
Using Evolutionary Multiobjective
Optimization Algorithms to Evolve Lacing
Patterns for Bicycle Wheels

Mats Krüger Svensson

Master of Science in Computer Science

Supervisor: Keith Downing, IDI

Department of Computer and Information Science

Submission date: June 2015

Norwegian University of Science and Technology

Abstract

This thesis investigates the use of evolutionary algorithms (EAs) to evolve and
optimize lacing patterns of spokes for a bicycle wheel. There are multiple ob-
jectives and tradeoffs to be considered when evaluating a lacing pattern, for
instance, strength versus balance. To handle this, an evolutionary multiobjective
optimization (EMO) method has been used.

Various EMO algorithms and approaches are tested. Among these, the new
NSGA-III algorithm is used. Different representations of the lacing patterns for
the wheels are compared, and also two different representations of the problem
for the EMO.

A novel wheel simulator has been made to test the lacing patterns. As the
number of needed wheel simulations take a considerable amount of time, the
work is distributed among multiple computers.

The EMO is successful in the search for good lacing patterns. One of the most
common patterns, the 3x, is found, along with other comparable patterns with
different tradeoffs. The results show no improvement in using the new NSGA-
III algorithm compared to the older NSGA-II. The representation with a bias for
uniformly laced spokes let the EA evolve better wheels than other representations,
showing that carefully choosing the representation for what is being optimized
is important. The results also show how important it is to represent a problem
using multiple objectives when possible, as the wheels evolved using a higher
number of objectives were found to be best.

Sammendrag

This is a Norwegian translation of the abstract.

Denne avhandlingen undersøker bruken av evolusjonære algoritmer (EAer) for å
optimalisere eike-mønstre for sykkelhjul. Det er flere m̊al og kompromiss som m̊a
tas i betraktning n̊ar et eike-mønster skal evalueres, for eksempel styrke i forhold
til balanse. For å takle dette har en evolusjonær multiobjektiv optimerings-
metode (EMO) blitt brukt.

Ulike EMO algoritmer og tilnærminger til problemet har blitt testet. Blant disse
har den nye NSGA-III algoritmen blitt brukt. Forskjellige representasjoner av
eike-mønstre er sammenlignet samt to forskjellige representasjoner av problemet.

For å teste eike-mønstre har det blitt laget en sykkelhjulsimulator. Ettersom
antallet simuleringer som trengs tar lang tid, har arbeidet blitt fordelt mellom
flere datamaskiner.

EMOen lykkes i søket etter gode eike-mønstre. Et av de mest brukte mønstrene i
dag, et 3x mønster, ble funnet sammen med andre sammenlignbare hjul med an-
dre avveininger. Resultatene viser ingen forbedring ved å bruke den nye NSGA-III
algoritmen i forhold til den eldre NSGA-II. En representasjon med en preferanse
for eike-mønstre som er jevnt fordelt gir bedre hjul enn andre representasjoner, og
viser hvor viktig det er å velge riktig representasjon for et problem. Resultatene
viser ogs̊a hvor viktig det er å bruke flere m̊al som skal optimaliseres om mulig,
da hjulene funnet med et høyere antall m̊al var best.

Preface

This report is the master’s thesis for the author. Written in the spring of 2015,
it concludes his study in Computer Science at the Department of Computer and
Information Science (IDI) at the Norwegian University of Science and Technology
(NTNU). The supervisor for the project has been Keith L. Downing.

Personal Motivation

I was first introduced to evolutionary algorithms by taking a class named Sub-
symbolic AI Methods by Keith Downing, in which we used these algorithms to
solve various problems. Some of the problems were hard to solve using a standard
EA, as there were multiple tradeoffs to be considered. I figured many real-life
problems would be similarly hard, and became interested in knowing how this
could be solved better.

As for the application of the EA, it was important to me that what I was op-
timizing was something tangible. Something with a close connection to the real
world. I have been interested in bicycles for a long time, I even built one from
the ground up not long ago. I am very happy about being able to combine two
of my passions, bicycling and programming, for this project.

”The correct number of bikes to own is n+ 1, where n is the number
of bikes currently owned.” –The Rules

Acknowledgments

I would like to thank Keith, my supervisor, for his valuable feedback the last
couple of months, and for letting me do this project which has been a challenging
and fun tour of learning.

I would also like to thank the hardware department at IDI, giving me access to
an abundance of computers to run experiments on. A big thank you to both the
other students at the office and my girlfriend for listening to me ramble about
bicycle wheels for months. Lastly, I would like to thank the contributors to the
various open source software and libraries that have been used throughout the
project.

Mats Krüger Svensson
Trondheim, June, 2015

Contents

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Research Questions . 2
1.3 Research Method . 3
1.4 Structure of Report . 3

2 Background 5
2.1 Optimization and Evolutionary Algorithms 5

2.1.1 Optimization Problems and Local Search 5
2.1.2 Introduction to Evolutionary Algorithms 7

2.2 Other Types and Variations . 10
2.2.1 Real Values . 10
2.2.2 Permutations . 12

2.3 Evolutionary Multiobjective Optimization 14
2.3.1 Multiobjective Problems . 14
2.3.2 Non-Domination and Pareto-Optimality 15
2.3.3 Commonly Used Algorithms 17
2.3.4 Comparing Evolutionary Multiobjective Optimization Al-

gorithms . 20
2.4 Domain: Bicycle Wheel Physics . 24

2.4.1 The Bicycle Wheel . 24
2.4.2 The Physics . 25
2.4.3 Truing the Wheel . 27

2.5 Literature Review . 28
2.5.1 Related Work . 28
2.5.2 Structured Literature Review 33

3 Methodology and Implementation 35
3.1 The Wheel Simulator . 35

v

vi CONTENTS

3.1.1 Approach . 35
3.1.2 Implementation . 37
3.1.3 Result . 39

3.2 Evolutionary Algorithm . 43
3.2.1 Approach . 43
3.2.2 Implementation . 43
3.2.3 Parallelization . 44

3.3 Representations . 46
3.3.1 Wheel Tests . 46
3.3.2 Problem Representation . 48
3.3.3 Wheel Representation . 50

3.4 Overview of the system . 51
3.5 Experimental Plan . 52

3.5.1 Parameters . 52
3.5.2 Experiments to Run . 54

4 Results and Discussion 57
4.1 Solving the Problem . 58

4.1.1 The Problem Domain . 58
4.1.2 The Evolved Wheels . 60

4.2 Comparing NSGA-II to NSGA-III 63
4.2.1 Results . 63
4.2.2 Discussion . 63

4.3 Comparing the Wheel Representations 65
4.3.1 Results . 65
4.3.2 Discussion . 67

4.4 Comparing the Number of Objectives 68
4.4.1 Results . 68
4.4.2 Discussion . 68

5 Conclusions 71
5.1 Evaluation . 71

5.1.1 Research Questions . 71
5.1.2 Summary . 72

5.2 Contributions to the field . 73
5.3 Future Work . 74

5.3.1 Problem Domain . 74
5.3.2 EA . 74

Bibliography 77

A Source Code 81

CONTENTS vii

A.1 Getting It . 81
A.2 Running It . 81
A.3 Overview . 82

B Results 83
B.1 Viewing Results Yourself . 83
B.2 Results From Runs . 83

C Additional Wheels 89
C.1 Testing a wheel . 89

viii CONTENTS

List of Figures

2.1 Solution landscapes . 6
2.2 The basic evolutionary loop . 8
2.3 Crossover and mutation . 9
2.4 Basic mutation distribution . 11
2.5 Polynomial mutation distribution 12
2.6 Mutation on a permutation . 13
2.7 Partially mapped crossover . 13
2.8 Example of a multiobjective problem 15
2.9 Non-domination . 16
2.10 Diversity of multiobjective algorithm 17
2.11 Workings of NSGA-II . 18
2.12 Reference points for NSGA-III . 19
2.13 Hypervolume and spacing indicators 21
2.14 Spacing indicator . 22
2.15 A bicycle wheel and close up of a spoke 24
2.16 Common lacing patterns . 25
2.17 Physics behind the spokes . 26
2.18 Wheel truing . 27
2.19 EA with island topology . 29

3.1 Inner workings of physics engine 38
3.2 Forces from below in the simulator 40
3.3 Torque in the simulator . 40
3.4 Simulated wheel from the side . 41
3.5 Rim not bendable . 42
3.6 Axes of the wheel . 46
3.7 Wheel representations . 50
3.8 Overview of the system . 53

ix

x LIST OF FIGURES

4.1 Solutions in objective space . 59
4.2 Some evolved wheels . 61
4.3 NSGA-II vs. NSGA-III plot . 64
4.4 Permutation vs. Free representation plot 66
4.5 OBJ4 vs. OBJ2 plot . 69

C.1 Additional wheels . 93

Chapter 1

Introduction

This chapter gives an introduction to the project by discussing its motivation and
goals.

1.1 Background and Motivation

In this project, evolutionary algorithms will be used to evolve lacing patterns
for a bicycle wheel. The wheels should be optimized in several criteria: strength,
maximal smoothness of the ride, minimum stress on the spokes and other relevant
goals. The wheels will be simulated to measure how good the various lacing
patterns are.

Evolutionary algorithms are used for optimization problems. Inspired from biol-
ogy, they evolve a set of individuals (solutions) in parallel as a population. The
individuals are mutated and combined in order to create a new generation of,
hopefully, better individuals.

Since the very beginning of EAs, they have been used to optimize real-life me-
chanical problems. The first decades, the focus was mainly on maximizing or
minimizing one problem objective. Most real-life problems do, however, consist
of several objectives with tradeoffs. For instance, there is often a relation between
the weight and strength of an object. Only optimizing for strength could give
objects that are too heavy, the optimal solution would probably be something
in-between.

1

2 CHAPTER 1. INTRODUCTION

For this, Goldberg did in 1989 propose how to extend evolutionary algorithms
to take into account multiple objectives [1]. The first successful evolutionary
multiobjective algorithms came a few years later, one of them being NSGA [2].
The second generation, consisting of algorithms like NSGA-II [3] and SPEA2 [4],
have had great success for many years. These and other algorithms have been
used to optimize flywheels [5], bicycle frames [6], several problems relating to the
aircraft industry [7, 8, 9] and many other problems from the real world. These
and other applications will be discussed more in section 2.5.

A common factor among many of these applications is that they all mostly try to
optimize two or three objectives. Handling problems with four or more objectives,
called many-objective problems, is difficult. Recently there have been a lot of
research on extending the algorithms to handle more objectives, and one of the
newest algorithms is NSGA-III [10].

NSGA-III had its first real-life application presented at GECCO14 [11], so it
has not been tested much yet. Therefore, testing this new algorithm and others
on a problem with multiple objectives is interesting for the field of evolutionary
multiobjective optimization.

1.2 Research Questions

The initial problem description from my advisor was:

Evolutionary algorithms (EAs), such as genetic algorithms and ge-
netic programs can be applied to a wide array of search problems.
Find a challenging problem in any domain in which you have some
experience (or a deep interest) and use an EA to solve it.

The selected problem is lacing patterns for a bicycle wheel, in which the goal is
to find good lacing patterns. This is a complex problem and needs a compu-
tationally heavy simulation to evaluate each pattern. There are also tradeoffs
concerning strength, balance, etc., so it will need to be solved using a multiob-
jective optimization algorithm.

The research questions will thus be:

• Can an evolutionary multiobjective optimization algorithm be used to op-
timize lacing patterns of a bicycle wheel?

• How does the performance of the new NSGA-III EMO algorithm compare
to the older NSGA-II algorithm?

• How do the representations of the problem affect the outcome?

1.3. RESEARCH METHOD 3

1.3 Research Method

The main research method to answer these questions has been to perform experi-
ments by implementing a system. However, before conducting these experiments,
thorough background reading has been done. Chapter 2 contains much of what
was learned in this phase.

To run the experiments, a novel bicycle wheel simulator has been implemented.
Together with an extension of the MOEA Framework [12] this system achieves
the goals outlined in the previous section. Details of the implementation and
experimental setup are found in chapter 3.

1.4 Structure of Report

The report is structured in this manner:

• Chapter 1 introduces the problem, research questions and motivation for
this work.

• Chapter 2 discusses the needed background theory in the involved fields.
Evolutionary algorithms for multiobjective problems are described, and we
take a look at how they are being used in related work.

• Chapter 3 goes into detail of how the problem is formulated and solved,
and the test setup.

• Chapter 4 shows the results and discusses them.

• Chapter 5 sums up what have been achieved.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Background

In this chapter, the needed theoretical background is provided. Optimization
problems and standard evolutionary algorithms are discussed before a deeper
look is taken on solving multiobjective optimization problems with evolutionary
algorithms. An introduction to the problem domain, bicycle wheels, will be
given. At the end of this chapter, related applications of evolutionary algorithms
are discussed.

2.1 Optimization and Evolutionary Algorithms

This section gives an introduction to optimization problems in general and how
they are solved. The basic workings of an evolutionary algorithm are explained
in detail so that a later section can focus only on the multiobjective part.

2.1.1 Optimization Problems and Local Search

Given a set of variables, the goal of an optimization problem is to assign some
values to these variables in order to minimize or maximize some objective function.
A set of values for the variables is a complete solution, so optimizing such a
problem can be done with a local search in the solution space. A local search
works by modifying a solution in several ways to create neighboring solutions,
rather than building a solution by exploring paths from some initial state [13].

5

6 CHAPTER 2. BACKGROUND

An example of such a mentioned neighbor generation is a problem with two
variables, (x, y), and an example solution (0.3, 0.7). The local search procedure
can create new solutions by copying the solution and adjusting one of the values
a bit. In this example, it ends up with four new solutions: (0.2, 0.7), (0.4, 0.7),
(0.3, 0.6) and (0.3, 0.8). These solutions are then run through the objective
function to get a value, and then the local search procedure can choose between
them based on how good they are. A problem with two variables is shown in
figure 2.1b.

There exist several local search procedures, or algorithms, the most basic one
being Hill Climbing. Hill climbing is a greedy algorithm that always chooses the
best neighbor solution. Figure 2.1a shows an optimization problem where the
goal is to maximize an objective function that only takes one variable. It is easy
to see that if a solution has the value 2.5 (the orange circle), a greedy search will
only bring it up to point A, a local optimum. The global optimum is however at
point B, so the greedy approach fails to find the optimal solution. If it started
at the blue circle, it would have made it.

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

A

B

C

�tness

(a) Single variable

�tness

0

1

2

3

4

5

6

7

8

9

10

(b) Two variables

Figure 2.1: Solution landscapes for optimization problems with one (a) and two
(b) variables.

To overcome the shortcomings of a greedy approach, most local search algorithms
incorporate some randomness and do not always choose the best solution. One
such approach is Simulated Annealing [13]. Here, a temperature variable that
steadily decreases decides the chance of not choosing the current best solution. In
the beginning, when the temperature is high, it chooses almost randomly from the

2.1. OPTIMIZATION AND EVOLUTIONARY ALGORITHMS 7

neighboring solutions. Later in the search, it becomes greedier. If, in figure 2.1a,
the current solution was in point C, selecting a non-optimal neighbor solution
a few times could move the current solution to the blue circle. From there, it
has the possibility to reach the global optimum. While simulated annealing can
overcome local optimums, it is still not guaranteed to find the global optimum.

These two algorithms, and most other local search algorithms, are general and
contain no problem specific information in their search procedure. All that in-
formation is inside the objective function that evaluates the solutions and in a
neighbor generating function. This makes it easy to use local search algorithms
for new problems. All that has to be done is to write these two functions for
the new problem, the cores of the algorithms stay the same without needing any
changes. The drawback with this is that the search cannot really exploit known
information in the problem domain.

2.1.2 Introduction to Evolutionary Algorithms

An evolutionary algorithm is a more advanced local search algorithm, inspired
from evolution in biology. Compared to the already mentioned local search al-
gorithms, evolutionary algorithms work on a set of solutions in parallel. In EA
terms, a solution is an individual, and the set of individuals is the population.
Using many solutions at the same time has the advantage of exploring more areas
of the solution space. This parallelism is different from running multiple instances
of simulated annealing, as in this case the solutions can “communicate” during
the run.

There are three key elements from evolution that should be present in an evo-
lutionary algorithm: selection, variation and heritability. Selection is that there
must be something that makes one solution more favorable than another solu-
tion. This selection should create pressure on the individuals so only the fittest
survive and mate, and thus the population becomes fitter with time. Variation
means that some new traits in the population should randomly appear, in order
to evolve the population and make it better. Heritability means that children
should inherit many traits from their parents. If a good parent survives and gets
to mate, it would all be a waste if the children were nothing like the parent.
There should also be a certain degree of diversity among the individuals in the
population, in order to not too quickly converge to a local optima.

Figure 2.2 shows the basic evolutionary loop. It all starts with an initial pop-
ulation of solutions (individuals). Often they are randomly created, but known
information about the solution space can be used to create better fit individuals
from the start.

8 CHAPTER 2. BACKGROUND

new generation

Create initial
population

Genotypes

Phenotypes

Evaluate
�tness

Crossover

Mutation

Parent
selection

Adult
selection

Figure 2.2: The life of an individual in a basic evolutionary algorithm.

Genotype is the DNA of an individual. It is often represented as a list of bits,
but other genotypes are possible and will be discussed later. Phenotype is the
solution an individual represents. A step is needed to convert the genotype to
a phenotype. Figure 2.3 shows various genotypes as bitstrings and their corre-
sponding phenotype. In this case, two and two bits are considered an integer, so
the genotype is a list of integers. A phenotype can also be a list of real values or
any other thing that is a solution for some problem. It is important that small
changes to an individual’s DNA do not create vastly different solutions, as this
removes the locality of the search. The representations for a genotype and phe-
notype can often be reused between problems with only small adjustments. For
instance, for a problem where the solution is a list of integers, the only change
needed is how many bits are used per integer and the length of the bitstring.

Fitness function gives each individual a score based on the phenotype. As with
the local search algorithms discussed earlier, an EA is also very general. It is
in the fitness function that problem-specific adjustments need to be made. It is
important that the fitness function can give partial credit to solutions that are
not optimal but still good, so that they have a higher chance of survival compared
to not as good solutions.

2.1. OPTIMIZATION AND EVOLUTIONARY ALGORITHMS 9

Adult selection decides which individuals should be allowed to “grow up” and
later have the chance to become parents. Often, this step is skipped, and a full
generation selection is used, in which all individuals from the earlier generation
are removed and only those from the current generation gets to live. Another
possibility is generational mixing selection, in which the individuals from the
current generation has to compete with individuals from previous generations. A
third option is overproduction selection, in which each generation produces more
offspring than it allows to grow up.

Parent selection decides which individuals get to pass their genes to the next
generation. As discussed earlier in this section, a greedy search may quickly con-
verge to a local optima and get stuck, and simulated annealing avoids this by
using randomness. An EA does something similar: the chance of an individual
to be selected as a parent and go into the mating pool is higher when its fitness
is high, but it is still possible to get there without being the best solution. This
maintains diversity between the solutions. A common way to do this is fitness
proportionate selection, where the chance of being selected is proportionate to the
individual’s fitness in relation to the total fitness of all individuals in the popu-
lation. Another often-used selection is Tournament selection, in which k random
individuals are selected, and with probability p the best of those is selected or
with chance 1-p one is selected at random.

1 0 1 1 1 0 0 1
2 3 2 1

1 1 1 1 1 0 0 1
3 3 2 1

G
P

G
P

(a) Mutation

1 0 1 1 1 0 0 1
2 3 2 1

0 0 0 1 0 1 1 1
0 1 1 3

G
P

G
P

1 0 1 1
2 3

2 1
0 0 0 1

0 1

1 3
G
P

G
P

1 0 0 1

0 1 1 1

(b) Crossover

Figure 2.3: Crossover and mutation of genotypes and what happens to their
phenotypes. (a) shows a mutation where a bit is flipped, (b) shows a crossover
where two parents are split and combined to create two offsprings.

10 CHAPTER 2. BACKGROUND

Crossover is a way to combine parents’ genotype to make a new individual.
Heritability is important, so the crossover operator should try to combine the
parents in a way that keeps most of their good properties intact. How this is
done depends on the representation of the genotype. For bitstrings, the standard
way to do a crossover is to randomly select a crossover point, and then swap
what is after that point between the two parents. Figure 2.3b shows a crossover
where the crossover point is in the middle of the bitstring. This creates two new
children genotypes. It is also possible to swap multiple segments.

Mutation is what introduces variance to the population by modifying a solution
just a little. When the genotype is a bitstring, this is most often done by flipping
some bits. Normally, each bit is flipped with a probability of 1/n, where n is the
number of bits. This probability ensures that on average one bit is flipped, but
that there are chances for bigger changes. It is also possible to set a probability for
an individual to be mutated, and when selected for mutation a single, random bit
in its genotype is flipped. Figure 2.3a shows a bit being flipped and the resulting
phenotype.

In addition to these, a common strategy is to use eltitism. Elitism is that some of
the best individuals from a generation are copied directly to the next generation.
This makes it so that the best fitness of the population is never decreasing.

2.2 Other Types and Variations

Above, a bitstring genotype that represents a list of integers as phenotype was
explained. This representation is easy to explain when introducing evolutionary
algorithms and works fairly well on some problems. However, for this project,
some more advanced representations with different mutation and crossover oper-
ators are needed.

2.2.1 Real Values

In many problems, the phenotype should be a list of real values with some upper
and lower bound. This can be achieved using the bitstring genotype, by convert-
ing the integer value to a new value within this range. If we have 7 bits, where
127 would be the max value, a value can be turned into a real value in the correct
range using this formula: boundlower + value

127 · (boundupper − boundlower)

However, mutating the underlying bitstring is problematic. To show the problem,
a test has been run where the 7-bit long bitstring [1000000], representing the value

2.2. OTHER TYPES AND VARIATIONS 11

0

20000

40000

60000

80000

350000

0 10 20 30 40 50 60 70 80 90 100 110 120

Value

O
cc
ur
en

ce
s

Figure 2.4: How many times each value appeared when mutating the value 64
one million times. Note that the graph is cut off, the value 64 appeared almost
350 000 times.

64, has been mutated a million times. Each bit was flipped with probability 1/7.
The distribution of the new values can be seen in figure 2.4. As the figure shows,
certain values appear more often than others with a very bad distribution. It
is easy to see why, for instance, the value 0 appears many times since [0000000]
is only a single flip from the original bitstring. The same goes for 65 with the
bitstring [1000001], it appears over 50 000 times. However, the value 63 only
appears 1 time, as [0111111] would require all bits to be flipped. This is called a
Hamming cliff, when there are large distances between adjacent integers. These
issues destroy the locality of the evolutionary algorithm, as it is hard to adjust
the values just a little.

Instead, a good way to work with mutation and real values is to use polynomial
mutation (PM) [14]. Instead of having the genotype be a bitstring representing
real values, the genotype would here be a list of reals (of course, these real values
are still bits deeper down). For the polynomial mutation operator, one specifies
a distribution index. The operator then works by changing the input value to a
new value with a polynomial distribution around the original value, with the set
distribution index determining the variance.

The results of doing this one million times on the value 64 can be seen in figure 2.5
for various values of the distribution index. This mutation gives values that are
better distributed and also has the added benefit that one can control the spread
of the new values. A high distribution index gives a higher probability for the new
value being closer to the original value, while a low index gives a more uniform
distribution.

12 CHAPTER 2. BACKGROUND

There is also a crossover operator exhibiting some of the same qualities as polyno-
mial mutation, named simulated binary crossover [15], often shortened to SBX.

Dst 1 Dst 5 Dst 15

0

20000

40000

60000

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125

Value

O
cc

ur
en

ce
s

Figure 2.5: Using polynomial mutation on the value 64 for various distribution
indexes, recording how many times each value appeared during a million muta-
tions. The distribution is much better than for bit flipping.

2.2.2 Permutations

A way to handle permutations is also needed. Figure 2.6a shows an example
with four numbers, 0 to 3, represented by a bitstring genotype. A mutation that
randomly flips some bits will give many invalid solutions, phenotypes that do not
represent a permutation of the numbers 0 to 3. This can trivially be fixed by
modifying the mutation operator to instead swap places of bit segments. However,
not using a bitstring at all is even easier, so when working with permutations
having the genotype be a list of numbers is the preferred solution. Then all that
is needed is to swap the place of two numbers in the list, as shown in figure 2.6b.
In addition to swap, insertion is often also used. Insertion takes a random number
and inserts it somewhere else in the permutation, shifting the other values to the
side.

Handling crossover with permutations is not as straightforward. One way to do
it is to do a normal crossover, and then later try to fix it by removing duplicate
elements and filling in the missing ones. This can, however, destroy the locality
of the inheritance, as the changes will be very drastic and the result will not

2.2. OTHER TYPES AND VARIATIONS 13

0 1 1 1 1 0 0 1
0 1 2 3

1 1 1 1 1 0 0 1
2 1 2 3

G
P

G
P

(a) Bitflip

[0 1 2 3]G = P

[2 1 0 3]G = P

(b) Swap

Figure 2.6: Using mutation on a bitstring that represents an ordering can give
invalid results, as shown in (a) that ends up with two 2’s and no 0. A better
solution is to swap two elements, as in (b).

have the same properties as the parents. A better way, but with the same idea, is
called Partially Mapped Crossover (PMX), and was made for arranging the order
of cities in a traveling salesman problem[16]. The idea is to pick two segments
of equal size from both parents, and create a mapping between them and apply
that mapping to the elements. Figure 2.7 shows an advanced example, where
there even after the first mapping remain duplicates. So then the mapping has
to be run again.

[0 1 2 3 4]

[2 4 3 1 0]
Parents Mappings

2 3, 3 1

3 2, 1 3

[0 1 3 1 4]

[2 4 2 3 0]
Children

[0 3 3 1 4]

[3 4 2 3 0]

[0 2 3 1 4]

[1 4 2 3 0]
Figure 2.7: Using PMX to crossover a permutation. First swap two substrings,
then use the mapping until there are no more duplicates (marked with orange
boxes).

14 CHAPTER 2. BACKGROUND

2.3 Evolutionary Multiobjective Optimization

While the local search procedures introduced earlier work great for optimizing
problems with a single objective, many real-life problems have multiple objectives
and tradeoffs that need to be considered. This section gives an introduction on
how to tackle such problems, and how evolutionary algorithms can be extended
to work with these strategies.

2.3.1 Multiobjective Problems

Multiobjective problems are problems where more than one function should be
minimized or maximized. An often-used example [2] for such a problem is this:

Minimize f1 = x2

Minimize f2 = (x− 2)2

A graph of these two functions is shown in figure 2.8. A solution in this case is
a single variable, (x), and the fitness of the solution is a tuple (f1(x), f2(x)). For
the solution x1 = 0, the fitness would be (0, 4), and for the solution x2 = 2 the
fitness would be (4, 0). It is impossible to define one of these solutions as better
than the other without additional information. How can then an evolutionary
algorithm choose between a set of individuals with a multi-dimensional fitness?

One naive way to do this is to convert the multiple fitness values into a single
scalar. This conversion is often done by summing the values and weighting them
by preference.

newfitness =
∑

wi · fi(x)

Where wi is the importance of objective i. Using the example from before, having
equal weights for both objectives, e.g. w1 = w2 = 0.5, would result in x = 1 as
the found solution. The solutions x1 = 0 and x2 = 2 from before would be the
results of having one of the weights equal to 0 and the other equal to 1.

While this works for simple problems, it will in general not give good results.
The only advantages of this technique are that it can be used to make existing
local search algorithms handle multiple objectives, and that the user of it can to
some extent specify the relative importance of each objective. However, setting
the proper weights is a hard problem in itself, and can often lead to bad solutions.

2.3. EVOLUTIONARY MULTIOBJECTIVE OPTIMIZATION 15

-2 -1 0 1 2 3 4-2 -1 0 1 2 3 4
0

2

4

6

8

10

12

14

16

x

f2

f1

Figure 2.8: The two fitness functions for a fictive optimization problem.

Besides, this method will converge towards a single point in the solution space,
while for real-life problems one would often be interested in knowing about mul-
tiple solutions and their tradeoffs. This convergence can also make the algorithm
quickly become stuck in initially promising solutions.

2.3.2 Non-Domination and Pareto-Optimality

In 1989, Goldberg [1] introduced an idea of how a proper multiobjective algorithm
could work for an evolutionary algorithm: It should sort the individuals on non-
domination and have a niching operator to maintain diversity.

The two solutions from before, x1 = 0 and x2 = 2 with fitness (0, 4) and (4, 0)
are considered equally good and cannot be discerned between. However, if one
considers a third solution, x3 = −2 with fitness (4, 16), and compare it to x2 one
can say that one of them is better than the other. They have the same value for
f1, but for f2 the value for x2 is much lower. As this is a minimization problem,
it is obvious that x2 is better than x3 since one gets a lower value for f2 without
getting a worse value for f1. So we say that x2 dominates x3.

The formal definition for domination is: For two solutions x1 and x2, x1 dominates
x2 if x1 is no worse than x2 in any objective, and x1 is strictly better than x2 in
at least one objective.

16 CHAPTER 2. BACKGROUND

2 4 6 8 10

2

4

6

8

10

f1 (minimize)

f2 (minimize)

1
2

3

5

4

6

Non-dominated front

7

Figure 2.9: Showing a set of solutions in the objective space, where each axis is
one of the objectives. Each solution dominates those above and to the right of it
(the gray dotted lines).

Solutions that are not dominated by any other solutions are said to be non-
dominated. Figure 2.9 shows a minimization problem with two objectives and
a set of solutions in the objective space. By objective space, one means a space
where each dimension is one of the objectives in the problem. There are several
non-dominated points that are ”equally good”, and they together make what
is called the non-dominated front. If we take the set of all possible solutions,
those that are then non-dominated are said to be pareto-optimal. The goal of
the evolutionary search should be to find solutions as close to the pareto-optimal
front as possible while being spread out and cover most of it.

To end up with a lot of solutions spread out, diversity must be maintained
throughout the search. For this, Goldberg suggested a niching strategy that
takes into account a solution’s proximity to other solutions in addition to its
non-domination when selecting parents. Figure 2.10 shows a search with four
solutions that are non-dominated. If there were to be an equal chance to choose
between each of them to become parents, by time they would all converge to a
single point close to the pareto-optimal front. In this case, the niching operator
should increase the chances of selecting the solution far away from the others, as
this will maintain the diversity and hopefully give solutions that cover more of
the pareto-optimal front.

2.3. EVOLUTIONARY MULTIOBJECTIVE OPTIMIZATION 17

2 4 6 8 10

2

4

6

8

10

f1 (minimize)

f2 (minimize)

2 4 6 8 10

2

4

6

8

10

f1 (minimize)

f2 (minimize)

pareto-optimal front

Figure 2.10: The algorithm should ensure high diversity in the population. Oth-
erwise it will converge to a single point and not cover the whole pareto-optimal
front.

2.3.3 Commonly Used Algorithms

There exist many algorithms to deal with multiobjective problems, and here some
of the most common ones will be discussed.

NSGA

Nondominated Sorting Genetic Algorithm [2] is the first of a line of algorithms
by Deb et al. While it today is obsolete, as many newer and better algorithms
have been found since 1994, it is interesting because it was the first algorithm to
successfully incorporate the ideas put forward by Goldberg.

NSGA starts by identifying the individuals in the non-dominated front and assign
a large dummy fitness value to them. Then those individuals that have similar
phenotypes gets a penalty that decreases this dummy value, in order to promote
diversity. After this, the non-dominated individuals are removed from the popu-
lation, and the fitness procedure is run again on the remaining population. The
new non-dominated front will this time get a lower dummy fitness value. This
continues until the entire population has gotten a dummy fitness value. The
individuals are then selected based on this new fitness value.

The fact that the individuals end up with a single fitness value means that the
NSGA is just a step between the fitness function and the selection operators. No
other modifications to the standard evolutionary algorithm are needed. One big
drawback is that it is hard to find a good value for how much solutions should

18 CHAPTER 2. BACKGROUND

be penalized for being similar. It is also a drawback that it considers similarity
on the phenotype, not in how good the solutions are in the various objectives.

NSGA-II

The second version of NSGA, the NSGA-II [3], is a highly successful algorithm
that has been used in many applications. NSGA-II starts similarly as its prede-
cessor by finding the non-dominated individuals. The non-dominated individuals
are given rank 1, and those only dominated by individuals in rank 1 are then
assigned rank 2. This goes on until each individual has a rank. Several ranks are
displayed in figure 2.11a. To maintain diversity, a cuboid between an individual’s
two closest neighbors in the same rank is found, also shown in figure 2.11a. This
distance is found in the objective space, compared to NSGA that used similarity
between solutions.

The individuals are then sorted by rank and distance such that lower ranks come
first, but within the same rank those with a higher distance from other individuals
come first. Then the first N individuals are selected for the normal selection,
crossover and mutation steps. To utilize elitism, NSGA-II adds all individuals
from the previous generation to the population before the non-dominated sorting
and distance calculations are carried out. Figure 2.11b shows the process.

2 4 6 8 10

2

4

6

8

10

f1 (minimize)

f2 (minimize)

rank 1

rank 2

rank 3

cuboid

(a)

cu
rr

en
t g

en
er

at
io

n
pr

ev
 g

en
er

at
io

n

Sorting
by rank
and distance

Re
ad

y
fo

r s
el

ec
tio

n

(b)

Figure 2.11: NSGA-II (a) shows individuals being given a rank and a distance
value, (b) shows how this is used to select which individuals can later be selected
by the evolutionary algorithm.

2.3. EVOLUTIONARY MULTIOBJECTIVE OPTIMIZATION 19

SPEA

Strength Pareto Evolutionary Algorithm, SPEA2 [4], is another often used way
to tackle multiobjective problems. It is similar to NSGA-II in idea but somewhat
different in execution. As NSGA-II, SPEA2 also holds an archive of the best
solutions from the previous steps, and the non-domination and distances are cal-
culated including that archive in addition to the current population. SPEA2 does
not divide the individuals into different ranks, however. Instead, it calculates per
individual which individuals that dominate it, and which individuals it domi-
nates. The number of individuals dominated becomes that individual’s strength
number. Then each individual is assigned a raw fitness, which is the sum of all
strengths of individuals dominating it. Compared to NSGA-II, this means that
individuals in the same rank here will get different fitness values, which makes it
possible to select better between them.

NSGA-III

f2

f3

f1

re
fe

re
nce

 lin
e

Figure 2.12: Reference points and a reference line for a 3-objective problem with
p=4 for use in the NSGA-III algorithm.

While NSGA-II and SPEA have been used with great success for numerous mul-
tiobjective problems, they and many other non-domination based searches suffer
when the number of objectives becomes too high. Some of the problems [10, 11]

20 CHAPTER 2. BACKGROUND

are: as the objective space gets more dimensions, a larger and larger fraction of
the population will be non-dominated. That finding the nearest individuals to
compute distance becomes more computationally demanding and that this dis-
tance become somewhat meaningless. Lastly, recombining parents will often lead
to bad individuals, as the parents are far away from each other.

NSGA-III [10, 17] is an upgrade of NSGA-II to alleviate some of these problems.
The core of NSGA-III is very similar to NSGA-II. The ranking of individuals and
preservation of a group of the best individuals from previous generations work
just as before. However, where NSGA-II sorted the ranks internally based on
individuals’ distance to other individuals, NSGA-III uses reference points.

These reference points can be added manually, to fine-tune which area the search
should concentrate on, or be automatically calculated to lay uniformly on a plane
in the objective space with p divisions. Figure 2.12 shows such calculated points
for a 3-objective minimization problem where the number of divisions is 4. An
ideal point lies in origo, and for each reference point a line from the ideal point
to the reference point is made. Then for each individual, the orthogonal distance
to each reference line is calculated, and the individual is associated with the
reference point belonging to the closest reference line. The selection operator will
then pick individuals such that they cover most of the reference points, and thus
are thoroughly spread out in the objective space.

NSGA-III is a state of the art algorithm that has been shown to handle 15-
objective test-problems. It has, however, not been tested much in real-life appli-
cations yet.

2.3.4 Comparing Evolutionary Multiobjective
Optimization Algorithms

As discussed, EMO algorithms should try to find solutions that approach the
pareto-optimal front while still having a high diversity. The algorithms should
preferably also be consistent and fast. To compare algorithms, various metrics (or
indicators) have been devised that can quantify how well an algorithm achieves
these goals [18]. These metrics often measure the quality of the solutions found
by an algorithm. Since algorithms can excel in different metrics, deciding which
algorithm is best ironically becomes a multiobjective problem.

Some of the following indicators need a reference set to calculate their values.
The reference set is a set of non-dominated solutions, preferably the true pareto-
optimal front. For problems where this front is not known, which is true for

2.3. EVOLUTIONARY MULTIOBJECTIVE OPTIMIZATION 21

most real-life problems, one can instead use the set of best-found solutions from
multiple runs.

Hypervolume Indicator

The hypervolume indicator tries to measure the area (or volume, etc. in higher
dimensions) covered by the solutions in the objective space. This is done by
calculating the union of the area dominated by each solution, from a reference
point. The hypervolume of a solution set indicates how close the set is to the
reference set, and also somewhat how well the solutions are spread out.

The reference point is set so as to be dominated by all solutions in the reference
set. In figure 2.13a it can be seen in the upper, right corner. The hypervolumes
of the various solution sets then grow from this point towards the reference set.
Before calculating the hypervolume value for a solution set, the objective val-
ues should be normalized with respect to the reference set as to not weigh any
objective more than the others.

2 4 6 8 10

2

4

6

8

10

f1 (minimize)

f2 (minimize)

reference

solutions 1

solutions 2

(a) Hypervolume

2 4 6 8 10

2

4

6

8

10

f1 (minimize)

f2 (minimize)

reference set

solutions 1

ɛ-distance

(b) ε-distance

Figure 2.13: Two indicators for comparing multiobjective algorithms. Hypervol-
ume (a) measures the area covered, ε-distance (b) the distance one set has to be
moved to completely dominate some reference set.

As shown in figure 2.13a, this can give a good quantification on how good a
solution set is. The orange set, solutions 1, is much closer to the reference solu-
tions, and ends up with a bigger area (volume) than the blue solution set. Some

22 CHAPTER 2. BACKGROUND

drawbacks with the hypervolume indicator are that it is computationally heavy
to calculate for higher dimensions with big solution sets, and that it can give
a false indication of which algorithm is best when the pareto-optimal front has
weird shapes.

Additive Epsilon Indicator

The additive epsilon indicator measures the distance one solution set has to be
moved in the objective space to completely dominate the reference set. This is
shown in figure 2.13b, where the blue solution set is moved to cover the reference
set. The sets are with this indicator also normalized before calculation.

The value of the epsilon indicator indicates how close the solutions in the set
are to the reference set, so the goal is to get as small a value as possible. The
indicator says nothing about the distribution of the solutions, so one should not
make any conclusions based on this indicator alone.

Spacing Indicator

The spacing indicator measures how well spread the solutions in a set are. For
each solution, the distance to the closest neighbor solution is calculated. The
spacing value is then calculated as the standard deviance of the distances. So the
goal should be to get the spacing value low, as this indicates that the solutions
are uniformly distributed in the objective space. To calculate this, no reference
set is needed.

2 4 6 8 10

2

4

6

8

10

f1 (minimize)

f2 (minimize)

solutions 1

solutions 2

Figure 2.14: Spacing indicator. Blue would receive a better score, as the solutions
are more uniformly distributed in the objective space.

2.3. EVOLUTIONARY MULTIOBJECTIVE OPTIMIZATION 23

In figure 2.14, the blue solution set would get a lower (better) spacing value than
the orange solution set because it is more uniform. As the figure also shows, this
metric does not say anything about the quality of the solutions. Here the orange
solutions are much better, but more lumped together.

So, one indicator alone cannot be trusted to show the whole picture. Utilizing
these three indicators together, however, one should be able to get solid measure-
ments on the quality of solutions/algorithms.

Statistical Tests

Since the results of evolutionary algorithms are highly stochastic, one cannot run
each algorithm once and then draw any conclusions based on the observed values
for the different indicators. So what needs to be done is to run each algorithm
multiple times and record the values, grouping the values per algorithm.

However, when that is done, one cannot necessarily calculate the average or me-
dian value for each group/algorithm and conclude based on that. For instance, if
the standard deviation of the recorded values is high and the number of algorithm
runs is low, one should be careful when drawing any conclusions.

A recommended approach [19] is to apply the Kruskal-Wallis test on the recorded
values. In this case, the H0 hypothesis would be that the ”true” median of the
groups of values are the same, and H1 that they are different. So, if the null
hypothesis has to be rejected, this means that there is a statistically significant
difference in the groups of values, and it can be concluded that one algorithm
was better than the others.

24 CHAPTER 2. BACKGROUND

2.4 Domain: Bicycle Wheel Physics

This section provides the needed knowledge in the problem domain, namely how
a bicycle wheel works. Domain specific terminology is introduced and explained
here.

2.4.1 The Bicycle Wheel

Hub

Axle Hub �ange

Rim

Spoke nipple
Spoke

Spoke elbow
Freewheel

Figure 2.15: A bicycle wheel and close up of a spoke

Figure 2.15 shows the main parts of a bicycle wheel. The hub is the centerpiece
and contains an axle that is used when mounting the wheel on a bicycle. The
freewheel with the cogs used to move the bicycle forward is mounted on the hub.
The hub also has two flanges with holes in it for inserting the spokes. The end of
the spoke where the nipple is placed, is inserted first through the flange and then
through a hole in the rim where it is secured using the nipple. The elbow on the
spoke keeps it from going all the way through the hole in the flange. The spokes
can be inserted from both sides of the hub flange, and it is common to alternate

2.4. DOMAIN: BICYCLE WHEEL PHYSICS 25

between them. The figure shows two spokes next to each other going both ways
through the flange.

There are several standard lacing patterns for the spokes. Most commonly, 32 or
36 spokes are used and a ”2x” or a ”3x” pattern [20]. The number refers to how
many times a spoke crosses another spoke from the same hub flange. Figure 2.16
shows three common lacing patterns for a 36-spoked wheel. Every second spoke
is angled the same way as the rotation of the wheel (“leading spokes”) and the
others are angled the other way (”trailing spokes”). Wheels with angled spokes
are called tangentially laced wheels. It is also possible to have a wheel where
each spoke goes straight from the hub to the rim, these wheels are called radial
laced wheels. See figure 2.16 for tangential laced wheels, and figure 2.17b for a
radial one.

Leading
Trailing

(a) 2x (b) 3x (c) 4x

Figure 2.16: Common lacing patterns for a spoked wheel, showing only one side.
The patterns are named after how many times a spoke crosses another spoke,
marked in red.

When torque from the freewheel is applied to the hub, the trailing spokes are
needed. A radially laced wheel would not be able to transfer that force through
the spokes out to the rim. So all rear wheels must be tangentially laced, at least
on the side where the freewheel is mounted.

2.4.2 The Physics

For being such a simple everyday-object, how the bicycle wheel works can be
surprisingly unintuitive. Figure 2.17 shows how a spoke would react to compres-

26 CHAPTER 2. BACKGROUND

sion: it would buckle. Looking at a car wheel, figure 2.17c, it is obvious that the
force on the axle goes through the lowermost “spoke” as compression. Since a
small, thin spoke on a bicycle wheel would be unable to withstand such a force,
the workings have to be something completely different. The “secret” is the fact
that all spokes are mounted highly tensioned. This is done by turning the spoke
nipple until the spoke is stretched. The spoke can handle loads many times its
own weight in this direction.

Low tension

High tension

(a) (b) (c)

Figure 2.17: (a) spokes under tension and compression, (b) a wheel with load
on the axle ”hangs” from the topmost spokes, (c) a car wheel ”stands” on the
lowermost spoke

Figure 2.17b shows an illustration of how the tension in the spokes of a wheel
is after putting weight on the axle. When load is applied, the tension in the
lowermost spokes decrease and the tension in the uppermost spokes increase.
There is never any compression on the spokes, just various degrees of tension
[21][22]. This means that a good way of picturing a bicycle wheel is that the hub
“hangs” from the upper spokes.

The forces on and by a stretched spoke can be described using Young’s Modulus.

F =
EA0∆L

L0

Where E is the modulus of elasticity for the material, A0 the cross-sectional area
through which the force is applied, ∆L the change of the object’s length and L0

the original length of the object.

2.4. DOMAIN: BICYCLE WHEEL PHYSICS 27

2.4.3 Truing the Wheel

As mentioned in the previous subsection, a vital part of how a bicycle wheel works
is the fact that all the spokes are tensioned. This is done by tightening the spoke
nipples, and truing a wheel is the art of tightening each nipple the right amount.
There are four main goals when it comes to truing, the three first affecting the
geometry of the wheel are shown in figure 2.18.

(a) Vertical (b) Lateral (c) Dish

Figure 2.18: Wheel truing, red spokes are too tight. (a) needs vertical truing,
it looks like an egg, (b) needs lateral truing, the wheel will wobble from side to
side, (c) shows dish, how the hub can be adjusted sideways.

• Getting a round wheel, also called vertical truing, is of course beneficial.
Figure 2.18a shows a wheel that is too tight and resembles an egg. When
rolling, the distance between the hub and the ground would constantly
change, making it a very shaky ride.

• Removing wobble, also called lateral truing, is to tighten the spokes in such a
way that the wheel looks straight when viewed from the front of the bicycle.
Figure 2.18b shows a wheel that is trued incorrectly in this manner, being
too tight on one side some places, and too loose on other places. So when
rolling, this wheel would constantly move from side to side.

• Dish, is to tighten the spokes on both sides in a way that controls the
relative positioning of the hub in relation to the rim. Depending on how

28 CHAPTER 2. BACKGROUND

the wheel should be mounted, one might want the rim aligned exactly above
the hub or to one of the sides. Figure 2.18c shows the axis on which the
hub can be moved.

• Proper tension in the spokes. Too little tension in a spoke means it does not
contribute to bearing the load, so having too many under-tensioned spokes
will make a wheel dysfunctional. If the tension is too high, the spoke may
fail. It is also beneficial to have as little variation in the tension as possible
for spoke. Changes in tension under different loads can lead to metal fatigue
in the spokes.

These four goals are intertwined, adjusting the spokes to fix one issue will often
make another one worse. For instance, loosening the red spokes in figure 2.18b
to remove wobbling will also affect how round the wheel is.

2.5 Literature Review

This section lists and discusses related work and how relevant papers were found.
For related work, the focus has mainly been papers using evolutionary multiob-
jective algorithms to optimize mechanical structures. Some papers in the problem
domain are discussed as well.

2.5.1 Related Work

The paper “Evaluation of Injection Island GA Performance on Flywheel
Design Optimisation” [5] by Eby et al. used a layered island model in order
to speed up the search for a good flywheel design. Island models are a way to
parallelize an EA, by splitting the population into smaller groups (islands) that
run the EA almost independently of each other. It is different from running
several smaller EAs, because with islands there will be migration once in while
where copies of the best solutions are distributed to the other islands. Compared
to a standard EA, with only a single “island”, this can help overcome local optima.
By chance, some of the islands will get past the local optima, or become stuck
in different local optima. Migration will then mix solutions from the islands and
often help the search continue.

An interesting aspect of the island model in this paper is that the different islands
use different fitness functions and other parameters. To evaluate the evolved
flywheels they use finite element analysis (FEA), which takes a long time. To
not waste much time running FEA on bad solutions, the top layers run a simpler

2.5. LITERATURE REVIEW 29

Figure 2.19: Topology of the islands, the darker shaded islands run a more accu-
rate FEA.

version of the FEA on them. The layers have different levels of refinement, the
bottom one running a full FEA. Figure 2.19 shows the topology of the islands.
The result is that the top layers quickly discards bad solutions, and send the good
ones to the lower layers to be refined, saving a lot of time. Their normal EA could
not find a solution in 6000 seconds, while this approach found the global optima
in 768 seconds on average. Their conclusion is that this approach can make good
solutions attainable for problems where it takes a long time to evaluate a solution.

“A Hybrid Multi-objective Evolutionary Approach to Engineering Shape
Design” [6] by Deb and Goel tries to find an optimal shape for a bicycle frame.
The two objectives are the weight of the frame and the stiffness, and they use the
already discussed NSGA-II algorithm to select solutions for the next generation.
They have a two-dimensional grid, and the genotype encodes which cells in the
grid are solid or not. These shapes are then evaluated with FEA. In order to
improve the results, a simple local search is done on each solution when the EA
is done. For this local search, they combine all the objectives to one aggregated
value and flip one and one bit in the genotype. If the flip makes an improvement,
it stays that way. Their results show that this additional optimization in the end
moves the solutions closer to the pareto-optimal front.

For a non-dominated sort to work and explore the whole pareto-optimal front,
many solutions to choose from each generation are needed. This also means that
in the end the result is hundreds of solutions with different tradeoffs. Selecting
between them can be hard for a human to do, so after the local search Deb and
Goel tries to narrow it down to a few, interesting solutions. This is done by
clustering the solutions in the objective space, and remove all but one in each

30 CHAPTER 2. BACKGROUND

cluster. They then end up with a few near-optimal solutions that are spread out
on the non-dominated front.

“Many-Objective Evolutionary Optimisation and Visual Analytics for
Product Family Design” [8] by Shah, Reed, and Simpson. They try to find
an optimal configuration of design variables for a small airplane, like cruise speed
and seat width. There are nine objectives to optimize, ranging from takeoff noise
to purchase price. They want to end up with three different airplane models with
different tradeoffs in order to cover most of the market. However, the airplanes
should be somewhat similar as this reduces production costs, so a tenth objective
is added: commonality between the design variables. As discussed earlier in this
chapter, having many objectives makes the search exponentially harder, because
most of the solutions become non-dominated to each other.

To solve this 10-objective problem, they use ε-NSGA-II, an extension of NSGA-
II that uses a concept called ε-domination instead of the domination explained
earlier in this chapter. For each objective, the user of the ε-NSGA-II algorithm
can specify a precision for how solutions should be ranked for that objective. In
the solution space, a big ε would be a coarse grid and a small ε a finer grid. Instead
of a strict comparison to find domination, the values of solutions are first mapped
to values in this grid. Since the ε varies between objectives, the search can be
fine-tuned to look more into certain objectives while ignoring small changes in
others. They exploit this property here to be able to optimize over 10 objectives.
ε-NSGA-II also has an adaptive population size that saves computational cost
when there is no need for a big population.

To check that the algorithm does not break down to a random walk, they test
the results against 25 million results from a Monte-Carlo simulation. The results
from ε-NSGA-II dominate these results, so they conclude that it works well. One
point, however, is that the ε-NSGA-II does a total of 500 000 fitness evaluations
each run. In this case, the objective values are simple to calculate from the design
variables. However, in a problem where a heavier simulation is needed, 500 000
simulations can take decades to complete. Therefore, this approach of handling
many objectives may not be feasible for all kind of problems.

The article “Multiobjective Optimization of Space Structures under
Static and Seismic Loading Conditions” [23] by Lagaros, Papadrakakis, and
Plevris tries several algorithms in order to optimize these space structures, one
of them being a multi-objective EA. The other approaches they try are classical
algorithms in the field of this application, modified to handle multiple objectives.
This they have done by converting the values of the multiple objectives into a
single scalar. One of the methods they used for this is the weighting method
discussed earlier. The second method is to have a defined goal for each objective

2.5. LITERATURE REVIEW 31

and calculate the sum of how far away from the goal each value of a solution is.
The last method they used is to convert all but one objective into constraints
instead.

The result is that the EA finds as good solutions as the classical algorithms in an
order of magnitude less time. For each solution, a costly finite element analysis
has to be run. The EA needs about five times fewer such evaluations than the
other algorithms, and this is what makes it so much faster. The authors conclude
that the EA is so much better because there are multiple individuals that can
search for multiple solutions in parallel and that these solutions cover the whole
pareto-front without converging too early.

In “Single and Multi-Objective Approaches to 3D Evolutionary Aero-
dynamic Design Optimization” [7], Hasenjäger et al. optimize a gas turbine
blade. The blades are simulated, and that simulation takes over 2 hours per
solution. Therefore, it is in their interest to minimize the number of needed
evaluations of individuals. For multiple objectives, approaches based on non-
domination need a relatively large population, so they opt out of using NSGA-II.
Instead, they try with an algorithm called ES-CMA. ES-CMA uses the search
history to calculate the covariance between the objectives, and uses this model
of the search space to adapt the search to promising regions. This decouples the
population size of the search from the dimension of the search space (e.g. number
of objectives).

Using this approach, they ran the algorithm for 300 generations with only ten
individuals in the population. Using a cluster of 40 computers, this took six
weeks to complete but gave good results. They also tried making the problem
single-objective by aggregating the value of each objective into a single value.
This did not work out very well, as the EA then ended up focusing too much on
only small parts of the search space and quickly converged.

“Optimization of a Supersonic Airfoil Using the Multi-objective Al-
liance Algorithm” [9] is a paper from Lattarulo, Seshadri, and Parks, also re-
lated to the aircraft industry. As with the previous paper, they also need to run
computationally heavy simulations, and therefore want an algorithm that works
well even with few evaluations. For this, they have compared a relatively new
algorithm, the Multi-Objective Alliance Algorithm (MOAA), against the widely
used NSGA-II. MOAA uses the idea of tribes (individuals) that form alliances
as a way to combine and improve solutions. The tribes have skills (their values
in the different objectives) which they need to improve by creating an alliance
with a tribe that has skills they do not have themselves. The new tribes in the
next generation have their values first copied and then modified with a normal
distribution with standard deviation σ. σ will decrease during the search, so the

32 CHAPTER 2. BACKGROUND

search starts with high diversity and later on the diversity is lower, similarly to
how simulated annealing does it.

To compare MOAA and NSGA-II, they use two of the indicators already dis-
cussed: epsilon indicator and hypervolume indicator. Then they perform a sta-
tistical test on this data to see if they show something conclusive. While they
claim that the MOAA outperforms the NSGA-II after 1000 fitness evaluations,
it is only by a little. They find comparably similar solutions, the biggest differ-
ence is that MOAA covers a bit more of the pareto-optimal front. Therefore,
it can seem that when few evaluations are possible because of computational
constraints, using the ES-CMA from the previous paper can be a better idea.

“Optimal seat and suspension design for a quarter car with driver
model using genetic algorithms” [24] is a paper by Gündoğdu. There are
many papers that deal with evolutionary algorithms and suspension, but many of
them do a single-objective optimization. In this paper, the author also considers
how a driver of the vehicle would react to rough conditions, both in terms of
comfort and safety. Since he wants to minimize all of the objectives and ranks
them all as equally important, he gets good results by combining the objective
values into a single value.

Finite Element Analysis of Spoke Lacing Patterns [22] is a paper from
Williams Cycling R&D, a bicycle manufacturer. They do not use any EA or any
other form for search, they do however simulate four common lacing patterns.
This project aims to extend what they have done by simulating many more
unknown lacing patterns. In their study, they test 2x/2x, 3x/3x, 3x/radial and
radial/3x pattern, all with 28 spokes. Before the slash is the pattern on the drive
side, after the slash on the non-drive side. Interestingly, two of the wheels they
test use different patterns on each side of the wheels. A figure showing different
patterns can be seen on page 25.

They have built the wheels in a modeling suite called ABAQUES CAE and run a
finite element analysis on them in there. They pretension the spokes on the drive
side to 100 kgf and the non-drive side to 60 kgf. The difference is to adjust the
dish of the hub. They then apply 70kgf torque to the drive side and as weight
on the hub. They measure the highest and lowest tension seen in any spoke, the
lateral deflection of the rim and power loss from the applied torque. The values
from the FEA show that the wheel model works as expected: applying torque to
the wheel increases the tension in the trailing spokes and decreases the tension
in the leading spokes, and adding weight to the hub decreases the tension in the
bottom spokes.

The 3x/3x wheel has the smallest range between highest and lowest tension in any
spoke. This is good, as big changes lead to metal fatigue over time. The lateral

2.5. LITERATURE REVIEW 33

deflection of all the wheels is very small, only 0.18 mm to 0.23 mm, so it should
have no big effect. As for power lost to wheel flex, the wheels with a radially laced
side lose much more than those without. They attribute this to the radial spokes
being unable to transfer any power, they only hold the rider’s weight. They
conclude the 3x/3x wheel is the best, and speculate that this happens because
the spokes emerge from the hub at an angle nearly tangential to the hub flange.
As this angle will be different for other number of spokes than 28, they believe
that for a 32-spoked wheel a 4x/4x lacing pattern will be the best.

2.5.2 Structured Literature Review

To get a soft introduction in the field, chapters in various books were read. An
introduction by Deb[25] was very useful in getting to know the core concepts.
From there, searching for evolutionary multiobjective optimization gave several
good papers to read, and checking the latest years’ GECCO proceedings was
helpful.

As for finding applications, search engines were first tried. Google Scholar and
sometimes ACM and Springer were used. For the papers, there were several con-
ditions they preferably should meet: Optimize more than one objective, use an
evolutionary strategy and that the problem should be related to the design of
some physical object, possibly involving a simulation. Terms like multiobjective
optimization, evolutionary algorithms, genetic algorithms, physical artifact, mor-
phology, design, simulation, application, structural engineering and more were
tried in different combinations. The results were very variable, often too gen-
eral, containing unwanted applications (for instance circuit design, training of
ANNs). Better results were found by searching for survey papers of applications,
go through them and there find applications/fields where EAs were used. Then
search specifically for those applications, for instance, searching for “evolutionary
multiobjective optimization of airfoil”.

34 CHAPTER 2. BACKGROUND

Chapter 3

Methodology and
Implementation

This chapter will discuss the implementation and the tests to be run. The imple-
mentation consists of mainly two parts: a wheel simulator and the evolutionary
algorithm. After explaining the implementation of these two parts, a more de-
tailed look is taken on how the problem is represented and solved.

3.1 The Wheel Simulator

In order to know how good a lacing pattern is, a wheel with that pattern must
be simulated while being subject to some external forces.

3.1.1 Approach

Three possible approaches were considered when implementing the simulator.

Writing the Equations

The workings of the spokes and the whole bicycle wheel can be expressed as
a set of equations. Setting up the equations for a bicycle wheel should not be
that hard even without a deep understanding of physics, as it is mostly static

35

36 CHAPTER 3. METHODOLOGY AND IMPLEMENTATION

mechanical components coupled with forces calculated from Young’s Modulus.
However, setting up the equations correctly and automatically for the different
lacing patterns can be more difficult.

Solving the system of equations may also prove hard, as it probably cannot be
solved exactly. Because of all the forces working in various directions, it would
need to be solved iteratively until a stable solution has been found. There exists
software to help with this.

Physics Library

There are many physics libraries available, most of them written for games but
also some for simulations for movies. Instead of writing the equations, one would
here add various structures to the world the libraries give you. Then one can later
add forces to the structures. In this case, a wheel would be built from spokes,
rim-segments, and a hub, and then later forces will be added to the world. The
library will then calculate what should happen within the world for us.

Physics libraries are often made with real-time performance in mind, which makes
them fast. This speed is good when thousands of simulations will be run. They
are also made to be integrated with code, which makes them easy to use. How-
ever, their functionality is often limited to static dynamics and simpler soft-body
dynamics. For a mostly mechanical structure like a bicycle wheel, this may be
good enough.

CAE Software

In the industry, Computer Aided Engineering software is used to design new
products and improve existing ones. These programs have advanced built-in
simulators that can do finite element analysis, computational fluid dynamics, and
other simulations. This means that they can handle stuff the physics libraries
cannot, for instance, stress analysis of components and advanced deformations.

The added features make the simulations very slow, for simple structures they
use minutes and for more complex ones several hours. This can be a showstopper
when evolving thousands of individuals that should be evaluated. The programs
are often very advanced and hard to learn. The editing of structures happens
inside the program, and it can be difficult to programmatically build structures
resembling the individuals that should be simulated without a deep knowledge of
the program.

3.1. THE WHEEL SIMULATOR 37

Selected Approach

A small prototype was attempted using CAE software. However, it was quickly
realized that these programs are huge, have a steep learning curve and can take
years to learn. The goal here is not to only model a wheel, but to make a
system that can evaluate thousands of them without any human intervention. It
was deemed unfeasible to implement such a system in these kinds of programs
without any prior experience.

Option 2 was selected: Using a physics library. While not being able to handle
all the advanced stuff CAE software can do, it should suffice for this experiment.

The selected physics library, or engine, is Bullet Physics [26]. It has been used in
big games like Grand Theft Auto and to make special effects in Hollywood movies
like Shrek and How to Train Your Dragon. So it is well tested, and because of
the huge user base also well documented with many code samples. It is written
in C++ with the goal of high performance, so it is very fast.

In addition to the physics engine, the simulator uses a framework named Libgdx
[27]. Libgdx is a game framework written in Java. It can act as a wrapper
around Bullet, extending its capabilities and making it easier to use. Libgdx also
has good support for loading 3D-models, rendering graphics, handling input etc.,
which are all things that are needed in addition to the physics engine.

3.1.2 Implementation

As discussed earlier, the force from a spoke is given by Young’s Modulus.

F =
EA0∆L

L0

E is the modulus of elasticity for the material. A0 is the cross-sectional area of
the object being stretched. As we are only interested in spokes being stretched
and tightened in one axis, this area will be constant. L0, the initial length is also
constant (for each spoke). By baking these constants into a single constant, k,
we get:

F =
EA0∆L

L0
= (

EA0

L0
)∆L = k∆L

This formula is on the form of Hooke’s Law for a spring. So the spokes can be
modeled as springs, albeit really, really stiff ones. This simplifies the simulator
implementation significantly, as Bullet (and most other physics libraries) has
good built-in support for spring systems.

38 CHAPTER 3. METHODOLOGY AND IMPLEMENTATION

(a) (b)

Figure 3.1: (a) how the wheel looks, (b) how the physics engine sees it.

The rim is modeled as a stiff ring. This is harder than it sounds, as a real-
time physics engine wants the collision shapes to be convex primitives. A convex
primitive is a box, sphere, cylinder etc., and these are very efficient when doing
collision calculations. The rim is not convex, however, and since we would like to
have the hub inside it, we cannot approximate its shape using a short and wide
cylinder. There are mainly two ways to fix this. The first one is to build a rim like
shape using multiple convex primitives, and then make sure these align correctly
with the rim when it moves. This approach is error-prone and inconvenient,
but effective. A second way is to force the physics engine to not use a convex
primitive, and instead provide it with a custom shape. This is easier to code,
as one can then just upload the 3D model to the engine and tell it to use these
edges and vertices as the collision shape. It is, however, less efficient as a lot of
simplifications can no longer be made inside the engine. For this use-case it did
not matter as much, as it was only for a single object, so the second approach
was used. The shape of the rim can be seen in figure 3.1b.

The hub is modeled as a long, thin cylinder as the axle, and two wide, short
cylinders as the hub flanges. This is also shown in figure 3.1b. The hub has a
mass of 0, which means that it becomes fixed in the world.

The spokes are spaced uniformly around the hub flange. The positions of the
spokes on the rim are proposed by the EA. The EA only gives positions/angles for
one side of the wheel, the other side is mirrored and rotated slightly. Comparing

3.1. THE WHEEL SIMULATOR 39

the two views of the wheel in figure 3.1, it is evident that the physics engine does
not ”see” the spokes as we do. Where the spokes are, only a small point is visible.
Instead of being an object, the spokes act as spring forces in our physics world.
Each spoke has a position on the rim and the hub, and the distance between those
two points in regards to the start length of the spoke gives a force that pushes
on the rim (as the hub is fixed in the center of the world). An added benefit of
the spokes not being an object, is that they do not collide with each other. On
a real wheel, the spokes would bend slightly to go around each other, but here
they can go straight through.

3.1.3 Result

The simulator is able to correctly simulate bicycle wheels, with some limitations
detailed below.

Figure 3.2 shows two different wheels where forces are applied to the rims from
below. As can be seen, the behavior discussed in section 2.4 is present. The
tension in the upper spokes increase, and it decreases in the lower spokes. It is
not visible in the figure, but the rim moves further from the center for the 3x
laced wheel than for the radially laced wheel under these forces. This behavior
is also correct, as the spokes in the radially laced wheel are not angled as those
in the 3x laced wheel, so it can better withstand the direct forces.

Figure 3.3 shows the same wheels, this time with torque applied to the rim, trying
to rotate it. The 3x laced wheel is rotated less than the radially laced wheel. This
is correct, as the angled spokes work better to stop the rotation, the radially laced
spokes become twisted before stopping the rotation. In figure 3.3b, one can also
see how it is the leading spokes absorbing all the force.

As the simulator is a proper 3D simulator, we can also see how wheels behave
from the side. This would be the wobble described in section 2.4.3. Figure 3.4
shows a randomly generated pattern. From the side it does not look too bad
initially, but when applying forces to it, one can see it becomes unusable. The
simulator is able to correctly measure and then punish wheels for this.

Limitations

While the previous examples show that the simulator works fairly well, it is not
perfect.

The biggest limitation is that it only simulates simple mechanical behavior. Some
things it is unable to cover is stress in the spokes, deformation or destruction of

40 CHAPTER 3. METHODOLOGY AND IMPLEMENTATION

(a) Below, radial (b) Below, 3x

Figure 3.2: Applying a force on the rim from below on two different wheels. Red
spokes are under high tension, yellow low tension.

(a) Torque, radial (b) Torque, 3x

Figure 3.3: Applying torque to the rim on two different wheels. Showing the
distance the wheel rotates.

3.1. THE WHEEL SIMULATOR 41

Figure 3.4: A randomly generated wheel from the front and from the side. It
looks very unstable when applying forces to it (third image).

the objects during simulation, measuring wind resistance, and other advanced
topics.

Some of these things are not that important to measure in this project. While
wind resistance is something they take into account when building wheels for
professional bicyclists, the lacing pattern of the spokes should not affect this
drastically. However, if other parameters of the wheel were to be evolved as well,
this might have been more important.

Stress in the spokes, however, is important. Constantly being put under different
forces during various loads on the wheel will wear out the metal. While we cannot
measure this directly in the simulator, we can instead measure the current force
in each spoke at various intervals during the simulation and use these numbers to
approximate something similar. Punishing a wheel with big variations in tension
is essentially to minimize the stress.

The biggest downside of the simulator is that the objects in it are not deformable.
This does not affect the spokes in the simulation, as they are modeled as spring
forces. The rim, however, is bendable in the real world but not in the simulation.
Figure 3.5 shows that the simulated wheel does not end up with an egg shape
when the top and bottom spokes are tightened very hard.

An attempt to make the rim bendable was made, using Bullet Physics’ softbody
abilities. The attempt was unsuccessful, as the rim ended up being too bendable

42 CHAPTER 3. METHODOLOGY AND IMPLEMENTATION

(a) real (b) simulation

Figure 3.5: The rim in the implementation cannot be bent. Red spokes are
tightened.

no matter what. It was more like rubber than metal, and so the results from
using it was very bad. Therefore, it was decided to use a stiff rim instead, as
it acts correctly in most situations. In the situation in figure 3.5, the wheel
would anyway have been punished for having so tight and uneven spokes, so this
limitation should not affect the outcome very much.

The simulator is ”unitless”. Because of floating point precision, the physics en-
gine handles sizes in the range 0.5-20 best, otherwise it may become unstable.
This is easily accommodated by scaling all units in the simulation by a fixed
constant. However, having 32 well-tightened spokes exerting strong forces in
multiple directions on the same object was something the physics engine did not
particularly like. It was often unable to converge to a solution, instead it would
start vibrating and eventually explode. To fix this, small tweaking of the various
lengths and forces has been done. This should not affect the behavior of the
simulator, as already shown it is mostly correct, but means that the values from
the simulator cannot be directly compared with values from the real world or
other simulations.

To conclude, there are things the simulator is unable to simulate, but these things
often have correlated effects that can be simulated and measured. So, what the
simulator thinks is a good or bad wheel should be fairly accurate.

3.2. EVOLUTIONARY ALGORITHM 43

3.2 Evolutionary Algorithm

The evolutionary algorithm is the second core part of the implementation. It is
responsible for finding the best wheels and does so by testing each wheel it comes
up with in the simulator.

3.2.1 Approach

There were two possible approaches here: write everything from scratch, or reuse
existing implementations from elsewhere. A lot of the things needed for this
project, like the different crossover and mutation operators, the genotype repre-
sentations and some of the algorithms are fairly standard. Reusing these from
other projects would free up time for the more interesting aspects of this project,
and there is no need to reinvent the wheel.

Therefore, some time was spent looking at existing EA implementations. While
many have written their own EA and published it, few have written one with
multiobjective capabilities. After some searching, MOEA Framework [12] was
chosen. It is open source, which makes it possible to modify and/or extend its
features to fit the needs of this project. It is written specifically for solving
multiobjective problems using evolutionary algorithms, and the structure of the
source code looked like it would be easy to modify.

The MOEA Framework has a lot of the needed features out of the box: NSGA-
II, NSGA-III, most of the operators and the indicators. However, it still needed
modifications to fit this project.

3.2.2 Implementation

The MOEA Framework contains a ”diagnostics tool”, which basically is a small
GUI where one can select which problem and algorithm to run and view some
results. This tool has been extended significantly.

The diagnostics tool was originally made to test the algorithms, and so the out-
put from it is not very useful. It is just a list of numbers of the found solutions.
Therefore, a way to visualize the evolved wheels were implemented. This visual-
ization consists of a list of all the found non-dominated solutions. Selecting one,
the wheel it represents is shown.

The number of solutions found can be in the hundreds. Many of these will
represent wheels with almost the same scores in the various objectives. For a

44 CHAPTER 3. METHODOLOGY AND IMPLEMENTATION

human, wading through all these to make a final decision about what wheel(s)
to use can be daunting. One cannot instruct the EA to only evolve a few wheels,
however, as it needs a big population to guide the search.

The approach used by [6] Deb and Goel and discussed in section 2.5 has been
implemented to alleviate this. When the EA is done, the user, or decision maker,
has the opportunity to reduce the set of solutions to an appropriate size. This
reduction is done by adding each solution to a separate group, and then merge
groups that are close to each other until the number of groups is the same as
the wanted size. Then the solution closest to the center of each group is found,
and these solutions will be the reduced set. This set will then have most of the
interesting tradeoffs, and a size that is small enough for a human to base decisions
on.

A task manager has been implemented and added to the GUI. This allows the user
to queue up multiple runs with different parameters and then return a few days
later and view all of the results. This saves the user from having to constantly
monitor the EA and start a new run when one is finished.

The MOEA Framework has also been extended with new ”problems”, that handle
the setup of the wheel-optimization problems to run. A problem defines the wheel
representation the EA should use, how it should evaluate a solution, what the
reference set is and other problem specific things. Exactly what these problem
definitions are for this project is defined later in this chapter.

In addition to this, a way to parallelize the EA has been implemented.

3.2.3 Parallelization

For each generation in an evolutionary algorithm, possibly hundreds of individuals
have to be evaluated. The algorithm is also run for hundreds of generations, and
then the algorithm itself is run 10-20 times to get enough statistical data. With
each wheel taking almost a second to simulate in the simulator, this can take a
very long time.

To speed up the EA, it is natural to consider parallelization. Since each individual
in an EA is evaluated independently, this part of the algorithm is very easy to
do in parallel. There is always some overhead when parallelizing, but in cases
like this, where each evaluation takes a long time, this overhead is negligible in
comparison.

One way to do this would be to use island models, as used by Eby et al. [5] and
discussed in section 2.5. With this, separate EAs would be run on different com-

3.2. EVOLUTIONARY ALGORITHM 45

puters, and once in a while they would communicate and transfer good solutions
to each other. However, what made using this island model so good, was that
they could run a simple evaluation in some of the islands, and only pass good
solutions to islands running a more complex evaluation. Since the implemented
simulator really only runs evaluations at one ”level”, this will not give as good
results for this project. So the implementation of this was scrapped

Master/Slave

Instead, a simpler master/slave model was used. The EA works as a master,
requesting its slaves to evaluate the various lacing patterns it comes up with.
This layout is shown in figure 3.8 later in the chapter.

The slaves are just a simple wrapper around the wheel simulator. This wrapper
will start the simulator, and then start asking the EA for wheels to evaluate.
When it gets a lacing pattern, it gives the pattern to the simulator, waits until
the simulator is done and return the results to the EA. This communication is
done via sockets, and the data sent back and forth are JSON strings of the values.
When starting a slave, one has to provide the IP-address of the computer running
the EA, to initialize the connection.

The master is a bit more advanced. To make the distribution as transparent
as possible, a Distributer poses as an evaluator. However, instead of evaluating
any solutions, it adds them to a queue. When a slave connects to the master, a
WorkerCommunicator is created in the master. This Communicator constantly
polls the queue for unevaluated solutions. If it finds one, the solution is sent
to the slave it is communicating with for evaluation. When the results of this
evaluation arrive, the Communicator makes sure it is coupled with the correct
solution. When the queue is empty and all solutions have been evaluated, the
Distributer will pass the solutions and their results to the problem being run, to
get assigned the objective values.

The results were very good. For instance, distributing the work to 12 slave
simulators reduced the time spent per generation by a factor of about 11. This
speedup made it possible to run more tests than planned, and run each test
multiple times to get statistically significant data.

46 CHAPTER 3. METHODOLOGY AND IMPLEMENTATION

3.3 Representations

This section contains the details of how the problem is represented and how the
wheels are tested.

3.3.1 Wheel Tests

Test Scenario

A wheel will be tested in a scenario in the simulator. After each step, Simula-
tionData is recorded. This data is the current position and orientation of the
rim, and the force in each spoke. Figure 3.6 shows the axes and rotation in the
simulation world.

Figure 3.6: The axes of the wheel. Showing both axes of translation and rotation.

The wheel will be subject to various forces during the scenario. One force is
applied along the Y and X axes, to test the strength of the wheel. The reason for
doing multiple tests of the same force from different directions, is to make sure

3.3. REPRESENTATIONS 47

the EA do not end up building wheels that are very strong in only one direction,
as EAs are known to exploit loop-holes like this. The torque forces will test how
well the wheel can handle breaking or pedaling. Between each force, the wheel
is reset by simulating it without any external forces for a couple of seconds. The
time units are in respect to the time inside the simulation world.

The scenario:

• Simulate the wheel just hanging from the hub for 1 second, to make it
converge to an initial position.

• Gather data for the initial position.

• Apply force on the rim along the X axis for 3 seconds, gather data.

• Reset by waiting 1 second.

• Apply force on the rim along the Y axis for 3 seconds, gather data.

• Reset by waiting 1 second.

• Apply force on the rim opposite direction of the X axis for 3 seconds,
gather data.

• Reset by waiting 1 second.

• Apply force on the rim opposite direction of the Y axis for 3 seconds,
gather data.

• Reset by waiting 1 second.

• Apply torque to the rim around the Z axis for 3 seconds, gather data.

• Reset, this time wait 3 seconds as it takes longer for the wheel to return to
the initial position after being rotated.

• Apply torque to the rim around the Z axis, but the opposite direction
this time, for 3 seconds.

When the scenario is finished, we have a list of SimulationDatas.

Simulator Output

To make meaning of all the data, some calculations are done on it. These cal-
culations give what is considered the result of the simulation, and will be called
SimulationResult.

48 CHAPTER 3. METHODOLOGY AND IMPLEMENTATION

The SimulationResult contains:

• MaxDstXY, which is the max distance the rim moved from the center in
the XY-plane during the scenario.

• MaxDstZ is the max distance the rim moved in the Z axis from the initial
position. This is done because the dish of the wheel is unimportant. If the
rim starts with a dish to the right, that is fine as long as the rim stays to
the right during the scenario.

• MaxRotX, MaxRotY and MaxRotZ is the max rotation the rim had.
MaxRotZ is similar to MaxDstZ as in that we calculate it from the initial
rotation. MaxRotZ tells how well the wheel could withstand the torque
applied in the scenario.

• SpokeMax is the highest force seen in any spoke at any time during the
scenario.

• SpokeMaxDiff is the biggest difference in forces any spoke had.

3.3.2 Problem Representation

Two problem representation will be used, one having four objectives and one
having two. These will be named OBJ4 and OBJ2, respectively. The reason
for testing with two different number of objectives is to see what difference this
makes when solving the problem. Is it really necessary with a many-objective
representation, or could it be solved with a simpler, multi-objective representation
and algorithm? The more objectives, the harder the search will be. However,
representing a problem with fewer objectives means that it may not be able to
optimize it in all aspects. So there is an interesting tradeoff there.

For both representations, the goal is to minimize the various objectives.

OBJ4

Based upon the values from a SimulationResult, the four objectives are:

• Dst =
√
MaxDstXY 2 +MaxDstY 2, combining the distances to one using

Euclidian distance.

• Rot = MaxRotX + MaxRotY, combining two of the rotations to one. This
combined value tells how much the wheel is displaced while under external
forces.

3.3. REPRESENTATIONS 49

• RotZ = MaxRotZ, keeping this as a separate objective, as one of the steps
in the scenario is to rotate the wheel around the Z axis. This makes the
rotation in Z measure something else than the other rotations, namely how
well the wheel withstands torque.

• Spokes = SpokeMax + SpokeMaxDiff, combining the two spoke measure-
ments to one.

The reason for ”only” using four objectives, not all the seven values in the Sim-
ulationResult, is that many of these values are positively correlated. E.g., an
increase in MaxDstXY would most likely also lead to an increase in MaxDstZ as
well, so combining them makes sense.

The range of the variables will vary greatly. For instance, the Dst will be some-
where around 0.5 while the forces in the spokes can be around 3500. Some
algorithms may optimize based on the best difference in absolute value, instead
of relative value. For instance, optimize the Spokes value with 0.12, when op-
timizing Dst with 0.11 would be much better relatively speaking. To combat
this, one can normalize the values based on an already known range for them.
However, the creators of NSGA-III say that their algorithm can handle these
differences fine [10], so no tweaking will be done.

OBJ2

The two objectives are defined as:

• Displacement = 25 * MaxDstXY + 1000 * MaxDstZ + 800 * MaxRotX
+ 900 * MaxRotY

• Strength = 1 * MaxRotZ + 0.0045 * SpokeMax + 0.0066 * SpokeMaxDiff

For the four-objective problem it was possible to not scale or normalize the values.
However, for the two-objective problem, multiple values with different ranges are
combined to a single value. If nothing is done to the values prior to combining
them, the biggest value will dominate the others and become more important to
optimize, biasing the search.

The constants are those deemed best after extensive testing. First, ball-park
figures for the constants were calculated using the known ranges for the values
by solving the OBJ4 problem, before they were tweaked during multiple runs.

50 CHAPTER 3. METHODOLOGY AND IMPLEMENTATION

3.3.3 Wheel Representation

There are also two different representations for the wheel. In both representa-
tions, the spokes are placed uniformly around the hub. The difference is how
the spokes are connected to the rim. The representations only tell how spokes
on one side of the hub should be, and then the other side is just a mirrored
and slightly rotated version of this. So for a 32-spoked wheel, the representation
would represent the 16 spokes on one side.

The first representation is called REPfree as this representation allows almost all
kinds of wheels to be evolved, for better or worse. The representation is a list of
real values, one value for each spoke. This value indicates the angle of the spoke.
It can have a value from -90 to 90 degrees, where 0 degrees means the spoke is
straight. See figure 3.7a for a visual description. Real rims have pre-drilled holes
for the spokes. This representation gives spokes that connect to the rim in all
kinds of places, and may thus not be possible to build without special-ordering a
rim.

-90°90°

0°

(a) Free

1 2
4
...

3

(b) Permutation

Figure 3.7: The two representations used for the wheels. In (a), each value
indicates the angle of the spoke. In (b), each spoke goes to a spot on the rim,
based on the permutation. In this case, the spot in the permutation for the spoke
had the value 3.

3.4. OVERVIEW OF THE SYSTEM 51

The second representation has been named REPperm, as it is based on a per-
mutation genotype. For a 32-spoked wheel, the genotype is 16 unique values in
a permutation. Each number corresponds to a position on the rim, all of them
being uniformly laid out. The number in each spot in the permutation then says
which position on the rim the spoke should go. For instance, for the representa-
tion [2, 4, 3, ...], the first spoke should go to position 2 on the rim, the second
spoke to position 4 etc. An example is shown in figure 3.7b. These wheels are
possible to build with existing rims if one has spokes of correct lengths.

The second wheel representation is believed to give better results. It can only
generate lacing patterns where the spokes are uniformly spaced on the rim, so the
representation has a bias for symmetry. And for a wheel, symmetry is probably
a good idea.

Still, it is interesting to see what the EA can find with no bias towards what is
believed to be good solutions. EAs are known to find unconventional solutions
that exploit the problem, so giving it a chance to fully explore the problem is a
good idea. Comparing the performance of the two representation, one can also
see how important the representation is when it comes to getting good results.

3.4 Overview of the system

Figure 3.8 shows the system as a whole. It is not exactly a class diagram, it
focuses on showing the core parts and their interactions on a higher level. The
EA Controller is the core of the EA, handling the setup and the running of
everything. The architecture makes it possible to combine freely various problem
representations, wheel representations (and their operators) and algorithms.

When a new slave is started on a remote computer, it connects to the Distributer
and a new communicator for this slave is created. The diagram shows the in-
teractions to make this distribution work: When an algorithm has a population
to evaluate, it gives the population to the distributor, which adds it to a queue.
The communicators take these solutions and send their angles to the slaves. On
the slave, the test scenario is run. The SimulationData is converted to Simula-
tionResult before being returned. The Distributer takes this result and asks the
Problem being run to convert it to objective values, which is then returned to
the Algorithm.

The intended use-case is to programmatically add ”tasks” to be run and then
start the EA using the user interface. The EA will then run multiple times with
different parameters, problem representations, etc. based on the defined tasks.
When everything is done, plots of the various indicators can be shown. It is also

52 CHAPTER 3. METHODOLOGY AND IMPLEMENTATION

possible to open up a window containing a list of all the evolved lacing patterns
and test them in the wheel simulator.

A short video of some of this, most importantly showing the workings of the
simulator, can be seen at http://master.matsemann.com/. The video is also
included in a zip archive as part of the delivery of the thesis.

3.5 Experimental Plan

This subsection lists the experiments to be run and their configurations.

3.5.1 Parameters

There are a lot of variables and parameters, both in regards to the simulator
and the EA. For the simulator, most of these are simply defined, but for the EA
extensive testing had to be done to find the parameters yielding the best results.

Evolutionary algorithm parameters:

• Population size of 100. A smaller population gave better results early in
the run, but would quickly get stuck. A bigger population would converge
very slowly, but not find any better solutions than a population of 100.

• Run for 200 generations, for a total of 20 000 wheel evaluations each run.
After 150 generations, most runs have found the best solutions they can
find and are stuck.

• 52 remote simulators were used during the runs.

• Run each algorithm/variation 20 times. Since evaluating a wheel in the
simulator takes a lot of time, the runs need hours to complete. The dis-
tributed architecture is what made it possible to run each algorithm so
many times, which should give enough data to draw conclusions based on
the results.

• Simulated Binary Crossover and Polynomial Mutation are used when the
wheel representation is REPfree. For SBX, the crossover rate is 1, meaning
that all solutions will be subject to crossover. As both the NSGA algorithms
contain an archive of the best non-dominated solutions so far in the run,
picking a solution and not modifying it is a waste as we then get duplicates.
Therefore, the crossover rate is high. For the PM, the rate is 1/16, so on
average one variable will be mutated each time. The distribution index,

http://master.matsemann.com/

3.5. EXPERIMENTAL PLAN 53

Communicator

Distributer

...Q
ue

ue Communicator

Communicator

Wrapper SimulatorData

SpokeAngles

SimulationResult

Slave

...

Wrapper SimulatorData

Slave

SpokeAngles

SimulationResult

Ad
d

Cr
ea

te

Algorithm
NSGA-IId
NSGA-IIId

Evaluate

Si
m

ul
at

io
nR

es
ul

t

Problem
OBJ4
OBJ2

O
bj

ec
tiv

e
va

lu
es

Solution
Variables
Objectives

EA Controller

Representation
Real
Permutation

Operator
SBX, PM
PMX, Swap

GUI

Evaluated

Figure 3.8: Overview of the system. The simulator and the core of the EA are
highlighted in orange. The architecture allows combinations of the blue parts to
be used.

54 CHAPTER 3. METHODOLOGY AND IMPLEMENTATION

discussed in section 2.2.1, is 20. This makes the mutation keep the values
close to the original values, with a small chance of bigger variations.

• Partially Mapped Crossover, Swap and Insertion are used when the wheel
representation is REPperm. The PMX rate is 1, with the same reasoning
as for SBX. The rates for swap and insertion are both 0.3, as this gave the
best results during testing.

• NSGA-III divisions is 4. NSGA-III divides the objective space, as discussed
in section 2.3.3. The number of divisions was initially set based on a table
in the paper introducing the algorithm [10], and this value ended up being
the best one.

Wheel and simulation parameters:

• 32 spoked wheel, as it is one of the more common types and a nice, round
number.

• Simulated with 60 iterations per second. A higher frequency increases the
accuracy of the simulation, but also the computational cost. There were no
perceivable differences with more than 60 iterations per second.

• Force of 10 000 F was applied to the wheel during the scenario.

• Torque of 45 000 F was applied to the wheel during the scenario.

• Spoke stiffness 1500 F, this is the k in the formula for a spring presented
earlier. The spokes are tensioned 1 unit in length.

• Wheel dimensions: Hub flange radius is 2.25 units, the distance between
the two flanges on the hub is 5.5 units. The radius of the rim is 31.25 units.
These values are proportionate to a real wheel, just using the simulator’s
units.

3.5.2 Experiments to Run

These experiments should answer the research questions defined in the introduc-
tion: investigate how well an evolutionary multiobjective algorithm can solve the
problem, test the performance of NSGA-III, and compare the various approaches.

3.5. EXPERIMENTAL PLAN 55

Solving the Problem

By running the EA hundreds of times, one should get a lot of data on how well
an EA can solve the problem. Analyzing the problem domain and the solutions
is interesting.

NSGA-II vs. NSGA-III

Compare the results of using the newer NSGA-III algorithm compared to the
older NSGA-II. Based on the results in the paper introducing NSGA-III and the
claims that NSGA-II has troubles handling more than two objectives, NSGA-III
should give better results than NSGA-II. For this test, REPfree and OBJ4 will
be used for both algorithms.

Wheel Representations

REPfree will be compared to REPperm. REPperm is believed to give better re-
sults, as the wheels it produces are biased to be somewhat symmetric. It is
however interesting to see how much difference there is, and if the free represen-
tation can come up with something novel.

Number of Objectives

OBJ2 and OBJ4 will be compared. The best solutions found using OBJ2 will be
recalculated to get OBJ4 values, this allows us to compare the solutions. This
will show if there is any need to model the problem as a many-objective one, or
if two objectives would be enough. The belief is that four objectives should be
best, allowing the algorithm to optimize the wheels in all aspects.

56 CHAPTER 3. METHODOLOGY AND IMPLEMENTATION

Chapter 4

Results and Discussion

This chapter displays and discusses the results achieved from the tests introduced
in the previous chapter.

For the plots showing the solutions in the objective space, the ranges of the various
axes may vary greatly. This is not an attempt to make the plots show spurious
relations, but happen because the ranges of the various objectives are different
and not normalized. Also, one should be careful when making assumptions based
on the plots in the objective space for higher dimensions, as will be done here, as
we only see projections of the higher dimensional space onto two dimensions.

The three indicators discussed in section 2.3.4 will be used when comparing var-
ious approaches. For the hypervolume indicator, the goal is to get a high value.
For the epsilon and spacing indicators, the goal is to get a low value. To make
the comparisons, 20 runs of each variation have been done in order to be able to
make conclusions. While it really is the end results of the indicators that matter,
graphs will show how they progressed throughout the runs. The main line is the
median of all the runs and the shaded area covers the first to the third quartile,
so it can be seen as a progressing box plot. Before making any conclusions about
the indicators, the Kruskal-Wallis test will be used on the data to make sure any
differences are statistically significant.

57

58 CHAPTER 4. RESULTS AND DISCUSSION

4.1 Solving the Problem

The main goal of the project is to solve the problem of finding good lacing pat-
terns. There are several objectives that should be minimized, in this analysis the
OBJ4 problem representation has been used. The solutions being analyzed are
the solutions in the reference set. This is a set containing all the non-dominated
solutions ever found when running the EA. This includes all kinds of runs using
all representations and algorithms. The differences between representations and
algorithms are discussed later.

4.1.1 The Problem Domain

To explore the problem domain, each objective is mapped against the other objec-
tives to see how they relate. As discussed above, it can be hard to conclude from
these, as we only see slices of a four-dimensional space. The six combinations of
objective pairs and their plots are shown in figure 4.1. A small reminder about
the objectives: Dst is the distance the rim moves from the center, indicating the
strength of the wheel, Rot the rotation of the rim during forces, RotZ how much
the wheel rotates around the Z axis when torque is applied, Spokes how well
distributed the load on the spokes are.

Plot (a) in figure 4.1 shows Dst mapped against RotZ. The conventional wisdom
about bicycle wheels is that one can have a tangentially laced wheel, like 3x, and
have a good (low) RotZ, or one can have a radially laced wheel and have a good
Dst. But not have both at the same time. Therefore, one would expect the trend
to follow an asymptotic line, where a decrease in one leads to an increase in the
other. However, the trend line in plot (a) seems to show something else. It looks
like wheels with arbitrary combinations of RotZ and Dst can be made, without
any tradeoffs between them. Should we rewrite the books about wheel building,
or is there something wrong with the simulator? A closer look on the solutions
says that neither of these options are true. The solutions that have low values
for both RotZ and Dst have incredibly bad values for the two other objectives. If
we remove solutions where Rot and Spokes are too high, the remaining solutions
lies more along the dotted line in plot (a). Unconstrained the EA is able to build
wheels that by the looks of it defy the conventional wisdom in wheel building.
However, if the solutions are constrained, the known relation between Dst and
RotZ shines through.

4.1. SOLVING THE PROBLEM 59

0.4 0.425 0.45 0.475 0.5 0.525 0.55
Dst

10

12.5

15

17.5

20

Ro
tZ

0.4 0.425 0.45 0.475 0.5 0.525 0.55
Dst

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ro
t

0.4 0.425 0.45 0.475 0.5 0.525 0.55
Dst

3 500

3 750

4 000

4 250

4 500

Sp
ok

es

10 11 12 13 14 15 16 17 18 19 20
RotZ

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ro
t

10 11 12 13 14 15 16 17 18 19 20
RotZ

3 500

3 750

4 000

4 250

4 500

Sp
ok

es

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Rot

3 500

3 750

4 000

4 250

4 500

Sp
ok

es

Reference set Trend

a) b)

c) d)

e) f)

Figure 4.1: Best solutions plotted in the objective space.

60 CHAPTER 4. RESULTS AND DISCUSSION

Plot (b) shows Dst mapped against Rot. They are a bit lumped together, but
not in any particular shape. Investigating the plot further, by removing solutions
that were very bad in other objectives, did not expose any underlying relation.
By the looks of it, these two objectives are independent.

In plot (c), one can see that Spokes and Dst are positively correlated. A decrease
in one leads to a decrease in the other. This makes sense, as to get a low Dst,
a wheel needs many spokes working together to withstand the forces. Moreover,
many spokes working together will also distribute the tension between the spokes,
leading to a low Spokes value. It is interesting to see that the values decrease
together from two directions. This happens because of tradeoffs in the other,
unseen objectives.

Rot vs. RotZ is shown in plot (d). One objective can be decreased much without
any big increase in the other until a certain point is reached. After this point, an
improvement in one leads to a huge disimprovement in the other.

In plot (e), we again see a positively correlated relation, this time between Spokes
and RotZ. The reasoning here is similar to the one for Spokes and Dst. The wheel
needs several spokes working together to withstand the torque applied to the rim
to not be rotated that much. This also leads to a low Spokes value.

The last plot, (f) shows Spokes mapped against Rot. Here we can see that a
small decrease in Rot leads to a huge increase in Spokes.

An interesting remark is that while a decrease in Dst gives a decrease in Spokes
(c), and a decrease in Spokes gives a decrease in RotZ (e), a decrease in Dst does
not give a decrease in RotZ (a). This also happens with other combinations of
objectives. So the relations are clearly not transitive in this regard.

4.1.2 The Evolved Wheels

The EA was successful in evolving good lacing patterns, even given the computa-
tional constraints of evaluating each wheel and the incredibly huge search space.
Some evolved wheels can be seen in figure 4.2.

As can be seen in the figure, the EA managed to find the 3x laced wheel discussed
earlier. It ended up as one of the non-dominated wheels in the reference set. As
any other wheels did not dominate it, the EA did not find a wheel that can be
said to be better than the 3x laced wheel already used heavily on today’s bicycles.
So, while no breakthrough in the bicycle world has been made, this proves that
the wheels evolved match real-life and that this approach worked well.

4.1. SOLVING THE PROBLEM 61

(a) (b)

(c) (d)

Figure 4.2: Some of the evolved wheels. (a) the EA found the 3x wheel, here only
showing spokes on one side, (b) an interesting wheel with good tradeoffs, (c) a
wheel exploiting the simulator, (d) an unconventional wheel with okay results.

62 CHAPTER 4. RESULTS AND DISCUSSION

The 3x laced wheel found has low values for Spokes and Rot. It also has a low
value for RotZ, but only a medium good value for Dst. The wheel in figure 4.2b
is also non-dominated, and therefore as good as the 3x wheel in the eyes of the
EA. This design is interesting, it has four groups of spokes where the spokes in
each group cross each other. Compared to the 3x wheel, this gives a better Dst
value, but a slightly worse RotZ. So the tradeoff here is strength vs. withstanding
rotations.

The weird looking wheel in figure 4.2c is also non-dominated. It has a low value
for Dst, and it is easy to see why: The strength of the wheels are tested in the
simulator by pushing from four directions. This wheel has been evolved to have
all spokes pointing in these four directions, countering the pushes very well. This
wheel fails in all other objectives, so no one would probably ever use a wheel like
this. This wheel has been included to show some of the pitfalls of evolutionary
multiobjective optimization. Namely that a wheel only focusing on one objective
will become non-dominated but not very good, and that the evolutionary process
is good at exploiting the fitness assignment procedure, in this case, the simulator.

The wheel in figure 4.2d is another non-dominated wheel found by the EA. It
has some interesting properties. Compared to the other three wheels shown, this
is far from having any kind of symmetry. It has a medium Dst value, a low
Spokes and RotZ value, but a very high Rot value. So the wheel is good in most
regards, except that it wobbles a bit from side to side. This is probably the lack
of symmetry that makes the wheel a bit angled.

A couple of hundred additional non-dominated wheels have also been found.
Many of these wheels are very similar to each other, though. This similarity hap-
pens because a small change to a wheel can make it a bit worse in one objective,
but also a bit better in another objective. Then the new wheel is not dominated
by the previous wheel. For the wheels shown in figure 4.2 there exist several non-
dominated wheels with only small variations. The reduce functionality added
to the EA was very helpful. It made it possible to reduce the reference set to
only a few solutions, showing most of the various kinds of wheels evolved and the
different tradeoffs.

Additional wheels and the objective values for the shown wheels can be seen in
appendix C.

4.2. COMPARING NSGA-II TO NSGA-III 63

4.2 Comparing NSGA-II to NSGA-III

The new NSGA-III was compared to the older NSGA-II over 20 runs, each using
the same problem representations and parameters.

4.2.1 Results

Figure 4.3 shows the three indicators throughout the runs. All of them improve
until about evaluation 15 000 (generation 150 with a population size of 100) where
they stagnate. The plots also show a close-up of the end results, which is what
really matters. All of the end-of-run values can be seen in appendix B.

The median lines for hypervolume are almost identical, and according to the
Kruskal-Wallis test they are indifferent. So we can conclude that the hypervolume
is probably equal.

For epsilon, the NSGA-II is much lower than NSGA-III. The test says that there
is a significant difference, so NSGA-II is better.

For spacing, the median of NSGA-III is lower than the median of NSGA-II.
However, the box showing the first to third quartile is much bigger for NSGA-III.
Because of this, the test says that the median actually may be equal, and that
one cannot draw any conclusions that NSGA-III is better.

So to sum it up, the algorithms are deemed equal for spacing and hypervolume,
while NSGA-II has a better epsilon value.

4.2.2 Discussion

The difference between NSGA-III and NSGA-II is how they select solutions within
a given rank. NSGA-II sorts them based on the size of a cuboid and picks those
with the largest one, while NSGA-III tries to pick solutions uniformly from the
objective space using reference points. More details can be found in section 2.3.3.

NSGA-III was thought to be best. In the paper introducing it, it is tested on
multiple example problems and is there clearly much better than the other algo-
rithms. However, the results here show differently. NSGA-II is actually slightly
better at this problem. What is causing this needs to be discussed.

One theory may be that the fitness landscape, discussed in the previous section,
erases some of the differences between NSGA-II and NSGA-III. NSGA-II will
sometimes have problems handling more than two objectives, which does not

64 CHAPTER 4. RESULTS AND DISCUSSION

NSGA-IIId NSGA-IId

0 5 000 10 000 15 000 20 000
Wheel Evaluations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Sp
ac

in
g

0 5 000 10 000 15 000 20 000
0

0.1

0.2

0.3

0.4

0.5

0.6

Ep
si

lo
n

0 5 000 10 000 15 000 20 000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

H
yp

er
vo

lu
m

e

Figure 4.3: Plots showing the indicators during multiple runs of NSGA-II and
NSGA-III. Zoomed in on the end result.

4.3. COMPARING THE WHEEL REPRESENTATIONS 65

happen here. This may be because not all objectives are negatively correlated,
as shown earlier. So the problem may not be as hard as a four-objective problem
where there are strict tradeoffs between each objective, making the NSGA-II over-
perform. The NSGA-III algorithm was in the paper mostly tested on example-
problems where the objective space is very uniform. The objective space here
is clearly not uniform or nicely shaped, which may render its way of picking
solutions useless.

One challenge to the validity of the results is that there is no reference imple-
mentation of NSGA-III, while one exists for NSGA-II. This means that the cor-
rectness of the NSGA-II implementation used has been verified to be correct, but
not the NSGA-III implementation. However, the NSGA-III implementation used
has been tested on the same example-problems used in the paper introducing it,
and the results on those problems were similar to those claimed. Therefore, it is
believed that the NSGA-III implementation should be mostly correct.

A second challenge could have been that NSGA-III is better, but that given the
number of generations both the algorithms converge to similar solutions over
time. For instance, the NSGA-III could have found optimal solutions after 50
generations, and NSGA-II first after 200 generations. If the results were measured
after 50 generations, NSGA-III would then have been deemed better. However,
the plots in figure 4.3 clearly shows that both algorithms improve at the same
rate and have converged long before the search is discontinued, so the results
from the indicators should be valid.

While this discussion may explain why NSGA-III does not perform better, it does
not excuse it. Other real-life problems will probably be similar to this problem:
having a complicated, non-uniform objective space. This means that NSGA-III
may not be an improvement over NSGA-II, other than on made up example-
problems.

4.3 Comparing the Wheel Representations

The two representations, REPfree and REPperm, discussed in section 3.3.3, have
been compared.

4.3.1 Results

Figure 4.4 shows the three indicators throughout 20 runs of each representation.
For both the hypervolume indicator and the epsilon indicator, REPperm quickly

66 CHAPTER 4. RESULTS AND DISCUSSION

REP free REP permutation

0 5 000 10 000 15 000 20 000
Wheel Evaluations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Sp
ac

in
g

0 5 000 10 000 15 000 20 000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ep
si

lo
n

0 5 000 10 000 15 000 20 000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

H
yp

er
vo

lu
m

e

Figure 4.4: Indicators comparing REPfree and REPperm.

4.3. COMPARING THE WHEEL REPRESENTATIONS 67

becomes better than REPfree. At the end of the runs, the difference is significant.

The spacing indicator starts with a higher value for REPfree, but halfway in the
run both representations are fairly equal. By the end, REPfree is a bit lower
than REPperm, and according to the statistical test this difference is significant.

REPperm is much better in hypervolume and epsilon, while REPfree has slightly
better spacing values. The difference in spacing values is very small compared to
the differences in the two other indicators. It is therefore concluded that an EA
using REPperm finds better wheels than an EA using REPfree.

4.3.2 Discussion

In REPperm, all lacing patterns will have the spokes uniformly spaced on both
the hub and the rim. Having this is probably a good idea for a wheel, all wheels
in use today have it, so this bias in the representation is probably what makes it
better.

It is also possible for the free representation to build wheels like this, but they are
only a small part of the incredibly huge search space. The angle for each spoke
in REPfree has 232 possible values, and for 16 spokes this give a search space of

232
16

possible lacing patterns. While there for REPperm is ”only” 16! patterns.

It is harder for the free representation to mutate a lacing pattern to a better
one. Moving a single spoke in a good wheel will probably make it worse, as it is
dependent on the position of other spokes. It becomes a kind of local optimum
that needs big changes to get the wheel out of. So, to evolve a new and better
wheel, multiple changes at once may be needed. However, the chance of mutating
multiple spoke angles such that the wheel becomes a good one is very small.
REPperm does not have this issue, mutating it will make some bigger changes
but at the same time preserve the uniformity of the wheel.

However, only being able to make these bigger changes is probably what makes
the spacing value worse for REPperm. The free representation can make small
adjustments and thus create wheels that cover segments of the objective space
the permutation representation is unable to.

The wheel in figure 4.2c shows an interesting aspect of the free representation.
The EA has here exploited the fact that the simulator tests the wheel by applying
forces from four directions. The free representation evolved several wheels that
were very good in only a single objective, which was almost impossible with
the other representation. While these wheels are almost useless, they can show
interesting aspects of the problem being solved. The wheel just mentioned shows

68 CHAPTER 4. RESULTS AND DISCUSSION

that straight spokes lead to a low Dst value, while other evolved wheels show how
angled spokes affect the RotZ value.

To conclude, the REPperm finds better lacing patterns, most likely because of
the smaller search space that has a bias for uniform wheels. This shows that
the representation used when solving a problem is important. However, using
a more free representation can also lead to interesting solutions not previously
considered and reveal important relations in the underlying problem.

4.4 Comparing the Number of Objectives

Two different problem representations have been compared. The goal of this
comparison is to see if there is any use in representing a problem using many ob-
jectives. The two representations are OBJ4 and OBJ2 discussed in section 3.3.2.

4.4.1 Results

Results from two different problem representations can not be compared directly,
as they would be in completely different objective spaces. Therefore, to do this
comparison the best wheels found using OBJ2 has been recalculated and given
an OBJ4 value. Then these wheels can be compared to the wheels found using
OBJ4. However, since this recalculation of OBJ2 wheels needs to happen after
the EA is complete, there is no data on how the indicators progressed during
the run. Box plots of the end result, comparing OBJ4 and OBJ2, can be seen in
figure 4.5. Data for the plots are found in appendix B.

The hypervolume covered by the solutions found using OBJ4 is clearly bigger
than the one for OBJ2 solutions. The epsilon indicator is fairly equal, with
no statistically significant difference. The spacing looks to favor OBJ4, but the
Kruskal-Wallis test says that the true median may be equal based on the samples.
Therefore, the representations are deemed equal in spacing.

4.4.2 Discussion

The OBJ4 problem representation uses the output from the simulator almost
directly. The OBJ2, however, needs to combine multiple output values in order
to only use two objectives.

4.4. COMPARING THE NUMBER OF OBJECTIVES 69

0,65

0,7

0,75

0,8

0,85

H
yp

er
vo

lu
m
e

0.1

0.15

0.2

0.25

Ep
si
lo
n

0

0.05

0.1

Sp
ac
in
g

OBJ2 OBJ4

Figure 4.5: Indicators for OBJ2 and OBJ4.

These values are of fairly different ranges, as can be seen in the plots in figure 4.1.
Just adding multiple values of different ranges would give bad results, as the value
with the highest max value would dominate any differences in the other values.
What has been done is to weigh each value when adding them, so that they
should become equally important to optimize for the EA.

Finding the correct weights for each value to make objective values is very hard.
In this case, it has taken hundreds of EA runs with different weights to find what
gave good results.

Compare this to the OBJ4, which needed no tweaking at all and gave better
results, using more objectives is clearly the way to go. In addition, the only
reason such good weights were found for OBJ2 at all, is that the problem had
already been solved using OBJ4. This made it possible to analyze the problem and
guess on initial weights, that later were iterated upon. Without this possibility,
the search space for good weights would probably be too large.

This result is interesting, as it shows that research in many-objective (more than
three objectives) optimization algorithms is important. Many of today’s multi-
objective algorithms have troubles when the problem has more than two to four
objectives, depending on the problem. This experiment clearly shows that reduc-
ing the number of objectives gives sub-optimal results compared to representing
a problem in its ”true” number of objectives.

70 CHAPTER 4. RESULTS AND DISCUSSION

Chapter 5

Conclusions

This chapter is the conclusion to the report. The answers to the research questions
are presented first. Then, a discussion about what has been done together with
a comparison of what has been done in other papers is presented. Lastly, the
contributions and future work are discussed.

5.1 Evaluation

5.1.1 Research Questions

The research questions posed in section 1.2 has formed the work and experiments
done throughout the project. They are answered here based on the results in
chapter 4.

Research Question 1

Can an evolutionary multiobjective optimization algorithm be used to optimize
lacing patterns of a bicycle wheel?

The answer to this question is yes, based on the results in section 4.1. The evo-
lutionary approach evolved wheels that were good, it even found lacing patterns
commonly used today. The use of multiple objectives made sure that wheels with
different tradeoffs were evolved.

71

72 CHAPTER 5. CONCLUSIONS

Research Question 2
How does the performance of the new NSGA-III EMO algorithm compare to the
older NSGA-II algorithm?

As the results in section 4.2 show, NSGA-III was not found to be better than
NSGA-II in the various indicators. It was even worse in one indicator, the epsilon
distance.

Various explanations for this were suggested and dismissed. Therefore, it is con-
cluded that NSGA-II is better than NSGA-III for this problem.

Research Question 3
How do the representations of the problem affect the outcome?

Two types of representations have been tested, wheel representation and the
number of objectives for the EA.

For the wheel representations, discussed in section 4.3, it was found that having a
representation with a bias for uniformly spaced spokes gave the best results. This
shows how important it is to thoroughly consider the solution representation to
use, as it will determine the quality of the solutions found.

For the objective representation, two versus four objectives were tested. The
results, found in section 4.4, shows that the higher number of objectives made
the EA find the best wheels. This was not given, as a higher dimension also
makes the search harder for the EA.

5.1.2 Summary

The system programmed together with the experiments conducted were able to
answer the research questions. The system consists of mainly two parts, the
simulator and the EA.

The simulator was able to simulate wheels in a manner mostly consistent with
the theory presented in the background chapter. There were some limitations,
mainly from the simulator being programmed using a physics engine instead of
using complex CAE software. Section 3.1.3 discusses this in greater detail.

The EA built upon the work of the MOEA Framework [12], with several own
additions and changes. One of the biggest changes was the introduction of a
way to distribute the simulation of the wheels. Other approaches could have
been some of those discussed in the literature review. Hasenjäger et al. [7] had
a simulation that took over two hours per solution. To minimize the number of

5.2. CONTRIBUTIONS TO THE FIELD 73

simulations they used an algorithm that calculated the covariance between the
objectives in order to adapt the search to promising regions of the search space.
Eby et al. [5] used island models with various complexities of the simulation.
Neither of these methods was used in this project. The covariance method was
not needed, as the simulation in this case took much shorter time than two hours.
The simulator could not run at different resolutions, so island models would not
be useful as well.

Hasenjäger et al. tried to solve their problem using both a normal EA and a mul-
tiobjective one. They found the solutions from using multiobjective optimization
to be best. This is in line with the tests in this project, where OBJ4 was found
to be better than OBJ2.

Advanced variations (crossover and mutation) for the genotypes were used. Poly-
nomial mutation and SBX were used for the real values. Swap, Insertion and
Partially Mapped Crossover were used when the genotype was a permutation.
These variations are some of the more commonly used variations, used in many
other papers dealing with evolutionary optimization. The reduce procedure from
Deb and Goel [6] was implemented. It reduces the solution set to a set containing
the most interesting solutions, making it much easier to get an overview of the
evolved solutions and the properties of the problem.

The results were tested to see if they were statistically significant before drawing
any conclusions. This is needed because an EA is highly stochastic, and helps
ensure that the answers to the research questions should be valid.

5.2 Contributions to the field

A complicated real-life optimization problem has been solved using evolutionary
multiobjective optimization algorithms. It has been shown how important it is to
consider the representation of solutions, as this can guide the EA more efficiently
in the search. Representing the problem with more objectives gave better wheels,
indicating that using a multiobjective approach should be done when possible,
and that further research on these kinds of algorithms is important.

This thesis is one of the first applications using the new NSGA-III algorithm
on a real-life problem, possibly its first use in optimizing a mechanical structure.
NSGA-III was found to be no better than NSGA-II on this problem, which differs
from the results of using these algorithms on academic example-problems. As it
is the results on real-life problems that ultimately matter, the results presented
here should be considered when selecting algorithms for future problems.

74 CHAPTER 5. CONCLUSIONS

5.3 Future Work

5.3.1 Problem Domain

While the wheel simulator worked satisfactorily and was able to properly simulate
the wheels, it still has some limitations as discussed earlier. What is possible to
do using a physics library has probably been done, so to take this further, wheels
should be simulated inside advanced CAE software.

Such software would make it possible to have bendable rims and spokes, measure
air resistance and stress in the metal, and other topics not covered in this thesis.
This is a significant increase in complexity, and the simulations would probably
take hours.

It would also be interesting to model more parameters in addition to the lacing
pattern. For instance, hub flange radius, the distance between the flanges, tire
type, tire pressure, and radius of the rim. Most of these would not be possible
to model inside the current simulator, or at least not lead to any measurable
differences. However, a more advanced CAE simulation should be able to handle
this.

5.3.2 EA

A more advanced simulator would also need changes to the EA. Fewer evaluations
would be possible per EA run, as the time per evaluation increases. To overcome
this, the covariance approach used by Hasenjäger et al. could be investigated
further.

However, if one has two simulators, one simple and one advanced, using island
models is a good idea. Instead of distributing simulators on multiple computers,
as done in this project, one would here distribute separate EAs across the com-
puters. Some of the EAs would run the simple simulator and pass good solutions
found there to EAs running the more advanced simulator.

One of the drawbacks of using multiple objectives, and often basic EAs as well, is
that a big population and, therefore, many evaluations are needed. For optimiz-
ing mechanical structures, this would often make an evolutionary multiobjective
approach unfeasible. However, today’s computers are powerful enough that run-
ning thousands of simulations is possible. More problems should be solved using
an evolutionary multiobjective approach in the future, instead of manually testing
a few variations in some CAE software.

5.3. FUTURE WORK 75

As for algorithms, it would be interesting to see the performance of more algo-
rithms on this problem in addition to the NSGA variants tested. It should also
be investigated if the results of NSGA-III found in this project happen when used
to solve other real-life problems as well, to determine if it really is no better than
NSGA-II.

76 CHAPTER 5. CONCLUSIONS

Bibliography

[1] David E. Goldberg. Genetic Algorithms in Search, Optimization and Ma-
chine Learning. 1st. Addison-Wesley Longman Publishing Co., Inc., 1989.
isbn: 0201157675.

[2] N. Srinivas and Kalyanmoy Deb. “Muiltiobjective Optimization Using Non-
dominated Sorting in Genetic Algorithms”. In: Evol. Comput. 2.3 (Sept.
1994), pp. 221–248. issn: 1063-6560.

[3] K. Deb et al. “A fast and elitist multiobjective genetic algorithm: NSGA-
II”. In: Evolutionary Computation, IEEE Transactions on 6.2 (Apr. 2002),
pp. 182–197. issn: 1089-778X.

[4] Eckart Zitzler et al. SPEA2: Improving the strength Pareto evolutionary
algorithm. 2001.

[5] David Eby et al. “Evaluation of Injection Island GA Performance on Fly-
wheel Design Optimisation”. In: Adaptive Computing in Design and Man-
ufacture. Ed. by IanC. Parmee. Springer London, 1998, pp. 121–136. isbn:
978-3-540-76254-6.

[6] Kalyanmoy Deb and Tushar Goel. “A Hybrid Multi-objective Evolution-
ary Approach to Engineering Shape Design”. In: Evolutionary Multicrite-
rion Optimization. Ed. by Eckart Zitzler et al. Vol. 1993. Lecture Notes
in Computer Science. Springer Berlin Heidelberg, 2001, pp. 385–399. isbn:
978-3-540-41745-3.

[7] Martina Hasenjäger et al. “Single and Multi-Objective Approaches to 3D
Evolutionary Aerodynamic Design Optimization”. In: 6 th World Congress
on Structural and Multidisciplinary Optimization, Rio de. 2005.

[8] Ruchit A. Shah, Patrick M. Reed, and Timothy W. Simpson. “Many-
Objective Evolutionary Optimisation and Visual Analytics for Product
Family Design”. In: Multi-objective Evolutionary Optimisation for Prod-
uct Design and Manufacturing. Ed. by Lihui Wang, Amos H. C. Ng, and
Kalyanmoy Deb. Springer London, 2011, pp. 137–159. isbn: 978-0-85729-
617-7.

77

78 BIBLIOGRAPHY

[9] Valerio Lattarulo, Pranay Seshadri, and Geoffrey T. Parks. “Optimization
of a Supersonic Airfoil Using the Multi-objective Alliance Algorithm”. In:
Proceedings of the 15th Annual Conference on Genetic and Evolutionary
Computation. GECCO ’13. ACM, 2013, pp. 1333–1340. isbn: 978-1-4503-
1963-8.

[10] K. Deb and H. Jain. “An Evolutionary Many-Objective Optimization Algo-
rithm Using Reference-Point-Based Nondominated Sorting Approach, Part
I: Solving Problems With Box Constraints”. In: Evolutionary Computation,
IEEE Transactions on 18.4 (Aug. 2014), pp. 577–601. issn: 1089-778X.

[11] Mohamed Wiem Mkaouer et al. “High Dimensional Search-based Software
Engineering: Finding Tradeoffs Among 15 Objectives for Automating Soft-
ware Refactoring Using NSGA-III”. In: Proceedings of the 2014 Confer-
ence on Genetic and Evolutionary Computation. GECCO ’14. ACM, 2014,
pp. 1263–1270. isbn: 978-1-4503-2662-9.

[12] Dave Hadka et al. MOEA Framework. Version 2.4. Jan. 2, 2015. url: http:
//www.moeaframework.org.

[13] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Ap-
proach. 3rd. Prentice Hall Press, 2009. isbn: 0136042597.

[14] Kalyanmoy Deb and Mayank Goyal. “A combined genetic adaptive search
(GeneAS) for engineering design”. In: Computer Science and Informatics
26 (1996), pp. 30–45.

[15] Kalyanmoy Deb and Ram B Agrawal. “Simulated binary crossover for con-
tinuous search space”. In: Complex Systems 9.3 (1994), pp. 1–15.

[16] David E Goldberg and Robert Lingle. “Alleles, loci, and the traveling sales-
man problem”. In: Proceedings of an International Conference on Genetic
Algorithms and Their Applications. Vol. 154. 1985.

[17] H. Jain and K. Deb. “An Evolutionary Many-Objective Optimization Algo-
rithm Using Reference-Point Based Nondominated Sorting Approach, Part
II: Handling Constraints and Extending to an Adaptive Approach”. In: Evo-
lutionary Computation, IEEE Transactions on 18.4 (Aug. 2014), pp. 602–
622. issn: 1089-778X.

[18] Carlos A. Coello Coello, Gary B. Lamont, and David A. Van Veldhuizen.
“MOEA Testing and Analysis”. In: Evolutionary Algorithms for Solving
Multi-Objective Problems. Ed. by David E. Goldberg and John R. Kaza.
Springer US, 2008. isbn: 978-0-387-33254-3.

[19] Carlos M Fonseca et al. “A tutorial on the performance assessment of
stochastic multiobjective optimizers”. In: Third International Conference
on Evolutionary Multi-Criterion Optimization (EMO 2005). Vol. 216. 2005,
p. 240.

[20] David C. R. Hunt. Professional Wheelbuilding: The Manual. DCR Wheels
Publication, 2011.

http://www.moeaframework.org
http://www.moeaframework.org

BIBLIOGRAPHY 79

[21] C. Burgoyne and R. Dilmaghanian. “Bicycle Wheel as Prestressed Struc-
ture”. In: Journal of Engineering Mechanics 119.3 (1993), pp. 439–455.

[22] Williams Cycling R&D. Finite Element Analysis of Spoke Lacing Patterns.
2014. url: http://www.williamscycling.com/RD_ep_39.html (visited
on 11/19/2014).

[23] Nikos D. Lagaros, Manolis Papadrakakis, and Vagelis Plevris. “Multiobjec-
tive Optimization of Space Structures under Static and Seismic Loading
Conditions”. In: Evolutionary Multiobjective Optimization. Ed. by Ajith
Abraham, Lakhmi Jain, and Robert Goldberg. Advanced Information and
Knowledge Processing. Springer London, 2005, pp. 273–300. isbn: 978-1-
85233-787-2.

[24] Ö. Gündoğdu. “Optimal seat and suspension design for a quarter car with
driver model using genetic algorithms”. In: International Journal of Indus-
trial Ergonomics 37.4 (2007), pp. 327–332. issn: 0169-8141.

[25] Kalyanmoy Deb. “Multi-objective Optimisation Using Evolutionary Algo-
rithms: An Introduction”. In: Multi-objective Evolutionary Optimisation for
Product Design and Manufacturing. Ed. by Lihui Wang, Amos H. C. Ng,
and Kalyanmoy Deb. Springer London, 2011, pp. 3–34. isbn: 978-0-85729-
617-7.

[26] Erwin Coumans et al. Bullet Physics Library. Version 2.82. Oct. 23, 2013.
url: http://bulletphysics.org.

[27] Mario Zechner et al. Libgdx. Version 1.5.3. Jan. 16, 2015. url: http://
libgdx.badlogicgames.com.

http://www.williamscycling.com/RD_ep_39.html
http://bulletphysics.org
http://libgdx.badlogicgames.com
http://libgdx.badlogicgames.com

80 BIBLIOGRAPHY

Appendix A

Source Code

This appendix gives a quick overview of the source code and how to run it.

A.1 Getting It

The code is included with the delivered zip archive, but can also be found online
on http://master.matsemann.com/.

The project uses Maven to manage dependencies (libraries and frameworks used),
compile, build and run the code. This means there is no complicated setup, one
just has to have Maven installed, which is very common for Java developers.

A.2 Running It

Note: This describes how to compile and run the code, which is needed when
changes to it are made. If you’re only interested in running the code unmodified,
pre-compiled code is included in the folder compiled.

The code can be run in three different modes. EA-mode launches the EA inter-
face, in which the various problems and algorithms can be run. Remote-mode
launches an external wheel simulator that evaluates the wheels the EA wants to
test. The normal way to run this project is to start EA-mode on one computer
and Remote-mode on multiple other computers. The algorithms ending with a d
are the distributed ones, these have to be used for the wheel problems.

81

http://master.matsemann.com/

82 APPENDIX A. SOURCE CODE

There is also a Simulator-mode that just displays a randomly generated wheel in
the simulator. One can add forces to it by holding down ”3” or ”4” on the key-
board while pressing an arrow key. For more ways to manipulate the simulator,
see appendix C.

To run the code, be inside the code folder in a terminal and run one of the
following commands:

EA-mode: mvn compile exec:java -Pea

Remote-mode: mvn compile exec:java -Premote

Simulator-mode: mvn compile exec:java -Psimulator

A better way to run the remote than having to install Maven and compile the
code on multiple computers is to build it:

Build the code: mvn package

This will generate a file named ea-master-1.0-jar-with-dependencies.jar inside the
target folder. This file can then be copied to various computers and started like
a normal program.

A.3 Overview

A small recap of the various folders and files inside the code folder.

data contains the 3D-models used in the simulation.
pf contains reference sets for the various problems.
runs contains saved runs of the EA, see appendix B.
logs contains logs, a new file is generated for each run, useful for debugging.

src/main/java contains all the source code:
org.moeaframework is the modified version of the MOEA Framework.
com.matsemann is the main part of the code, and the two big parts can be found
in com.matsemann.ea and com.matsemann.simulator.
com.matsemann.ea.ipc is the code for distributing the simulations.

Appendix B

Results

B.1 Viewing Results Yourself

Launch the program in EA-mode, as described in appendix A. Go to File, select
Load and select one of the runs in the runs folder. This opens all the data from
the selected run. Graphs can be seen, the evolved wheels, the reference set etc.

B.2 Results From Runs

Listed here are the data from the various runs. The indifferent value states if
the Kruskal-Wallis test applied to the values indicates any significant difference
in the median values, and therefore if any conclusion can be drawn based on the
median value.

NSGA-II vs. NSGA-III

Table B.1 shows the end values for all the runs comparing the performance of
NSGA-II to NSGA-III. These results are discussed in section 4.2.

83

84 APPENDIX B. RESULTS

Comparing Representations

Table B.2 shows the end values for all the runs comparing the performance of
the permutation wheel representation with the real valued representation. These
results are discussed in section 4.3.

Comparing Number of Objectives

Table B.3 shows the end values for all the runs comparing the performance of
OBJ2 and OBJ4. These results are discussed in section 4.4.

B.2. RESULTS FROM RUNS 85

Hypervolume Add. Epsilon Spacing

NSGA-II NSGA-III NSGA-II NSGA-III NSGA-II NSGA-III

0.792341 0.785902 0.142572 0.157549 0.054284 0.020390

0.788778 0.765387 0.135868 0.165232 0.055828 0.178410

0.742326 0.811469 0.196139 0.118649 0.049734 0.026335

0.750077 0.781115 0.149589 0.159800 0.041457 0.032034

0.737772 0.761211 0.161956 0.167773 0.060676 0.048261

0.763218 0.779413 0.136006 0.178884 0.040546 0.021874

0.816137 0.727471 0.136882 0.191313 0.026539 0.092017

0.767956 0.755884 0.162983 0.185908 0.049378 0.034149

0.778395 0.768529 0.152345 0.169375 0.051005 0.031518

0.717989 0.788265 0.145641 0.130236 0.046393 0.051694

0.654709 0.765412 0.207078 0.159802 0.054472 0.030977

0.804211 0.769462 0.142861 0.161081 0.042559 0.052337

0.767035 0.761003 0.164100 0.157559 0.046455 0.086567

0.780184 0.746461 0.130729 0.181795 0.045492 0.023749

0.763997 0.791925 0.135452 0.166452 0.031378 0.031883

0.741336 0.722007 0.128106 0.200241 0.059819 0.042693

0.768274 0.763428 0.171967 0.175335 0.056579 0.059846

0.829704 0.781481 0.111139 0.176269 0.187506 0.028267

0.818666 0.792123 0.131891 0.164329 0.055505 0.050135

0.771278 0.791885 0.127689 0.149850 0.058297 0.150192

Median Median Median

0.768115 0.768995 0.142717 0.165842 0.050369 0.038421

Indifferent Not indifferent Indifferent

Equal NSGA-II better Equal

Table B.1: End data from 20 runs of NSGA-II and NSGA-III using OBJ4 and
REPfree

86 APPENDIX B. RESULTS

Hypervolume Add. Epsilon Spacing

Perm Real Perm Real Perm Real

0.766810 0.807530 0.108305 0.161363 0.075869 0.025783

0.812854 0.745978 0.120957 0.170985 0.028123 0.038183

0.815733 0.789594 0.096083 0.140015 0.034760 0.030824

0.825263 0.773204 0.133837 0.150245 0.041292 0.067176

0.794687 0.781209 0.120957 0.155384 0.080057 0.016455

0.788488 0.776475 0.132177 0.169771 0.313430 0.019274

0.835741 0.773775 0.113931 0.169693 0.057940 0.038963

0.880343 0.817106 0.074257 0.149529 0.048995 0.009761

0.878272 0.763275 0.087284 0.166300 0.054193 0.027942

0.852341 0.749745 0.079034 0.183630 0.039999 0.016283

0.771241 0.757057 0.132362 0.189829 0.028332 0.018300

0.835206 0.776266 0.102818 0.161590 0.038527 0.096946

0.837898 0.763499 0.087284 0.174729 0.056240 0.022083

0.881057 0.727254 0.074257 0.160132 0.035774 0.022626

0.881951 0.755792 0.075276 0.165162 0.021298 0.026661

0.786276 0.766372 0.120957 0.161368 0.037380 0.023358

0.824144 0.766812 0.134928 0.171495 0.033226 0.042842

0.830325 0.753030 0.081466 0.161463 0.029020 0.035679

0.878856 0.769866 0.069813 0.159598 0.049521 0.070479

0.849566 0.736987 0.104552 0.151988 0.054762 0.056690

Median Median Median

0.832765 0.766592 0.103685 0.161527 0.040646 0.027302

Not indifferent Not indifferent Not indifferent

Perm better Perm better Real better

Table B.2: End data from 20 runs of NSGA-III using OBJ4, comparing the two
wheel representations, REPfree and REPperm

B.2. RESULTS FROM RUNS 87

Hypervolume Add. Epsilon Spacing

OBJ2 OBJ4 OBJ2 OBJ4 OBJ2 OBJ4

0.762617 0.756391 0.186639 0.146573 0.055548 0.054022

0.707475 0.822394 0.148014 0.144881 0.010365 0.225295

0.707147 0.727726 0.153151 0.187868 0.077926 0.018311

0.733011 0.750330 0.181934 0.177876 0.063909 0.020247

0.753991 0.754949 0.168507 0.178587 0.048784 0.035609

0.758128 0.696102 0.138511 0.155855 0.078254 0.047681

0.710637 0.801009 0.150210 0.164536 0.081851 0.041612

0.678579 0.779174 0.201423 0.172084 0.010908 0.035483

0.795440 0.789911 0.105239 0.176276 0.056774 0.016914

0.687864 0.751104 0.162191 0.186871 0.035397 0.032911

0.703862 0.811608 0.213132 0.149380 0.035104 0.016943

0.753552 0.784103 0.130345 0.141395 0.027111 0.041785

0.699824 0.792749 0.212317 0.151234 0.019424 0.094245

0.730803 0.745243 0.150115 0.177607 0.049806 0.023379

0.763905 0.810274 0.122665 0.153354 0.035346 0.069321

0.737178 0.759274 0.145356 0.130992 0.094366 0.023146

0.738307 0.791003 0.171760 0.156187 0.064188 0.027929

0.775155 0.762083 0.155799 0.188362 0.036773 0.035578

0.572808 0.759444 0.229853 0.193054 0.071854 0.013564

0.768433 0.803104 0.130404 0.144816 0.021570 0.040295

Median Median Median

0.735094 0.770628 0.154475 0.160361 0.049295 0.035530

Not indifferent Indifferent Indifferent

OBJ4 better Equal Equal

Table B.3: End data from 20 runs of NSGA-III using REPfree, comparing the
two problem representations, OBJ2 and OBJ4.

88 APPENDIX B. RESULTS

Appendix C

Additional Wheels

This section lists some of the evolved wheels and their objective values. The
values can be seen in table C.1. The value in the Wheel column refers to which
wheel it is in figure C.1.

C.1 Testing a wheel

View the results, as described in an earlier appendix. Then right click a result
and select ”Show in Bullet Window”. This will open a window where the evolved
wheels can be selected and played with.

Controls for the wheel simulator:

• Forces: Hold down 3 and use the arrow keys to add forces from various
directions.

• Torque: Hold down 4 and use the arrow keys to add torque.

• Spin: Press and hold R to rotate the wheel

• Camera: Press 1, 2 or 3 on the Num Pad to change views, or rotate it
manually by pressing the left mouse button and dragging the wheel.

• Spokes: Select a spoke using the left mouse button. It can be tightened by
pressing 7, or loosened by pressing 8.

89

90 APPENDIX C. ADDITIONAL WHEELS

Wheel Rep Dst RotZ Rot Spokes

a perm 0.40723 10.5278 0.30610 3352.3

b perm 0.40598 12.4745 0.28871 3358.4

c free 0.41560 10.4396 0.30693 3353.8

d free 0.47300 10.3564 0.67224 3566.2

e free 0.44340 10.3938 0.32402 3411.7

f free 0.46970 18.3041 0.18043 4129.6

g perm 0.40666 10.8717 0.31941 3349.2

h perm 0.40689 11.1454 0.26173 3465.0

i perm 0.40910 14.4501 0.23177 3551.8

j perm 0.40960 15.4155 0.21348 3956.4

k perm 0.44138 16.2284 0.20759 4028.6

l perm 0.41027 10.4140 0.42311 3351.5

Table C.1: Objective values for some evolved wheels.

C.1. TESTING A WHEEL 91

(a) (b)

(c) (d)

Figure C.1: Some evolved wheels.

92 APPENDIX C. ADDITIONAL WHEELS

(e) (f)

(g) (h)

Figure C.1: Some evolved wheels.

C.1. TESTING A WHEEL 93

(i) (j)

(k) (l)

Figure C.1: Some evolved wheels.

	Introduction
	Background and Motivation
	Research Questions
	Research Method
	Structure of Report

	Background
	Optimization and Evolutionary Algorithms
	Optimization Problems and Local Search
	Introduction to Evolutionary Algorithms

	Other Types and Variations
	Real Values
	Permutations

	Evolutionary Multiobjective Optimization
	Multiobjective Problems
	Non-Domination and Pareto-Optimality
	Commonly Used Algorithms
	Comparing Evolutionary Multiobjective Optimization Algorithms

	Domain: Bicycle Wheel Physics
	The Bicycle Wheel
	The Physics
	Truing the Wheel

	Literature Review
	Related Work
	Structured Literature Review

	Methodology and Implementation
	The Wheel Simulator
	Approach
	Implementation
	Result

	Evolutionary Algorithm
	Approach
	Implementation
	Parallelization

	Representations
	Wheel Tests
	Problem Representation
	Wheel Representation

	Overview of the system
	Experimental Plan
	Parameters
	Experiments to Run

	Results and Discussion
	Solving the Problem
	The Problem Domain
	The Evolved Wheels

	Comparing NSGA-II to NSGA-III
	Results
	Discussion

	Comparing the Wheel Representations
	Results
	Discussion

	Comparing the Number of Objectives
	Results
	Discussion

	Conclusions
	Evaluation
	Research Questions
	Summary

	Contributions to the field
	Future Work
	Problem Domain
	EA

	Bibliography
	Source Code
	Getting It
	Running It
	Overview

	Results
	Viewing Results Yourself
	Results From Runs

	Additional Wheels
	Testing a wheel

