actual shear failure. Secondly, the micro roughness along these 

asperities is cut off for a sliding failure. This contribution to the total shear 

capacity is greater than tilting the sliding plane. 

By analyzing the tests with the finite element method not only the peak shear 

capacity is described, but also the softening behavior of micro-roughness cut-

off. This provides models where the failure history is obtained, and in such a 

way enables more realistic analyses of actual sliding failure. 

The simplified approach to assessing the stability towards sliding of dam Ipto 

trough finite element analyses show that the contribution from surface 

roughness might be somewhat smaller compared to the tests due to tensile 

stresses at the interface. However, to verify the accuracy of this method the 

interface parameters must be found from the actual dam site. For this purpose 

large scale shear tests will provide important results for calibration of the 

numerical interface material model, and in addition indicate how scale effects 

influence the shear capacity.  
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To further develop the method for full scale dam assessment, investigating the 

effect of other interface conditions than the roughness is needed. Hence, the 

following subjects might form the basis for further work on the topic: 

- Investigating the influence of scale effects on the shear capacity to 

secure reliable input parameters for the sliding behavior. 

 

- Investigating how rock bolts and varying roughness along the sliding 

plane affects the shear capacity and in turn the stability towards 

sliding. 

 

- Investigating how the shear capacity can be found for a partly bonded 

sliding plane. 

 

- Investigating how the total stability of the dam evolves trough a 

combined sliding-overturning failure. 

 

From the analyses in this Thesis, two main advantages with finite element 

analyses of stability towards sliding of dams are seen. Firstly, this method can 

address the shear capacity on stress-form instead of force-form. Secondly the 

finite element method is able to describe the actual failure mechanisms 

governing the shear capacity. This provides a huge improvement in achieving 

realistic assessments of the stability compared to today’s methods using 

equilibrium of averaged forces. 

Such improved methods will secure that unnecessary funds not are used on 

dam rehabilitations. In the long run this will provide more sustainable dams 

and a more rational distribution of resources. 
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DIGITAL APPENDIX 
 

The following files are appended digitally in the delivery system for Master’s Theses’ 

(DAIM) at NTNU 

Text and excel files: 

PROJECT.pdf 

IPTO.xlsx 

IPTO3.xlsx 

Iptopara.xlsx 

testSeries1.xlsx 

testseries2.xlsx 

testseries3.xlsx 

testsWithBond.xlsx 

 

Model files: 

test1.1GSResidual+C.gid 

test1.1nointercCC.gid 

test1.2GSResidual+C.gid 

test1.3HnointerCC.gid 

test1.4GSResidual+C.gid 

test2.1GS.gid 

test2.2GS.gid 

test2.3GS.gid 

test3.1GShalfInter.gid 

test3.2GShalfInter.gid 

test3.3GShalfInter.gid 
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test4.1HGS.gid 

test4.2GS.gid 

IPTO_a3dv1.gid 

IPTO_b3dv5.gid 

IPTO_c3NOSOFT.gid 
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APPENDIX A 

Sliding stability analysis 

A concrete dam is casted in sections. For stability analysis all of these sections 

must be evaluated, and all sections needs to be stable (NVE 2005). According 

to Johansson (2009) sliding can be described by two principally different 

types of sliding failure, Plane sliding and Wedge sliding. The mechanics are 

similar for both types, but the geometry of the wedge introduces 3D effects 

which makes this failure more difficult to assess analytically. In this section 

four methods for analyzing plane sliding stability are presented. 

 

The sliding resistance method 

In the sliding resistance method a friction coefficient µ is calculated by 

dividing the sum of horizontal forces on the sum of vertical forces. The 

calculated friction coefficient is compared to a limit value, an allowable 

friction coefficient µall, as shown in equation (3.1), 

all

H

V
  




    (A.1) 

where µ is the friction coefficient, ΣH the sum of horizontal forces, ΣV the 

sum of vertical forces and µall is the allowed friction coefficient. 

This method was widely used between the early 1900’s and the 1930’s 

(Johansson 2009), and is still used in Sweden today (Johansson 2012). 

 

The shear friction method 

The shear friction method is the model used in the Norwegian guidelines 

today (NVE 2005).  For a given sliding-plane, the principle for this method is 

to find a factor of safety (FS) by dividing the horizontal shear capacity, Hf, on 

the sum of horizontal forces, H, acting on the plane (Energi Norge 2012). The 

method can be described by the following equation: 

fH
FS

H




     (A.2) 
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The shear capacity is calculated from the linear Mohr-Coulomb criterion, 

averaged over the area of the sliding-plane. For a horizontal sliding plane the 

method results in this equation for the factor of safety: 

tanc A V
FS

H

  





   (A.3) 

Where FS is the factor of safety, c is the cohesive parameter of the sliding 

plane, A is the area of the sliding plane, ϕ is the friction angle, V and H is the 

vertical and horizontal forces respectively. 

 

Sketch of the shear friction method for tilted sliding-plane (NVE 2005). 

 

 

For a tilted sliding-plane with a tilt angle α, as shown in the figure equation 

(A.2) is rewritten, for derivation see Eltervaag (2012). 

 

tan( )
cos (1 tan tan )

c A
V

FS
H

 
  


  

 





  (A.4) 
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It should be noted that in this method only the average cohesion and tilt angle 

is taken into account.  

 

The limit equilibrium method 

The limit equilibrium method defines the factor of safety by dividing the 

tangential shear capacity, τf, on the acting tangential forces, τ , on the sliding 

plane (Energi Norge 2012). This is different from the shear resistance method, 

which refers to the horizontal forces acting on the sliding plane. The limit 

equilibrium method can be described using the following equation: 

f
FS




     (A.5) 

Nicholson (1983) described that this way of defining the factor of safety can 

be thought of as the degree of shear stress mobilized at the surface.  

By applying the Mohr-Coulomb criteria to the limit equilibrium method the 

factor of safety can be derived from equilibrium into the following equation. 

For derivation see Eltervaag (2012). 

max | ( cos sin ),0 | tan

| cos sin |

c A V H
FS

abs H V

  

 

     


  

 
 

 

 

(A.6) 

Where FS is the factor of safety, c is the cohesion of the sliding plane, A is the 

area of the sliding plane, φ is the friction angle of the plane, α is the tilting 

angle of the plane, V and H is the vertical and horizontal forces respectively. 

The maximum and absolute values are introduced to avoid negative factors of 

safety for negative vertical forces (upwards) or tangential forces (to the right 

in figure 3.1). 

Nicholson (1983) also presented a method for assessing sliding on multiple 

sliding planes based on the limit equilibrium method. To apply this method 

the cross section is divided into n strips called wedges.  
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Principle sketch for the multiple sliding plane model (Stølen 2012). 

It is then assumed that the factor of safety is equal for all the wedges, which 

implies that the structure is in equilibrium. This assumption gives n equations: 

1 2 ... nFS FS FS FS        (A.7) 

The equilibrium also enables the establishment of equation for the resultants, 

P, acting on the wedges. 

 1

1

0
n

i i

i

P P



      (A.8) 

Instead of calculating each of these resultants, Nicholson (1983) presented an 

alternative iteration-based formulation, which gives the factor of safety for the 

whole system: 
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1

1

cos ( cos ) tan

( tan )

n
i i i i i i i

i i

n

i i i

i

c A V U

n
FS

H V



  







     



 




  (A.9) 

where nαi is expressed as follows: 

2

tan tan
1

1 tan

i i

i

i

FSn

 









     (A.10) 
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APPENDIX B 
Material models in Stølen’s Master’s Thesis 

The materials was modeled using a fracture-plastic failure model 

(CC3DNonLinCementious2) developed by ATENA. The model contains sub-

models for the concrete tensile and compressive behaviors and is illustrated in 

the figure below. 

 

Stress-strain relationship for the concrete model. From Stølen (2012) 

The reinforcement was modeled as separate bars with a bilinear stress-strain 

relationship. It was chose not to include models for bond between the concrete 

and the rebars, but instead use conservative values for the yielding limit of the 

reinforcement steel. 

The rock material is modeled using the Drucker-Prager criterion, which 

Stølen (2012) expresses on the form 

1 2 2 1( , ) 0f I J J I k       (B.1) 

Where I1 and J2 are the first and second deviatoric invariants of the stress-

tensor, and α and k are constants related to the cohesive and frictional 

parameters in the Mohr-Coulomb criterion. 

In the tables below the material parameters used by Stølen is listed. 
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Material parameters from Stølen (2012) 

Material parameter  Concrete Rock reinforcement 

Young’s Modulus [GPa]  32 30 - 

Poisson number  0.2 0.2 - 

Density [kN/m
3
]  23 27 - 

Compressive strength [MPa]  30 50 - 

Tensile strength [MPa]  2 10 - 

Yield strength [MPa]  - - 170 

Strain at tensile failure  - - 0.025 

 

Material parameters for interface elements. From Stølen (2012) 

Material parameters for the interface material 

ϕ
8
 [˚]  38 

Cohesion [MPa]  Varying 

Knn [MN/m
3
]  1.5 x 10

7 

Knn
min

 [MN/m
3
]  6.25 x 10

6 

Ktt [MN/m
3
]  15 x 10

3 

Ktt
min

 [MN/m
3
]  6.25 x 10

3 

 

 

  

                                                      
8
 This is the basic friction angle, which in this Thesis is denoted ϕb. For convenience 

the symbol used by Stølen is kept in this table. 
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APPENDIX C 
Pictures of the direct shear tests conducted by Simen Liahagen at LTU in 

2012 

 

Test 1.1 at maximum capacity after approximately 4mm displacement 

 

Test 1.1 after approximately 5mm displacement 

 

Test 1.1 after maximum displacement. Approximately 15mm 

 

Test 1.2 at maximum capacity after approximately 3mm displacement 
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Test 1.2 after approximately 5mm displacement 

 

Test 1.2 after maximum displacement. Approximately 15mm 

 

Test 1.3H at max capacity. 

 

Test 1.3H after maximum displacement. Approximately 15mm 

 

Test 1.4 at maximum capacity after approximately 1.4mm of displacement 
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Test 1.4 after approximately 5mm displacement 

 

Test 1.4 after maximum displacement. Approximately 26mm 

 

Test 2.1 at maximum capacity after approximately 6.4mm of displacement 

 

Test 2.1 after approximately 15mm displacement 

 

Test 2.1 after maximum displacement. Approximately 25mm 
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Test 2.2 at maximum capacity after approximately 2.9mm of displacement 

 

Test 2.2 after approximately 15mm displacement 

 

Test 2.2 after maximum displacement. Approximately 22mm 

 

Test 2.3 at maximum capacity after approximately 2.3mm of displacement 

 

Test 2.3 after approximately 5mm displacement 
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Test 2.3 after approximately 15mm displacement 

 

Test 2.3 after maximum displacement. Approximately 20mm 

 

Test 3.1 at maximum capacity after approximately 9.8mm of displacement 

 

Test 3.1 after maximum displacement. Approximately 33mm 

 

Test 3.3 at maximum capacity after approximately 2.8mm of displacement 
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 Test 3.3 after maximum displacement. Approximately 33mm 

 

Test 4.1H after approximately 15mm of deformation 

 

Test 4.2 after approximately 33mm of deformation 
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APPENDIX D 
Softening functions from the numerical analyses. 
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APPENDIX E 
 

Description of the CCxDNonLinCementious material model. 

The descriptions in this section have been found in the ATENA Theory 

manual and are somewhat compacted. Thus, for further details consult the 

Theory manual (Cervenka et. Al 2012). 

The material model formulation is based on decomposing the strain into 

elastic, ε
e
, plastic, ε

p
, and fracturing, ε

f
, parts. 

e p f

ij ij ij ij          (E.1) 

The stress state is updated according to: 

1 ( )n n p f

ij ij ijk kl kl klE            (E.2) 

 

Constitutive model for tensile behavior 

The model uses the Rankine-fracturing model for concrete cracking to 

describe the tensile behavior of concrete. It is assumed that strains and 

stresses are converted into material direction, i, such that the failure criterion
9
 

can be given in the following form. 

' ' 0f t

i ii tiF f       (E.3) 

Where σ
’t

ii is the trail stress, and f’ti is the tensile strength. F = 0 indicates 

cracking. The trail stress is computed by an elastic predictor: 

' ' 1 't n

ij ij ijkl klE         (E.4) 

If the calculated trail stress does not satisfy equation 5.1 the increment of 

fracture strain in direction i can be computed by assuming that the final stress 

must satisfy: 

' ' ' ' ' 0f n t f

i ii ti ii iikl kl tiF f E f           (E.5) 

                                                      
9
 Failure occurs as the value of F equals zero. This can be illustrated graphically as a 

three dimensional object. Either you are inside the object (no failure) or you are on 

the surface (failure). A positive value of F (outside the object) is unphysical. 
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This equation may be simplified by utilizing the assumption that the 

increment of fracture strain is orthogonal to the failure surface being checked. 

For failure surface k, the incremental fracture strain has the following form. 

'
f

f k
ij ik

ij

F
  




    


   (E.6) 

Incremental fracturing multiplier, λ, is obtained by substituting equation E.6 

into equation 5.5.  

' ' ' ' max( )t t

kk tk kk t k

kkkk kkkk

f f w

E E

 


 
      (E.7) 

This equation must be solved by iteration, since for softening materials the 

current tensile strength f’t(wk
max

)  is dependent on the crack opening, w. The 

crack opening is computed from the sum of total fracturing strain 'ˆ f

kk in 

direction k plus the current fracture strain increment, Δλ, multiplied with the 

characteristic length Lt. 

max 'ˆ( )f

k t kkw L        (E.8) 

The characteristic length can be seen as the size of the element projected into 

the crack direction. 

 

 Sketch of characteristic length. (Cervenka et. Al 2012) 

Shear strength of cracked concrete is found using a modified Compression 

Field Theory 
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   (E.9) 

Where f’c is the compressive strength in MPa, ag, is the maximum aggregate 

size and w is the maximum crack width in mm at the given location. By 

applying the maximum aggregate size the user allows the shear stress at the 

cracks t exceed the tensile strength. If the aggregate size is not specified, the 

tensile strength is the default value for maximal shear stress. 

 

Constitutive model for compressive behavior 

To model the compressive behavior of concrete the model uses a plasticity 

model for concrete crushing. This model computes the new stress state by a 

predictor-corrector formulation. 

( ) ( 1) ( )n n p t p t p

ij ij ijkl kl kl ij ijkl kl ij ijE E                 (E.10) 

The plastic corrector σij
p
 is computed directly from the yield function by a 

return mapping algorithm 

( ) ( ) 0p t p p t

ij ij ij ijF F l         (E.11) 

Where lij is the return direction, defined as: 

( )p t

kl
ij ijkl

kl

G
l E









    (E.12) 

Where G(σij) is the plastic potential function. The derivative of this is 

evaluated at the predictor stress, σij
t
, to determine the return direction. Finally 

the following failure surface, first described by Menéterey and William 

(Cervenka et. Al 2012), is applied. 

2

3 ' ' '
1.5 ( , ) 0

6 3

p

P

c c c

F m r e c
f f f

  


  
      
   

  (E.13) 

Where 
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1' '
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1
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c t

c t

f f e e e
m r e

f f e
e e e e




 

   
 


       

 

In the above equations (ξ,ρ,θ) are cylindrical coordinates (also referred to as 

Haigh-Westergaards coordinates), f’c and f’t is the compressive and tensile 

strength respectively. The parameter e 0.5,1.0  describes the roundness of 

the failure surface, for e=0.5 the corners are sharp, and for e= 1.0 the failure 

surface is completely circular. 

The position of the failure surface depends on the value of strain 

hardening/softening, which is based on the equivalent plastic strain, ε
p

eq. The 

change in equivalent plastic strain, Δ ε
p
eq, is calculated as follows. 

min( )p p

eq ij        (E.14) 

For the Menéterey-Williams failure surface the hardening/softening is 

described by the c 0,1 , which can be expressed by the following relation 

2
'

'

( )p

c eq

c

f
c

f

 
   
 

    (E.15) 

Above the hardening/softening law is expressed by f’c which is based on 

uniaxial compressive tests. This law is illustrated in the figureError! 

eference source not found. below with a linear softening curve and an 

elliptical ascending part described by. 
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2

( ) 1

p

c eq

co c co

c

f f f
 




 
     

 

   (E.16) 

 

 Compressive hardening/softening (Cervenka 2012) 

This hardening/softening law is based on the work of Van Mier (Cervenka 

2012). 

Combining the two models 

As mentioned in the intro, the material model combines both of the described 

methods to model concrete. Generally this is done by solving the two 

following inequalities simultaneously 

( 1)( ( )) 0 solveforp n f p p

ij ijkl kl kl kl klF E            (E.17) 

( 1)( ( )) 0f n p f f

ij ijkl kl kl kl klF E solve for            (E.19) 

These inequalities are interdependent, and therefore results are obtained 

through iteration. For iteration schemes and iteration convergence criteria see 

the Theory manual (Cervenka 2012). 
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APPENDIX F 
The interface stiffness used in the parametric study was calculated as follows. 

rock
nn

element

E
K M

t
     (F.1) 

rock
tt

element

G
K M

t
     (F.2) 

Where telement is the size of the interface elements, and M is a multiplier 

varying from 1 to 100. The G-modulus can be found as 

2 (1 )

E
G




 
    (F.3) 

In order to present the results from this study in a convenient way, the 

analyses were given numbers. These numbers were given according to the 

combination of element size and multiplier, and the relation is shown in the 

table below 

Element size 

[m] 

M=1 M=10 M=50 M=100 

0.1 1a 1b 1c 1d 

0.2 2a 2b 2c 2d 

0.4 3a 3b 3c 3d 
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The result of this parametric study is shown in the figure below. 

 

Load displacement diagram of the parametric study 

From this parametric study it is seen that the element stiffness is affecting the 

shear capacity. Since no tests of the exact shear capacity for a horizontal 

sliding plane exist, the lowest value of Knn and Ktt are chosen. The lowest 

shear capacity is found from analysis 3a, thus this mesh size and element 

stiffness is used for the further analyses. 
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APPENDIX G 
 

Conditional break criteria can be set to stop the computation if an error 

exceeds the prescribed tolerance multiplied by the prescribed factor during the 

iterations or at the end of an analysis step (Cervenka et. Al 2013). 

For the analyses run in this Thesis the multiplier is set to 20, and default 

values for the error tolerances in the convergence criteria are kept. 

The multiplier 20 means that the analysis stops if the error exceeds the 

tolerance 20 times. Below is an example with 1% tolerance (default), 20 

multiplier, max 60 iterations:  

 

error < 0.01 in 60 or less iterations - no exclamation mark, analysis continues 

with the next step  

0.01 < error < 0.20 in iteration 60 - exclamation mark, analysis continues with 

the next step  

0.20 < error in iteration 60 - excalamtion mark, analysis stops 

 


