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Abstract
As time progress, environmental effects are slowly causing our cultural heritage to vanish.
Registration of 3D-scanned datasets has applications in exposing how erosion is altering
an object of cultural heritage. The Iterative Closest Point (ICP) algorithm, which itera-
tively matches the points in one dataset with those of another before minimizing the error
between them, is usually applied for registration of datasets. In this thesis, we are con-
cerned with adapting ICP for aligning 3D-scanned datasets to measure the erosion. We
have done so by implementing different, both novel and published, modifications of the
algorithm and testing their applicability on real world datasets. Implementation of a filter-
ing procedure whose matching policy tightens as computation progress before minimizing
the error yielded the best result. Using this filtering procedure, we are able to decrease the
evaluation metric by up to 50% compared with using ordinary ICP. We present the result
in a mesh with color codes indicating direction and impact of erosion.

Sammendrag
Med tidens gang sørger naturkreftene for at vår kulturarv sakte forsvinner. Registrering av
3D-scannede datasett har bruksområder innen eksponering av hvordan erosjon påvirker et
objekt av kulturell verdi. Iterative Closest Point (ICP) algoritmen, som iterativt matcher
punkter i et datasett med punkter i et annet datasett for så å minimalisere feilmarginen
mellom de, er som oftest brukt for registrering av datasett. I denne avhandlingen vil vi
utvikle en teknikk for måling av erosjon på kulturarvobjekter ved å tilpasse ICP for dette
formål. Vi har utført oppgaven med å implementere forskjellige, både publiserte og nye,
modifikasjoner av algoritmen for så å teste på datasett fra naturlige objekter. Implemen-
tasjon av en filtrerings prosedyre hvis filtrerings polise strammes inn etter som eksekver-
ing progresserer før feilmarginen minimaliseres avkastet de beste resultatene. Ved hjelp av
denne prosedyren er vi i stand til å senke evaluerings målet med 50% sammenliknet med
vanlig ICP. Resultatene presenterer vi i et mesh med fargekoder for å indikere retning og
påvirkning av erosjon.
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Chapter 1
Introduction

Erosion of objects may be measured by computing the difference between two or more
aligned datasets acquired from 3D scans of an object taken with a long enough period in
between for environmental effects to alter the original object. Registration of datasets is
done by estimating a rigid transformation that applied to one dataset, transforms it such
that it is oriented relative to another dataset. The dataset being re-positioned, is referred
to as the source S and the anchored dataset is referred to as the target T . For solving the
registration problem the Iterative Closest Point algorithm, which we will focus on in this
thesis, is used.

Solving the registration problem, apart from measuring erosion, has applications in
many areas. In 3D Acqusition, acqusition of a dataset often has to be aquired in multiple
sessions due to the sensor not being able percieve the whole object at once. In object
recognition applications, the dataset might be aligned with a reference model to see if they
are of the same object. Registration can also be used to to re-assemble fractured objects
by aligning the fractured parts of the surface (Papaioannou et al., 2001).

The goal of this thesis is to study some modifications of the original ICP algorithm
that have been proposed since the original paper (Besl and McKay, 1992) got published.
We will also develop a procedure for registration that enables for precise measurement
of erosion. We have acquired datasets from real-world objects scanned approximately a
year apart. Among the scanned objects is a column from Elefsis (Greece) and the Nidaros
Cathedral (Norway).

1.1 Structure of Thesis
This thesis is structured as follows

Chapter 1 presents the motivation, background and terminology for this work.

Chapter 2 contains the field study. The steps of the ICP algorithm is presented together
with modifications proposed by researchers in the field.

1



Chapter 1. Introduction

Chapter 3 provides an overview of the implemented prototype.

Chapter 4 describes the evaluation metrics and results from experimenting with the pro-
totype.

chapter 5 discuss the observations made during experimentation. Finally, the conclusion
and future work is presented.

Appendix A enumerates the experiments run and all data generated while experimenting.

Appendix B is a manual for how to configure the prototype.

1.2 Nomenclature
Different articles tend to use different names for the datasets used for registration, none
of theese seems super accurate. The most common names are source and target which is
why we will use those names throughout this thesis. source is the term for the dataset that
will be transformed and target is the name of the dataset that is used as a reference when
transforming source. Most of the time, their symbols will be used. S for source and T
for target. When searching for a point in T that corresponds to a certain point in S, that
certain point is referred to as the query point. Candidate points are the points in T that are
potential matches for the query point.

For the standard matrices 0m×n (all zeros), 1m×n (all ones) and Im×n (identity), we
will drop the subscripts (m × n) as they can be determined from the context. A rigid
transformation is usually referred to as a translation, rotation, a reflection or a combination
of those. For this thesis, we will refer to a rigid transformation as a rotation R followed by
a translation t as follows:

p′ = R · p+ t (1.1)

where p′ is the point p with the transformation applied.

1.3 Background

1.3.1 Quaternions
Quaternions consist of a scalar s and a vector −→v (Theoharis, 2008)

q = (s,−→v ) = (s, x, y, z) (1.2)

A rotation by an angle θ about an axis represented by the unit vector n̂ is represented by

q = (cos
θ

2
, sin

θ

2
n̂) (1.3)

It is applied to a point p using the following equation

p′ = q · p · q−1 = q · p · q̄ (1.4)

2



1.3 Background

The rotation matrix corresponding to a rotation represented by the unit quaternion q =
(s, x, y, z) is

Rq =


1− 2y2 − 22z 2xy − 2sz 2xz + 2sy 0
2xy + 2sz 1− 2x2 − 2z2 2yz − 2sx 0
2xz − 2sy 2yz + 2sx 1− 2x2 − 2y2 0

0 0 0 1

 (1.5)

Operations on quaternions such as addition and multiplication are explained in Theoharis
(2008).

1.3.2 Transformations
A transformation is an operation that applied to a dataset changes its appearance. Com-
monly used in computer graphics is the affine transformation which preserves important
geometric properties. Shear and scale are examples of affine transformations that are not
rigid. Rigid transformations, which additionally preserve angles between lines, may con-
sist of a rotation and translation.

1.3.3 Octree Datastructure
An octree data structure is a tree structure with a fixed number of child nodes like the
binary tree, but instead of using two child nodes, eight are used. The data structure is com-
monly used recursively for splitting a 3-dimensional geometric space into eight spaces,
one for each corner of the space.

1.3.4 K-D Tree Search
A k-d tree is a data structure for organizing points in k-dimensional space, i.e., 3-dimensional
space in our case. The points are arranged in a binary tree where each level represents one
of the k dimensions. The binary tree is constructed by choosing a plane parallel to the
yz-plane that passes through a point p. This plane is parallel to the split dimension and
cuts the space into two spaces. A left node and a right node is then obtained, one for
each side of the plane. The split dimension advances to become a xz-plane and the same
procedure continues. Construction of the K-D tree is done in O(n log n) time. We refer to
Zhang (1994) for further explanation. This data structure allows for nearest point search
that prunes away parts of the search space as search progresses resulting in average com-
putation time of O(NS logNT ) time where NS is the number of points in S and NT is the
number of points in T .

1.3.5 Bounding Box
The bounding box of a dataset is the smallest possible box that encloses the dataset. If the
edges are parallel to the axes of the coordinate system, we say that it is axis-aligned. Two
points can represent axis-aligned bounding boxes, one for the corner closest to the origin
and one for the corner most distant from the origin. A bounding sphere is an alternative to

3



Chapter 1. Introduction

the bounding box represented by a point and a radius. The axis-aligned bounding box is
simple to visually represent whereas the bounding sphere computationally is the simplest
to use for finding intersections.

4



Chapter 2
An Overview of the Field

There exist hundreds of implementations of the ICP algorithm (Pomerleau et al., 2013).
Navigating the sea of published articles to locate implementations of ICP is certainly not a
simple task, let alone reviewing and comparing them. The seminal work of Rusinkiewicz
and Levoy (2001) has made the task somewhat simpler by comparing and describing a
large number of them. They classify the variants as affecting one or more of the six stages
of ICP.

1. Selecting sets of points in either mesh.

2. Matching selected points with samples in the other mesh.

3. Assigning weights to the matched pair.

4. Rejecting certain pairs.

5. Assigning an error metric based on point set.

6. Minimizing the error metric.

In this chapter, we aim to describe published modifications of the ICP algorithm. A section
has been written for each step of the algorithm to explain the variations of that particular
step. Modifications that affect multiple stages will be mentioned, with cross-references, in
multiple sections. First, we will explain the original ICP algorithm.

2.1 Iterative Closest Point
Registration is the process of finding a rigid transformation that orients one movable
dataset S relative to an anchored dataset T . In other words, the estimated rigid transforma-
tion applied to S, adjust its orientation such that matched points have the same position.
The transformation is denoted as

S′ = R ∗ S + t (2.1)

5



Chapter 2. An Overview of the Field

where R is the rotation matrix and −→v is the translation vector. ICP is an algorithm for
registration of geometric data such as cloud data, CAD models, and planes, which was
introduced by Besl and McKay (1992). ICP consists of the following steps

1. Match each point in S with the nearest point in T

2. Estimate the transformation that best aligns the points in S with the matching points
in T by solving the least squares problem see Section 2.5.1.

3. Apply the transformation to S and evaluate the modified S using the objective func-
tion.

4. Repeat from the beginning using S′ as S if the value returned by the objective func-
tion exceeds a predefined threshold. Terminate otherwise

2.2 Using a Subselection
A match is required for every point in source in the original ICP algorithm (Besl and
McKay, 1992). Forcing a match for every point in S may cause an inferior location of
the global minimum, especially for datasets that only partially overlap. There have been
several proposals for different subselections of the datasets that may be used instead of
including all points. The motivation for using a subset is to either increase accuracy or
reduce computational cost.

Weik (1997) proposes using a selection of the points with the highest reliability. More
information than just the geometric data is required for their approach to work, as the
reliability is based per-sample color or intensity.

Turk and Levoy (1994) suggest accelerating the point selection step by uniformly sub-
dividing the dataset and using a nearest point search that is constrained to search within
the divided patches. The size of the divided patches will then be based on the distance
threshold 2.4.

Masuda et al. (1996) recommend randomly selecting a subset of S before matching
with the nearest point. A new random selection is generated after each iteration.

Rusinkiewicz and Levoy (2001) introduces an approach where they chose the points
that give the largest distribution of normals. In their paper, uniform sampling, random
sampling, and normal space sampling was tested showing little difference. They also
tested the difference in convergence rate between sampling in one dataset versus sampling
in both datasets. Little to no difference in convergence rate were detected indicating that
different sampling strategies based on geometric data has little effect on the result.

2.3 Selecting Candidates
Candidates points are a selection of points in T that we consider good candidates for being
matched with the query point, i.e. the point in S that are currently being matched. The
candidates will usually be the n points in T that are closest to the target.

Besl and McKay (1992) matches with the point in T that has the shortest Euclidean
distance from Si . Their technique requires matching every point in S with a point in
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(a) The points of the upper surface are being
matched with the nearest point on lower surface

(b) The plot shows the same data, but the source
and target properties have been swapped

Figure 2.1: The point that was matched in the left plot was matched with a different point, thus the
asymmetry

T . Simon (1996) accelerate this step by using a K-D tree (see Section 1.3.4), which is
common when searching for locations in a geometric space. He also optimizes this step by
caching a predefined number of closest points as they are likely to be close also in the next
iteration. An alternative to matching with the nearest vertex is to match with the closest
point on the nearest plane (Chen and Medioni, 1991).

Most variants of ICP use the nearest point strategy. An exception is Chen and Medioni
(1991)’s method, popularly called ”Normal Shooting”. ”Normal Shooting” is an approach
where a ray originating at the query point in S is shot in the direction of the vertex normal.
The matching point is chosen as the point at which the ray intersects with the target surface.
As there is no guarantee that T is present in the slant range, another ray should be shot
in the opposite direction. Note that all of these matching schemes are asymmetric. As
a consequence, we might end up with a different result if we swap the datasets before
matching. This is illustrated in Figure 2.1.

2.4 Filtering Candidates

Godin et al. (1994) introduces the concept of using additional constraints when matching
pairs with their Iterative Closest Compatible Point (ICCP) algorithm. The compatibility
function C is used to determine the compatibility between two points. Only pairings of
points for which C > τC, where τC is a hard threshold, is considered a match. They
experimented with using normal vectors and point to point distances when computing
the compatibility. Masuda et al. (1996) describes an alternative to the constant threshold
introduced by Godin et al. (1994), namely the dynamic threshold in which the n% worst
matches are rejected.
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Chapter 2. An Overview of the Field

Figure 2.2: The points have been classified by three different point weights to avoid making matches
with different classifications.

2.4.1 Penalizing Weights

Instead of rejecting points based on their compatibility, the compatibility may be used
as weights that decide the pairs influence during estimation. The weighted least squares
technique will then have to substitute the least squares technique used for estimating the
transformation. Because usage of the term ’weight’ in the literature is ambiguous, we will
refer to these kinds of weights as penalizing weights.

Penalizing weights based on the L0 norm and the L1 norm was compared by Mar-
janovic and Solo (2012) resulting in the lq norm where 0 < q < 1. Bouaziz et al. (2013)
formulates the registration problem as a minimization of the Lq norm and proposes the
Sparse ICP algorithm. The q parameter is what controls the influence of outliers. A lower
value of q increases robustness at the expense of computational effort. The negative effect
Sparse ICP has on execution time triggered an improvement by Mavridis et al. (2015) with
the introduction of Efficient Sparse ICP where Simulated Annealing, (SA, see Section 2.6,
is used at the beginning of execution and later swapped with ICP to ensure convergence.

2.4.2 Point Weights

Some articles refer to weights as values that, assigned to a point, restricts it from being
matched with points of different weights. We will in this thesis refer to such weights as
point weights. Marinov and Zlateva (2010) aligns stars on scanned astronomical images by
using stellar magnitudes as point weights. Thus, only the stars with the same magnitudes
are deemed compatible. Another application for point weights is in facial recognition. Lin
et al. (2006) describes a technique for pose invariant facial recognition by identifying the
nose tip and assign it a different point weight than the rest of the face.
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2.5 Error Minimization

2.5 Error Minimization

In this step we estimate a rigid transformation which applied to S minimizes an error
metric between S and T .

2.5.1 The Least Squares Technique

Besl and McKay (1992) minimizes the summed euclidean distance between the matching
points of S and T . We refer to this metric as the L2 norm.

‖v‖2 :=

√∑
i=1

v2i (2.2)

Where v ∈ R3 and vi is the i’th coefficient of v. The summed square of residuals is given
by

τ =

N∑
i=1

(λi − λ′i)2 (2.3)

where λi ∈ R3 is the observed value and λ′i is the fitted value. The transformation is
estimated by substituting λ′i with the transformation formula λ′i = S′ = RS+ t (Equation
2.1) and solving for the unknown coefficients R and t.

τ =

N∑
i=1

(
λi − (RS + t)

)2
(2.4)

The most common algorithms for solving the least squares problem are described and
compared by Eggert et al. (1997). They include a quaternion based method (Horn, 1987), a
method using SVD Arun et al. (1987), a method using orthonormal matrices (Horn et al.,
1988) and a method using dual quaternions (Walker et al., 1991). Eggert et al. (1997)
thoroughly tested the algorithms in both ideal and noisy environments. Arun et al. (1987)’s
SVD based method, which is also the oldest, outperformed the other procedures in terms of
accuracy. SVD as a matrix operation is also widely available being supported by multiple
applications including Matlab, Octave, OpenCV, Eigen, and Libicp. We first compute M
using the following equation

M =

NS∑
i=1

(si − µS)(ti − µT )′ =

Mx,x Mx,y Mx,z

My,x My,y My,z

Mz,x Mz,y Mz,z

 (2.5)

Where {si, ti}, i = 1, ..., Ns are the corresponding keypoints in S and T , and µS ∈ R3

and µT ∈ R3 is the centroid points of S and T computed by

µ =
1

N

N∑
i=1

pi (2.6)
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Chapter 2. An Overview of the Field

where N is the number of points in the dataset P and and pi ∈ R3 is the i’th point in P .
We then decompose M using SVD,

[U, S, V ] = SV D(M) (2.7)

The matrices U , S and V are derived from M such that M = USV T . R can then be
computed as follows:

R = V UT (2.8)

Lastly, t is computed by
t = −R× µT + µS (2.9)

2.5.2 Robust Least-Squares Techniques
An absence of outliers is assumed when using the original ICP algorithm. Thus, the least
squares approach happens to be quite sensitive to outliers. This is addressed by Meer
et al. (1991) which review several so-called robust data fitting techniques like utilizing
RANSAC (Fischler and Bolles, 1981) and the least-median-of-squares (LMedS) method
(Rousseeuw, 1984). The procedures were tested on datasets with up to 50% outliers.
LMedS proved most efficient.

Also, minimizing the L1 norm

‖v‖1 :=
∑
|vi| (2.10)

as opposed to minimizing L2 norm was deemed the more accurate option by Flöry and
Hofer (2010).

2.5.3 Weighted Least Squares
For datasets with points of varying quality, weighted least squares can be used to avoid the
fit being unduly influenced. The summed square of weighted residuals is given by

τ =
∑

wi(λi − λ′i)2 (2.11)

Haralick et al. (1989) explains how the weighted least squares technique can be used by
replacing λ′i with the transformation equation 2.1.

ŷi = RSi + t (2.12)

R can be found by taking the single value decomposition of H , which is computed as
follows

H = (h1, h2, h3) (2.13)

where

hk =

N∑
i=1

wi(Tik − T̄k)(Si − S̄)T (2.14)

where k represents the spatial dimension such that Tik is the value of the k’th dimension
of the i’th point in T that corresponds to Si. S̄ and T̄ is computed as follows:
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2.6 Simulated Annealing

S̄ =
∑N

i=1 wiSi∑N
n=1 wi

, T̄ =
∑N

i=1 wiTi∑N
n=1 wi

(2.15)

R can now be found by taking the SVD of H

UDV = svd(H) (2.16)

R = V TUT (2.17)

Once R has been obtained, t is easily computed as follows

t = T̄ −RS̄ (2.18)

2.6 Simulated Annealing
Simulated Annealing SA (S. Kirkpatrick, 1983) is a search method inspired by the an-
nealing process in metallurgy., In this process, metal is heated to a high temperature. In
this state, the atoms move around until they settle in an ordered structure. When this or-
dered structure has occurred, we say that the metal has re-crystallized. After the metal has
re-crystallized, the metal is cooled, and the physical properties of the metal have changed.

SA is supposed to be a good option for finding a global minimum in a deterministic
search space with several local minimums. Traditional hill climbing algorithms advance
to a neighbor that is perceived as a better solution based on some heuristic. When no
better neighbor can be found, the algorithm terminates. SA considers multiple states and
decides whether to advance based on a temperature τ and a probability function. When
the temperature is high, advancement to a state that is worse than the current state is more
likely. For the alignment problem, a state may be defined as a set of parameters that
represents the transformation C0 = [x, y, z, σ, ρ, γ], where x, y and z are the parameters
for movement and σ, ρ and γ are the parameters for rotation. The goal is to find the state
Cg that represents the transformation that best align S with T .

These are the steps of the algorithm.

1. Choose a random initial state c and compute its energy

2. Lower temperature τ

3. Pick a random neighboring state cr and compute its energy

4. Compute a probability value based on the new state and the temperature

5. If a randomly generated value exceeds the probability, set the current state c to cr

6. Repeat from step 2 if τ is greater than 0.0

First, the state c is set to a random parameter vector representing the initial trans-
formation. The energy ec, is then computed with the energy function ec = e(c). The
temperature τ is set to the first temperature within a temperature schedule. A set C, with
the configurable length n, of random configurations is then generated. The energy ei of
each random configuration Ci , where 0 ≤ i < n, is then computed using the energy func-
tion ei = e(Ci). A probability function p(ei, ec, γ), computes the chance of c advancing
to the new state Ci. τ is then lowered to a new temperature and a new iteration with new
random configurations begins. The algorithm converges when τ reaches zero.
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Chapter 2. An Overview of the Field

2.7 Registration of Large Datasets
Kazakauskas (2014) defines a large dataset as a dataset that is too big to be contained
within the main memory. He proposes a method for registration of large datasets consisting
of four stages.

Rough registration Perform rough registration of subsampled versions of S and T . A
good initial alignment of the datasets is presumed.

Sub division Divide the datasets into parts small enough for containment within the main
memory of the computer and store each in a separate file on disk. The divided parts
are referenced in the leaves of an octree data structure thus keeping track of the parts
positions. The combined bounding box of the datasets is used for equal subdivision
of the space. This way, a node representing a certain space in one octree has a
path equal to the node representing the same space in the other octree. An overlap
constant defines the size of the space that each leaf overlap adjacent leaves with.
The purpose of the overlap constant is to eliminate the risk of excluding potential
nearest points in neighboring sub surfaces during local registration. Each leaf node
has a file on disk dedicated for storing its occupying points.

Piecewise Registration The leaves of S are matched with the leaves of T . Measures are
taken to avoid matched nodes at different depths to poorly influence the registration.
Then the surfaces of the corresponding octree nodes are registered. A combination
of the resulting transformations is used as the global registration.

Distance Computation The Euclidean distance between the corresponding points is com-
puted. A shade of gray to represent the distance is assigned the vertex. For similarity
measure, he uses the summed Euclidean distance.

In both Rough registration and Piecewise Registration the original ICP algorithm(Besl and
McKay, 1992) as implemented by Geiger et al. (2012) is used for registration.
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Chapter 3
Method

This chapter explains the implementation of the Differential Geometry Measurer, DGM
and the implementation of the fitting procedures. Code from Kazakauskas (2014) was
used as a starting point. The datasets are assumed acquired from consecutive 3D-scans
of an object taken approximately a year apart such that erosion has been able to alter it.
Erosion will be displayed using a coloring scheme that indicates direction and movement
of each point in S.

3.1 Differential Geometry Measurer
Differential Geometry Measurer (DGM) is the name of the software that has been devel-
oped. Its responsibilities are to measure the distance between two large datasets and to
visually present the result. The function performRegistration (see Figure 3.1) performs
registration in two steps, one rough and one fine, before presenting the result.

Our aim is to increase accuracy by improving the rough registration step of the pipeline.
In our solution, we have modularized DGM and added optional configurations that let the
user implement custom pipelines for registration and for displaying the results. Also added
are tools for visual representation.

DGM
+ source : double *
+ target : double *
+ preFitter : Fitter *
+ postFitter : Fitter *
+ presenter : Presenter *
+ performRegistration(Matrix R, Matrix t) : void

Figure 3.1: Simplified class diagram of DGM. The Fitter and Presenter data types are explained
later in this chapter.
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Fitter
+ source : double *
+ target : double *
+ next : Fitter *
+ fitAll(Matrix R, Matrix t) : void
# fit(Matrix R, Matrix t) : void

Figure 3.2: All fitting modules are derived from this fitting class. The fit behavior performs a call to
the fitCurrent behavior followed by a call to the next objects fit behavoir if initialized.

3.2 Fitting Procedures
We implemented a technique for fitting mesh-datasets that enables the user to create a
pipeline consisting of several modules for registering the surface. We have implemented
the following modules, all of which are derived from the Fitter class in Figure 3.2:

Empty Module A module that does nothing. Implemented for eliminating the time-
consuming local registration step to get fast feedback when configuring DGM for a
certain case.

Predefined Transformation Module Applies a predefined transformation to source. Added
to enable a manually configured initial alignment without using other software.

ICP Module Registers source with the ICP algorithm. Our implementation of this mod-
ule is vastly configurable; a subsection has been reserved for its explanation.

SA Module Uses Simulated Annealing for alignment. Added for cases where the initial
alignment is insufficient and manual transformation is undesirable

Configurable parameters for the SA module include:

Starting Temperature High temperature represents high likelihood for advancement to
a state with less energy.

Depreciation The value that the temperature is decreased by each iteration.

Successors The number of random states considered each iteration.

Random The random numbers may be set by the user for a more repeatable outcome.

As the name implies, the ICP module registers S with the ICP algorithm. Our imple-
mentation of this module is vastly configurable; a subsection has been reserved for its
explanation.

3.3 ICP Module
The modules already described should provide sufficient initial registration for ICP. We
have used Libicp as a starting point when developing this module. Libicp is an implemen-
tation of ICP created by Andreas Geiger, which we will use as our baseline for the primary
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IcpModule : Fitter
+ filter : Filter *
- fit(Matrix R, Matrix t) : void

Figure 3.3: Class diagram of the ICP module

fit(Matrix R, Matrix t) {
List<Point, Point> correspondences;
foreach Point query in source do {

/* Find a preconfigured number of candidate
* points in target */
Set<Point> candidates =

select_candidates(query, target);
/* Remove the bad candidate using a
* preconfigured Filter */
filter.remove_bad_candidates(query, candidates);
/* if any candidates remains */
if(length(candidates))

/* add the first candidate and the query
* to the set of correspondences */

correspondences(query, first(cantidates);
}
/* compute the transformation that minimizes the
* error between the correspondences */

minimize_error(correspondences, R, t);
/* if stopping criteria is NOT met */
if( !isAcceptable(source * R + t, target) )

fitCurrent(R, t);
}

Figure 3.4: Pseudocode of the ICP procedure. The preconfigured filter is explained in Section 2.4

fitting procedure. It is a clean implementation of ICP as proposed by Besl and McKay
(1992) but with a KD-tree optimization. Libicp also comes with an implementation of
matrices that we will use. Pseudocode of the ICP fitting procedure is shown in Figure 3.4.

3.4 Point Selection
As the literature study showed that sampling strategies had little influence on the result,
the full target dataset is used when selecting candidate points in target. Potential cor-
responding points are found by selecting the n points in T that are closest to the query
point. A K-dimensional binary tree optimization is used to speed up the point selection
process. With an average computational complexity of O(NSlogNT ), the chosen point
selection procedure outperforms the other described section 2.3. Also, the nearest point
search makes it easy to select more than one point, which is important for cases where we
want to use a compatibility measure other than distance.
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clean(query, candidates, iterator) {
if(!isEnd(iterator, candidates)

filter(query, candidates, iterator + 1);

if(compute_compatibility(query, iterator)
< getThreshold())

erase(candidates, iterator);
}

remove_bad_candidates(query, candidates) {
iterator = getStart(candidates);
clean(query, candidates, iterator);
if(nextFilter)

nextFilter.clean(query, candidates);
}

Figure 3.5: Pseudocode of the filtering procedure. The language is object oriented and does calls
by reference

3.5 Filter

In the literature, implementing a stricter matching policy yielded the biggest gains regard-
ing accuracy. Most of the work has therefore been spent developing and testing procedures
for filtering out bad candidates among the n selected candidates.

As input, the filter takes the query point pq and the set of candidate points Pc. When
called, the filter computes the compatibility between pq and each candidate point pci. pci
is removed if the compatibility between pq and pci is inferior to what currently is set as
the threshold. We have divided the filtering stage into two parts, namely the threshold
computation and the compatibility measure to study modifications regarding them sepa-
rately. Using a combination of filters have been enabled through a pointer in the filter that
if initialized, is called to filter the remaining set of candidates after the current filter has
finished. This way, a chain of filtering procedures may be configured. For pseudocode of
the filtering procedure, see Figure 3.5. The remaining part of this section is reserved for
describing the threshold and the compatibility.

3.5.1 Compatibility Measure

The filtering procedure makes use of the compatibility measure and the threshold see Sec-
tion 3.5.2 when rejecting/accepting a pair. The compatibility is a value between 0 and 1
that tells us how applicable the pair is for registration. We have implemented three differ-
ent compatibility measures.
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3.5 Filter

Figure 3.6: The Estone dataset with a filterbox in S (blue) and a corresponding filter box in T (red)
and a third filterbox (black) that has no corresponding filter box, thus excludes all points within.

Compatibility Based on Distance

This compatibility measure returns a value based on the Euclidean distance between pq
and pci.

Cd(pq, pci) = ‖ ̂d(p1, pci)‖2j (3.1)

Compatibility Based on Predefined Areas

This compatibility measure returns a binary value based on the position of pq and pci
relative to predefined areas. If both pq and pci is either outside or inside their respective
predefined areas, the value one is returned. Otherwise, the value 0 is returned. Two areas
may be configured, one for S and one for T which are represented by their radius rbS , rbT
and their positions pbS and pbT respectively. We define this compatibility as:

Cp(pq, pci) = A(rbS , pbS , p1) ≡ A(rbT , pbT , pci) (3.2)

where A returns 1 or 0 based on whether the point p is inside or outside its respective box.

A(br, pb, p) = d2(pb, p) < br (3.3)

Where d2 computes the Euclidean distance between the points pb and p.
The bounding spheres axis-aligned bounding boxes are used for representation when

displayed on an image (see Figure 3.6). Note that a filter box assigned to the S dataset
needs to be re-oriented for each iteration because the S dataset gets re-oriented according
to the newest transformation. The orientation of source’s filter box is updated by passing
the rotation matrix and the translation vector to the box filter through the update function.
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Figure 3.7: The available thresholds visualized

Compatibility Based on Normal Vectors

This compatibility measure computes the angle θ between the normal vector of the source
point NSi and the normal vector of the candidate point in target NTi

Cn(pq, pci) = ̂θ(N(pq), N(pci)) (3.4)

where N(pq) returns the normal vector of pq and

θ(NS , NT ) = cos−1
( NSi ·NTi

|NSi
| ∗ |NTi

|

)
(3.5)

If θ exceeds a certain threshold, the point gets rejected. The nearest point with an accept-
able direction of the normal vector gets selected as a match. If the normal vectors are
unavailable, they may be computed using PCL.

3.5.2 Threshold
The remaining component of the filtering procedure yet to explain is the threshold. The
threshold is a value for which the compatibility of the pair can not exceed without be-
ing rejected. We have implemented the hard threshold proposed by Godin et al. (1994)
and introduced the concept of depreciation to it. By decreasing the threshold during reg-
istration, we can start with a loose policy for accepting matches that tighten up as the
computation progresses. We have implemented two types of depreciation, namely the lin-
ear depreciation and the cosine depreciation. The original threshold has no depreciation,
i.e.; the threshold does not change over the course of computation. The depreciations are
visualized in Figure 3.7.

3.6 Error Minimization
In the filtering stage, work is done to prevent outliers from being included in the error
minimization procedure. Because of this there is no need for the implementation of a
robust error minimization. In theory, minimizing the L0 distance between S and T is
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Figure 3.8: The least squares approach works well on downscaled objects

favorable over minimizing the L2 distance. The same effect is achieved by minimizing
the L2 distance if a threshold for max distance allowed between two corresponding points
is set. The SVD based approach proposed by Arun et al. (1987) was chosen as the error
minimization technique as it outperformed the alternatives in the study of Eggert et al.
(1997). A quick test using Matlab demonstrate its applicability for datasets that have
changed size presumably because of erosion, see Figure 3.8.

3.7 Presentation
We have developed two programs for presenting the results of DGM, one concerning how
the erosion is displayed, and one for displaying a small area of a large dataset in full
resolution.

3.7.1 Extraction Tool
Large datasets are impossible to contain within the main memory of the computer, conse-
quently visualizing the dataset becomes a challenging task. However visualizing all points
in high-resolution datasets might not be desirable as there simply are not enough pixels on
the screen to exploit all data. The full resolution is desirable when we want to inspect a
certain area in the dataset. To enable such an inspection, we have implemented an extrac-
tion tool that writes the points within an enclosed area, defined by a box, to a separate file
during distance computation.Figure 3.9 shows the dataset of a sanded Christmas star and
a box covering an area we would like to inspect further.

3.7.2 Colorization
The purpose of the coloring scheme is to visualize accurately how the object has changed
between the scans. Both direction and size are properties desirable for visualization. The
coloring scheme has been modularized to support custom coloring schemes. We have im-
plemented a coloring scheme based on cylindrical color coordinates(Joblove and Green-
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berg, 1978), which enables for a scheme where three different colors represent outward
movement, inward movement and little to no movement. The color represent movement
along the z-axis, which in the case of Figure 3.10 is the direction of the incised face.

(a) A scan of a plastic star that has been given
a sand treatment. The shaded area represents the
area covered by the extraction tool

(b) The extracted part of the star

Figure 3.9: The images shows how the extraction tool works

-0.14 0.14 -0.14 0.14 -0.14 0.14

Figure 3.10: Three different configurations with the cylindrical color coordinate scheme. Through-
out this thesis, the configuration to the right will be used.
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Tests and results

4.1 Goals of Testing
We intend to benchmark the improvements in the accuracy of ICP caused by the different
modifications of the algorithm that we developed during this project. As the goal is to
detect erosion, we are only concerned with the applicability to datasets with minor dif-
ferences like real-world scans of the same object, i.e., reconstructing overlapping datasets
like the Stanford Bunny (Turk and Levoy, 1994) is outside of the scope. We would also
like to see how sensitive the mechanisms are to different parameters as the difficulty of
configuring DGM for a certain case is proportional to how sensitive it is to its parameters.

4.2 Setup
As mentioned, the test data consists of 3d scans from cultural heritage objects, e.g. the
Nidaros Cathedral and a column in Elefsis. Pomerleau et al. (2013) suggest that we always
compare variants of the ICP algorithm to a commonly accepted ICP baseline to obtain
an unbiased comparison. We have chosen the original ICP algorithm (Besl and McKay,
1992), which uses point to point distances, as our baseline.

4.2.1 Evaluation Metrics
Measuring accuracy of registration is difficult for real world data because the optimal
alignment of the datasets is unknown. Surfaces with color codes indicating the distance
and direction from T may be a valuable indicator of the registrations accuracy (see Figure
4.1. When referring to the distance between two points, one often think of the Euclidean
distance between them introduced at the beginning of this thesis. There are however sev-
eral ways to describe the distance between two points. According to Gonzalez and Woods
(2011) given the points p, q and z, distance metrics need to fulfill the following criterias:

d(p, q) ≥ 0 The distance can never be less than zero
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-0.14 mm 0.14 mm

(a) The surface fades to blue as we get lower on
the surface, and there is also huge variations in
the color throughout the whole surface. These are
indicators of poor registration

-0.14 mm 0.14 mm

(b) The vast amount of the color green, represent-
ing little to no movement, is an indicator of proper
registration.

Figure 4.1: The difference between a good and poor registration

d(p, q) = 0 iff p = q The distance is 0 if and only if the points are equal

d(p, q) = d(q, p) The metric must be symmetric

d(p, z) ≤ d(p, q) + d(q, z) The length of the path between two points can never be de-
creased by taking a detour to another point.

Common metrics used in Computer Vision apart from the Euclidean Distance and L0

Distance mentioned earlier, are the City-block distance and the The chess board distance.
Given p and q with the coordinates (x, y, z) and (s, t, u) respectively, the city block dis-
tance is given by

d4(p, q) = |x− s|+ |y − t|+ |z − u| (4.1)

and the chess-board distance is given by

d8(p, q) = max(|x− s|, |y − t|, |z − u|) (4.2)

We may adapt the distance function d for surfaces by summing the distances between
points We adapt the distance function d for surfaces by introducing a new distance function
davg that computes the mean of point distances.

davg(S, T ) =
1

n

n∑
i=1

d(Si, Ti) (4.3)

L0 L1 L2 L∞

sum 2.0 1.4 1.08 1.0
avg 0.5 0.35 0.27 0.25

Table 4.1: The different distance measures computed on source and target in Figure 4.2
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Figure 4.2: A plot showing two datasets in the same geometric space. Each dataset consists of four
points.

where n is the number of points in S, and Ti is the point in T that is closest to Si. Alter-
natively the sum of point distances may be used

dsum(S, T ) =

n∑
i=1

d(Si, Ti) (4.4)

However comparing the registration of one dataset with the registration of another may
be difficult when using the sum of point distances because there may be huge variations
in the number of points for different datasets. Note that the last two distance metrics are
asymmetric, and thus are no longer a real distance metric (Gonzalez and Woods, 2011),
but they may still be used as an evaluation metric.

4.3 Observations
For the results of each experiment, see Appendix A. Important observations made during
testing is summarized in this section.

4.3.1 Compatibility Based on Distance
Common for the depreciations is the importance of not setting the starting threshold pa-
rameter too low in the beginning. The hard threshold introduced by Godin et al. (1994)
yields a good improvement of the ICP algorithm with approximately 50% decrease in the
mean L2 distance compared to the original ICP algorithm even without any depreciation A
drawback with using no depreciation is that to achieve high accuracy; we need to pinpoint
a particular sweet spot for the threshold (see Experiments A.1.2 and A.3.2 ).

Based on the experiments ran, a threshold starting at 3mm seems to be comprehensive
regardless of dataset and depreciation. However, further investigation is needed for this to
be a safe assumption. Using distance as compatibility, the plots in Figure 4.3 tells us how
the different depreciations influenced the resulting mean L2 distances (see Equation 4.3
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(a) The resulting mean L2 distances after registra-
tion of the Nidaros Cathedral dataset
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(b) The resulting mean L2 distances after registra-
tion of the Elefsis Column dataset

Figure 4.3: The plots show how the different thresholds impacted the result when we used distance
as compatibility measure. Each dot represents the result of one execution. The X-axis represent the
predefined starting threshold. The Y-axis represent the resulting mean L2 distances. The green bar
represents the result of registration using the classic ICP algorithm.
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(a) L2 distance of the Nidaros Cathedral dataset
as the computation progresses.
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(b) L2 distance of the Elefsis Column dataset as
the computation progresses.

Figure 4.4: These curves show how the mean L2 distance decreased during execution when the
filter was configured with normal vector compatibility and predefined area compatibility. The box
filter curve corresponds to the predefined area compatibility. The green curve shows the progression
of ordinary ICP.
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(a) Mean L2 distance of the Nidaros Cathedral
dataset as the computation progress.
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(b) Mean L2 distance of the Elefsis Column
dataset as the computation progress.

Figure 4.5: These curves show how the mean L2 distance decreased during execution when the
filter was configured with normal vector compatibility and predefined area compatibility. The box
filter curve corresponds to the predefined area compatibility. The green curve shows progression of
ordinary ICP

when configured with different parameters. The decreasing thresholds outperforms the
static threshold both in robustness towards input parameter and in registration accuracy.
An accurate registration is performed as long as the starting parameter is set high enough.
Some fine tuning is needed to get the lowest possible mean L2 distance, a decrease is
usually possible to get from fine tuning. Note that the maximum number of iterations will
often be reached when using a decreasing threshold.

Linear depreciation is preferred over cosine, as the cosine did not outperform the linear
and because it produces many outliers ( see Experiments A.1.4, A.1.6, A.3.4 and A.3.6 ).

The problem with outliers disappears if we restrain the error minimization step from
continuation when the number of matched pairs is too small. Still, cosine depreciation was
not able to outperform the simpler linear depreciation though they perform quite similar (
see Experiments A.1.7 ).

4.3.2 Compatibility Based on Predefined Areas

Excluding areas with an abnormal difference between the two datasets influence the accu-
racy of registration positively (see Experiment A.1.8). The flake in the Nidaros dataset is
an example of such an abnormal difference. Whether the exclusion takes place in S, T or
both makes little difference. We detected a decrease in the mean L2 distance at 14% by
excluding a troubled area before registration of the Nidaros dataset.

Configuring the filter to match points inside a predefined area in S only with points
inside a predefined area in T does not cause a better registration ( see Experiment A.1.9).
We ran experiments on datasets where the initial alignment was in a bad local minima to
see if this filter would produce a correct registration (see Experiment A.4). The filter was
unable to escape that local minima see Section A.1.9.
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4.3.3 Compatibility Based on the Angle Between Normal Vectors
Using the angle between the normal vectors of the corresponding points for computing
the compatibility seems to increase accuracy for curvy datasets (see Experiments A.3.3
and A.1.3). We were able to detect a decrease in the mean L2 distance at about 5% for
the Nidaros experiment and 60% for the Elefsis experiment. When using a compatibility
measure other than distance, it makes sense to consider more than one candidate because
the set of candidate points consist of the n nearest points in T . However, when using the
normal vector compatibility, a better accuracy is not achieved when considering more than
one candidates.

Configuring a depreciation for the threshold did not yield accurate registration (see
Experiment A.1.5). In most cases, the source dataset would be oriented more than 10mm
away from target.

If we stop decreasing the threshold when it has reached a certain threshold, the iterative
threshold performs evenly with the static threshold (see Experiment A.3.5). In Figure 4.5,
the iterative threshold decreases the mean L2 distance evenly until suddenly it erects, and
the computation converges. Running with the same parameters, but restricting the thresh-
old from decreasing any further when it hits 0.2mm gives a more accurate registration.

4.3.4 Combining Filters
Combining multiple filters did not cause a more accurate registration. None of the multiple
possible combinations of the filters with optimal parameters acquired from experimenta-
tion outperformed the best performing filter.

4.3.5 Combining Fitting Procedures
In almost all experiments a combination of fitting procedures were used, mainly to attain
the initial orientation which is shown at the beginning of each section describing the ex-
periments in A. In those cases, the Predefined Transformation Module was used. One of
the drawbacks with using a threshold based on distance, is that a good initial alignment is
required. Registration with the accuracy gained from using a filter is still possible by com-
bining two ICP modules, one with a threshold and one without. If the first ICP procedure
fails to align, e.g. by orienting source in a bad local minima, SA can be used instead (see
Experiment A.2). By combining two ICP modules, we were able to decrease the mean
L2 distance between the datasets to 0.3228 when the Nidaros datasets were far apart from
each other. For the same case, combining SA with ICP resulted in a mean L2 distane at
0.3229.

4.4 Potential Sources of Error
Though Arun et al. (1987)’s SVD based technique for error minimization is deemed the
most accurate by Eggert et al. (1997), a quick, non-scientific, test using Matlab shows us
that an optimal alignment of the dataset is not to be taken for granted. The only difference
between the plot in figure 4.6a and 4.6b is the initial orientation of S. Though we certainly
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speculate about the error minimization being the cause for a faulty registration, we did
not identify it as being the case. Noise is a common source of error in registration. The
original ICP algorithm requires a match for all points in S. Thus; it is especially sensitive
to noise. Because our algorithm makes use of thresholds when matching a point, outliers
are not likely to be influenced by the registration unless they are so close, that it becomes
impossible to distinguish it from the actual surface.

4.5 Discussion
In general, all modifications both novel and from the literature study enabled us to increase
the accuracy of the registration procedure. From the experiments run, we see that the
distance between the points makes the best compatibility measure.

4.5.1 Compatibility Based on Distance
The iterative threshold outperforms the static threshold both in robustness against the
threshold input parameter and in the accuracy of the resulting transformation when using
the L2 as compatibility measure. However applying the cosine depreciation, depending
on which dataset was being used, caused a poor registration in 50-70% of the test cases.
Some results, oriented S more than 10mm from T , which is far off. Figure 4.7 shows
how the mean L2 distance decreases during an execution that fails to accurately register S.
When we investigate this occurrence, we see that the cosine threshold continued for eight
iterations after hitting 0.48mm, the last threshold when using the linear, thus terminating
execution when the threshold reached 0.0006mm. When the spike in mean L2 distance
occurred, only one pair of corresponding points was found. We can think of two plausible
reasons for the sudden jump to a seemingly arbitrary orientation. One reason might be
that when using a tiny number of pairs, an poor registration like the case in Figure 4.6b
is more likely. Another, more likely reason, is that the freedom gained from having to
minimize the error between only two points caused the algorithm to set the query point to
the same coordinates as the matched candidate without considering anything else. Then,
the algorithm converged because the distance between those two points was decreased to
zero. We were able to fix this problem by restricting ICP from continuation if less than ten
corresponding points were identified.

4.5.2 Compatibility Based on Predefined Areas
The compatibility filter was best utilized for excluding areas vastly divergent from the
target dataset. For such datasets, we were able to improve the registration by excluding
the divergent area.

We were unable to perform a correct registration of a dataset pre-oriented in a local
minimum by using only ICP with the predefined area compatibility. The reason for this
might be in how we select the candidate points. By choosing the n candidates closest to
the query point before filtering out the incompatible ones, we risk leaving a vertex without
a match because the compatible points are too far away from the query point. Godin et al.
(1994) used a different approach by computing the compatibility for all points in T and
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filtering out all incompatible points before selecting the nearest point in that set. This
approach might have been better because it allows all points to be considered, not just the
n-nearest.

4.5.3 Compatibility Based on Angle Between Normal Vectors
Using the angle between corresponding points as compatibility gave a slight performance
boost for a mostly flat surface and a good boost for a curvier surface. The normal vector
filter is quite sensitive to the value of the threshold. For both the flat surface and the curvy
surface, the threshold had to be pinpointed.

The fact that considering more than one candidate point has a negative effect on the re-
sulting meanL2 distance is a little surprising. The reason for this might be that the distance
becomes an indirect compatibility when the nearest points in T are selected as candidates.
Consequently, the first element among the candidates will be better than the n’th point
despite the n’th point having a smaller angle between the normal vectors because distance
makes a better compatibility measure than the normal vector.

Decreasing the iterative threshold all the way to 0.0 radians proved to be an undesirable
option for registration as the result would usually orient S far away from T . We can
think of several reasons for this behavior, one of them being that the filter simply caused
erroneous pairings. Another reason might be that few samples caused by a strict matching
policy made the matched data set susceptible to erroneous error minimization like the
case in Figure 4.6b. If we take a look at the progression of the mean L2 norm for a case
that ended in an incorrect registration, (see Figure 4.5b) we see a sudden spike in the
mean L2 norm before the computation converged. When we limited the threshold from
decreasing any further after reaching 0.2 radians, a similar curve was produced but instead
of converging at the top, computation continued and correct registration was acquired.
However, restricting further computation when less than ten samples were found did not
result in a better registration.
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(a) A good alignment of source using the SVD
based least squares approach for error minimiza-
tion

(b) A poor alignment of source using the SVD
based least squares approach for error minimiza-
tion

Figure 4.6: The accuracy of the error minimization
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Figure 4.7: Progression of the mean L2 distance during execution on the Nidaros dataset. Both
thresholds have been given the same parameters.
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Chapter 5
Conclusion and future work

5.1 Conclusion

We have experimentally tested and compared different techniques for increasing accuracy
of ICP for cases where the intention is to measure erosion on objects. Also, we presented
a novel formulation of ICP which separates threshold and compatibility computation. Our
proposal is to use the iterative threshold with linear depreciation and per point distance as
the compatibility measure. We were able to outperform not only the original ICP algo-
rithm, but also modifications to the algorithm that has later been developed.

5.2 Future Work

As the implemented procedure is quite accurate, our suggestion for future work concerns
the registration of large datasets.

5.2.1 Registration of Large Datasets

We recommend dividing the surface into multiple patches as in Kazakauskas (2014), and
acquire a selection of the most compatible pairs from each patch followed by minimizing
the error between those pairs. Some modifications have been proposed that may help us
further limit the minimization set not primarily to increase accuracy, but to make sure that
few enough points are acquired from each subselection such that all patches are repre-
sented. One of them being the dynamic threshold (Masuda et al., 1996) that removes the
n% worst matches after having generated the selection of pairs from one subsurface. An-
other modification that may help our cause is the per-point reliability introduced by Weik
(1997). The reliability of all points within S and T are computed, and the n% worst points
are filtered out before making matches. For reliability measures, we may use curvature
and/or chemical properties of the meshes.
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If forcing a selection from each subsurface causes inaccurate registration, penalizing
weigths (see Section 2.4.1) may be implemented. This also requires the weighted error
minimization (see Section 2.5.2) to be implemented. Given a slight modification, compat-
ibility measures may be used as weights. Because 0 ≤ C ≤ 1, multiple compatibilities
may be combined as weights using the following formula:

C(p1, p2) =
1

n

n∑
i=1

Ci(p1, p2) (5.1)

5.2.2 Utilizing skeletonization
Inspired by the skeletonization process in computer vision (Gonzalez and Woods, 2011)
we would like to suggest a study of the skeletonization of meshes (Cornea et al., 2007) for
usage in the registration procedure. There are several ways a skeleton may help DGM:

1. Registration of just the skeletons may provide efficient rough registration.

2. Candidate selection may be performed using a ray originating at the nearest point in
the skeleton that intersects with the query point and continues until it intersects with
T

3. Distance computation might be more accurate when using the intersection ray.

Skeleton ICP (SKICP) is an algorithm for registration of 2-D shapes proposed by Li et al.
(2012). The two mentioned papers might be good leads when developing a ICP procedure
boosted by skeletonization.
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Appendix A
Experiments

A presentation of each experiment will be given here. Three different datasets have been
used for experimentation, each of which has been given their separate section. These
sections start with an explanation of the setup including: a picture of target, a picture of
source, an image of the initial orientation of the data sets, and lastly an image of the result
after performing a registration using ordinary ICP. Because the subsampling procedure
adds an element of randomness, a table showing the results of execution using ten different
seeds will also be presented to show how much the results vary when using the same
parameters. For evaluation metric, the mean L2 distance is used as the evaluation metric.

Most of the experiments consist of multiple executions of DGM with different param-
eters. The oldest dataset is used as the target in each execution. The results are presented
in two scatterplots, one with all results and one zoomed to the area at which they clustered.
The purpose of the zoomed plot is to show how the results varied depending on the starting
threshold, whereas the zoomed out plot is given to show the presence of outliers. The mean
L2 distance resulting from registration using ordinary ICP is displayed by a green bar in
each of the plots, as long as it is within reach. The execution that provided the registration
with the lowest mean L2 distance between source and target is presented as a picture of the
source dataset with colors representing the distance from target. Additionally, the results
are presented in tables containing the following columns:

points The number of points used for registration

iterations How many iterations done before convergence

n The number of candidates selected for the filtering step in the ICP module

range y The starting threshold configured for the filter

l0 avg The mean l0 distance between source and target, that is the number of points that
did not move (more than a small threshold) divided by the total amount of points in
source

l2 avg The mean euclidean distance between source and target
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l0 sum The summed l0 distance between source and target, that is the number of points
that did not move (more than a small threshold)

l2 sum The sum euclidean distances between each point in source and its matching point
in target
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A.1 Nidaros 1

A.1 Nidaros 1

A.1.1 Setup
The first dataset is from a scan of the Nidaros Cathedral. The datasets include a troubled
area, namely the flake in the lower left corner of the datasets that has fallen off during the
passing year. We believe this vastly divergent area is causing the color of the bottom part
of the registered dataset to fade to blue indicating that the area has moved outwards since
the previous scan was taken. Other areas of interest are the mason mark in the shape of an
hourglass.

(a) Target scan of the Nidaros Cathedral taken
10.04 2013

(b) Source scan of the Nidaros Cathedral taken
24.09 2014

-0.14 mm 0.14 mm
L̂2 = 7.06812

(c) Initial alignment of the datasets

-0.14 mm 0.14 mm
L̂2 = 0.396079

(d) Registration of Source using ordinary ICP

Figure A.1: The setup for the following experiment. Ordinary ICP was run ten times with ten
different seeds. Between ten different executions using ordinary ICP, the mean L2 distance varied
with approximately 0.002 mm.
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seed iterations n l0 avg l2 avg l0 sum l2 sum
638492957 67 1 0 0.394623 0 625469
390847561 169 1 0 0.398402 0 631458
830521483 39 1 0 0.399645 0 633429
490874508 57 1 0 0.395949 0 627571
192384734 172 1 0 0.393516 0 623715
345008754 63 1 0 0.396769 0 628871
654678432 45 1 0 0.401674 0 636645
234567678 51 1 0 0.397246 0 629626
123456789 95 1 0 0.397551 0 630110
987654321 115 1 0 0.396079 0 627777

Table A.1: Results using ten different seeds for uniform subsampling

A.1.2 Compatibility: Distance, Depreciation: Static
In this experiment, we ran multiple executions of DGM using the distance between the
query point and the candidate as compatibility. No depreciation for the threshold was
used. We used a different threshold for each execution, ranging from 15mm to 0.1mm. The
green color indicating little to no movement tells us that the registration is quite accurate
(see Figure A.2). The result may still be improved, the stripes of blue and yellow in the
upper left corner and the blue and yellow colors in the mason mark might indicate that the
registered mesh is too far to the right.
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(a) A plot showing all L̂2 distances between S and
T after execution with the static (non-changing)
threshold. The X-axis represents the threshold for
how close the nearest point has to be for accep-
tance. The Y-axis represents the mean distance to
T per point
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(b) A plot showing the same data as in a) but
zoomed onto the cluster for showing differences
between them. The points seem to cluster between
0.3 and 0.4 mm

-0.14 mm 0.14 mm
L̂2 = 0.330852

(c) The registered S dataset closest to T with colors indicating the pointwise distance to T . Setting
the threshold to 2.2mm yield the best registration. Note that the color only represent movement
along the Z-axis, which is inwards/outwards from the image

Figure A.2: The results after registration using no depreciation for the threshold when matching
points
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Raw Data

points iterations n range y l0 avg l2 avg l0 sum l2 sum
1584978 200 1 0.2 0.668524 0.95797 1059600 1518360
1584978 200 1 0.4 0.445616 0.930281 706291 1474470
1584978 200 1 0.6 0.305079 0.795016 483543 1260080
1584978 200 1 0.8 0.175078 0.627818 277494 995078
1584978 200 1 1 0.105531 0.523172 167265 829216
1584978 200 1 1.2 0.0788383 0.44976 124957 712860
1584978 200 1 1.4 0.0672091 0.380214 106525 602631
1584978 200 1 1.6 0.0596734 0.340197 94581 539205
1584978 200 1 1.8 0.0549616 0.332602 87113 527166
1584978 200 1 2 0.0505982 0.331037 80197 524687
1584978 200 1 2.2 0.0461533 0.330852 73152 524393
1584978 200 1 2.4 0.0415078 0.331849 65789 525973
1584978 200 1 2.6 0.0369488 0.333726 58563 528949
1584978 200 1 2.8 0.0321866 0.33658 51015 533472
1584978 200 1 3 0.0280906 0.339308 44523 537796
1584978 200 1 3.2 0.0241568 0.342409 38288 542710
1584978 200 1 3.4 0.0201504 0.34736 31938 550558
1584978 200 1 3.6 0.0164198 0.353439 26025 560193
1584978 200 1 3.8 0.0134185 0.358545 21268 568287
1584978 200 1 4 0.0110614 0.36442 17532 577598
1584978 200 1 4.2 0.00903798 0.369067 14325 584963
1584978 148 1 4.4 0.00687139 0.373417 10891 591857
1584978 179 1 4.6 0.00505307 0.378387 8009 599735
1584978 189 1 4.8 0.00337796 0.382733 5354 606623
1584978 190 1 5 0.00230476 0.38651 3653 612610
1584978 146 1 5.2 0.0013874 0.391052 2199 619809
1584978 89 1 5.4 0.000746383 0.393014 1183 622918
1584978 163 1 5.6 0.000295903 0.394625 469 625472
1584978 200 1 5.8 0.000074449 0.395614 118 627039
1584978 159 1 6 1.82968E-005 0.396013 29 627672
1584978 115 1 6.2 2.52369E-006 0.396079 4 627777
1584978 188 1 6.4 0 0.396079 0 627777
1584978 187 1 6.6 0 0.396079 0 627777
1584978 187 1 6.8 0 0.396079 0 627777
1584978 187 1 7 0 0.396079 0 627777
1584978 186 1 7.2 0 0.396079 0 627777
1584978 115 1 7.4 0 0.396079 0 627777
1584978 186 1 7.6 0 0.396079 0 627777
1584978 187 1 7.8 0 0.396079 0 627777
1584978 115 1 8 0 0.396079 0 627777
1584978 185 1 8.2 0 0.396079 0 627777
1584978 185 1 8.4 0 0.396079 0 627777
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1584978 185 1 8.6 0 0.396079 0 627777
1584978 115 1 8.8 0 0.396079 0 627777
1584978 115 1 9 0 0.396079 0 627777
1584978 185 1 9.2 0 0.396079 0 627777
1584978 185 1 9.4 0 0.396079 0 627777
1584978 185 1 9.6 0 0.396079 0 627777
1584978 185 1 9.8 0 0.396079 0 627777
1584978 115 1 10 0 0.396079 0 627777
1584978 185 1 10.2 0 0.396079 0 627777
1584978 185 1 10.4 0 0.396079 0 627777
1584978 185 1 10.6 0 0.396079 0 627777
1584978 185 1 10.8 0 0.396079 0 627777
1584978 185 1 11 0 0.396079 0 627777
1584978 185 1 11.2 0 0.396079 0 627777
1584978 185 1 11.4 0 0.396079 0 627777
1584978 185 1 11.6 0 0.396079 0 627777
1584978 115 1 11.8 0 0.396079 0 627777
1584978 185 1 12 0 0.396079 0 627777
1584978 115 1 12.2 0 0.396079 0 627777
1584978 185 1 12.4 0 0.396079 0 627777
1584978 115 1 12.6 0 0.396079 0 627777
1584978 115 1 12.8 0 0.396079 0 627777
1584978 115 1 13 0 0.396079 0 627777
1584978 115 1 13.2 0 0.396079 0 627777
1584978 115 1 13.4 0 0.396079 0 627777
1584978 185 1 13.6 0 0.396079 0 627777
1584978 185 1 13.8 0 0.396079 0 627777
1584978 185 1 14 0 0.396079 0 627777
1584978 185 1 14.2 0 0.396079 0 627777
1584978 185 1 14.4 0 0.396079 0 627777
1584978 185 1 14.6 0 0.396079 0 627777
1584978 185 1 14.8 0 0.396079 0 627777
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A.1.3 Compatibility: Normal Vector, Depreciation: Static
In this experiment, we ran multiple executions of DGM using the normal vector between
the query point and the candidate as compatibility. No depreciation for the threshold was
used. We used a different threshold for each execution ranging from 4 to 0 radians. We
experimented with using the 1, 10 and 20 nearest points as candidates. Though the regis-
tration is better than using ordinary ICP, the blue and yellow diagonal stripes indicate that
the registered mesh is slightly off. The results can be seen in Figure A.3.
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(a) A plot showing all L̂2 distances between S and
T after execution with the static (non-changing)
threshold. The compatibility was computed from
the angle between the normal vectors of corre-
sponding points. The X-axis represents the thresh-
old for how small the angle has to be to be ac-
cepted. The Y-axis represents the mean distance
to T per point
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(b) A plot showing the same data as in Figure A.3a
but zoomed onto the cluster. The points seem to
cluster between 0.37mm and 0.39mm.

-0.14 mm 0.14 mm
L̂2 = 0.37295

(c) The registered S dataset closest to T with colors indicating the pointwise distance to T . The best
result was generated by accepting only points with an angle less than 0.54 radians. Note that the
color only represent movement along the Z-axis, which is inwards/outwards from the image

Figure A.3: The results after registration using a static threshold when matching points
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Raw Data

points Iterations n range y l0 avg l2 avg l0 sum l2 sum
1584978 1 1 0.1 0.946727 1.201 1500540 1903550
1584978 1 1 0.2 0.848787 1.17233 1345310 1858110
1584978 1 1 0.3 0.785346 1.0437 1244760 1654240
1584978 1 1 0.31 0.629667 0.845118 998009 1339490
1584978 1 1 0.32 0.533718 0.692914 845932 1098250
1584978 1 1 0.33 0.558677 0.661655 885490 1048710
1369842 5 1 0.34 0.990214 33.373 1356440 45715800
1584978 1 1 0.35 0.576929 0.714376 914419 1132270
988416 1 1 0.36 0.948747 4.8312 937757 4775240
1584978 8 1 0.37 0.183063 0.415173 290151 658039
1584978 29 1 0.38 0.653846 0.848695 1036330 1345160
1584978 27 1 0.39 0.193428 0.429314 306579 680454
1584978 160 1 0.4 0.653915 1.11356 1036440 1764970
1584978 1 1 0.41 0.590301 0.74966 935614 1188190
1584978 152 1 0.42 0.440558 0.611139 698274 968643
1584978 1 1 0.43 0.546068 0.712978 865505 1130050
1584978 1 1 0.44 0.246877 0.498432 391294 790004
1584978 200 1 0.45 0.161398 0.39591 255812 627509
1584978 200 1 0.46 0.150847 0.386389 239089 612418
1584978 81 1 0.47 0.148965 0.385582 236107 611138
1584978 61 1 0.48 0.14648 0.385931 232167 611692
1584978 103 1 0.49 0.141707 0.381895 224602 605295
1584978 108 1 0.5 0.137444 0.376248 217845 596345
1584978 108 1 0.5 0.137444 0.376248 217845 596345
1584978 99 1 0.51 0.135382 0.37445 214578 593495
1584978 70 1 0.52 0.133473 0.374942 211552 594275
1584978 66 1 0.53 0.132555 0.376504 210097 596751
1584978 200 1 0.54 0.12927 0.37295 204890 591118
1584978 77 1 0.55 0.129426 0.375478 205138 595124
1584978 200 1 0.56 0.126817 0.37398 201002 592750
1584978 96 1 0.57 0.126729 0.375154 200862 594610
1584978 200 1 0.58 0.125303 0.375197 198603 594679
1584978 89 1 0.59 0.123426 0.374619 195627 593763
1584978 65 1 0.6 0.121754 0.374114 192977 592962
1584978 65 1 0.6 0.121754 0.374114 192977 592962
1584978 53 1 0.61 0.120373 0.374051 190788 592863
1584978 49 1 0.62 0.119357 0.374083 189179 592914
1584978 53 1 0.63 0.117846 0.373481 186784 591959
1584978 51 1 0.64 0.117501 0.374891 186237 594194
1584978 200 1 0.65 0.116457 0.375155 184581 594612
1584978 200 1 0.66 0.115655 0.376112 183311 596129
1584978 200 1 0.67 0.114487 0.376623 181460 596939
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1584978 74 1 0.68 0.113253 0.376751 179504 597143
1584978 42 1 0.69 0.111916 0.376282 177384 596398
1584978 58 1 0.7 0.110457 0.376371 175072 596540
1584978 58 1 0.7 0.110457 0.376371 175072 596540
1584978 73 1 0.71 0.109788 0.377193 174012 597842
1584978 69 1 0.72 0.108754 0.377398 172372 598167
1584978 59 1 0.73 0.10761 0.377418 170559 598200
1584978 53 1 0.74 0.106889 0.378201 169417 599440
1584978 200 1 0.75 0.105492 0.378012 167203 599140
1584978 43 1 0.76 0.104755 0.378749 166035 600308
1584978 98 1 0.77 0.104061 0.379498 164934 601497
1584978 108 1 0.78 0.103493 0.380441 164034 602991
1584978 65 1 0.79 0.102711 0.381363 162794 604452
1584978 78 1 0.8 0.101842 0.382089 161417 605603
1584978 85 1 0.9 0.0942013 0.38568 149307 611294
1584978 80 1 1 0.0869552 0.387086 137822 613522
1584978 53 1 1.1 0.0805191 0.388212 127621 615307
1584978 50 1 1.2 0.0747512 0.388966 118479 616502
1584978 70 1 1.3 0.0696988 0.389497 110471 617344
1584978 69 1 1.4 0.0654022 0.390047 103661 618215
1584978 62 1 1.5 0.061486 0.391038 97454 619786
1584978 110 1 1.6 0.0583415 0.391961 92470 621249
1584978 133 1 1.7 0.0551326 0.392988 87384 622877
1584978 81 1 1.8 0.0524007 0.393715 83054 624030
1584978 89 1 1.9 0.0496575 0.394385 78706 625091
1584978 117 1 2 0.0470738 0.395258 74611 626475
1584978 75 1 2.1 0.0444725 0.395827 70488 627377
1584978 63 1 2.2 0.0417924 0.396384 66240 628259
1584978 44 1 2.3 0.0393078 0.397188 62302 629534
1584978 54 1 2.4 0.0366844 0.399403 58144 633045
1584978 74 1 2.5 0.034338 0.400507 54425 634795
1584978 47 1 2.6 0.0320465 0.402087 50793 637299
1584978 78 1 2.7 0.0298887 0.400467 47373 634731
1584978 79 1 2.8 0.0277373 0.397691 43963 630331
1584978 119 1 2.9 0.0259101 0.396497 41067 628440
1584978 90 1 3 0.0238174 0.396073 37750 627767
1584978 97 1 3.1 0.0220041 0.396177 34876 627931
1584978 83 1 3.2 0.020211 0.396075 32034 627769
1584978 83 1 3.3 0.0186413 0.396075 29546 627769
1584978 83 1 3.4 0.0169592 0.396075 26880 627769
1584978 83 1 3.5 0.0153775 0.396075 24373 627769
1584978 83 1 3.6 0.013963 0.396075 22131 627769
1584978 83 1 3.7 0.0126835 0.396075 20103 627769
1584978 83 1 3.8 0.0115276 0.396075 18271 627769
1584978 83 1 3.9 0.0104866 0.396075 16621 627769
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1584978 62 10 0.3 0.324276 0.551576 513970 874236
1584978 1 10 0.31 0.354966 0.550526 562613 872572
1584978 1 10 0.32 0.297463 0.505646 471472 801438
1584978 54 10 0.33 0.293831 0.556156 465716 881495
1584978 1 10 0.34 0.358902 0.562513 568852 891571
295593 2 10 0.35 0.966653 8.88296 285736 2625740
1584978 1 10 0.36 0.916905 3.44121 1453280 5454250
1262163 1 10 0.37 0.980618 12.7477 1237700 16089700
1584978 71 10 0.38 0.534957 0.648224 847895 1027420
1584978 2 10 0.39 0.520586 0.648861 825118 1028430
1339386 1 10 0.4 0.9836 24.4564 1317420 32756500
1584978 1 10 0.41 0.172741 0.400282 273791 634438
1584978 1 10 0.42 0.938059 7.59995 1486800 12045700
1584978 51 10 0.43 0.307568 0.584714 487489 926759
1584978 1 10 0.44 0.565461 0.709254 896244 1124150
1584978 200 10 0.45 0.165354 0.401826 262082 636885
1584978 200 10 0.46 0.162353 0.401267 257326 635999
1584978 200 10 0.47 0.15768 0.39843 249919 631502
1584978 200 10 0.48 0.153689 0.39352 243593 623720
1584978 200 10 0.49 0.146337 0.387187 231941 613683
1584978 200 10 0.5 0.143245 0.384605 227040 609590
1584978 200 10 0.51 0.13702 0.377284 217173 597987
1584978 200 10 0.52 0.13562 0.376951 214955 597459
1584978 200 10 0.53 0.134261 0.378105 212801 599288
1584978 200 10 0.54 0.133056 0.379012 210891 600726
1584978 200 10 0.55 0.130777 0.377181 207278 597823
1584978 200 10 0.56 0.129662 0.378339 205512 599660
1584978 200 10 0.57 0.129107 0.379491 204631 601485
1584978 200 10 0.58 0.126912 0.378233 201153 599491
1584978 200 10 0.59 0.124838 0.377887 197866 598943
1584978 200 10 0.6 0.124208 0.379164 196867 600967
1584978 200 10 0.61 0.122662 0.378995 194417 600699
1584978 200 10 0.62 0.121017 0.378924 191809 600586
1584978 200 10 0.63 0.121044 0.383499 191852 607838
1584978 200 10 0.64 0.119171 0.382735 188883 606627
1584978 200 10 0.65 0.118373 0.383658 187618 608090
1584978 200 10 0.66 0.117176 0.383727 185721 608199
1584978 200 10 0.67 0.116171 0.384346 184129 609180
1584978 200 10 0.68 0.11467 0.384114 181749 608813
1584978 200 10 0.69 0.114233 0.385435 181056 610906
1584978 200 10 0.7 0.113345 0.385826 179649 611525
1584978 200 10 0.71 0.112114 0.385529 177698 611055
1584978 200 10 0.72 0.111244 0.386268 176319 612226
1584978 200 10 0.73 0.110429 0.386773 175027 613026
1584978 200 10 0.74 0.109873 0.387603 174146 614342
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1584978 127 10 0.75 0.109098 0.388008 172918 614984
1584978 200 10 0.76 0.108105 0.388138 171344 615191
1584978 200 10 0.77 0.106868 0.388229 169384 615334
1584978 200 10 0.78 0.10561 0.388375 167389 615566
1584978 200 10 0.79 0.104649 0.388258 165867 615381
1584978 42 20 0.3 0.47267 0.60739 749172 962699
1584978 28 20 0.31 0.311081 0.534677 493056 847452
1584978 1 20 0.32 0.460375 0.737171 729685 1168400
1584978 18 20 0.33 0.437698 0.639767 693741 1014020
1584978 30 20 0.34 0.243201 0.472405 385468 748751
1584978 1 20 0.35 0.323893 0.493931 513363 782869
1306182 1 20 0.36 0.984757 15.1271 1286270 19758800
1584978 40 20 0.37 0.480322 0.600806 761300 952264
1584978 49 20 0.38 0.194978 0.449898 309036 713079
1584978 1 20 0.39 0.893527 5.67338 1416220 8992180
1584978 1 20 0.4 0.265985 0.507945 421580 805082
1523766 2 20 0.41 0.985227 24.4513 1501260 37258100
1584978 1 20 0.42 0.895146 5.72433 1418790 9072940
1584978 1 20 0.43 0.29084 0.574619 460975 910758
1584978 200 20 0.44 0.169186 0.409258 268156 648665
1584978 200 20 0.45 0.165327 0.407176 262040 645365
1584978 200 20 0.46 0.164167 0.409826 260201 649566
1584978 200 20 0.47 0.16113 0.407104 255387 645252
1584978 200 20 0.48 0.152319 0.396413 241423 628307
1584978 200 20 0.49 0.145068 0.391273 229930 620159
1584978 200 20 0.5 0.138647 0.377303 219752 598017
1584978 200 20 0.51 0.135992 0.376669 215544 597012
1584978 200 20 0.52 0.136543 0.378792 216417 600377
1584978 200 20 0.53 0.135941 0.378313 215463 599618
1584978 200 20 0.54 0.135203 0.380737 214293 603460
1584978 200 20 0.55 0.133869 0.381368 212179 604459
1584978 200 20 0.56 0.131292 0.380158 208095 602543
1584978 200 20 0.57 0.129715 0.381249 205595 604271
1584978 200 20 0.58 0.128568 0.382944 203777 606957
1584978 200 20 0.59 0.12686 0.380863 201071 603659
1584978 200 20 0.6 0.125387 0.381896 198735 605297
1584978 200 20 0.61 0.12425 0.384334 196933 609160
1584978 200 20 0.62 0.123037 0.384666 195011 609687
1584978 200 20 0.63 0.121756 0.384511 192981 609441
1584978 200 20 0.64 0.119573 0.383755 189521 608243
1584978 200 20 0.65 0.119248 0.384686 189006 609718
1584978 200 20 0.66 0.118231 0.386788 187393 613050
1584978 200 20 0.67 0.117858 0.388496 186802 615757
1584978 200 20 0.68 0.116854 0.388817 185211 616266
1584978 200 20 0.69 0.115069 0.387935 182382 614868
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1584978 200 20 0.7 0.114287 0.388973 181143 616514
1584978 200 20 0.71 0.113053 0.388993 179186 616545
1584978 200 20 0.72 0.112307 0.38897 178004 616508
1584978 200 20 0.73 0.111405 0.389082 176575 616687
1584978 200 20 0.74 0.110648 0.389614 175374 617529
1584978 200 20 0.75 0.109506 0.389755 173565 617753
1584978 200 20 0.76 0.108506 0.390019 171980 618171
1584978 200 20 0.77 0.10746 0.390217 170321 618485
1584978 200 20 0.78 0.106433 0.390827 168694 619452
1584978 200 20 0.79 0.105598 0.391225 167371 620083

A.1.4 Compatibility: Distance, Depreciation: Linear
In this experiment, we ran multiple executions of DGM using the distance between the
query point and the candidate as compatibility. Linear depreciation was used for the
threshold. We used a different starting thresholds for each execution, ranging from 15mm
to 0.1mm. The green color indicating little to no movement tells us that the registration
is quite accurate (see Figure A.4). The yellow and blue stripes we saw in the previous
experiments are not present in this registration.
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(a) A plot showing all L̂2 distances between S and
T after execution with the iterative linear thresh-
old. The X-axis represents the distance threshold
at the start of execution. The Y-axis represents the
mean Euclidean distance to T per point

Threshold L2 mm
0 5 10 15

M
ea

n 
L2

 m
m

0.322

0.323

0.324

0.325

0.326

0.327

0.328
Nidaros Zoomed

ordinary icp
linear thres

(b) A plot showing the L̂2 distances as in a) but
limited to the distances below 0.325. The points
seem to cluster between 0.324 and 0.323.

-0.14 mm 0.14 mm
L̂2 = 0.322802

(c) The registered S dataset closest to T with colors indicating the pointwise distance to T . Note
that the color only represent movement along the Z-axis, which is inwards/outwards from the image.
Setting the starting threshold to 9mm provided the best result with a mean Euclidean distance per
point at L̂2 = 0.322802

Figure A.4: The results after registration using a linearly decreasing threshold when matching points
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Raw Data

points iterations n range y l0 avg l2 avg l0 sum l2 sum
1281963 196 1 0.2 0.994235 24.5115 1274570 31422800
1267512 200 1 0.4 0.985072 14.6864 1248590 18615200
1374303 200 1 0.6 0.956995 13.0539 1315200 17940000
1584978 200 1 0.8 0.283177 0.91651 448829 1452650
1584978 200 1 1 0.214363 0.804081 339761 1274450
1584978 199 1 1.2 0.164122 0.723663 260129 1146990
1584978 200 1 1.4 0.114837 0.640968 182014 1015920
1584978 200 1 1.6 0.244767 1.38839 387951 2200570
1584978 200 1 1.8 0.374162 2.02906 593038 3216020
1584978 200 1 2 0.0603573 0.473444 95665 750398
1584978 200 1 2.2 0.0514455 0.430798 81540 682806
1584978 200 1 2.4 0.0430038 0.344648 68160 546260
1584978 200 1 2.6 0.0385198 0.329274 61053 521892
1584978 200 1 2.8 0.03435 0.326566 54444 517600
1584978 200 1 3 0.0304029 0.325645 48188 516140
1584978 1 1 3.2 0.0269404 0.324595 42700 514476
1584978 200 1 3.4 0.0241852 0.325016 38333 515143
1584978 200 1 3.6 0.0214773 0.324811 34041 514818
1584978 200 1 3.8 0.0184356 0.324702 29220 514645
1584978 1 1 4 0.0156715 0.324109 24839 513706
1584978 200 1 4.2 0.0134033 0.324518 21244 514353
1584978 200 1 4.4 0.0116046 0.324407 18393 514178
1584978 200 1 4.6 0.00973831 0.324383 15435 514140
1584978 200 1 4.8 0.00789916 0.32434 12520 514071
1584978 200 1 5 0.00631239 0.324231 10005 513900
1584978 200 1 5.2 0.00486 0.324065 7703 513636
1584978 200 1 5.4 0.00368964 0.323882 5848 513347
1584978 200 1 5.6 0.00284042 0.323792 4502 513204
1584978 200 1 5.8 0.00206312 0.323631 3270 512948
1584978 200 1 6 0.00149403 0.323528 2368 512785
1584978 200 1 6.2 0.000988657 0.323442 1567 512649
1584978 200 1 6.4 0.0005672 0.323348 899 512500
1584978 200 1 6.6 0.00029401 0.323224 466 512303
1584978 200 1 6.8 0.000109781 0.323154 174 512192
1584978 200 1 7 2.08205E-005 0.323075 33 512067
1584978 200 1 7.2 1.26185E-006 0.323051 2 512028
1584978 200 1 7.4 0 0.323009 0 511961
1584978 200 1 7.6 0 0.322959 0 511883
1584978 200 1 7.8 0 0.322911 0 511807
1584978 200 1 8 0 0.322891 0 511775
1584978 1 1 8.2 0 0.322876 0 511751
1584978 200 1 8.4 0 0.322859 0 511725
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1584978 200 1 8.6 0 0.322858 0 511723
1584978 200 1 8.8 0 0.322815 0 511655
1584978 200 1 9 0 0.322802 0 511634
1584978 200 1 9.2 0 0.322808 0 511644
1584978 200 1 9.4 0 0.322816 0 511656
1584978 200 1 9.6 0 0.322819 0 511661
1584978 200 1 9.8 0 0.322838 0 511691
1584978 1 1 10 0 0.323355 0 512511
1584978 200 1 10.2 0 0.322906 0 511799
1584978 200 1 10.4 0 0.322938 0 511850
1584978 200 1 10.6 0 0.323 0 511948
1584978 1 1 10.8 0 0.323625 0 512939
1584978 1 1 11 0 0.323704 0 513064
1584978 200 1 11.2 0 0.323206 0 512274
1584978 200 1 11.4 0 0.323281 0 512394
1584978 1 1 11.6 0 0.323887 0 513354
1584978 200 1 11.8 0 0.323441 0 512647
1584978 200 1 12 0 0.323554 0 512826
1584978 200 1 12.2 0 0.323656 0 512988
1584978 200 1 12.4 0 0.323751 0 513138
1584978 200 1 12.6 0 0.323866 0 513320
1584978 200 1 12.8 0 0.324006 0 513543
1584978 200 1 13 0 0.324099 0 513691
1584978 200 1 13.2 0 0.324213 0 513870
1584978 200 1 13.4 0 0.324319 0 514039
1584978 200 1 13.6 0 0.324485 0 514301
1584978 200 1 13.8 0 0.324614 0 514506
1584978 200 1 14 0 0.324705 0 514650
1584978 200 1 14.2 0 0.324884 0 514934
1584978 200 1 14.4 0 0.325019 0 515149
1584978 95 1 14.6 0 0.325114 0 515299
1584978 200 1 14.8 0 0.325308 0 515606

A.1.5 Compatibility: Normal Vector, Depreciation: Linear, Restricted
In this experiment, we ran multiple executions of DGM using the normal vector between
the query point and the candidate as compatibility. The threshold was configured with
linear depreciation. We used a different threshold for each execution ranging from 4 to 0
radians. We experimented with using the 1 and 20 nearest points as candidates. This con-
figuration outperformed the ordinary ICP algorithm in only one case and, in that case, the
increase in accuracy was too small to be considered caused by the compatibility measure.
In the start of this chapter, we explained how the result using ordinary ICP could vary with
+/- 0.01mm. The best configuration was with a starting threshold at 0.63 radians and 20
candidates. As with all cases, we assume that a lower mean L2 distance is equivalent to a
better registration, this, however, is debatable. In this case, one may argue that the ordi-
nary ICP algorithm performed better despite the resulting mean L2 distance being higher.
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The reason we speculate about it here is because, in the best registrations, the birth of a
flake was revealed above the troubled area. When ordinary ICP was used, this area was
blue. Whether that was because of erroneous registration caused by the flake or because
of actual outward movement, is unknown. The results can be seen in Figure A.5c
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(a) A plot showing all L̂2 distances between S and
T after execution with the iterative linear thresh-
old. The X-axis represents the distance threshold
at the start of execution. The Y-axis represents the
mean Euclidean distance to T per point
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(b) A plot showing the L̂2 distances as in a) but
limited to the distances below 0.325. The points
seem to cluster between 0.324 and 0.323.
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(c) The registered S dataset closest to T with colors indicating the pointwise distance to T . Note
that the color only represent movement along the Z-axis, which is inwards/outwards from the image.
Setting the starting threshold to 9mm provided the best result with a mean Euclidean distance per
point at L̂2 = 0.322802

Figure A.5: The results after registration using a linearly decreasing threshold when matching points
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Raw Data

points iterations n range y l0 avg l2 avg l0 sum l2 sum
1578522 1 1 0 1 7.06812 1578520 11157200
1584978 2 1 0.01 0.999906 0.921503 1584830 1460560
1584978 2 1 0.02 0.999155 0.968686 1583640 1535350
1584978 1 1 0.03 0.995778 0.808018 1578290 1280690
1584978 1 1 0.04 0.989608 0.83013 1568510 1315740
1584978 1 1 0.05 0.988097 1.0624 1566110 1683880
1584978 1 1 0.06 0.984905 1.24451 1561050 1972530
1584978 1 1 0.07 0.978966 1.27711 1551640 2024190
1584978 1 1 0.08 0.968107 1.24727 1534430 1976890
1584978 1 1 0.09 0.957522 1.21722 1517650 1929270
1584978 1 1 0.1 0.946611 1.2008 1500360 1903240
1584978 1 1 0.11 0.935686 1.19683 1483040 1896950
1584978 1 1 0.12 0.924845 1.19434 1465860 1893010
1584978 1 1 0.13 0.916797 1.18596 1453100 1879720
1584978 1 1 0.14 0.902924 1.16828 1431110 1851690
1584978 1 1 0.15 0.89075 1.16562 1411820 1847480
1584978 1 1 0.16 0.88832 1.17635 1407970 1864490
1584978 1 1 0.17 0.878513 1.17937 1392420 1869270
1584978 1 1 0.18 0.866041 1.15749 1372660 1834590
1584978 1 1 0.19 0.855106 1.15757 1355320 1834720
1584978 1 1 0.2 0.848354 1.16909 1344620 1852980
1584978 1 1 0.21 0.840226 1.17215 1331740 1857830
1584978 1 1 0.22 0.831005 1.17602 1317120 1863970
1584978 1 1 0.23 0.823479 1.18405 1305200 1876690
1584978 1 1 0.24 0.813466 1.17385 1289330 1860520
1584978 1 1 0.25 0.803673 1.16995 1273800 1854340
1584978 1 1 0.26 0.795118 1.173 1260240 1859180
1584978 1 1 0.27 0.788891 1.18016 1250380 1870520
1584978 1 1 0.28 0.777516 1.17134 1232340 1856550
1584978 36 1 0.29 0.315631 0.510204 500268 808662
1584978 2 1 0.3 0.674035 0.971195 1068330 1539320
1584978 1 1 0.31 0.620705 0.721168 983804 1143040
1584978 12 1 0.32 0.384624 0.561923 609621 890635
1584978 14 1 0.33 0.30258 0.485301 479583 769191
1584978 17 1 0.34 0.285786 0.469497 452965 744143
1584978 18 1 0.35 0.603048 0.715302 955818 1133740
1584978 18 1 0.36 0.61324 0.728311 971972 1154360
1584978 19 1 0.37 0.671329 0.85917 1064040 1361760
1584978 1 1 0.38 0.658407 0.853339 1043560 1352520
1584978 1 1 0.39 0.577575 0.733339 915444 1162330
1584978 1 1 0.4 0.673966 0.930559 1068220 1474920
1584978 19 1 0.41 0.189527 0.427044 300396 676856
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1584978 32 1 0.42 0.221881 0.484258 351676 767539
1584978 24 1 0.43 0.662433 0.920238 1049940 1458560
1584978 28 1 0.44 0.679859 1.01202 1077560 1604020
1584978 23 1 0.45 0.39565 0.579579 627097 918620
1584978 35 1 0.46 0.640098 0.942909 1014540 1494490
1584978 37 1 0.47 0.663726 1.02325 1051990 1621830
1584978 1 1 0.48 0.493977 0.709051 782943 1123830
1584978 1 1 0.49 0.526394 0.74973 834323 1188300
1584978 1 1 0.5 0.205839 0.479199 326250 759519
1584978 1 1 0.51 0.575395 0.836816 911989 1326340
1584978 50 1 0.52 0.542366 0.818711 859638 1297640
1584978 1 1 0.53 0.396876 0.65176 629039 1033020
1584978 52 1 0.54 0.505908 0.767694 801853 1216780
1584978 1 1 0.55 0.421639 0.681885 668289 1080770
1584978 1 1 0.56 0.415924 0.678145 659231 1074850
1584978 1 1 0.57 0.179998 0.462356 285293 732824
1584978 65 1 0.58 0.505075 0.828565 800533 1313260
1584978 1 1 0.59 0.152183 0.427983 241206 678344
1584978 1 1 0.6 0.158391 0.439256 251047 696212
1584978 1 1 0.61 0.149749 0.430438 237349 682235
1584978 72 1 0.62 0.439585 0.736876 696733 1167930
1584978 1 1 0.63 0.158285 0.449941 250878 713147
1584978 1 1 0.64 0.154987 0.445839 245651 706646
1584978 1 1 0.65 0.140253 0.422086 222298 668997
1584978 1 1 0.66 0.142157 0.427625 225315 677776
1584978 83 1 0.67 0.409261 0.739162 648670 1171550
1584978 1 1 0.68 0.138115 0.424857 218910 673389
1584978 84 1 0.69 0.482308 0.868337 764447 1376290
1584978 1 1 0.7 0.137676 0.432931 218214 686186
1584978 93 1 0.71 0.128869 0.471262 204254 746941
1584978 90 1 0.72 0.457637 0.849151 725344 1345890
1584978 1 1 0.73 0.132609 0.430442 210183 682242
1584978 1 1 0.74 0.1243 0.41937 197013 664692
1578522 1 20 0 1 7.06812 1578520 11157200
1584978 1 20 0.01 0.999903 1.10368 1584820 1749300
1584978 1 20 0.02 0.999392 1.1482 1584020 1819880
1584978 1 20 0.03 0.997718 1.1176 1581360 1771380
1584978 1 20 0.04 0.994997 1.16608 1577050 1848220
1584978 1 20 0.05 0.990546 1.17083 1569990 1855740
1584978 1 20 0.06 0.984469 1.19946 1560360 1901120
1584978 1 20 0.07 0.976625 1.19736 1547930 1897780
1584978 1 20 0.08 0.966984 1.21101 1532650 1919420
1584978 1 20 0.09 0.95719 1.22483 1517120 1941330
1584978 1 20 0.1 0.946439 1.23046 1500080 1950250
1584978 1 20 0.11 0.936231 1.23029 1483910 1949990
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1584978 1 20 0.12 0.924048 1.21302 1464600 1922600
1584978 1 20 0.13 0.910955 1.19188 1443840 1889110
1584978 1 20 0.14 0.899303 1.18468 1425380 1877700
1584978 1 20 0.15 0.886587 1.17151 1405220 1856820
1584978 1 20 0.16 0.87542 1.16654 1387520 1848940
1584978 1 20 0.17 0.865254 1.16428 1371410 1845350
1584978 1 20 0.18 0.857165 1.17304 1358590 1859240
1584978 1 20 0.19 0.847887 1.17166 1343880 1857050
1584978 1 20 0.2 0.840356 1.17777 1331940 1866750
1584978 1 20 0.21 0.831221 1.17686 1317470 1865290
1584978 1 20 0.22 0.821127 1.17281 1301470 1858880
1584978 1 20 0.23 0.811627 1.17107 1286410 1856120
1584978 1 20 0.24 0.801852 1.16838 1270920 1851860
1584978 1 20 0.25 0.791707 1.16411 1254840 1845100
1584978 1 20 0.26 0.784688 1.16834 1243710 1851790
1584978 1 20 0.27 0.775594 1.1679 1229300 1851100
1584978 1 20 0.28 0.767242 1.16841 1216060 1851900
1584978 1 20 0.29 0.759387 1.16931 1203610 1853340
1584978 1 20 0.3 0.751385 1.17017 1190930 1854700
1584978 27 20 0.31 0.51622 0.594121 818198 941669
1584978 1 20 0.32 0.561711 0.896159 890300 1420390
1584978 12 20 0.33 0.232551 0.449766 368589 712869
1584978 17 20 0.34 0.255015 0.491798 404193 779489
1584978 21 20 0.35 0.422836 0.573764 670186 909404
1584978 24 20 0.36 0.436147 0.584638 691284 926638
1584978 1 20 0.37 0.403233 0.594716 639116 942611
1584978 45 20 0.38 0.63355 0.851668 1004160 1349870
1584978 1 20 0.39 0.496657 0.671373 787191 1064110
1584978 16 20 0.4 0.723703 1.05921 1147050 1678820
1584978 29 20 0.41 0.176888 0.451709 280364 715949
1584978 34 20 0.42 0.173464 0.454577 274936 720494
1584978 38 20 0.43 0.367693 0.575358 582786 911930
1584978 67 20 0.5 0.388055 0.621432 615059 984956
1584978 60 20 0.51 0.26764 0.558344 424204 884963
1584978 73 20 0.52 0.137148 0.444763 217377 704939
1584978 1 20 0.53 0.147446 0.406807 233698 644781
1584978 62 20 0.54 0.388839 0.64934 616302 1029190
1584978 1 20 0.55 0.194037 0.489622 307544 776040
1584978 88 20 0.56 0.370539 0.633626 587296 1004280
1584978 1 20 0.57 0.137275 0.400802 217578 635262
1584978 1 20 0.58 0.437997 0.705233 694216 1117780
1584978 1 20 0.58 0.437997 0.705233 694216 1117780
1584978 76 20 0.59 0.127306 0.455298 201777 721638
1584978 72 20 0.6 0.347431 0.651887 550671 1033230
1584978 1 20 0.61 0.178575 0.507191 283038 803887
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1584978 74 20 0.62 0.324986 0.654857 515095 1037930
1584978 1 20 0.63 0.102321 0.389355 162177 617119
1584978 94 20 0.64 0.107184 0.423519 169885 671268
1584978 94 20 0.64 0.107184 0.423519 169885 671268
1584978 91 20 0.65 0.171359 0.543539 271600 861497
1584978 99 20 0.66 0.115332 0.468681 182798 742849
1584978 1 20 0.67 0.403163 0.732926 639005 1161670
1584978 89 20 0.68 0.110085 0.438941 174483 695712

A.1.6 Compatibility: Distance, Depreciation: Cosine
In this experiment, we ran multiple executions of DGM using the distance between the
query point and the candidate as compatibility. Cosine depreciation was used for the
threshold. We used different starting thresholds for each execution, ranging from 15mm
to 0.1mm. The green color indicating little to no movement tells us that the registration is
quite accurate (see Figure A.6). Most of the executions, however, resulted in registrations
far from optimal.
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(a) A plot showing all L̂2 distances between S and
T after execution with the iterative linear thresh-
old. The X-axis represents the distance threshold
at the start of execution. The Y-axis represents the
mean Euclidean distance to T per point
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(b) A plot showing the L̂2 distances as in a) but
limited to the distances below 0.325. The points
seem to cluster between 0.324 and 0.323.

-0.14 mm 0.14 mm
L̂2 = 0.330852

(c) The registered S dataset closest to T with colors indicating the pointwise distance to T . Note that
the color only represent movement along the Z-axis, which is inwards/outwards from the image.

Figure A.6: The results after registration using a linearly decreasing threshold when matching points
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Raw Data

points iterations n range y l0 avg l2 avg l0 sum l2 sum
1578522 1 1 0 0.994255 30.9596 909132 28308900
914385 1 1 0.2 0.953468 5.43134 1511230 8608560
1584978 1 1 0.4 0.980218 21.8254 1206700 26868200
1231053 1 1 0.6 0.968295 23.4129 1087570 26296900
1123182 1 1 0.8 0.963238 19.6003 803274 16345300
833931 1 1 1 0.156697 0.701966 248361 1112600
1584978 1 1 1.2 0.936482 13.3174 866029 12315500
924768 1 1 1.4 0.304383 1.49438 482441 2368560
1584978 1 1 1.6 0.909843 12.6392 1050490 14592900
1154580 1 1 1.8 0.499787 2.38963 792151 3787510
1584978 1 1 2 0.562186 2.93397 891052 4650290
1584978 1 1 2.2 0.896461 13.31 873256 12965500
974115 1 1 2.4 0.925785 24.0281 777387 20176600
839706 1 1 2.6 0.730092 5.88659 1157180 9330110
1584978 1 1 2.8 0.845841 11.7017 408706 5654210
483195 1 1 3 0.389287 2.92527 616999 4636400
1584945 1 1 3.2 0.0238609 0.325308 37819 515606
1584978 1 1 3.4 0.230179 2.36886 364828 3754580
1584978 1 1 3.6 0.0179876 0.325905 28510 516552
1584978 1 1 3.8 0.0154273 0.32547 24452 515862
1584978 1 1 4 0.0130721 0.326607 20719 517665
1584978 1 1 4.2 0.819641 22.1034 1062520 28653100
1296321 1 1 4.4 0.809886 19.0466 1083740 25487000
1338138 1 1 4.6 0.797646 21.8583 1044050 28610600
1308912 1 1 4.8 0.736104 15.8634 849917 18316100
1154616 1 1 5 0.0047048 0.324366 7457 514113
1584978 1 1 5.2 0.790184 17.7847 968792 21804600
1226034 1 1 5.4 0.235517 3.53589 373289 5604310
1584978 1 1 5.6 0.00195208 0.324988 3094 515099
1584978 1 1 5.8 0.00141327 0.325094 2240 515267
1584978 1 1 6 0.641395 11.7359 594812 10883500
927372 1 1 6.2 0.0345462 1.57871 54755 2502220
1584978 1 1 6.4 0.000230287 0.323293 365 512413
1584978 1 1 6.6 7.94964E-005 0.323762 126 513155
1584978 1 1 6.8 0.0277367 1.52869 43962 2422930
1584978 1 1 7 0 0.323762 0 513155
1584978 1 1 7.2 0 0.524642 0 831546
1584978 1 1 7.4 0.261001 5.28443 364541 7380780
1396704 1 1 7.6 0.367398 7.04318 565997 10850400
1540554 1 1 7.8 0 0.323872 0 513330
1584978 1 1 8 0.0516031 3.39224 81723 5372230
1583685 1 1 8.2 0.444339 9.33076 569393 11956800
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1281438 1 1 8.4 0 0.324417 0 514193
1584978 1 1 8.6 0 0.324416 0 514193
1584978 1 1 8.8 0 0.708963 0 1123690
1584978 1 1 9 0 0.324417 0 514193
1584978 1 1 9.2 0 0.324376 0 514129
1584978 1 1 9.4 0.873403 60.6567 1384320 96139500
1584978 1 1 9.6 0.576998 15.74 580061 15823500
1005309 1 1 9.8 0 0.325216 0 515460
1584978 1 1 10 0 0.325216 0 515460
1584978 1 1 10.2 0.135891 5.4927 212639 8594840
1564776 1 1 10.4 0.63435 16.9605 457474 12231400
721170 1 1 10.6 0 0.323881 0 513344
1584978 1 1 10.8 0 0.323502 0 512744
1584978 1 1 11 0.438006 12.0535 554898 15270200
1266873 1 1 11.2 0.639285 23.8124 856854 31916500
1340331 1 1 11.4 0 0.32358 0 512868
1584978 200 1 11.6 0 2.18146 0 3457560
1584978 1 1 11.8 0.566061 15.6442 423749 11711100
748593 1 1 12 0.392187 11.3239 364188 10515500
928608 1 1 12.2 0.605849 22.7819 777596 29240100
1283481 1 1 12.4 0 0.323649 0 512977
1584978 1 1 12.6 0 0.323854 0 513302
1584978 1 1 12.8 0 0.323735 0 513114
1584978 1 1 13 0.547859 26.7355 468548 22865100
855234 200 1 13.2 0.58353 32.29 457555 25319100
784116 200 1 13.4 0 0.3238 0 513216
1584978 200 1 13.6 0 0.323821 0 513249
1584978 200 1 13.8 0.516217 21.1928 676864 27788000
1311201 200 1 14 0 0.323839 0 513278
1584978 199 1 14.2 0 0.324026 0 513574
1584978 200 1 14.4 0 0.324011 0 513550
1584978 200 1 14.6 0 0.324005 0 513540
1584978 200 1 14.8 0.550962 21.6442 727047 28561500
1319595 200 1 15 0.896461 13.31 873256 12965500
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A.1.7 Compatibility: Distance, Depreciation: Cosine, Restricted
In this experiment, we ran multiple executions of DGM using the distance between the
query point and the candidate as compatibility. Cosine depreciation was used for the
threshold. We used different starting thresholds for each execution, ranging from 15mm
to 0.1mm. The ICP algorithm was configured to terminate if less than ten matches are
made during the matching step. The problem with DGM producing mostly outliers were
eliminated when a minimum number of matches were introduced. The results can be seen
in Figure A.7.

58



A.1 Nidaros 1

Threshold L2 mm
0 5 10 15

M
ea

n 
L2

 m
m

0

5

10

15

20

25

30
Nidaros

ordinary icp
cosine thres

(a) A plot showing all L̂2 distances between S and
T after execution with the iterative cosine thresh-
old. The X-axis represents the distance threshold
at the start of execution. The Y-axis represents the
mean Euclidean distance to T per point
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(b) A plot showing the L̂2 distances as in a) but
limited to the distances below 0.33. The points
seem to cluster between 0.324 and 0.323.

-0.14 mm 0.14 mm
L̂2 = 0.323669

(c) The registered S dataset closest to T with colors indicating the pointwise distance to T . Note
that the color only represent movement along the Z-axis, which is inwards/outwards from the image.
The best result was at L̂2 = 0.323669 when we set the starting threshold to 6.4 mm.

Figure A.7: The results after registration using a linearly decreasing threshold when matching points
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Raw Data

points iterations n range y l0 avg l2 avg l0 sum l2 sum
1578522 1 1 0 1 7.06812 1578520 11157200
1584978 170 1 0.2 0.960338 3.66643 1522110 5811200
1584978 186 1 0.4 0.459059 0.977632 727598 1549530
1584978 187 1 0.6 0.337272 0.905001 534569 1434410
1584978 191 1 0.8 0.214794 0.703369 340443 1114820
1584978 192 1 1 0.11797 0.559696 186980 887106
1584978 191 1 1.2 0.0886814 0.50407 140558 798939
1584978 194 1 1.4 0.0705821 0.404547 111871 641198
1584978 195 1 1.6 0.0605977 0.327688 96046 519378
1584978 194 1 1.8 0.0558184 0.326513 88471 517516
1584978 196 1 2 0.0514297 0.326421 81515 517369
1584978 196 1 2.2 0.0472019 0.326035 74814 516758
1584978 1 1 2.4 0.042429 0.340999 67249 540476
1584978 1 1 2.6 0.0385747 0.328635 61140 520879
1584978 1 1 2.8 0.0340737 0.325987 54006 516682
1584978 196 1 3 0.0302793 0.326775 47992 517931
1584978 1 1 3.2 0.0267808 0.325338 42447 515654
1584978 197 1 3.4 0.0239745 0.326313 37999 517198
1584978 197 1 3.6 0.0213227 0.326869 33796 518080
1584978 197 1 3.8 0.0182936 0.326009 28995 516717
1584978 197 1 4 0.0156223 0.326151 24761 516942
1584978 197 1 4.2 0.0132178 0.325436 20950 515808
1584978 197 1 4.4 0.0114292 0.325496 18115 515904
1584978 197 1 4.6 0.00956039 0.325356 15153 515682
1584978 197 1 4.8 0.0077837 0.325345 12337 515665
1584978 1 1 5 0.00611428 0.324289 9691 513991
1584978 1 1 5.2 0.00470164 0.324115 7452 513715
1584978 1 1 5.4 0.00359374 0.324803 5696 514805
1584978 197 1 5.6 0.00279058 0.324572 4423 514440
1584978 197 1 5.8 0.00203788 0.324232 3230 513901
1584978 197 1 6 0.00145112 0.324195 2300 513842
1584978 1 1 6.2 0.000903483 0.323736 1432 513114
1584978 1 1 6.4 0.000523036 0.323669 829 513009
1584978 1 1 6.6 0.000230287 0.323733 365 513109
1584978 199 1 6.8 0.000102841 0.323674 163 513016
1584978 199 1 7 1.70349E-005 0.323675 27 513018
1584978 1 1 7.2 0 0.323731 0 513106
1584978 1 1 7.4 0 0.323752 0 513140
1584978 1 1 7.6 0 0.323778 0 513181
1584978 1 1 7.8 0 0.323778 0 513182
1584978 1 1 8 0 0.323778 0 513181
1584978 1 1 8.2 0 0.324153 0 513775
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1584978 1 1 8.4 0 0.324181 0 513819
1584978 198 1 8.6 0 0.323824 0 513254
1584978 198 1 8.8 0 0.32395 0 513453
1584978 1 1 9 0 0.324119 0 513721
1584978 198 1 9.2 0 0.323762 0 513155
1584978 1 1 9.4 0 0.324035 0 513589
1584978 1 1 9.6 0 0.324284 0 513983
1584978 1 1 9.8 0 0.324189 0 513832
1584978 1 1 10 0 0.324027 0 513576
1584978 1 1 10.2 0 0.324179 0 513817
1584978 1 1 10.4 0 0.324124 0 513730
1584978 1 1 10.6 0 0.324245 0 513921
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A.1.8 Compatibility: Predefined Area, Area: Troubled Area
In this experiment, we tested the predefined compatibility threshold. The predefined areas
were configured to enclose the troubled area in source and target. Using the areas for
excluding the flake yielded the best result. The results can be seen in Figure A.8f.
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(a) Initial orientation of the target datasets and its
exclusion box

(b) Initial orientation of the source dataset and its
exclusion box

(c) Registration after excluding parts in both
datasets. L̂2 = 0.353767. Iterations: 85

(d) Registration after excluding a part in only
source. L̂2 = 0.353646. Iterations: 105

(e) Registration after excluding a part in only tar-
get. L̂2 = 0.355954. Iterations: 85

(f) Registration after matching points in unmarked
areas with points in unmarked areas and matching
points in the blue area only with points in the red
area. . L̂2 = 0.395553. Iterations: 87
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A.1.9 Compatibility: Predefined Area, Area: a Half of the Surface

In this experiment, we tested the predefined compatibility threshold. The predefined areas
were configured to enclose the left area in source and target. None of the executions
yielded a notably good result. The results can be seen in Figure A.9f.

(a) Initial orientation of the data sets and the ex-
clusion boxes

(b) Initial orientation of the data sets and the ex-
clusion boxes

(c) Registration after excludig parts in both
datasets. L̂2 = 0.418919. Iterations: 67

(d) Registration after excluding a part in only
source. L̂2 = 0.386721. Iterations: 55

(e) Registration after excluding a part in only tar-
get. L̂2 = 0.418919. Iterations: 67

(f) Registration after belonging. L̂2 = 0.390013.
Iterations: 85
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A.2 Nidaros 2
In this experiment, we successfully attempted to align datasets without a good initial align-
ment. We did so by chaining the ordinary ICP procedure, which works without a proper
initial alignment, with an ICP fitting procedure with distance-compatibility and a linearly
decreasing threshold. The results can be seen in Figure A.10e.

(a) Source and target at a big distance apart from each other

(b) Registration with ordinary ICP. Distance:
0.396079

(c) Registration with ordinary ICP then registered
using ICP with the linear threshold. The starting
threshold was set to 9 mm. Distance: 0.322805
mm

(d) Placeholder: Registration with SA. Distance:
6.43258

(e) Registration with SA then registered using ICP
with the linear threshold. The starting threshold
was set to 9 mm. Distance: 0.322946 mm
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A.3 Elefsis 1

A.3.1 Setup
The second dataset we experimented on is from a scan of a column in Elefsis. ICP also
performs poorly on this dataset as the green color seems absent after registration. There
do not appear to be any large differences between the scans. The results can be seen in
Figure A.11.

(a) Target scan of the Elefsis column taken 20.03
2013

(b) Source scan of the Elefsis column taken 24.09
2014

-0.14 mm 0.14 mm
L̂2 = 34.7467

(c) Initial alignment of the datasets

-0.14 mm 0.14 mm
L̂2 = 0.807501

(d) Registration of Source using ordinary ICP

Figure A.11: The setup for the following experiment
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A.3.2 Compatibility: Distance, Depreciation Static
In this experiment, we ran multiple executions of DGM using the distance between the
query point and the candidate as compatibility. The threshold was configured with no
depreciation. We used different thresholds for each execution, ranging from 15mm to
0.1mm. The green color indicating little to no movement during the year tells us that the
registration is quite accurate (see Figure A.11). The results can be seen in Figure A.12.

67



Chapter A. Experiments

Threshold L2 mm
0 5 10 15

M
ea

n 
L2

 m
m

0

10

20

30

40
Elefsis

ordinary icp
hard thres

(a) A plot showing all L̂2 distances between S and
T after execution with the static (non-changing)
threshold. The X-axis represents the threshold for
how close the nearest point has to be for accep-
tance. The Y-axis represents the mean distance to
T per point

Threshold L2 mm
0 5 10 15

M
ea

n 
L2

 m
m

0.4

0.5

0.6

0.7

0.8

0.9

1
Elefsis Zoomed

ordinary icp
hard thres

(b) A plot showing the same data as in a) but
zoomed onto the cluster.

-0.14 mm 0.14 mm
L̂2 = 0.465607

(c) The registered S dataset closest to T with colors indicating the pointwise distance to T .In the best
result, only points within 2.4mm were considered. Note that the color only represent movement
along the Z-axis, which is inwards/outwards from the image

Figure A.12: The results after registration using a static threshold when matching points
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Raw Data

points iterations n range y l0 avg l2 avg l0 sum l2 sum
4339632 200 1 0.2 0.996434 33.9252 4324160 147223000
4362207 200 1 0.4 0.991635 34.702 4325720 151377000
4303722 200 1 0.6 0.986319 29.9473 4244840 128885000
4342221 50 1 0.8 0.981617 30.4097 4262400 132045000
4705956 200 1 1 0.568732 1.95806 2676430 9214570
4653300 200 1 1.2 0.832665 11.9375 3874640 55548600
4680504 200 1 1.4 0.801811 8.80764 3752880 41224200
4682841 200 1 1.6 0.665189 4.28572 3114970 20069300
4705956 200 1 1.8 0.402856 2.03799 1895820 9590700
4705956 200 1 2 0.068412 0.869267 321944 4090730
4705956 200 1 2.2 0.0435034 0.474098 204725 2231090
4705956 200 1 2.4 0.0417165 0.465607 196316 2191130
4705956 30 1 2.6 0.0397284 0.465964 186960 2192810
4705956 61 1 2.8 0.0378616 0.466758 178175 2196540
4705956 199 1 3 0.0360877 0.467761 169827 2201260
4705956 38 1 3.2 0.0344349 0.469449 162049 2209210
4705956 167 1 3.4 0.0328139 0.471665 154421 2219630
4705956 161 1 3.6 0.0312844 0.474594 147223 2233420
4705956 155 1 3.8 0.0299654 0.477052 141016 2244990
4705956 31 1 4 0.0287066 0.479559 135092 2256780
4705956 91 1 4.2 0.0275362 0.481285 129584 2264900
4705956 41 1 4.4 0.0263651 0.485458 124073 2284540
4705956 144 1 4.6 0.0251796 0.488509 118494 2298900
4705956 127 1 4.8 0.0240693 0.492993 113269 2320000
4705956 114 1 5 0.0229962 0.495688 108219 2332690
4705956 39 1 5.2 0.02203 0.497715 103672 2342220
4705956 139 1 5.4 0.0210331 0.500746 98981 2356490
4705956 137 1 5.6 0.0199664 0.505533 93961 2379020
4705956 124 1 5.8 0.0189133 0.511017 89005 2404820
4705956 55 1 6 0.0179035 0.514815 84253 2422700
4705956 58 1 6.2 0.0169519 0.518265 79775 2438930
4705956 69 1 6.4 0.0161036 0.522504 75783 2458880
4705956 110 1 6.6 0.0153236 0.526407 72112 2477250
4705956 122 1 6.8 0.0146151 0.528512 68778 2487150
4705956 139 1 7 0.0139428 0.534579 65614 2515710
4705956 142 1 7.2 0.0133216 0.541343 62691 2547540
4705956 112 1 7.4 0.0128244 0.546606 60351 2572300
4705956 50 1 7.6 0.0123344 0.551033 58045 2593140
4705956 107 1 7.8 0.0118675 0.555721 55848 2615200
4705956 58 1 8 0.0113953 0.558001 53626 2625930
4705956 110 1 8.2 0.0109568 0.561927 51562 2644400
4705956 131 1 8.4 0.0104905 0.568138 49368 2673630
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4705956 40 1 8.6 0.010043 0.573792 47262 2700240
4705956 106 1 8.8 0.00962865 0.576987 45312 2715280
4705956 114 1 9 0.00922108 0.581966 43394 2738710
4705956 116 1 9.2 0.0088388 0.589215 41595 2772820
4705956 40 1 9.4 0.00847564 0.593013 39886 2790690
4705956 52 1 9.6 0.0080838 0.598601 38042 2816990
4705956 122 1 9.8 0.00770874 0.603578 36277 2840410
4705956 109 1 10 0.00728927 0.612455 34303 2882190
4705956 118 1 10.2 0.0069225 0.62001 32577 2917740
4705956 30 1 10.4 0.00655403 0.628418 30843 2957310
4705956 105 1 10.6 0.00622828 0.635151 29310 2988990
4705956 121 1 10.8 0.00592356 0.640151 27876 3012520
4705956 110 1 11 0.00561905 0.644705 26443 3033950
4705956 101 1 11.2 0.00531964 0.652492 25034 3070600
4705956 43 1 11.4 0.00498496 0.664367 23459 3126480
4705956 200 1 11.6 0.00471743 0.669074 22200 3148630
4705956 125 1 11.8 0.00445074 0.674271 20945 3173090
4705956 93 1 12 0.00416111 0.683099 19582 3214630
4705956 94 1 12.2 0.00389379 0.687701 18324 3236290
4705956 94 1 12.4 0.00362668 0.695642 17067 3273660
4705956 92 1 12.6 0.00340058 0.700092 16003 3294600
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A.3.3 Compatibility: Normal Vector, Depreciation: Static
In this experiment, we ran multiple executions of DGM using the normal vector between
the query point and the candidate as compatibility. No depreciation for the threshold was
used. We used a different threshold for each execution ranging from 4 to 0 radians. We
experimented with using the 1, 10 and 20 nearest points as candidates. Though the registra-
tion is better than using ordinary ICP, the normal vector compatibility did not outperform
the distance compatibility. The results can be seen in Figure A.13.
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(a) a plot showing all l̂2 distances between S and
T after execution with the static (non-changing)
threshold. the compatibility was computed from
the angle between the normal vectors of corre-
sponding points. the x-axis represents the thresh-
old for how small the angle has to be to be ac-
cepted. the y-axis represents the mean distance to
T per point
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(b) a plot showing the same data as in figure A.3a
but zoomed onto the cluster. the points seem to
cluster between 0.5mm and 1.0mm.

-0.14 mm 0.14 mm
l̂2 = 0.489857

(c) the registered S dataset closest to T with colors indicating pointwise distance to T . the best result
was generated by accepting only points with an angle less than 0.2 radians. note that the color only
represent movement along the z-axis, which is inwards/outwards from the image

Figure A.13: the results after registration using a static threshold when matching points
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Raw Data

points iterations n range y l0 avg l2 avg l0 sum l2 sum
4364064 1 1 0 1 34.7467 4364060 151637000
4262349 1 1 0.01 0.999999 49.3135 4262340 210191000
4262349 1 1 0.02 0.999987 49.3135 4262290 210191000
4264608 1 1 0.03 0.999983 29.8153 4264540 127150000
4680489 1 1 0.04 0.999863 9.06613 4679850 42433900
1452654 1 1 0.05 0.999904 29.643 1452520 43061000
4705956 1 1 0.06 0.99905 3.51508 4701480 16541800
3886182 6 1 0.07 0.998785 20.2407 3881460 78658900
4705956 200 1 0.08 0.990025 2.40319 4659020 11309300
4705956 1 1 0.09 0.992442 4.27781 4670390 20131200
4188870 1 1 0.1 0.997947 13.4856 4180270 56489500
4294314 1 1 0.11 0.997077 14.27 4281760 61280000
4312185 1 1 0.12 0.9966 13.9001 4297520 59939900
4692321 200 1 0.13 0.987198 4.78938 4632250 22473300
4705956 200 1 0.14 0.980787 3.35464 4615540 15786800
4705956 200 1 0.15 0.920846 1.47674 4333460 6949490
4705956 200 1 0.16 0.945635 2.01585 4450120 9486510
3762507 1 1 0.17 0.992004 21.0278 3732420 79117300
4705956 200 1 0.18 0.901201 1.34245 4241010 6317520
1175796 3 1 0.19 0.968165 13.3773 1138360 15728900
4705956 200 1 0.2 0.47291 0.539198 2225500 2537440
4705956 42 1 0.21 0.649332 0.731064 3055730 3440350
4705956 30 1 0.22 0.685135 0.82464 3224210 3880720
4705956 200 1 0.23 0.591188 0.612977 2782110 2884650
4705956 200 1 0.24 0.59515 0.590175 2800750 2777340
4705956 33 1 0.25 0.3264 0.534227 1536020 2514050
4705956 200 1 0.26 0.47769 0.630809 2247990 2968560
4705956 200 1 0.27 0.580526 0.756422 2731930 3559690
4705956 200 1 0.28 0.427988 0.62009 2014090 2918120
4705956 60 1 0.29 0.427705 0.626715 2012760 2949290
4705956 200 1 0.3 0.34373 0.54716 1617580 2574910
4705956 200 1 0.31 0.385035 0.569037 1811960 2677860
4705956 56 1 0.32 0.541731 0.707298 2549360 3328510
4705956 65 1 0.33 0.540658 0.725634 2544320 3414800
4705956 48 1 0.34 0.606454 0.845084 2853940 3976930
4705956 42 1 0.35 0.608011 0.857521 2861270 4035460
4705956 46 1 0.36 0.593044 0.850976 2790840 4004660
4705956 43 1 0.37 0.587494 0.858824 2764720 4041590
4705956 42 1 0.38 0.588883 0.875004 2771260 4117730
4705956 36 1 0.39 0.569922 0.85849 2682030 4040020
4705956 56 1 0.4 0.571125 0.881181 2687690 4146800
4705956 36 1 0.41 0.55903 0.87907 2630770 4136870
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4705956 21 1 0.42 0.611612 0.970729 2878220 4568210
4705956 29 1 0.43 0.605556 0.975202 2849720 4589260
4705956 31 1 0.44 0.586015 0.951049 2757760 4475590
4705956 19 1 0.45 0.601843 1.00524 2832250 4730610
4705956 34 1 0.46 0.570572 0.951962 2685090 4479890
4705956 68 1 0.47 0.574662 0.973938 2704330 4583310
4705956 27 1 0.48 0.565479 0.970756 2661120 4568340
4705956 18 1 0.49 0.573531 1.00489 2699010 4728960
4705956 30 1 0.5 0.551682 0.969201 2596190 4561020
4705956 15 1 0.51 0.564999 1.01062 2658860 4755910
4705956 22 1 0.52 0.566412 1.02182 2665510 4808620
4705956 52 1 0.53 0.559258 1.01843 2631840 4792690
4705956 20 1 0.54 0.557115 1.02435 2621760 4820560
4705956 24 1 0.55 0.551843 1.02441 2596950 4820820
4705956 62 1 0.56 0.55875 1.05038 2629450 4943030
4705956 51 1 0.57 0.54679 1.03698 2573170 4879960
4705956 57 1 0.58 0.541336 1.03998 2547500 4894100
4705956 200 1 0.59 0.540339 1.04877 2542810 4935450
4705956 64 1 0.6 0.534037 1.04658 2513150 4925170
4705956 56 1 0.61 0.55184 1.09333 2596940 5145190
4705956 44 1 0.62 0.552716 1.10731 2601060 5210960
4705956 44 1 0.63 0.550946 1.11419 2592730 5243310
4705956 43 1 0.64 0.551092 1.12515 2593410 5294920
4705956 43 1 0.65 0.543481 1.12157 2557600 5278070
4705956 33 1 0.66 0.539715 1.12468 2539870 5292700
4705956 36 1 0.67 0.529683 1.1155 2492670 5249480
4705956 40 1 0.68 0.523366 1.11467 2462940 5245600
4705956 49 1 0.69 0.514985 1.10703 2423500 5209650
4705956 37 1 0.7 0.509867 1.10715 2399410 5210190
4705956 51 1 0.71 0.510101 1.11867 2400510 5264420
4705956 45 1 0.72 0.505434 1.11926 2378550 5267180
4705956 39 1 0.73 0.497752 1.11423 2342400 5243540
4705956 50 1 0.74 0.496097 1.1209 2334610 5274890
4705956 32 1 0.75 0.499828 1.1385 2352170 5357740
4705956 40 1 0.76 0.490285 1.12988 2307260 5317170
4705956 32 1 0.77 0.485827 1.12789 2286280 5307820
4705956 36 1 0.78 0.477406 1.11929 2246650 5267330
4705956 34 1 0.79 0.471401 1.11753 2218390 5259070
4364064 1 10 0 1 34.7467 4364060 151637000
4291326 1 10 0.01 0.999996 7.45929 4291310 32010200
3755226 4 10 0.02 0.999997 45.2698 3755220 169998000
1580469 1 10 0.03 0.999975 17.5843 1580430 27791500
3813435 2 10 0.04 0.999856 14.9313 3812890 56939600
1665198 1 10 0.05 0.999727 17.9906 1664740 29957900
1581075 2 10 0.06 0.998788 14.8959 1579160 23551500
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4705956 1 10 0.07 0.996427 3.14131 4689140 14782900
2592432 1 10 0.08 0.999398 12.7449 2590870 33040200
1659540 1 10 0.09 0.99918 25.6743 1658180 42607600
2455821 1 10 0.1 0.996642 22.7699 2447570 55918700
1817994 1 10 0.11 0.996677 18.8232 1811950 34220400
4703541 1 10 0.12 0.987765 4.13396 4645990 19444200
4705956 1 10 0.13 0.966728 2.15814 4549380 10156100
4705956 1 10 0.14 0.961867 2.13998 4526500 10070600
4705956 200 10 0.15 0.844531 0.653862 3974320 3077050
4705956 200 10 0.16 0.840901 0.798432 3957240 3757390
3139818 1 10 0.17 0.990449 13.6071 3109830 42723800
4705956 200 10 0.18 0.728322 0.743145 3427450 3497210
4705956 200 10 0.19 0.545937 0.55757 2569160 2623900
4705956 200 10 0.2 0.665 0.704884 3129460 3317150
4705956 200 10 0.21 0.801488 1.11286 3771770 5237070
4705956 200 10 0.22 0.680338 0.817989 3201640 3849420
4705956 200 10 0.23 0.713207 0.924037 3356320 4348480
4705956 200 10 0.24 0.441728 0.567903 2078750 2672530
4705956 200 10 0.25 0.490862 0.617584 2309980 2906320
4705956 200 10 0.26 0.597016 0.747278 2809530 3516660
4705956 200 10 0.27 0.529331 0.687929 2491010 3237370
4705956 200 10 0.28 0.489074 0.661775 2301560 3114280
4705956 200 10 0.29 0.162805 0.489857 766154 2305250
4705956 200 10 0.3 0.454499 0.66 2138850 3105930
4705956 200 10 0.31 0.578545 0.75092 2722610 3533800
4705956 200 10 0.32 0.575442 0.761742 2708000 3584730
4705956 200 10 0.33 0.58577 0.791611 2756610 3725290
4705956 200 10 0.34 0.637091 0.906041 2998120 4263790
4705956 200 10 0.35 0.625168 0.903009 2942010 4249520
4705956 200 10 0.36 0.619643 0.908825 2916010 4276890
4705956 200 10 0.37 0.599307 0.887914 2820310 4178480
4705956 200 10 0.38 0.594467 0.891039 2797540 4193190
4705956 200 10 0.39 0.566682 0.851967 2666780 4009320
4705956 200 10 0.4 0.583075 0.902443 2743920 4246860
4705956 200 10 0.41 0.570235 0.8897 2683500 4186890
4705956 200 10 0.42 0.618817 0.992112 2912130 4668830
4705956 200 10 0.43 0.593777 0.947844 2794290 4460510
4705956 200 10 0.44 0.626981 1.02947 2950540 4844650
4705956 200 10 0.45 0.603608 0.997505 2840550 4694210
4705956 200 10 0.46 0.594527 0.992528 2797820 4670790
4705956 200 10 0.47 0.605654 1.02884 2850180 4841660
4705956 200 10 0.48 0.561725 0.947208 2643450 4457520
4705956 200 10 0.49 0.55574 0.952296 2615290 4481460
4705956 200 10 0.5 0.561933 0.97152 2644430 4571930
4705956 200 10 0.51 0.563046 0.985833 2649670 4639290
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4705956 200 10 0.52 0.582547 1.04107 2741440 4899210
4705956 200 10 0.53 0.577889 1.04428 2719520 4914330
4705956 200 10 0.54 0.577761 1.0551 2718920 4965260
4705956 200 10 0.55 0.567109 1.04574 2668790 4921210
4705956 200 10 0.56 0.569754 1.06535 2681240 5013470
4705956 200 10 0.57 0.562321 1.06011 2646260 4988820
4705956 200 10 0.58 0.559357 1.06596 2632310 5016370
4705956 200 10 0.59 0.549583 1.06148 2586310 4995270
4705956 200 10 0.6 0.545295 1.06413 2566140 5007760
4705956 200 10 0.61 0.570879 1.13486 2686530 5340620
4705956 200 10 0.62 0.570209 1.1436 2683380 5381730
4705956 200 10 0.63 0.567456 1.14952 2670420 5409580
4705956 200 10 0.64 0.565088 1.1585 2659280 5451840
4705956 200 10 0.65 0.558793 1.15408 2629660 5431030
4705956 200 10 0.66 0.553144 1.15323 2603070 5427050
4705956 200 10 0.67 0.545725 1.15054 2568160 5414400
4705956 200 10 0.68 0.539647 1.14912 2539560 5407700
4705956 200 10 0.69 0.534544 1.15002 2515540 5411940
4705956 200 10 0.7 0.528895 1.14855 2488960 5405020
4705956 200 10 0.71 0.526234 1.15341 2476440 5427900
4705956 200 10 0.72 0.519939 1.15161 2446810 5419450
4705956 200 10 0.73 0.517071 1.15546 2433320 5437560
4705956 200 10 0.74 0.512938 1.15652 2413870 5442520
4705956 200 10 0.75 0.513517 1.16884 2416590 5500520
4705956 200 10 0.76 0.50621 1.16316 2382200 5473790
4705956 200 10 0.77 0.502443 1.1617 2364480 5466920
4705956 200 10 0.78 0.49922 1.16502 2349310 5482520
4705956 200 10 0.79 0.488969 1.15237 2301060 5422980
2152854 1 20 0.3 0.99969 37.6429 2152190 81039600
2182377 1 20 0.31 0.999578 36.9231 2181460 80580100
2214159 1 20 0.32 0.999253 36.4218 2212500 80643700
2411181 1 20 0.33 0.994789 20.1953 2398620 48694600
2319192 1 20 0.34 0.99963 37.1528 2318330 86164400
2281503 1 20 0.35 0.999605 37.4184 2280600 85370100
2259711 1 20 0.36 0.999082 35.5225 2257640 80270700
2174229 1 20 0.37 0.998533 35.0301 2171040 76163500
2095848 1 20 0.38 0.999213 35.3718 2094200 74133800
2021478 1 20 0.39 0.999102 34.9185 2019660 70587100
4314645 1 20 0.4 0.987059 31.0509 4258810 133974000
3605028 1 20 0.41 0.987436 29.4614 3559740 106209000
3996624 1 20 0.42 0.983354 25.7948 3930100 103092000
3867978 1 20 0.43 0.983397 28.4121 3803760 109898000
2508615 1 20 0.44 0.968289 13.6728 2429060 34299800
3081333 1 20 0.45 0.979424 23.6492 3017930 72871000
2910090 1 20 0.46 0.957085 22.1395 2785200 64427900
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4023849 60 20 0.47 0.972353 28.3446 3912600 114054000
2911302 64 20 0.48 0.969347 24.0245 2822060 69942500
3083409 1 20 0.49 0.980116 26.16 3022100 80662000
3514323 200 20 0.5 0.969458 15.8586 3406990 55732100
4074963 2 20 0.51 0.997257 75.8666 4063780 309153000
3999291 200 20 0.52 0.959327 27.1172 3836630 108450000
4008732 200 20 0.53 0.955124 26.777 3828840 107342000
4023870 200 20 0.54 0.958323 27.1867 3856170 109396000
4007202 200 20 0.55 0.954727 26.7602 3825780 107234000
4001778 200 20 0.56 0.951838 26.6796 3809040 106766000
3995181 200 20 0.57 0.950526 27.0779 3797520 108181000
3982335 200 20 0.58 0.949056 26.2414 3779460 104502000
4281069 200 20 0.59 0.950169 30.9638 4067740 132558000
4705956 200 20 0.6 0.712057 1.42752 3350910 6717840
2570562 1 20 0.61 0.982461 34.3769 2525480 88367900
4189593 200 20 0.62 0.944559 29.0729 3957320 121804000
4192059 200 20 0.63 0.9431 29.1663 3953530 122267000
4209195 200 20 0.64 0.942371 29.2722 3966620 123212000
3258363 1 20 0.65 0.963731 24.0367 3140190 78320200
4196973 200 20 0.66 0.944138 27.8444 3962520 116862000
4131822 200 20 0.67 0.959197 10.414 3963230 43029000
4130292 200 20 0.68 0.957288 10.3882 3953880 42906300
3517965 1 20 0.69 0.983374 24.7628 3459480 87114500
3755607 1 20 0.7 0.982055 19.5021 3688210 73242200
4010814 1 20 0.71 0.981708 21.5998 3937450 86632800
4505913 200 20 0.72 0.949678 8.66185 4279170 39029600
3933405 1 20 0.73 0.984097 20.353 3870850 80056600
4141653 1 20 0.74 0.982296 21.6169 4068330 89529600
3877290 1 20 0.75 0.981835 19.6639 3806860 76242600
3173067 1 20 0.76 0.9884 24.6726 3136260 78287800
3704346 1 20 0.77 0.978321 18.6457 3624040 69070100
3550482 1 20 0.78 0.997763 34.6484 3542540 123019000
4295688 2 20 0.79 0.984131 27.0369 4227520 116142000

A.3.4 Compatibility: Distance, Depreciation: Linear
In this experiment, we ran multiple executions of DGM using the distance between the
query point and the candidate as compatibility. The threshold was configured with lin-
ear depreciation. We used a different starting threshold for each execution ranging from
15.0mm to 0.0mm. The results can be seen in Figure A.14.
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(a) A plot showing all L̂2 distances between S
and T after execution with the linearly decreasing
threshold. The X-axis represents the threshold for
how close the nearest point has to be for accep-
tance. The Y-axis represents the mean distance to
T per point
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(b) A plot showing the same data as in a) but
zoomed onto the cluster.
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(c) The registered S dataset closest to T with colors indicating the pointwise distance to T . Setting
the starting threshold to 14.8 provided the best result. Note that the color only represent movement
along the Z-axis, which is inwards/outwards from the image

Figure A.14: The results after registration using a static threshold when matching points
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Raw Data

points iterations n range y l0 avg l2 avg l0 sum l2 sum
3890835 195 1 0.2 0.995062 23.0124 3871620 89537400
4276326 200 1 0.4 0.996297 59.4475 4260490 254217000
3837612 200 1 0.6 0.9519 9.31349 3653020 35741600
3588078 199 1 0.8 0.977085 33.1468 3505860 118933000
3348810 199 1 1 0.92309 14.1463 3091250 47373200
2572899 200 1 1.2 0.894565 10.3551 2301630 26642700
3885621 200 1 1.4 0.95491 19.2463 3710420 74783900
3670224 200 1 1.6 0.934614 20.1939 3430240 74116000
4587558 200 1 1.8 0.837344 13.2417 3841360 60747000
4665141 200 1 2 0.781738 11.7977 3646920 55038000
4011696 200 1 2.2 0.917922 23.0127 3682430 92319900
3335790 200 1 2.4 0.911778 23.9121 3041500 79765600
2169438 200 1 2.6 0.948894 23.6301 2058570 51263900
4573920 199 1 2.8 0.606723 5.38804 2775100 24644500
4692075 199 1 3 0.483037 3.66642 2266450 17203100
4705956 1 1 3.2 0.0350762 0.465345 165067 2189890
3753441 200 1 3.4 0.868333 18.4622 3259240 69296800
4705956 200 1 3.6 0.0278124 0.74491 130884 3505510
4705956 200 1 3.8 0.0307243 0.464608 144587 2186420
4705956 200 1 4 0.0295336 0.464668 138984 2186710
4705956 200 1 4.2 0.0284293 0.46467 133787 2186720
4705956 200 1 4.4 0.027281 0.46467 128383 2186720
4705956 200 1 4.6 0.0261834 0.464667 123218 2186700
4705956 1 1 4.8 0.0250755 0.465235 118004 2189380
4705956 200 1 5 0.0240706 0.464696 113275 2186840
4705956 200 1 5.2 0.0230202 0.464727 108332 2186980
4705956 1 1 5.4 0.0221147 0.464994 104071 2188240
4705956 200 1 5.6 0.0211419 0.464709 99493 2186900
4705956 200 1 5.8 0.0202477 0.464676 95285 2186740
4705956 200 1 6 0.019348 0.464697 91051 2186840
4705956 200 1 6.2 0.0185208 0.464673 87158 2186730
4705956 200 1 6.4 0.017708 0.464635 83333 2186550
4705956 1 1 6.6 0.0169538 0.464957 79784 2188070
4705956 200 1 6.8 0.0162139 0.464588 76302 2186330
4705956 200 1 7 0.0155771 0.464574 73305 2186260
4705956 200 1 7.2 0.0149602 0.464578 70402 2186280
4705956 200 1 7.4 0.01442 0.464561 67860 2186210
4705956 1 1 7.6 0.0138686 0.464875 65265 2187680
4705956 200 1 7.8 0.0133818 0.464535 62974 2186080
4705956 200 1 8 0.0129583 0.464522 60981 2186020
4705956 1 1 8.2 0.0126013 0.46501 59301 2188320
4705956 1 1 8.4 0.0122311 0.46488 57559 2187700
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4705956 200 1 8.6 0.0118031 0.464525 55545 2186030
4705956 200 1 8.8 0.0114298 0.464512 53788 2185970
4705956 200 1 9 0.0110632 0.464512 52063 2185970
4705956 200 1 9.2 0.0107147 0.4645 50423 2185920
4705956 200 1 9.4 0.0103573 0.464491 48741 2185880
4705956 1 1 9.6 0.0100432 0.465116 47263 2188820
4705956 200 1 9.8 0.00967285 0.464461 45520 2185730
4705956 200 1 10 0.00934093 0.464461 43958 2185730
4705956 1 1 10.2 0.00906086 0.465124 42640 2188850
4705956 200 1 10.4 0.00876464 0.464477 41246 2185810
4705956 200 1 10.6 0.00847692 0.464472 39892 2185780
4705956 200 1 10.8 0.00819345 0.464486 38558 2185850
4705956 200 1 11 0.00790488 0.464486 37200 2185850
4705956 200 1 11.2 0.00761461 0.464478 35834 2185810
4705956 200 1 11.4 0.00730181 0.464478 34362 2185810
4705956 1 1 11.6 0.0070415 0.465047 33137 2188490
4705956 1 1 11.8 0.00676462 0.465053 31834 2188520
4705956 1 1 12 0.00652152 0.464978 30690 2188160
4705956 200 1 12.2 0.00623168 0.46447 29326 2185780
4705956 200 1 12.4 0.00597519 0.464459 28119 2185720
4705956 1 1 12.6 0.00573507 0.464841 26989 2187520
4705956 200 1 12.8 0.00547668 0.464447 25773 2185670
4705956 1 1 13 0.00522806 0.464738 24603 2187040
4705956 200 1 13.2 0.00500982 0.46443 23576 2185590
4705956 1 1 13.4 0.00479201 0.464767 22551 2187170
4705956 200 1 13.6 0.00457973 0.464411 21552 2185500
4705956 200 1 13.8 0.00436341 0.464414 20534 2185510
4705956 200 1 14 0.00412839 0.464409 19428 2185490
4705956 200 1 14.2 0.00391206 0.464405 18410 2185470
4705956 200 1 14.4 0.00370169 0.464413 17420 2185510
4705956 200 1 14.6 0.00350662 0.464413 16502 2185510
4705956 200 1 14.8 0.00332196 0.464402 15633 2185450
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A.3.5 Compatibility: Normal Vector, Depreciation: Linear
In this experiment, we ran multiple executions of DGM using the angle between the normal
vector of the query point and the candidate as compatibility. The threshold was configured
with linear depreciation. We used a different starting threshold for each execution ranging
from 4 to 0 radians. One candidate point were selected per query point. We experimented
using a lower threshold for the depreciation set to 0.0 radians, 0.1 radians, and 0.2 radians.
Configuring no depreciation for the threshold outperformed configuring a threshold when
using the normal vector compatibility. The results can be seen in Figure A.15.
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(a) The plot shows all l̂2 distances between S and
T after execution with the iterative linear thresh-
old. The compatibility was computed from the
angle between the normal vectors of correspond-
ing points. The x-axis represents the threshold for
how small the angle has to be to be accepted. The
y-axis represents the mean distance to T per point
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(b) a plot showing the same data as in figure A.3a
but zoomed onto the cluster. the points seem to
cluster between 0.7mm and 0.5mm.
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(c) the registered S dataset closest to T with colors indicating pointwise distance to T . the best result
was generated by accepting only points with an angle less than 0.54 radians. note that the color only
represent movement along the z-axis, which is inwards/outwards from the image

Figure A.15: the results after registration using a static threshold when matching points
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Raw Data

points iterations n range y l0 avg l2 avg l0 sum l2 sum
4364064 1 1 0 1 34.7467 4364060 151637000
4262349 1 1 0.01 0.999999 49.3135 4262340 210191000
4262349 1 1 0.02 0.999987 49.3135 4262290 210191000
4264608 1 1 0.03 0.999983 29.8153 4264540 127150000
4680489 1 1 0.04 0.999863 9.06613 4679850 42433900
1452654 1 1 0.05 0.999904 29.643 1452520 43061000
4705956 1 1 0.06 0.99905 3.51508 4701480 16541800
4203309 1 1 0.07 0.999136 12.0959 4199680 50842800
1099983 1 1 0.08 0.999085 17.7649 1098980 19541100
4705956 1 1 0.09 0.993454 4.13204 4675150 19445200
4355793 1 1 0.1 0.997939 16.0041 4346820 69710600
4414173 1 1 0.11 0.999395 55.5556 4411500 245232000
4295685 1 1 0.12 0.996284 14.1984 4279720 60991700
4705956 1 1 0.13 0.974909 2.76575 4587880 13015500
4705956 1 1 0.14 0.971491 2.74373 4571800 12911900
3622107 2 1 0.15 0.996202 19.65 3608350 71174300
4042236 75 1 0.16 0.993421 18.439 4015640 74534900
4705956 54 1 0.17 0.961891 3.45145 4526620 16242400
4064196 70 1 0.18 0.992006 18.1369 4031710 73712100
3771036 1 1 0.19 0.990983 20.7674 3737030 78314800
4690746 1 1 0.2 0.966359 4.48503 4532940 21038100
3291564 1 1 0.21 0.993074 26.3479 3268770 86725800
3624966 1 1 0.22 0.994229 18.9936 3604050 68851000
1215396 1 1 0.23 0.994134 25.5865 1208270 31097700
3872163 125 1 0.24 0.98642 28.0989 3819580 108804000
3433689 1 1 0.25 0.992036 27.4892 3406340 94389300
3102798 1 1 0.26 0.992545 42.911 3079670 133144000
4059561 73 1 0.27 0.985116 18.211 3999140 73928700
3282603 1 1 0.28 0.989066 26.3115 3246710 86370100
2198811 3 1 0.29 0.990858 16.6302 2178710 36566600
3282609 1 1 0.3 0.988015 26.3114 3243270 86370100
3282609 1 1 0.31 0.987481 26.3114 3241510 86370100
3461718 1 1 0.32 0.988577 28.9688 3422180 100282000
3475158 1 1 0.33 0.98831 29.4985 3434530 102512000
3461718 1 1 0.34 0.987622 28.9689 3418870 100282000
2354508 2 1 0.35 0.97167 53.5655 2287800 126120000
4680618 1 1 0.36 0.946217 5.18284 4428880 24258900
3475158 1 1 0.37 0.986475 29.4987 3428160 102513000
3282603 1 1 0.38 0.984045 26.3115 3230230 86370100
2354508 2 1 0.39 0.968444 53.5655 2280210 126120000
2193624 3 1 0.4 0.98687 16.659 2164820 36543500
3282603 1 1 0.41 0.982546 26.3115 3225310 86370100
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3450276 3 1 0.42 0.991016 25.7247 3419280 88757400
3282603 1 1 0.43 0.981548 26.3114 3222030 86370000
3282603 1 1 0.44 0.981046 26.3115 3220390 86370100
3282609 1 1 0.45 0.980517 26.3114 3218650 86370000
4705956 30 1 0.46 0.807489 1.67867 3800010 7899730
3282603 1 1 0.47 0.979569 26.3114 3215540 86369900
3282603 1 1 0.48 0.979057 26.3114 3213860 86369900
3282603 1 1 0.49 0.978577 26.3114 3212280 86369900
4064838 42 1 0.5 0.969332 18.0924 3940180 73542700
3439020 1 1 0.51 0.981151 27.7931 3374200 95581200
4681146 2 1 0.52 0.924378 5.13669 4327150 24045600
4119285 25 1 0.53 0.980374 29.3005 4038440 120697000
4705956 39 1 0.54 0.400472 0.764536 1884600 3597870
4705956 26 1 0.55 0.755594 1.42536 3555790 6707690
4705956 25 1 0.56 0.840159 2.18904 3953750 10301500
4705956 37 1 0.57 0.382341 0.764533 1799280 3597860
4057365 34 1 0.58 0.96219 18.2981 3903960 74242100
3439020 1 1 0.59 0.977877 27.7931 3362940 95581200
4705956 23 1 0.6 0.759918 1.98336 3576140 9333610
3439020 1 1 0.61 0.977089 27.7931 3360230 95581200
3439020 1 1 0.62 0.976708 27.7931 3358920 95581200
3439020 1 1 0.63 0.976303 27.7931 3357530 95581100
4064838 32 1 0.64 0.959061 18.0924 3898430 73542700
4057365 30 1 0.65 0.956806 18.2981 3882110 74242100
2548830 23 1 0.66 0.981892 14.7421 2502680 37575000
4059561 29 1 0.67 0.956495 18.211 3882950 73928700
4705956 22 1 0.68 0.736537 1.57276 3466110 7401340
3439098 1 1 0.69 0.97384 27.7682 3349130 95497500
4007817 24 1 0.7 0.953136 19.2764 3820000 77256100
3439008 1 1 0.71 0.973148 27.793 3346660 95580300
3546549 23 1 0.72 0.968672 14.0214 3435440 49727700
4064202 27 1 0.73 0.952011 18.137 3869160 73712300
3439098 1 1 0.74 0.971843 27.7682 3342260 95497500
4705956 23 1 0.75 0.712689 2.10493 3353880 9905710
4008108 24 1 0.76 0.947845 19.1945 3799070 76933700
4705956 26 1 0.77 0.234388 0.703337 1103020 3309870
4009485 19 1 0.78 0.947712 19.2223 3799840 77071500
3439020 1 1 0.79 0.969931 27.7932 3335610 95581200

min range iterations n range y l0 avg l2 avg l0 sum l2 sum
0.2 200 1 0 1 0.539198 4705960 2537440
0.2 200 1 0.01 0.99982 0.539198 4705110 2537440
0.2 200 1 0.02 0.998498 0.539198 4698890 2537440
0.2 200 1 0.03 0.995014 0.539198 4682490 2537440
0.2 200 1 0.04 0.988209 0.539198 4650470 2537440
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0.2 200 1 0.05 0.977091 0.539198 4598150 2537440
0.2 200 1 0.06 0.960801 0.539198 4521490 2537440
0.2 200 1 0.07 0.938616 0.539198 4417080 2537440
0.2 200 1 0.08 0.910781 0.539198 4286100 2537440
0.2 200 1 0.09 0.877657 0.539198 4130220 2537440
0.2 200 1 0.1 0.841053 0.539198 3957960 2537440
0.2 200 1 0.11 0.801889 0.539198 3773650 2537440
0.2 200 1 0.12 0.761517 0.539198 3583670 2537440
0.2 200 1 0.13 0.721546 0.539198 3395560 2537440
0.2 200 1 0.14 0.681651 0.539198 3207820 2537440
0.2 200 1 0.15 0.642749 0.539198 3024750 2537440
0.2 200 1 0.16 0.605261 0.539198 2848330 2537440
0.2 200 1 0.17 0.569242 0.539198 2678830 2537440
0.2 200 1 0.18 0.535249 0.539198 2518860 2537440
0.2 200 1 0.19 0.503074 0.539198 2367440 2537440
0.2 200 1 0.2 0.47291 0.539198 2225500 2537440
0.2 200 1 0.21 0.610001 0.660664 2870640 3109060
0.2 200 1 0.22 0.594537 0.670751 2797860 3156530
0.2 200 1 0.23 0.577997 0.670751 2720030 3156520
0.2 200 1 0.24 0.576549 0.682421 2713210 3211440
0.2 200 1 0.25 0.561443 0.682421 2642120 3211440
0.2 200 1 0.26 0.532331 0.670751 2505120 3156530
0.2 200 1 0.27 0.518504 0.670751 2440060 3156530
0.2 200 1 0.28 0.504684 0.670751 2375020 3156530
0.2 200 1 0.29 0.491348 0.670753 2312260 3156530
0.2 200 1 0.3 0.478333 0.670753 2251010 3156530
0.2 200 1 0.31 0.465709 0.670751 2191610 3156520
0.2 200 1 0.32 0.453545 0.670751 2134360 3156530
0.2 200 1 0.33 0.441439 0.670752 2077390 3156530
0.2 200 1 0.34 0.429746 0.670753 2022370 3156530
0.2 200 1 0.35 0.418432 0.670752 1969120 3156530
0.2 200 1 0.36 0.407238 0.670751 1916440 3156530
0.2 200 1 0.37 0.396531 0.670751 1866060 3156530
0.2 200 1 0.38 0.386105 0.670753 1816990 3156530
0.2 200 1 0.39 0.375997 0.670751 1769420 3156530
0.2 200 1 0.4 0.366207 0.670753 1723350 3156530
0.2 200 1 0.41 0.356745 0.670753 1678830 3156530
0.2 200 1 0.42 0.347532 0.670751 1635470 3156530
0.2 200 1 0.43 0.338625 0.670753 1593560 3156530
0.2 200 1 0.44 0.329794 0.670753 1552000 3156530
0.2 200 1 0.45 0.321207 0.670752 1511590 3156530
0.2 200 1 0.46 0.312891 0.670751 1472450 3156520
0.2 200 1 0.47 0.304788 0.670753 1434320 3156530
0.2 200 1 0.48 0.257145 0.641974 1210110 3021100
0.2 200 1 0.49 0.288844 0.670753 1359290 3156530
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0.2 200 1 0.5 0.241308 0.641976 1135580 3021110
0.2 200 1 0.51 0.23382 0.641974 1100340 3021100
0.2 200 1 0.51 0.23382 0.641974 1100340 3021100
0.2 200 1 0.52 0.22649 0.641975 1065850 3021110
0.2 200 1 0.53 0.219183 0.641974 1031470 3021100
0.2 200 1 0.54 0.212119 0.641973 998223 3021100
0.2 200 1 0.55 0.205187 0.641974 965603 3021100
0.2 200 1 0.56 0.159155 0.61173 748975 2878770
0.2 200 1 0.57 0.192276 0.641976 904841 3021110
0.2 200 1 0.58 0.196872 0.650094 926471 3059310
0.2 200 1 0.59 0.141294 0.610618 664922 2873540
0.2 200 1 0.6 0.136426 0.610619 642013 2873540
0.2 200 1 0.61 0.169781 0.641974 798980 3021100
0.2 200 1 0.62 0.127112 0.610619 598184 2873540
0.2 200 1 0.63 0.124198 0.61173 584472 2878770
0.2 200 1 0.64 0.118927 0.610617 559667 2873540
0.2 200 1 0.65 0.116095 0.61173 546340 2878770
0.2 200 1 0.66 0.111494 0.610618 524684 2873540
0.2 200 1 0.67 0.108973 0.61173 512823 2878770
0.2 200 1 0.68 0.104943 0.610619 493858 2873540
0.2 200 1 0.69 0.102795 0.61173 483750 2878770
0.2 200 1 0.7 0.0999805 0.61173 470504 2878770
0.2 200 1 0.71 0.0967661 0.610617 455377 2873540
0.2 200 1 0.72 0.0948538 0.61173 446378 2878770
0.2 200 1 0.73 0.0920125 0.610618 433007 2873540
0.2 200 1 0.74 0.0902964 0.61173 424931 2878770
0.2 200 1 0.75 0.0882562 0.61173 415330 2878770
0.2 200 1 0.76 0.0863368 0.61173 406297 2878770
0.2 200 1 0.77 0.0844772 0.61173 397546 2878770
0.2 200 1 0.78 0.0827364 0.61173 389354 2878770
0.2 200 1 0.79 0.0811334 0.61173 381810 2878770
0.2 200 1 0.8 0.0795537 0.61173 374376 2878770

min range iterations n range y l0 avg l2 avg l0 sum l2 sum
0.1 176 1 0.7 0.954049 18.137 3877450 73712300
0.1 1 1 0.71 0.973148 27.793 3346660 95580300
0.1 180 1 0.72 0.953358 18.0924 3875240 73542700
0.1 176 1 0.73 0.952011 18.137 3869160 73712300
0.1 1 1 0.74 0.971843 27.7682 3342260 95497500
0.1 178 1 0.75 0.950608 18.137 3863460 73712300
0.1 179 1 0.76 0.950604 18.0924 3864050 73542700
0.1 176 1 0.77 0.949388 18.2112 3854090 73929200
0.1 179 1 0.78 0.948547 18.137 3855090 73712300
0.1 1 1 0.79 0.969931 27.7932 3335610 95581200
0.1 1 1 0.8 0.969572 27.7932 3334380 95581200
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A.3.6 Compatibility: Distance, Depreciation: Cosine
In this experiment, we ran multiple executions of DGM using the distance between the
query point and the candidate as compatibility. The threshold was configured with co-
sine depreciation. We used a different starting threshold for each execution ranging from
15.0mm to 0.0mm. A vast majority of the executions produced outliers; this problem van-
ished when we restricted further computation if less than ten matches were made. The
results can be seen in Figure A.16.
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(a) A plot showing all L̂2 distances between S
and T after execution with the cosine deprecia-
tion. The X-axis represents the starting threshold
for how close the nearest point has to be for accep-
tance. The Y-axis represents the mean distance to
T per point
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(b) A plot showing the same data as in a) but
zoomed onto the cluster.
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(c) The registered S dataset closest to T with colors indicating the pointwise distance to T . Setting
the starting threshold to 6.4 provided the best result. Note that the color only represent movement
along the Z-axis, which is inwards/outwards from the image

Figure A.16: The results after registration using a static threshold when matching points
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Raw Data

points iterations n range y l0 avg l2 avg l0 sum l2 sum
3937740 194 1 0.2 0.997282 22.0611 3927040 86871000
4171515 198 1 0.4 0.996312 53.6341 4156130 223735000
1203735 185 1 0.6 0.980791 20.6941 1180610 24910200
2688450 193 1 0.8 0.969644 12.8542 2606840 34558000
3537309 194 1 1 0.97908 28.9252 3463310 102317000
4411803 194 1 1.2 0.977639 51.7149 4313150 228156000
3367884 1 1 1.4 0.95311 23.3268 3209960 78562100
4349016 196 1 1.6 0.972562 36.5862 4229690 159114000
3442746 1 1 1.8 0.900103 15.6615 3098830 53918700
4019295 195 1 2 0.961741 30.9264 3865520 124302000
3936366 200 1 2.2 0.939719 27.2727 3699080 107355000
4705956 195 1 2.4 0.70371 7.8263 3311630 36830200
3656826 197 1 2.6 0.93414 27.5003 3415990 100564000
3121806 199 1 2.8 0.925419 25.1622 2888980 78551600
3546870 195 1 3 0.824186 20.7917 2923280 73745300
4705956 193 1 3.2 0.153281 1.61348 721333 7592970
4179399 1 1 3.4 0.872537 16.2225 3646680 67800200
3492999 200 1 3.6 0.882717 21.3332 3083330 74516700
4705956 197 1 3.8 0.0307449 0.464836 144684 2187500
4339902 198 1 4 0.786013 16.4062 3411220 71201500
3368580 199 1 4.2 0.726445 16.8876 2447090 56887100
3674574 199 1 4.4 0.861965 25.0127 3167350 91910900
2080494 199 1 4.6 0.745936 12.8852 1551920 26807600
4705956 198 1 4.8 0.0250563 0.464726 117914 2186980
2887149 198 1 5 0.820774 36.2077 2369700 104537000
4704573 198 1 5.2 0.14017 3.08797 659438 14527600
3788694 1 1 5.4 0.872655 35.6199 3306220 134953000
3406185 1 1 5.6 0.710223 13.9874 2419150 47643600
2890095 199 1 5.8 0.851113 45.1831 2459800 130583000
2728920 199 1 6 0.647748 14.8109 1767650 40417700
4705956 199 1 6.2 0.0377666 2.15661 177728 10148900
4705956 199 1 6.4 0.0177158 0.464696 83370 2186840
4705956 1 1 6.6 0.0169685 0.466439 79853 2195040
4705956 199 1 6.8 0.0162254 0.464739 76356 2187040
4705956 198 1 7 0.0155926 0.464822 73378 2187430
4705956 1 1 7.2 0.0149827 0.46644 70508 2195050
4705956 1 1 7.4 0.0144368 0.46644 67939 2195050
4030980 199 1 7.6 0.654014 17.6307 2636320 71069100
4705956 199 1 7.8 0.0133966 0.464836 63044 2187500
3709497 199 1 8 0.686352 38.1888 2546020 141661000
4030983 199 1 8.2 0.633031 17.6307 2551740 71069100
4514541 200 1 8.4 0.504377 14.0296 2277030 63337200

89



Chapter A. Experiments

2330973 199 1 8.6 0.651315 31.4384 1518200 73282100
3656802 198 1 8.8 0.769046 38.6492 2812250 141333000
3929247 200 1 9 0.653707 27.0279 2568580 106199000
4705956 199 1 9.2 0.0107343 0.465678 50515 2191460
4348755 199 1 9.4 0.566805 15.9769 2464900 69479400
3611040 199 1 9.6 0.642839 20.553 2321320 74217900
3218550 199 1 9.8 0.764785 37.7744 2461500 121579000
4193751 199 1 10 0.691 26.0604 2897880 109291000
4705956 200 1 10.2 0.00905023 0.465363 42590 2189980
4705956 198 1 10.4 0.0087776 0.464755 41307 2187120
4705956 198 1 10.6 0.00849094 0.464758 39958 2187130
3867099 199 1 10.8 0.692542 27.0879 2678130 104752000
2150397 199 1 11 0.4069 13.1361 874997 28247700
3351099 199 1 11.2 0.579194 21.7619 1940940 72926400
4705956 1 1 11.4 0.00733284 0.466218 34508 2194000
2604987 199 1 11.6 0.519233 18.3157 1352600 47712000
4705956 198 1 11.8 0.00675994 0.464716 31812 2186930
3216273 199 1 12 0.697063 23.3747 2241940 75179400
2774415 200 1 12.2 0.698486 28.6954 1937890 79613100
3993036 200 1 12.4 0.761364 35.6248 3040160 142251000
4211514 199 1 12.6 0.378507 13.3934 1594090 56406400
3885021 199 1 12.8 0.711083 32.0851 2762570 124651000
4705956 200 1 13 0.00524378 0.464989 24677 2188220
4323915 200 1 13.2 0.409922 13.9856 1772470 60472700
4705956 200 1 13.4 0.00479987 0.465361 22588 2189970
4705956 200 1 13.6 0.00459992 0.465361 21647 2189970
4705956 200 1 13.8 0.00437977 0.465361 20611 2189970
4705956 200 1 14 0.00414624 0.46536 19512 2189960
4705956 200 1 14.2 0.00393799 0.465362 18532 2189970
4705956 200 1 14.4 0.00371657 0.466589 17490 2195750
4705956 200 1 14.6 0.00352064 0.466592 16568 2195760
4352247 200 1 14.8 0.313507 14.29 1364460 62193800
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A.4 Estone 1
The dataset used for this experiment consisted of two marble stones that have artificially
been eroded in an erosion chamber between the scans. The source dataset is oriented
in a local minima 90 degrees from target, which is problematic for registration. We ex-
perimented with using different configurations of the predefined area compatibility for
registration but were unable to escape the local minima. The setup can be seen in Figure
A.17, the results can be seen in Figure A.18.

(a) target (b) source

(c) mean L2: 0.254395 (d) Iterations: 44, mean L2: 0.262986

Figure A.17: The setup for this experiment.
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(a) Iterations: 35, mean L2: 0.291887

(b) Iterations: 75, mean L2: 0.253448

(c) Iterations: 44, mean L2: 0.226075

Figure A.18: The results after trying to escape a bad local minima using predefined areas.
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Appendix B
Manual

The configuration of DGM has to be done from main(), in main.cpp. The software then
has to be compiled before the program runs with set configuration. This document will
describe how to configure the program.

B.1 Getting started

DGM is configured through a configuration object. The object can be created through
calling the static function create standard config(). As the name implies, the standard
configuration will be created. It will look for source.stl and target.stl in data/example.
Then, the procedure for registration and the procedure for displaying distances has to be
set. Currently, only one of each exists, ViliusRegistration and ViliusDistance. The reg-
istration procedure is set calling set registration procedure(), and the distance procedure
is set calling set distance procedure. Then we will decide how the two meshes are going
to be aligned. Because the program aligns the meshes twice (, once before dividing the
meshes, and once after), one may use different alignment procedures for each stage. For
now we will use the same procedure at both stages. Libicp adapter is a class that can be
used for the alignment procedure. It uses ordinary ICP for aligning target and source. To
start the registration, call the run registration procedure in the Configuration object. After
this procedure, the meshes will be aligned and divided into chunks on disk. Then, to cre-
ate a model of source with the distance between source and target displayed as color, call
calculate distance.

int main(int, char**) {
Configurations * conf;
conf = Configurations::create_standard_config();
conf->set_registration_procedure(new ViliusRegistration);
conf->set_distance_procedure(new ViliusDistance);

/* Implementation of Iterative Closest Point */
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ICP_impl::Libicp_adapter * libicp = new ICP_impl::
Libicp_adapter(NULL);

/* Alignment before the dividing stage */
conf->icp_pre = libicp;
/* Alignment after the dividing stage */
conf->icp_post = libicp;

conf->run_registration();
conf->calculate_distance_octrees();
delete conf;

}

B.2 Configuring Alignment Procedure

B.2.1 Configuring ICP
The ICP implementation we used in B.1 has several parameters we may decide.

1. sub step: Amount of points to ignore during alignment

2. max iterations: Maximum allowed iterations ICP can do before termination

3. min delta: A procedure is used for evaluating the quality of the alignment. The
stopping criteria of ICP is when this evaluation is below min delta.

4. inlier distance: When the distance between the corresponding points is bigger than
the inlier distance, one of the points may be an outlier and the points are no longer
corresponding. When the inlier distance is negative, no points are considered out-
liers

A procedure we refer to as delta computation is the procedure that evaluates the alignment
between source and target. This procedure, together with the min delta parameter repre-
sent our stopping criteria. The standard delta computation returns the L2 norm of which
ever of the newly computed transformation matrices that are the biggest. We may change
this to instead return the L0 distance between target and source with the transformation
applied. We do this by creating a Surface DeltaWrapper and setting the norm field in it
to a L0 Norm. To create a custom delta computation, we create a class and implement the
DeltaWrapper interface. The input parameters represent the next alignment, and not the
whole transformation. If your delta computation depends on the whole transformation, the
class has to keep track of previous transformations.

class Surface_DeltaWrapper : public DeltaWrapper {
Matrix R_;
Matrix t_;
public:
Surface_DeltaWrapper(){

R_ = Matrix::eye(3);
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t_ = Matrix(3, 1);
}
double delta(Matrix &R, Matrix &t) {

R_ = R_ * R;
t_ = t_ + t;

Matrix source(M_num, 3, M);
source = R_ * ˜source;
source = ˜source;
source = ICP_impl::translate(source, t_);
Matrix target(T_num, 3, T);

Matrix delta = source - target;
delta.norm_wrapper = norm;

double norm = delta.custom_norm();
std::cout << "norm: " << norm << std::endl;
return norm;

}
};
int main(int, char**) {

Configurations * conf;
conf = Configurations::create_standard_config();
conf->set_registration_procedure(new ViliusRegistration);
conf->set_distance_procedure(new ViliusDistance);

/* Iterative Closest Point */
ICP_impl::Libicp_adapter * libicp;
libicp = new ICP_impl::Libicp_adapter(NULL);
libicp->min_delta = 5000;
libicp->max_iter = 200;

/* delta computation on surface and target */
Surface_DeltaWrapper * delta = new Surface_DeltaWrapper;
delta->norm = new L0_Norm();
libicp->delta_wrapper = delta;

conf->icp_pre = libicp;
conf->icp_post = libicp;

conf->run_registration();
conf->calculate_distance_octrees();
delete conf;

}

B.2.2 Configuring Simulated Annealing

Simulated Annealing may be used for aligning the meshes. Evaluation of alignment is
the same as for ICP, thus one may use the same delta computation. Random numbers
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need to be provided by the user. The depreciation field decides how much temperature
is to be lowered each step. The rotation translation fields decides whether use simulated
annealing for translation or rotation. Set it to true for rotation and false for translation.
If both are needed, there is an ability to chain alignment objects. Inserting an alignment
object into the constructor of another alignment object, results in the first alignment object
to do its work before the one that received it through its constructor.

int main(int, char**) {
Configurations * conf;
conf = Configurations::create_standard_config();
conf->set_registration_procedure(new ViliusRegistration);
conf->set_distance_procedure(new ViliusDistance);

/* Simulated Anneiling */
ICP_impl::SimulatedAnnealingDecorator * sa_decorator;
sa_decorator = new ICP_impl::SimulatedAnnealingDecorator(

NULL);
int n_rand = 1000;
std::vector<double> rand;

for(int i = 0; i < n_rand; ++i) {
double val = 0.01*i;
rand.push_back(val);

}
std::random_shuffle(rand.begin(), rand.end());
sa_decorator->setRandomNumbers(rand.data(), n_rand);
sa_decorator->delta_wrapper = new CustomDeltaWrapper();
sa_decorator->delta_wrapper->norm = new L2_Norm();
sa_decorator->temperature = 10;
sa_decorator->deprecitation = 1;
sa_decorator->rotation_translation = false;

/* ICP chained with Simulated Annealing */
ICP_impl::Libicp_adapter * sa_libicp;
sa_libicp = new ICP_impl::Libicp_adapter(sa_decorator);
conf->icp_pre = sa_libicp;

/* plain ICP */
ICP_impl::Libicp_adapter * libicp;
libicp = new ICP_impl::Libicp_adapter(NULL);

conf->icp_post = libicp;

conf->run_registration();
conf->calculate_distance_octrees();
delete conf;

}
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B.3 Configuring Mesh Coloring
Two options for displaying the difference between the meshes are available. One with
color and one as gray scale. The one with color is set as standard. Both maps the value that
is to be represented into a scale that is suitable for the coloring procedure. The following
fields are available:

1. min distance: The smallest distance between the matching points that are expected.

2. max distance: The biggest distance between the matching points that are expected.

3. min range: The highest value that the distance can be mapped to.

4. max range: The lowest value that the distance can be mapped to.

In the following example, we will map to the range of 0.3 to 1.0. We start at 0.3 so that the
mesh will not appear as dark as it would if we started from 0.0.

int main(int, char**) {
Configurations * conf;
conf = Configurations::create_standard_config();
conf->set_registration_procedure(new ViliusRegistration);
conf->set_distance_procedure(new ViliusDistance);

/* plain ICP */
ICP_impl::Libicp_adapter * libicp;
libicp = new ICP_impl::Libicp_adapter(NULL);

conf->icp_pre = libicp;
conf->icp_post = libicp;

GrayScale_DistancePainter * painter = new
GrayScale_DistancePainter();

painter->min_distance = 0.0;
painter->max_distance = 10.0;
painter->min_range = 0.3;
painter->max_range = 1.0;

conf->color = painter;

conf->run_registration();
conf->calculate_distance_octrees();
delete conf;
delete libicp;
delete painter;

}

B.4 Configuring Extraction Box
For extracting a part of the mesh, call the configuration method set extraction() using
a fixed 6 element array as argument. The 6 elements respectively represent the x, y, z
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coordinates and the width, depth and height properties of the box.

Configurations * conf;
conf = Configurations::create_standard_config();

double extraction_box[6];
extraction_box[0] =-14.0; /* x */
extraction_box[1] = 26.0; /* y */
extraction_box[2] = 16.0; /* z */
extraction_box[3] = 10.0; /* width */
extraction_box[4] = 10.0; /* depth */
extraction_box[5] = 10.0; /* height */

conf->set_extraction(extraction_box);

B.5 Configuring Filters
Filters are configured calling either setBlackListFilter or setWhiteListFilter. The differ-
ence between them are that the white list filter accepts the points that it deem compatible
whereas the black list filter rejects the points that the filter deem incompatible e.g., if
the blacklist filter deem 1 out of ten points in a set incompatible, nine points are passed
through. If the whitelist filter deem 1 out of ten points compatible, the nine points that
were not compatible are rejected. The available compatibilities are

Distance Compatibility ThresholdFilter

Normal Vector Compatibility ClosestCompatiblePointFilter

Predefined Area Compatibility DefinedBoxExclusionFilter

Wether a point is compatible or not is determined by the relationship between the compat-
ibility and the threshold. The threshold can be set with or without a depreciation. Cosine
depreciation and linear depreciation is implemented. Configuring a threshold with no de-
preciation is equal to adding the HardThreshold. In the following example, we configure
icp to reject points within a predefined area based on normal vector and distance.

ClosestCompatiblePointFilter * normal;
normal = new ClosestCompatiblePointFilter(

/*starting threshold, ,iterations*/
new CosineThreshold(0.63, 0, 200), NULL);

ThresholdFilter * distance1 = new ThresholdFilter(
/*starting threshold, ,iterations*/

new LinearThreshold(0.4, 0, 200), normal);

ThresholdFilter * distance2 = new ThresholdFilter(
/*starting threshold, ,iterations*/

new HardThreshold(0.4), distance1);

ICP_impl::Libicp_adapter * icp;
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icp = new ICP_impl::Libicp_adapter(1, NULL);
icp->setBlackListFilter(distance2);
/* target */ /* source */
double t_x = 5.0; double s_x = 20.0;
double t_y = 15.0; double s_y = 25.0;
double t_z = 20.0; double s_z = 30.0;
double t_w = 10.0; double s_w = 10.0; /* width */
double t_d = 10.0; double s_d = 10.0; /* depth */
double t_h = 10.0; double s_h = 10.0; /* height*/

std::string path = "marker.ply";
DefinedBoxExclusionFilter * predefined = new

DefinedBoxExclusionFilter(
s_x, s_y, s_z, s_w, s_d, s_h,
t_x, t_y, t_z, t_w, t_d, t_h,
//0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
path);

icp->setWhiteListFilter(predefined);

B.6 General Configuration
The following is an example of a general configuration that can be applied to any dataset.

int main(int, char**) {

/* Create standard config */
Configurations * conf;
conf = Configurations::create_standard_config();

/* configure color presentation */
HSV_DistancePainter* color = new HSV_DistancePainter;
color->min_distance = -.14;
color->max_distance = .14;
int start = 180;
color->min_range = 60;
color->max_range = 170;
color->writeScale(); /* writes legend */
conf->set_color(color);

/* create instance of ordinary icp */
ICP_impl::Libicp_adapter * icp;
icp = new ICP_impl::Libicp_adapter(1, NULL);

/* create instance with decreasing filter
* chained with the ordinary icp */

ICP_impl::Libicp_adapter * icp_with_filter;
icp_with_filter = new ICP_impl::Libicp_adapter(1, icp);

/* set distance compatibility */
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ThresholdFilter * c_d;
c_d = new ThresholdFilter(

new LinearThreshold(0.4, 0, 200));
icp_with_filter->setBlackListFilter(c_d);

/* configure the pre registration module
* with the chained icp procedure */

conf->icp_pre = icp_with_filter;

/* create empty data fitter */
ICP_impl::Empty_data_fitter * empty;
empty = new ICP_impl::Empty_data_fitter;
conf->icp_post = empty;
conf->set_registration_procedure(new ViliusRegistration);
conf->set_distance_procedure(new ViliusDistance);

/* log is needed before registration is run */
LogUnit log = Configurations::createStdLogUnit();
conf->logs.push_back(log);
std::ostringstream target_path;
target_path << "result.ply";
conf->ply_file_name = target_path.str();

/* Perform the registration */
conf->run_registration();
conf->calculate_distance_octrees();

/* Print params */
std::string log_file_name = "logfile.txt";
std::ofstream log_item(log_file_name.c_str(),

std::ios::out | std::ofstream::app);
conf->print_log_item(log_item);
log_item.close();

delete empty;
delete icp_with_filter;
delete conf;

}
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