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Abstract
This thesis describes the techniques used in terahertz time-domain spec-
troscopy to determine the optical properties of layers that are thin compared
to the length of the terahertz pulse.

An iterative procedure is used to minimize the difference between the
measured transfer function and the expression for a Fabry-Pérot etalon
when calculating the complex refractive index, n̂(ω) + n(ω) + iκ(ω), while
simultaneously determining the thickness of the medium.

Measurements were performed on slabs of silicon with thicknesses of 50,
10 and 2 microns to test this approach. For all the samples, the determined
thickness was larger than expected and the optical parameters deviated
from the expected values. This could be caused by the rough surfaces of the
samples, which are not accounted for in the models presented here.

Absorbing media were simulated using the finite-difference time-domain
scheme to calculate a modeled THz pulse shape after propagation through
thin layers. Use of these modeled pulse shapes allowed retrieval of the
optical parameters and thickness in a self-consistent manner.





Sammendrag
Denne oppgaven omhandler målinger av den komplekse refraksjonsindek-
sen, n̂(ω) = n(ω) + iκ(ω) til et materiale i terahertzregimet (0.3-7 THz) ved
bruk av tidsdomenespektroskopi.

En iterative metode ble brukt til å minimisere forskjellen mellom den
målte overføringsfunksjonen og et uttrykk for en Fabry-Pérot etalon for å
beregne the komplekse refraksjonsindeksen samtidig som man bestemmer
tykkelsen til materialet.

Målinger ble gjort på tynne silisiumskiver med tykkelse 50,10 og 2
mikrometer for å teste beregningsmetoden. For alle prøvene ble tykkelse
funnet til å være tykkere enn de forventede verdiene. De optiske parame-
terne var også ulikt det som ble forventet. Dette kan skyldes at prøvene har
ru overflater, noe som ikke er tatt med i beregningene.

Absorberende medier ble simulert ved bruk av finite-difference time-
domain metoden for å beregne terahertzpulser som propagerer gjennom
tynne medier. De modellerte pulsene gjorde det mulig å beregne både
optiske parametre og tykkelsen til materialet.
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Nomenclature
Abbreviations
BBO β-Barium Borate

BS Beam-splitter

c.c. Complex conjugate

DFG Difference-Frequency Generation

FDTD Finite-Difference Time-Domain

FP Fabry-Pérot

GaP Gallium Phosphide

ITO Tin doped Indium Oxide

OR Optical Rectification

PC Photonic Crystal

SFG Sum-Frequency Generation

SHG Second Harmonic Generation

Si Silicon

TDS Time-Domain Spectroscopy

THz Terahertz

Symbols
µ0 Permeability in free space

ε0 Permittivity in free space
~E Electrical field strength
~M Magnetic field strength
~D Displacement field strength
~P Polarization

χ Electric susceptibility

σ Electric conductivity

σ ∗ Magnetic conductivity



Nomenclature

n̂(ω) Complex index of refraction

n(ω) Refractive index

κ(ω) Extinction coefficient

α(ω) Absorption coefficient

α Polarizability

γ Damping constant

ω0 Resonance frequency

τ Relaxation time

εs Static permittivity

ε∞ High-frequency permittivity
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Chapter 1

Introduction
Terahertz radiation, or T-rays, is electromagnetic radiation with frequencies
in the range of 1011 − 1013 Hz, in between the infrared and microwave re-
gions of the electromagnetic spectrum. During the last two decades, THz
technology has become involved in disciplines such as ultrafast spectroscopy,
security applications,1 and bio-medical imaging.2 In THz technology the
material response to an external electromagnetic field is studied. Rotational
transitions of molecules,3 large-amplitude vibrational modes of organic
compounds, lattice vibrations in solids,4 intraband transitions in semicon-
ductors and energy gaps in superconductors are all examples of interactions
between electromagnetic waves and matter in the THz-region. For instance,
rotational transitions of water vapor molecules couple strongly with THz
radiation. This causes a lot of the THz radiation to be absorbed when propa-
gating through air, i.e. there is high atmospheric opacity for THz-radiation.
This fact, on the one hand, severely limits the range of THz applications. On
the other hand, because of its strong attenuation in water, it is possible to use
THz radiation to detect anomalies or defects through small variations in the
amount of water in a system. Physical values of THz radiation at frequency
1 THz is shown in table 1.1.

Table 1.1: Physical values of radiation at frequency ν = 1 THz.

Physical quantity Relation Values in SI units

Wavelength λ = c/ν 0.3 mm = 300 µm
Period τ = 1/ν 10−12 s = 1 ps

Photon energy E = hν 4.14 meV
Temperature T = hν/kB 48 K

Terahertz time-domain spectroscopy (THz-TDS) is a powerful tool for
measuring the optical parameters of a material within a wide range of
frequencies. In this thesis, the focus lies on measuring very thin material
samples. When measuring thin samples, the Fabry-Pérot reflections must be
included in the calculations of the optical parameters. In such cases iterative
methods are required to retrieve the optical parameters. The interaction
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between THz pulses and thin material samples has been further investigated
by a simulation using the finite-difference time-domain (FDTD) scheme.

Material characterization and cataloging with THz-TDS is very impor-
tant in for future developments of THz applications, such as waveguides,
polarizers and metamaterials, such as photonic crystals.
In the next chapter some basic principles of electromagnetic theory will
be presented as well as some theory concerning the interaction between
electromagnetic waves and matter. The theory chapter also presents some
principles for generation and detection of THz pulses. In chapter 3, the
principles of terahertz time-domain spectroscopy are explained. Chapter 4
features an introduction to the Finite-Difference Time-Domain algorithm
for simulation of the propagation of electromagnetic pulse. The simulations
shown in this chapter will add to our understanding of how the THz pulse
interacts with different materials. Chapter 5 is a description of how the mea-
surements were conducted, and what assumptions have to be made in order
to be able to extract data from the measurements. The measurement data
and results are presented in chapter 6. In chapter 7 we discuss the results
found by the measurements and the simulataions. Chapter 8 Summarizes
the findings, and discusses what could be done as part of future work to
handle any problems found throughout the discussion.



Chapter 2

Theory
This chapter covers some general principles of electromagnetic theory, such
as the wave equation and the Fresnel equations. These will make it easier to
understand how light interacts with matter. A brief explanation will be given
on the properties of the Fabry-Perot etalon. This chapter also covers some
basic techniques for generation and detection of THz radiation. Most of the
theory presented here can be found in ’Nonlinear Optics’ by R. Boyd5 and
’Principles of Terahertz Science and Technology’ by Y.-S. Lee.6 Additional
references are given throughout the chapter when needed.

2.1 Fundamentals of electromagnetics
The entire theoretical basis of classical electrodynamics consists of Maxwell’s
equations

∇ · ~D = ρf , (2.1)

∇ · ~B = 0, (2.2)

∇× ~E = −∂
~B
∂t
, (2.3)

∇× ~H = ~Jf +
∂~D
∂t
, (2.4)

and the Lorentz force law

~F = q(~E + ~v × ~B), (2.5)

where ~E and ~B are the electric and magnetic field that constitute electro-
magnetic radiation and ρf and ~Jf are the free charges and currents in the

medium. The electric displacement field ~D and the magnetic field ~H are
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related to the fundamental fields by

~D ≡ ε0~E + ~P = ε0(1 +χ)~E = ε~E, (2.6)

~H ≡ 1
µ0
~B− ~M =

1
µ
~B, (2.7)

where ε,µ, ~P and ~M are the electric permittivity, the permeability, the polar-
ization and the magnetization of the material, respectively. The subscript
0 (see ε0) denotes the physical value of a system in vacuum. In most cases,
non-magnetic materials are considered, i.e. materials where ~M = 0, so that
µ = µ0. χ is the electric susceptibility of the material. It is related to the
relative permittivity of the system by the relation

εr =
ε
ε0

= 1 +χ. (2.8)

For convenience we can express the polarization as a linear and a non-linear
term:

~P = ~P (1) + ~P (2) + ~P (3) + ...

= ~P (1) + ~P (NL), (2.9)

so that the displacement field can be expressed as

~D = ε0~E + ~P (1) + ~P (NL)

= ε0ε
(1) · ~E + ~P (NL), (2.10)

where ε(1) is a dielectric tensor, which reduces to a scalar for isotropic media.
We can assume that ~Jf is linear with the electric field. This is for example

a good approximation for metals, where the dependence on ~J on ~E is well
described by the Drude model of electrical conduction. We also assume that
we can neglect free charges, i.e.

~Jf = σ ~E, (2.11)

ρf = 0, (2.12)

where σ is the electric conductivity of the medium. By taking the curl of
eq. (2.3) and using the relations found in eqs. (2.6) and (2.7) we find

∇2~E −∇(∇ · ~E) = ε0ε
(1)µ0

∂2~E

∂t2
+µ0σ

∂~E
∂t

+µ0
∂2~P (NL)

∂t2
. (2.13)
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In a homogeneous medium, the second term on the left hand side is zero
due to the fact that ∇ · ~D = 0. This implies that ∇ · ~E = 0. We are therefore
left with

∇2~E = σµ0
∂~E
∂t

+ ε(1)ε0µ0
∂2~E

∂t2
+µ0

∂2~P (NL)

∂t2
. (2.14)

The nonlinear polarization plays a key role in many process for generation of
THz radiation, e.g. through a process known as optical rectification, which
will be discussed further in section 2.4.2. For a linear dielectric medium
with no conductivity, σ = 0, and ε(1) = n̂2, where n̂ is the complex index of
refraction, we obtain the wave equation in its simplest form

∇2~E =
1
v2
∂2~E

∂t2
, (2.15)

where v = c/n̂ is the phase velocity of the wave within the medium and ε0µ0 =
1/c2. One solution of this equation is a linearly polarized monochromatic
wave. As an example, consider such a wave propagating in z-direction with
frequency ω:

E(z, t) = E0e
i(kz−ωt). (2.16)

The wave-number, k is related to the aforementioned complex refractive
index n̂ by the relation

k =
2πn̂
λ0

=
2πνn̂
c0

=
ωn̂
c0

(2.17)

where λ0, c0 and ν are the wavelength in vacuum, the speed of light in
vacuum and the frequency, respectively. ω = 2πν is the angular frequency.
The complex refractive index is frequency dependent and describes the
optical properties of the material. It can be expressed as

n̂(ω) = n(ω) + iκ(ω) = n(ω) + i
α(ω)c

2ω
, (2.18)

where n(ω) is the refractive index, indicating the phase velocity, κ(ω) ≥ 0,
is the extinction coefficient and α(ω) is the absorption coefficient, which
indicates the amount of absorption loss when the wave propagates through
the medium. The reason some people like to write α instead of κ is that κ
has units 1, while α has units m−1, and thereby gives a measure of how large
the absorption is for a unit of length. The solution of eq. (2.15) has the form

E(z, t) = E0e
iω(n(ω)z/c−t)e−ωκ(ω)z/c (2.19)

= E0e
iω(n(ω)z/c−t)e−α(ω)z/2. (2.20)
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2.2 Electromagnetic interactions with dispersivemedia.
The way a medium reacts to external electromagnetic radiation is character-
ized by dispersion and absorption, i.e. n(ω) and κ(ω). All electromagnetic
phenomena involve interactions between electromagnetic fields and charged
particles. An electromagnetic wave can cause charged particles to move,
which in turn causes the particles to radiate. In an absorptionless medium,
κ = 0. The intensity of the light is not reduced as it passes through this sort
of medium. In a dispersive medium, different frequencies of light travel at
different speeds. They are also refracted differently at the materials surface.
Sunlight refracting and reflecting in dispersive water bubbles is what causes
a rainbow to appear in the sky. Some materials even have resonances, which
makes them react strongly to light of specific frequencies. Some of these
materials can be described by simple models, which will be explained in
this section.

2.2.1 The Lorentz model
The Lorentz model describes the electrons in a medium as driven harmonic
oscillators. Since the electrons are much, much lighter than the nuclei, we
can assume that the nuclei are at rest. In this model the electron is connected
to the nucleus as a mass on a spring connected to a wall. In the presence of a
monochromatic wave the oscillator is described as

ẍ+γẋ+ω0x =
q

m
E0e
−iωt , (2.21)

where x is the electrons displacement from equilibrium, γ is a damping con-
stant, ω0 is the resonance frequency of the electron and q andm is the charge,
and mass of the electron, respectively. The external monochromatic field
has amplitude E0 and driving frequency ω. The solution of this equation for
the displacement of the electron is

x(t) =
q

m
E0e
−iωt

ω2
0 −ω2 − iγω

. (2.22)

The oscillating charges in the medium carry an electric dipole moment

p(t) = qx(t). (2.23)

For a number of atoms, N , the bulk polarization induced in the medium by
the electric field is

P (t) =Np(t) = ε0χE0e
−iωt . (2.24)
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From the relations eqs. (2.6) and (2.8), the relative permittivity can be
expressed as

εr (ω) = 1 +χ(ω) = 1 +
Nq2

mε0

1

ω2
0 −ω2 − iγω

. (2.25)

This expression can be expressed by the high-frequency and the static limit
(ω 7→ ∞ and ω 7→ 0) as

εr (ω) = ε∞ +
ω2

0(εs − ε∞)

ω2
0 −ω2 − iγω

, (2.26)

where ε∞ = 1 is the high-frequency limit and εs = 1 +ω2
0Nq

2/ε0 is the static
limit. The real and imaginary parts of εr are related to the complex refractive
index by the relations

n2 =
1
2

(<(ε)2 +=(ε)2)1/2 +
<(ε)

2
(2.27)

κ2 =
1
2

(<(ε)2 +=(ε)2)1/2 − <(ε)
2

. (2.28)

The frequency dependences of the real and imaginary parts of the relative
permittivity are shown in Fig. 2.1. The real and imaginary parts of n̂ = n+ iκ
have the same forms as ε

′
and ε

′′
.
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Figure 2.1: The real and imaginary parts of the relative permittivity. The real and
imaginary parts of the refractive index have the same shapes. The plot is made with
a damping term γ = 0.3 and the term Nq2/mε0 has been set to 1. Decreasing γ
increases the magnitude of the resonance peak.

2.2.2 The Debyemodel for dielectric relaxation
When an eletric field is applied to a material, it does not become instantly
polarized. In the time domain we express the polarization as

~P (t) = ε0

∫ t

−∞
χ(t − t′)~E(t′)dt′ , (2.29)

which by the convolution theorem leads to

~P (ω) = ε0χ(ω)~E(ω). (2.30)

In analogy, the material does not instantly revert back to equilibrium when
the applied field is turned off. For a polarization, ~P =Nα~E, where α is the
polarizability, N is the number of atoms and ~E is the external electric field,
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the simplest equation of motion for the polarization is given by7

τdP (t)/dt + P (t) =NαE(t). (2.31)

If the external electric field is removed it is easily seen that the polarization
within the material decays exponentially

P (t) = P (0)e−t/τ . (2.32)

τ is called the Debye relaxation time. The exponential decay of the polariza-
tion in the material is called the Debye relaxation process. In the presence
of the external electric field eq. (2.31) is of the form

ẏ(t) = τ−1a(t)− τ−1y(t), (2.33)

which has the general solution

y(t) = e−t/τ
[
y(−∞) + τ−1

∫ t

−∞
a(t′)et

′ /τdt′
]
. (2.34)

We assume that the polarization disappears after the electric field vanishes,
so we can set P (−∞) = 0. If we assume that the electric field is of the form
E(t) = E(ω)e−iωt , the integral can be solved analytically:

P (t) =NE(ω)e−t/τατ−1
∫ t

−∞
a(t′)et

′(1/τ−iω)dt′ (2.35)

=
NE(ω)ατ−1e−iωt

τ−1 − iω
(2.36)

=
NE(ω)α
1− iωτ

e−iωt . (2.37)

The fourier transform of the polarization becomes

P (ω) =
NE(ω)α
1− iωτ

= χ(ω)E(ω), (2.38)

so the dielectric constant, ε, becomes

ε = 1 +χ = 1 +
Nα

1− iωτ
(2.39)

= 1 +
Nα

1 + (ωτ)2 + i
Nαωτ

1 + (ωτ)2 (2.40)
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The dielectric constant is usually expressed in terms of the zero frequency
and high frequency dielectric constants, ε0 and ε∞,

ε(ω) = ε∞ +
εs − ε∞
1− iωτ

(2.41)

The real and imaginary parts of the dielectric constant can now be expressed
as

εr (ω) = ε∞ +
εs − ε∞

1 + (ωτ)2 (2.42)

εi(ω) =
(εs − ε∞)ωτ

1 + (ωτ)2 . (2.43)

Many materials exhibit multiple relaxation processes. The easiest way to
describe these is to assume multiple first-order processes, resulting in a sum
of Debye processes.

ε(ω) = ε∞ +
N∑
j=1

∆εj
1− iωτj

, (2.44)

where ∆εj = εj − εj+1. The static term, εs is the same as ε1 . εj is an
intermediate-frequency term. A medium can also have multiple Lorentz-
resonances, or even both Lorentz and Debye terms. As an example, consider
the two-term Debye equation for water,

ε(ω) = ε∞ +
εs − ε2

1− iωτ1
+
ε2 − ε∞
1− iωτ2

, (2.45)

where ε2 is an intermediate frequency limit. τ1 and τ2 describe the slow and
fast relaxation processes of water, respectively. Figure 2.2 shows the real and
imaginary parts for the Debye equation for water in the THz regime.
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Figure 2.2: The real and imaginary parts of the dielectric permittivity for water. The
values are: ε∞ = 3.5, εs = 78.4, ε2 = 4.9, τ1 = 8.2 ps and τ2 = 0.18 ps.8

2.3 Reflection and transmission at interfaces
From Maxwell’s equations it can be shown that the boundary conditions for
the electric and magnetic field incident on a linear dielectric medium are

E‖1 = E‖2, (2.46)

ε1E
⊥
1 = ε2E

⊥
2 , (2.47)

1
µ1
B‖1 =

1
µ2
B‖2, (2.48)

B⊥1 = B⊥2 , (2.49)

where the subscripts 1 and 2 denote the fields on each side of the interface
and the superscript symbols ‖ and ⊥ denote the components of the fields
that are parallel and perpendicular to the boundary, respectively. The
direction of the electric field is commonly referred to as the polarization
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of the radiation. The cases of plane electromagnetic waves with different
polarization incident on a flat surface are shown in Fig. 2.3. The light
is defined as either p-polarized or s-polarized when the electric field of
the incident wave is parallel and perpendicular, respectively, to the plane
of incidence (i.e. the plane which contains the surface normal and the
propagation vector ~k of the incident field). The "s" stands for "senkrecht",
which is the German word for perpendicular. For p-polarization, the electric
field lies in the plane of incidence and its components are both parallel and
perpendicular to the boundary, while for s-polarization all components of
the electric field are parallel to the boundary.

θi θr

θt

~ki

~Ei

~Hi

⊙• ~kr

~Er

~Hr⊗

⊙•
~kt

~Et

~Ht

θi θr

θt

~ki

~Ei~Hi

⊙• ~kr

~Hr

~Er⊙•

⊙•
~kt

~Et

~Ht

ni

nt

p - polarization s - polarization

1

Figure 2.3: p-polarization: The Electric field (blue) lies in the plane of incidence.
s-polarization: The Magnetic field (red) lies in the plane of incidence.

The subscripts i, r, and t in Fig. 2.3 stand for incident, reflected and
transmitted, respectively. The angles θi ,θr and θt are the angles between
the propagation vectors for the incident, reflected and transmitted light, and
the surface normal. The angles are related by

θi = θr , (2.50)

ni sinθi = nt sinθt , (2.51)

where the last of these two equations is known as Snell’s law. The boundary
conditions determine the ratios of the reflected and transmitted field am-
plitudes to the incident field amplitude. These relations are known as the
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Fresnel equations

rs =
Esr
Esi

=
ni cosθi −nt cosθt
ni cosθi +nt cosθt

, ts =
Est
Esi

=
2ni cosθi

ni cosθi +nt cosθt
, (2.52)

rp =
E
p
r

E
p
i

=
nt cosθi −ni cosθt
nt cosθi +ni cosθt

, tp =
E
p
t

E
p
i

=
2ni cosθi

nt cosθi +ni cosθt
. (2.53)

We define the reflected and transmitted power as

R = |r |2, (2.54)

T =
nt
ni
|t|2. (2.55)

2.3.1 Fabry-Perot etalon.
When light enters a material, some of it is reflected and some of it passes
into the medium. At the other end of the sample, the same thing happens.
The reflecting material surfaces constitue the Fabry-Pérot etalon. As light
propagates back and forth within the sample, some parts of the light is let
out each time it collides with the sample surface. The pulses of light from
each collision with the sample surface are called Fabry-Pérot reflections
or multiple reflections. Figure 2.4 shows the electromagnetic field being
reflected and refracted at an angle at both interfaces of a sample. The
angles between the surface normal and the propagation direction of light
are renamed θ outside the sample and β inside the sample, in order to avoid
subscripts.

l

n2n1 n1

θ
β

m

d

r21

t12t21r21P
2(ω, d)

t12t21r
3
21P

4(ω, d)

t12t21P (ω, d)

t12t21r
2
21P

3(ω, d)

t12t21r
4
21P

5(ω, d)

1

Figure 2.4: Multiple reflections and transmissions of an electromagnetic wave pass-
ing through a medium.
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The transmitted electric field can be expressed as the sum of multiple
reflections.

Et(ω) = Ei(ω)t12P (ω,d)t21 +Ei(ω)t12P (ω,d)3r2
21t21

+Ei(ω)t12P (ω,d)5r4
21t21 + ... (2.56)

= Ei(ω)t12P (ω,d)t21

δ=∞∑
δ=0

P (ω,d)δrδ21 (2.57)

= Ei(ω)t12P (ω,d)t21
1

1− (P (ω,d)r21)2 (2.58)

where P (ω,d) = exp[−in̂ωd/c] is the propagation coefficient over a distance,
d = l/ cosβ, within the medium. The distance the pulse would have propa-
gated through air if the sample wasn’t there is m = d cos(θ − β), where θ ≥ β.
The coefficients t12, t21, r12 and r21 are the frequency-dependent Fresnel
coefficients.

When light passes into the medium, the phase velocity, v, and the wave-
length of the light, λ, are altered due to the change in the refractive index, n,
of the medium. If the thickness of the sample equals an integer number of
halfwavelengths, the light with these wavelengths (within the medium) will
completely pass through the sample.

v = c0/n (2.59)

λ = λ0/n (2.60)

where c0 and λ0 is the speed of light and the wavelength in vacuum respec-
tively. The frequency of the light remains the same within the medium as
it is in vacuum. Figure 2.5 shows the transmitted intensity for different
cases. We see that a thicker medium will allow light of more frequencies to
completely pass through due to the fact that the thickness coincides with
more half-lengths of wavelengths. Another thing to take note of is the fact
that the dips between the transmission peaks are steeper for higher refrac-
tive indices due to the fact that more light is reflected on a surface with
higher refractive index. The completely transmitted frequencies become
more distinct compared as the reflectivity increases. A Fabry-Pérot etalon
with high reflectivity is said to have high finesse.

2.4 Generation and detection of THz pulses
In several schemes for generation of broadband THz radiation, the electric
field in the time domain takes the shape of nearly single-cycle pulses. Some
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Figure 2.5: Transmitted intensities through different Fabry-Pérot etalons.

of the methods used to generate and detect such pulses will be explained in
this section.

2.4.1 Photoconductive antenna
A Photoconductive (PC) antenna is an electrical switch based on the produc-
tion of electron-hole pairs in a semiconductor as a result of incident photons.
The antenna consists of two metal electrodes embedded in a semiconductor
with an applied DC-field between as shown in Fig. 2.6.

Figure 2.6: Photoconductive antenna and photoconductive switch.9

An incident optical pulse with photons whose energy is high enough
to overcome the bandgap of the semiconductor creates electron-hole pairs
between the electrodes embedded in the semiconductor. These pairs usu-
ally last shorter than the pulse duration (which is usually around 10-100
fs), before they are absorbed in the material. During their lifetime, the
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electrons are accelerated by the DC bias field following eq. (2.5) creating a
transient current ~J(t) and the induced polarization creates a time-dependent
field opposing the DC field. The transient field acts as a source term for
electromagnetic radiation

∇× ~ETHz(t) = −µ∂
~HTHz(t)
∂t

, (2.61)

∇× ~HTHz(t) = ~J(t) +
∂ε(t)~ETHz(t)

∂t
, (2.62)

where ~ETHz(t) and ~HTHz(t) together constitute the radiated THz field. In the
time-domain the radiated electric field will have an almost single-cycle form.
Thus, in the frequency domain it will be a broadband pulse. When there is
no longer any incoming optical pulse and the THz pulse has been radiated,
the semiconductor recovers. THz radiation can be detected following the
same principles as the generation. The geometry is shown on the right
side of Fig. 2.6. Instead of a bias field between the electrodes, we measure
the current due to charge movement occurring when a THz field and an
optical pulse are present in the semiconductor at the same time; the optical
pulse creates the carriers and the THz electric field accelerates them. The
produced current is a convolution between the THz field and the transient
surface conductivity σs,

J(t) =
∫ t

−∞
σs(t − τ)ETHz(τ)dτ, (2.63)

where t is the arrival time of the optical pulse. By varying the arrival time of
the optical pulse we can measure the electric THz field as a function of time.

2.4.2 Optical rectification
Optical Rectification (OR) is a second-order non-linear optical effect which
consists of the generation of DC electric polarization within a nonlinear
medium as a result of an intense incident optical beam. The principal
of THz generation through optical rectification is shown in Fig. 2.7: An
optical pulse is incident on a nonlinear medium, in which the field aligns the
electrons in such a way as to create a DC electric field within the medium. As
the pulse intensity varies, so does the strength of the DC field. The varying
field radiates a THz pulse.
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Figure 2.7: Optical Rectification.9

The induced polarization of a material is described by

P (t) = ε0[χ(1)E(t) +χ(2)E2(t) +χ(3)E3(t) + ...]

≡ P (1)(t) + P (2)(t) + P (3)(t) + ..., (2.64)

where χ(n) is the nth-order susceptibility, where n is an integer number. The
electric field is given by

E(t) = E
′
(t)e−iωt + c.c. (2.65)

where E
′
(t) is the pulse envelope, ω is the carrier frequency and c.c. stands

for the complex conjugate of the field, i.e. E
′∗(t)e+iωt . For a laser pulse

with more than one distinct frequency component, the electric field and the
resulting polarization can be expressed as

E(t) = E′1(t)e−iω1t +E′2(t)e−iω2t + c.c., (2.66)

P (t) = ε0χ
(2)[E

′2
1 (t)e−2iω1t +E

′2
2 (t)e−2iω2t + 2E′1(t)E′2(t)e−i(ω1+ω2)t

+ 2E′1(t)E
′∗
2 (t)e−i(ω1−ω2)t + c.c] + 2ε0χ

(2)[E′1(t)E
′∗
1 (t) +E′2(t)E

′∗
2 (t)]. (2.67)

The terms oscillating at 2ω1 and 2ω2 are second harmonics of their respec-
tive input frequencies. This is known as Second Harmonic Generation (SHG).
The terms oscillating at frequency ω1 +ω2 are known as a Sum-Frequency
generated (SFG) terms since they oscillate at a frequency which is the sum of
the two input frequencies. SHG is a special case of SFG, where ω1 =ω2. The
terms oscillating at frequency ω1 −ω2 are known as a Difference-Frequency
Generated (DFG) terms since they oscillate at a frequency which is the differ-
ence between the two input frequencies. Optical rectification is a special case
of DFG, where ω1 = ω2, i.e. the difference frequency term becomes static.
However, if the incident optical field is time-dependent, so is the optical
rectification term, and a time-varying polarization leads to electromagnetic
radiation and this property is used to generate THz pulses.
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2.4.3 THz generation in air
In 1993 Hamster et al.10 first demonstrated the generation of THz waves
through an intense laser-plasma interaction in air. They used a 800 nm
wavelength pulse which, when focused generated a large density difference
between ionic and electronic charges in the air. This happened because the
pulse was short enough to inertially confine the ions. The ponderomotive
forces involved in the charge separation resulted in a transient current. Later,
Cook et al.11 reported that a higher intensity THz-pulse could be generated
by mixing the fundamental 800 nm pulse with its second harmonic, 400 nm
in a third-order non-lienar process known as four-wave mixing (FWM). This
is the generation technique that we use for the experiments conducted in this
thesis. The fundamental pulse is focused by a lens and passes through a type-
I β-Barium Borate (BBO) crystal where the second harmonic is generated.
The two waves interact at the the focal point of the lens and creates a
plasma. The THz radiation is generated from the transient photocurrent of
the charges that are driven by the asymmetric fields of the superposition
of the fundamental and the second harmonic. The generated THz field is
proportional to the nonlinear current that arises, J (3)(t),

ETHz(t) ∝
∂
∂t
J (3)(t). (2.68)

The Fourier transform yields the relation

ETHz(ωT ) ∝ −iωTHzJ (3)(ωT ) + c.c., (2.69)

with

J (3) = σ (3)E2ωE
2
ωe
−iφ, (2.70)

where Eω and E2ω is the fundamental and the second harmonic, respectively,
and φ is the phase difference between them. σ (3) is the third-order nonlinear
conductivity. The result is that

ETHz ∝ σ (3)E2ωE
2
ω sin(φ). (2.71)

2.4.4 Electro-optic detection
Electro-optic detection (EOD) exploits the same principles as optical recti-
fication to directly measure the incident electric field of the THz pulse in
the time-domain. The underlying mechanical effect is the Pockels effect:
An electric field induces birefringence proportional to the input field in a
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nonlinear crystal. The induced birefringence alters the polarization of the
input field. By measuring the different polarization components we can
determine the birefringence, and thus also the magnitude of the electric
field. Pockels effect is a second-order nonlinear effect. The polarization can
be expressed as

P 2
i (ω) = 2

∑
j,k

ε0χ
(2)
ijk(ω,ω,0)Ej (ω)Ek(0) (2.72)

=
∑
j

ε0χ
(2)
ij (ω)Ej (ω), (2.73)

where

χ
(2)
ij = 2

∑
k

χ
(2)
ijk(ω,ω,0)Ek(0), (2.74)

is the field induced susceptibility tensor. A schematic of the experimental
setup for electro-optic detection is shown in Fig. 2.8: A THz pulse and
a linearly polarized optical pulse are combined and are then incident on
the electro-optic crystal. Depending on the strength of the THz pulse, the
polarization of the combined pulse varies, e.g. if there is no THz pulse, the
optical pulse remains linearly polarized. Then the pulse passes through a
compensator, such as a quarter-wave plate; when there is no THz field, the
optical pulse goes from linear to circular polarization. When there is a THz
field, the combined pulse becomes elliptical. Thereafter, the pulse is split
into two orthogonal components. If the pulse is circular, the components
have the same magnitudes, if they are elliptical there is a difference in
intensity, which can be measured by the balanced photodiodes.
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Figure 2.8: Electro-optic detection.9

Let x and y be the crystal axes of the EO-crystal. When an electric field is
applied to the EO-crystal, the axes of the electrically induced birefringence,
x′ and y′ are at angle of 45◦ in relation to x and y. If the input light is
propagating along the z-axis and is polarized along the x-axis, the output
light after passing through the electro-optic crystal and the compensator
can be expressed as12(

Ex
Ey

)
=

(
cos(π/4) −sin(π/4)
sin(π/4) cos(π/4)

)(
exp(iδ) 0

0 1

)(
cos(π/4) −sin(π/4)
sin(π/4) cos(π/4)

)(
E0
0

)
,

(2.75)

where δ = Γ0 + Γ is the phase difference between the x′ and y′ polarizations.
Γ0 is the static phase difference due to the intrinsic birefringence of the
EO-crystal and the compensator, while Γ is the dynamic phase difference
due to the birefringence induced by the applied THz field. The intensity is
written as, (

Ix
Iy

)
=

1
2
|E0|2

(
1 + cos(δ)
1− cos(δ)

)
= I0

(
cos2(δ/2)
sin2(δ/2)

)
. (2.76)

Note that Ix + Iy = I0, as long as there is no absorption in the electro optic
crystal. The static term, Γ0, is also known as the optical bias, and is often set
to π/2 for balanced detection. In most cases the dynamic phase term, Γ , is
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very small, so we can write(
Ix
Iy

)
= I0

(
cos2(π/4 + Γ /2)
sin2(π/4 + Γ /2)

)
(2.77)

=
I0
2

(
1− sin(Γ )
1 + sin(Γ )

)
(2.78)

≈ I0
2

(
1− Γ
1 + Γ

)
. (2.79)

Now that the fundamental theory on electromagnetic interactions and tera-
hertz pulses have been covered, it is time to move on to how one can perform
measurements with a technique called terahertz time-domain spectroscopy,
and how it can be used to determine the optical parameters of materials over
a wide range of frequencies.





Chapter 3

Terahertz time-domain
spectroscopy
This chapter explains the principles of performing measurement with tera-
hertz time-domain spectroscopy and how to aquire knowledge of the optical
parameters of the measured sample from the raw data.

3.1 Measuring with terahertz time-domain spectroscopy
Using devices for generating and detecting broadband THz pulses, one can
measure changes in both amplitude and phase for the emitted pulse induced
by a sample. In other words, we directly measure the THz electric field
E(t), not just the intensity I(t) ∝ |E(t)|2. Thus, we are provided enough
information to determine the absorption and the refractive index of the
sample simultaneously. This technique is called Terahertz Time-Domain
Spectroscopy (THz-TDS).

When measuring a sample, two measurements are performed; One where
the THz pulse passes through the setup undisturbed and one where the
sample is placed along the pulse path. The reason for doing these two
measurements is that by comparing the frequency spectra of the two pulses,
it is possible to see how the material has affected the pulse. The pulse
propagating through air will be refered to as the reference pulse and be
denoted as Er , while the pulse affected by the sample will be refered to as
the sample pulse, Es.

Measurements can be taken both in reflection mode and in transmission
mode. In transmission mode it is enough to simply set the sample in the
path of the THz pulse. The measured pulse will be delayed compared to the
reference pulse. When performing THz-TDS in reflection mode the reference
pulse is reflected by a mirror. It is crucial that the mirror and the sample
surface are at the exact same distance from the emitter and are angled exactly
the same so that the two pulses propagate over the same distance. This is
difficult to achieve in any practical case, and may lead to some uncertainties
in the phase shift. Hence, it is a lot easier to perform measurements in
transmission mode. However, for samples has high absorption, it may be
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impossible to perform measurements in transmission mode if the sample
absorbs the THz pulse to such a degree that the signal is indistinguishable
from noise. In order to perform transmission mode measurements of such
samples, the sample must be sufficiently thin, so that the THz pulse is not
attenuated to such a degree that it is distinguishable from the noise floor.
Measuring thin samples causes additional complications since we are forced
to include Fabry-Pérot reflections in our calculations. The experiments
performed in this thesis are all in transmission mode.

3.2 Calculating the optical parameters.
To obtain knowledge of the optical parameters of the sample from the
measurements, a Fourier transform is performed on the measured electric
field,

E(ω) =
∫ ∞
−∞
E(t)e−iωtdt. (3.1)

When performing THz-TDS measurements, we distinguish between thin and
thick samples, where a thick sample is thicker than the geometrical length
of the incident pulse. This results in distinguishable Fabry-Pérot reflections.
A thin sample, on the other hand, is thinner than the pulse’s geometrical
length.13 The reflections from a thin sample may overlap, causing the pulse
to change shape. Another way of distinguishing between thick and thin
samples is is to require that the THz signal reaches zero between reflections
for a thick sample.14 The pulse width has many definitions, but the most
commonly used definition in experimental measurements is the Full-Width-
Half-Maximum (FWHM), τFWHM , which is the time between the furthest
separated points that have half of the pulse’s peak intensity.15 The FWHM
for the pulses in this experiment were τFWHM ≈ 0.53 ps. This corresponds to
an optical thickness of ≈ 160 µm in vacuum. The pulse is compressed inside
the medium by a factor equal to the refractive index. The optical thickness
of a material is the product of the materials physical thickness and the index
of refraction, lopt = nl. For a thick sample, adjusting the measurement time
to include only the first transmitted pulse is no trouble at all. In cases such
as this, we can readily extract the sample’s optical parameters by looking at
the fourier transform of the single transmitted pulse,

Es(ω) = E0(ω)t12t21e
in̂(ω)ωd/c, (3.2)

= E0(ω)t12t21e
−κ(ω)ωd/cein(ω)ωd/c, (3.3)

= E0(ω)t12t21e
−α(ω)d/2 ein(ω)ωd/c (3.4)
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where E0(ω) is the incident pulse, t12 and t21 are the frequency-dependent
Fresnel coefficients from when the light passes into and out of the sample.
By dividing the fourier transform of the pulse passing through a sample by
the Fourier transform of a pulse passing through air, the complex transfer
function H(ω) is obtained,

H(ω) =
Es(ω)
Er (ω)

= T (ω)eiφ(ω) = t12t21e
−α(ω)d/2ei(n(ω)d−nairm)ω/c. (3.5)

If we limit the analysis to normal incidence, the cosine terms in the Fresnel
coefficients can be ignored and the propagation distances, m and d, for the
reference and sample pulses can both be set to the thickness of the material,
l. See Fig. 2.4. If the analysis is limted to materials with low absorption, the
Fresnel coefficients are real-valued, and the equations are easily solved in
order to obtain the complex refractive index,16

n(ω) = 1 +
φ(ω)c
ω l

(3.6)

α(ω) = −2
l

ln
(

(n(ω) +nair )2

4n(ω)
T (ω)

)
. (3.7)

When solving eqs. (3.6) and (3.7) the thickness of the sample, l, constitutes
the main error for determining the optical properties of the material by THz
TDS.17 By using the wrong sample thickness the resulting optical properties
will oscillate as functions of frequency. Therefore, the best way of accurately
determining the complex refractive index of the material is to simultaneously
determine its effective thickness. We do this by measuring the oscillation
amplitude for various thicknesses and correspondingly choose the thickness
with the least oscillations as the correct thickness. An example is shown in
Fig. 3.1, samples of different thicknesses have been attempted to fit eq. (2.56)
with parameters l = 50 µm and n̂ = 3.42 + i0. The oscillation amplitudes are
lower for thicknesses closer to the real thickness.

For a thin sample, i.e. a sample which has a pulse width shorter than the
optical thickness of the sample, the multiply reflected pulses are not easily
separated, and the Fabry-Perot terms from eq. (2.56) must be included in the
transfer function. Figure 3.2 shows two THz-pulses that have passed through
a medium with no dispersion and no absorption, but for two different
thicknesses of the medium. For the thick sample, the signal reduces to
zero between the multiple reflections, which are easily distinguished. For
the thin sample, the pulse seems broader than for the thick sample. The
multiple reflections are so close to each other that they are indistinguishable.
An iterative procedure is required to deterine the optical parameters when
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1 2 3 4 5 6 7
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Frequency [THz]

E
x
ti
n

c
ti
o

n
 c

o
e

ff
ic

ie
n

t,
 κ

 

 

46

48

50

52

54

(b) Extinction coefficient

Figure 3.1: Optical parameters for various thicknesses (in microns).
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(a) Thin sample. Optical pathlength:
30µm.
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(b) Thick sample. Optical pathlength:
600µm.

Figure 3.2: THz pulses that have passed through samples of different thickness

multiple reflections are included in the measurement.. Duvillaret et al14,17

were the first to develop such a procedure in 1996. Many improvements
and variations have been suggested over the years.18–21 The core of the the
iterative procedure is to minimize the difference between the measured
transfer function H(ω) and an analytical expression Ĥ(ω). Since the transfer
function is complex there is error in both the phase, P (ω), and the magnitude,
M(ω).

P (ω) = ∠Ĥ(ω)−∠H(ω), (3.8)

M(ω) = |Ĥ(ω)| − |H(ω)|. (3.9)

The error for any given frequency can be expressed as

Error(ω) = |P (ω)|+ |M(ω)|. (3.10)



3.2. Calculating the optical parameters. 27

By minimizing the error by adjusting n(ω) and κ(ω) we find the analytical
expression Ĥ(ω) closest to the measured transfer function H(ω). From the
measurements, the difference in arrival time for the highest magnitude of the
reference pulse and the sample pulse, ∆t, is found. Knowing the difference
in arrival times, i.e. how much the pulse is delayed due to passing through
the medium, an initial guess can be made of the refractive index of the
medium,

nguess =
c0∆t
l

+nair , (3.11)

where l is the assumed thickness. In addition we make an inital guess at the
extinction coefficient from the relation between the maximum amplitude of
the reference and sample spectra. It is assumed that the attenuation of the
maximum of the THz pulse in the sample is given by the following relation20

|Es,max | = |Er,max |exp
(
− ω
c0
κ(ω)l

)
, (3.12)

so for every frequency, the algorithm starts looking for the correct value of
κ(ω) near

κguess = − c0

lω
log

( |Es,max |
|Er,max |

)
. (3.13)

The length of the measurement in time decides the number of reflections
included in the expression. If tmax is the time measured from the peak of the
reference pulse until the end of the measurement, the number of reflections,
δ, can be expressed as20

δ ≤ tmaxc0

2nguess
− 1

2
. (3.14)

In this thesis the Nelder-Mead Simplex method has been used to minimize
the error, as suggested by Pupeza et al.20 The Nelder-Mead algorithm is
explained in appendix A. Many methods have been proposed to determine
which thickness causes the least oscillations. The most common method is
to calculate the Total Variation (TV) of degree one for a sample thickness, l,
given by the equations18,20

D(m) = |n(m− 1)−n(m)|+ |κ(m− 1)−κ(m)| (3.15)

T V (l) =
∑
m∈BW

D(m). (3.16)



28 Chapter 3 . Terahertz time-domain spectroscopy

The idea is to sum up the deviation between neighbouring values of the
optical parameters within the bandwidth (BW). For extremely thin samples,
the Fabry-Pérot period extends over several GHz, and thus the major contri-
butions to the TV-values are noise and dielectric dispersion, and is therefore
not accurate enough. As an alternative, Scheller et al.21 proposed to per-
form a Fourier transform on the optical parameters within the bandwidth
of the measurements to determine the oscillation strength. The Fourier
transformed values lie in a so-called Quasi - Space (QS) with units of time.
The oscillation strength appears as a spike in QS. The discrete QS-values,
QSk are computed as

QSk =
N−1∑
n=0

[y(ωn)e−i2πkn/N ], k = 0,1, ...,N − 1, (3.17)

where y(ωn) represents an optical parameter and N is the amount of sam-
pling points. It is usually advantageous to use the real part of the refractive
index n(ω) as y(ωn) since it is less sensitive to amplitude fluctuations. In
Quasi-Space, the abscissa in units of time is xQS = 2π/ω. However, it is con-
venient to plot the QS-values against the normalized abscissa LQS = xQSc0/2,
which has a unit of distance. The maximum value within the range

Lmin =
c0

2n∆f
, (3.18)

Lmax =
1
df

c0

4n
= c0

Tmax
4n

, (3.19)

is an indicator for the oscillation strength. Here ∆f is the bandwidth, df
is the spectral resolution and Tmax is the end of the time-window of the
measurement. The maximum value manifests itself as a peak at the optical
thickness of the sample. Equation (3.18) accounts for the distinguishabil-
ity of the QS-peak from its neighbouring values and consequently for the
condition of comprising at least one single period of oscillation within the
spectral window. Equation (3.19) is equivalent to the Nyquist-Shannon sam-
pling theorem and the occurence of at least one Fabry-Pérot reflection in the
time-domain of the measurement.21 The Quasi-Space values as a result of a
Fourier transform of the refractive index shown in Fig. 3.1(a), are shown in
Fig. 3.3. It is clear that the peaks are higher for the thicknesses where the
oscillations have the largest amplitudes.
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Figure 3.3: Quasi-Space values from the Fourier transform of n(ω) from Fig. 3.1(a).
The peaks are located at LQS = 174 µm, which is very close to optical thickness of
the material lopt = n(ω)l = 171 µm.





Chapter 4

Simulationmethods
This chapter describes the Finite Difference Time Domain (FDTD) algorithm,
which can be used to simulate the propagation of an electromagnetic pulse
passing through a medium. The FDTD method is able to simulate a pulse
passing through a medium with either Lorentz- or Debye-permittivities.a

This allows us to watch how the pulse propagates through the different
media. THz FDTD simulations have been found to be in good agreement
with measurements of both layered structures22 and cancerous tissue.23 This
chapter offers a brief description of the algorithm based on ’Computational
Electrodynamics - The Finite Difference Time Domain Method’ by Allen
Taflove24 and ’Computational Electromagnetics’ by Bondeson et al.25

4.1 Finite Difference TimeDomain algorithm
The Finitie-Difference Time-Domain (FDTD) scheme is a numerical analy-
sis technique used to find approximate solutions of a system of differential
equations. From Maxwell’s curl equations, eqs. (2.3) and (2.4) we see that
the time-derivative of the E-field is dependent on the curl of the H-field
(its spatial derivative). The time-derivative of the H-field and the spatial
derivative of the E-field are related in a similar manner. The fields are offset
temporaly by half-steps in both the spatial and the temporal domain using
the leap-frog technique (named after the children’s game where you jump
over one another). The E-field is updated at times t = (n+ 1/2)∆t and posi-
tions x = l∆x, while the H-field is updated at times t = n∆t and positions
x = (l + 1/2)∆x. With these half-steps we create a "Yee-grid". The discrete
Maxwell equations become

Hy |n+1
l+1/2 −Hy |

n
l+1/2

∆t
=

1
µl+1/2

[
Ez |n+1/2

l+1 −Ez |n+1/2
l

∆x
− σ ∗|l+1/2Hy |n+1/2

l+1/2

]
, (4.1)

aThe source material for this chapter is written in a different convention than the rest of
this thesis. As a result, the expression for the Lorentz and Debye media, eqs. (2.25) and (2.41),
are expressed with a positive term, +iωt, instead of −iωt, in the denominator. See appendix C
for further explanation
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Ez |n+1/2
l −Ez |n−1/2

l

∆t
=

1
εl

[
Hy |nl+1/2 −Hy |

n
l−1/2

∆x
− σ |lEz |nl

]
. (4.2)

After a bit of work these are simplified to

Hy |n+1
l+1/2 =Ml+1/2Hy |nl+1/2 +Nl+1/2

Ez |n+1/2
l+1 −Ez |n+1/2

l

∆x
, (4.3)

Ez |n+1/2
l =OlEz |n−1/2

l + Pl

[
Hy |nl+1/2 −Hy |

n
l−1/2

∆x
− Jsourcez |

n
l

]
, (4.4)

where

Ml+1/2 =
2µl+1/2 − σ ∗l+1/2∆t

2µl+1/2 + σ ∗l+1/2∆t
, (4.5)

Nl+1/2 =
2∆t

2µl+1/2 + σ ∗l+1/2∆t
, (4.6)

Ol =
2εl − σl∆t
2εl + σl∆t

, (4.7)

Pl =
2∆t

2εl + σl∆t
. (4.8)

The step size is limited by the condition c∆t/∆x = R ≤ 1. If R = 1 the
dispersion caused by numerical accuracy is at its minimum. The terms σ
and σ∗ are the electric and magnetic conductivities, respectively. They are
zero anywhere but the edges of the spatial grid. There they are set so that

σ ∗

µ0
=
σ
ε0
, (4.9)

at the boundaries so that they act as an absorbing outer layer to the grid.
The "future" fields are expressed in terms of "past" fields. The trick now is
to update the electric field one time-step into the future. Then this "future"
field essentially becomes a known "past" field. Then we use this field to
update and find the future magnetic field, which can be used to find the next
future electric field, and so on. Section 4.1 shows a THz pulse before and
after it comes in contact with a 200 µm thick sample with no dispersion and
no absorption. The smaller pulses that have been reflected back and forth
within the medium and refracted at both interfaces can be seen. Figure 4.1(b)
essentially shows the same scenario as Fig. 2.4, but for normal incidence.
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(a) A THz pulse propagating towards a 200
µm thick sample.

(b) Multiple reflections.

Figure 4.1: A THz pulse passing through a sample without any dispersion or absorp-
tion, causing multiple reflections. The green area is the sample. The left and right
boundaries are absorbing layers.

4.2 Dispersion
In section 2.2 the resonant Lorentz and Debye media were introduced. In
order to simulate these, the auxillary differential equation method is imple-
mented. Instead of updating the E and H field in the standard FDTD, the
displacement field D is calculated and coupled with the magnetic field, H .
The absorptive and dispersive behaviour is handled in a a supplementary
equation for the E-field.,

Hy |n+1
l+1/2 =Ml+1/2Hy |nl+1/2

+Nl+1/2
Ez |n+1/2

l+1 −Ez |n+1/2
l

∆x
(4.10)

Dz |n+1/2
l =O′lDz |

n−1/2
l

+ P ′l

[
Hy |nl+1/2 −Hy |

n
l−1/2

∆x
− Jsourcez |

n
l

]
(4.11)

Ez |n+1/2
l = f (Dn+1/2,Dn−1/2,Dn−3/2....,En−1/2,En−3/2, ...) (4.12)

where

O′l =
2− σl∆t

2 + σl∆t2
(4.13)

P ′l =
2∆t

2 + σl∆t
(4.14)
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If we know the analytic solution of the permittivity, ε(ω), we can use the
relation between the E and D fields,

ε(ω) = ε0εr (ω) =
D(ω)
E(ω)

, (4.15)

and perform an inverse Fourier transform to find an ordinary differential
equation. The inverse Fourier transform of the frequency terms correspond
to temporal derivatives,

(iω)n⇒ ∂n

∂tn
. (4.16)

4.2.1 Debyemedium
By inserting the expression for the Debye medium, eq. (2.41), into eq. (4.15)b

we obtain the following expression,

ε0ε∞(1 + iωτ)E(ω) + ε0(εs − ε∞)E(ω) = (1 + iωτ)D(ω). (4.17)

Through a Fourier transform we find

ε0εsE(t) + ε0ε∞τ
∂E(t)
∂t

E(t) =D(t) + τ
∂D(t)
∂t

. (4.18)

The finite difference scheme is applied to this equation, and to ensure stabil-
ity, we take the averages of the current-time values.

En⇒ En+1 + En

2
. (4.19)

The result is

En+1 =Dn+1
1
2 + τ

∆t

ε0( εs2 + ε∞
τ
∆t )

+Dn
1
2 −

τ
∆t

ε0( εs2 + ε∞
τ
∆t )
−En

εs
2 − ε∞

τ
∆t

εs
2 + ε∞

τ
∆t

. (4.20)

This expression takes the role of eq. (4.12). Section 4.2.1 shows a THz pulse
entering a Debye medium. The pulse is absorbed as it passes through the
medium. This figure illustrates why it we want to measure thin samples.
The sample shown in the figure is very thick (1 mm), so the amount of THz
exiting the medium on the backside is so small that nothing can be learned
from it except for the qualitative knowledge that the medium absorbs the
THz. Even this is not neccessarily true as the THz might not even have
entered into the medium, but been reflected of the surface.

bNote the sign change in the denominator
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(a) The THz pulse shortly after it enters
the medium.

(b) Absorption.

Figure 4.2: A THz pulse passing through a Debye medium. This sample is much,
much longer than the pulse width, so it can easily be classified as a thick medium.

4.2.2 Lorentz medium
For a Lorentz medium the insertion of eq. (2.26) into eq. (4.15) yieldsc

ε0[εsω
2
0 + ε∞(iωγ −ω2)]E(ω) = [ω2

0 −ω
2 + iγω]D(ω). (4.21)

Since −ω2 = (iω)2, the Fourier transform yields,

ε0

[
εsω

2
0 + ε∞(γ

∂
∂t

+
∂2

∂t2
)
]
E(t) =

[
ω2

0 −γ
∂
∂t

+
∂2

∂t2

]
D(t). (4.22)

By applying the second-order central-difference scheme centered on time-
step n, where

∂2En

∂t2
=
En+1 − 2En +En−1

(∆t)2 , (4.23)

∂En

∂t
=
En+1 −En−1

2∆t
, (4.24)

En =
En+1 +En−1

2
, (4.25)

cIn the litterature, this is refered to as a "Second-Order Lorentz medium". This does not
mean that the permittivity εr (ω) is of a higher complexity than eq. (2.26). See for example
eq. (2.44). The reason for naming it "Second-Order" is that it includes second-derivatives in the
time domain, see eq. (4.22). Since the Debye medium only includes the first derivative of D and
E it is refered to as the "First-Order Debye medium".
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the following expression is obtained

ε0E
n+1

(
ε∞

(∆t)2 +
ω2

0εs
2

+
ε∞γ

2∆t

)
− 2En

ε∞
(∆t)2 + ε0E

n−1
(
ε∞

(∆t)2 +
ω2

0εs
2
−
ε∞γ

2∆t

)
=Dn+1

(
1

(∆t)2 +
ω2

0
2

+
γ

2∆t

)
− 2Dn

(∆t)2 +Dn−1
(

1
(∆t)2 +

ω2
0

2
−

γ

2∆t

)
. (4.26)

The expression for En+1 becomes

En+1 =
1

ε0

(
2ε∞ + ε∞γ∆t + εs(ω0∆t)2

)×
Dn+1

(
2 +γ∆t + (ω0∆t)

2
)
− 4Dn +Dn−1

(
2−γ∆t + (ω0∆t)

2
)

+ ε0E
n−1

(
2ε∞ − ε∞γ∆t + εs(ω0∆t)

2
)
− 4Enε0ε∞

. (4.27)

The simulation of the Lorentz medium shows essentially the same scenario
as section 4.2.1.

Now that we have studied both dull and interesting media, through both
theory and simulations, we are well equipped in our understanding of any
type of media and how they interact with electromagnetic pulses.



Chapter 5

Experimental methods
In this chapter, the experimental setup used for the measurements presented
in this thesis, is described. Some unknowns and assumptions concerning
the measurements are discussed.

5.1 Experimental setup
An infrared (IR), femtosecond (fs) laser pulse with wavelength close to 800
nm is split in two parts, a pump and a probe. The probe pulse passes through
a variable delay line. By varying the delay line of the probe-beam, we can
measure the temporal shape of the THz-pulse by measuring the probe beam,
which polarization at a specific time has been altered by the THz pulse
present in the electro-optic crystal at the same time.
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E(τ)
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Computer
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+

Figure 5.1: Experimental setup.
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The pump-pulse is chopped by a chopper at 200 Hz and passes through a
BBO crystal, generating a second harmonic signal. The initial pulse and the
second harmonic are focused by a lens and interact in a plasma creating the
THz pulse, as explained in section 2.4.3. The polarization of the generated
THz pulse is unknown. The THz and the IR are focused by an off-axis
parabolic mirror, which collimates the beam. The beam then passes through
a silicon wafer that is angled so that it is close to the Brewster angle for THz.
Most of the IR beam is reflected by the Si, and does not interfere with the
measurement. Having the Silicon wafer at the Brewster angle will change
the polarization of the THz so that it is linearly polarized.26

After the THz has passed through the silicon wafer, it passes through the
material sample. The beam diamater at the focus is 1 mm. Elsewhere, it is 1
cm. The sample is not shown in Fig. 5.1, but it would be placed between the
silicon and the ITO. Thereafter,the THz and the probe beam are combined
by a glass substrate coated with a thin layer of tin doped Indium Oxide
(ITO). The ITO lets almost all optical frequencies pass through (up to 95%),
but reflects almost all of the THz (up to 98% ). The beams are then pass
into a Gallium Phosphide (GaP) crystal, causing the THz electric field to
change the polarization of the IR-beam, which is subsequently detected by
the photo-detector. A schematic overview of the setup is shown in Fig. 5.1.
Part of the system, from the BBO to the GaP, is contained within a box
which is pumped with dry air. This is to reduce the amount of water vapor
present, which reacts very strongly to THz radiation. An measured THz
pulse is shown in Fig. 5.2. The smaller pulses are multiple reflections from
the electro-optic GaP crystal, which acts as a Fabry-Pérot etalon. The pulse
shown in the figure is the average value for ten consecutive measurements.
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Figure 5.2: An example of a measured THz pulse. The smaller pulses are reflections
from the GaP crystal.

5.2 Assumptions and uncertainties
When measuring samples with THz-TDS, some assupmtions have to be made.
It is assumed that:14

1. The sample is homogenous, with two flat and parallel sides

2. The sample is magnetically isotropic without surface charges

3. That scattering off the sample is negligible

4. The sample has a linear electromagnetic response

5. The pulse is a plane wave and has normal incidence upon the sample

6. The pulse is linearly polarized, parallel to the optical axis of the detec-
tor

7. That the measurements are performed in a dry atmosphere

The assumptions made concerning the sample and the pulse being a plane
wave are neccessary for the validity of the model used for the interaction
between the THz pulse and the sample. If the incidence is close to normal
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the effect of a small angle variation is negligible.20 This can easily be seen
from the cosine-terms in eqs. (2.52) and (2.53) when normal incidence
means that the incidence angle θi ≈ 0, so that cosθi ≈ 1. The measurements
are performed within a closed box that has been pumped with dry air.
However, since we had no equipment for measuring the humidity inside
the box, the difference in humidity between the sample- and the reference
measurements might affect the measurements. In addition, there are a few
random and systematic factors that could affect the measurements. Random
errors are17,27

1. Electronic background noise of the detector

2. Intensity fluctuatuons of the pump-laser

3. Jitter in the variable delay line of the probe beam.

The first two factors are random noise from the system itself. Performing
several measurements and calculating the mean values will redcude their in-
fluence since they are random fluctuations. The drift in the pump-laser may
cause the intensity of the pulse to vary. Performing shorter measurements,
or increasing the step-length of the variable delay line could reduce the
amount of drift over the course of the measurement. However, measuring
over a shorter time will reduce the resolution in Fourier space. Increasing
the step-length of the delay-line could affect the determination of the delay
between the sample and the reference pulse. Systematic errors could include

1. Registration errors.

2. Mechanical drift

3. Multiple reflections within plane parallel optical components

For very thin samples, these errors can become relatively strong. In the
worst case, the systematic error that progresses linearly over time may be
misinterpreted as the presence of a sample.28

5.2.1 Signal to noise ratio and dynamic range
The quality of data is conventionally communicated by giving the Signal to
Noise Ratio (SNR) and Dynamic Range (DR) of the measurements. Signal
to noise ratio is exactly what it sounds like, the ratio between the level of
the desired signal and the level of the background noise. Dynamic Range is
the ratio between the highest and lowest values of the measurements. In a
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system where amplitude is measured, such as we do in THz-TDS, SNR and
DR are defined as

SNR =
mean magnitude of amplitude

standard deviation of amplitude
, (5.1)

DR =
maximum magnitude of amplitude

rms of noise floor
. (5.2)

The recomended procedure used for calculating DR and SNR is as follows29

1. Measure the time-domain trace and note the value of the peak maxi-
mum.

2. Measure the noise signal in the absence of THz, e.g., before the arrival
of the main pulse.

3. The mean signal in the absence of THz should be constant (zero for
electro-optic detection, nonzero for a photoconductive antenna). Cal-
culate its standard deviation.

4. DR = mean magnitude of the peak/standard deviation of noise.

5. SNR=mean magnitude of the peak/standard deviation of the peak.

There are ways of performing this calculations in the frequency-domain, but
in this thesis we will perfor the calculation in the time-domain. The Dynamic
Range of the measurement determines the largest detectable absorption
coefficient.

αmaxd = 2ln
(
DR

4n
(n+ 1)2

)
. (5.3)

This corresponds to the sample signal being attenuated to the level of the
noise floor. In other words, if the absorption is so strong that the signal
would be brought beneath the noise level, i.e. α > αmax, the analysis will
show an apparent absorption coefficient equal to αmax.30 This stresses the
importance of measuring samples that are thin enough so the THz pulse
can pass through without being attentuated to the level of the noise floor.
The highest dynamic range for the measurements presented in this thesis
was ≈ 1900. The measurements presented in this thesis were performed on
samples with low absorption so this does not come in to play in the analysis
of the data presented later on in chapter 6.





Chapter 6

Results
The optical parameters of silicon in the THz regime have been extensively
studied and are well documented. By testing samples of varying thickness
it can be determined if there are any limitations to either the minimization
method or the determination of the correct thickness. In the begining of
this chapter, the results of the measurements of several thin layers of silicon
are presented. Later, the minimization method is applied to the results of
the FDTD simulation. By doing so it can be determined whether or not the
FDTD simulation gives an accurate image of the real situation. Furthermore,
it allows for testing of the minimization and the thickness-determination
method on more complicated materials through simulations of resonant
Lorentz- and Debye media.

6.1 Measurements
In this section the calculated optical parameters of different samples are
presented. Silicon samples of different thickness were measured. The optical
parameters of silicon are well documented to be n̂ = 3.42 + i0.14,17,18,20,21

From the results we will attempt to answer the following questions: Does
the error-minimization method work for a noisy transfer function, and
are we able to find a thickness for which the oscillating behaviour of the
optical parameters are at a minimum? Are the results as expected? Are
the measurements affected by the additional Fabry-Pérot reflections from
the electro-optic crystal?27 This would limit the frequency resolution of
the spectra by limiting the measurements time-window. Lastly, we want to
determine if there are thicknesses for which we are unable to find the correct
thickness with either the Quasi-Space method, or with total variation.

6.1.1 50micron silicon sample
Figure 6.1 shows two THz pulses in time (in picoseconds, ps), vertically
offset for clarity. The peaks appearing close to 4 ps are the main peaks, while
the peaks appearing close to 10 ps are reflections caused by the Fabry-Pérot
effect from the electro-optic (EO) crystal used in the experimental setup.
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The time window can be modified to exclude these reflections. The sample
pulse arrives later than the reference pulse and the amplitude is much lower.
A reflected pulse from the sample can be seen at around 6 ps. Figures 6.2(a)
and 6.2(b) shows the Fourier spectra of the pulses with and without the
reflections from the EO-crystal. When the reflections from the crystal are
removed, one can clearly see the oscillations that are expected from a Fabry-
Perot. When the reflections are included the Fourier spectra includes the
oscillations from both the sample and the crystal, which makes the spectrum
appear very noisy. The signal strength of the reference spectrum falls sharply
down to the noise-floor at around 7 THz. Figure 6.3 shows the transfer
function calculated for the two cases, where the graph labeled "short" is
for the limited time window excluding the reflections from the EO-crystal.
The two transfer functions are not exactly identical, but there isn’t any
consequent difference as one would expect from the periodic Fabry-Pérot
oscillations. Depending on the input for the minimization, the long and the
short measurements may or may not select the same thickness. Figure 6.4
shows the values of the Quasi-Space peaks and the Total Variation the
measurement for thicknesses between 58 and 70 microns with a step length
of 0.1 micron. Both the Quasi-space values for the Fourier transform of n(ω)
and the Total variation finds a minima at 64.3 µm for the long measurement.
For the short measurement, the minima are both found at 64.8 µm, but there
is very little difference in the calculated optical parameters.



6.1. Measurements 45

0 2 4 6 8 10 12 14 16
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5
x 10

−3

Time [ps]

E
le

c
tr

ic
 f

ie
ld

 s
tr

e
n

g
th

 [
V

/m
]

 

 

Reference

Sample

Figure 6.1: Reference pulse and sample pulse from a 64.3 micron thick silicon wafer,
vertically offset for clarity.
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Figure 6.2: Fourier spectra of the reference and the sample pulses with and without
the extra reflections from the electro-optic crystal.
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Figure 6.3: Transfer function for with and without the additional reflections from
the electro-optic crystal.

Figures 6.5(a) and 6.5(b) shows the resulting optical parameters, n and κ
for the determined thickness, 64.3 µm. Neither of the values are as expected.
Figure 6.6 shows the transfer function obtained by the measurement and the
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Figure 6.4: Measure of oscillations in the optical parameters for different thicknesses

transfer function found by the minimalization of the error. The algorithm is
limited by κ ≥ 0 so the maximum value of the numerical transfer function is
1. The transfer function and the optical parameters are calculated within
the bandwidth 0.3− 7 THz.
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Figure 6.5: Optical parameters for measurement of an allegedly 50µm thick silicon
wafer. The expected value is n̂ = 3.42 + i0.
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Figure 6.6: Measured transfer function as well as the transfer function found through
numerical approximation.

6.1.2 10micron silicon sample
Figure 6.7 shows the Quasi-Space values and the total variation for thick-
nesses 8 − 14 µm with a step-length of 0.1 µm. The Quasi-Space method
finds a minimum at 11.3 µm, while the total variation fails to determine a
minimum. Figure 6.8 shows the optical parameters at the chosen thickness.
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There are very clear oscillations in both parameters. Figure 6.9 shows the
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Figure 6.7: Measure of oscillations in the optical parameters for different thicknesses
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Figure 6.8: Optical parameters for measurement of an allegedly 10µm thick silicon
wafer. The expected value is n̂ = 3.42 + i0. The mean value of the refractive index is
3.46

measured transfer function and the numerical fit for the chosen thickness of
11.3 µm with the expected transfer function for a 10 µm silicon sample. The
numerical fit deviates from the measurement between 4.5and6 THz.
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Figure 6.9: Transfer function for the 10 µm silicon sample.

6.1.3 2micron silicon sample
The thickness of the 2 µm sample was determined by the Quasi-Space values
of n(ω) to be 3.6 microns thick. The total variation does not manage to find
a minimum. Both are shown in Fig. 6.10 The calculated optical parameters
are shown in Fig. 6.11. Figure 6.12 shows that the measured and expected
transfer functions are very different.
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Figure 6.10: Quasi-Space values and total variation for the measurements of the 2
µm sample.
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Figure 6.11: Optical parameters for measurement of a 2 micron thick silicon wafer.
The expected value is n̂ = 3.42 + i0.
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Figure 6.12: Transfer function for the 2 µm silicon sample.

Now that the algorithm for parameter determination has been tested for
a dispersionless sample, it is time to test it for more interesting media. Due
to problems with the equipment, measurements of samples with resonances
were not conducted. Instead, the algorithm is tested on samples simulated
by a FDTD simulation.
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6.2 Simulations
In this section the results of the FDTD simulations are presented. We begin
with extracting the optical parameters from a simulation of a non-asborbtive,
non-dispersive material to see if the FDTD simulation has any merit. Later
on, we attempt to extract the parameters from more complex materials
modeled in the form of Lorentz- and Debye media.

An actual, measured THz pulse was used as an input in the FDTD simula-
tion where the pulse propagates through samples of various thicknesses and
permittivities. The temporal time-step of the measurement was ∆t = 6.6666
femtoseconds. The corresponding spatial time-step was ∆x = ∆t/c ≈ 2 µm.
Figure 6.13(a) shows the transfer function obtained by the simulation for
a 50 µm thick sample with refractive index n̂ = 3 + i0. There is a very clear
difference, which increases with frequency. To increase the precision of the
simulation, the measured pulse was interpolated with a factor 2 so that the
temporal step length became 3.33 fs and the spatial step length became 1
µm. This reduced the difference between the simulation and the theoretical
expressions considerably. The transfer function with the improved precision
is shown in Fig. 6.13(b). Attempts at further interpolations did not result in
a successful simulation. For a number of simulations, the thicknesses found
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Figure 6.13: Transfer function of a simulated non-dispersive, non-absorbing material
with thickness 50µm and refractive index n = 3. The two figures shows the simulation
before and after the input pulse has been interpolated.

by the Fourier transform of the different optical parameters within ±2 µm
of the assumed values, are listed in table 6.1. Figures 6.14(a) and 6.14(b)
shows the optical parameters extracted from simulations through samples
of thickness 10, 50 and 200 µm.
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Table 6.1: Simulation thickness and thicknesses found by the Fourier transform of
the different optical parameters.

Simulation input [µm] n [µm] κ [µm] TV

2 2.2 2.7 0.6
4 3.9 3.7 3.9
6 6.0 5.7 5.9
8 8.0 7.9 7.9

10 10.1 10.0 9.9
50 50.3 50 50

200 199 200.1 200

Both the Quasi-Space method and the total variation method seems to
work well in indicating what the correct thickness is, but it becomes more
difficult as the thickness is reduced.
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tion for various thicknesses. Input: κ = 0.

Figure 6.14: Calculated optical parameters for simulations of various thicknesses of
a non-absorbing and non-dispersive medium.

From the table 6.1 and Figs. 6.14(a) and 6.14(b) it seems as the largest
error in the simulation lies in the fact that the computed medium is disper-
sive. If the relation c∆t/∆x , 1, there will be a non-linear dispersion relation.
Decreasing the temporal and spatial time-steps by interpolating the pulse
clearly increases the precision. There is some absorption, which seems to
increase as the thickness decreases. A possiblee cause for the error in the
simulation is the fact that due to the reflections between the sample surfaces
become more frequent for thinner samples, more calculations must be made,
probably causing some small errors. In Fig. 6.14 it is clear that both n(ω)



6.2. Simulations 53

and κ(ω) are oscillating, with a longer period for a shorter medium. This
behaviour is analoguous to that of a Fabry-Pérot etalon.

6.2.1 Lorentz medium
The optical parameters of an imagined Lorentz medium with parameters
εs = 15, ε∞ = 12, ω0 = 2 THz, γ = 0.3ω0 and thickness 50 µm are shown in
Fig. 6.15. The Total Variation method manages to find a minimum at 51.9
µm. Both the parameters and the transfer function found at this thickness fit
better with the theoretical values than those found at 50 µm. The spectrum
of the simulated pulse, the transfer function, as well as its numerical fit are
shown in Fig. 6.16. Both the abosroption peak and the oscillating behaviour
caused by the Fabry-Pérot effect are apparent.
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Figure 6.15: Theoretical and numerical optical parameters for a Lorentz medium.
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Figure 6.16: Spectrum and transfer function for the simulated Lorentz medium
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6.2.2 Debyemedium
The optical parameters of an imagined Debye medium with parameters
εs = 15, ε∞ = 8, τ = 0.4 ps and thickness 50 µm are shown in Fig. 6.17.
The Total Variation method manages to find a minimum at 51.5 µm. The
spectrum of the simualated pulse and the transfer function and its numerical
fit are shown in Fig. 6.18.
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Figure 6.17: Theoretical and numerical optical parameters for a Debye medium.
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Figure 6.18: Spectrum and transfer function for the simulated Debye medium



Chapter 7

Discussion
In this chapter, we discuss the measurements and the simulation, what sorts
of errors are present, and how they affect the error minimization metod and
the choice of the correct thickness.

7.1 Errors in theminimizationmethod
The method of minimizing the error between the measured and theoreti-
cal transfer functions was first tested by letting it attempt to minimize a
theoretical transfer function, following eq. (2.58). The MATLAB function
’fminsearch’ employs the Nelder-Mead simplex method to minimize the er-
ror. The imagined sample had a thickness of l = 50 µm and had a refractive
index n̂ = 3.42 + i0, which is the refractive index of silicon, the same as was
presented in Fig. 3.1. The assumed time difference between the arrival of the
reference pulse and the sample pulse was simply set to ∆t = l(nsam −nair )/c0.
The intial guess-values for n(ω) and κ(ω) were calculated from eqs. (3.11)
and (3.13). In Fig. 7.1(b) one can clearly see that, for the real part, n(ω), that
there are some anomalies from an otherwise sinusoidal shape. These spikes
cannot be explained from the theory in section 2.2, so it can be assumed that
these values are invalid. The assumed cause for these spikes is that the mini-
mization algorithm fails to converge towards the correct minimum. Since
this test was performed on an analytical expression for the transfer function,
it is apparently not a product of measurement noise. Figure 7.1(b) shows the
result of the Fourier transform of the refractive index into Quasi-Space. The
peaks are a lot less distinct than what we saw earlier in Fig. 3.1. This increase
in the Quasi-Space values could affect the choice of thickness. The spikes in
the refractive index could be removed before the Fourier transform is made
in order to better determine the Quasi-Space values. For a non-dispersive,
non-absorbing sample the spikes could be removed simply by removing
any values outside a few standard deviations from the mean values, but
this is not neccessarily a valid option for other types of media where the
refractive index isn’t flat. Removing these outliers is a quick-fix solution to
clean up the optical parameters, but it does not handle the problem of why
they appear in the first place. This could be further investigated in future
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(b) Quasi-Space values

Figure 7.1: Anomalies in the form of spikes in the refractive index causes an increase
in the Quasi-Space values

work.

7.1.1 Choice of initial guess
The error-minimization method is very dependent on where it begins search-
ing for a minimum. In many cases, simply begining to search for the mini-
mum at the initial guess depending on the delay of the sample pulse is not
enough, see eq. (3.11). What might work better is to use the initial guess
for the first discrete frequency within the bandwidth, ωj , and thereafter
use the value that was found, n(ωj ), as the initial guess for determining the
refractive index of the next frequency, n(ωj+1). However, if the minimization
method fails to converge and causes a spike in the refractive index, that
value becomes an extremely bad initial guess for the calculation of the next
refractive index, n(ωj+1). This causes the errors to reach extreme values. The
initial guess for κ(ω) following eq. (3.13) turned out to work well compared
to a guess of zero absorption or using the value found for the previous
frequency.

7.2 Measured samples
In this section, we discuss the results of the measurements of the silicon
samples. We begin by making a few general remarks before we discuss the
results of each individual sample. It is clear from Figs. 6.6 and 6.12 that
the Nelder-Mead method does a very good job of minimizing the phase and
amplitude errors. For the most part, the numerical transfer function lies
on top of the measured transfer function. The restriction κ ≥ 0 ensures
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that the transfer function does not become greater than 1. In all cases, the
determined thickness is thicker than the expected values.

Including or excluding the Fabry-Pérot reflections of the electro-optic
crystal did not appear to have any quantifiable effect on the determination of
the optical parameters. The differences, if any, lie in the fact that the longer
measurement has a higher frequency resolution. The Fabry-Pérot reflections
from the EO crystal are removed by the transfer function

H(ω) =
Esam(ω)FP (ω)crystal
Eref (ω)FP (ω)crystal

=
Esam(ω)
Eref (ω)

. (7.1)

It might be worth noting that the safest course would be to included the
same amount of crystal reflections for both the reference and the sample
pulse.

7.2.1 50micron silicon sample
According to the manufacturer, the sample was 50 µm thick. However, both
the Quasi-Space method and the Total Variation method find clear minima
for the oscillations at thicknesses 64.3 µm. The peaks of the transfer func-
tions shown in Fig. 6.3 very rearly reach up to 1, as we would expect from a
non-absorbing Fabry-Pérot etalon. The optical parameters are far from the
expected values. To summarize; nothing is as we expected. Since the mini-
mization and thickness-determination methods work for the simulations,
the problem must lie within the measurement. The sample was measured
with a digital micrometer screw and was found to be 60 microns. The accu-
racy of the micrometer screw is only in the tens of microns, so this result
is not particularly telling, but it allows that the sample could be thicker
than the 50 microns claimed by the manufacturer. However, this does not
account for the optical parameters being far off from the expected values.
According to the manufacturer, the silicon wafer has an affinity to stick to
smooth metal fixtures and jigs, glass and silicon wafers, and other surfaces.
It was observed that the wafer did stick to one of the sample holders, which
was subsequently exchanged. The sample was not observed to be sticking
to the new sample holder, but neither were there observed any changes in
the measurments. The pulse and corresponding spectrum shown in Figs. 6.1
and 6.2 are from measurements where the sample was not observed to be
sticking to the holder. This sticking could be a result of surface charges,
which have not been taken into account in the calculations. The 2 and 10
micron samples were delivered with an outer ring of another material. This
outer ring was a few millimeters thick, which made it possible to pick up the
wafers without damaging them. These samples did not stick to the holder
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that the thicker sample stuck itself to. Another thing to take into account is
that the sample was only polished on one side. There might have been some
scattering from the rough-sided surface. In all the measurements, the THz
entered the material from the smooth side. The surface roughness could
possibly explain why the results were not as expected.

7.2.2 10micron silicon sample
For the measured 10 µm silicon sample, the optical parameters are oscil-
lating very strongly. This indicates that the thickness determined by the
Quasi-Space values is incorrect. It is clear from Fig. 6.9 that the measured
transfer function, even though it is very noisy, coincides well with the trans-
fer function that is expected from the sample. For some reason the numerical
fit does not overlap with the measured transfer function over a wide fre-
quency range from 4.5 to 6 THz. For the other measurements there may be
some variations between the measured and the numerical transfer functions,
but nothing on this scale. Reducing the tolerance of the error minimization
function did not affect the outcome. We have already discussed the fact that
the minimization method is extremely dependent on the initial guess. When
measuring the sample, ten measurements were performed consequtively.
This way, the drift in the system can cause a significant change in the av-
eraged time-domain signal. This could cause the difference in the arrival
time between the sample and reference pulses to change. The arrival time
determines the initial guess of the refractive index, which, as we already
discussed, is very important. A solution to this problem could be to alternate
between measuring the sample and the reference pulse and then average
each group.28

7.2.3 2micron silicon sample
For the 2 µm sample, the thickness was found to be 3.6 µm. Figure 6.12
shows that the measurement is very noisy. All these fluctuations due to noise
add to the variations in the optical parameters, making it harder to determine
the correct thickness. This might explain why the thickness couldn’t be
determined correctly. On the other hand, it is implied by eq. (3.18) that
the minimum detectable optical thickness is limited by the measurement
bandwidth. For the meausrement of the 2-micron sample, the time-delay
between the pulses was approximately 0.33 fs, which when setting l = 2µm
in eq. (3.11) results in an initial guess for the refractive index, nguess ≈
6. This is quite a bit higher than the expected value of 3.42. It could
possibly be explained by drift in the system that we discussed for the 10µm
sample. The estimated value for Lmin for the input value of l = 2µm and
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the corresponding time-delay and initial guess value is Lmin = 3.62µm. The
optical thickness of the sample should in theory be 3.42 · 2µm = 6.84µm, so
it should be detectable. The fact that we are able to come within 0.2 microns
of determining the thickness of the simulated 2 µm sample strengthens this
argument. The error in determining the thickness might be a result of the
fact that the simulation has some dispersion, and the optical parameters
seem to oscillate more for thin samples, which makes it harder to determine
the sample thickness.

7.3 Simulations
From the results in section 6.2 we have learned two things. First of all, that
the simulation has been implemented in a satisfying way. There is very little
of both absorption and dispersion for the simulation of the absorptionless,
dispersionless media. For the resonant media, the forms of the optical
parameters fit very well with what was expected. Secondly, the algorithm
for extracting the optical parameters works very well, even for media with
more complex optical constants. The determined thicknesses for all kinds
of media were within a few microns of the input value of the simulation.
However, due to some minor precision issues for the simulation, the chosen
thicknesses actually yielded better results for the optical parameters, with
visibly less oscillations. For the simulations of the dispersive media, only the
total-variation method managed to find a minimum. This could be due to the
shapes of the optical parameters for the resonant media causing unexpected
peaks in Quasi-Space.
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Conclusion and further work
In this thesis, a study has been made of terahertz time-domain spectroscopy
of thin samples. An iterative minimalization scheme using the Nelder-Mead
Simplex method has been used to find a numerical fit that corresponds well
with the measured transfer function. The Nelder-Mead simplex method is
used in the MATLAB function ’fminsearch’. It clearly has some issues that
causes it to fail in determining the correct values for n and κ, instead causing
it to find values that cannot be physically explained. This effect seems to
be independent of noise since it appears for a purely analytical transfer
function. There is a clear potential for improvements of the minimization
method used, so that the spikes in the otherwise sinusoidal shapes of the
optical parameters can be avoided.

Different methods for determining the correct sample thickness have
been investigated. The bandwidth of the system determines the minimum
determinable thickness, but it does not seem to be the limiting factor on the
measurements performed here. For the measurements performed in this
thesis, the determined thicknesses were all larger than the expected values.
The different methods of determining the thickness do not always agree with
each other, nor do they always find any thickness at all. These values are
usually the thicknesses for which the oscillations are at a minimum, which
is exactly what they should be. However, the calculated optical parameters
are quite far from the expected values. This is most likely due to surface
roughness, which reduces the refractive index of the medium. The scattered
frequencies are interpreted as absorption. Other ways of determining the
thickness, e.g. by measuring with an electron microscope could of course
work, but would in any case also lead to oscillating optical parameters if the
surface is rough.

There are some issues when performing measurements, e.g. in laser drift
and humidity. The drift issue could be remedied by alternately measuring
the sample and reference pulses instead of measuring them consequtively.
An instrument that allows a more precise determination of the humidity
could help indicate which measurements will influence the averaged value
in a negative way. Removing noise with temporal windowing or by filtering
or smoothing of the transfer function could also be looked into.
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The finite-difference time-domain simulations do a good job in simulat-
ing both simple and complex media. It was observed that by interpolating
the measured input pulse, the accuracy of the simulation could be increased,
but when trying to interpolate the pulse further, the simulation did not
work. Finding the cause of this, and possibly solving it, could result in an
even more precise simulation. A natural epansion of the simulation could
include media with more than one resonance.



Appendix A

TheNelder-Mead Simplex
method
The Nelder-Mead simplex-reflection method, named after its authors John
Nelder and Roger Mead, is a derivative free optimization method used
to find extreme values of a function in multi-dimensional space.31 In n-
dimensional space,Rn, we keep track of n+ 1 points, whose convex hull form
a simplex. The simplest way to visualize this is by considering a triangle in
a two-dimensional space as shown in Fig. A.1. Through one iteration of the
algorithm we attempt to replace the vertex with the worst function value
with another vertex with a better value. The new point is obtained by one of
four different steps; reflection, extraction or inner or outer contraction along
the line joining the worst vertex with the centroid of the remaining vertices.
If none of these work, we retain only the vertex with the best function value
and shrink the simplex by moving all the other vertices closer to this one.
One iteration of the algorithm follows this procedure:
Step 1: Sort the vertices so that.

f (x1) ≤ f (x2) ≤ ... ≤ f (xn+1). (A.1)

Step 2: Calculate the centroid x̄ of all points except xn+1. The centroid is
defined as,

x̄ =
n∑
i=1

xi . (A.2)

Step 3: Calculate the values of points along the line joining x̄ and the worst
vertex xn+1. Let the centroid be the origin and the distance between the x̄
and xn+1 is 1. The line is denoted by

x̄(t) = x̄+ t(xn+1 − x̄). (A.3)

We see that x̄(1) = xn+1. The algorithm replaces the worst vertex and returns
to step 1 until the extreme value has been found. The replacement vertex
is found by finding the reflection point and calculating its function value.
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The reflection point is located along the line x̄(t), the same distance from the
centroid as the worst vertex, but on the opposite side:

x̄r = x̄(−1). (A.4)

If the function value f (x̄r ) is less than or equal to the function value at
the second worst vertex and worse than or equal to the best vertex, i.e.
f (x1) ≤ f (x̄r ) ≤ f (xn then x̄r replaces the worst vertex, and the algorithm
returns to step 1, where we sort the vertices by their function values. Note
that if we were to compare x̄r with xn+1 and they turned out to be equal,
we could end up reflecting back and forth infinitely. Therefore we compare
to the second worst vertex xn. There are two possibilities if the reflection
conditions are not met. For the case where the function value at the reflection
point is less than that of the best vertex, i.e. f (x̄r ) < f (x1), we want to
continue in the same direction. We calculate the expansion point

x̄e = x̄(−2), (A.5)

which is in the same direction as the reflection point, but twice the distance
from the centroid. If f (x̄e) < f (x̄r , we exchange xn+1 with x̄e. If this is not the
case, but the condition f (x̄r ) ≤ f (xn is still the case, then the reflection point
still becomes the new vertex. In the second scenario, the reflection point
actually turns out to be worse than the worst vertex. We then calculate the
outer contraction point x̄oc = x̄(−1/2). If f (x̄oc) < f (x̄r ) this becomes the new
vertex. If not, we find the inner contraction point, x̄ic = x̄(1/2). This point
becomes the new vertex if it is better than the worst vertex(f (x̄ic) < f (x̄n+1)).
Step 4: If none of these conditions are met, i.e. we cannot find a vertex to
exchange with the worst one, we shrink the simplex towards the best vertex
x1, so that

xi =
1
2

(x1 + xi), i = 2,3, ...,n+ 1. (A.6)

After the new vertex has been found or the simplex has been shrunk, the
process is repeated for the new simplex.
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Figure A.1: The Nelder-Mead simplex in R2. The simplex is spanned by the solid,
black line between the vertices x1,x2 and x3. The dashed, black line represents x̄(t),
which passes through the centroid,x̄ marked in red, and the worst vertex x3. The
points of reflection, expansion and contraction lie along this line. The blue triangle
represents the new simplex generated by reflection and the green triangle represents
the new simplex generated by shrinking the simplex.





Appendix B

An interesting phenomenon
When a THz pulse is generated, something interesting happens. A much
smaller pulse appears some time before the actual pulse. Figure B.1 shows
two THz pulses. One was created by an air-plasma interaction in the setup
at NTNU used in this thesis. It was detected by an electro-optic crystal.
The other pulse was generated with a photoconductive antenna at a setup
at Forsvarets Forskningsinstitutt (FFI) and was taken as a part of another
project. It was detected by a photconductive switch. Even though the
setups are very different, they both exhibit this phenomena. For the plasma-
generated pulse, the difference in arrival time for the pre-pulse and the main
pulse is within half a picosecond of the period between reflections from the
electro-optic crystal.
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Figure B.1: THz pulses created by air-plasma interaction and photoconductive an-
tenna. The photoconductive pulse propagated through non-dry air, and is therefore
very noisy.
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Figure B.2 shows a zoomed in image of the pre-pulses. We can see that
they have close to the same shape as the main-pulses.
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Figure B.2: Zoomed in image of the pre-pulses.

Even though the pre-pulse appears for different experimental setups, a
search for articles that mention it has so far not yielded any results. The
time-windows for the measurements are usually adjusted so as to exclude
the pre-pulse..



Appendix C

Sign conventions
Electrical engineers and physisists do not agree on whether a propagating

wave should be expressed as Ei(ωt−~k~r) or Ei(~k~r−ωt). The complex refractive
index is expressed as n̂ = n − iκ or n̂ = n + iκ, respectively. The condition
κ ≥ 0 holds in both cases. The difference causes some signs to change, e.g. in
the expressions for the Lorentz and Debye media.
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