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Abstract

This thesis research consumer behavior in an e-commerce domain by using a data
set of sparse session data collected from an anonymous European e-commerce site.
The goal is to predict whether a consumer session results in a purchase, and if
so, which items are purchased. The data is supplied by the ACM Recommender
System Challenge, which is a yearly challenge held by the ACM Recommender
System Conference.

Classification is used for predicting whether or not a session made a purchase,
as well as what items it bought. Several characteristics of the data are analysed
in order to discover what separates a buy-session from the rest. In addition the
interactions with items will be analysed to see what items a given buy-session
is likely to purchase. The data is on a rather general format containing only a
session ID, an ID of the item interacted with, a timestamp, and a category of
the object - meaning the analysis can be applicable to other e-commerce sites
and domains. Observations from the analysis are used for extracting features
and to provide other valuable information for the classification. The following
algorithms for classification are evaluated: Random Forest, Logistic Regression,
Decision Tree, Bayesian Network and Naive Bayes.

It is shown that one can predict a session’s behaviour by using classification.
Which items the session interacted with and when the interaction occurred proved
to be important factors. The findings may contribute towards improving implicit
ratings in recommender systems, or provide useful information for recommender
systems when only session data is available.
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Sammendrag

Denne oppgaven undersøker forbrukeroppførsel for e-handel ved å bruke et et
datasett best̊aende av lite detaljerte forbruker-sessions. Målet er å predikere om
en forbruker-session ender med å kjøpe noe, og hvis dette er tilfelle, hvilke produk-
ter som kjøpes. Datasettet er levert av ACM Recommender System Challenge,
som er en årlig konkurranse holdt av ACM Recommender System Conference.

Det er brukt klassifisering for å predikere om en session kjøper noe eller ikke,
og hvilke produkter som kjøpes. Flere karakteristikker ved dataen er analysert
for å oppdage hva som skiller en kjøper fra en som ikke kjøper. I tillegg er
interaksjonen en kjøper har med produktene analysert for å best mulig kunne
predikere hvilke produkter han ender opp med å kjøpe. Dataen er heller generell
og inneholder session ID, ID’en til produktet som er samhandlet med, et tidsstem-
pel og en kategori for produktet. P̊a denne m̊aten kan analysen være nyttig for
andre e-handelnettsider og domener. Informasjonen fra analysen blir brukt til
å hente ut verdifulle attributter for klassifiseringsalgoritmene. For klassifisering
har de følgende algoritmene blitt evaluert: Random Forest, Logistic Regression,
Decision Tree, Bayesian Network og Naive Bayes.

Det blir vist at en kan predikere en session sin oppførsel ved å bruke klassi-
fisering. Hvilke produkter og n̊ar interaksjonen foregikk viser seg å være viktige
indikatorer. Funnene kan bli brukt til å forbedre nøyaktigheten til implisitte rat-
ings i anbefalingssystemer, eller tilby nyttig informasjon for anbefalingssystemer
hvor bare session data er tilgjenglig.
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Chapter 1

Introduction

This chapter contains the background and motivation for this thesis, including
a presentation of the ACM Recommender System Challenge 2015 (RecSys Chal-
lenge). The thesis goal and research objectives will be presented, in addition to
our contributions to the research field of recommender systems. Finally, a short
overview of the structure of the thesis is given.

1.1 Background and Motivation

Electronic commerce refers to the trading in products and services using computer
networks, such as the Internet. Business to consumer e-commerce, or online
shopping, is a form of e-commerce where a business targets individual consumers.
Online shopping has grown steadily on a global basis the last years, and reached
1.2 trillion dollars in 2013. Globally 22 percent of all disposable income is spent
online, and in the U.S online shopping provides around ten percent of the retail
revenue [35].

Many of the largest online retail stores, such as Amazon, have implemented
recommender systems to provide the consumer with a better shopping experience
and to increase revenue. A recommender system is dealing with a set of users:
u1, u2, u3...un, and a set of items or products: it1, it2, it3, ..., itm. The number
of items is often high and users have seldom visited all of them. Thus, there
are only some of the items we can know the user’s preference for. The user’s
preference can either be explicit or implicit. Only when the online store provides
the users with the possibility of rating items it can have explicit information. The
drawback with a system solely based on explicit information is that it depends on
feedback from the users. Another way to get the user’s preference is to analyze
how the user behaves when visiting or watching a product. If a user visits the
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2 CHAPTER 1. INTRODUCTION

same product several times this should increase the user’s rating of the product.
Hybrid solutions, where implicit and explicit information are combined, are also
possible.

Recommender systems try to predict ratings that a user would give to an
unknown item, and in this way help the user in the process of both finding
interesting items and deciding what items he should buy. In Table 1.1 it is given
an example of a typical problem for a recommender system. The rows represent
users and the columns represent products. The integers represent what rating
a user has for the different items. As explained above, this information can
either be explicitly given by the user or implicitly generated by the system. A
recommender system’s task is to predict the ratings missing in Table 1.1.

D1 D2 D3 D4

U1 - - 4 5
U2 4 - 3 -
U3 3 5 4 4
U4 - 5 - 5

Table 1.1: User-item matrix

There are mainly two different approaches when it comes to recommender
systems: content based filtering (Lang [22], Van Meteren and Van Someren [39])
and collaborative filtering (Su and Khoshgoftaar [36]). Collaborative filtering
methods predict a user’s preference for an unknown item by looking at what
preferences a group of other users has for the same item. One way of doing
collaborative filtering is to look at what similar users have expressed interest for.
Such users can be found by for example looking at the preferences two users have.
If their preferences are adequately alike the two users are said to be similar. When
using content based filtering one looks at what items a user has visited earlier
when making predictions about other items the user may like. Each user in a
content based recommender system is represented with a profile telling the user’s
preference. This profile is built by examining items that the user previously has
watched. For a movie recommender a user profile could exist of actresses the
user likes and the movie genres he has enjoyed watching. When the system is to
recommend new items to a user it will try to find other items that matches the
user profile of the given user.

1.1.1 RecSys Challenge

The ACM Recommender Systems Conference (RecSys) is the premier interna-
tional forum for the presentation of new research results, systems and techniques
in the broad field of recommender systems. Each year RecSys has a competition
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[1]. This year’s competition is to predict whether a session from an e-commerce
store ends up buying, and if so, what items it bought. The self proclaimed goal of
this contest is to get more information about what encourages a user to become
a buyer and for e-business companies to be better able to suggest items to the
consumers - thus improving the recommender systems. By participating in the
competition we want to contribute towards this.

RecSys has handed out both training and test data. The training data consists
of clicks performed by sessions, and a file containing session IDs and what these
sessions ended up buying. The test data consists of clicks performed by sessions,
and the task is to predict if these sessions bought something, and if so, what
items they bought. The solution one produces can be uploaded to the RecSys
Challenge home page and be evaluated with a score. On the home page one can
also find a score board telling how good one’s own solution is compared to others.

A session can buy several items, and also more than one of an item. The task
excludes to predict how many of an item a session buys, only if the session buys
the item or not. When one has predicted which sessions that bought and what
items these sessions bought, a score is computed as follows:

Score(Sl) =
∑
∀s∈Sl

{ |Sb|
|S| + |As∩Bs|

|As∪Bs| if s ∈ Sb

− |Sb|
|S| else

(1.1)

where Sl is the sessions you have predicted buy for; Sb is the sessions that actually
have bought something; S is all the sessions; As is the set of items that a session
actually have bought; Bs is set of items that one has predicted the session to

buy. |Sb|
|S| is the share of sessions buying something. As one see in Section 3.1

this approximates to 0.055. The maximum score one can get out of one session is
1.055 and is obtained by guessing all the items a session bought correctly, without
guessing any wrong items.

The information handed out is rather sparse. There is no information about
the company that has supplied the contest with the data, only that it is a Eu-
ropean e-commerce company selling everything from garden tools to electronics.
The data used in the contest is also sparse. There is no information about what
user a session belongs to, thus every session must be considered as a separate
user. Further, the only type of event contained in the data is items clicked by a
session. There is no information about the session browsing, searching, adding to
chart or so on. In the clicks performed a session there is given information about:
what item ID the item has; what category it belongs to; and when the item was
clicked. If an item ended up being bought by a session, we have information
about: when this happened; the price of the item; and the quantity the session
bought of this item. More information about the data can be found in Section
3.1.
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1.1.2 Approach

The challenge will be looked at as containing two tasks. The first task is to decide
whether a session ended up buying or not. This clearly stands out as a binary
classification task, classifying sessions as buy or not-buy. The other task will be to
decide which of the items a predicted buy-session visited actually ended up being
bought. This will also be considered as a classification task. The two tasks will be
referred to as buy-or-not classification and items-bought classification. The main
focus of this thesis will be to analyse the data at hand and to extract valuable
features and other information which can be used for deciding if a session ends
up buying, and in that case, what it bought. From the process of analyzing the
data, extracting information from the analysis and predicting the behaviour of a
session, triggering factors for what affects a consumer to buy and what it buys
will be presented.

The process for deriving at the final solution is conducted in an iterative way.
The first step in this iterative process is to analyse the data. This information
is then used for evaluating how the solution can be improved. Improvements
are done by: extracting new features; improving features; evaluating different
classification algorithms; parametrization of the algorithms; and/or optimizing
our solution towards the RecSys Challenge scoring-function.

1.2 Goals and Research Questions

Goal Predict buys of online shoppers based on sparse session data using classi-
fication

Given a set of clicks in a session from an online store, it will be predicted whether
the session ended with a buy or not. Given that the session was predicted a buy
it will also be predicted what items the session bought. The only information
available is: the session ID, the item ID of the item clicked; a timestamp of when
the click occurred; and the category and price of the item. To solve this problem
we have decided to split the process in two sub problems. These two sub problems
are presented in the research objectives:

Research objective 1 Decide whether a session ended up buying or not.

Research objective 2 Given that a session was predicted as a buy, decide
which items that were bought.

If we can accomplish these objectives we will be able to provide information
that will be useful for the broad research field of recommender systems.
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1.3 Contributions

We have shown that one can gather information about an online e-commerce
user’s preference solely based on anonymous sparse session data. This information
has been used for predicting if a session ended up buying, and it that case, what
items it bought. Given the concerns regarding privacy and leakage of information,
recommender systems face a challenge in the future of being able to cope with
anonymous data. The information provided in this thesis may be valuable for
such situations, as well as when making implicit ratings that are to be used in a
recommender system.

1.4 Thesis Structure

In Chapter 2 the terminology and concepts needed to understand the master the-
sis is explained. Recommender systems are described in greater detail, and some
approaches for building one is shown. Theory related to the task of classifica-
tion will be presented. This includes feature extraction, feature subset selection,
algorithms and evaluation measures.

The data handed out from the RecSys Challenge will be described in greater
detail in Chapter 3. It will be discussed how the data was pre-processed to get
as much information from it as possible. Further, different aspects related to
a session ending up buying and what it buys will be analysed. The analysis is
meant to be rather general, so it can be applied to other online stores having the
same information available.

After the data analysis, the iterative process of finding a solution for the
RecSys Challenge is presented. Although the data analysis and the iterative
process are two different chapters, the analysis of the data is conducted as a part
of the iterations. The results from the iterations are evaluated in Chapter 5.
Further, it is discussed how the results can be useful for recommender systems.
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Chapter 2

Background Theory

2.1 Introduction

It will be introduced terminology and theory needed to understand the rest of
the master thesis. As explained in the introduction the task is to predict whether
a session from an online shopping site ends up buying or not, in addition to pre-
dicting the items bought. Both these problems will be considered as classification
tasks. This chapter will explain the task of classification, important terminology
related to this and introduce the classification algorithms used. Moreover, con-
cepts of how one can get the best performance out of the classification algorithms
are presented. Theory about recommender systems will also be presented as this
is one of the fields of interest of this master thesis.

2.1.1 Recommender systems

Recommender systems (RS), surveyed by Bobadilla et al. [3], collect data of user’s
preferences in a long range of domains such as: books, movies, songs, gadgets,
travels, websites and so on. This information is gathered either explicitly, by for
example allowing the users to give explicit feedback to a given service or item, or
implicitly by monitoring the user’s behavior. The goal of collecting all this data
is then to give the users recommendations of what they might be interested in
based on their explicit or implicit feedback to the system.

The long tail

In order to understand one of the advantages with recommender systems it is
necessary to look at a concept called long tail. In the physical world, it is not
possible to tailor a store to each individual consumer. Thus the solution is simply

7
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to display the most popular products, which is the solution that best fits the total
consumer base.

However as commerce has moved on to use the world wide web as a mar-
ketplace, this solution is not necessarily the optimal one. The advantage of
e-commerce is that the retailer is able to sell all available products to the user,
as there are no physical restrictions in shelf space. The concept of long tail de-
scribes the popularity of items, where there is a small percent of items that has
a very high popularity among the users compared to the majority of items which
thus forms a long tail. For e-commerce it will be desirable to tailor the displayed
products to each individual users’ preferences. The first reason is that it is not
possible to present all the available items, as this often is a vast amount, and the
second is that one can not expect the users to have heard of all items they may
be interested in.

Methods

As mentioned in Section 1.1, one of the approaches for creating recommender
systems is collaborative filtering. This can be done by using latent factor models
(Takács et al. [37]). Latent factor models predict preferences by characterizing
both users and items with a set of factors inferred from the existing preferences.
This is done by using matrix factorization (Koren et al. [20]). Initially one has
a matrix, R, where the columns are representing items, D, and the rows are
representing users, U . From each row we can read the preference the user has
for each item, see Table 2.1. One wants to find two matrices P and Q such that
P ·Q = R̂ ≈ R, where P is a |U | · k matrix and Q is a k · |D| matrix and k is
an integer larger than 1 representing the number of latent factors to use. In this
way, P represents the users and their association with the latent factors and D
represents the items and their association with the latent factors. Making R̂ as
close to R as possible means minimizing the difference to the values in R. When
trying to make R̂ as similar to R as possible one starts out assigning random
values to the matrices P and Q and iteratively tries to minimize the difference
between the product and R by using for example gradient descent (Takács et al.
[37]). The result is a matrix, R̂, that has ratings for all items for all users.

D1 D2 D3 D4

U1 - - 4 5
U2 4 - 3 -
U3 3 5 4 4
U4 - 5 - 5

Table 2.1: User-item matrix
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Other ways of doing collaborative filtering are to apply an item-oriented or a
user-oriented approach (Koren et al. [20]). With the item-oriented approach one
predicts the preference of an unknown item for a user by looking at the ratings of
neighbouring items by the same user. An item’s neighbouring items are items that
tend to get similar ratings when rated by the same user. A popular user-oriented
approach is based on finding similar users by using kNN(k nearest neighbours)
[4]. For a user a, kNN is used for finding the neighborhood of a. Then, all ratings
for unrated items by a is collected from the users in a’s neighborhood. Finally,
the scores from the neighborhood are aggregated and result in an ordering of
what items the system should recommend to a.

Content based filtering is tightly knitted to the field of information retrieval,
and many of the content based recommender systems use relatively simple re-
trieval models using keyword matching or the Vector Space Model(VSM) to find
items that matches a user’s profile (Lops et al. [24]). In the VSM each user and
item is represented as a n-dimensional vector where each dimension represents a
term from the overall vocabulary. The vectors consist of term weights telling how
related an item or user is to the given term. When using the VSM one has to
decide how these term weights should be assigned, in addition to how one should
measure the closeness between a user-vector and an item-vector. The items the
system recommends to the user are the items that are the most similar to the
user-profile given the similarity measure.

One of the challenges with recommender systems is the cold start problem.
When a user has not interacted sufficiently with the system the system fails to
deliver good enough recommendations. This can happen when new users arrive
to the system, or when users do not use the system enough.

2.2 The task of classification

The task of classification is about classifying an object as one of the pre-specified
set of classes. For example to determine what kind of species a certain animal
belongs to. To do this one has to find out what distinguishes a class from the
others. If one are to determine whether an animal is a zebra, one have to look
at the animal and see if the animal fits the core description of a zebra. One of
the biggest characteristics with zebras are the stripes, so it would be nearby to
look at that before looking at for example the ears of the animal. After one has
looked at the animal and can confirm that it has stripes one can continue the
process by selecting another characteristic, after all there are also other animals
that have stripes, like tigers.

In the field of machine learning the process of classifying as explained above,
is often referred to as supervised learning. In supervised learning one knows the
class and characteristics for a set of samples, called training data, and the goal
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is to make a function that takes characteristics as input and outputs a class.
Formally one want to make a function f that takes a sample x as input. The
sample x is a vector where each dimension represents a certain property. Based on
the properties of x the function outputs a class, often together with a probability
of that sample belonging to that class. In this way one can use the function to
predict what class an unknown sample belongs to. The quality of the function
heavily depends on the quality of the training data and the differences between
the distinct classes. If the differences between the classes are small it is obviously
harder to make a function that outputs correct class for a given sample. The
function made from the training data is referred to as a model.

2.2.1 Data representation

When dealing with supervised machine learning tasks the data is often repre-
sented in a table. Each row in the table represents an example, instance or
sample, where the notation sample will be used in this thesis. Each sample is
represented with a set of attributes or features - where feature will be the no-
tation used - together with a class label. An example of such a representation
can be seen in Table 2.2. Displayed is a sample representing a click from an
e-commerce session with Session ID, Item ID, duration, clicks and first. The
features are typically nominal or numeric. A nominal feature is a feature where
the samples can take values from an unordered set, while numeric features are
real numbers. An example of a nominal feature is whether an item was the first
item clicked in an online shopping session. True is represented by 1 and false by
0. An example of a numeric feature is the duration of the session, which can take
any real number above 0.

Supervised machine learning optimally requires separate training and test
sets. The training set is used for building a model that can predict the class of
unknown samples. The test set is is used for testing the model built from the
training data. When testing with the test data the class labels of the test-samples
is not given. The ability of the model to correctly predict the class labels of the
test-samples tells us the performance of the model.

SessionID ItemID duration clicks first class
11 3743 783,761 12 1 buy

Table 2.2: Sample format
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2.2.2 Feature extraction

Often it is possible to capture the information in a data set much more effectively
by creating a new set of features from the original features. Moreover, it may be
possible to reduce the number of features you need. Feature extraction is such
a process, and involves creation of new features from the raw data. Consider
clicks from a session on an online store containing only the item clicked and the
timestamp. You are to decide whether the session ended up buying something or
not. The timestamp itself could be interesting, but also opens a lot of other pos-
sibilities. For example you can extract the duration of the session; the weekday;
and the total time the session spent watching an item.

Feature construction can also be seen as part a of the process of extracting
features from the data set. Some type of features are incompatible with some
algorithms. An example are certain decision trees that need to have the features
on a categorical form. Thus, it is often necessary to modify continuous features
into categorical features - called discretization. An example can be the duration
in the sample above. The duration can be everything from 0 seconds to many
hours, but some algorithms only takes features that are categorical. One could
then split the duration feature into three categories: 0-100 seconds; 100 - 500
seconds; and 500 seconds and above.

2.2.3 Discretization

There are several methods for discretizing continuous values, however the only
one that will be presented is the method by Fayyad and Irani [13], as this is the
one used by the machine learning software Weka (see Section 2.5). To discretize a
continuous feature means to split the possible values of the feature into categories,
thus obtaining a finite number of possible categories, making it possible to treat
the feature as a discrete one.

The first step of the approach is to sort the samples of the continuous feature
one wish to discretize, so that they are in increasing order for the feature’s values.
Each point, where a point is between two samples, is then evaluated as potential
cut points. Let the cut point partition the set of samples S into sub sets S1 and
S2; where there are k classes C1, ..., Ck; and P (Ci, S) is the proportion of samples
in S belonging to class Ci. To evaluate a cut point, the method uses a formula
for calculating the entropy of each category created by the cut:

Ent(S) = −
k∑

i=1

P (Ci, S)log(P (Ci, S)) (2.1)

To compare two resulting sets S1 and S2 after a partition for feature A and with
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the cut value T , the following equation is evaluated:

E(A, T : S) =
|S1|
|S|

Ent(S1) +
|S2|
|S|

Ent(S2) (2.2)

This measure is applied recursively to the two sets from the previous split,
always selecting the split that minimizes the measure in equation 2.2, until some
stopping criteria is achieved. The stopping measure used by Fayyad and Irani
[13] is based on a principle called The Minimum Description Length Princi-
ple. The minimum description length of an object is the minimum number of
bits required to describe that object uniquely. Furthermore the principle states
that a hypothesis HT , where length added with length given the hypothesis is:
MLength(HT ) +MLength(S|HT ), should be chosen if this value is less than all
other hypotheses. The length in this case is measured in bits. Fayyad and Irani
[13] arrived on the following equation for stopping criterion:

Gain(A, T ;S) >
log2N − 1

N
+

∆(A, T ;S)

N
(2.3)

Thus a partition by cut point T is accepted if equation 2.3 is satisfied.
Dougherty et al. [12] tested several discretization algorithms with decision trees
and Bayesian classifiers. A discretization technique similar to the one used by
Fayyad and Irani [13] performed slightly better than the others.

2.2.4 Feature subset selection

It can be tempting to think that more features mean more information, and
choosing a subset of the features would only cause loss of information. This is
not necessarily the case if the feature is irrelevant or two features correlate (Blum
and Langley [2]). Irrelevant features are features which provides little or no
information at all. An example can be the session ID of an on-line shopper when
one is to decide whether the session bought something or not. Redundant features
are two features giving the same information, they are highly correlated with each
other. For example one could imagine that the number of clicks a session has
strongly correlates with the duration of the session. Such features can create a
bias in the classification models, which again can affect their performance.

Another reason why it could be beneficial to perform feature subset selection
is to avoid the Curse of Dimensionality. This phenomenon describes the problem
arising when the feature value space is vast, which requires a enormous number
of training samples in order to ensure that there are several samples for each
combination of feature values. For classification this problem arises when you
have too few samples to allow the creation of a model that reliably assigns a class
to all samples.
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Kohavi and John [19] developed a method for feature subset selection, referred
to as a wrapper, which considers how a specific classification algorithm interacts
with a particular training set. The approach for solving this consists of applying
a search method for finding a good subset, and using the classifier itself as part
of the evaluation measure for the search result. There are several options of what
search algorithm to apply, of which greedy search, also called hill-climbing, will be
presented here. The greedy search algorithm is rather trivial: by first choosing
an evaluation measure, such as accuracy or ROC (see Section 2.4), the single
feature performing best is first selected; then it measures the result by adding a
new feature, and selects the one giving the best result together with the first one.
The search ends when no features improve the evaluation measure more than a
certain threshold. This wrapper method is implemented in Weka (see Section
2.5).

2.2.5 Unbalanced data set

A data set is said to be unbalanced when the classes are not approximately
equally represented Chawla [9]. An example of such a data set is the data set
in the RecSys Challenge. The data consists of sessions from an online store that
can take two different class values, yes and no. Yes means that the session ended
up buying something, and no means that no products where bought. For every
buy-session there are approximately 17 sessions that do not buy. The class that
is represented with the least samples are called the minority class (yes), while
other classes make up the majority(no). Most classification algorithms pursue to
minimize the percentage of incorrect predictions of class labels Chawla [9]. When
dealing with an unbalanced data set this is often not desirable. For the data set
from the RecSys Challenge a classifier could have labeled all samples as no and
got only approximately 5 percent misclassified samples. Moreover, when dealing
with unbalanced data sets it is often the minority class that is interesting.

Several approaches for handling unbalanced data sets have been suggested
in the literature. The three most common are different forms of undersampling,
oversampling and cost-sensitive learning. Given an unbalanced data set, under-
sampling methods remove samples from the majority class until the classes are
more equally represented (Kubat and Matwin [21], Laurikkala [23]). When under-
sampling you suffer the risk of removing important information in the majority
class. Oversampling, opposed to undersampling, makes use of the minority class
to construct more samples. The simplest approach when doing oversampling is to
randomly select positive samples, and add them to your data set once more. In
this manner you are using the information you already have, and suffer the risk
of overfitting (Chawla [9]). The SMOOTE algorithm was introduced by Chawla
et al. [8] to mitigate this problem. The algorithm uses the feature space instead of
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the sample space when performing oversampling. For each positive sample they
construct a synthetic sample by merging the features of the k nearest neighbours.

When using oversampling or undersampling one modifies the data set at hand.
Cost-sensitive learning mitigate this by assigning different costs for classifying a
sample to a given class. If one wants more positive samples classified as positive
one can assign a higher cost for classifying a positive sample as a negative. This
can either be incorporated into the classifier model building process, or by using
different sampling techniques. Not all algorithms have the ability to incorporate
cost-sensitive learning into their building process (Weiss et al. [40]).

Weiss et al. [40] conclude that for unbalanced data sets it can not be drawn
conclusions towards what is the better approach. Further, they say that for small
data sets oversampling outperforms undersampling.

2.2.6 Overfitting/Underfitting

When using supervised learning for classification, a common phenomenon is over-
fitting (Dietterich [11]). Overfitting occurs when building a model on a training
set which fits the data too well, in that it fits the noise and peculiarities that
is not representative of the domain, but only in the training set. This is why
the optimization problem of mapping the training set features to the training set
classes should not be formulated as ”minimize error on the training data”. Several
methods has been developed for coping with this problem, such as regularization
methods, minimum-description-length methods and generalized cross-validation.
A simple way of avoiding this is to measure the error of the model on a separate
test set, containing only samples that is not used to build the model.

The concept of underfitting, is at the other end of the scale, and describes
a model that is too regularized so that the model suffer from information loss.
Thus the goal when building a model, is to capture all general information from
the training set, but to avoid modelling the noisy part of the data.

2.3 Classification Algorithms

One focus of this thesis is to extract useful features from sessions in an e-commerce
site, in order to classify whether or not these sessions will buy, and if they do, what
they will buy. Classification problems are a typical machine learning problem,
and can be generalized to apply in several domains.

In order to classify sessions, there will be used software named Weka and
scikit-learn (see Section 2.5). This section will describe the theory behind the
algorithms used in order to understand how the data is classified.
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2.3.1 Bayesian Networks

A Bayesian Network is a directed acyclic graph, where nodes represents a random
variable and contains its probability information (Friedman et al. [15]). When
a node A is pointing to a node B, it is said that A is the parent of B, where A
can have several parents. Each node has a conditional probability distribution
P (X|Parents(X)), which means that the probability of X is decided as a combi-
nation of all its parents. The Bayesian Network has an important feature in that
neighboring nodes, meaning nodes with common parents, are conditionally in-
dependent. Conditional independence means that two variables are independent
given a third variable which is known.

To find the joint probability distribution from a Bayesian network, one applies
the following equation:

P (x1, ..., xn) =

n∏
i=1

P (xi|parents(Xi)) (2.4)

In order to comprehend the use of a Bayesian network for classification prob-
lems, there will be presented a simplified example of how to calculate the proba-
bility of an e-commerce session being a buy session. The example makes use
of two features: clicks, duration; and a class variable buy being yes or no.
The feature clicks is a discrete feature and duration is a continuous. Lets
say one wants to find the probability of buy being yes, clicks being 3, and
duration being less than 20 seconds. Let the conditional probability tables
in the network state that: P (clicks = 3) = 0.6, P (duration < 20) = 0.5,
P (class = Y ES)|clicks = 3, duration < 20) = 0.2. The joint probability will
then be calculated as follows:

P (class = Y ES, clicks = 3, duration < 20)

= P (class = Y ES|clicks = 3, duration < 20) · P (clicks = 3) · P (duration < 20)

= 0.2 · 0.6 · 0.5 = 0.06. (2.5)

Notice that the feature duration is a continuous value, and thus needs to be
discretized in order to work as input to the Bayesian network. The approach
described in Section 2.2.2 can be applied to do this.

The task of learning a Bayesian Network can be stated as follows: Given a set
of training samples D, find a network B that best matches D. To solve this task,
a scoring function is applied in order to evaluate the different possible networks,
a common one being the minimal description length (MDL) scoring function.
The MDL principle is concerned with finding a model that provides the shortest
description of the original data, which incorporates both the description of the
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model and the data using the model. By using a encoding scheme to describe
the model representing the probability distribution over the data, that assigns
shorter code words to more probable instances, the goal is then to minimize the
combined description length of the network description and the encoded data.
Let B be a Bayesian Network; D = u1, ..., uN is the training set where ui set the
value to all features in the set; and |B| is the total number of possible values for
all nodes in the network, except those containing a class label; the MDL function
is given by:

MDL(B|D) =
logN

2
|B| − LL(B|D), (2.6)

where LL(B|D) is the log likelihood of B given D:

LL(B|D) =

N∑
i=1

log(PB(ui)) (2.7)

The higher the log likelihood value, the closer the network B is to model
the probability distribution of the data D. However it is not sufficient to only
apply the log likelihood function in order to measure the quality of a network, as
it tends to favor a highly connected, complete network. By applying the MDL
where the number of nodes and their possible values are taken into account, one
is able to avoid overfitting of the training data.

2.3.2 Naive Bayes

The Naive Bayes classifier, studied in Rish [31], is a rather simple classifier that
assumes conditional independence between features given the class of a sample.
Even though this generally is a poor assumption to make, Naive Bayes turns out
to compete well to other classifiers in practice.

Given a set of features X = (X1, ..., Xn); and a set of training data D with
samples Di = x1, ..., xn, where xi is the value for feature Xi; and a class label
C; the Bayes rule can be applied to find the probability P (Ci|Di). In order to
find the apriori probabilities, that is the probabilities calculated from the training
data, Bayes rule is applied as follows:

P (C = i|X=x) =
P (X=x|C = i)P (C = i)

P (X=x)
(2.8)

The bold X=x symbolizes that this is the feature vector X having a value vector
x. Further, as P (X=x) is the same for all classes this can be ignored. Since a
large feature space would yield endless of combinations that need a probability,
the assumption of independence is made. By applying this assumption, the clas-
sifier can be made up by calculating the probability of each possible value of each
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feature given the class, based on the training data. When a new sample is to be
classified, the maximum probability of the following equation decides which class
the sample belongs to:

f(x) =

n∏
j=1

P (Xj = xj |C = i)P (C = i) (2.9)

As stated, the class C = i that gives the highest probability will be the predicted
class for the observed sample x.

2.3.3 Decision Tree

Several have researched the concept of decision trees as classifiers (Breiman et al.
[6]), and a survey were done by Safavian and Landgrebe [32]. Decision trees are
a widely used method for classification, with a fairly intuitive structure. The
structure is hierarchical and consists of nodes and directed edges, with three
different types of nodes: the root node has no incoming edges and zero or more
outgoing edges; the internal nodes have exactly one incoming edge and two or
more outgoing edges; and the leaf nodes have exactly one incoming edge and no
outgoing edges. The root node and the internal nodes contain a test condition
that split the samples being fed into the tree on some feature. When the sample
has been parsed through the decision tree, it ends up on a leaf node which contains
a class label assigned to this sample. To start classifying samples, one first need
to build a decision tree on some training set. The theory of this section is based
on Hunt’s algorithm, which uses a greedy strategy for building a tree.

Let Dt be a set of training samples associated with node t and let y =
y1, y2, ..., yn be the class labels. A decision tree is then built by two recursive
steps:

1. If all the samples in Dt has the same class yt (or some other criteria is
met), then t is a leaf node with the class label yt. An example of another
criteria is if the number of samples in this node is below some pre-defined
threshold. This criteria is often set in order to reduce the risk of overfitting.

2. If Dt contains samples with different class labels, a feature is chosen as a
test condition to split the records into smaller subsets. For each outcome
of the test condition, a child node is created and the samples in Dt are
distributed among the child nodes based on their value of the feature used
as test condition.

This procedure raises two issues. A child node created by step two above
might be empty if there are no samples in the training set with the combination
of feature values needed to end up at that child node. The solution to this
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problem is to make this node a leaf node with class label equal to the majority of
samples in the parent node. The second issue is the possibility that the leaf node
created contains samples with different class values while having the same feature
values. Here the solution is to assign the class label of the majority samples in
the set for this node.

The final consideration to be made when creating a decision tree is how to
choose the feature to use as test condition to split the data. The tree is built in a
top-down manner where for each node, with the given sample set residing on this
node, each feature is considered in terms of how much information can be gained
by splitting on each feature. Section 2.4.1 contains the evaluation measures on
how to compare features relevant for this thesis.

2.3.4 Random Forest

Breiman [5] developed the idea of decision trees further by applying several trees
instead of just one, which makes up the classifier Random Forest. The concept
in simple terms is to create several independent trees, and for each sample to be
classified, every tree casts a vote on which class it should be classified as.

One of the methods used in Random Forests by Breiman [5] is Bootstrap
Aggregating, often called bagging. This method randomly chooses a subset of
about two-thirds of the training set with replacement to build a single tree. As
described in the paper, this is done as it seems to enhance the accuracy when used
together with Random Feature Selection (RFS). RFS is another method used for
building Random Forests, which consists of randomly choosing a fixed number of
features to consider for each split in each tree. The concept of selecting random
features for each split is used as it has proved to give lower generalization errors
in that the trees are more robust to outliers and noise.

2.3.5 Logistic Regression

In order to understand the use of Logistic Regression, it is necessary to first look
at the concept of Linear Regression (Seal [34]). Given several data points with
input x and output y, the goal of Linear Regression is to find the line hw that
best fits all the points. The line will have the equation hw(x) = w0+w1 ·x, where
w0 and w1 are the weights we want to learn. In order to find the best line, the
empirical loss has to be minimized such that as little information as possible is
lost. One way of doing this is to use the squared loss function L2:

Loss(hw) =

N∑
j=1

(yj − (w0 + w1 · xj))
2 (2.10)
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Alternatively it is also possible to use the L1 loss function, which minimizes
the sum of absolute values instead of the sum of squares. Using L1 regularization
tends to produce a more sparse model, which can be less likely to overfit. The
loss function is minimized when its partially derivatives with respect to w0 and
w1 are zero. When moving on beyond linear models, minimizing the loss function
can be done with gradient descent instead of partial derivation. The data points
may also have more than one variable, which is often the case in classification.
With multiple variables, a sample xj is an n-element vector and the regression
line would be on the form:

hw(xj) = w0 + w1 · xj,1 + ... + wn · xj,n = w0 +
∑
i

wi · xj,i (2.11)

Since the weight w0 stands out from the other weights, a dummy input feature
xj,0 that is always equal to 1 can be used. The function will then simply be the
dot product of the weights and input vector:

hw(xj) = w · xj =
∑
i

wixj,i (2.12)

By performing gradient descent the squared-error loss can be minimized. Lin-
ear Regression can then be used to make a linear classifier by building a line on a
set of training samples, and then feed in samples to be classified which then will
be classified dependent on whether or not they are over or under the regression
line. The linear classifier will either classify a sample as 0 or 1, even if the sample
is very close to the boundary line. A sample of two variables will be multiplied
with the generated weights like the following:

c(x) = w0 + w1x1 + w2x2 (2.13)

Where the sample is classified as 0 if c(x) < 0 and as 1 if c(x) ≥ 1. This can
be a problem as we often want to know how certain the classifier is for each
classification, as there are many domains that require high probability of being
correct before accepting the classification.

Cox [10] developed Logistic Regression, which uses a logistic function to model
the classifier. This function outputs a real number between 0 and 1 for a sample
and can thus be interpreted as the probability of the sample belonging to the
positive class. Other than that, the samples and weights are on the same format.
The logistic function is presented in the following equation:

hw(x) = Logistic(w · x) =
1

1 + e−w·x
(2.14)
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An input at the center of the boundary region will yield a probability of 0.5.
Logistic Regression is the process of fitting the weights of this model so that
the information loss on a data set is minimal. The standard way of minimizing
the derivative of the squared-loss function L2 is gradient descent for Logistic
Regression as well as Linear Regression. However in practice, algorithms are often
implemented with variants of optimization methods, as some methods perform
better on data of specific characteristics.

2.4 Evaluation Measures

In order to evaluate which algorithms and features perform best, it is necessary
to apply evaluation measures. There will be introduced evaluation measures for
both features and classification algorithms.

2.4.1 Feature Evaluation

Related to what features that contributes the most when solving a classification
task, two evaluation measures are presented. These are information gain and
information gain ratio, which are calculated using an impurity measure.

Impurity Measures

In this section, two impurity measures will be considered for measuring the im-
purity of a set of samples given their classes. The measures are entropy and Gini.
Let p(i|t) represent the fraction of samples that belongs to class i at the node
t, and c is the number of possible classes. The equation used to measure the
entropy is:

Entropy(t) = −
c−1∑
i=0

p(i|t)log2p(i|t) (2.15)

The gini impurity measure does not use the logarithmic function, but the
square instead. Following is the equation for calculating gini:

Gini(t) = 1−
c−1∑
i=0

[p(i|t)]2 (2.16)

Information Gain

In order to know how much information a feature can give, with regard to the
classes, it is necessary to compare the impurity before splitting the samples on the
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given feature with the impurity after splitting. As an example, lets say an animal
is going to be classified as a land animal or an ocean animal. If the samples have
a feature named has legs, and for simplicity all land animals have legs and none
of the ocean animals have legs. Then the information after splitting on this node
would increase 100 percent as all the samples of class land animal would end up
in node 1, and all the samples of ocean animal would end up in node 2.

The goal is to achieve highest possible information gain by splitting a given set
of samples on a feature. Let I(.) be the impurity measure of a given node; N(vj)
be the number of samples belonging to child node vj ; N be the number of samples
at the parent node; and k be the number of feature values. The information gain
by performing the split is then:

InfoGain = I(parent)−
k∑

j=1

N(vj)

N
I(vj) (2.17)

Thus a lower impurity measure for the child nodes will yield a higher information
gain value. The resulting split is also weighted by the number of samples residing
in each node. If one child node has a low impurity, but also a low number of
samples, this will not contribute as much to the information gain as if the child
node had many samples.

Gain Ratio

Equation 2.17 will favor the split with lowest impurity, which is desirable but
only to a certain degree. Imagine if the node splits samples based on a feature
containing an unique value for each sample, such as an user ID. This kind of split
will be useless as it will not create a generalized tree that can be used in practice.
In order to detect such splits, a measure called gain ratio is applied instead of the
information gain. This is done by first calculating the split info in the following
way, where k is the total number of splits and P (vi) is the portion of samples
being assigned to node vi:

Split info = −
∑
i=1

kP (vi)log2P (vi) (2.18)

Let IG be the information gain and SI be the split info, the gain ratio is then
calculated:

Gain ratio =
IG

SI
(2.19)

The split info will be higher the more child nodes that are needed, and the gain
ratio will thus be lower. Gain ratio gives a measure of how much information gain
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a feature can give, by also taking into account how generalized this information
can be used.

2.4.2 Algorithm Evaluation

Different metrics for evaluating classification algorithms will be presented. Their
ability to handle unbalanced data sets will also be considered, as the data set
from the RecSys Challenge is highly unbalanced.

Precision and Recall

Precision and recall are two widely employed metrics in binary classification prob-
lems with unbalanced data sets where the minority class is considered more in-
teresting than the majority class (Tan et al. [38]). A sample from the majority
class is referred to as a negative sample, while a sample from the minority class
is referred to as a positive sample. In Table 2.3 a confusion matrix that sum-
marizes the number of instances predicted correctly or incorrectly for a binary
classification problem is shown. Precision an recall is defined as follows

P =
TP

TP + FP
(2.20)

R =
TP

TP + FN
(2.21)

Precision represents the fraction of samples that the classifier has predicted as
positive that actually are positive, while recall determines the fraction of all
positive samples the classification algorithm managed to classify as positive. The
main goal when dealing with an unbalanced data set is to increase the recall
without hurting the precision (Chawla [9]).

Predicted Class
+ -

Actual
Class

+ TP FN
- FP TN

Table 2.3: Confusion matrix for binary classification problem, adapted from Tan
et al. [38]
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Accuracy

Accuracy is a metric that summarizes a classification algorithm’s overall perfor-
mance. Given the confusion matrix in Table 2.3 the accuracy is defined as

A =
TN + TP

TN + TP + FN + FP
(2.22)

Thus, the accuracy measures the fraction of samples that was correctly classified.
When dealing with an unbalanced data set, a high accuracy does not necessarily
mean good performance. The minority class is often more important than the
majority class for classification with unbalanced data sets. To classify one more
positive sample correctly one may have to accept classifying two or more negative
samples as positive as well. Thus, even though one are more satisfied with the
classification, the accuracy decreases.

Area Under Curve (AUC)

When dealing with unbalanced data sets the limitation of the accuracy as a
performance measure was quickly established. ROC curves soon emerged as a
popular choice (Hernández-Orallo et al. [16]). The Receiver Operating Charac-
teristics (ROC) curve is a representation of a classifiers performance which takes
the TP and FP rates at different discrimination thresholds into consideration.
An example of such a curve can be seen in Figure 2.1. The ROC curve is made
by representing the %FP = FP

TN+FP on the X-axis and %TP = TP
TP+FN on the

Y-axis. The ROC curve is swept out by decreasing the discrimination threshold
of the classifier - or by undersampling the majority class - moving the ROC point
to the upper right in Figure 2.1. An optimal point for an ROC curve would be
(0,100) where all positive samples are correctly classified and no negative samples
are misclassified.

AUC measures the area under the ROC curve and can be interpreted as the
expected true positive rate, averaged over all false positive rates Ferri et al. [14].
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Figure 2.1: An example of an ROC curve, borrowed from Chawla [9]

Brier Score

Brier [7] introduced the brier score, a metric that measures the accuracy of prob-
abilistic predictions. Given a binary classification problem; N samples that you
want to classify; and that the classifier outputs the probability of a sample be-
longing to the positive class; the brier score measures the mean squared difference
between:

• The predicted probability of a session belonging to the positive class, ni

• and the actual outcome, oi

Thus the lower brier score, the better the probabilistic predictions are. An op-
timal brier score is 0, where all the probability estimates are correct. In such a
situation, among samples that have a predicted probability of x for belonging to
the positive class, 100 · x percent of the samples should actually belong to the
positive class. The brier score is given by the following function

BS =
1

N

N∑
t=1

(ni − oi)
2 (2.23)
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2.5 Software

As all the classification algorithms and other methods used in this thesis is im-
plemented in several tools available for free online, none is implemented from
scratch. The two machine learning tools used in this thesis is Weka [41], and
scikit-learn [33] which is a machine learning tool in Python [29]. All graphs in
this thesis are made using matplotlib, a library for Python.

2.5.1 Weka

Weka (Waikato Environment for Knowledge Analysis) is a machine learning soft-
ware developed at the University of Waikato in New Zealand. It provides a
graphical user interface with tools for data pre-processing, classification, regres-
sion, clustering, association rules and visualization. In order to use the methods
provided in Weka, the input data has to be in form of an ARFF (Attribute-
Relation File Format) file. The software is written in Java and available for free
under the GNU (General Public License).

2.5.2 scikit-learn

Scikit-learn is a machine learning tool for the Python programming language,
which provides classification, regression and clustering algorithms and more. It
is built on the Python libraries NumPy, SciPy and matplotlib. This software tool
is open source and commercially usable under the BSD license.
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Chapter 3

Data analysis

In this chapter we will present the data from the RecSys Challenge more detailed.
We will give information about the raw data and how we have chosen to pre-
process it. Further, we will present an analysis of the data. The analysis aims to
reveal important information that we can make use of when classifying session
behaviour later on. As we mentioned in Section 1.1.1 we want to figure out what
separates a buy-session from a not-buy-session as well as which of the items a
buy-session purchases. On this basis we have made two analysis sections: one
for the buy-or-not classification task and one for the items-bought classification
task. The data analysis was conducted iteratively as we used the information we
found to try to improve our score in the RecSys Challenge (see Chapter 4) as we
discovered interesting characteristics in the data. The most important findings
of our analysis is presented in this chapter. Some additional analysis can be seen
in Appendix A.

3.1 Raw data

The raw data was downloaded from the web page of the RecSys Challenge [1]. It
was divided in three files, where one of them consisted of click events to be used
in the challenge (test data). The two others were for training, and consisted of
one file of click events, and one with buy events.

3.1.1 Click events

The files of click events contain comma separated lists of features, where one line
of features is one click event. One event consists of the following features: Session
ID, timestamp, Item ID and category.

27
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• Session ID - The ID of the session. A session can contain several clicks.
Represented by an integer.

• timestamp - The time when the click occurred. Represented by a string
formatted in this manner: YYYY-MM-DDThh:mm:ss.SSSZ

• Item ID - The ID of the item clicked. Represented by an integer.

• category - The category of the item clicked. ”S” indicates a special offer; the
integers 1-12 represent a real category identifier; ”0” represents a missing
value; any other integer indicates a brand.

3.1.2 Buy events

The file of buy events contains comma separated lists of features, where one line
of features is one buy event. One event consists of the following features: Session
ID, price, Item ID, timestamp and quantity.

• Session ID - The id of the session. A session can contain several buy events.
Represented by an integer.

• timestamp - The time when the buy occurred. Represented by a string
formatted in this manner: YYYY-MM-DDThh:mm:ss.SSSZ

• Item ID - The ID of the item clicked. Represented by an integer.

• price - The price of the item. Represented by an integer.

• quantity - How many of this item were bought. Represented by an integer.

The same Session ID can contain several buy events with the same Item ID.

3.1.3 Training and test data overview

Here we will give an overview of the RecSys data. We will give a short introduc-
tion of both the training data and the test data.

Training data

The training data consists of two files. One file containing click events from ses-
sions, and another file containing buy events from these sessions. In the list below
you can get a quick overview of the amount of data and some other interesting
facts.

• Number of clicks: 33,003,944
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• Number of buys: 1,150,753

• Number of sessions: 9,249,729

• Number of sessions that buy something: 509,696

• Number of items: 52,739

• Share of buy sessions: 0,05510388

We observe that the data set is large, containing over 33 million click events.
Only 5.5 percent of the sessions end up buying. There are over 50 thousand items
and we can see from Table 3.1 that the number of clicks on each item varies a
lot.

Measure Average Median STD
Session length (seconds) 382 128 757
Session length (clicks) 3.57 2 3.79
Clicks per item 625.79 22 2810.05
Purchases per session 0.124 0.0 0.687

Table 3.1: Training data overview

Test data

The test data contains a file consisting of click events. The events are gathered
from the same time period as the training data. As seen in the list below, the
test data contains about one third of the number of sessions in the training data.

• Number of clicks: 8,251,791

• Number of sessions: 2,312,432

• Number of items: 42,155

Measure Average Median STD
Session length (seconds) 383 128 760.4
Session length (clicks) 3.57 2 3.8
Clicks per item 195.7 14 780.9

Table 3.2: Test data overview
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As the number of buy-sessions and items bought are unknown in this data set,
we have to assume that the characteristics of the training data is representative
for the test data. The session length is similar both in number of clicks and in
duration. Number of clicks per item is lower, which is natural as this data set
contains far less clicks. The number of items in the test set is smaller than in the
training set.

3.1.4 Data pre-processing

To get as much information as possible out of the data we have done some pre-
processing. The data has some clear deficiencies. The biggest deficiency being
that the first 44.4 percent of the events in the click events file have the cate-
gory feature 0 - meaning no category specified. As we found this unlikely, we
constructed a map with Item ID as the key and all the categories we could find
for this Item ID as values. This showed that the same item could have several
categories, and that the ones having category 0 in the first part of the data set,
usually were represented further down with different categories. We chose to
represent an item with a category feature (from 0-12) indicating what category
the item is related to most often.

One category in the data set is represented with an ’S’, and means that the
item is on sale. We modified this by creating a new feature named sale, which can
hold the values 1, 0 or None. As we discovered that the sale category was only
represented in a certain time period of the data set (same period as category),
we figured that it would not make sense to set 0 on sale if the current period
did not represent sales. Thus, None is set for the time period that we implicitly
think that sales is not represented.

3.2 Buy-or-not analysis

What makes a buyer a buyer, and what separates a buy-session from a session
with no buys? Our goal with the buy-or-not analysis is to reveal different aspects
of the data that can tell us whether a session ended up buying or not. This
information will be important when we are to classify sessions. Even though the
analysis is conducted with data provided by the RecSys Challenge the analysis
is rather general and can be applied for similar data sets. We will look closer
at aspects like time, the category of the items, the clicks that occurred in a
session and which items the session visited. Moreover, we will analyse how these
properties correlate - if they compliment each other or if they give more or less
the same information.
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3.2.1 Time

In order to discover how user behavior affects the probability of a session buying
something, we have looked at different aspects of time. This includes the time of
when a session is active; when a session buys something; and different measures
of duration in each session.

When we have analysed how time affects the probability of a session buying
something, we have encountered a possible source of error. The data only tells us
when the last click happened and not when the session actually ended. Because
of this we can not know how long the session spent watching the last item clicked.
As a solution we have chosen to set the end of the session to when the last click
happened, this leading to the time spent on the last item being 0 seconds. Most of
the graphs displaying time measures are based on a set that consists of 6 percent
of the training data. More information about this data set can be seen in Section
4.1.

The first aspect we will look into is when people are active and buy products
on the e-commerce site. This is done by analysing the entire time period, using
the 6 percent data set. We look at the activity per month, weekday and per hour,
in order to see if there are any distinct differences.
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Figure 3.1: Percent of sessions buying, per month

The data consists of user sessions from an e-commerce site in the time period
April to September 2014. As seen in Figure 3.1 the number of active sessions
have a peak in August, which is the only month that separates noteworthy from
the rest. We see that the share of sessions that buys something decreases towards
the end, in that it begins with 6 percent in April and ends with 5.2 percent in
September.
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Figure 3.2: Percent of sessions buying, per weekday

Figure 3.2 shows the collected active sessions and share of buyers per weekday.
We can see that the share of buyers are higher during the weekend than the rest
of the week. A session on a Saturday has over doubled the probability of buying
something compared to a session on a Tuesday - 0.070 versus 0.034. The number
of active sessions are highest during Sunday through Monday, and at its lowest
on Tuesday.
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(a) Duration (b) Clicks

Figure 3.3: Average duration and clicks per session, per weekday

It would be interesting to know why we observe the behaviour we do in Figure
3.2. Are the behaviour in general different on Tuesdays compared to Saturdays, or
do people simply shop more on Saturdays regardless of their behaviour? In Figure
3.3 we see plots of the average duration and clicks of a session on the different
weekdays. The plots show us that both duration and clicks of the sessions are
pretty similar, but a little bit higher on Saturdays and Sundays. As the percent
of sessions that buy something on Saturday is twice the percent on Tuesday, and
the difference in session duration and clicks are relatively small, this may indicate
that there are in general a higher number of buys on Saturdays even though the
consumer behavior looks similar. This concept provides valuable information in
order to understand consumer behavior, in that people seem more willing to buy
on weekdays. A reason might be more free time and a less stressful environment.
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Figure 3.4: Percent of sessions buying, per hour

The last overview of when consumers interact with the e-commerce site is
shown in Figure 3.4, where we see the collected behavior during a day. As ex-
pected, the number of active sessions are lower during the night. The two curves
have a relatively similar trend, both reaching their peak around 5-7 PM. The
probability of a session buying is at its lowest 1 AM (approx. 0.018) and its
highest 17 PM (approx. 0.066).

Up until now, we have analysed the time of when sessions are active and the
percentage of buys at different time periods. The following graphs will illustrate
different measures of duration in each session.
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Figure 3.5: Relationship between session duration and percent of buy-sessions

Figure 3.5 shows that as the duration of a session increases, the probability of
that session buying something increases. We also observe that the majority of the
sessions have a relatively low duration. If a session lasts for 500 seconds we can
see from the graph that close to 10 percent of the sessions end up buying, while
if a session lasts for 100 seconds the percentage is around 3. The behaviour we
observe here is intuitive. One would assume that spending more time means that
the session expresses a greater interest in buying something. When the duration
is close to zero seconds, the number of sessions rise drastically - and we can see
that a lot of the sessions are only active in 0-25 seconds. An explanation for this
can be that the easy access to e-commerce has made it popular to briefly browse
some products online, with little intention of buying. However, as we can not
know what type of events are included in the data, it is possible that the session
in fact lasts longer than what the graph displays.

To summarize, different aspects of time affect the probability of a session
buying something. The main findings are: as the duration of a session increases,
the probability of that session buying something increases; and the probability
of a session buying heavily depends on when the session is carried out. It can
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look like a session carried out on a Saturday has a much higher chance of buying
compared to a session on a Tuesday - despite having more or less the same
behaviour.

3.2.2 Clicks

As the data we work with is made up by click events, it seemed natural to analyse
how the patterns of clicks affected a sessions probability of buying something.
This is done by looking at the total number of clicks, and repeated clicks on the
same item.

Figure 3.6: Relationship between number of clicks in a session and percent of
buy-sessions

In Figure 3.6 we see that the probability of buying increases as the number of
clicks increase. It is also shown that the majority of sessions consist of few clicks
- in the region 1-5. The highest probability we can infer by number of clicks is
approximately 25 percent, for sessions with around 15 clicks or more. Given the
fact that only 5.5 percent of the sessions purchases, it is clear that a probability
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that high is a strong signal for a buy.

Figure 3.7: Relationship between maximum number of clicks on the same item
in a session and percent of buy-sessions

Figure 3.7 displays the maximum number of times a session has clicked on
the same item. ”1” return means that the session has clicked an item maximum
once. Here we see that the majority of sessions only click once on an item, and
that the probability of these sessions buying something is low. When a session
clicks maximum two times on an item, the probability of buying something is
more than doubled, and the probability continues to increase as the maximum
number of clicks on an item increases.
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Figure 3.8: Frequency of sessions, given duration and clicks

Figure 3.8 shows a scatter plot of the session duration and the number of clicks.
From the plot we see that the number of clicks correlates with the duration of a
session. The more clicks a session has, the longer the session lasted. This may
mean that the number of clicks does not give as much additional information.

3.2.3 Category

As the raw data contains a feature indicating the category of which an item
belong, an analysis of this feature was performed. Possible category values in the
raw data is a number from 0-12 indicating category, S indicating that the item is
on sale, and any other number indicating the brand of the item. However, after
pre-processing this feature now only takes a number between 0-12.
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Figure 3.9: Percentage of buy-sessions, given click within category

From Figure 3.9 we see that the category with the highest conversion rate is
category 8 - meaning that the probability of a session buying is highest when the
session has visited this category. It can also be seen that the total number of
sessions having visited category 8 is low. This indicate that the category does
not typically contain items that consumers enjoy browsing without a purpose of
buying. The categories 1, 2 and 3 on the other hand have a large share of sessions
clicking items within them, but a lower share of buy-sessions.

3.2.4 Items

In this section we will look at how the items a session visits affect the probability
of that session buying. We suspect that there exist some items that have higher
probability of being bought when visited than others. Further, there may be some
items that when clicked increase the general probability of a session making a
purchase.
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(a) Distribution of clicks on items (b) Distribution of buys of items

Figure 3.10: Distribution of clicks and buys over items

In Figure 3.10a we observe that there are a few items that are clicked a lot,
and a lot of items that are clicked less. The items included in Figure 3.10a are
only the 2000 items that have been clicked the most, this because adding all
the items would reduce the readability of the results. Further, we see the same
tendency when looking at the frequency of buys per item in Figure 3.10b. Some
few items have been bought very often, while the rest of the items have been
bought more infrequently. As for clicks, only the 2000 most frequently bought
items are included.
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Figure 3.11: Percent of sessions buying item, given item clicked

As Figure 3.10 shows, the number of clicks and buys are not the same for all
items. What we can not tell from these graphs is if the same items that are clicked
a lot also are bought a lot. If the ratio between number of clicks and number
of buys are constant for each item, all items would have the same probability of
being bought when clicked. By plotting the probability of buy for each item in
Figure 3.11 we see that this is not the case. The probabilities of buying an item
varies. Items represented in the graph are only the ones clicked by more than 10
sessions, in order to avoid noisy values.
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(a) Percent of sessions buying item, given
one click on the item

(b) Percent of sessions buying item, given
more than one click on the item

Figure 3.12: Percent of sessions buying item, given number of clicks on the item

We ignored the number of clicks a session has on an item when calculating
the probability of that session buying that item. We saw in Section 3.2.2 that
higher maximum return to an item increased the probability of a session buying
something. It would be interesting to see if there exist items which have a low
probability of being bought even if the item is clicked twice. In Figure 3.12a we
have plotted the probability of a session buying an item given that the session
only has clicked that item once. In addition, Figure 3.12b shows the probability
of a session buying an item given that the session has clicked that item more
than once. We see that an item clicked twice generally has a higher probability
of being bought, but that there exist items that are clicked twice that have a
relatively low probability as well.
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Figure 3.13: Percent of buy-sessions, given click on item

In Figure 3.11 we saw the distribution of probabilities for buying an item,
given a click on this item. Figure 3.13 on the other hand shows the probability
of a session being a buy-session given a click on a specific item. The underlying
idea by analyzing this, is the possibility that if a session clicks a specific item,
this increases the general probability of buying something. We observe that some
items when clicked give a higher probability of a session ending up buying. This is
most likely related to the probabilities of buying a specific item, shown in Figure
3.11.

As mentioned in Section 3.1.4, the data contains a category feature, where
one possible category is S which means the item is on sale. When doing pre-
processing we changed this into a feature named sale, which is either 1 for sale
or 0 for not sale. We discovered that there seems to be one period where there
are sales, and one period where there are no sales at all. We will only include the
sale period when analysing sales.

In order to research how sales affect the consumer behavior and purchases,
we made two sets of graphs (see Figure 3.14 and 3.15). Figure 3.14a displays
the number of sessions that has clicked the items when they were not sale, and
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Figure 3.14b shows the number of sessions that has clicked on the same items
when they were on sale. Figure 3.15 contains two graphs, where one displays the
probability of buying an item that were clicked when not on sale, and the other
displays the probability of buying an item clicked when on sale. Both graphs
displaying items on sale has the items in the same order as the ones displaying
items not on sale.

(a) Distribution of sessions clicked, over
items not on sale

(b) Distribution of sessions clicked, over
items on sale

Figure 3.14: Distribution of sessions clicked, over items on sale and not on sale

(a) Percent of sessions buying item, given
click on item not on sale

(b) Percent of sessions buying item, given
click on item on sale

Figure 3.15: Percent of sessions buying item, given click on item on sale and not
on sale
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As one can see in Figure 3.14 there are a higher amount of clicks per item
in general when the items are on sale. We also observe that some items that
are clicked rarely when not on sale, suddenly are clicked a lot when on sale. If
nothing else, it shows that putting an item on sale could generate a lot of clicks
on it.

In Figure 3.15, the probabilities of buying each item, clicked by over 10 ses-
sions, for both items not on sale and items on sale, are displayed. We see the
same trend as in the click distributions, that items which are not popular when
not on sale, suddenly can have a probability of being bought similar to the more
popular items when on sale. These graphs show that items on sale do not only
generate more clicks, but also give a higher probability of being bought.

3.3 Items-bought analysis

In this section we will analyse the data to find out what makes a buy-session buy
a given product. We will look into features like time, number of clicks and the
probability of buying an item when the item is clicked. When analysing we are
only using the clicks from sessions that ended with a purchase.

3.3.1 Time

We saw in Section 3.2.1 that the time of a session heavily influenced whether
the session ended up buying or not. We observed that a session carried out on
a Tuesday only has half the probability of buying compared to a session carried
out on a Sunday. Further, the probability of buying is slightly higher at the start
of the period the data is collected from. Here we want to investigate how time
influences the number of items a session buys.
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(a) Average number of buys, per
month

(b) Percent of items clicked that are
bought, per months

Figure 3.16: Behaviour over months for buy-sessions

In Figure 3.16a we see that the average number of items a session buys grows
over time. In April the average is slightly below 1.8 while at the end of the
period, in September, it has grown to above 2.3. It is difficult to say why we
observe this kind of behaviour. One possible explanation can be that the online
store has improved their design and/or the recommendations the system gives
to the consumer. Another explanation can be the time of the year. It could
be that people tend to shop more items during the summer season. In Figure
3.16b we have plotted the share of items bought compared to items clicked by a
session. The share of items bought is more stable than average number of items
bought, and only differ approximately 7 percent at the most. Thus, sessions tend
to click on more items later in the period - substantiating the theories about
improvements of the site and season variation.
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(a) Average number of buys, per
weekday

(b) Percent of items clicked that are
bought, per weekdays

Figure 3.17: Behaviour over weeks for buy-sessions

Figure 3.17a shows how the average number of buys varies at the different
weekdays. We observe that the average is at its lowest on Tuesdays and at
its highest on Sundays, with 1.84 and 2.08 respectively. Figure 3.17b shows that
consumers purchase more of the items they click during the weekend and Monday
compared to rest of the week. However, the differences are small - comparable
with the observations made for months.
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(a) Average number of buys, per
hour

(b) Percent of items clicked that are
bought, per hour

Figure 3.18: Behaviour over hours for buy-sessions

Lastly we want to look at how the number of buys for a buy-session varies
with the time of the day. In Figure 3.18a we see that the average number of items
a session buys is pretty similar for all times of the day. The highest average we
observe is from 12 AM to 1 AM where the average is close to 2.14 items. The
lowest we observe is 2.04 items at 5 PM to 6 PM. In Figure 3.18b we observe
that the percent of items bought has a peak around 4 AM with 50 percent, and
decreases throughout the day ending at approximately 35 percent at around 12
AM. Thus, sessions click on more items later on the day.

To summarize, we have seen that the share of items bought varies little over
time, as well as for the weekdays. The number of items a session clicks increases
towards the end of the period, and also throughout a day.

3.3.2 Clicks

The number of clicks proved to be an important factor when deciding whether a
session bought or not. Does the number of clicks on an item also influence the
probability of a session buying that item? It is likely to believe. In this section we
introduce the term session-item. A session-item is a sample consisting of session
ID, item ID and features describing all the interactions the session has with this
item - e.g when a session has clicked an item two times this is represented as a
session-item. We will explore how clicks affect a session-item to end up being a
purchase of the item represented.
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Figure 3.19: Percent of items bought, given number of clicks on the item

In Figure 3.19 we see that there is a clear connection between the number of
times an item is clicked and the probability of a session buying that item. The
probability is at its lowest if the item is only clicked once and increases as the
number of clicks increases. If an item is clicked once, 35 percent ends up being
bought. When an item is clicked four times or more the percentage increases
above 80. We also notice that clicking an item more than once doubles the
probability of that item being bought. The results that Figure 3.19 is showing
are intuitive. If a session returns to an item more than once one would assume
that the user is expressing interest in the product.
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Figure 3.20: Percent of items bought, given consecutive returns to the same
item

In Figure 3.20 we observe that when a session repeatedly clicks the same
item, without clicking an other item in between, the probability of that item
being bought increases. ”1” return means that the item has only been clicked
once by the session. If the item is not clicked repeatedly the percentage of items
bought is around 40, while when this occurs the percentage increases to over 80.
Repeated clicks strongly indicates a buy, but the behaviour is not that common.
Only 17 percent of the session-items have repeated clicks. The behaviour we
observe in Figure 3.20 is also intuitive by the same argument as for number of
clicks. However, clicking the same item twice in a row, without anything else
happening in between, seems strange. Since we do not know anything about the
online store providing the data it is difficult to say why we observe this behaviour.
We can only accept that repeated clicks on an item increases the probability for
a buy.
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Figure 3.21: Percent of items bought, given item clicked first, last or neither - in
a buy-session

Figure 3.21 displays the percent of buys for items clicked either first, last or
somewhere in the middle in a buy-session. As seen, the items clicked first or last
have a higher probability (approx. 0.7) of being bought compared to the items
clicked in between (approx. 0.4).

3.3.3 Category

While the share of buy-sessions per category was analysed in Section 3.2.3, the
share of session-items being a purchase per category will be analysed here.
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Figure 3.22: Percent of items bought, given category of the item clicked

Figure 3.22 shows the share of session-items within each category being a
purchase. In addition the total number of session-items within each category is
displayed. The percent of buys is highest for category 8, but one can see that
the number of sessions that clicked within this category is low compared to the
number of sessions that has clicked on categories 1, 2 and 3. For these three
categories we see a rather similar percentage of buys, all around 45.
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3.3.4 Items

In Section 3.2.4 we saw that there are items that are bought more often than
others when clicked, when considering the clicks from all sessions. One would
assume that the same also holds when only looking at buy-sessions.

Figure 3.23: Percent of buy-sessions buying item, given click on the item

In Figure 3.23 we see the percent of buy-sessions buying a specific item given
that the session has visited the item. The probability of buying an item is higher
for buy-sessions compared to when looking at all sessions (see Figure 3.11), which
is intuitive. We observe that there are some items that are bought more often
when visited than others.



3.3. ITEMS-BOUGHT ANALYSIS 55

(a) Percent of buy-sessions buying item,
given one click on the item

(b) Percent of buy-sessions buying item,
given more than one click on the item

Figure 3.24: Percent of buy-sessions buying item, given number of clicks on the
item

Further, we see in Figure 3.24a that there exists some items that are bought
often even when clicked only once. Figure 3.24b shows that most of the items
are bought over 50 percent of the time when clicked twice or more. Moreover, if
we compare 3.24a and 3.24b we see, as expected, that clicking an item more than
once increases the probability of that item being bought - which we also observed
in Section 3.3.2.
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As in Section 3.2.4 we want to analyze the affects of sale, but now for sessions
that buy. This is done in the same manner, by comparing a graph with click
distribution over items not on sale versus the distribution over items on sale, and
by comparing the probability of buy over items on sale and items not on sale.

(a) Distribution of buy-sessions clicked,
over items not on sale

(b) Distribution of buy-sessions clicked,
over items on sale

Figure 3.25: Distributions of buy-sessions clicked, over items on sale and not on
sale

Figure 3.25b is sorted in the same order of items as 3.25a in order to see the
difference in how frequent items on sale are clicked compared to items not on
sale. As described in Section 3.2.4, only the sale period is analysed. What we
see from Figure 3.25 is that the number of clicks on sale items are more spread
than on the items not on sale. For the items not on sale we can see a typical long
tail, in that a low share of the items are frequently clicked, and the majority of
items have almost no clicks. When items are on sale it clearly reduce the long
tail pattern, in that less popular items are clicked more frequently. It is shown
that the popular items from 3.25a still have a high number of clicks, also when
they are on sale.
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(a) Percent of buy-sessions buying item,
given click on item not on sale

(b) Percent of buy-sessions buying item,
given click on item on sale

Figure 3.26: Percent of buy-sessions buying item, given click on item on sale and
not on sale

Figure 3.26b shows that the probability for each item in general grows when
the items are on sale. If we look at the items around 6000, the probability for
items not on sale is around 40 percent, while when these are on sale the probability
for several of them is between 60 to 80 percent. The highest benefit of sale seems
to be that rather unpopular items suddenly have a potentially higher probability
of being both clicked and bought.
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Chapter 4

Process and results

In this chapter we will present the process we went through and the results we
got up until our final solution in the RecSys Challenge. As mentioned earlier we
are using the challenge as an indicator for how well we can predict a consumer’s
behaviour, and in each step of the process we will provide a score telling how
much improvement we have achieved, if any. We have divided the process into
eight iterations. Each iteration is represented as a section where our approaches
and results are presented. The first seven iterations are about finding the best
approach, including: which classification algorithm to use; how to use the classi-
fication algorithm; and what features to use. The last iteration is geared towards
optimizing our solution towards the scoring-function in the RecSys Challenge.

4.1 Local computation of scores

There is a limited number of times per day one can upload a solution to the
challenge. This combined with the time consumption of producing a solution
have yielded the need of a local testing environment. We have randomly selected
6 percent of the sessions from the training data handed out and split it into our
own training and test data. From now on, when referring to training data and
test data, we are referring to these constructed data sets. The training data
constitutes 60 percent of the randomly selected data (3,6 percent of the entire
data set), while the test data constitutes 40 percent (2,4 percent of the entire
data set). We are using the scoring-function, as explained in Section 1.1.1, when
computing a score in our local test environment. The scores presented in this
chapter will both be results from our local testing environment as well as from
the RecSys Challenge. A score from our local testing environment will be referred
to as local score (LS) while a score from the RecSys challenge will be referred to

59
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as challenge score (CS).
In Table 4.1 we give an overview of the training data we have used to build

classification models in the first six iterations.

Measure Value
Number of clicks 1188128

Number of sessions 333310
Number of sessions that buy 18327
Buy sessions/Sessions ratio 0,0549

Buys per session 0,122

Table 4.1: Local training data overview

We can see from Table 4.1 that the training data is relatively representative
for the total data set (see Section 3.1.3), in that the ratio between number of
buy-sessions and all sessions only deviate 0.3 percent, and that the measure of
buys per session deviate 1.6 percent. Further, we ran local tests with Naive Bayes
to see if the amount of training data was sufficient. The results can be seen in
Table 4.2. We observe that the results do not change drastically until the training
set is reduced to 20 percent of its original size (0.72 percent of the total data set).
However, some classifiers require more data to learn a good model than Naive
Bayes and the need of data will increase as the number of features increases. In
Iteration 7 and 8, where we build classification models for different time periods,
we will upload solutions using all the original training data. The amount of data
used for each classification model depends on the length of the time periods.

Buy or not Items bought
Fraction of training data P R ROC P R ROC LS
1 0.167 0.235 0.733 0.108 0.243 0.547 536
0.8 0.167 0.236 0.732 0.108 0.242 0.546 535
0.5 0.167 0.236 0.733 0.108 0.241 0.546 530
0.2 0.167 0.232 0.733 0.108 0.241 0.546 509

Table 4.2: Local testing environment with different fractions of (local) training
data using Naive Bayes

An overview of the test data, used for computing local score, can be seen
in Table 4.3. As for the training data, the test data looks to be representative.
We will use the local score computed on this test set only as a guideline, as the
amount of data is rather small compared to the challenge data. When making
important and tight decisions we will use the challenge score. Tight meaning
that the difference in local score is small.
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Measure Value
Number of clicks 793105

Number of sessions 222279
Number of sessions that buy 12292
Buy sessions/Sessions ratio 0,0552

Buys per session 0,124

Table 4.3: Local test data overview

The maximum score given a test set of clicks in the RecSys Challenge can be
computed as:

Scoremax = |Sbtest | ·
(

1 +
|Sb|
|S|

)
(4.1)

where Sbtest is the number of buy sessions in the test set; Sb is the number of
buy-sessions in the total training set; and S is the number of sessions in the total
training set. In a similar manner the minimum score can be computed as:

Scoremin = − (|Stest| − |Sbtest |) ·
|Sb|
|S|

(4.2)

Thus the maximum local score for our test set is 12292 · (1 + 0.05510388) ≈
12969 and the minimum is −(222279 − 12292) · 0.05510388 ≈ −11571. For the
challenge data set the maximum score is estimated to (2312432 · 0.05510388) ·
(1 + 0.05510388) ≈ 134446, and the minimum to 2312432−(2312432 · 0.05510388)·
0.05510388 ≈ −120402

4.2 Evaluation method

During the process all approaches have been evaluated. This includes choice
of algorithms, algorithmic parameters and features. This section will cover the
evaluation method for items-bought classification and buy-or-not classification,
in that order.

4.2.1 Items-bought classification

To provide information about the features extracted for items-bought classifica-
tion we have included two measures: information gain and information gain ratio
(see Section 2.4). In situations where we have constructed a feature in multiple
ways, and need to decide which version to continue using in the next iterations,
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we will use local score as an evaluation measure. An example of such a feature
is the probability of a session buying a certain item.

When evaluating an algorithm we looked at the local score of the algorithm
when using all features extracted up to this point. We computed the local score
by testing items-bought classification on all buy-sessions in the test data. The
drawback with this measure is that we do not know exactly how the scoring-
function weights precision and recall. One algorithm may give a high recall
and a low precision, while another may give a high precision, but a rather low
recall. The algorithm with the high recall may score better than the one with
the high precision. However, it could be that lowering the threshold for accepting
a session as a buy-session for the algorithm with the high precision, could have
increased the local score, maybe also above the other algorithm. Therefore we
have decided to also include precision and recall. Area under ROC curve (referred
to as ROC), which measures a classification algorithm’s performance at different
discrimination levels, will be included by the same argument. The score will be
the major evaluation measure, but precision, recall and ROC will be included to
enlighten the potential of a classifier.

4.2.2 Buy-or-not classification

Same as for items-bought classification, information gain and information gain
ratio are presented for the features used in the classification process. We will
use local score where we have constructed a feature in multiple ways and need to
decide which version to continue using in the next iterations.

When testing an algorithm we have evaluated it by: recall, precision, ROC
and local/challenge score. The local/challenge score is computed by using the
best items-bought classification we found in this iteration on the session-items
(see Table 4.8) produced by the buy-or-not classification. Precision, recall and
ROC are included for the same reasons as explained in the previous section.

4.2.3 Optimization process summary

The process for finding the best combination for items-bought prediction and
buy-or-not is thus as follows:

1. Use only buy-sessions

2. Learn items-bought by evaluating the local score (precision, recall and
ROC).

3. Learn buy-or-not classification from the training set and evaluate on lo-
cal/challenge score (precision, recall and ROC) - using the best items-
bought model from step 2.
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This process could be extended by looping step 2 and 3 after the first round. By
doing this, one could maybe optimize the interaction between the two sub tasks
even better.

Further, one could have implemented an algorithm that optimized its be-
haviour towards the RecSys scoring-function. The drawback with such an ap-
proach is that it is time consuming, thus restricting the number of approaches
one has time to try. The advantage is that the algorithm would have been op-
timized towards the scoring-function instead of some other metric - making it
optimized for its purpose. Further, other evaluation measures would have been
superfluous.

4.3 Iteration 1: Buy or not focus

The data is highly unbalanced and therefore not suitable for certain classifiers,
such as decision trees, without doing modifications to the training data. Decision
trees classify a sample by looking at the majority class in the leaf node. When
one class dominates the other class, decision trees tend to classify more or less all
samples as the majority class. In the first iteration we tested different methods
on our unbalanced data set, including decision trees. As explained earlier, we
have split the problem into two classification tasks. The first task is to decide
if a session made a purchase, and the second is to classify the items a session
has visited as bought or not. Our focus in this iteration was to find a starting
point for classifying sessions as buy or not-buy sessions. This to have a self
produced set of sessions classified as buy-sessions which we could perform items-
bought classification on, and produce results that we could upload to the RecSys
Challenge.

4.3.1 Items-bought

As the focus in this early phase was to predict whether a session ended up buying
something or not, we only applied a simple rule when classifying the items a
session has visited as bought or not. The rule was to classify an item as bought
if it was the first item clicked by a session, and all other items as not bought. We
saw in Figure 3.21 that this should give a rather high precision.

Feature Type Values IG IGR P R ROC Score
first Nominal 0 or 1 0.0594 0.0773 0.722 0.351 0.619 6711

Table 4.4: Iteration 1: Items-bought classification
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4.3.2 Buy or not

As explained in Section 2.2.1 a way of representing the data when doing clas-
sification is needed. In this iteration we represented each session as a sample
and made features related to the session. The data format can be seen in Table
4.5. This format will be used in all iterations for buy-or-not classification, except
Iteration 3.

sessionID duration clicks avg clicks max return max time avg time
11 783,761 12 1.33 3 385,217 65,31

Table 4.5: Iteration 1: Sample format, buy-or-not classification

The analysis showed that features related to time and number of clicks cor-
related well with the class of the samples. Our analysis of these aspects can be
seen in Section 3.2.1 and Section 3.2.2 respectively. These form the basis of the
features we extracted in the first iteration. An overview is given in Table 4.6.

feature Type Value IG IGR
clicks Numeric 1 - ∞ 0.0225 0.0083

avg clicks Numeric 1 - ∞ 0.0232 0.0110
duration Numeric 0 - ∞ 0.0235 0.0077

max time between clicks Numeric 0 - ∞ 0.0172 0.0056
avg time per click Numeric 0 - ∞ 0.0147 0.0050

max return Numeric 0 - ∞ 0.0221 0.0162

Table 4.6: Iteration 1: Extracted features, buy-or-not

For each feature, the information gain (IG) and information gain ratio (IGR)
are calculated, which can be read about in Section 2.4.1. Clicks is simply the
number of clicks a session does; avg clicks is the average number of clicks per
item; duration is the total duration of a session; max time between clicks is the
maximum duration between two clicks in a session; avg time per click is the aver-
age duration spent looking at an item, thus the average duration between clicks;
and finally the max return is the maximum amount of times a session has clicked
on the same item. One would expect the features related to clicks to be corre-
lated, more clicks mean a higher average clicks and a higher max return. The
same also holds for the features related to time. Moreover, we saw in Figure 3.8
that the duration of the session and the click feature correlated.
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4.3.3 Classification

We tested four classification algorithms in the first iteration: Bayesian Network
(BN), Logistic Regression(LR), Decision Tree (DT) and Naive Bayes (NB). The
Bayesian Network is built using Weka, while the other models are built with the
Python package scikit-learn (see Section 2.5). The default parameters used can
be seen in Appendix B. The parameters listed there are used when not specified
otherwise.

One of the main challenges for classifying this data set is that it is highly
unbalanced, in that the vast majority of the sessions are not buy-sessions. The
features we have extracted so far are also most likely dependent of each other.
These characteristics are important when choosing a classifier. The Naive Bayes
classifier assumes conditional independence between the feature, given the class,
which may not be the case for the features we have extracted. Thus, we do not
expect the Naive Bayes classifier to produce the best results. As mentioned before
the Decision Tree will probably not handle the highly imbalanced data set well
and classify most of the samples as the majority class.

Table 4.7 displays a comparison of the classifiers we tested with the features
extracted previously in this section. In addition to local score for the end-to-end
test; precision, ROC and recall is presented for both items-bought classification
and buy-or-not classification.

Buy-or-not Items-bought
Classifier Precision Recall ROC Precision Recall ROC LS
BN 0.174 0.406 0.750 0.113 0.254 0.546 842
NB 0.166 0.234 0.733 0.108 0.242 0.548 537
DT 0.126 0.130 0.498 0.084 0.261 0.525 116
LR 0.298 0.016 0.739 0.160 0.147 0.624 40

Table 4.7: Iteration 1: End-to-end classification

We see from the results that the Decision Tree most likely did not handle
the imbalanced data set. Further, we observe that Naive Bayes scored well in
practice despite our assumption about dependence. Logistic Regression has a high
precision, but a rather low recall. Bayesian Network and Naive Bayes outperforms
the two other algorithms when it comes to local score. As mentioned earlier
the scoring-function may appreciate a high recall above a high precision. Most
likely lowering the threshold for accepting a session as buy-session for Logistic
Regression would have increased its local score. The Bayesian Network classifier
has a high recall compared to Naive Bayes and Logistic Regression, but at the
same time also a good precision.

Later in this chapter we will work on solving the problem with unbalanced



66 CHAPTER 4. PROCESS AND RESULTS

data (see Section 4.6). In Section 4.8 we will also perform feature selection to see
if Naive Bayes can perform even better when given less dependent features. In
the two next iterations we will continue using Bayesian Network to improve and
find new features, as this classifier worked best on the data set in terms of the
local score metric for buy-or-not classification. When we ran the classification on
the challenge data and uploaded the result we got a score of 12018.4.

4.4 Iteration 2: Items

In the first iteration we got a starting point for how to predict if a session ended
up buying by looking at the duration and the clicks of a session. In this iteration
we look at the specific items a session has visited and how we can make use
of this when predicting if a session buys, and also when predicting what the
session purchased. We will first present our approach for predicting items bought
and then present new aspects for buy-or-not afterwards. Lastly, we will run
classification for both items-bought and buy-or-not to see if we have done any
improvements with our new features.

4.4.1 Items-bought

In the first iteration we prioritized finding an approach for predicting if a session
bought. In this iteration we used a Bayesian Network to predict what sessions
buy as well. Other classification algorithms will be tested in later iterations. We
chose to represent each item a session has visited as a sample and make features
related to that session-item. Examples of the data format can be seen in Table
4.8.

sessionID itemID last first Item duration n clicks prob
11 48677876 1 0 4.73 2 0.73
11 48764443 0 1 8.93 1 0.20

Table 4.8: Iteration 2: Sample format, items-bought

The features we have extracted in this iteration is presented in Table 4.9. Last
represents whether an item was the last item a session clicked, and n clicks tells
how many times an item was clicked during a session. In Section 3.19 we found
that these are important factors when deciding whether a buy-session ended up
buying a specific item. Prob is the probability of a session buying the specific
item - see Section 3.3.4. Prob click dependent is computed in a similar manner,
but takes into account how many times the session has clicked the item. When
calculating prob click dependent, we make one probability for when the items are
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Feature Type Values IG IGR
last Nominal 0 or 1 0.0423 0.0563

prob click dependent Numeric 0 - 1 0.2250 0.0590
prob Numeric 0 - 1 0.1408 0.0449

item duration Numeric 0 - ∞ 0.0050 0.0091
n clicks Numeric 0 - ∞ 0.0901 0.0782

Table 4.9: Iteration 2: Extracted features, items-bought

clicked once, and another probability for when they are clicked more than once.
We observe that the prob click dependent has a much higher information gain and
information gain ratio than prob. By calculating the probabilities in the manner
we do for prob click dependent we are using information from the n clicks feature.
Thus, n clicks and prob click dependent is heavily dependent, and n clicks will
not provide as much additional information to prob click dependent as to prob.
We imagine that there are items that have a low probability of being bought,
even when clicked twice, and that prob click dependent may prevent all items
that are clicked twice being classified as buy.

4.4.2 Buy-or-not

When plotting the probability of a session ending up buying a certain item, given
that the session had clicked the item, we found interesting results. We saw that
some items had a much greater probability of being bought than others. We
wanted to utilize this in our prediction of buy-sessions. There was extracted a
feature related to the items a session has visited, least one prob. Least one prob
is calculated by subtracting the probability of a session not buying any of the
items it has visited from 1, that is the probability of a session buying at least one
of the items. When computing least one prob we have assumed that each item is
independent. For a session that have visited three items with the probabilities 0.4,
0.6 and 0.7 the least one prob would be 1−((1−0.4) ·(1−0.6) ·(1−0.7)) = 0.928.

Feature Type Values IG IGR
avg prob clicks dependent Numeric 0.0-1.0 0.0255 0.00756
max prob clicks dependent Numeric 0.0-1.0 0.0344 0.0108

least one prob clicks dependent Numeric 0.0-1.0 0.0422 0.01253
avg prob Numeric 0.0-1.0 0.0169 0.0057
max prob Numeric 0.0-1.0 0.0224 0.00732

least one prob Numeric 0.0-1.0 0.0288 0.00949

Table 4.10: Iteration 2: Extracted features, buy-or-not
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Further, we noticed that some items when visited led to a higher probability
of a buy-session than others. This is affected by the probabilities of buying the
different items. Visiting an item with a high probability of being bought increases
the probability of a session buying something(e.g. that particular item). There
were extracted two features related to this, max prob and avg prob. Max prob
is the maximum probability for a session of buying something when an item
is clicked, and the avg prob is the average probability for a session of buying
something given all the items the session has clicked. Given the example ses-
sion above the average probability would have been 0.4+0.6+0.7

3 = 0.60 and the
maximum probability 0.70.

In addition avg prob, max prob and least one prob is also computed based on
probabilities depending on the number of clicks - similar to the approach taken for
items-bought. These are listed in Table 4.10, each ending with clicks dependent.

4.4.3 Classification

We wanted to find out if the click-dependent probabilities gave better classifica-
tions than the non-click-dependent. First we tested for items-bought classification
and afterwards for buy-or-not classification.

Items-bought

We tested with two different sets of features for items-bought classification. Set-1
consisted of prob, first, last, item duration and n clicks and Set-2 of prob click dependent,
first, last, item duration and n clicks. The classification was performed using the
Bayesian Network classifier in Weka.

Features Precision Recall ROC LS
Set-1 0.746 0.642 0.821 8656
Set-2 0.745 0.631 0.819 8472

Table 4.11: Iteration 2: Items-bought classification, BN

In Table 4.11 you can see that Set-1 performed slightly better than Set-2 on all
evaluation measures. Even though prob click dependent gives more information
than prob (Table 4.10), n clicks and prob together seems to perform slightly
better than n clicks and prob click dependent.

Buy-or-not

When testing which probabilities that gave the best results for buy-or-not clas-
sification we tested with two different sets. One set consisting of click-dependent
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probabilities and another one with non-click-dependent probabilities. The re-
sulting buy-sessions from the classification was further evaluated with the items-
bought classifications found in the previous section. We used the same type of
probabilities in each step (e.g when using click-dependent probabilities for buy-
or-not we used click-dependent probabilities for items-bought too).

Buy or not Items bought
Features Precision Recall ROC Precision Recall ROC LS
Set-1 0.198 0.489 0.787 0.157 0.593 0.729 2477
Set-2 0.185 0.540 0.795 0.149 0.638 0.719 2910

Table 4.12: Iteration 2: End-to-end classification, BN for items-bought and BN
for buy-or-not

In Table 4.12 we give the results from the buy-or-not testing. Set-1 is the set of
features including non-click-dependent probabilities. From the Table 4.12 we see
that end-to-end testing with click-dependent probabilities performs the best, with
a score of 2951. For buy-or-not classification we observe that Set-1 gives higher
precision, but a lower recall and ROC than Set-2. For items-bought classification
the recall is a lot higher for click-dependent probability, but the precision and
ROC is higher for non-click-dependent. Given the results from the previous
section, where non-dependent-probability gave better results on all evaluation
measures for items-bought classification, this is not as expected. Clearly it has
do with the sessions the classifier gets as input. The click-dependent probability
classification looks to be better at classifying the session-items from the sessions
we have classified as buy - compared to the session-items from all buy-sessions.

Buy or not Items bought
Features Precision Recall ROC Precision Recall ROC LS
Set-2 B-or-N, Set-1 I-B 0.187 0.545 0.798 0.150 0.619 0.716 2852

Table 4.13: Iteration 2: End-to-end classification, BN for items-bought and BN
for buy-or-not

To further investigate what probability that is the best for items-bought clas-
sification we ran another experiment. We used a Bayesian Network classifier built
on dependent-probabilities to classify sessions as buy or not, and gave the result-
ing session-items to a Bayesian Network classifier built on non-click-dependent
probability. In this way, we could compare the probabilities for items-bought
classification on the same set of session-items. The result can be seen in Ta-
ble 4.13. Still the end-to-end score is not as good as the end-to-end score with
dependent probabilities. The precision for items-bought classification with click-
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dependent probability is slightly worse, while the recall is slightly better. The
score tells us that the overall performance is slightly better when using click-
dependent probability. However, since the difference in local score was so small
we uploaded a solution to the RecSys Challenge for both approaches. The one
using click-dependent probabilities for both buy-or-not and items-bought scored
0.3 percent better - with a score of 36248. The other approach scored 36143.
Given the results we chose to continue using the click-dependent probabilities in
the next iterations.

4.5 Iteration 3: Change of concept

So far we have predicted a consumer’s behaviour by first looking at character-
istics related to the session when classifying a session as a buy-session or not.
Afterwards we have evaluated the items the session has visited to decide which
items the session has bought. In this iteration we test a new approach, leaving
out the first step and only predict if an item a session has visited will be bought
or not. If we predict that an item x is bought by a session, this session will
classified as a buy-session buying the item x - and possibly more items.

4.5.1 Classification

When performing classification of what items a session buys we used the same
features as in the last iteration, see Table 4.9.

Bayesian Network was used in this iteration as well, as the only objective was
to explore if it is necessary to split the problem into two sub tasks. This approach
obtained a challenge score of 14326, which is a drastic decrease. This concept
was therefore discarded.

4.6 Iteration 4: Handling unbalanced data set
and testing algorithms for items-bought

In Section 2.2.5 we presented different approaches when it comes to handling
unbalanced data sets. We wanted to test two of them, namely undersampling
(us) and cost-sensitive (cs) learning. Oversampling is often helpful when the
amount of data is low, which is assumed not the case here.

When performing undersampling we randomly removed
(

1− |buy-sessions|
|not-buy-sessions|

)
·

100 =
(

1− 18327
333310−18327

)
· 100 ≈ 94.2 percent of the not-buy-sessions from the

training data. An overview of the resulting data set can be seen in Table 4.14.
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Measure Value
Number of clicks 177222

Number of sessions 36539
Number of sessions that buy 18327
Buy sessions/Sessions ratio 0.502

Buys per session 1.127

Table 4.14: Iteration 4: Overview training data, 50/50 buy-sessions and
not-buy-sessions

We observe that the sessions in this new training set has about 50 percent prob-
ability of buying something, meaning buy-session and not-buy-sessions are ap-
proximately equally represented.

We will run items-bought classification with Random Forest, Bayesian Net-
work, Decision Tree and Logistic Regression. Re-test of the algorithms for buy-
or-not classification on an undersampled data set will also be performed. Under-
sampling will be compared to using cost-sensitive learning.

4.6.1 Classification

For items-bought prediction we will test the algorithms we tried for buy-or-not
classification in Iteration 1, in addition to Random Forest, with the features we
extracted in Iteration 2. As mentioned, we also test buy-or-not classification
with undersampling and cost-sensitive learning. Naive Bayes was ignored in this
iteration, but will be tested together with feature selection later on for both
classification tasks.

Items-bought

The problems with unbalanced data set and dependencies between features are
not as prominent for this step in the process as for buy-or-not classification. Thus
we do not expect any of the algorithms to produce unreasonably poor results.

Classifier Precision Recall ROC LS
BN 0.745 0.631 0.819 8472
DT 0.643 0.646 0.673 8004
RF 0.688 0.686 0.796 8548
LR 0.727 0.701 0.8266 8730

Table 4.15: Iteration 4: Items-bought classification
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As seen in Table 4.15, the Logistic Regression classifier performs best on items-
bought classification, when looking at the scoring-function. It has the second
best precision, only Bayesian Network is better, and a higher recall compared
to all the other algorithms. Even though Logistic Regression performed better
than Random Forest, the Random Forest algorithm may not be parametrized
optimally (the default parametrization is used), which we think will improve its
results. Optimization of the different algorithms and feature selection will be
conducted in Iteration 6.

Buy or not

In the previous section we saw that Logistic Regression performed best on items-
bought classification. When testing buy-or-not classification we therefore did
end-to-end testing with Logistic Regression for items-bought classification. That
is, the session-items belonging to sessions classified as buy-sessions were classified
with Logistic Regression to produce local and challenge scores. When using cost-
sensitive learning we used the ratio between buy-sessions and not-buy-sessions
as penalization. Classifying a session as a false-negative is punished with 94.18,
while classifying a session as a false-positive is punished with 5.82. The cost
sensitive learner in Weka is used (see Section 2.2.5), with the parameters listed
in Appendix B.

Buy or not Items bought
Classifier Tech P R ROC P R ROC LS CS
LR us 0.146 0.677 0.795 0.128 0.720 0.681 3442 43830
RF us 0.131 0.734 0.794 0.122 0.715 0.683 3469 44288
DT us 0.097 0.655 0.652 0.105 0.710 0.700 2275 –
BN us 0.137 0.732 0.797 0.122 0.707 0.713 3474 43930
LR cs 0.147 0.665 0.720 0.128 0.721 0.681 3398 43066
RF cs 0.133 0.688 0.713 0.125 0.712 0.694 3249 42061
DT cs 0.163 0.449 0.652 0.160 0.725 0.684 2561 –
BN cs 0.138 0.722 0.729 0.123 0.706 0.714 3433 44103

Table 4.16: Iteration 4: End-to-end classification, LR for items-bought

The differences between the cost-sensitive approach and undersampling are
small. We get the best local score when using Random Forest (us). However, Lo-
gistic Regression (us), Bayesian Network (cs) and Logistic Regression (cs) scores
almost as high. The Decision Tree stands out as the poorest classifier in both
cases, but we see improvement from the first iteration. Because the differences
in local scores are so small between the two approaches, we uploaded solutions
to RecSys Challenge for the best performing algorithms. From Table 4.16 we see
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that the only classifier performing better with cost-sensitive learning is Bayesian
Network. However, the difference in challenge score is only 0.3 percent. For
Logistic Regression and Random Forest the differences are 1.8 and 5.3 percent
respectively. Undersampling showed the overall best performance for challenge
score, and will be used in the following iterations.

4.7 Iteration 5: New features and probabilities
depending on time

The probabilities we have worked with up until now, are made up from the
entire time period of the data set and based on whether a session has clicked
once on an item or twice or more. Our analysis shows that the probabilities of
buying an item varies dependent on what time the session occurs. This may
vary from day to day, week to week, or month to month. In addition a time
dependent probability is likely to capture variations caused by sales, which was
not represented for all data in the data set. Based on this, we researched how
incorporating time of occurrence into the probability features would affect the
classification performance. The issue of making a probability for each item, for
every day of the time period, is that the number of clicks and buys on a given
day for a given item may be zero or very low. We have tried different regression
techniques to capture the varying probability of buying an item - one of them
being Loess Regression (see Appendix C). This approach proved to be too time
consuming and did not provide sufficient results. Another approach taken was to
use the probabilities from days. We looked at the probability of a session buying
the item the day the click occurred, as well as probabilities for the surrounding
days. We put a threshold on how many sessions that must have clicked the item
before accepting the probability. We will call this feature time prob. The first
steps in this section was to find the best threshold for accepting the probabilities
for time prob. The click dependency researched in Iteration 4 is still incorporated
in the probabilities.

Later in the section we will present two new features we extracted for items-
bought classification and buy-or-not classification. These two features are related
to a session clicking an item two or more times in a row.

4.7.1 Finding the best probability for items

We performed testing with different thresholds to improve the features built on
time prob - this was done for both items-bought classification and buy-or-not
classification.
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Items-bought

When searching for a threshold of number of clicks for accepting a given prob-
ability we tried 11 different levels: 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55. To
take an example, a session has clicked an item 04.05.2014 and the threshold is
set to 5. To find the probability of that session buying the item we first check
if more than five other sessions have clicked the item the same day. If that is
the case we set the probability to the number of sessions that has bought the
item that day divided by the number of sessions that has clicked the item that
day. Further, if the item is clicked 5 times or less we do not trust the probability
for that specific day and continue searching by looking at the day after. If the
accumulated number of sessions now are more than 5 we accept the probability,
else we continue searching on the 03.05.2014. This process continues until the
threshold is reached. If the threshold is not reached a weighted average between
the probability found in the time prob process and the average probability of
buying an item is returned.

Thresholds LS
Time 5 8943
Time 10 8992
Time 15 9024
Time 20 9026
Time 25 9028
Time 30 9020
Time 35 9026
Time 40 9017
Time 45 9015
Time 50 8996
Time 55 8993

Table 4.17: Iteration 5: Thresholds for time dependent probabilities, LR

In Table 4.17 we present the evaluation. To separate the different proba-
bilities from each other we used local score. We observe that the performance
of time prob increases as the threshold increases, up to a certain level. This
means that smoothed time prob probabilities are preferred over very day-specific
probabilities. When the threshold is set to 25 the local score reaches its peak.
We observe that by using time prob the performance of classification improves -
compared to what we saw in the previous iteration.
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Buy-or-not

Since we got a relatively low increase in performance by performing Loess Re-
gression compared to using time prob, and as the computational cost for finding
good fractions were so high, we decided to not perform Loess Regression for the
buy-or-not classification. In Table 4.18 you can see the results when testing dif-
ferent thresholds for time prob. The end-to-end test for producing local scores
was performed by using Logistic Regression (as this is a more stable classifier
than RF), and with the threshold for time prob for items-bought set to 25. As
seen for items-bought, the higher threshold values score better than the lowest,
and higher certainty is appreciated over day-specific probabilities. The local score
reaches its peak at 4020 with the threshold set to 70. This is an improvement
of what we saw in Iteration 4, and time prob will be used in the further testing
of buy-or-not classification. We decided not to output challenge scores for the
thresholds. This mainly because of time consumption.

Threshold LS
5 3671
10 3755
15 3827
20 3871
25 3910
30 3962
35 3980
40 3995
45 3993
50 3998
55 4009
60 4006
65 4011
70 4020
75 4014
80 4011
85 4014
90 4014
95 4010

Table 4.18: Iteration 5: Thresholds for time dependent probabilities, LR for
items-bought and LR for buy-or-not
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4.7.2 New features

In the following sections we introduce the new features extracted for both items-
bought and buy-or-not classification.

Items-bought

Feature Type Values IG IGR
consecutive returns Numeric 0 - ∞ 0.08665 0.1057

max time consecutive Numeric 0 - ∞ 0.09112 0.1054
time prob 25 Numeric 0 - 1 0.25477 0.0664

Table 4.19: Iteration 5: Extracted features, items-bought

We extracted three new features for items-bought classification in this itera-
tion. An overview can be seen in Table 4.19. Consecutive returns and max time consecutive
are related to a session clicking the same item twice or more in a row. Consec-
utive returns is the maximum number of times this has happened for a session-
item, while max time consecutive is the maximum duration between two such
clicks. This behaviour is kind of strange and most likely related to the user-
interface of the online-shop. We observed when analysing that this kind of be-
haviour dramatically increased the probability of the session ending up buying the
item (see Figure A.5). This feature will be strongly correlated with the number of
times a session has clicked an item, but it looked like it could be an even stronger
signal for a buy. The last feature we extracted was time prob 25 - extracted as
explained in Section 4.7.1. This feature will replace prob click dependent which
was used in earlier iterations.

Buy-or-not

Feature Type Values IG IGR
max consecutive returns Numeric 0 - ∞ 0.0131 0.01229

max time consecutive Numeric 0 - ∞ 0.0136 0.0104
time prob least one 70 Numeric 0 - 1 0.0495 0.01509

time prob max 70 Numeric 0 - 1 0.0412 0.01233
time prob avg 70 Numeric 0 - 1 0.0341 0.01025

Table 4.20: Iteration 5: Extracted features, buy-or-not

We extracted five new features. Three of these will replace features we al-
ready had in earlier stages of the process. Time prob least one 70 will replace
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least one prob, Time prob max 70 will replace max prob and Time prob avg 70
will be used instead of avg prob. The three new features related to the proba-
bilities were extracted as explained in Section 4.7.1. Further, we extracted two
features related to the behaviour of a session clicking the same item more than
once in a row. Max consecutive returns tells the maximum number of times a
session has clicked an item consecutively, while max time consecutive is the max-
imum duration between such clicks.

4.7.3 Classification

There have been extracted features for both items-bought classification and buy-
or-not classification. We wanted to know how these features affected the perfor-
mance of the classification. At least we expect the changes made to the probabil-
ity features to increase the performance. When testing for items-bought we used
Logistic Regression, as this classifier performed best in the last iteration. By the
same argument we test buy-or-not classification with Random Forest.

Items-bought

We tested items-bought classification with two sets of features. Set-1 contained
the features we had extracted before this iteration started, but with click dependent prob
replaced with time prob 25. The second set contained the same features as in Set-
1 as well as max time consecutive and consecutive returns.

Features Precision Recall ROC LS
Set-1 0.751 0.731 0.847 9028
Set-2 0.750 0.732 0.847 9030

Table 4.21: Iteration 5: Items-bought classification, LR

As expected, we observe from the results in Table 4.21 that the new probabil-
ity feature makes the Logistic Regression perform better than in earlier iterations.
When using the old probability in Iteration 4 we got a score of 8730. Further,
we notice that the two new features we included related to a session clicking an
item more than once in a row does not affect the performance drastically.

Buy-or-not

As for items-bought classification we chose to test two different set of features, to
better see the influence of the features we had extracted. Set-1 consists of all the
features we had extracted in Iteration 4, with the click-dependent probabilities
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Buy or not Items bought
Features Precision Recall ROC Precision Recall ROC LS
Set-1 0.139 0.752 0.813 0.134 0.741 0.699 3972
Set-2 0.140 0.757 0.815 0.135 0.741 0.699 4021

Table 4.22: Iteration 5: End-to-end classification, LR for items-bought and RF
for buy-or-not

replaced with time prob probabilities. In Set-2 the features related to consecutive
clicks on an item is also included.

In the previous iteration we got a local score of 3469, precision at 0.131 and
recall at 0.734 for buy-or-not classification, using Random Forest. In Table 4.22
we observe that replacing the old probabilities with new ones has increased the
performance on all evaluation measures. We also observe that adding the fea-
tures related to consecutive returns slightly increased the recall for buy-or-not
classification. Moreover, the score has increased further by close to one percent.
When we uploaded a solution to the RecSys challenge we got a score of 49957.
We included all the features we extracted in this iteration into the next. In that
iteration we will re-run a set of the classification algorithms we have used so far,
with and without feature selection, as well as optimizing parameters for Random
Forest and Logistic Regression. The Decision Tree will not be included as it has
produced poor results compared to the other algorithms.

4.8 Iteration 6: Optimizing algorithms

We have seen that both Logistic Regression and Random Forest have performed
well after solving the issue of unbalanced data by undersampling. As both these
algorithms have several possible parameters that can tune the classification to
better fit data sets with specific characteristics, we evaluated both classifiers
again, with the latest set of features. In addition to finding the best parameters,
we also performed feature selection for a set of classifiers, by using an imple-
mentation in Weka that optimizes the set of features with regards to one specific
classifier (see Section 2.2.4). The parameter search can be seen in Section 4.8.1,
and feature selection in Section 4.8.2

4.8.1 Parameters

The first step was to find the parameters we wanted to test. This was performed
by using a grid search implemented in scikit-learn (see Section 2.5). One aspect in
terms of parameters is how well the classifier should be fitted to the training data,
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in order to find a middle ground between overfitting and underfitting. Further
the two classifiers have different possible parameters, which thus were looked
at separately. The measure used to select the best parameters is ROC. ROC
was used as this measure evaluates the algorithms on different discrimination
levels and is an established measure for unbalanced data sets (see Section 2.4.2).
Optimally this should have been done using the RecSys score, which would have
required a tailored implementation.

Random Forest

Two of the parameters we evaluate for Random Forest are concerned with the
concept of how fitted the model should be to the training data. The first one is
a parameter called min samples split, which gives a minimum threshold of how
many samples that have to be present within an internal node in a tree in order
to split it into new nodes. A lower number of allowed samples will result in a
more tightly fitted classifier, while a higher number will yield a more general
classifier with the risk of information loss. The second parameter concerning this
is called max depth and sets a number indicating how deep a tree is allowed to
be built. A deeper tree will have more node splits and thus a more tightly fitted
tree. If this parameter is set to None, the tree will build until all leaf nodes
are only contain samples of the same class label, or until all leaf nodes contain
less samples than the value set in the parameter min samples split. The optimal
value of both these parameters will vary dependent on the number of training
samples. The third parameter we tested was the evaluation measure for deciding
which feature should be used for splitting a node. We used Entropy and Gini,
which are two widely used split criteria [30]. For a single decision tree the default
setting is to consider all features in the training data before splitting a node.
Random Forest builds several decision trees, and uses a vote from each tree for
making classifications. In order to build trees more robust to noise and outliers,
it can be an advantage to not use all features to build all trees (see Section 2.3.4).
The Random Forest implementation thus offer a parameter max features where
the number of features to consider at each split are set.

Parameter Values
max depth 3, 7, None

min samples split 1, 50, 100, 150, 200, 250, 300, 350, 400
criterion gini, entropy

max features 1, 7, auto

Table 4.23: Iteration 6: Parameter grid for Random Forest
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Logistic Regression

The variable concerning overfitting/underfitting for Logistic Regression is named
C, which sets the regularization strength, in that a higher value of C will yield
a more tightly fitted classifier. Another important aspect for Logistic Regression
is how to optimize the weights used by the model. We tested three different
methods for this optimization: newton-cg, lbfgs and liblinear. As loss function,
L1 and L2 were tested (see Section 2.3.5), which use absolute sum of error and
sum of square respectively as inputs to the optimization method. Only liblinear
supports the L1 function. The final parameter we tested is called max iter and
is mainly important in order to control the computational time, by giving a
maximum number of iterations used before the optimization with newton-cg and
lbfgs is considered converged.

Parameter Values
C 0.01, 0.1, 1.0, 10, 100, 1000

solver newton cg, lbfgs, liblinear
penalty L1, L2
max iter 100, 300, 500

Table 4.24: Iteration 6: Parameter grid for Logistic Regression

The results from parameter grid search for Random Forest and Logistic Re-
gression can be seen in the list below.

• Items bought

– Random Forest

∗ max features = auto

∗ min samples split = 350

∗ criterion = entropy

∗ max depth = None

– Logistic Regression

∗ penalty = l2

∗ C = 1000

∗ max iter = 100

∗ solver = liblinear

• Buy or not

– Random Forest
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∗ max features = 7

∗ min samples split = 200

∗ criterion = entropy

∗ max depth = None

– Logistic Regression

∗ penalty = l2

∗ C = 1000

∗ max iter = 300

∗ solver = newton-cg

4.8.2 Feature Selection

As stated in the introduction of Iteration 6, we performed feature selection. The
method for feature selection implemented by Weka can be read about in Section
2.2.4. We used ROC as evaluation measure here as well, and the rest of the
parameters can be seen in Appendix B. Table 4.25 displays the best features for
items-bought classification.

Classifier Features
Random Forest first, last, time prob
Logistic Regression first, last, item duration, time prob, n clicks,

max time consecutive, consecutive returns
Naive Bayes firs, last, time prob
Bayesian Network first, last, item duration, time prob

Table 4.25: Iteration 6: Features after running feature selection, items-bought

Further we also performed feature selection for buy-or-not classification, of
which the results are listed in Table 4.26.

4.8.3 Classification

In this section we will evaluate the different algorithms with optimized parame-
ters, with and without feature selection.

Items-bought

The Naive Bayes classifier has not been evaluated since Iteration 1, where it pro-
duced overall good results, and will be re-evaluated in this iteration. In addition
we have tested Logistic Regression, Bayesian Network and Random Forest. All
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Classifier Features
Random Forest max time consecutive, time prob avg,

time prob max, avg time perclick, duration,
time prob least one

Logistic Regression max return, max time consecutive, time prob avg,
clicks, avg clicks, avg time perclick,
time prob least one

Naive Bayes consecutive returns, time prob avg, time prob max,
avg time perclick, time prob least one

Bayesian Network max return, time prob avg,
max time between clicks, avg time perclick,
time prob least one

Table 4.26: Iteration 6: Features after running feature selection, buy-or-not

algorithms were tested with and without feature selection, and Random Forest
and Logistic Regression were run with the parameters found in Section 4.8.1.

With Feature Selection Without Feature Selection
Classifier P R ROC LS P R ROC LS
RF 0.740 0.740 0.841 9059 0.750 0.750 0.853 9272
LR 0.745 0.732 0.845 8960 0.745 0.732 0.845 8960
NB 0.739 0.740 0.844 8976 0.826 0.386 0.835 6047
BN 0.752 0.721 0.843 9112 0.777 0.579 0.831 8028

Table 4.27: Iteration 6: Items-bought classification, with/without feature
selection

As seen in Table 4.27, Naive Bayes performed a lot better after feature se-
lection, which indicate that the full feature set contains dependencies. Naive
Bayes assumes conditional independence between features given the class. Thus,
the probability estimates outputted from the classifier when this assumption is
not met will be lower than their real probabilities. Thus we observe that the
precision decreases, while the recall increases. Bayesian Network also improves
after feature selection, which is rather surprising as a Bayesian Network can work
as a feature selector at its own (Hruschka et al. [17]). Further, we observe that
the performance of the Random Forest algorithm has decreased with regards to
ROC after feature selection. This is rather strange as the the wrapper should
have maximized the ROC-score of the classifiers.
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Buy-or-not

Buy-or-not Items-bought
Classifier P R ROC P R ROC LS
RF 0.148 0.748 0.822 0.139 0.755 0.715 4178
LR 0.160 0.686 0.816 0.148 0.755 0.710 4007
NB 0.171 0.547 0.791 0.165 0.754 0.742 3362
BN 0.146 0.735 0.812 0.136 0.746 0.735 4005

Table 4.28: Iteration 6: End-to-end classification, without feature selection.
Items-bought with RF

Buy-or-not Items-bought
Classifier P R ROC P R ROC LS
RF 0.148 0.750 0.822 0.139 0.750 0.717 4149
LR 0.158 0.685 0.815 0.147 0.762 0.711 4015
NB 0.169 0.594 0.800 0.163 0.755 0.723 3661
BN 0.143 0.769 0.821 0.133 0.754 0.725 4129

Table 4.29: Iteration 6: End-to-end classification, with feature selection.
Items-bought with RF

In Table 4.29 we observe that Naive Bayes, Bayesian Network and Logistic
Regression perform better after feature selection, when it comes to local score.
Again, this is as expected for Naive Bayes, but rather surprising for Bayesian
Network. Random Forest performs best, and performs more or less similar with
and without feature selection.

Buy or not Items bought
Feature selection P R ROC P R ROC LS CS
no 0.148 0.748 0.822 0.139 0.755 0.715 4178 52670
yes 0.148 0.750 0.822 0.139 0.750 0.717 4149 52635

Table 4.30: Iteration 6: End-to-end classification, RF for both items-bought
and RF for buy-or-not

Since the difference in local score was so small for Random Forest we ran
an end-to-end test with challenge score. The results are seen in Table 4.30. In
conclusion to this iteration we ended up with Random Forest without feature
selection as the best classifier for both buy-or-not classification and items-bought
classification, after finding the optimal parameters.
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4.9 Iteration 7: Using multiple models

The data from the RecSys Challenge spans over several months. It is not unlikely
that the user behaviour varies over time, and that a signal for a buy is not the
same in April as in August. Change of consumer behaviour may be related to
the time of year or changes made to the online store. In this section we make
several models, one for each time period. The time periods should be as small
as possible, but one still has to have enough data to build reliable classification
models. There will be experimented with a time period set to one day, one week,
two weeks and one month - and all the available data will be used. We will use
Random Forest with the optimal parameters found in the previous section for
all models, although this may not be optimal for all periods - because of the
varying amount of data. It would have been too time consuming to optimize the
parameters towards all time period lengths, although this could have improved
the results. The only change made to items-bought classification is the number
of classification models, thus the section about items-bought will be left out.

4.9.1 Buy-or-not

In Iteration 5 we introduced undersampling of the data set for buy-or-not classi-
fication. We undersampled the data set by using the ratio between buy-sessions
and not-buy-sessions for the entire time period. When we are to make classifica-
tion models for different time periods we have to use the ratio in the given time
period when undersampling. Not-buy-sessions are undersampled by randomly

removing
(

1− |buy-sessions|
|no-buy-sessions|

)
· 100 percent of the sessions.

4.9.2 Classification

When the time period was set to month, we used the six months represented in the
data set, while when using other time periods we iteratively picked the respective
number of days from the start day. In Table 4.31 the results for each month,
when using one month as time period, are shown. The comparison between the
different time periods is shown in Table 4.32.

We observe that the results for the first month are drastically better than the
results for the other months, which are more similar to each other. One reason
for why we observe this could be noise in the test set we are using, but we can not
exclude the possibility that it actually is easier to classify consumer behaviour
in the first month. Further, we see that the local score has increased from 4178,
in Iteration 6, to 4413. The large increase in local score is most likely caused by
the differences between the first month and the others. To further explore the
differences between the months we uploaded a solution to the RecSys Challenge.
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Buy or not Items bought
Month P R ROC P R ROC
Month 1 0.205 0.866 0.889 0.230 0.874 0.786
Month 2 0.141 0.746 0.815 0.126 0.748 0.722
Month 3 0.137 0.712 0.801 0.125 0.727 0.705
Month 4 0.143 0.728 0.804 0.132 0.726 0.687
Month 5 0.148 0.750 0.832 0.143 0.759 0.702
Month 6 0.145 0.752 0.830 0.135 0.710 0.682

Table 4.31: Iteration 7: End-to-end classification, RF for items-bought and RF
buy-or-not. Comparison of months

If the increase in challenge score showed similar behaviour as the local score, we
could with a higher certainty say that the strange behaviour we observed locally
was not a result of noise in the test set.

Buy or not Items bought LS CS
Month 0.153 0.762 0.833 0.145 0.758 0.721 4413 55349
Two weeks 0.153 0.762 0.834 0.145 0.759 0.722 4424 55272
One week 0.153 0.764 0.8235 0.144 0.760 0.726 4437 55135
One day 0.144 0.748 0.823 0.137 0.762 0.731 4184 -

Table 4.32: Iteration 7: End-to-end classification, RF for items-bought and RF
buy-or-not. Comparison of time periods

In the first line in Table 4.32 the challenge score when using months as time
period is shown. Iteration 6 ended up with a challenge score of 52670, and it
has now increased to 55349. Thus the peculiar observations from the test data
seems to be represented in the challenge data as well. Anyways this shows that
there are differences in terms of behavior between the months. After researching
this phenomenon further, we saw that almost all items bought in the first month
were clicked twice. This was not the case in later months. The results for two
weeks, one week and one day can also be seen in Table 4.32. It can look like
the amount of data is not sufficient when the time period is set to one day, as
it performs worse than the rest. The results for one month, two weeks and one
week are rather similar, and making the period shorter than one month does not
affect the performance drastically. This could be because the largest difference is
found between the first month and the rest of the period, and models based on
months will also capture this.
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4.10 Iteration 8: Optimizing towards scoring-function

In this iteration we look closer at the scoring-function the RecSys Challenge uses
for evaluating solutions. The scoring-function is as follows:

Score(Sl) =
∑
∀s∈Sl

{ |Sb|
|S| + |As∩Bs|

|As∪Bs| if s ∈ Sb

− |Sb|
|S| else

(4.3)

where Sl is the sessions you have predicted buys for; Sb is the sessions that
actually have bought something; S is all the sessions; As is the set of items that
the session has bought; and Bs is the set of items that are predicted as bought
by the session. Let P (Buy) = p, the expected score of predicting a session as a
buy session is then:

p ·
(
|Sb|
|S|

+
|As ∩Bs|
|As ∪Bs|

)
+ (1− p) ·

(
−|Sb|
|S|

)
(4.4)

We observe that most of the variables in the equation above are known. The

only terms unknown is p and |A∩B|
|A∪B| , and thus the only terms that need to be

estimated. In the next sections we will look at how items-bought and buy-or-not
classification can be used for solving these tasks.

4.10.1 Buy-or-not optimization

Most classifiers can produce probability estimations of an instance belonging to
a given class. Some classifiers do this naturally, as Naive Bayes and Logistic
Regression, while others use techniques related to their structure. An example
is the Decision Tree which can use the fraction of positive and negative samples
in a leaf node to produce a probability estimate for an unclassified sample. In
this iteration we make use of the probability estimates the classifiers output to
estimate the probability of a session buying, that is P (buy).

When exploring what classifier that produces the best probabilities we have
used Brier score (see Section 2.4.2). The Brier score measures accuracy for prob-
abilistic predictions. From Table 4.33 we observe that Random Forest is the
classifier performing best when it comes to Brier score, and thus outputs the best
probability estimates. In Figure 4.1 you can see a plot of how well the probability
estimates are. We have plotted the probability estimates from Random Forest for
the second month in the time period versus a perfectly calibrated classifier. There
are methods for improving probability estimates (Niculescu-mizil and Caruana
[28]). However, the estimates outputted from Random Forest already follows the
calibration curve well.

Since we have trained our classifiers on an undersampled training set the
probability estimates from the classifiers do not reflect the real probability of a
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Figure 4.1: Calibration plot, buy-or-not for second month using RF vs perfectly
calibrated classifier (code adapted from [26])

Classifier Calibration Brier score
Random Forest None 0.158

Bayesian Network None 0.199
Naive Bayes None 0.230

Logistic Regression None 0.230

Table 4.33: Iteration 8: Brier score for different algorithms, buy-or-not

session ending up buying. A model trained on an undersampled set will produce
higher probabilities for the positive class than a classifier trained on the unmod-
ified data set. We trained our model on a data set where ratioundersampled = 1

1

between the positive and the negative samples, and ratioreal = |not-buy-sessions|
|buy-sessions| .

Thus we have to rescale the probability estimates for them to make sense. Let
x be the probability outputted from a classifier trained on the undersampled
training set for a given test sample. The classifier thus states that x · 100 out of
hundred such samples are positive, and (1−x) · 100 are negative. Given that the
data set was undersampled, the actual number of negative samples is estimated
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to (1− x) · 100 · ratioreal. Thus we scale the probabilities as follows:

pnew =
pold

pold + (1− pold) · |not-buy-sessions||buy-sessions|

(4.5)

where pnew is the probability we will use in our optimization and pold is the
probability from the classifier trained on the undersampled training set. For
|not-buy-sessions|
|buy-session| we will use the ratio between buys and not-buys from the hour

the session was active, and thus incorporating information about the probability
of a session buying something given the exact time. As we saw in Figure 3.1,
Figure 3.2 and Figure 3.4 the probability of a session buying varies over time.

4.10.2 Items-bought optimization

We estimated the probability for a session ending up buying, the next step is to

estimate the term |A∩B|
|A∪B| . Up to this point classification has been used for deciding

whether the session ended up buying an item or not. Now, as for buy-or-not,
we make use of the probabilities the classifiers output. These probabilities can

be used for computing the maximum expected score for the term |As∩Bs|
|As∪Bs| per

session.
To introduce the approach for finding the maximum expected score we will

look at an example where the session has visited only two items, it1 and it2.
Further, we will assume that the classifier has estimated that the probability of
the session buying it1 is larger than it2, P (it1) > P (it2). Given that the session
has visited two items we face three interesting choices for what we could predict.
The session can buy either it1 or it2, or it can buy both. We will now derive
equations for the maximum expected score for the three different cases. Let p1
be the probability estimate of the session buying it1, and let p2 be the same for
the second item. The maximum expected scores are then

Exp(buy it1 and ¬buy it2) = p1·p2

2 + p1 · (1− p2) · 1 + p2(1− p1) · 0 = p1 − p1·p2

2 (4.6)

Exp(¬buy it1 and buy it2) = p1·p2

2 + p1 · (1− p2) · 0 + p2(1− p1) · 1 = p2 − p1·p2

2 (4.7)

Exp(buy it1 and buy it2) = p1 · p2 · 1 + p1·(1−p2)
2 + p2·(1−p1)

2 = p1

2 + p2

2 (4.8)

We see from the equations that predicting that the session buys only it2 never is
better than predicting only it1, given p1 > p2. Thus, one will never predict an
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item as bought unless all the items with higher probability also are predicted as
bought. We also want to know when we should predict that the session bought
both items instead of only the item with the highest probability, and opposite.
Say both if

Exp(buy it1 and buy it2) > Exp(buy it1 and ¬buy it2) =⇒ p1 < p2

1−p2
(4.9)

and say only it1 if

Exp(buy it1 and buy it2) ≤ Exp(buy it1 and ¬buy it2) =⇒ p1 ≥ p2

1−p1
(4.10)

In Figure 4.2 you can see a graphical representation of the probability thresholds
for two items.

Figure 4.2: Probability thresholds for two items

Generally finding the maximum expected score is done by sorting the items a
session has visited by the probability estimates from the classifier. After this is
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done you compute the expected score like explained above for: buying the first
item; then for buying the first and second item; and so on. The maximum of
these computations is set to be the maximum expected score.

item1 item2 item3

0.7 0.4 0.1

Table 4.34: Iteration 8: Probability for buying items, example

We will now go through an example where a session has clicked three different
items. The probabilities of the session buying the different items are presented
in Table 4.34. We observe that the items are sorted. The next step is to compute
the probability of each combination of items. We will compute the probability of
the session buying no items first, and then continue in a binary counting order
until we have reached 111, where all items are bought. This is illustrated in Table
4.35

item1 item2 item3 probability
0 0 0 0.162
0 0 1 0.018
0 1 0 0.108
0 1 1 0.012
1 0 0 0.378
1 0 1 0.042
1 1 0 0.252
1 1 1 0.028

Table 4.35: Iteration 8: Probability of all item combinations, example

Finally, we have to compute the maximum expected score. As mentioned
above we have to compute the expected score for three different cases. We will
start with the one where the session only buys item1. We observe in 4.35 that
there are four cases where the session ends up buying item1. The expected score
is computed as follows

Escore(1, 0, 0) = P ([1, 0, 0]) · [1, 0, 0] · [1, 0, 0]

[1, 0, 0] ∨ [1, 0, 0]
+ ... + P ([1, 1, 1]) · [1, 0, 0] · [1, 1, 1]

[1, 0, 0] ∨ [1, 1, 1]

= 0.378 · 1

1
+ 0.042 · 1

2
+ 0.252 · 1

2
+ 0.028 · 1

3
= 0.534

(4.11)

For the other two cases the scores are respectively 0.54([1,1,0]) and 0.40([1,1,1]).
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The maximum expected value is thus 0.54, and we should predict that the session
ends up buying item1 and item2 to maximize our score.

Classifier Calibration Brier score
Random Forest None 0.156

Bayesian Network None 0.194
Naive Bayes None 0.173

Logistic Regression None 0.160

Table 4.36: Iteration 8: Brier score for different algorithms, items-bought

As for buy-or-not classification we have evaluated a set of classifiers with
respect to their probability estimates by using Brier score. In Table 4.36 it is
shown that the Random Forest classifier outputs the best probability estimates.
As for buy-or-not we have drawn the probability estimates from the Random
Forest classifier against a perfectly calibrated classifier. The result can be seen
in Figure 4.3. As for buy-or-not the probability estimates from Random Forest
follows the perfectly calibrated line well.
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Figure 4.3: Calibration plot, items-bought for second month using RF vs
perfectly calibrated classifier (code adapted from [26])

4.10.3 Classification

When doing classification we have set the time period to month, two weeks, one
week and one day. Random Forest is used for both items-bought and buy-or-not
classification, with the optimized parameters from Iteration 6, as this classifier
gave the best probability estimates. A session is said to be a buy-session with
the items providing the maximum expected score if and only if:

p ·
(
|Sb|
|S|

+
|As ∩Bs|
|As ∪Bs|

)
+ (1− p) ·

(
−|Sb|
|S|

)
> 0 (4.12)

In Table 4.37 we present the final results we got in the RecSys challenge.
We observe that the time periods performed more or less similar, except when
the time period was set to one day. However, the results when using one day
is closer to the others in performance of local score now than in the previous
iteration. The probability estimates from the classifier when using one day looks
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Time period LS CS
Month 4624 56778.7

Two weeks 4650 56944.6
Week 4651 56852.5

One day 4592 -

Table 4.37: Iteration 8: Final results in the RecSys Challenge

to be almost as accurate. We get the best performance when the time period is
set to two weeks. In Iteration 7 we stated that we wanted to find a time period as
small as possible, which still provided enough data to build reliable classification
models. A time period that spans over two weeks thus looks to be the middle
ground between these two concerns.
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Chapter 5

Evaluation and Conclusion

In Section 5.1 we evaluate the research objectives presented in Section 1.2. In
Section 5.2 we consider how recommender systems can apply our findings to
increase revenue and user satisfaction, and we summarize our contributions in
Section 5.3. The last section comprises of suggestions of how to further develop
the concepts of classifying sessions in e-commerce.

5.1 Evaluation

In Section 1.2 we stated two research objectives. The first research objective
was to decide if a session from an online store ends up buying or not. Given
our data set, guessing randomly if a session bought something or not would
have yielded approximately a precision and recall at 0.055 and 0.50 respectively.
We have shown by using classification that this performance can be drastically
improved. In Section 4.9 the precision and recall had increased to 0.153 and 0.762
respectively. Through the iterations in Chapter 4 the probabilities of buying
the respective items proved to be the largest contributor towards the results.
Some items have a higher probability of being bought or influencing a session to
buy, when clicked. Moreover, it is important to take the time of occurrence into
consideration. An item’s probability of being bought varies over days, and further
also depends heavily on the time of the day. The variance between days is most
likely affected by when the items are on sale and what season it is. Consumers
are more likely to buy a lawn mower at the start of the summer than at the
end, and the probability of buying an item may increase when the item is on
sale. Even more intuitive is it that sessions with a longer duration and a higher
number of clicks have a higher probability of ending up buying. Further, several
clicks on same item during a session is a strong buy-signal for the session - e.g

95
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buying that particular item. However, this does not hold for all items. There
exist certain items that still have a low probability of leading towards buys, or
ending up being bought, even when clicked twice or more. We observed this when
making the probabilities for buying a specific item dependent on the number of
clicks the session had on that particular item.

The second objective was to decide what items a predicted buy-session bought.
By randomly guessing what items a session - from a set consisting of sessions pro-
duced by our buy-or-not classification in Section 4.9 - bought we got a precision,
recall and score of 0.085, 0.421 and 20697 respectively. By using Random Forest
for classification we improved the precision, recall and score to 0.145, 0.758 and
55349 respectively. Repeatedly clicking an item turned out to a be a strong sig-
nal for the session ending up buying that item. We also explored the differences
between items when it comes to how likely it is that a buy-session ends up buying
it, given that the buy-session has clicked it. The difference from the probabilities
used for buy-or-not classification is that only actions made by buy-sessions are
considered. Moreover, as for buy-or-not classification, we introduced the time of
occurrence and number of clicks into the probabilities. The differences between
items proved to be the most important factor when deciding what items a session
purchased. Further, the interest a session has for an item is also associated with
the time of interaction during the session. A session often has a high interest in
the first item it clicks, as well as the last.

We also observed that splitting the training data in several time periods and
making a classification model for each of them - instead of having one global
model - increased the performance for both buy-or-not classification and items-
bought classification. One reason for this was that the behaviour in the first
month drastically stood out from the rest, making the global model too general.
What we observed was that almost all items bought where clicked two times or
more when bought in the first month, making this a really strong buy-signal.
This might be caused by the design of the e-commerce site, which may have
been changed after the first month of the period - introducing new behavioral
indicators of buy. Thus, it can be important to revise how a consumer’s actions
should be interpreted after doing modifications to the design and functionality of
an e-commerce site.

After the final step - where we used the probabilities outputted from the
classifier to optimize the solution towards the RecSys scoring function - we got
a final score of 56944. This gave us a top 5 ranking, among 338 teams, in the
RecSys Challenge one week before the deadline.

The problems of deciding if a session ended up buying and what it bought
have been looked at as more or less two separate tasks. It could have been more
beneficial to look at these tasks as more dependent of each other. How to predict
what items a session buys is most likely dependent on what sessions you are to
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predict buys for. Our approach for optimizing the solution can be seen in 4.2.3 -
where a more dependent, iterative alternative also is presented. The amount of
training and test data used is small compared to the available amount of data -
at least for the first iterations. It can be argued that larger data sets would have
yielded more accurate results, and made the decisions towards the final solution
more optimal. It should have been tested more thoroughly if the amount of
training and test data was sufficient.

5.2 Discussion

We have extracted information from anonymous, sparse session data from an e-
commerce site and used this information to predict buys of consumers. In the
following we discuss other applications for the information extracted.

In practice, recommender systems applies information about users and their
previous interactions, in order to make suitable suggestions. This information is
based on either implicit or explicit ratings from the users. Explicit ratings are
produced by letting the user give feedback for an item, while implicit ratings
are calculated by the system itself based on the user’s interactions with an item.
Recommender systems usually make use of several types of events - such as clicks,
adding to chart, current site view etc. - when calculating implicit ratings. We
do not possess information about other events than items clicked. However, the
information we have extracted contains indicators of user preferences, which may
be valuable when making implicit ratings for a recommender system.

Most recommender systems gather large amounts of data about users, which
creates a risk of leakage of private information. As stated by Jeckmans et al. [18],
many users do not know how much and if their data is collected, how securely this
information is stored, and if the information is sold to third parties. McSherry
and Mironov [25] look at an example of how a person can take advantage of a
recommender system to discover the interests of users and reveal their identity. In
the example the anonymous data set from the Netflix Prize - a competition held
by Netflix on making a movie recommender system [27] - was used. A person X
was able to link user Y ’s stored Netflix Prize Dataset record to Y ’s public IMDB
profile, thus matching an anonymous data record to a public profile. Although
movies and movie recommendations might not be the most private matter, this
example illustrates one of the pitfalls of storing information about consumers.
Given this, one can imagine that there is an increasing number of consumers
that wish to be anonymous when using recommendation systems - e.g using
incognito mode in the web browser, where the web browser does not remember
the browsing history. Thus recommender systems need to be able to handle
recommendations based on anonymous session data. By using classification we
have extracted information solely based on such data, which can be of use in
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these situations. Moreover, one could imagine that recommender systems solely
based on session data will emerge in the future - providing the desire of privacy
for the users.

5.3 Contributions

We have shown that one can gather information about an online e-commerce
user’s preference solely based on anonymous sparse session data. This information
has been used for predicting if a session bought, and in that case, what items
it bought. Given the concerns regarding privacy and leakage of information,
recommender systems face a challenge in the future of being able to cope with
anonymous data. The way to extract information from session data used in this
thesis may be of interest for this research field. The information provided can
also be useful when making implicit ratings that are to be used in a recommender
system.

5.4 Future Work

When making decisions about which items a session bought we have assumed that
the items are independent of each other. More formally we have assumed that
P (buy it1 ∧ buy it2) = P (buy it1) · P (buy it2), where it1 and it2 are two items
(see Section 4.10). Such an assumption may not be correct - the probability of
buying it2 may be dependent of which item it1 is. We have tried several strategies
for solving this problem, but none of these has shown good results. We think
that there is potential improvement if one can find a good way of finding the
dependencies between items.



Appendix A

Analysis

A.1 Buy-or-not

Here we present the rest of the analysis conducted for buy-or-not classification.

A.1.1 Time

If a session watches an item for a short amount of time, this could mean that the
session is more like a surfer (only browsing the website) than a buyer. Moreover,
if a session spends some time watching all the items it has visited we imagine that
this session closely considers which of the items it likes the best, and is therefore
a more probable buyer. In Figure A.1 we see that the probability of a session
ends up buying something increases as the minimum time spent watching an item
increases. If a session has watched an item for close to 0 seconds the probability
of this session buying is close to 1 percent. If a session has watched all his items
for above 100 seconds the chances of that session buying is close to 5 percent.
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Figure A.1: Relationship between maximum item duration for a session and
percent of buy-sessions
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Figure A.2: Relationship between the maximum time between clicks for a
session and percent of buy-sessions

We know that the longer a session lasts the higher are the probability of that
session ending with a buy. It would be intuitive to think that a session with
a longer duration spends more time looking at each item. Could it be that a
long time spent watching a single item would increase the probability of a session
buying something? In Figure A.2 we have plotted the maximum time spent
between two clicks in a session. We observe that the longer the longest time
between two clicks in a session are, the higher are probability of that session
buying something. The measure of max duration between clicks and session
duration have an obvious dependency in that the longer max duration between
clicks are, the longer will the session duration for that particular duration be.

A.1.2 Clicks

In Figure A.3 we measure the average clicks per item in the sessions. We can see
from this graph that it is more evenly distributed than the two previous graphs,
and thus can be harder to get useful information from regarding if a session
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Figure A.3: Relationship between the average number of clicks for a session and
percent of buy-sessions

buy something. However we do see a general increase in the probability for the
sessions with more than one click one average. This is, of course, strongly related
to what we saw in Figure 3.7.

A.1.3 Items

Figure A.4 shows a scatter plot for the relationship between the duration of a
session and the maximum probability of buying an item this session has clicked.
As each item in the data set has a certain global probability of being bought, the
maximum probability used here, is the highest item probability of all the items a
session has clicked. We can not see any dependency between how long a sessions
lasts, and what the maximum probability of the items they click is. Further we
see that most of the sessions have a session duration between 0 to 100 seconds
and only click items with probability less than 10 percent.
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Figure A.4: Frequency of sessions, given maximum probability of an item a
session has clicked and the session duration

A.2 Items-bought analysis

Here we present the rest of the analysis conducted for items-bought classification.

A.2.1 Clicks

We observed in Section 3.2 that clicking an item several times without clicking
an other item in between was a strong signal for that the session ended up buying
something. In Figure A.5 the blue line shows the maximum time a session has
spent between two such clicks on the x-axis, and the probability of that session
buying the item on the y-axis. If an item was not clicked two or more times
consecutively the duration is set to 0 seconds. We observe that such items are
bought around 40 percent of the time. Further we see that the probability of
buying items of which has been clicked consecutively, increases drastically up to
around 50 seconds, and then has a steady increase.
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Figure A.5: Percent of items bought, given maximum time between two
consecutive clicks

A.2.2 Items

It would be nearby to think that the probability of a session buying an item is
strongly correlated with the probability of a session buying an item given that
the session bought something. In Figure A.6 we can see that this is the case.
However, there are some items that shows us that there can be some differences.
There exists items which have been clicked more by no-buy sessions and therefore
the percentage of these items being bought increases more when you only include
buy-sessions.
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Figure A.6: Percent of buy-sessions buying item given click on item, sorted by
percentage of a session buying the item
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(a) The percent of buy-sessions that have
bought a specific item alone

(b) Item price sorted by percent of
buy-sessions that bought item alone

(c) Average number of buys for a session, given the maximum percentage of the
session buying an item alone

Figure A.7: Item dependencies

In Section 3.3.1 we saw that the average number of items a session ends up
buying depends on when the session occurred. Here we want to explore if certain
items also affect the number of buys. In Figure A.7a we have plotted the items
on the x-axis and the percentage of sessions that ends up buying that item alone
on the y-axis. We observe that there are some items that are bought more often
alone than others. A reasonable explanation for this can be the price of the items.
One would assume that the more expensive an item is the more probable is it
that the session only ends up buying that item. In Figure A.7b we have plotted
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the items in the same order as in Figure A.7a, but plotted the price of the items
on the y-axis instead. We observe that there is a correlation between the price
of the item and the probability of a session buying that item alone, supporting
our assumption. We conclude this discussion with the results from Figure A.7c.
Here we have plotted the maximum percentage of the session buying an item
alone(given what items the session has clicked) on the x-axis and the average
number of buys on the y-axis. We see that if a session clicks an item that have
a high probability of being bought alone, the session ends up buying less items.
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Appendix B

Parameters

B.1 Parameters for classification algorithms

Here we present the default parameters used for all algorithms. When other
parameters are specified, these are changed. The other possible parameters have
the default values stated here.

B.1.1 Random Forest - scikit-learn

RandomForestClassifier(n estimators=200, criterion=’gini’, max depth=None, min samples split=2,
min samples leaf=1, min weight fraction leaf=0.0, max features=’auto’, max leaf nodes=None,
bootstrap=True, oob score=False, n jobs=1, random state=None, verbose=0,
warm start=False, class weight=None)

B.1.2 Random Forest - Weka

Only used for cost-sensitive learning
RandomForestClassifier(debug = False, doNotCheckCapabilities = False, dont-
CalculateOutOfBagError = False, maxDepth = 0, numExecutiveSlots = 1, num-
Features = 0, numTrees = 100, printTrees = False, seed = 1)

B.1.3 Decision Tree - scikit-learn

DecisionTreeClassifier(criterion=’gini’, splitter=’best’, max depth=None, min samples split=2,
min samples leaf=1, min weight fraction leaf=0.0, max features=None, random state=None,
max leaf nodes=None, class weight=None)
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B.1.4 Decision Tree - Weka

Only used with cost-sensitive learning.
DecisionTreeClassifier(binarySplits = False, collapseTree = True, confidenceFac-
tor = 0.25, debug = False, doNotCheckCapabilities = False, doNotMakeSplit-
PointActualValue = False, minNumObj = 2, numFolds = 3, reducedErrorPrun-
ing = False, saveInstanceData = False, seed = 1, subtreeRaising = True, un-
pruned = False, useLaplace = False, useMDLcorrection = True)

B.1.5 Logistic Regression - scikit-learn

LogisticRegression(penalty=’l2’, dual=False, tol=0.0001, C=1.0, fit intercept=True,
intercept scaling=1, class weight=None, random state=None, solver=’liblinear’,
max iter=100, multi class=’ovr’, verbose=0)

B.1.6 Logistic Regression - Weka

Only used for cost-sensitive learning.
LogisticRegression(debug = False, doNotCheckCapabilities = False, maxIts = -1,
ridge = 0.00000001, useConjugateGradientDescent = False)

B.1.7 Naive Bayes - scikit-learn

GaussianNB()

B.1.8 Bayesian Network - Weka

BayesNet(BIFFile=”, debug=False, doNotCheckCapabilities=False, estimator=SimpleEstimator
-A 0.5, searchAlgorithm=K2 -P 1 -S BAYES, useADTree= False)

B.1.9 Cost-sensitive learning - Weka

CostSensitiveClassifier(classifier=’CHOOSECLASSIFIER’, costMatrix=2*2 cost
matrix, costMatrixSource=Use explicit cost matrix, debug=False, doNotCheck-
Capabilities=False, minimizeExpectedCost=True, onDemandDirectory=Weka-3-
7, seed=1)

B.1.10 Feature Selection wrapper - Weka

WrapperSubsetEval(conservativeForwardSelection=False, debuggingOutput=False,
generateRanking=False, numExecutionSlots=1, numToSelect=-1, searchBackwards=False,
startSet=”, threshold=-1.7976931348623153E308)
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Loess Regression

For items-bought classification, we tested Loess Regression with fractions from
0 to 1 with intervals of size 0.1. Each point in the regression for an item was
the probability of buying that item that day. A fraction of 0 means that no
smoothing is applied, while a fraction of 1 means that all data points are used.
In order to see which fraction worked best we measured the score with Logistic
Regression classification with all the features we have presented so far. Logistic
regression was preferred over Random Forest for this task as it is a more stable
classifier, it produces the same result given the same input when classifying. As
the items have a big difference in their click distribution, we looked at splitting
the items in different data sets and run Loess Regression on each part. In total we
ended up with four sub sets: as earlier we have split the items on the number of
clicks, one with the probabilities for buying items when clicked once (P1) and one
with the probability of buying if clicked twice or more (P2); and then these two
were split depending on whether the items had more or less than 10 in standard
deviation (in terms of number of clicks). Items that in some periods have a lot
of clicks, are likely to give relatively accurate probabilities, such as items on sale
which we have seen generates a lot of clicks. As there are a period of sales in the
last part of the time period, we figured that items with high standard deviation
have a higher probability of being on sale in this period, and thus may be better
of with a smaller fraction in the Loess Regression.

Splitting the items on standard deviation resulted in four different sets of items
we had to optimize the fraction for. Testing all combinations would have been
too computationally expensive. Instead we chose to randomly select a fraction for
each set and run this 40 times. We found that the best result, yield the highest
local score, was reached for P1 when f = 0.5 for items with standard deviation
under 10 and f = 0.1 for items over. For P2, f = 0.7 for items with standard
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deviation under 10 was best and f = 0.1 for items above 10.
Finding the best fraction to use as parameter for the Loess Regression, con-

sisted of two problems, finding the best for the probability feature used in item-
bought classification, and finding the best for the features max prob, avg prob
and least one prob in buy-or-not classification. The fraction of data to use when
smoothing the probabilities with Loess Regression depends on the data set you
are performing the regression on. A dense data set with a low variance for each
day may need a lower fraction than a data set with a higher variance.

Approach P R ROC local score
Loess opt 0.725 0.714 0.816 8763

Table C.1: Appendix C: Loess Regression result

Loess Regression does not take into consideration how many clicks that have
happened on a given day, only the probability. In this way a day that have had
100 clicks is equally weighted as a day with only 10 clicks. This may be the
explanation for its poor results.
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