NTNU - Trondheim
Norwegian University of

Science and Technology

TERM PROJECT

TTK 4550 - MEDICAL CYBERNETICS

Possibility Study of Implementing
Device Profile Layer in PDCP

Author: Supervisor:
Oyvind RONNINGSTAD Terje MUGAAS

NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY

Faculty of Information Technology, Mathematics and
Electrical Engineering

Department of Engineering Cybernetics

Fall 2012

Abstract

This report is the result of a term project at the Department of Engineer-
ing Cybernetics at NTNU. It discusses the implementation of a device pro-
file layer for the Prosthetic Device Communication Protocol (PDCP), and
open-standard bus protocol for use in powered prostheses. The purpose
of the profile layer is to standardize communication between components,
to ease building and configuration of individual prosthesis solutions, and
to maximize interoperability of compatible parts.

The report includes a background study into existing powered pros-
thesis solutions, the existing version of PDCP, and into how device profiles
are used in other protocols. Later, the task of adding device profiles to
PDCP is discussed, and through the elaboration, the outline of one pos-
sible implementation is presented. The concepts of configuration storage
and standardized message formats are found to be essential in a profile
layer for prostheses.

NTNU Fakultet for informasjonsteknologi,
Norges teknisk-naturvitenskapelige matematikk og elektroteknikk
universitet Institutt for teknisk kybernetikk

Prosjektoppgave
Kandidatens navn: @yvind Rgnningstad
Fag: Teknisk Kybernetikk — Biomedisinsk Bevegelse
Oppgavens tittel (norsk): Mulighetsstudie for Implementasjon av et Profil-lag i PDCP.

Oppgavens tittel (engelsk): Possibility Study of Implementing Device Profile Layer in PDCP.

Oppgavens tekst:

PDCP (Prosthetic Device Communication Protocol) has been developed at UNB, in cooperation
with NTNU with the goal of reducing cost, increasing reliability, streamlining system design, as
well as easing the transition to more advance prosthesis systems. PDCP is maturing, and has
recently been hardware implemented. It is now desirable to look at the possibility of extending
PDCP with a device profile layer to further interoperability and interchangeability of prosthesis
parts from different manufacturers.

The following tasks shall be addressed:

1. Acquaint yourself with the types of prostheses (including combined prostheses) which
exist and what functions and what modes of control they support, and how they are
controlled today.

Familiarize yourself with the Prosthetic Device Communication Protocol.

3. Look into how different communication protocols use profiles to represent information in
message exchange.

4. Discuss how profiles can represent information on the PDCP bus, with respect to
prosthesis control.

5. If time allows, outline a suggestion for implementation of a profile layer in PDCP, with the
aim of achieving interoperability between prosthesis parts from different manufacturers.

n

Oppgaven gitt: 2012-08-20

Besvarelsen leveres: 2012-12-21

Utfart ved: Institutt for teknisk kybernetikk
Veileder: Terje Mugaas, SINTEF

Trondheim, 2012-12-18

Geir Mathisen
Fagleerer

v

Preface

Applying my education in engineering cybernetics to the medical domain
is both exciting and rewarding. I hope this report can be a useful contri-
bution to the field of medical engineering.

Acknowledgements

First, I want to thank my advisor, Terje Mugaas, for our encouraging
meetings with good discussions, and for taking the time to read my report,
several times, and suggesting improvements.

Secondly, I want to thank Yves Losier of UNB, Canada for taking
the time to answer my many questions about PDCP, giving me a more
complete comprehension of the foundation of my project.

Further, T would like to thank @yvind Stavdahl for the idea for the
project and for his inspiring passion and optimism; and my supervisor,
Geir Mathisen, for handling the administrative aspects of the project.

I want to thank Ole Morten Haaland for his comments and construc-
tive criticism on my report.

And finally, I want to thank my wife for being awesome, and also for
proofreading my report.

Note on Process

My original advisor went on sudden leave for the majority of the semester.
This meant that no one at the institute had much expertise on the PDCP
protocol. I was handed some documents, but these were incomplete. 1
was not, however, aware of this until I, relatively late, came in contact
with Yves Losier, the main author of the protocol, who provided me with
additional information. Because of this, some of the report is written
based on thoughts I had when my information was incomplete.

Oyvind Rgnningstad

December 20, 2012
Trondheim

Contents

1 Introduction

1.1
1.2

Background and Motivation
Focus of this Project

2 Background

2.1

2.2

2.3

24

2.5

Powered Prostheses L.
2.1.1 Myoelectric Signals
2.1.2 Today’s Commercially Available Prostheses

2.1.3 The Future of Myoelectric prosthesis Control
Prosthetic Device Communication Protocol
2.2.1 Bus Arbitrator o Lo
2.2.2 Message Structure oL
2.2.3 Devices, Data Channels and Node IDs
2.24 Parameters Lo
2.2.5 Joining the Bus (Binding)
2.2.6 Exchanging Information
Device Profiles
Device Classesin USB
2.4.1 Descriptors oo
2.4.2 Device Classes (Profiles)
243 Interfaces L.
Device Profiles in Bluetooth 4.0
2.5.1 Master/Slave, Server/Client
2.5.2 Accessing the Information
2.5.3 Structure Lo
2.5.4 Attributeso L
2.5.5 Attributes as Declarations
2.5.6 GATT Declaration Example

vi

[\

W W =1~ Ot ot Ww W

CONTENTS

2.6 Similarities and Differences Between the Profile Layers of
USB and Bluetooth 4.0. 24

3 Elaboration on the Implementation of Device Profiles in

PDCP 27
3.1 System Architecture 28
3.1.1 A Note on Bandwidth 31
3.1.2 A First Implementation 31

3.2 Data Channels - Setup, 32
3.2.1 Configurations 32
3.2.2 Storing Configurations 33
3.2.3 Manual Configuration 34
3.2.4 Control Units — Transparent or Opaque? 35

3.3 Data Channels - Transmission 35
3.3.1 Information Integrity 35
3.3.2 Byte Format on Data Channel Links 36

34 Profiles 36
3.4.1 Channel Profiles 37
3.4.2 Device Profiles 37
3.4.3 Tree Structure 37
34.4 Channel-Matching 38
3.4.5 Channel-Matching in Previously Configured Networks 39

3.4.6 Profiles as the Basis for Message Format 40

35 FringeCases. 40
4 Discussion 43
4.1 Restrict or Accommodate? 43
4.2 Desired Behavior 44
5 Conclusion 45
6 Further Work 47
6.1 Profile Layer oL 47
6.1.1 Message Format 47
6.1.2 Configuration Interface 47
6.1.3 Retaining Configuration 47
6.14 Details oo 48

6.2 Lower Levels of PDCP 48
6.2.1 Response Codes. 48
6.2.2 Information to Devices 48

vii

6.3

CONTENTS

6.2.3 Negotiation, 48
Hardware 48
6.3.1 Memory Node. 48
6.3.2 Physical Interface 49

viii

List of Figures

2.1
2.2

2.3
24
2.5
2.6

3.1

3.2
3.3
3.4
3.5

3.6
3.7

Conceptual model of a general prosthesis control scheme .
An example of a single-site (single electrode) control strat-
egy for a prosthetic hand.
Example network structure of PDCP.
Bit layout of a PDCP message.
Hierarchy of USB descriptors.
Hierarchy of GATT (Bluetooth 4.0)

Generalization of prosthesis control for use in the device
profile layer.
Architecture example 1.
Architecture example 2. L.
Architecture example 3.
Generalization of prosthesis control for use in the device
profile layer. (Simplified) oL
An example profile hierarchy for sensor channels.
An example profile hierarchy for movement class set point
channels, with enumeration.

1X

4

List of Tables

2.1
2.2
2.3
2.4
2.5

2.6

2.7

2.8

2.9

2.10
2.11
2.12
2.13
2.14
2.15

2.16

2.17
2.18
2.19
2.20

Features that can be extracted from a MES. [2].
Use cases of message modes and node ID types. (PDCP) .
List of all function codes of the PDCP protocol.
List of all response function codes of the PDCP protocol.
Structure of data field of message type 0x01 - Bind Device
Request and 0x81 - Bind Device Request Response.
Structure of data field of message type 0x03 - Get Device
Parameter and 0x83 - Get Device Parameter Response. . .
Structure of data field of message type 0x04 - Set Device
Parameter and 0x84 - Set Device Parameter Response. . .
Structure of data field of message type 0x0F - Update Data
Channel Request and 0x8F - Update Data Channel Response.
Device-wide parameters.
Input channel parameters.
Output channel parameters.
The “bind device request” packet structure.
The “bind device request response” packet structure.

The packet structure of a data channel link packet.
USB Example: Interfaces of a webcam which can also cap-
ture still imageso Lo oo
A selection of read and write modes supported by the Blue-
tooth 4.0 protocol. L.
Bluetooth 4.0 Service Declaration
Bluetooth 4.0 Characteristic Declaration
Bluetooth 4.0 Characteristic Value Declaration
Bluetooth 4.0 Attribute Example

10
11

12

12

13

Chapter 1

Introduction

The purpose of this report is to look at how to introduce a device profile
layer into the PDCP communication protocol.

1.1 Background and Motivation

Today’s market of powered prostheses consists almost exclusively of pro-
prietary solutions even though different manufacturers provide function-
ally very similar systems. Existing systems are also not very scalable.
Typically, each sensor requires its own set of wires to the terminal device,
which makes it very expensive to modify the system, and each wire is a
component that can fail, especially when they must lead through moving
joints.

The PDCP protocol has been developed at UNB!, in cooperation
with NTNU? as a solution to these and other problems with existing
systems. The goal of creating a standardized bus protocol is, in the words
of Stavdahl and Mathisen[1]:

o Reduced wiring and thus production cost and hardware
failure rate.

o Advanced coordinated control schemes with a large num-
ber of sensor signals and control variables.

o Remote adjustment, fault diagnosis and software upgrades.

!University of New Brunswick, Fredericton, Canada
Norwegian University of Science and Technology (Norges Teknisk-
Naturvitenskapelige Universitet), Trondheim, Norway

CHAPTER 1. INTRODUCTION

o [nteroperability and thus improved interchangeability of
different devices.

The biggest motivation for extending the PDCP protocol with a device
profile layer is found in the last point: To further improve interoperability
between, and interchangeability of, parts from different manufacturers or
with different functions. The goal is to have different parts of a prosthesis,
such as sensors and terminal devices, function in a “plug-and-play” fashion,
so that systems can be built, and parts can be replaced with minimal or
no need for configuration.

1.2 Focus of this Project

The first aim of this report is to investigate what a device profile layer is
and how other device profile layers are implemented, and also to give an
introduction to how prostheses work and to the PDCP protocol as it is at
the time of writing.

The second aim of this report is to investigate the possibility of incor-
porating a device profile layer into PDCP, and outline one possible way
to construct such a layer. A profile layer will help decrease the amount
of configuration needed to make parts cooperate. Constructing a profile
layer involves further standardization of functions codes, parameters, and
classification of the functional roles different parts of a prosthesis play,
to minimize the amount of basic implementation details that need to be
decided by vendor.

Specifying a device profile layer is a very large task, and this report will
not nearly finish it, so the first priority will be to provide a basic framework
that can later be built on. Also, I am a student with limited experience
both in the field of prosthetics, and of standardization, so in many places,
I will discuss different approaches instead of giving a definitive decision. A
significant portion of the specification should be left to a group of experts.
The scope of this report is more about exploring the possibilities.

Chapter 2

Background

In this chapter, I provide information relevant to the project. I try to give
introductions to:

e Prostheses, specifically powered prostheses, including control strate-
gies.

e The Prosthetic Device Communication Protocol

e Device profiles, and examples of how they are used in the USB and
Bluetooth 4.0 protocols.

2.1 Powered Prostheses

A prosthesis is anything that acts as a substitute for a missing body part.
The purpose of a prosthesis can be entirely cosmetic, or it can provide
a functional replacement as well. A powered prosthesis has joints with
motors, usually to emulate the function of the limb it is replacing. The
purpose of powered upper limb prostheses is to return to an amputee some
of the ability to grasp, hold and manipulate objects.

To control the prosthesis, the intent of the person wearing it must be
estimated. The most common way to accomplish this is through myoelec-
tric sensors, which can sense contractions in muscles. Electrodes can be
placed on the skin outside of muscles on the remaining part of the limb
allowing the person to control the prosthesis by contracting these muscles.

Figure 2.1 shows a generalization of most prosthesis control schemes,
along with some examples of both commercially available and research-
only control schemes which fit the model.

CHAPTER 2. BACKGROUND

uoniubodras wianed
¢ 9jdwex3y

i |

| 51030W SISaY3s0ld |
_ ——— |
ISTRIJETY 1 | @8e3jon onses

e e oy

| 13]|0J3U0d OAIBS]

e ' s e s e e

sjutodyas Aydojap

shiskskalahalata.

“ 1032335 uondUNy J03eNPY |
|

sse[d :o_.ulo:._i_uﬂ.uuﬂ_mmﬂl -T=-

Jayisse
(van) sishjeue
JuBUIWIISIP Jeaul]

‘[920e uwum._wz% Tw._:umwu DINI

” J0REIIXD 3injea

_ OIN3 pasalid

sjeusis
uoneI3ANY

433y YyoloN

wpw | a/v+
-043|320Y TEme YE]
quiry EETRELITY]

Xajnw jeuonsodoid

Z 9|dwex3y
L |
| SI010W SISAYISOid [}
L |

uonisod | |23e3jon onsas
rm———— - —]
| 19]|0J3U0d OALDS |

sjuiodias uoLisod

framamaER AT

) 10103)s uoydUNy 103eN}RY |

3jeWNSA 32104 Hmum_u uonoAl

Jojewnsa
2104

1ayisse|d
val

sigjaweled | /sainjeay us_mﬁ

(1030WI1YSD 1910 WeIEY)
ﬁ 1032B43X3 d4NjEI4

I E] um_w:_u;.

_ 133 yajoN

OSN3 ssmmJ—

~, a/v + dweaid DIN3

|

S9SN

(8961) wae uoysog
L 9jdwex3

Josuas 3|Sue/adloy +
_y 1010W Moq|3

aj8ue g 3104 ; A—rwm....u._.n:, WMd
X

Jayldwe

ki
103e|NpOLW YIpIm-as|nd

93 _m_u:w._wt_oﬁﬂ

,— dopeanqns

apnydwe us_mT

_ 1o0je|npowaq

DN mey LT

_ Jaydwesid o3

i

S3ISNIN

f (m‘uz‘>=mm"~.m
I°POIN
M Suisuas/uogenoy 8
yoeqpaaq ;—_n:m_m |043U03 JOYON
A 4
{ o]
|043U03 1030\ L .m.
s
sjulodyag ‘_,
.~=o.5uw_Wm uonduny JolenPY| g
uoyduny J0JoN ._m
1 uoyeuIwIRIPp mﬂ
— uonIuUNy 100 S 3
sainjeay 5
Jyloads [puueyd _o.:.._oul_, -
=
i o
~ Suipodap |auueyd |oJu0) v =
siajawesed g
3
/sainjeay jeusis ynduj ._.
i (uonewyss 1932wWesed)
” uoy”IeIIXS dANJEDY €
|eusis ndui pauoyipuo) _— 2
A g
m Suiuonipuod |eusis 4 m
g
|eusis andui _smmi__.]
T

~ aamyded |eusis 3ndu)

[

Jasn uewnH

trol scheme, as pro-

1S con

Conceptual model of a general prosthes

posed by Fougner et al. [2].

Figure 2.1

2.1. POWERED PROSTHESES

2.1.1 Myoelectric Signals

The myoelectric signal is measured by placing an electrode on the skin
outside a muscle. The signal measured is a combination of the action
potentials sent to all motor units in the muscle. The reason why it is
measured on the muscle and not on the nerve which carries the signal
from the brain is that, in the muscle, the signal is branched and multi-
plied, effectively amplifying the signal so it is easier to detect. Also, a
single nerve will most often carry many signals, to other muscles as well,
which will be hard or impossible to separate.

The use of electrodes to measure myoelectric signals carries a few chal-
lenges. The amplitude of the signal depends on the connection between
the electrode and the skin, which means that if pressure is applied to the
electrode, it will register increased activation. It also means that sweat
on the skin will affect the signal. Also, if the electrode moves across the
skin, this will create noise on the signal.

Another challenge when using myoelectric signals to control prostheses
is that, often, the muscles being measured on are also the muscles that
are used to support the arm and prosthesis, which means that the signal
will change depending on the orientation of the arm and prosthesis.

Research is currently being conducted into the use of pressure sensors
and accelerometers in myoelectric sensors to cope with these problems.

2.1.2 Today’s Commercially Available Prostheses

Most commercially available myoelectric prostheses use one or two elec-
trodes and can control only a single degree of freedom (DOF) at a time,
e.g. grasp or rotation. Many of these allow just 3 states: One movement
speed in each direction, and a rest state. This control strategy is called
“on-off” control and makes it possible to control the prosthesis with only
one signal (single-site system). In single-site systems, a processed myo-
electric signal (PMES)! from an electrode is used to decide which of the
three states to use, see figure 2.2 for an example.

With two electrodes (two-site systems), two different muscles are mea-
sured, and used to control opposite movement directions (open/close,
pronate/supinate, flexion/extension). Activating one muscle will cause

!The processing usually consists of rectification and filtering (smoothing), giving
the average amplitude.

CHAPTER 2. BACKGROUND

80
< ++ 82 | Dynamic
=40 range
3
o v 81
£ o
=1
£
< .
-40 : :
REST : CLOSE : OPEN
-sof : .
L} L) L] Ld T L)
0

2
Time (s)

Figure 2.2: An example of a single-site (single electrode) control strategy for
a prosthetic hand. When measured muscle activation is low, the
prosthesis will not move; when activation is moderate, the hand will
close with a set speed; when activation is high, the hand will open
with a set speed. Taken from Muzumdar [3, p. 45, figure 3.10].

2.2. PROSTHETIC DEVICE COMMUNICATION PROTOCOL

movement in one direction, while activating the other muscle will cause
movement in the opposite direction.

Two site systems can be used for both on-off control and propor-
tional control. In proportional control, the difference in PMES across
the two electrodes is used to decide both movement direction and move-
ment speed, which allows for both fast and delicate movements. Because
of the amount of noise in myoelectric signals, the difference must usually
be above a certain threshold to trigger movement. This MES noise is also
one reason why on-off control is as common as it is, even in two-site
system, since the on-off control strategy behaves more predictably than
more complicated strategies.

When a two-site system is used to control a prosthesis with more than
one DOF, only one DOF will be controlled at a time, and the active
DOF can be switched, for example by co-contracting the two muscles.
In this way, very complicated prostheses can be controlled with two-site
systems through the use of movement classes such as “hand rotation”,
“pinch grip”, “power grip”, etc. Co-contractions will then cycle through the
available movement classes. These complicated systems can often become
too complicated to be practical, and often, one-DOF systems are preferred
over even a two class (rotation, grasp) system, because the more complex
system offers little improvement, and can also be heavier, less wieldy, and
more fragile.

2.1.3 The Future of Myoelectric prosthesis Control

As mentioned, there is research being conducted on the use of other sensors
to supplement the myoelectric control signals. These involve pressure sen-
sors and accelerometers inside electrodes, rotational sensors inside joints,
and pressure, texture, and slip sensors on terminal devices. There is also
ongoing research into the use of additional myoelectric sensors to con-
trol more DOFs simultaneously, for example by using pattern recognition.
Pattern recognition systems will often extract multiple features from each
EMG signal, giving a larger number of total features to perform the pat-
tern recognition on. [2] list a number of features that can be extracted
from an EMG signal; the list is reproduced in table 2.1

2.2 Prosthetic Device Communication Protocol

The Prosthetic Device Communication Protocol (PDCP) is a bus com-
munication protocol designed specifically for use in prostheses. PDCP is

Table 2.1:

CHAPTER 2. BACKGROUND

MES Features

Mean Absolute Value
Mean Square Value
Myo-pulse

Number of Turns
Root-mean Square

Slope Sign Changes
Willison Amplitude
Windowed Fourier Transform
Waveform Length
Wavelet Packet Transform
Wavelet Transform
Zero-Crossings

Features that can be extracted from a MES. [2].

Device 2

Device 4

Device 1 Device 3
Physical Bus
—— Data Channel Link
'4 Input Channel Bus
}:9 Output Channel Arbitrator

Figure 2.3: Example network structure of PDCP, including both physical and
logical links. Not drawn: All devices have an inherent logical link
to the Bus Arbitrator.

2.2. PROSTHETIC DEVICE COMMUNICATION PROTOCOL

built on top of the Controller Area Network (CAN) protocol. Figure 2.3
is an example of a fully configured PDCP network.

PDCP is still a work in progress and the lower layers of the protocol,
which a device profile layer will build on, are not completely specified.
There is also no definitive document containing the current specification.
The PDCP documentation consists, as of now, of:

e Prosthetic Device Communication Protocol for the AIF UNB Hand
Project, which describes basic function, and PDCP’s relationship to
CAN.

e PDCP Info (2011 05 04), which describes the implementation of
data channels.

o AIF2 System Data Capture (2012 02 21), which is a sample capture
of the bus communication during setup after power-on.?

This section is based on these documents, in addition to correspon-
dence with one of the protocol’s creators, Yves Losier of UNB.

2.2.1 Bus Arbitrator

PDCP specifies that one node must have the role of “bus arbitrator”, which
oversees, and largely controls, the communication on the bus.

The bus arbitrator handles requests to join the bus, distributes node
IDs, and sets up logical links (“data channel links”) between devices. No
device can communicate on the bus without being joined® to the bus by
the bus arbitrator?, and devices can only communicate directly with one
another after the bus arbitrator has set up a data channel link between
them.

The bus arbitrator role can be filled by a dedicated device or by a
device that already performs some other function, e.g. the prosthetic
hand.

2.2.2 Message Structure

PDCP uses the CAN base frame format, which means that it uses the
standard 11 bit message identifier field. The message ID is divided into 3

2Tt should be noted that the values used in AIF2 System Data Capture (2012 02
21) for “Device Type and Profile” and “Channel Type and Profile” are dummy values
that do not have a specified meaning as of yet.

3«Binding”

“The exception being Bind Device Requests.

CHAPTER 2. BACKGROUND

5 CAN Message ID (11 bits) 2 :éj Da(ftlaietgg)ﬁh CA(Q-ngtgeld (1(;':;%3) }(‘: (E Sifs)
- ghanan > < >
l PDCP Node ID (8 bits) PDCP PDCP Payload
PDCP Message Mode (1 bit) Fum(:g%r']t C)ode (0-56 bits)
its

PDCP Message Priority (2 bits)

Figure 2.4: Bit layout of a PDCP message[4], in the context of a CAN mes-
sage|7]. The function code field is only used in communication with
the bus arbitrator.

parts: The message priority, message mode, and node ID fields, as
seen in figure 2.4.

The message priority is a number (0-3) that specifies the urgency
of the message. 0, 1 and 2 mean “high priority”, “medium priority” and
“low priority” respectively, while 3 is used only when a device attempts to
perform the binding process. Except for level 3, priorities can be used at
will, but the common practice is to use high priority for data streaming on
channel links and for device beacons, and medium priority for everything
else?.

The message mode specifies if the message originates from the bus
arbitrator (1) or from another device (0).

The node ID specifies either the target device, the sending device, or
the source output data channel. See table 2.2.

From To Message Mode Field Node ID Field
Bus arbitrator Device 1 (from bus arbitrator) (Target) device
Device Bus arbitrator 0 (from device) (Source) device

Device Device 0 (from device)

channel

Table 2.2: Use cases of message modes and node ID types.

CAN’s arbitration scheme works in such a way that if two devices

This is reflected in [6].

10

(Source) output

2.2. PROSTHETIC DEVICE COMMUNICATION PROTOCOL

start transmitting at the same time, the message with the lowest message
ID gets through without delay, while the other message must be aborted
and retransmitted at a later time. This means that PDCP messages are
prioritized first by priority, then by message mode, then by node ID.

In addition to this, in device-bus arbitrator communication, the first
byte of the CAN data field is reserved for a PDCP function code. An
overview of the predefined function codes can be found in table 2.3, with
corresponding response codes in table 2.4.

In device-device communication using data channels, the format of the
entire 8 byte data packet can be tailored to the needs of the channel, i.e.
there is no function code.

Function . Message Requnse
Code Description Size Sender Recipient Function
(bytes) Code
0x01 Bind Device Request 7 Device Bus Arbitrator 0x81
0x03 Get Device Parameter 3 Bus Arbitrator Device 0x83
0x04 Set Device Parameter — 4-7 Bus Arbitrator Device 0x84
0x08 Suspend Device 3 Bus Arbitrator Device 0x88
0x09 Release Device 1 Bus Arbitrator Device 0x88
0x0A Device Beacon 1 Either Either N/A
0x0B Reset Device 1 Bus Arbitrator Device 0x8B
0x0C Configure - Get Bulk 5 Bus Arbitrator Device 0x8C
Data Transfer
0x0D Configure Set Bulk 5 Bus Arbitrator Device 0x8D
Data Transfer
0x0E Bulk Data Transfer 3-8 Either Either 0x8E
0x0F Update Data Channel 2 Device Bus Arbitrator 0x8F

Table 2.3: List of all function codes of the PDCP protocol[4]. Missing function
codes are deprecated.See table 2.4 for a list of responses. Tables 2.5
to 2.7 contain the message structures of some of the message types.

2.2.3 Devices, Data Channels and Node IDs

All devices on the PDCP bus have a number of input and output “data
channels”. A node ID is given (by the bus arbitrator) to each device as
well as to each output data channel®. The bus arbitrator then connects
output channels to input channels by giving the input channel the node
ID of the source output channel. The device then knows what node ID to

11

CHAPTER 2. BACKGROUND

Response Message

Function Description Size Sender Recipient

Code (bytes)

0x81 Bind Device Request Response 7 Bus Arbitrator Device

0x83 Get Device Parameter Response 3 Device Bus Arbitrator

0x84 Set Device Parameter Response 4-7 Device Bus Arbitrator

0x88 Suspend Device Response 3 Device Bus Arbitrator

0x89 Release Device Response 1 Device Bus Arbitrator

0x8B Reset Device Response 1 Device Bus Arbitrator

0x8C Configure Get Bulk Data Trans- 4 Device Bus Arbitrator
fer Response

0x8D Configure Set Bulk Data Trans- 5 Device Bus Arbitrator
fer Response

0x8E Bulk Data Transfer Response 3-8 Either Either

0x8F Update Data Channel Response 2 Bus Arbitrator Device

Table 2.4: List of all response function codes of the PDCP protocol[4]. Missing
function codes are deprecated.

Function Code 0x01 - Bind Device Request

Data0 Datal ‘ Data2 Data3 Data4 Datab ‘ Data6
0x01 Device Vendor ID Device Product ID | Device Serial Number
Function Code 0x81 - Bind Device Request Response
Datal Datal Data2 ‘ Data3 Data4 Datab Data6 ‘ Data7
0x81 Node ID | Device Vendor ID Device Product ID | Device Serial Number
Table 2.5: Structure of data field of message type 0x01 - Bind Device Request
and 0x81 - Bind Device Request Response.
Function Code 0x03 - Get Device Parameter
Datal Datal Data2
Parame- | Channel
0x03 ter ID Index
Function Code 0x83 - Get Device Parameter Response
Data0 Datal Data2 Data3 Data4d Datab ‘ Datab6 ‘ Data’7
Response| Parame- | Channel
0x83 Code tor ID Index Parameter Value (1-4 bytes)

Table 2.6: Structure of data field of message type 0x03 - Get Device Parameter
and 0x83 - Get Device Parameter Response.
Response codes: 0: Failure, 1: Success, 2: Use Bulk Data Transfer.

12

2.2. PROSTHETIC DEVICE COMMUNICATION PROTOCOL
Function Code 0x04 - Set Device Parameter
Data0 Datal Data2 Data3 Data4d ‘ Datab ‘ Data6
Parame- | Channel
0x04 ter D Index Parameter Value (1-4 bytes)
Function Code 0x84 - Set Device Parameter Response
Data0 Datal Data2 Data3 Data4 ‘ Datab ‘ Data6 ‘ Data?
Response| Parame- | Channel
0x84 Code ter ID Index Parameter Value (1-4 bytes)
Table 2.7: Structure of data field of message type 0x04 - Set Device Parameter
and 0x84 - Set Device Parameter Response.
Response codes: 0: Failure, 1: Success, 2: Use Bulk Data Transfer.
Function Code 0x0F - Update Data Channel Request
Data0 Datal
Channel
0x0F Index
Function Code 0x8F - Update Data Channel Response
Data0 Datal Data3
Response| Channel
0x8F Code Index

Table 2.8: Structure of data field of message type 0xOF - Update Data Channel
Request and 0x8F - Update Data Channel Response. the “Channel
Index” must refer to an input data channel.
Response codes: 0: Failure, 1: Success.

13

CHAPTER 2. BACKGROUND

listen for. Several input channels can be connected to one output channel.
Each data channel has a channel index local to the device. This index
is used to reference the channel on the device. If a device has n channels,
they must have indices 1 to n.
Using data channels is the only way for devices to communicate di-
rectly to other devices.

2.2.4 Parameters

Each device must store a number of parameters, both for itself as a device,
and for each of its data channels. These parameters are meant to help the
bus arbitrator set up the bus.

The bus arbitrator can access these parameters through the “Get/Set
Device Parameter” function codes, as described in tables 2.6 and 2.7. The
device-wide parameters are stored under channel index 0, while the pa-
rameters for each data channel are stored under its corresponding channel
index (1-255).

Tables 2.9 to 2.11 list the interpretations of parameter IDs of devices,
input channels, and output channels.

The size of these parameters is limited to 4 bytes, but the larger data
can be manipulated by using the “Bulk Data Transfer” commands.

2.2.5 Joining the Bus (Binding)

When a device wants to join the PDCP bus (e.g. after a power-on or reset),
it sends the “Bind Device Request” message seen in table 2.5 (function
code 0x01) using the requested node ID together with message mode 0
and priority 3 (see table 2.12 for the full data frame).

The bus arbitrator’s response (function code 0x81) can also be found
in table 2.5. If the node ID in Datal of the response does not match the
requested ID, the device must send another request using this suggested
ID. An ID is not properly granted until the requested ID matches the
ID in the response. See also table 2.13 for the frame format of the Bind
Request Response.

5The distinction between device node IDs and data channel node IDs is important:
Messages with message mode 0 (from device) and a device node ID are (implicitly)
bound for the bus arbitrator, while messages with mode 0 and a data channel node ID
are (also implicitly) bound for devices with input channels connected to the sending
channel. See table 2.2.

14

2.2. PROSTHETIC DEVICE COMMUNICATION PROTOCOL

Device Parameters

Parameter ID Parameter Name

Device VID and PID

Device Serial Number

Device EAN13L

Device EAN13H

Device FW and HW ver.

Device Type and Profile

Device Descriptor

O~ O O = WD~

Device Node Id

Nej

Number of Data Channels

[
o

Beacon Interval

—_
—_

Time to Wait for Acknowledgement

—
[\]

Bind Request Timeout

—
w

Not yet specified

Table 2.9: Device-wide parameters.

Input Channel Parameters

Parameter ID Parameter Name

Channel Type and Profile

Channel Descriptor

Transfer Type (1: “input”)

Data Transfer Enabled Flag

Source’s VID and PID

Source’s SN and Channel Index

Source’s Node Ids

O~ OO = WD~

Not yet specified

Table 2.10: Input channel parameters.

15

CHAPTER 2. BACKGROUND

Output Channel Parameters

Parameter ID Parameter Name

Channel Type and Profile

Channel Descriptor

Transfer Type (2: “output”)

Data Transfer Enabled Flag

Channel Node Id

O O b= | W N —

Not yet specified

Table 2.11: Output channel parameters.

The Update Data Channel Request (table 2.8) includes the channel
index of an input channel, and is used to allow the bus arbitrator to find
an output channel for the given input channel.

Priority 3

Message 0 (from device)

mode

Node ID The requested node ID

léléz(;tlon 0x01 (“Bind device request”)
VID (16 bits)

Payload PID (16 bits)

Serial number (16 bits)

Table 2.12: The “bind device request” packet structure.

The setup performed by the bus arbitrator follows these steps:

1.

Collect desired parameters from device, such as Device Type and

Profile.

. Get Number of Data Channels parameter.

. Get transfer type (direction) of each channel.

For each output channel:

e (Collect desired parameters from channel, such as Channel Type
and Profile or Channel Descriptor.

e Agsign an available node ID.

16

2.2. PROSTHETIC DEVICE COMMUNICATION PROTOCOL

Priority e.g. 1 (typical)

Message 1 (from bus arbitrator)

mode

Node ID The requested node ID

Function o . ”

Code 0x81 (“Bind device request response”)
The suggested/granted node ID (8 bits)

Payload VID (16 bits)

PID (16 bits)
Serial number (16 bits)

Table 2.13: The “bind device request response” packet structure.

Priority e.g. 0 (typical)

Message 0 (from device)

mode

Node ID The node ID of the source output channel
Payload e.g. sensor readings

Table 2.14: The packet structure of a data channel link packet.

5. For each input channel addressed by a Update Data Channel Re-
quest:

e Collect desired parameters from the channel, such as Channel
Type and Profile, Channel Descriptor, Source’s VID and PID,
or Source’s SN and Channel Index.

e Decide which output channel (if any) to assign to this channel”
and update Source’s Node Ids with the appropriate device 1D
and output channel ID.

e If the channel is to be used, set Data Transfer Enabled Flag to
1.

6. Set Data Transfer Enabled Flag to 1 on all output channels that
have an input channel connected to it. This will start data transfer.

"The only way to do this now, is if the Source’s VID and PID and Source’s SN and
Channel Indez are available.

17

CHAPTER 2. BACKGROUND

2.2.6 Exchanging Information

The only way for devices to send data directly to one another is through
data channel links. When a device sends a packet on a data channel link, it
will use the output channel’s node ID. The format of the data field is not
globally specified, so the meaning of bytes transferred on data channel
links can be tailored to the channel. Channel links are uni-directional;
packets are sent from an output data channel to one or more input data
channels. Table 2.14 shows the packet structure of data channel link
packets.

When all data channel links have been set up, devices with output
channels can at any time send data to the connected input channels.

2.3 Device Profiles

A device profile layer is a system of context for information exchanged via
a communication protocol.

The purpose of a digital communication protocol is, essentially, to
transport bits over some distance. Different protocols provide different
amounts of context for the information.

Some protocols provide only the barest form of context, for example:
RS232 provides no more context than the grouping of bits into bytes.

Other protocols allow for contextualization, but don’t define the exact
meaning. An example of this is the CAN protocol, which provides a
message 1D, but does not provide any specific meaning to the values the
ID can take. Most protocols are of this kind.

Still other protocols give specific meaning to the transmitted infor-
mation, and often they will also provide some kind of organization or
hierarchy to the information. This last layer of specification can be un-
derstood as a device profile layer, though it is called different names in
different protocols.

A profile layer for PDCP should give the necessary context to allow in-
dependently manufactured devices to communicate, and understand each

other.

The following sections will look at how a device profile layer is imple-
mented in USB and Bluetooth 4.0.

18

2.4. DEVICE CLASSES IN USB

Devicalbescriptor

bMHumConfigurations

| |

Configuration Configuration
Crescriptor Descriptar
|bNumInterfaces bHuminterfaces
Interface Interface Interface Interface
Crescriptor Cescriptor Descriptar Crescriptor
bHNumEndpoints bMumEndpoints bNumEndpaints bHumEndpoints

Endpoint Endpoint Endpuaint Endpoint Endpoint Endpoint Endpoint E ndpuaint
Crescriptor Crescriptor Drescriptar Cescriptor Descriptar [escriptor Crescriptor Crescriptor

Figure 2.5: The hierarchy of USB descriptors. Taken from USB in a Nutshell
[8, page 5, Ch. 5: “USB Descriptors”]

2.4 Device Classes in USB

USB (Universal Serial Bus) is already ubiquitous in the domain of personal
computers, and is making its way into other areas, such as embedded
computing. It is characterized by being very easy to use; it “just works”.

2.4.1 Descriptors

When a USB device connects to a host, the host will ask the device to
describe itself. The description of a device consists of a number of de-
scriptors. There are 4 kinds of descriptors: Device, configuration, in-
terface, and endpoint.

A device can only have one device descriptor. The device descrip-
tor will specify the number of configurations the device can have, and
each configuration must have its own configuration descriptor®. The
configuration descriptor specifies the number of interfaces associated with
it, and each of these must have an interface descriptor. Lastly, the
interface descriptor specifies the number of endpoints it has, and each
endpoint has an endpoint descriptor. In other words, the descriptors
form a sort of hierarchy, with the device descriptor at the top and
endpoint descriptors at the bottom, as shown in fig. 2.5.

8In practice, devices usually have only one configuration[8, page 5|, and for the
purpose of this explanation, we will assume a device has only one configuration.

19

CHAPTER 2. BACKGROUND

Video Streaming Interface

Base Class Subclass Protocol
0x0E (Video) 0x02 (Streaming) 0x01"

Image Capture Interface
Base Class Subclass Protocol
0x06 (Image) 0x01 (Still Image Capture) 0x01"

Table 2.15: USB Example: Interfaces of a webcam which can also capture still
images

2.4.2 Device Classes (Profiles)

A USB device supports one or more device classes. Device classes consist
of a base class, a subclass and a protocol, creating a hierarchy of classes.
The supported class(es) can either be specified in the device descriptor, if
only one class is supported, or in the interface descriptors, allowing each
interface to represent its own class. Custom-made classes must have the
device class OxFF. More information about available classes can be found
in Approved Class Specification Documents [9].

Example

A webcam which can also take stills could have the interfaces described
in table 2.15.

Since the interface descriptor will contain classes, the device descriptor
will not, or the class will be ignored.

For each of these classes, the number of endpoints and their function
will be specified in the device class documentation.

2.4.3 Interfaces

Each interface has 32 endpoints identified by a number, 0-15, and a di-
rection, IN or OUT. After the connection has been initialized, the host
can access a specific value by addressing a particular interface, end point
number and data direction.

9This is the only choice of Protocol available for this class.

20

2.5. DEVICE PROFILES IN BLUETOOTH 4.0

2.5 Device Profiles in Bluetooth 4.0

The Bluetooth 4.0 protocol is also called “Low Energy”, and is aimed
particularly towards small devices sharing small bits of data with each
other. The device profile layer of Bluetooth 4.0 is called GATT!0,

2.5.1 Master/Slave, Server/Client

Bluetooth connections are established when a master device discovers a
slave device and asks to be connected to it. To exchange data, at least one
device must act as a server, and the other as a client, although both devices
can be both server and client. The server is the keeper of the information,
and decides in which way this information may be manipulated by the
client (read, write etc.).

2.5.2 Accessing the Information

There are several ways in which the information on the server can be read
and modified. A selection of these can be found in table 2.16.

Value'' Name Details

0x01 Broadcast The value is broadcast without any spe-
cific recipient.

0x02 Read Regular read.

0x04 Write Without Unacknowledged write.

Response
0x08 Write Acknowledged write.
0x10 Notify The server sends the new value to the

client when the value changes. The client
does not need to poll the server.

Table 2.16: A selection of read and write modes supported by the Bluetooth 4.0
protocol.

2.5.3 Structure

The information is kept in a hierarchy of profiles, services, characteristics
and attributes, see fig. 2.6. A Bluetooth 4.0 server supports a number

OGATT: Generic AT Tribute profile.
See table 2.18

21

CHAPTER 2. BACKGROUND

of profiles, a profile contains services, a service contains characteristics,
and a characteristic contains a single value and optionally, descriptors.
The characteristic value contains the actual piece of information (e.g.
temperature, heart rate, battery level) which is offered by the server, while
descriptors contain meta-information (e.g. value type, human-readable
description).

GATT Hierarchy

3
3
(\)

Service

Characteristic

Value Descriptors

Figure 2.6: GATT hierarchy. “Profile” is dotted because profiles are only imple-
mented implicitly, through the services offered by the server. Thus,
a device will automatically support a profile if it offers the right ser-
vices. “Value” is bold because this is where the actual information
is located.

2.5.4 Attributes

All information, meta-information, and structural information is con-
tained in “attributes”. An attribute contains four things: A handle, a
value, a type, and a set of permissions.

The attribute handle is a 16 bit “address” that is unique to the device,
used to unambiguously access the attribute. The attribute type is a 128
bit UUID'. All standardized Bluetooth UUIDs can be represented as 16
bit shorthand versions. 16 bit UUIDs can be converted to full 128 bit
UUIDs by replacing the ‘x’s in the Bluetooth Base UUID (hexadecimal
representation):

0000xxxx-0000-1000-8000-00805F9B34FB

The attribute permissions govern what read and write operations are
allowed on the value.

12UUID: Universally Unique IDentifier.

22

2.5. DEVICE PROFILES IN BLUETOOTH 4.0

The contents of the attribute value depends on the attribute type.

2.5.5 Attributes as Declarations

All services, characteristics, characteristic values and characteristic de-
scriptors are “declared” by attributes. This means that the entire hierar-
chy can be inferred from the attributes. All services and characteristics
also have a unique UUID. Again, standard services and characteristics
can be identified by their 16 bit shorthand versions. See GATT Specifi-
cations [10] to see the standardized Bluetooth 4.0 profiles, services and
characteristics.

A service is declared by setting the attribute type to the service dec-
laration UUID 0x2800. The attribute will be on the form found in table
2.17. Every attribute with attribute handle in the range between one ser-
vice declaration and another is grouped with the preceding service. Thus,
if service S is to contain characteristic C, then C' must be declared after
S and before the next service.

Attribute Attribute Attribute Value Attribute
Handle Type Permission
OxNNNN 0x2800 UUID of service Read only

Table 2.17: An attribute containing a service declaration.[11, Vol. 3, Part G,
Ch. 3.1]

A characteristic is declared by setting the attribute type to the char-
acteristic declaration UUID 0x2803. The attribute will be on the form
found in table 2.18. Every attribute with attribute handle in the range
between one characteristic declaration and another is grouped with the
preceding characteristic. Thus, if characteristic C' is to contain descriptor
D, then D must be declared after C and before the next characteristic. All
characteristics must contain a characteristic value which must be declared
immediately after the characteristic itself (see table 2.19).

2.5.6 GATT Declaration Example

An example heart rate monitor device supports the services “Heart Rate”
(thus supporting the “Heart Rate” profile) and “Battery Service”. The
“Heart Rate” service contains 2 characteristics: “Heart Rate Measurement”
(supports notification) and “Body Sensor Location”. Both characteristics

23

CHAPTER 2. BACKGROUND

Attribute Attribute Attribute Value Attribute
Handle Type Permission
OxNNNN 0x2803 Read/write mode (see table 2.16), At- Read only

tribute handle of characteristic value,
and UUID of Characteristic

Table 2.18: An attribute containing a characteristic declaration.[11, Vol. 3, Part

G, Ch. 3.3.1]
Attribute Attribute Type Attribute Value Attribute Permis-
Handle sion
OxNNNN UUID of the characteristic Characteristic Specific to the
(16 bit or 128 bit) value characteristic

Table 2.19: An attribute containing a characteristic value declaration.[11, Vol.
3, Part G, Ch. 3.3.2]

contain a value, and “Heart Rate Measurement” also contains a descrip-
tor called “Client Characteristic Configuration” (CCCD)!®. The Battery
Service contains one characteristic, “Battery Level”. The attributes could
then be as in table 2.20.

2.6 Similarities and Differences Between the Pro-
file Layers of USB and Bluetooth 4.0

Both profile layers allow devices to have multiple independent profiles.
Both put the data into a hierarchy. We see that much of the functionality
is the same, but implementation differs. If we compare USB’s interfaces
and endpoints to Bluetooth 4.0’s Services and Characteristics, and USB’s
interface descriptors and endpoint descriptors to Bluetooth 4.0’s service
declarations and characteristic declarations, it is clear that they serve
much the same purpose, although the framework around is at times quite
different.

USB also employs a hierarchy in device classes, with classes, subclasses
and protocols, whereas all Bluetooth 4.0 profiles and services are intrinsi-
cally independent, although they can in specific implementations be used
hierarchically.

13The CCCD is used when the characteristic supports notification or indication. If
a client device wants to enable notification or indication on the characteristic, it must
write a ‘1’ or ‘2’, respectively, to the CCCD.

24

2.6. SIMILARITIES AND DIFFERENCES BETWEEN THE
PROFILE LAYERS OF USB AND BLUETOOTH 4.0

Attribute Attribute Type Attribute Value Attribute

Handle Permission
0x2800 0x180D

0x0001 . Read

* (Service) (Heart Rate) ca

0x10 0003 2A37

0x2803

0x0002 x L (Heart Rate Read
(Characteristic)

Measurement)

0x2A37

0x0003 .. OxNNNN d

* (Characteristic value) * Rea
0x2902 .

0x0004 (é CD) 020000 Read, Write
0x2803 0x02 0006 2A38

0x0005 .. . d

x (Characteristic) (Body Sensor Location) Rea
0x2A38

0x0006 .. OxNNNN Read

* (Characteristic value) * ea
0x2800 0x180F

0x0007 . . Read

x (Service) (Battery Service) ea
0x2803 0x02 0009 2A19

0x0008 .. Read

* (Characteristic) (Battery Level) ea
0x2A19

0x0009 x OxNNNN Read

(Characteristic value)

Table 2.20: An example set of attributes in a GATT server.

Bluetooth 4.0 essentially allows all UUIDs that are not derived from
the Bluetooth base UUID to be freely used for proprietary services and
characteristics, whereas vendor proprietary USB device classes are con-
fined to a single value'.

HStrictly speaking, Vendor ID (VID), Product ID (PID), and Serial numbers can
also be used to identify a device.

25

26

CHAPTER 2. BACKGROUND

Chapter 3

Elaboration on the

Implementation of Device
Profiles in PDCP

This chapter is a discussion of how to implement a profile layer in PDCP.
I will try to present multiple solutions to problems, and make decisions
where it is appropriate for further discussion. The result will be a general
outline of one way to implement the profile layer.

The following is a set of goals I devised for the device profile layer
when it is finished. These will guide the decisions made in later sections.

e Full specification and standardization of the communication needed
for basic, prevalent prosthesis functions.

e Allowing vendors to implement custom functionality.

e Allowing for future extensions to the protocol and to the device
profile layer.

e Allowing for backwards compatibility.
e Being practical for use in existing systems.

e Being able to serve the increase in complexity that will come with
future systems.

27

CHAPTER 3. ELABORATION ON THE IMPLEMENTATION OF
DEVICE PROFILES IN PDCP

3.1 System Architecture

Controlling a prosthesis is essentially the problem of converting sensor
data into motor input. Fougner et al.[2] divides the problem into a series
of steps, as illustrated in fig. 2.1. We will use this as the basis of our
system architecture.

As the information moves through the steps, it takes on different val-
ues. The question is then: Which of the values in should be available on
the bus, and on what form?

The sensors will need to transmit their readings in some form, and
since each processing step necessarily reduces the amount of information,
the raw EMG /sensor signal should always be available, to allow for the
widest range of possible control schemes.

Additionally, since raw sensor signals usually have a relatively high bit
rate, a processed version could also be available. The best choice seems to
be the signal features/parameters, because this is the last step where the
signals from different sensors are kept separate, which means the feature
extraction can be done in the sensors themselves.

Further, the effector(s) could accept set points for individual motors,
to allow the control intelligence to reside outside the effector.

Lastly, the effectors should also be able to accept set points for at least
one generalized “movement class’! so that the control intelligence is not
required to be able to control all constellations of motors.

These constraints then outline three main roles in the system in addi-
tion to two helper roles which should be filled by the others. Figure 3.1
shows the roles and signals. A device is also allowed to fill more than
one main role, such as a control unit in a terminal device. The device
should still be allowed to be used as just one or the other, i.e. exposing
all channels.

Figures 3.2 to 3.4 are some examples of systems that conform to these
specifications. The figures are meant to show the diversity of setups avail-
able with the proposed architecture.

Since features and individual motor set points are not essential for
an implementation of a profile layer, the rest of the chapter will focus
on implementing raw sensor signals and movement class set points. The
simplified architecture is shown in fig. 3.5. Support for features and in-
dividual motor set points can also be added later if not part of the first
version of the profile layer.

!For example “grasp” or “wrist rotation”.

28

3.1. SYSTEM ARCHITECTURE

Figure 3.1:

Figure 3.2:

Signal capture

Raw Senlsor Signal

: Feature
1 extraction
|

————g=—=-

Features

Control

1
Movement class set points
CTTTTT T I
: Hardware 1
1 abstraction |

____.I.____J

Individual motor set points

Actuation

This is the division of roles I suggest, and the signals that can travel
on the bus.

Sensors .
Can send either raw EMG PrOSthetIC
or the average amplitude Hand
(feature).

Accepts pinch grip set
points, average
amplitude, or raw
EMG.

Example 1 of a prosthesis system conforming to the proposed spec-
ifications. Here, the control role is performed in the hand itself. If
the sensors send average amplitude (PMES), this system will be a
digital equivalent to modern two-site systems.

29

CHAPTER 3. ELABORATION ON THE IMPLEMENTATION OF
DEVICE PROFILES IN PDCP

Sensors

Can send either raw EMG or the
average amplitude (feature).

Control

Prosthetic
Hand

Accepts both raw EMG
and the average
amplitude. Can send
grasp and/or elbow
rotation set points
(depending on the
number of sensors
available.

Accepts grasp set
points

Accepts elbow
rotation set points

Prosthetic
Elbow

Figure 3.3: Example 2 of a prosthesis system conforming to the proposed spec-
ifications. This is a thought scenario with a control unit especially

suited to the combined elbow-hand prosthesis.

Sensors

Can send either raw EMG or a
number of features.

Control

Accepts both raw
EMG and features.
Uses features it gets
or extracts itself to
control grip and
rotation
simultaneously using
pattern recognition.

Prosthetic
Hand

Accepts pinch grip
and rotation set points

Figure 3.4: Example 3 of a prosthesis system conforming to the proposed specifi-
cations. Pattern recognition systems must be trained, so the advan-
tage of having a separate control unit is that hands can be switched

without needing to train a new control unit.

30

3.1. SYSTEM ARCHITECTURE

Signal capture

Raw Senlsor Signal

Feature
extraction

Control

T
Movement class set points

Hardware :
abstraction :

Actuation

Figure 3.5: This is a simplified version of the division of roles I suggest.

3.1.1 A Note on Bandwidth

The CAN protocol has a relatively high bit rate (up to 1 Mbit/s for bus
lengths below 25 m [12]). Idstein et al. [13] report a bus utilization of 61%
for a system transmitting 16 EMG signals with a resolution of 16 bits and
a rate of 1 kHz. This means that bandwidth will not be a problem until
prostheses become significantly more advanced than they are today. This
also means that the possibility of sending features on the bus is not critical
at this time, and could be, as mentioned, deferred to a later version of the
protocol.

3.1.2 A First Implementation

The following describes the behavior of a possible “first implementation”
of the above system architecture in a device profile layer. “First implemen-
tation” means the basic, most essential behavior. The following sections
will go deeper into the profile layer to look at how to realize this behavior.

31

CHAPTER 3. ELABORATION ON THE IMPLEMENTATION OF
DEVICE PROFILES IN PDCP

Behavior
A system consisting of:

e A control unit

e Enough electrodes for the control unit’s control scheme
e A terminal device of any kind, and

e A bus arbitrator

all connected to the bus, will allow the terminal device to be con-
trolled along at least one degree of freedom by way of some sort of
activation of the electrodes. The system will behave the same way
after every power-on unless a device is added, removed or replaced,
in which case, the new behavior should be as similar as possible to
the old.

3.2 Data Channels - Setup

A device will use data channels to send or receive data, so it should have
a channel for each data type it accepts or provides. As an example: An
electrode will provide an EMG output channel, and the control module
will provide an EMG input channel.

The profile layer is responsible for specifying how to connect inputs
and outputs (“Configuration”) in the best possible way. The bus arbitrator
sets up the actual links, so we will assume it will also decide which channels
to connect to each other.

3.2.1 Configurations

One goal of the device profile layer is to be able to swap one part for
another, similar part or to add or remove devices. After the change, the
prosthesis should function as similarly as possible to before, but also adapt
to changes in complexity.

In essence, there are four different power-up scenarios which require
different kinds of configuration:

1. First power-up: All channels must be connected according to de-
vice and channel profiles.

2. Restart of an already configured system: Trivial case of recon-
necting a stored connection scheme according to VIDs, PIDs, Serial
numbers, and channel indices.

32

3.2. DATA CHANNELS - SETUP

3. Restart of an already configured system with devices added,
removed, or replaced: A combination of the two previous, involv-
ing mapping the functions of the removed device(s) to the functions
of the new device(s) to make the new system behave similarly to the
old system.

4. Restart of an already configured system with devices added,
removed, or replaced, but the new system has also been
configured before: This is a possibility if, for example, a patient
owns different terminal devices for different uses, and switches be-
tween them. If the configuration is stored and can be identified, it
can be reused.

3.2.2 Storing Configurations

When the configuration of the system is completed once, the configuration
should be stored and reused on the next power-up. In the current protocol,
each device stores its own configuration. The input channel parameters
(table 2.10) contain a “Source’s VID and PID” and “Source’s SN and
Channel Index”, which can be written to after configuration, and read
later.

But in the event that a device is removed, it might be desirable to
know the information stored on the removed device. This would be ac-
complished if the bus arbitrator were to duplicate all information in its
own memory. But if the bus arbitrator role is filled by another device,
and this device is removed, the stored configurations are gone.

Another option is to have a dedicated memory device sitting in the
socket. Configurations for a particular prosthesis would then be “perma-
nently” available in the prosthesis.

As mentioned in section 3.2.1, a patient may use different prosthesis
parts for different situations, and thus want multiple configurations to be
stored. This is certainly possible with the right data structures in the
memory node.

A memory node could also store other configuration information. A
control unit could use the memory node to store information about which
control strategy it uses etc. If this information is stored in a standardized
way, another control unit can retrieve it.

There are also other ways to make sure the information is available in
the network. Storing in the bus arbitrator has already been mentioned.
If the bus arbitrator were required to be a separate node, this would be a

33

CHAPTER 3. ELABORATION ON THE IMPLEMENTATION OF
DEVICE PROFILES IN PDCP

good alternative. Other alternatives would be to distribute the informa-
tion among the nodes, e.g. by duplicating the information one or more
times.

3.2.3 Manual Configuration

No matter how well the device profile layer can configure the system, there
should be a possibility for manual configuration. People’s preferences
differ, and giving the patient part in the customization of their prosthesis
will help them get more out of it [14].

From PDCP Info (2011 05 04) |5]:

(The) Bus Arbitrator (is) responsible for binding devices onto
(the) network and providing an interface for Software Appli-
cations to configure the devices and device interconnections on
the PDCP bus system.

This could be taken to mean that the bus arbitrator should be the
point of outside access to the system. Regardless, it is a natural choice,
since all manual configuration will probably reach it eventually.

Optimally, such configuration should be simple enough for the patient
to use at home. In terms of human interfaces, there are many possibilities:

e On the prosthesis:

— Buttons/knobs/joystick
— Display
— Touchscreen
e Computer software via wired or wireless connection to prosthesis.

e Dedicated handheld device via wired or wireless connection.

e Smartphone or tablet app, via wireless connection.

Manual configuration should allow the user to choose which electrodes
to use for which movement, which control strategy to use if more than one
is available, which movement classes to use and how to switch between
them, and tuning of parameters such as threshold and sensitivity.

34

3.3. DATA CHANNELS - TRANSMISSION

3.2.4 Control Units — Transparent or Opaque?

Consider a control unit with multiple possible control strategies. Should
each strategy have its own set of input channels, or should they share
input channels since only one strategy will be used at a time? In the first
case, the control strategy used can be determined from the input channels
used. In the second case, the control strategy would have to be stored
separately if record of it is to be kept.

However, in reality both cases would use a channel parameter to hold
the strategy information. The parameter would be static in the first case
and variable in the other. Since there are no real disadvantages of the vari-
able parameter, the second case, with shared channels, seems the better
choice.

3.3 Data Channels - Transmission

3.3.1 Information Integrity

What safeguards, if any, should be implemented to ensure the integrity of
packets sent on channel links?

Sources of transmission and reception errors include noise on the wire,
high bus loads, and buffer overflows. CAN itself already has quite a system
for detecting these errors, through ACKs, error flags, overload flags, and
retransmissions. This makes it robust to packet loss. In most use cases
for PDCP (low noise, low to medium bus utilization) packet loss should
be minimal. Idstein et al. [13] report:

Bus utilization was, on average, 62% for the upper limb system
and 73% for the lower limb system with no loss of data or
perceivable latency.

Extra measures including explicit retransmission should be unneces-
sary.

A sequence number can still be useful, because it will enable detec-
tion of bad transmission (packet loss, or faulty nodes transmitting the
same packet over and over) which is useful to know whether or not it is
acted upon. In addition it enables transmission of “special” packets, as
the meaning of the packet can be dependent on the sequence number.
An example of this would be defining sequence number 0 as containing
configuration data such as data rate and resolution.

35

CHAPTER 3. ELABORATION ON THE IMPLEMENTATION OF
DEVICE PROFILES IN PDCP

3.3.2 Byte Format on Data Channel Links

Sender and receiver must agree on what format the data is. This could
be explicit or implicit.

As discussed in section 3.3.1, if each frame contains a sequence number,
one sequence number can be used for configuration, and thus to explicitly
inform of the byte format. One disadvantage of a sequence number is
that it takes up space in the payload, reducing the net bit rate. Another
disadvantage is that if this configuration packet is somehow lost, the rest
of the correspondence will be unintelligible.

Another option is to put format information in a channel parameter.
The bus arbitrator would be required to inform input channels of the
output channel’s format information. The advantage of this is that the
format information is explicit, while also reserving the data channel link
for only data. A disadvantage is that the format information cannot
necessarily be changed after the channel link has been set up.

A third option is to have dedicated channel links for metadata. Making
data links in pairs would be a very flexible setup. The disadvantage of this
is halving the number of possible channels in each device. An intriguing
option is a broadcast channel, which can be used for metadata, but this
would require support in the lower levels of the protocol, and may also be
against the principles of PDCP.

A last option is that all format information is implicit. The type of the
output channel would dictate the correct way to interpret the signal. This
solution would, however, be troublesome, because input channels can be
matched with output channels of other types. The input channel would
then need to keep a record of all channel types and all possible ways of
interpretation.

In any case, more detailed studies should be conducted into the op-
timal sampling rate and resolution of EMG (and other) signals, so that
good standards for the byte format can be made.

3.4 Profiles

PDCP, as it stands now, allows devices and channels to specify their
“type and profile” and “descriptor”. In a device profile layer, these num-
bers should be the basis for configuring the network, and must therefore
contain most of the metadata needed to make a configuration. Especially
when reconfiguring the system after parts have been replaced, it is im-
portant that the new device can be compared to the old device by use

36

3.4. PROFILES

Grip
Position

S

Individual
Joints/Motors

Individual Muscles Orientations

Figure 3.6: An example profile hierarchy for sensor channels.

of the profile information. Also, when the system is started for the first
time, the automatic configuration should be logical, even if some manual
configuration will usually be done afterwards.

3.4.1 Channel Profiles

It seems natural that most of the profile layer functionality should be
implemented using channel profiles rather than device profiles. This is
because a physical device can perform multiple roles, while a channel
has a single function. The same tendency is seen in both USB and in
Bluetooth 4.0. In USB, many devices will have their classes specified in
the interface descriptor rather than the device descriptor. In Bluetooth
4.0, a device can support many profiles, and profiles themselves are mostly
specified in terms of individual services.

3.4.2 Device Profiles

Even though the most important profile information will reside in the
channels, it would probably be useful to also utilize the device-wide “Type
and Profile”. One possible use is to specify whether the device is a sensor,
control unit, terminal device, or a combination of these.

3.4.3 Tree Structure

A natural way to represent both information and relation is a tree struc-
ture. Examples of such tree structures for sensor channels and movement
class set point channels can be seen in figs. 3.6 and 3.7.

A channel’s profile could be any of these nodes. A node can then be
identified by a sequence of numbers, which we will call the “profile code”.

37

CHAPTER 3. ELABORATION ON THE IMPLEMENTATION OF
DEVICE PROFILES IN PDCP

Movement
Class
0x00
Elbow
0x01
i Elbow
Wrist Grip Rotation
Rotation 0x02 0x00
0x01
Hook | [Fist |[Point | | Pinch | [Power | ["Custom
’ 0x00 H 0x01 0x02 0x00 Grip Grip
0x01 0x80

Figure 3.7: An example profile hierarchy for movement class set point channels,
with enumeration.

E.g., if each node is assigned a number as in fig. 3.7, then a “Power Grip”
movement class could be identified by the profile code 0x00000201. A
portion of the numbers, for example above 0x80, could also be reserved
for non-standard devices, as with the “Custom Grip” in fig. 3.7.

The final structure of this hierarchy would have to be carefully con-
sidered, because once it is official, nodes can only be added to the tree in
certain ways, so that the profile code of each node is unchanged.

The control strategy parameter described in section 3.2.4 can also be
made from a tree structure. That way, a new control unit can be matched
to the old, to provide similar behavior when replaced.

3.4.4 Channel-Matching

The way channels will be matched is that when a device sends an Up-
date Data Channel Request message, the bus arbitrator will find the most
similar output channel and connect it. Similarity is measured by how far
down in the tree structure the profiles are alike, i.e. how many bytes (from
the front) in the profile code are equal. E.g., the similarity of pinch and
power grip is 3 (the depth of “grip”).

In PDCP, multiple input channels can be connected to one output
channel, but this is not always desirable. For example, an EMG sensor
can only be used once as control input. This can be solved by specifying
if the input channel needs exclusive use of the output channel. Only
one input channel with exclusive use can be connected to a given output
channel.

Sometimes, particularly for the input channels of the control unit,
either all or none need to be connected. E.g. for a two-site system, it
is useless for only one of the two input channels to be connected to an

38

3.4. PROFILES

electrode. This can be solved if each channel has a number (we can call
it the “channel group”), which will be the same for channels that need to
all be connected.

If a control module is flexible, i.e. it can use different control schemes
dependent on the terminal device and the number of electrodes available,
it will need to have channels for all possibilities. To know which channels
to use, it should wait until the terminal device is configured, then decide
which input channels to request? to be connected. It can prioritize its
channels by requesting the most important channel first, etc. If there are
not enough sensor channels to supply its needs, the bus arbitrator can
deny the requests?.

3.4.5 Channel-Matching in Previously Configured Networks

In some cases, devices may have “Source’s VID and PID” and “Sources
SN and Channel Index” filled incorrectly, if:

e A channels source has been removed or replaced.

e A device has been configured in another system.

One possible way to cope with this is to make the memory node ac-
cessible to all devices, which can retrieve the correct configuration. This
would, however, be problematic if the memory node has multiple con-
figuration stored. The devices do not know which configuration to use.
One possible solution is to have the bus arbitrator tell every device which
of the configurations to use. It is still a slightly complicated approach,
because the devices must first be granted a channel to the memory node,
then be told the configuration index, then read the configuration, then be
granted channels to each other.

It is also possible for the bus arbitrator to write the actual configura-
tion to each device. This would be a more straight-forward approach.

A third possibility is to have the devices act the same in all scenarios,
and have the bus arbitrator guide the setup. It would then have to deny
“incorrect” Update Data Channel Requests and coax the right requests out
of the devices.

The exact way to solve this problem will have to be elaborated on in
a later study.

2Using the Update Data Channel Request.
8More diverse response codes would be useful for this purpose.

39

CHAPTER 3. ELABORATION ON THE IMPLEMENTATION OF
DEVICE PROFILES IN PDCP

3.4.6 Profiles as the Basis for Message Format

A message could have a profile corresponding to a node in the tree struc-
ture. Each node could then possibly have different value format. Since
channels of different kinds could be connected, what profile should the
message have? To avoid having to know the value format of all nodes in
the tree, a message profile should be the node where the two channel pro-
files branch away from each other*. This way, each channel is required to
know the value format of each node from the root node to its own profile.

As an example (see fig. 3.7), if 0x00000201 (Power Grip) set points are
used to control 0x000001 (Wrist Rotation), then the signals have profile
0x0000 (Hand).

This approach would necessarily mean that details are lost when trans-
mitting on other message formats, and conversion rules must be estab-
lished, but the details lost would be details irrelevant to channels not of
the same type, and thus not understandable by the input channel.

An alternative to this approach is to have a description of the format
in a channel parameter, including such things as the unit (V, m/s?, etc.),
range, scale, and maybe also the byte format (signed/unsigned, int/float,
bit length, etc.). The input channel would then read the output chan-
nel’s message format parameter, and ideally understand messages from
this. The disadvantage of this, is that channels must know of all types
of formats. Some format information, such as scaling and range could be
explicit, but all information on units must be standardized, and channels
can only use known units. If an output channel has a custom profile, it can
still not use a custom format, unless it makes duplicates of its channels,
with standard profiles, so they can be used by all.

3.5 Fringe Cases

As it is not clearly defined how the bus arbitrator role will be fulfilled,
there may be situations where more than one device is ready to take the
role. There is no way to solve this in the current protocol. One possibility
would be that all bus arbitrators must send a message as soon as it is
turned on. Since no device is bound to the bus, other devices will be
using priority 3. Other priority values could be used to negotiate between
multiple bus arbitrators.

Prostheses which contain both a prosthetic elbow and a prosthetic

*This is incidentally the node that determines their similarity.

40

3.5. FRINGE CASES

hand are commercially available. In implementations with PDCP, these
systems could easily end up containing multiple control units because the
elbow and hand could come with one control unit each. This would also
happen if a regular system (with one terminal device) with a separate
control unit was fitted with a terminal device with its own control unit.
In the first example, both control units are needed, while in the second,
one control unit is superfluous.

The problem with the elbow-hand example is that in most cases, they
will be controlled one at a time, with one set of electrodes. The control
units would need to hand over control to one another, which would need
to be done through channels, or through a change in the lower layers of
PDCP. A quick fix is to demand that a system must contain a control
unit capable of controlling all terminal devices present in the system.

In the case of duplicate control units, the built-in control unit can
avoid the collision by never setting up its set point channels on the bus.
This would mean that the separate control unit never takes part on the
bus because no terminal device connects to it. Or the built-in control unit
can choose to always attempt to connect its set point channels first, to
allow a separate control unit to take control if it is present. This might
give more consistent behavior. The user could in any case later manually
configure the system to use the other control unit.

41

CHAPTER 3. ELABORATION ON THE IMPLEMENTATION OF
DEVICE PROFILES IN PDCP

42

Chapter 4

Discussion

Chapter 3 already contains discussion of the details of implementation.
In this chapter, I will look back on the bigger picture, and discuss some
of the larger issues.

4.1 Restrict or Accommodate?

For problems like those described in section 3.5, it must be decided if
they should be solved by accommodating the situation or restricting the
protocol to avoid them. This also goes for e.g. deciding on a system
architecture: How strictly should the roles be specified? Should a device
be allowed to fill more than one main role?

For the case of multiple bus arbitrators, it could well be a good idea to
restrict the role of bus arbitrator to be a separate device in the prosthesis
socket. This would eliminate the problem of a bus arbitrator “hidden” in
another device, and could also reduce the need for a memory node.

In the case of multiple control units, there will be a benefit from accom-
modating this. Otherwise, elbow-hand combinations will need specialized
control units. It will also allow manufacturers to make specialized ter-
minal devices, with specialized control units built-in, while also allowing
users to own multiple, more affordable terminal devices, and control them
with a control unit residing in the socket, increasing consistence of control.

These examples illustrate that there is probably no single right solution
to use for all decisions.

43

CHAPTER 4. DISCUSSION

4.2 Desired Behavior

The profile layer was designed to behave in a self-configuring manner. The
behavior described in section 3.1.2 is at the heart of the proposed solution
in chapter 3. It is worth discussing what behavior will be most useful for
an actual user.

The behavior of my system has, roughly, three components: Standard
message formats, self-configuration, and configuration memory. When
I look back, I may have put too much emphasis on self-configuration,
because, as I touch on in section 3.2.3, a system will need to be manually
configured later anyway. So a good device profile layer could well be
a standardization of message types, a configuration memory, and a well-
designed manual configuration interface. Only very rarely, would you have
the need to be able to use a part without having the possibility or time
to manually configure it.

That is not to say that developing self-configuration is fruitless. It
would be a useful (if not essential) addition to a profile layer, and the
way to look at relations (here, the tree structure) can surely be put to
good use, maybe in storing configurations, or displaying configurations
in an intuitive way. It might also be more relevant as feedback sensors
are added, and the system becomes more complex; self-configuration can
allow the user to deal only with the most important devices when manually
configuring.

I will again quote Stavdahl and Mathisen [1]:

o Reduced wiring and thus production cost and hardware
failure rate.

o Advanced coordinated control schemes with a large num-
ber of sensor signals and control variables.

o Remote adjustment, fault diagnosis and software upgrades.

o Interoperability and thus improved interchangeability of
different devices.

Interoperability and interchangeability comes from standardization of
the value format in messages. Standardizing value formats is therefore
very important. I value formats in sections 3.3.2 and 3.4.6, but the solu-
tion to be used in the end must be carefully considered.

44

Chapter 5

Conclusion

In this report, I have discussed the task of making a device profile layer for
PDCP, and along the way, outlined one way to implement device profiles.

I have introduced a system architecture involving sensors, control
units, and terminal devices. The devices will communicate using the
data channel framework already part of PDCP. I have established that
the configuration of the system will need to be retained across power-ons,
and that this will most likely need to be taken care of by a device residing
permanently in the prosthesis socket. I have also illustrated the need for
a framework for manual configuration.

I have introduced the tree structure as a suitable format for profiles,
and discussed the possibility of using profiles for channels, messages, and
control strategies. I have also illustrated the use of tree-structure-based
profiles for self-configuration.

Towards the end, I have discussed what sort of device profile layer
would really be useful for real-world wearers of prostheses, and described
what [, after having completed the project, see as the most essential parts
of a device profile layer: Message format and configuration storage.

45

46

CHAPTER 5. CONCLUSION

Chapter 6

Further Work

There is still a lot of work to be done on PDCP and an eventual profile
layer. The following is a list of possibilities, considerations, and dilemmas
that should be addressed in further work.

6.1 Profile Layer

With the ultimate goal of specifying a complete, “production ready” device
profile layer, the following tasks are important.

6.1.1 Message Format

As noted in section 4.2, interoperability relies heavily on the standardiza-
tion of message formats. The goal is for input channels to always under-
stand the messages it receives. Further work should find a good way to
accomplish this, and also investigate the best resolution and frame rate
to use for prosthesis applications.

6.1.2 Configuration Interface
A good interface for manual configuration of the system would be im-
mensely helpful, and is probably essential to make the profile layer useful.
6.1.3 Retaining Configuration

The need to retain configurations has been firmly established. Further
work should decide on the best way to accomplish this, either through a

47

CHAPTER 6. FURTHER WORK

memory node, or other means. Data structures for keeping the configu-
ration data will need to be developed.

6.1.4 Details

When the framework of a profile layer has been made, the details must
be decided, such as the final shape of tree structures, parameter numbers
for new parameters, which device profiles to include, etc.

6.2 Lower Levels of PDCP

6.2.1 Response Codes

As the devices do not know much about the network as a whole, the bus
arbitrator may need to deny requests for different reasons. More diverse
response codes can be helpful in these cases.

6.2.2 Information to Devices

It would be useful to have a framework for devices to acquire information
about other devices on the bus. This could reduce the need for trial and
error in requests, as described in the previous section.

6.2.3 Negotiation

There is a possibility of multiple bus arbitrators ending up on the same
bus, as discussed in section 3.5. A protocol for negotiation between these
would need to be developed, unless the bus arbitrator role is restricted in
a way which guarantees that only one is present.

Negotiation between other devices such as control units would also be
useful.

6.3 Hardware

6.3.1 Memory Node

A memory node has been established as a suitable way to retain concurrent
information about the network. A physical implementation will need to
be carried out.

48

6.3. HARDWARE

6.3.2 Physical Interface

The manual configuration needs a physical interface; either through but-
tons and displays on the prosthesis, or through wired or wireless connec-
tion points. The possibilities are many, and wireless communication is on
the rise.

49

50

CHAPTER 6. FURTHER WORK

Bibliography

[1] Oyvind Stavdahl and Geir Mathisen. “A Bus Protocol for Inter-
component Communication in Advanced Upper-Limb Prostheses”.
In: MEC °05 Intergrating Prosthetics and Medicine. MyoElectric
Controls/Powered Prosthetics Symposium. 2005.

[2] Anders Fougner et al. “Control of Upper Limb Prostheses: Ter-
minology and Proportional Myoelectric Control — A Review”. In:
IEEE Transactions on Neural Systems and Rehabilitation Engineer-
ing (Sept. 2012).

[3] Ashok Muzumdar, ed. Powered Upper Limb Prostheses. Springer-
Verlag, 2004.

[4] Prosthetic Device Communication Protocol for the AIF UNB Hand
Project. By Yves Losier. University of New Brunswick. 2012.

[5] PDCP Info (2011 05 04). University of New Brunswick.
[6] AIF2 System Data Capture (2012 02 21). University of New Brunswick.

[7] Road Vehicles - Controller Area Network (CAN). ISO 11898-1.
Norm. ISO, Geneva, Switzerland, 2003.

8] USB in a Nutshell. By Craig Peacock. 2010. URL: http://
www . beyondlogic . org / usbnutshell /usbil . shtml (visited on
10/15/2012).

[9] Approved Class Specification Documents. Ed. by USB Implementers

Forum. URL: http://www.usb.org/developers/devclass_docs
(visited on 10/15/2012).

[10] GATT Specifications. Ed. by Bluetooth Special Interest Group. URL:
http://developer.bluetooth.org/gatt/Pages/default . aspx
(visited on 10/15/2012).

ol

http://www.beyondlogic.org/usbnutshell/usb1.shtml
http://www.beyondlogic.org/usbnutshell/usb1.shtml
http://www.usb.org/developers/devclass_docs
http://developer.bluetooth.org/gatt/Pages/default.aspx

[11]

[12]

[13]

[14]

BIBLIOGRAPHY

Specification of the Bluetooth System. KEd. by Bluetooth Special
Interest Group. Version 4.0. URL: http://www.bluetooth.org/
docman/handlers/downloaddoc.ashx?doc_id=229737 (visited on
10/15/2012).

CANOpen Network CAN Bus Cabling Guide. By Advanced Motion
Controls. URL: http://www.a-m-c.com/download/support/an-
005.pdf (visited on 12/19/2012).

Thomas M. Idstein et al. “Using the Controller Area Network for
Communication Between prosthesis Sensors and Control Systems”.
In: MEC 11 Rassing the Standard. From the 2011 MyoElectric Con-
trols/Powered Prosthetics Symposium Fredericton, New Brunswick,
Canada: August 14-19, 2011. 2011.

Andrew Szeto. Introduction to Biomedical Engineering. FElsevier
Inc., 2005. Chap. 5: Rehabilitation Engineering and Assistive Tech-
nology.

52

http://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=229737
http://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=229737
http://www.a-m-c.com/download/support/an-005.pdf
http://www.a-m-c.com/download/support/an-005.pdf

	Introduction
	Background and Motivation
	Focus of this Project

	Background
	Powered Prostheses
	Myoelectric Signals
	Today's Commercially Available Prostheses
	The Future of Myoelectric prosthesis Control

	Prosthetic Device Communication Protocol
	Bus Arbitrator
	Message Structure
	Devices, Data Channels and Node IDs
	Parameters
	Joining the Bus (Binding)
	Exchanging Information

	Device Profiles
	Device Classes in USB
	Descriptors
	Device Classes (Profiles)
	Interfaces

	Device Profiles in Bluetooth 4.0
	Master/Slave, Server/Client
	Accessing the Information
	Structure
	Attributes
	Attributes as Declarations
	GATT Declaration Example

	Similarities and Differences Between the Profile Layers of USB and Bluetooth 4.0

	Elaboration on the Implementation of Device Profiles in PDCP
	System Architecture
	A Note on Bandwidth
	A First Implementation

	Data Channels - Setup
	Configurations
	Storing Configurations
	Manual Configuration
	Control Units – Transparent or Opaque?

	Data Channels - Transmission
	Information Integrity
	Byte Format on Data Channel Links

	Profiles
	Channel Profiles
	Device Profiles
	Tree Structure
	Channel-Matching
	Channel-Matching in Previously Configured Networks
	Profiles as the Basis for Message Format

	Fringe Cases

	Discussion
	Restrict or Accommodate?
	Desired Behavior

	Conclusion
	Further Work
	Profile Layer
	Message Format
	Configuration Interface
	Retaining Configuration
	Details

	Lower Levels of PDCP
	Response Codes
	Information to Devices
	Negotiation

	Hardware
	Memory Node
	Physical Interface

