
Partitioning an Open Source Database in
the Cloud

Even Østvold

Master of Science in Informatics

Supervisor: Svein Erik Bratsberg, IDI

Department of Computer and Information Science

Submission date: June 2014

Norwegian University of Science and Technology

Summary

Cloud computing has become a part of how web applications are being developed. The
easy access to virtually endless supply of servers that the cloud provides has brought many
benefits, but at the precondition that the application is able to utilize its distributed nature.

Data storage is an integral part of most applications and most cloud providers offers ser-
vices to facilitate storage. Some users of the cloud may however decide to use a database
solution of their own choice.

In this thesis we will look at how a NoSQL database, MongoDB, may be implemented in
Windows Azure cloud. We present our attempt at a simple approach and it limitations as
well as the challenges we encountered.

We also look at how well our solution scales, with respect to load handling, at different
number of servers(horizontal scaling) and different hardware configurations(vertical scal-
ing).

i

Preface

I had no idea what I went into when I started my master‘s degree in Informatics at the Nor-
wegian University of Science and Technology 2013. I knew I had a passion for working
with computers, the more the merrier.

My way towards a thesis has been a long and winding road with many unforeseen chal-
lenges. Not every day has been as good as the next, but thanks to a world class group of
friends and family, we have pulled it trough.

I want to thank my supervisor Svein Erik Bratsberg for his persistent support when I have
struggled to find a direction. Finding a topic for my thesis turned out to be way harder than
I had ever imagined, and I probably would not have finished without him. I also want to
thank my family for their continuous support, especially during my last year writing this
thesis. My uncle Harrald Eri who helped me see my topic in a new light, his support has
been invaluable.

Lastly I want to send a heartfelt thanks and goodbye to the student environment in Trond-
heim, especially Online and Realfagskjelleren, which has been a constant force for joy in
my now 6 years of higher education.

Even Østvold

Trondheim, Mai 2014

ii

Contents

Summary i

Preface ii

Table of Contents iv

List of Figures v

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Specification . 2
1.3 Limitation . 2
1.4 Thesis Outline . 3

2 The Cloud 5
2.1 PaaS vs IaaS . 6
2.2 Benefits and Disadvantages of Cloud Computing 6
2.3 Windows Azure . 7

3 Scalability 9
3.1 Defining scalability . 9
3.2 Quantifying scalability . 10

3.2.1 Universal Scalability Law . 10

4 Sharding 13

5 MongoDB 15
5.1 Queries . 15
5.2 Stored procedures . 16
5.3 Index support . 16
5.4 Consistent architecture . 16

iii

5.5 Built in Sharding support . 17
5.6 High availability . 18
5.7 Existing cloud solutions . 19

6 Implementation 21
6.1 MongoDB on Azure . 21

6.1.1 Configuration server . 23
6.1.2 Router server . 23
6.1.3 Database server . 24

7 Results and Analysis 27
7.1 Measuring performance . 27

7.1.1 Selection of dataset . 28
7.2 Performing tests . 28
7.3 Results . 30

7.3.1 Bulk data insertion . 30
7.3.2 Measurement overview . 31
7.3.3 Summary . 33

7.4 Implementing MongoDB on Azure . 34

8 Conclusions 35
8.1 Research questions . 35
8.2 Future work . 36

Bibliography 38

Appendices 43

A Measurements 45
A.1 Load results . 45

iv

List of Figures

3.1 Amdahl’s law . 10
3.2 Gustafson’s lawl . 10
3.3 Universal Scalability Law . 10

5.1 Diagram of MongoDB sharded Cluster 17
5.2 Illustration of range based partitioning 18

6.1 MongoDB shard components mapped onto Azure Roles 22
6.2 Router startup script . 24

7.1 Distribution of revisions on first 2157 English Wikipedia pages 28
7.2 EnWikis JSON example . 29
7.3 Lode Generator domain diagram . 29
7.4 Comparison of throughput to shards on small instances 31
7.5 Selected excerpts of mongostat log from a small instance test 33

v

Chapter 1
Introduction

1.1 Motivation

As the cloud becomes a more and more accepted, more and more small businesses and
individuals start to move their application environments to the cloud. Many of these will
there applications on Open Sours technology and solutions they are familiar with from
their previous endeavors.

The emergence of Big Data has brought with it changes in how data is stored. This new
databases called NoSQL(Not only SQL) provides different ways of storing and accessing
data. The interfaces of many of these NoSQL databases is built upon known protocols
(like HTTP), and others define their own.

This diverse database designs pose a challenge when it comes to the cloud. With so
many different solutions available it is not given that any given cloud supplier provides
the database solution compatible with the client‘s needs. Most cloud suppliers offer some
database technologies as a service (DaaS), and the applications may simply be rewritten
to utilize these, but some might be more hesitant.

he cloud brings many benefits to businesses like capital cost savings and simplifies their
operations. Maintenance of hardware, underlying operation system, and many security
issues is handled by the cloud operator. On the down side the cloud is based upon shared
resources and to ensure that one customer dos not hinder another the services provided is
normally provided with restrictions.

For many of these businesses the solution might be to run their own database in the cloud.
There exists many challenges in implementing a distributed database, but many of the
NoSQL databases was invented after the emergence of the cloud and has taken them into
account.

1

Chapter 1. Introduction

We will attempt to implement a NoSQL database, MongoDB in the Azure cloud with as
little configuration as possible. After that we will do a series of performance tests to try to
get a glimpse of an aspect hidden away by the Database as a Service (Daas), how well the
database scales.

1.2 Problem Specification

The goal of this thesis is to implement a NoSQL database in the cloud. We will measure
its scalability over different performance levels and see what benefits they offer.

Particular research questions we‘ll be exploring is:

• How can a NoSQL database be implemented in The Cloud.

• What challenges exist when implementing a sharded database in the cloud.

• How dos the implemented database scale.

• How dos the cloud performance impact the databases scalability.

1.3 Limitation

This research is limited to an implementation that provides database that uses shardng to
store data on multiple servers and a measurement of the systems scalability. It does not go
into an elastic(automatic increase and decrease of servers).

In addition, due to time restraints, redundant storage of data will not be implemented. In
addition, has time made it necessary to limit the scalability tests to a write/load only test,
as added write capabilities is one of the benefits of sharding compared to replication.

2

1.4 Thesis Outline

1.4 Thesis Outline

This thesis is divided into three main parts, Literature Review, Implementation, and Anal-
ysis.

Chapter 1, Introduction - an introduction to the thesis(this chapter). The chapter describes
the scope, limitations, and structure of the thesis is presented.

Part 1, Literature review
Chapter 2, The Cloud - consists of a description as well as the main features of the cloud.

Chapter 3, Scalability - defines what we men with scalability and how we can measure it.

Chapter 4, Sharding - describes the horizontal partitioning scheme sharding.

Chapter 5, MongoDB - presents the NoSQL database we will be implementing in the
cloud.

Part 2, Implementation
Chapter 6, Implementation - detail our process of implementing MongoDB in the Azure
cloud, and the challenges we encountered.

Chapter 7, Results and Analysis - describes the measurements taken of the implemented
system and there analysis.

Part 3, Analysis
Chapter 8, Discussion - is a discussion and summary of the experience, challenges and
measurements obtained during the work on this thesis.

Chapter 9, Conclusion - we answer our research questions based on the discussion in
chapter 8.

3

Chapter 1. Introduction

4

Chapter 2
The Cloud

A Cloud consists of many virtual servers on a distributed network that is used to pool
and share resources amongst users. It has ushered in a paradigm change in the Information
Technology(IT) sector due to its low cost of hardware. The main ideas behind the cloud has
existed for many years sins the static terminals at the dawn of electronic computers enabled
a way to manage the underlying resources for better utilization[29]. The modern day cloud
providers (like Amazon, Google, and Microsoft) started to provide cloud services to better
utilize their big server parks they had to handle peak load. Later the cloud provider roll
escalated to a business operation in its own right with data centers being built specifically
to facilitate it.

The United States National Institute of Standards and Technology(NIST) has defined
Cloud Computing[24] as follows:

“Cloud computing is a model for enabling ubiquitous, convenient, on-demand
network access to a shared pool of configurable computing resources (e.g.,
networks, servers, storage, applications, and services) that can be rapidly pro-
visioned and released with minimal management effort or service provider
interaction. This cloud model is composed of five essential characteristics,
three service models, and four deployment models.”

Two of the characteristics they mentioned is of special relevance to us here:

“Resource pooling. The provider’s computing resources are pooled to serve
multiple consumers using a multi-tenant model,.. . . ”

“Rapid elasticity. Capabilities can be elastically provisioned and released, in
some cases automatically, to scale rapidly outward and inward commensurate
with demand.”

5

Chapter 2. The Cloud

The Cloud is also by many considered to be more than just than the technology that lies
behind it. To fully utilize its potential developers must adopt a methodology that takes full
use of the availability of hardware and the flexible prising schemes[32].

2.1 PaaS vs IaaS

The NIST defines to Service Modles[24] for the cloud, Platform as a Service (PaaS) and
Infrastructure as a Service (IaaS) where the former builds upon the later.

Infrastructure as a Service (IaaS) provides fundamental capabilities like visualized servers,
storage, and network. The User is normal billed based upon the amount of resources
they consumes. The user normal also has some degree of control over the configu-
ration of the infrastructure like opening ports in a firewall.

Platform as a Service (PaaS) where the cloud provider in addition takes on the responsi-
bility of the Operating System and related software and services so that the customer
only need to focus on their application. The user might also be able to control some
configurations relating to the provided platform.

The services offered as part of PaaS might greatly benefit the speed of application devel-
opment and there prizing is often. What the different cloud providers offer as part of their
PaaS varies .

2.2 Benefits and Disadvantages of Cloud Computing

One of the most direct benefits of cloud computing is its access to maintained servers at a
low prize, something that is especially useful for small businesses that don’t have a big IT
department[23].

On the other hand, the cloud is often much less flexible than an on-premise solution[29].
Sins resources are shared the access to them might be hampered by other users, or lim-
ited (throttled) by the cloud provider to ensure a minimum quality of service to all the
users[32].

Security is one a related benefit of cloud computing, especially with the larger providers.
The application developers can focus on the security of their application, and the cloud
provider secures the rest of the environment. This is a huge benefit as attackers would
have to bypass the cloud provider, who not only has resources, but motivation to uphold a
secure image in a competitive market[29, 32].

6

2.3 Windows Azure

2.3 Windows Azure

Azure is Microsoft‘s cloud service[13]. Microsoft uses Azure to power many of their own
solutions like Ofice 360 and Bing[13]

Azure supports PaaS mainly through virtual Windows Server instances and IaaS with many
predefined images ranging from basic Linux distributions, to preconfigured LAMP1 con-
figurations amongst others.

The PaaS solution is comprised of two main components; Web Roles and Worker Roles.
The web roles are fitted with Internet Information Services and come configured to utilize
the front end load balancer. The Worker Roles is fitted with .NET framework, though other
environments can be installed post startup. A Azure solution can be comprised of several
Web and/or Worker roles, where each role consists of several instances, all running the
same software package.

Azure and its adhering services favor an indirect approach to communication[32]. They
provide Queuing services(And is one of the few providers that have an At-Most-Once
delivery guaranty with their Service Bus Queues[12]) and a message buss as their main
form of communication and structuring of application(though no one is forced to play by
these rules).

Azure provides these services and others for a small fee (based on the usage of the services
like 1$ per 1mill requests). Besides services to related to the users solutions, Azure pro-
vides a federated SQL server2, Table and Blob storage3, and queuing servises4 amongst
others.

1LAMP stands for Linux Apache, MySQL and PHP and is a common solution stack for websites.
2Azure SQL Database - http://msdn.microsoft.com/en-us/library/azure/ee336279.

aspx
3Storage - http://msdn.microsoft.com/en-us/library/azure/gg433040.aspx
4Queues - http://msdn.microsoft.com/en-us/library/hh767287.aspx

7

http://msdn.microsoft.com/en-us/library/azure/ee336279.aspx
http://msdn.microsoft.com/en-us/library/azure/ee336279.aspx
http://msdn.microsoft.com/en-us/library/azure/gg433040.aspx
http://msdn.microsoft.com/en-us/library/hh767287.aspx

Chapter 2. The Cloud

8

Chapter 3
Scalability

3.1 Defining scalability

André B. Bondi of AT&T Labs defined scalability as “The concept connotes the ability of
a system to accommodate an increasing number of elements or objects, to process grow-
ing volumes of work gracefully, and/or to be susceptible to enlargement”[8]. He further
proceeds to give an initial taxonomy consisting of four types of scalability:

Load scalability describes a system that is capable of operating graceful different loads
while making good use of available resources. Some of the factors that may hamper
load scalability is scheduling of a shared resource, scheduling of a class of resources
in a manner that increases its own usage, and inadequate exploitation of parallelism.

Space scalability refers to the growth of memory usage compared to the scale of the
system. Many different approaches like space efficient algorithms and compression
can help with space scalability, but the effects (like added CPU time of compression)
might reduce other types of scalability like load scalability.

Space-time scalability regards the ability of a system functions gracefully when the num-
ber of items it handles increase by an order of magnitude. Space-time scalability
may be related to both load scalability and space scalability in that the amount of
items might stem from an increased load, and the presence of these objects may use
more memory and affect data structures.

Structural scalability refers to the implementation or standards of the system and how
they limit the number of item the system may handle. The prime example of struc-
tural scalability concerns the addressing of the items, for instance will a fixed ad-
dressing space put a limit on the systems scalability.

9

Chapter 3. Scalability

3.2 Quantifying scalability

Amdahl’s law[6] is a model for parallel speedup constrained by it‘s the unavoidable serial
paths under a fixed problem size. It assumes the serial portion of the algorithms remains
the same regardless of the number of processors. The law consists of the speedup S, the
number of processors N, and the non-parallelizable portion P.

S(N) = 1
(1−P)+ P

N

Figure 3.1: Amdahl’s law

Gustafson’s law[21] addresses the shortcoming of Amdahl’s law that it assumes the prob-
lem size for each processor remains constant regardless of their number.

The law consists of the number of processors P, the speedup S, and the non-parallelizable
fraction α.

S(P) = P − α · (P − 1)

Figure 3.2: Gustafson’s lawl

In summary, Amdahl’s law describes how much faster a problem can be solved by adding
processing power, while Gustafson’s law implies that larger problem sizes can be solved
in the same time by adding more processing power.

3.2.1 Universal Scalability Law

The Universal Scalability Law models the scalability of a system as a rational graph con-
sisting of a second-degree polynomial. One of the biggest advantages of USL over earlier
models is that it incorporates that non-linear scalable systems often has a point where the
throughput starts to retrograde[19]. The model is not intended to predict the scalability of
the system beyond the point where it starts to retrograde.

Cp(σ, κ) =
p

1+σ(p−1)+κp(p−1) 0 ≤ σ, κ ≤ 1

Figure 3.3: Universal Scalability Law[19]

The Universal Scalability Law incorporates three major effects[20]:

Concurrency represents the number of threads/users/processors used in the system. Here
represented by p.

Contention is conflict over access to a shared resource(RAM, locks, I/O, etc.).It is here
represented by the σ factor and corresponds to the serial portion described by Am-
dahl’s law.

10

3.2 Quantifying scalability

Coherency deals with the work needed to keep the state and/or data consistent across the
system. it is here represented by κ. By excluding coherency (setting κ = 0) the
USL reduces to Amdahl’s law.

Gunter presents the following results to give easier insight into the peak scalability(p∗)[19]:

(a) p∗ → 0 as κ→∞

(b) p∗ →∞ as κ→ 0

(c) p∗ → κ−1/2 as σ → 0

(d) p∗ → 0 as σ → 1

The ‘universal’ part of the name is intended to convey that the model “can be applied to
any computer architecture; from multi-core to multi-tier”. The concurrency measurement
p stems from either hardware ore software scalability:

Software scalability is characterized by a fixed hardware quantity and only the load(N)
is increased.

Hardware scalability scales both the hardware and load proportionately. For example
if we measure our system with 10 instances and 100 users, we would measure 15
instances with a load of 150 users.

11

Chapter 3. Scalability

12

Chapter 4
Sharding

The idea behind sharding is to split the data across multiple machines, and thus falls un-
der horizontal scalability and ‘shared-nothing’ architecture. Sharding is mainly used to
increase the volume of data supported by a database solution and increase the number of
write queries by adding more hardware. This ability to utilize more hardware distributed
over more servers enables the use of commodity hardware that both increases the avail-
ability of spare parts and reduces cost[11].

The proses of sharding increased in popularity with the emergence of NoSQL databases
and the BigData[9] movement(though horizontal partitioning existed before). Many big
companies has published database solutions that facilitates sharding like Amazon[17] and
Google[9, 11, 28].

There exist different approaches to distribute data amongst shards:

Key-based partitioning is a scheme where the data itself is used to perform the parti-
tioning. A challenge with this approach is to achieve a even distribution across the
shards. Certain data types lend them self more easily for distribution, for instance
monotonically increasing numbers (which can be partitioned easy with a modulo
of the number of shards). A popular solution to achieve an even distribution with
arbitrary data types is to use a consistent hash algorithm[22]. A disadvantage of
the hashing approach is that it makes it practically impossible to associate different
entities by their hashed data, and as a consequence of this, data might be needlessly
separated.

Directory-based partitioning outsources the mapping between data and shard to an ex-
ternal lookup table. Some of the challenges associated with directory-based shard-
ing is that the directories introduces additional points of failure, and the added com-
munication cost.

13

Chapter 4. Sharding

Some of the challenges associated with sharding is that the increased number of servers
increase the chance of any one of the failing. As stated data might be needlessly sepa-
rated across servers. Depending on the database solution the sharding mechanism might
complicate the application code.

14

Chapter 5
MongoDB

MongoDB is an open source document database built and structured to have high read
and write throughput, easy scaling and redundancy [7]. It is developed by 10gen who
has made it available Open Source under the “GNU AGPL v3.0.” license (and the drivers
under “Apache License v2.0”)[3]. The MongoDB server is interfaced through its custom
binary protocol making custom drivers a necessity. This driver runs on top of TCP/IP
using two streams, one for input, and one for output[1].

MongoDB organizes data in two level hierarchies. At the top level is the database, and
each database consists of one or more collections. The schema less nature of MongoDB
means that all data technically can be present in the same collections, but organization and
the limitation on the number of indexes a collection can have, encourages the utilization
of more collections.

5.1 Queries

MongoDB uses a JSON like query language including some predetermined and user pro-
vided(stored procedures) JavaScript methods and reserved set of operators[30]. The JSON
formate provides ad hoc querying (not specified in advance)
var persons = db.persons.find({age: {$gte: 45}}).sort()

When a query returns, it returns a ‘cursor’ that points to the result on the server. The client
can manipulate this cursor on the server(iterate over result(s), or retrieve parts of the re-
sult). To amend the above query to only return the fields for first and last name we would
write:
var persons = db.persons.find({age: {$gte: 45}}, { firstName:
1, lastName: 1 }).sort()

15

Chapter 5. MongoDB

to read in the actual content of the query result we would write:
persons.next()

When using MongoDB it is important to remember that it only enforces atomic opera-
tions on an individual document level. If a manipulations of several documents is to be
consistent, that responsibility falls to the client.

5.2 Stored procedures

MongoDB lets you create JavaScript functions and store them on the server. They will be
stored at the server directly connected to the client. Even in the case that the server is a
mongos instance, the procedure will not be propagated trough the sharded system.

To add a stored prosecure named ‘add’, insert it as a JSON document to the ‘js’ document
in the ‘systems’ collection.
db.system.js.save({_id:"add", value:function(x, y)

{ return x + y; }});
The save command creates a document if it does not exists. If the document do exist, the
JSON will be amended to it. To execute a stored procedure we use the ‘eval’ function:
db.eval(“add(21, 21)”);

5.3 Index support

MongoDB implements indexes as B-trees, and any collection can support up-to 64 indexes.
All documents automatically have an index on its ‘_ID’ field which is called the primary
index. Each collection can hold up to 63 other secondary indexes and they can be of
varying types like compound, multi-keyed, text and hashed, amongst others.

To add a text index to the fields ‘revision.text’ and ‘revision.comment’ we would issue the
command:
db.collection.ensureIndex({ “revision.text”: "text",

“revision.comment”: "text" })

5.4 Consistent architecture

MongoDB supports many different configurations; single server, replicated servers, sharded
cluster, and even sharded cluster with varying number of replicas per shard[10]. The basic
interface provided by a single MongoDB server is transparently and consistently available
throughout all these configurations. Replication(Replica sets) and horizontal partition-
ing(sharding) may be present, and even change without the client needing to be any the
wiser. These features has their own interfaces(rs for Replica Sets, and sh for Shards) that
is manipulated as any other MongoDB document, trough JSON queries.

16

5.5 Built in Sharding support

An example of a replica set query to add another server to the set:
rs.add({ "_id":1, "host":"localhost:27017", "priority":0 })
And an example of a query adding another server to a sharded cluster:
sh.addShard("localhost:27017")

5.5 Built in Sharding support

MongoDB was from the start designed to support sharding, and support was first added
in version 1.6[7]. The data storage of the sharding system is stored in regular MongoDB
instances. These can all be used as regular databases, but will only show the designated
part of the entire dataset. To interface with the entire database MongoDB employs a router
system called mongos. These routers are stateless and stores the clusters metadata in
three normal databases set in configuration server mode. In configuration mode all servers
is kept consistent through the use of a Two-Phase commit.

Figure 5.1: Diagram of MongoDB sharded Cluster (taken from MongoDB documentation 1)

1Diagram of MongoDB sharded Cluster. Accessed on 5/3-2014
http://docs.mongodb.org/manual/core/sharding-introduction/

17

http://docs.mongodb.org/manual/core/sharding-introduction/

Chapter 5. MongoDB

MongoDB distributes data through a range-based approach, see fig 5.2. All collections
that are to be sharded must specify a field that is used to partition the data. The standard
approach in MongoDB is to use the lexical value of the field to create an ordered range.
Then values are split into chunks by selecting boundary values. For instance chunk 1
consist of all documents starting with ‘a’ trough ‘f’, and chunk 2 consists of ‘g’ trough
‘m’.

Figure 5.2: Illustration of range based partitioning

MongoDB also provides the ability to hash the shard key before it is placed into the range
in a process called auto-sharding. The auto-sharding approach has a significantly higher
chance of spreading the data evenly across the chunks reducing administration (hence the
name auto-sharding). The downside of the auto-sharding approach is that the application
loses control over which document is likely to be in the same chunk/server as another.

5.6 High availability

MongoDB suports high availability trough what it calls replica sets. A replica set is a
group of normal mongod databases that cooperate on holding redundant copies of the
database. Each replica set elects one leader who is responsible for coordinating writing of
data, while all the members can facilitate reading[10]. In case of node failure, MongoDB
handles the fail over automatically. In a sharded cluster the number of replicas on each
shard is independent.

When accessing a replica set the client the consistency demands by providing a write
concern named MAJORITY which requires a success from a quorum of at least half the
replicas before it succeeds.

18

5.7 Existing cloud solutions

5.7 Existing cloud solutions

There exists today several vendors offering MongoDB as a service. 10gen has a list of
their ‘cloud partners’[5] who provides MongoDB services through both public and private
clouds, and most of these come with sharding capabilities as one of the options. Of special
interest in our work on this thesis is the white paper generally outlining a strategy for
implementing MongoDB on Amazon Web Services[31].

10gen. has also released a tutorial on how to implement MongoDB on Azure[2], this solu-
tion however only deals with replica sets and not shading. Their solution is implemented
using C#. Our knowledge of C# is not the best, but we have managed to extract useful
information.

19

Chapter 5. MongoDB

20

Chapter 6
Implementation

To implement our experiment we have used Eclipse[18] workbench for Java with an Azure
plug-in[25] and SDK[26] from Microsoft Open Technologies[27]. The plug-in facilitates
easy configuration of, and deployment to, the Azure cloud.

We chose to use MongoDB for this project mainly because it is a very popular database.
The website db-engines.com has a ranking[16] over the most popular databases mea-
sured on a variety of factors like Google trends, mention in job offers, and relevance in
social networks amongst others. MongoDB comes in on a 5th place, only beaten by estab-
lished SQL databases like Oracle, the closest NoSQL database is Casandra on 9th place.

6.1 MongoDB on Azure

The implementation of the sharded MongoDB solution is divided into three parts; the
databases, the routers and the configuration databases. These parts is the result of a di-
rect mapping from MongoDB‘s shard structure as seen in fig 7.4. Each of these parts
is designated their own role in Azure as shown in fig 6.1. This enables each part to be
scaled independently. Each role consists of the MongoDB binaries and a startup script that
executes the binaries and connects them together.

To enable the three roles to communicate with each other ports where opened in the in-
ternal Azure firewall. We opened the ports by defining an internal endpoint on each role.
With internal endpoints the firewall is opened and is accessible from all the instances in
the deployment by default. There exists options for defining more elaborate rules for the
firewall, but that is not necessary for our solution. The endpoint are defined in Azures
‘ServiceConfiguration’ file.

21

db-engines.com

Chapter 6. Implementation

Figure 6.1: MongoDB shard components mapped onto Azure Roles

22

6.1 MongoDB on Azure

The main challenge in the implementation was to make the different instances talk to each
other. One of the main characteristics of a sharded database is that the data tis sepa-
rated over different servers, and as a consequence requests need to be routed to a partic-
ular server/instance. This is fundamentally different to how communication is intended
to happen inside Azure(see 2.3). Our solution to this challenge is to use the Azure Ser-
vice Runtime API(ASA). In contrast to azure storage services who utilize a RESTfull[14]
api(RESTfull services is built upon the HTTP protocol which is i most common tools), the
ASR don’t, and need to be accessed through the Azure SDK. Our solution let one look up
the IP address and port of instance endpoints, enabling direct communication. One result
of this approach is that the our solution is strongly coupled, and would be very hard to
scale elastically(Scale inn and out during runtime, often in response to demand[32]).

One other simple but noteworthy ‘obstacle’ when using Azure for the first time is that it
is capped at 20 cores(not instances, but cores. Medium instances consists of 2 cores. . .).
This is easily fixed by contacting the Azure Support Center. Introduced as a safety feature
to avoid runaway cost to new customs, this feature can also be annoying until one figure
out how to solve it.

6.1.1 Configuration server

The simplest part of the sharding solution is the configuration servers. These servers are
normal MongoDB servers(the standard binaries), but run in configuration mode(run with
a ‘–configsvr’ argument). All the configuration servers is set to listen for incoming con-
nection on port 27051. The main challenge posed by these servers is that they must be
identifies to the routers directly by IP.

Besides this there are no significant challenges. All requests don to the configuration
servers is consistently replicated across all the servers, so no special care to the individual
instances is needed.

6.1.2 Router server

The sharding routers act as the interface trough witch the sharded cluster is accessed. As
such it is in need of information on the entire sharded database. This information is present
in configuration servers. These servers must be identified at the application startup, and
if changes to the makeup of these configuration servers where to occur at a later point,
all parts of the sharding solution(config, router, and database) has to be restarted[4]. The
routers are configured to listen to port 27019. To ensure that the configuration servers
is up and running when we start the router the startup script enters a wait cycle where it
repeatedly tries to connect to the configuration database as a normal database(see fig 6.2).
One this connection is established we know the server is up and can launch the router
application.

23

Chapter 6. Implementation

Figure 6.2: Router startup script

6.1.3 Database server

The database server is quite like the Configuration server in that it operates without knowl-
edge of the rest of the sharding solution. Once a database server is up and running it is up
to the router server to include it in the greater database by including it in the configuration
database a directing traffic to it. In our solution we have opted to let the instance hosting
the database server is responsible for contacting the router and adding itself to the greater
database. This is because this is the path of least resistance in that the only external infor-
mation needed is the address of one router. This not only makes it easy to start the cluster,
but also adding extra shards post launch. The databases listen to the default port of 27017.

24

6.1 MongoDB on Azure

To ensure the router is up and running before the database attempts to connect to it, the
database server employs the same wait cycle scheme as the router with the one change that
it looks up an address of a router instead of a configuration server.

25

Chapter 6. Implementation

26

Chapter 7
Results and Analysis

7.1 Measuring performance

To measure the performance of our database solution we will be using a small Java pro-
gram based upon the Executor framework 1 (details explained in section 7.2). In addition
we will be using the tools mongostat and Windows Performance Counters to look at the
state of the individual instances.

Mongostat is an utility program that is part of the MongoDB distribution[15]. It provides
statistics at regular intervals about vitalities of both databases and routers(all parts of the
sharding cluster) like number of reads, writes, network, and lock status to mention a few.
It dos however not include any information on its disc usage. The output is in a CSV like
format that is stored in a file and collected for analyzed after each test is performed.

Performance Counters is a part of the Microsoft Windows operating systems, both personal
and server[15]. It gives measurement on a vast variety of metrics and can be focused on
the operating system and/or other programs. The Azure platform provides a ‘Diagnostics’
module that facilitates collection of performance counters and storage in Azures Table
Storage. Unfortunately we have not been able to get this feature to work. Instead we
stored the results to a file and collected it later, the same as with Mongostat.

The last form of measurements we are collecting comes from the application performing
the tests. For the batch inserting of data(the loading of the database) we collect the number
of inserted revisions and the accumulated size of these collections.

1Executors (The JavaTM Tutorials). Accessed 5/3-2014.
http://docs.oracle.com/javase/tutorial/essential/concurrency/executors.
html

27

http://docs.oracle.com/javase/tutorial/essential/concurrency/executors.html
http://docs.oracle.com/javase/tutorial/essential/concurrency/executors.html

Chapter 7. Results and Analysis

7.1.1 Selection of dataset

To populate the database we used a dump of the English Wikipedia database with revision
history. These datasets is freely available at download.wikipedia.com. Our main reason
for choosing this dataset is that it is freely available, its size, and that it has some internal
relations. The content itself is not of relevance, but the English version was chosen based
on its popularity in research.

The choice to use the Wikipedia dataset was to have real world data of that contains a
sizable amount of data and a variety of relations 2.

The dataset is available in different versions like ‘all pages with complete edit history’
and ‘All pages, current versions only’ amongst other smaller extracts like ‘Wiki external
URL link records’. The larges datasets is broken down into several independent files or
segments. We chose to only use the first segment of the pages with revision history. It
contains the pages ‘A’ to ‘Blues’ and is 19GB zipped and extracted. A summary of the
dataset can be seen in fig 7.1.

An example of an entry from the “AccessibleComputing” page can be seen in fig 7.2.
The ‘timestamp’, ‘id’, and ‘contributor’ are suitable for retrieval, especially the id being
unique. The ‘text’ and ‘comment’ fields are suitable for text search.

Distribution of revisions per page
min 1Q Median Mean 3Q Max
0.0 32.0 230.0 904.8 903.0 16827.0

Distribution of revisions size in bytes
min 1Q Median Mean 3Q Max
281 1620 7432 14550 20400 157100

Figure 7.1: Distribution of revisions on first 2157 English Wikipedia pages

7.2 Performing tests

The tests will be performed by a Java program that is present on every Router instance.
The tests are started manually after the instances have been initialized and the test data
automatically downloaded. The test program communicates with the MongoDB router
through the MongoDB API for Java by connecting to the local port 27019. Each instance
of the test program collaborate to insert the full dataset by inserting one portion each,
achieved by a modulo test at the page level of the dataset.

Threads are used to simulate users, with one thread counting as one user. The life cycle of
the thread is to fetch a task from a queue, perform that task, register statistics about that
task, an repeating until all the tasks is depleted(See fig 7.3).

2An interesting possibility not explored in this thesis is the impact of relations present in the data, that is not
present in the model. The text field of the Wikipedia dataset contains a potential for these.

28

7.2 Performing tests

{
" r e v i s i o n " : {

" t imes t amp " : "2001−01−21T02 : 1 2 : 2 1 Z " ,
" i d " : 233192 ,
" model " : " w i k i t e x t " ,
" t e x t " : "< Page t e x t goes here >" ,
" c o n t r i b u t o r " : {

" i d " : 99 ,
" username " : " RoseParks "

} ,
" sha1 " : "8 kul9t lwjm9oxgvqzbwuegt9b2830vw " ,
" f o r m a t " : " t e x t / x−wik i " ,
" comment " : "< User comment goes here >"

}
}

Figure 7.2: EnWikis JSON example

Figure 7.3: Lode Generator domain diagram

An important part of the MongoDB API when i comes to writing data to the database is
the Write Concern. The weakest write concern is UNACKNOWLEDGED that is an asyn-
chronous operation that succeeds one the request has been written to the senders socket. A
write concern of ACKNOWLEDGED considers the write request a success one the server
has revived the request. A stronger concern is JOURNALED, witch succeeds one the re-
quest is successfully written to the journal, adding fault tolerance. The strongest write
concern is FSYNCED, which only returns one the write operation has been written to disc.
These configurations affect the testing program quite a bit as they affect the behavior of
the statistics collected. With unacknowledged, the tests would be useless, sins the only
thing we would be measuring was the routers outgoing network connection. Acknowl-

29

Chapter 7. Results and Analysis

edged would work better, but have the result of sewing the data with a high throughput at
the start that tapers off as the database gets overloaded and refuses more incoming writes.
Clearly what we want is fsynced. This not only gives the most accurate statistics, but also
enables a helps in connecting the statistics to other metrics measured at the database. We
will be using fsynced on all the write operations.

The statistics we will be collecting is the number of revisions successfully inserted, and
the size of the revision as an extra validity check. We are only interested in the aggregated
values, and so all the threads report to the same statistics collector. Each 5th second a
sample is taken of the statistics and reported. The five seconds is chosen as a good trade
of between performance and fidelity. These statistics is then written to a file fore later
collection and analysis.

We will run our tests against a database consisting of 1, 2, 5, 10 and 15 shards. The limit
of 15 instances was chosen on the basis of cost limitations. Each large instance in Azure
consists of 4 cores, and with 15 shards makes it 60 cores just for the databases. In addition
we will run the tests against a database that is not sharded for a comparison. Each of these
tests will be performed in isolation, and each will be performed against an empty database.
These tests will be repeated in the context of small, medium, and large role sizes and there
results compared to see how the added performance(vertical scalability) compliments the
horizontal scalability.

7.3 Results

Our tests of the scaling of MongoDB‘s load capabilities start with some foundational data
about the system. In figure 7.1 we present the basic load throughput measured by our test
system on the different instance sizes as a baseline.

Size Average # of revisions
inserted per 5 seconds

Small 1303
Medium 1998
Large 656.5

Table 7.1: Results of load test on normal (unsharded) databases

7.3.1 Bulk data insertion

In our first attempt to insert data we had represented each page from the English Wikipedia
as a collection containing its revisions. This went well until we attempted to use 10
shards(and 100 users on 10 routers). With this workload the solution broke down after
just 15 minutes giving of the following error:
“exception: socket exception [CONNECT_ERROR] ...”
“exception:...transport error:...{ splitChunk:...}”

30

7.3 Results

The cause of these errors where traced to the configuration servers being overloaded. To
test whether this was the cause of the problems a similar run was performed, but where all
the collections where added before the tests(without data).These changes made the tests
run for 45min before the errors returned. Proceeding from these findings we made the
change that all the pages where to be inserted into the same collection (this is safe because
all pages and there revisions have unique id‘s used both to identify the documents and as
a shard key. This solved the problem.

7.3.2 Measurement overview

In figure 7.4 we have compared the results of the load tests performed on the three instance
sizes with 1, 2, 3, 5, 10, 15 and 20. The medium instances will end at 15, and the large
instances will end at 10. The reason for the deviation from the original plan of reaching
15 shards for the large instances was that we reached our policy limit a little sooner than
anticipated(limit on number of cores that can be active).

The first thing we notice is that there is a throughput gain in the favor of the larges in-
stances(vertical scalability). This is as expected as the larger instances all have better disk
I/O speeds.

Figure 7.4: Comparison of throughput to shards on small instances

31

Chapter 7. Results and Analysis

Suspecting the load balancer

The second thing we notice is that our solution is not scaling as well horizontal as we had
anticipated. At two shards we see a marked drop in throughput in all the instance sizes.
This drop is somewhat expected as this is the first configuration where the system needs
to split data between shards. During a closer examination we noticed that the system was
performing some chunk migration in the background. To determine to what extent this
affected the system we performed a test where we first measured the throughput with the
load balancer on, and then again with the load balancer of, to determine what effect this
had on the overall throughput. The results are shown in fig 7.2 and shows no significant
effect. This is to be expected as we are using a hash based approach to split the data
amongst the shards, which helps to uniformly distribute the data.

Balancer Max average through-
put

On 1763.5
Off 1736.5

Table 7.2: Results of turning the load balancer off on small instances

Analyzing mongostat logs

To try to get a better understanding of what was going on we consulted the mongostats logs
from the tests to see if the could shed some insight(See fig 7.5). We see that there is some
activity going on, but not much. More to the point, there is plenty of resources available.
Of special importance is the ‘locked db’ fields as MongoDB aquires an exclusive write
lock to the entire database(local shard) for each write operation. The network usage is
neither likely to be the cause of our trouble. In summary, the mongostat results backs up
the pore performance, but offer no help in finding the cause.

Turning to the Performance Counters

The performance counters held nothing of interest either. A little amount of data was
revived over the network, and a little bit of data was written to disc. This is not surprising.
The Performance Counters collect general data and has no insight into the applications
that is a port of this test, only the operating system hosting them. We would expect the
performance counters to be more of use in a situation where the instances where being
overloaded

For a more detailed overview of the test results see appendix A.1.

32

7.3 Results

1 shard:

i n s e r t mapped f a u l t s " l o c k e d db " n e t I n ne tO u t conn
61 544m 1633 g em:5.1% 2m 7k 22
183 544m 3713 g em:7.4% 6m 18k 22
140 1 . 0 3 g 2716 g em:38.2% 4m 14k 22
163 1 . 0 3 g 3146 g em:21.0% 5m 16k 22

2 shard:

i n s e r t mapped v s i z e " l o c k e d db " Ne t In ne tO u t conn
0 468m 47m em:0.4% 15k 1k 28
11 468m 51m em:0.9% 179k 2k 28
7 469m 51m em:0.7% 73k 2k 29

10 shard:

i n s e r t mapped f a u l t s " l o c k e d db " n e t I n ne tO u t conn
2 160m 532m em:0.1% 11k 2k 92
1 160m 543m em:0.0% 6k 2k 103
1 160m 553m em:0.1% 10k 1k 113
3 160m 553m em:0.3% 15k 1k 113

Figure 7.5: Selected excerpts of mongostat log from a small instance test

7.3.3 Summary

Our solution is running in the cloud and accepting data, and it is possible to increase the
throughput beyond threshold of what one single database could muster. Lifting our gace a
little, it is obvious that our database dos not scale as we had predicted. MongoDB should
be able to scale close to linearly, and that is far from what unfolded during our tests.

We see an acute scaling problem with our database solution on small instances. Our solu-
tion begins to retrograde once we pas 10 shards. This is to us the biggest surprise during
this thesis.

The medium instances fear much better than the small. They have a higher throughput
instance by instance with the small instances. At the end of the scalability test there were
no signs of them starting to retrograde.

The large instances achieved a high throughput at 3 shards, but becoming the poorest
performing instance size after that. Here we are at a complete loss. We don‘t know what,
but something, somewhere is very wrong.

We feel certain that there is at least one factor limiting our solution, but we have been
unable to determine what that factor is, or even where that factor lies. We have rerun
several of the tests, changed out parameters, but achieved no meaningful deviance. At
the end of it all, the only thing we feel certain about is that the measurements we have

33

Chapter 7. Results and Analysis

provided truthfully represents the system we have been testing.

7.4 Implementing MongoDB on Azure

Trough out this thesis we have found Windows Azure to be a fine tool to work width. Its
decomposition of applications into a collection of roles worked well with our solution.

The emulator that comes with Azure was a real help in the beginning to test out the layout.
We did however run into problems when we discovered that the worker roles was limited
to only one instance per role(Web roles can sport multiple instances). Even though our ap-
plication launches as a stateless application, and can verify its majority of features trough
the emulator, there were times when we were working on bugs the ability to have more
instances would have come in handy.

The tools provided by Microsoft, and more relevant to Java developers, Microsoft Open
Technologies are truly great, and simplify the development process. We do not think we
could have achieved the technical aspects of this thesis if it had not been for these tools.

34

Chapter 8
Conclusions

MongoDB is a database that from the start was designed to be used in the cloud. That sad,
we must admit that we underestimated the challenges of implementing the database in,
and take advantage of, the cloud. We have encountered several problems, especially when
it comes to predicting the amount of time required to implement and test our solution.

8.1 Research questions

The amount of unexplained results form our implementation has lead us to the conclusion
that we can‘t conclude with any measure of certainty regarding our implementation.

How can MongoDB be implemented in the Cloud:
To get a simple, one instance, version of MongoDB to running in the cloud is pretty
straight forward. Azure‘s separation into roles fits nicely with the components of Mon-
goDB sharded cluster. Our solution was a simple deployment that utilized just a few of
MongoDB‘s features as well as Azure‘s. Even though we managed to get a sharded Mon-
goDB ro run, and accept data in the cloud, we are not able to call it a success.

Our recommendation to those who would implement a sharded version of MongoDB in
the cloud is to focus on a configuration server to manage your deployment instead of trying
to jerry rig into the cloud vendor‘s system. and we would recommend building a separate
system to manage the solution. Focus on getting for 1-3 shards before trying to benchmark
the system.

35

Chapter 8. Conclusions

What challenges exists when implementing a sharded database in the cloud:
Windows Azure don‘t sport a straight forward way of getting a hold on the endpoints of
other instances, and we have come to the realization that that is for the most part a good
thing. Our simple sharding solution managed to use the information to connect its different
parts together, but with the inconclusive tests we performed it is difficult to say if it was a
suitable solution.

How dos the implemented database scale:
Though we had big problems with the performance of our solution, we were able to
achieve better throughput by both scaling vertically, and scaling horizontal. The fact that
we achieved this we credit to the ready-made MongoDB.

We had some problems scaling the small instances past 10 shards and only managed to get
a little more than twice the throughput out of the sharded solution compared to a ‘normal’
database. We never reached a peak throughput of the bigger instances, but also these had
a far less than linear scalability.

This is not what we had expected as all data operations in a sharded cluster is supposed
to be confined to the individual shards. We suspect the cause of this to lie in either the
configuration database and/or our load tests. We have not been able to determine any
closer what is causing this effect.

How dos the cloud performance impact the scalability:
When it comes to the load scalability of our implementation we see a, not so surprisingly,
dependence on the underlying disc system. The bigger the instance, the more load it can
handle. Due to all the unanswered questions about the performance of our system we are
hesitant to draw a conclusion on the horizontal scalability aspects related to it.

8.2 Future work

We would like to get to the bottom of what is causing the problems with the reduced
efficiency as more shards are added. If the way we performed our load tests where to be
found the reason behind the problems, it might shed light on how not to interact with a
sharded MongoDB cluster.

A variation of our solution that would have been interesting to work on is to have one
MongoDB modules per core instead of per instance. We belie that to add more capabil-
ities to each instance would help better exploit the resources, resulting in more value for
investment.

This thesis has covered a sharded cluster without replication sets, and performed a sim-
ple load test on it. An interesting topic would be to see how the addition of replication
sets(high availability) would impact this scalability. The official MongoDB documenta-
tion highly emphasizes the need to use replica sets.

36

8.2 Future work

Our short experiment with combining shards with redundant storage has shown us the
challenges of coordinating different components of a system. The inherent state full nature
of the shards means that in order to achieve an elastic system(Dynamic scale out/inn)
coordination is needed. We envision that such control system not necessarily need to be
limited to a database system, but any solution that combines multiple modules in one
instance.

A topic that fall outside the scope of this thesis, but that have cough our interest is a
of comparison the scalability with other systems. In particular we are interested in how
our sharded MongoDB(or another NoSQL database) would compare to a sharded SQL
database at different normalization levels. With all data in one table and no abstract meth-
ods.

37

38

Bibliography

[1] 10gen Inc. Mongodb wire protocol — mongodb meta driver manual 0.1-
dev. http://docs.mongodb.org/meta-driver/latest/legacy/
mongodb-wire-protocol/. Sins the current documentation “ is currently in
draft status and has not been approved or finalized”, the legacy information was used.

[2] 10gen Inc. Windows azure. http://docs.mongodb.org/ecosystem/
platforms/windows-azure/, 2014-02-19.

[3] 10gen Inc. Mongodb licensing. http://www.mongodb.org/about/
licensing/, 2014-02-20.

[4] 10gen Inc. Config server availability. http://docs.mongodb.
org/manual/core/sharded-cluster-config-servers/
#config-server-availability, 2014-03-17.

[5] 10gen Inc. Get mongodb in the cloud | mongodb. http://www.mongodb.com/
partners/cloud, 2014-03-19.

[6] Gene M. Amdahl. Validity of the single processor approach to achieving large
scale computing capabilities. In Proceedings of the April 18-20, 1967, Spring Joint
Computer Conference, AFIPS ’67 (Spring), pages 483–485, New York, NY, USA,
1967. ACM. doi: 10.1145/1465482.1465560. URL http://doi.acm.org/10.
1145/1465482.1465560.

[7] Kyle Banker. MongoDB in action. Manning, Shelter Island, NY, 2012. ISBN
9781935182870.

[8] André B. Bondi. Characteristics of scalability and their impact on performance.
In Proceedings of the 2Nd International Workshop on Software and Performance,
WOSP ’00, pages 195–203, New York, NY, USA, 2000. ACM. ISBN 1-58113-
195-X. doi: 10.1145/350391.350432. URL http://doi.acm.org/10.1145/
350391.350432.

[9] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach,

39

http://docs.mongodb.org/meta-driver/latest/legacy/mongodb-wire-protocol/
http://docs.mongodb.org/meta-driver/latest/legacy/mongodb-wire-protocol/
http://docs.mongodb.org/ecosystem/platforms/windows-azure/
http://docs.mongodb.org/ecosystem/platforms/windows-azure/
http://www.mongodb.org/about/licensing/
http://www.mongodb.org/about/licensing/
http://docs.mongodb.org/manual/core/sharded-cluster-config-servers/#config-server-availability
http://docs.mongodb.org/manual/core/sharded-cluster-config-servers/#config-server-availability
http://docs.mongodb.org/manual/core/sharded-cluster-config-servers/#config-server-availability
http://www.mongodb.com/partners/cloud
http://www.mongodb.com/partners/cloud
http://doi.acm.org/10.1145/1465482.1465560
http://doi.acm.org/10.1145/1465482.1465560
http://doi.acm.org/10.1145/350391.350432
http://doi.acm.org/10.1145/350391.350432

Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber. Bigtable: A
distributed storage system for structured data. In Proceedings of the 7th USENIX
Symposium on Operating Systems Design and Implementation - Volume 7, OSDI
’06, pages 15–15, Berkeley, CA, USA, 2006. USENIX Association. URL http:
//dl.acm.org/citation.cfm?id=1267308.1267323.

[10] Kristina Chodorow. MongoDB, the definitive guide. O’Reilly Media, Sebastopol,
Calif, 2013. ISBN 978-1-449-34468-9.

[11] James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher
Frost, JJ Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser, Peter
Hochschild, Wilson Hsieh, Sebastian Kanthak, Eugene Kogan, Hongyi Li, Alexan-
der Lloyd, Sergey Melnik, David Mwaura, David Nagle, Sean Quinlan, Rajesh Rao,
Lindsay, Rolig, Yasushi Saito, Michal Szymaniak, Christopher Taylor, Ruth Wang,
, and Dale Woodford. Spanner: Google’s globally-distributed database. pages 251–
264, 2012.

[12] Microsoft Corporation. Azure queues and service bus queues. http://msdn.
microsoft.com/en-us/library/hh767287.aspx, 2014-02-06.

[13] Microsoft Corporation. Microsoft data centers | cloud resources. http://www.
globalfoundationservices.com/cloud-resources.aspx, 2014-02-
06.

[14] Microsoft Corporation. Storage services rest api reference. http://msdn.
microsoft.com/en-us/library/azure/dd179355.aspx, 2014-03-17.

[15] Microsoft Corporation. Performance counters. http://msdn.microsoft.
com/en-us/library/windows/desktop/aa373083(v=vs.85)
.aspx, 2014-03-17.

[16] Microsoft Corporation. Db-engines ranking - popularity ranking of database man-
agement systems. http://db-engines.com/en/ranking, 2014-03-17.

[17] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,
and Werner Vogels. Dynamo: amazon’s highly available key-value store. SIGOPS
Oper. Syst. Rev., 41(6):205–220, October 2007. ISSN 0163-5980. doi: 10.
1145/1323293.1294281. URL http://doi.acm.org/10.1145/1323293.
1294281.

[18] Eclipse Foundation. Eclipse project. http://www.eclipse.org, 2014-02-03.

[19] N. J. Gunther. A General Theory of Computational Scalability Based on Rational
Functions. ArXiv e-prints, August 2008.

[20] Neil Gunther. Guerrilla capacity planning a tactical approach to planning for highly
scalable applications and services. Springer, Berlin, 2007. ISBN 978-3540261384.

[21] John L. Gustafson. Multiprocessor performance measurement and evaluation. chap-
ter Reevaluating Amdahl’s Law, pages 92–93. IEEE Computer Society Press, Los

40

http://dl.acm.org/citation.cfm?id=1267308.1267323
http://dl.acm.org/citation.cfm?id=1267308.1267323
http://msdn.microsoft.com/en-us/library/hh767287.aspx
http://msdn.microsoft.com/en-us/library/hh767287.aspx
http://www.globalfoundationservices.com/cloud-resources.aspx
http://www.globalfoundationservices.com/cloud-resources.aspx
http://msdn.microsoft.com/en-us/library/azure/dd179355.aspx
http://msdn.microsoft.com/en-us/library/azure/dd179355.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa373083(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa373083(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa373083(v=vs.85).aspx
http://db-engines.com/en/ranking
http://doi.acm.org/10.1145/1323293.1294281
http://doi.acm.org/10.1145/1323293.1294281
http://www.eclipse.org

Alamitos, CA, USA, 1995. ISBN 0-8186-6522-X. URL http://dl.acm.org/
citation.cfm?id=201945.201962.

[22] David Karger, Eric Lehman, Tom Leighton, Rina Panigrahy, Matthew Levine, and
Daniel Lewin. Consistent hashing and random trees: Distributed caching protocols
for relieving hot spots on the world wide web. In Proceedings of the Twenty-ninth
Annual ACM Symposium on Theory of Computing, STOC ’97, pages 654–663, New
York, NY, USA, 1997. ACM. ISBN 0-89791-888-6. doi: 10.1145/258533.258660.
URL http://doi.acm.org/10.1145/258533.258660.

[23] Zaigham Mahmood. Cloud computing methods and practical approaches. Springer,
London New York, 2013. ISBN 978-1447151067.

[24] Peter M. Mell and Timothy Grance. Sp 800-145. the nist definition of cloud comput-
ing. Technical report, Gaithersburg, MD, United States, 2011.

[25] Inc. Microsoft Open Technologies. Azure plugin for eclipse with java. http:
//msdn.microsoft.com/en-us/library/azure/hh694271.aspx,
2014-02-03.

[26] Inc. Microsoft Open Technologies. Windows azure sdk for
java. http://msopentech.com/opentech-projects/
windows-azure-sdk-for-java/, 2014-02-03.

[27] Inc. Microsoft Open Technologies. Microsoft open technologies, inc. http://
msopentech.com/about/, 2014-02-03.

[28] Jeff Shute, Mircea Oancea, Stephan Ellner, Ben Handy, Eric Rollins, Bart Samwel,
Radek Vingralek, Chad Whipkey, Xin Chen, Beat Jegerlehner, Kyle Littlefield, and
Phoenix Tong. F1 - the fault-tolerant distributed rdbms supporting google’s ad busi-
ness. In SIGMOD, 2012. Talk given at SIGMOD 2012.

[29] Barrie Sosinsky. Cloud computing bible. Wiley John Wiley distributor, Indianapolis,
IN Chichester, 2011. ISBN 978-0470903568.

[30] Ciprian-Octavian Truica, Alexandru Boicea, and Ionut Trifan. Crud operations in
mongodb. Proceedings of the 2013 International Conference on Advanced Computer
Science and Electronics Information, 2013. doi: 10.2991/icacsei.2013.88. URL
http://dx.doi.org/10.2991/icacsei.2013.88.

[31] Miles Ward. Mongodb nosql database on aws. http://info.mongodb.com/
rs/mongodb/images/AWS_NoSQL_MongoDB.pdf, 2014-03-19.

[32] Bill Wilder. Cloud architecture patterns. O’Reilly Media, Sebastopol, CA, 2012.
ISBN 978-1449319779.

41

http://dl.acm.org/citation.cfm?id=201945.201962
http://dl.acm.org/citation.cfm?id=201945.201962
http://doi.acm.org/10.1145/258533.258660
http://msdn.microsoft.com/en-us/library/azure/hh694271.aspx
http://msdn.microsoft.com/en-us/library/azure/hh694271.aspx
http://msopentech.com/opentech-projects/windows-azure-sdk-for-java/
http://msopentech.com/opentech-projects/windows-azure-sdk-for-java/
http://msopentech.com/about/
http://msopentech.com/about/
http://dx.doi.org/10.2991/icacsei.2013.88
http://info.mongodb.com/rs/mongodb/images/AWS_NoSQL_MongoDB.pdf
http://info.mongodb.com/rs/mongodb/images/AWS_NoSQL_MongoDB.pdf

42

Appendices

43

Appendix A
Measurements

All measurements taken with a 5 seconds sample rate.

A.1 Load results

Small instances

Distribution of revisions inserted
Instance Min. 1rd Qu. Median Mean 3rd Qu. Max.
1 0 906 1361 1303 1788 3598

Table A.1: Insertions into 1 small regular MongoDB. 5 sec sample frequency.

Distribution of revisions inserted
Instance Min. 1rd Qu. Median Mean 3rd Qu. Max.
1 0.0 951.2 1265.0 1172.0 1494.0 2154.0

Table A.2: Insertions into 1 small sharded MongoDB. 5 sec sample frequency.

Distribution of revisions inserted
Instance Min. 1rd Qu. Median Mean 3rd Qu. Max.
1 0.0 131.0 398.0 382.6 594.0 929.0
2 0.0 110.0 427.0 391.5 629.5 918.0

Table A.3: Insertions into 2 small sharded MongoDB. 5 sec sample frequency.

45

Distribution of revisions inserted
Instance Min. 1rd Qu. Median Mean 3rd Qu. Max.
1 0.00 92.75 616.00 531.50 832.50 1624.00
2 0.0 90.0 616.0 540.2 829.0 1968.0
3 0.00 77.75 624.00 549.60 864.80 1526.00

Table A.4: Insertions into 3 small sharded MongoDB. 5 sec sample frequency.

Distribution of revisions inserted
Instance Min. 1rd Qu. Median Mean 3rd Qu. Max.
1 0.00 49.75 291.00 247.10 399.00 551.00
2 0.0 60.0 340.0 268.4 417.0 640.0
3 0.0 61.0 348.0 268.5 410.5 724.0
4 0.0 50.5 330.0 270.2 422.5 673.0
5 0.0 50.5 330.0 270.2 422.5 673.0

Table A.5: Insertions into 5 small sharded MongoDB. 5 sec sample frequency.

Distribution of revisions inserted
Instance Min. 1rd Qu. Median Mean 3rd Qu. Max.
1 0.0 51.0 119.0 177.9 320.5 537.0
2 0.0 52.0 123.0 178.8 336.0 543.0
3 0.0 50.0 128.5 181.0 315.0 582.0
4 0.0 50.0 128.0 179.1 317.0 519.0
5 0.00 55.75 130.00 185.60 347.20 532.00
6 0.0 52.0 134.5 184.3 338.0 545.0
7 0.0 53.0 125.0 183.9 326.0 544.0
8 0.0 52.0 133.0 188.5 353.0 539.0
9 0.0 53.0 128.0 181.6 338.0 528.0
10 0.0 50.5 127.0 183.5 344.5 524.0

Table A.6: Insertions into 10 small sharded MongoDB. 5 sec sample frequency.

46

Distribution of revisions inserted
Instance Min. 1rd Qu. Median Mean 3rd Qu. Max.
1 0.00 7.25 57.50 65.26 102.80 302.00
2 0.00 2.50 56.00 73.55 122.00 343.00
3 0.00 8.00 48.00 59.09 84.00 305.00
4 0.00 7.00 49.00 56.39 87.00 202.00
5 0.00 9.00 47.50 51.91 82.00 289.00
6 0.00 9.50 45.00 60.99 95.50 242.00
7 0.00 8.00 32.00 57.46 84.00 463.00
8 0.00 11.00 45.00 51.15 72.00 400.00
9 0.00 10.00 43.00 66.10 95.75 731.00
10 0.00 9.00 71.50 72.14 109.50 411.00
11 0.0 7.0 55.0 94.1 122.5 985.0
12 0.0 31.0 118.0 136.4 194.5 1441.0
13 0.0 17.0 64.0 101.2 135.0 1268.0
14 0.00 12.25 58.50 87.54 105.00 640.00
15 0.0 6.0 35.0 65.2 65.0 625.0

Table A.7: Insertions into 15 small sharded MongoDB. 5 sec sample frequency.

Distribution of revisions inserted
Instance Min. 1rd Qu. Median Mean 3rd Qu. Max.
1 0.00 0.00 33.00 31.59 53.00 237.00
2 0.00 1.00 35.00 32.43 55.00 109.00
3 0.00 1.00 35.00 34.06 58.00 213.00
4 0.00 1.00 35.00 33.41 55.00 207.00
5 0.00 1.00 35.00 34.29 56.00 305.00
6 0.00 0.00 31.00 30.35 52.00 203.00
7 0.0 0.0 31.0 30.3 51.0 185.0
8 0.00 0.00 32.00 32.51 55.00 252.00
9 0.00 0.00 32.00 31.86 53.00 244.00
10 0.00 0.00 32.00 30.53 53.00 107.00
11 0.00 0.00 31.00 30.42 52.00 118.00
12 0.00 1.00 32.00 35.03 55.00 270.00
13 0.0 1.0 34.0 32.3 53.0 165.0
14 0.00 0.00 33.00 31.68 54.00 261.00
15 0.00 0.00 32.00 33.04 54.00 301.00
16 0.0 0.0 32.0 31.3 54.0 260.0
17 0.00 0.00 32.00 31.29 53.75 138.00
18 0.00 0.00 29.00 29.78 51.00 165.00
19 0.00 1.00 34.00 33.88 55.00 301.00
20 0.00 0.00 33.00 32.31 55.00 179.00

Table A.8: Insertions into 20 small sharded MongoDB. 5 sec sample frequency.

47

Medium instances

Distribution of revisions inserted
Instance Min. 1rd Qu. Median Mean 3rd Qu. Max.
1 0 1342 2194 1998 2729 5439

Table A.9: Insertions into 1 medium regular MongoDB. 5 sec sample frequency.

Distribution of revisions inserted
Instance Min. 1rd Qu. Median Mean 3rd Qu. Max.
1 0 1159 1739 1649 2248 4170

Table A.10: Insertions into 1 medium sharded MongoDB. 5 sec sample frequency.

Distribution of revisions inserted
Instance Min. 1rd Qu. Median Mean 3rd Qu. Max.
1 0.0 142.8 428.0 346.7 488.0 700.0
2 0.0 158.5 426.0 358.4 510.0 719.0

Table A.11: Insertions into 2 medium sharded MongoDB. 5 sec sample frequency.

Distribution of revisions inserted
Instance Min. 1rd Qu. Median Mean 3rd Qu. Max.
1 0.0 70.5 304.0 232.7 353.0 466.0
2 0.0 68.5 293.0 220.5 340.5 412.0
3 0.0 64.0 320.0 238.3 374.0 455.0

Table A.12: Insertions into 3 medium sharded MongoDB. 5 sec sample frequency.

Distribution of revisions inserted
Instance Min. 1rd Qu. Median Mean 3rd Qu. Max.
1 0.0 247.0 609.0 503.9 746.2 1148.0
2 0.0 71.0 589.0 494.3 716.0 1342.0
3 6 0.0 215.5 593.0 517.4 789.5 1256.0
4 6 0.0 263.5 619.5 517.5 745.5 1197.0
5 0.0 69.0 574.0 488.5 749.0 1133.0

Table A.13: Insertions into 5 medium sharded MongoDB. 5 sec sample frequency.

48

Distribution of revisions inserted
Instance Min. 1rd Qu. Median Mean 3rd Qu. Max.
1 0.00 71.75 325.50 258.70 379.00 517.00
2 0.0 89.0 345.0 272.3 394.0 753.0
3 0.0 138.5 346.0 277.9 406.2 592.0
4 6 0.0 167.5 335.0 266.5 386.0 546.0
5 0.0 170.0 333.0 271.3 393.0 658.0
6 0.0 160.8 334.0 271.1 390.0 709.0
7 0.0 148.0 329.5 270.6 379.0 641.0
8 0.0 141.2 329.0 269.0 387.2 592.0
9 0.0 145.8 322.5 263.2 374.2 584.0
10 0.0 152.0 322.0 260.8 370.0 539.0

Table A.14: Insertions into 10 medium sharded MongoDB. 5 sec sample frequency.

Distribution of revisions inserted
Instance Min. 1rd Qu. Median Mean 3rd Qu. Max.
1 0.0 98.0 276.0 230.6 330.2 470.0
2 0.0 51.0 285.0 227.7 326.0 443.0
3 0.0 138.5 297.5 241.4 349.0 454.0
4 0.0 55.0 278.0 225.9 327.0 475.0
5 0.0 123.8 281.0 227.0 330.2 448.0
6 0.0 124.8 280.0 229.8 328.0 465.0
7 0.0 67.0 273.0 229.8 326.2 498.0
8 0.0 117.2 293.0 235.8 331.0 544.0
9 0.0 142.0 293.0 236.5 330.0 574.0
10 0.00 86.75 264.00 219.50 318.00 459.00
11 0.00 90.25 259.00 215.50 306.00 624.00
12 0.00 97.25 284.50 227.70 326.80 600.00
13 0.00 81.75 290.00 229.50 324.50 455.00
14 0.0 65.0 286.0 233.5 338.0 454.0
15 0.0 66.0 300.5 243.7 348.0 545.0

Table A.15: Insertions into 15medium sharded MongoDB. 5 sec sample frequency.

49

Large instances

Distribution of revisions inserted
Instance Min. 1rd Qu. Median Mean 3rd Qu. Max.
1 0.0 329.5 849.0 754.4 1009.0 1986.0

Table A.16: Insertions into 1 large regular MongoDB. 5 sec sample frequency.

Distribution of revisions inserted
Instance Min. 1rd Qu. Median Mean 3rd Qu. Max.
1 0.0 346.5 852.5 710.0 985.0 1460.0

Table A.17: Insertions into 1 large sharded MongoDB. 5 sec sample frequency.

Distribution of revisions inserted
Instance Min. 1rd Qu. Median Mean 3rd Qu. Max.
1 0.0 152.8 458.5 374.9 527.0 723.0
2 0.0 129.5 449.5 357.0 510.2 732.0

Table A.18: Insertions into 2 large sharded MongoDB. 5 sec sample frequency.

Distribution of revisions inserted
Instance Min. 1rd Qu. Median Mean 3rd Qu. Max.
1 0.0 385.0 887.0 783.5 1117.0 1867.0
2 0 478 1026 904 1270 2472
3 0.0 470.0 1004.0 874.9 1240.0 1872.0

Table A.19: Insertions into 3 large sharded MongoDB. 5 sec sample frequency.

Distribution of revisions inserted
Instance Min. 1rd Qu. Median Mean 3rd Qu. Max.
1 0.00 57.75 215.00 171.40 249.00 296.00
2 0.00 52.25 218.50 170.00 249.00 328.00
3 0.0 55.0 226.5 175.2 256.2 328.0
4 0.0 55.0 226.5 175.2 256.2 328.0
5 0.0 49.0 224.0 172.7 258.0 318.0

Table A.20: Insertions into 5 large sharded MongoDB. 5 sec sample frequency.

50

Distribution of revisions inserted
Instance Min. 1rd Qu. Median Mean 3rd Qu. Max.
0.00 40.00 122.00 98.09 144.00 254.00
0.00 32.25 138.50 107.50 157.80 230.00
0.0 32.0 119.0 95.5 141.0 212.0
0.0 34.0 126.0 104.4 155.0 276.0
0.0 35.5 128.0 103.5 151.0 265.0
0.00 32.25 117.00 95.36 143.00 223.00
0.00 32.25 126.00 98.37 144.80 202.00
0.0 35.0 134.0 106.1 156.0 240.0
0.00 32.00 121.00 97.68 140.00 270.00
0.0 32.0 132.0 104.7 156.0 222.0

Table A.21: Insertions into 10 large sharded MongoDB. 5 sec sample frequency.

51

	Summary
	Preface
	Table of Contents
	List of Figures
	Introduction
	Motivation
	Problem Specification
	Limitation
	Thesis Outline

	The Cloud
	PaaS vs IaaS
	Benefits and Disadvantages of Cloud Computing
	Windows Azure

	Scalability
	Defining scalability
	Quantifying scalability
	Universal Scalability Law

	Sharding
	MongoDB
	Queries
	Stored procedures
	Index support
	Consistent architecture
	Built in Sharding support
	High availability
	Existing cloud solutions

	Implementation
	MongoDB on Azure
	Configuration server
	Router server
	Database server

	Results and Analysis
	Measuring performance
	Selection of dataset

	Performing tests
	Results
	Bulk data insertion
	Measurement overview
	Summary

	Implementing MongoDB on Azure

	Conclusions
	Research questions
	Future work

	Bibliography
	Appendices
	Measurements
	Load results

