
Populating a prototype with external data

Magnus Jerre

Master of Science in Computer Science

Supervisor: Hallvard Trætteberg, IDI

Department of Computer and Information Science

Submission date: June 2015

Norwegian University of Science and Technology

Abstract

Creating user interface (UI) prototypes is an important step when developing
new software. Many applications, especially data intensive applications, end
up displaying some form of data. A UI prototype for such an application can
either display dummy data such as ”Lorem ipsum...” or real data, such as
the title for a specific movie. Populating the prototype with real data can
be done by either manually entering it, or by referencing an external source.
Manually entering and modifying data for multiple scenarios can be a tedious
and selection biased process. Being able to reference an external data source
can speed up the process as well as illustrate how the underlying data suits
the designed UI.

This thesis looks into how a prototype can be populated with external
data by annotating an existing wireframe prototype and turning it into a
runnable program. The developed tool builds on the work of Fredrik Larsen
by incorporating functionality for reading and binding data from a persistent
XMI file to the UI prototype. It expands on Fredrik Larsen’s proposed anno-
tation method by adding three new constructs, namely context, assignment
and view component, each having their own area of functionality.

The implemented tool was tested using three scenarios of different com-
plexity to verify whether the proposed data binding method was viable, which
the results indicated it was. The view component proved to be an especially
valuable asset in order to provide modifiability and reuse within the wire-
frame prototype.

i

ii

Sammendrag

Utvikling av bruker grensesnitt (UI) protototyper er en viktig del av å utvikle
ny programvare. Mange applikasjoner, spesielt data intensive applikasjoner,
ender opp med å vise en eller annen form for data. En UI prototype for den
slags applikasjoner kan enten vise liksom data som “Lorem ipsum...” eller
virkelig data som tittelen p̊a en spesifikk film. En prototype kan populeres
med data p̊a to måter, enten ved å manuelt skrive inn dataene, eller ved å
referere data fra en ekstern kilde. Å manuelt skrive inn og modifisere data
for flere scenarier kan være en b̊ade tidkrevende og partisk utvelgelsesprosess.
Ved å kunne referere til en ekstern datakilde kan prosessen utføres raskere og
illustrere hvordan den underliggende dataen passer til det designede bruker
grensesnittet.

Denne oppgaven ser p̊a hvordan en prototype kan populeres med ekstern
data ved å annotere en eksisterende tr̊adrammeprototype og transformere
det til et kjørbart program. Det utviklede verktøyet bygger p̊a arbeidet til
Fredrik Larsen ved å inkludere funksjonalitet for lesing og binding av data
fra en persistent XMI-fil til UI prototypen. Programmet utvider Fredrik
Larsens foresl̊atte annotasjonsmetode ved å legge til tre nye typer, nemlig
context, assignemnt og view component, som har hvert sitt funksjonsomr̊ade.

Det implementerte verktøyet ble testet ved hjelp av tre scenarier av vari-
erende kompleksitet for å kunne verifisere om den foresl̊atte data-bindingsmetode
var levedyktig, noe resultatene tydet p̊a at den var. View component viste seg
å være en spesielt verdifull ressurs n̊ar det gjaldt modifiserbarhet og gjenbruk
i tr̊adrammeprototypene.

iii

iv

Preface

This is the master’s thesis for the final subjet ”TDT4900 - Datateknologi,
masteroppgave” written in the spring of 2015. The thesis and project was
written and conducted by Magnus Jerre with the assistance of supervisor
Hallvard Trætteberg.

I would like to thank Hallvard Trætteberg for valuable feedback for both
the report and the project itself. His expertise with EMF and Eclipse helped
me quickly learn new things both directly related to and not so directly re-
lated to the thesis. I would also like to express my gratitude towards Fredrik
Larsen who was kind enough to explain to me how the software he had writ-
ten worked, thus making my life easier when it came to building on it. Finally
I would like to thank my family and girlfriend for moral support during this
project.

Trondheim, June 14th 2015

v

vi

Problem Description

The thesis will look into how a software prototype can be populated with
data from an external data source. By allowing the software prototype to
reference an external data source, possible issues with the planned design in
combination with the data can be exposed. An example of such an issue is
a name which is too long for the text field it will fill.

In order to populate the prototype with external data an appropriate
method for correctly referencing the relevant data will be designed. Once
designed it will be implemented and tested in order to validate the design’s
suitability for referencing the external data from the software prototype.

Assignment Start: January 18th 2015

Assignment Delivery: June 14th 2015

Supervisor: Hallvard Trætteberg

vii

CHAPTER 0. PROBLEM DESCRIPTION

viii

Contents

Abstract i

Sammendrag iii

Preface v

Problem Description vii

1 Introduction 1
1.1 Motivation . 1
1.2 Goals and Research Questions 3
1.3 Approach . 3
1.4 Thesis Structure . 4

2 Background 7
2.1 What Are Prototoypes . 7

2.1.1 Protype Processes . 7
2.1.2 Prototype Implementations 7
2.1.3 Prototype Fidelity . 8
2.1.4 What Kind of Prototype Does This Thesis Create? . . 9

2.2 Exisiting Tools . 9
2.2.1 Pen and Paper . 10
2.2.2 Photoshop . 10
2.2.3 Wireframesketcher . 11
2.2.4 Fredrik Larsen’s Work 12
2.2.5 Axure . 12
2.2.6 Programming . 13

2.3 Fredrik Larsen’s Annotation Method 14
2.4 Model Driven Engineering . 14

2.4.1 What are Data Models? 15
2.4.2 Eclipse Modeling Framework - A Modeling Tool 16

ix

CONTENTS CONTENTS

2.5 Implementations of Meta Models and Instance Models 17
2.5.1 Relational Database Models 17
2.5.2 Object Oriented Models 18
2.5.3 Document Oriented Models 20

3 Analysis and Requirements 23
3.1 Requirements . 23

3.1.1 Binding Data to View Elements 23
3.1.2 Binding Data to Simple Lists 25
3.1.3 Binding Data to Complex Lists 25
3.1.4 Filtering Data . 26
3.1.5 Selecting Data . 28
3.1.6 Requirements Summary 28

3.2 Proposed Solution . 32
3.2.1 Using Data Sources . 32
3.2.2 Binding Data to Simple View Elements 33
3.2.3 Creating and Using View Components 34
3.2.4 Binding Data to Lists 35

4 Results 41
4.1 Choices . 41

4.1.1 Underlying Technology 41
4.1.2 Navigational Language Chosen 42
4.1.3 Scope - Focus on Data Retrieval 42
4.1.4 Decorators to Use . 43
4.1.5 Handling Type . 45

4.2 Implementation . 45
4.2.1 Implementation Iterations 45
4.2.2 Final Implementation 46

4.3 Testing the Implemented Software 48
4.3.1 Binding Data to Simple View Elements 49
4.3.2 Binding Data to Complex View Elements 52

5 Discussion 63
5.1 Test Results Discussion . 63
5.2 Areas of Use . 66
5.3 How Can Real Data Enhance a Prototype 66
5.4 Data Model Complexity and Prototype Creation 67
5.5 Does the Method Scale . 69
5.6 Expanding The Functionality 69
5.7 New Method for Developing Software 70

x

CONTENTS CONTENTS

5.8 Reusing the generated Code to Create Software 70

6 Conclusion 73

7 Future Work 75

Appendices 77

Using the Prototyping Tool 79

xi

CONTENTS CONTENTS

xii

List of Figures

1.1 Prototype without data vs with data 2
1.2 Design and creation reasearch time distribution 4

2.1 Illustration of verticality . 8
2.2 An exmaple paper prototype 10
2.3 A Wireframesketcher UI prototype using real photos 11
2.4 Fredrik Larsen’s work . 13
2.5 Relationship between data model, view model and view 16
2.6 Relational database example 18
2.7 Object oriented model example 19

3.1 Simple view element bindings 24
3.2 Simple list bindings . 25
3.3 Complex list bindings . 27
3.4 Search bindings . 29
3.5 Filter bindings . 30
3.6 Annotating data sources . 33
3.7 Binding data values directly to view elements 34
3.8 Binding data to complex view elements 36
3.9 Binding data to simple lists 38
3.10 Binding data to complex lists 39

4.1 Context decorators . 43
4.2 Assignment decorators . 44
4.3 View component decorator . 44
4.4 Sample showing the pattern for a generated ecore file 48
4.5 IMDb class diagram . 49
4.6 Soundcloud class diagram . 50
4.7 Real version and wireframe version 51
4.8 The annotated screen file . 52
4.9 Real version and wireframe version 53

xiii

LIST OF FIGURES LIST OF FIGURES

4.10 Sample screenshot containing multiple reoccurring elements . . 54
4.11 Corresponding wireframe design for figure 4.10 55
4.12 The view component annotation definitions 56
4.13 The annotated wireframe prototype excluding the definition

of the view components . 57
4.14 Providing a group of view elements with the ”list” property

name . 57
4.15 Ecore file for the generated ”Top 10” application 58
4.16 JavaFX application for the ”Top 10” application 59
4.17 A profile page for a Soundcloud user 60
4.18 The wireframe prototype of the Soundcloud profile page . . . 60
4.19 The annotated screen for the Soundcloud profile page 61
4.20 The view component annotations for the Soundcloud profile

page . 61
4.21 The generated ecore file for the annotated Soundcloud proto-

types . 62
4.22 JavaFX application for the Soundcloud profile page 62

5.1 Poorly designed model . 68

xiv

Chapter 1

Introduction

1.1 Motivation

An important part in developing software applications is creating prototypes
that illustrate both the inteded design and functionality of the final applica-
tion. Initially, a visual illustration of the application is created by designers
later followed by implementation of a subset of the requested features done
by software developers.

Many software products end up displaying some kind of stored data.
A user interface prototype can either display dummy data such as ”Lorem
Ipsum” or real data such as the title for a specific movie. Using real data
can ensure more constructive user feedback than by simply using dummy
data [11]. Figure 1.1 illustrates the difference between using dummy data
and real data. The example nicely demonstrates how the fidelity of the
prototype is increased by populating it with real data. For projects were the
client already has large amounts of data available, being able to use their
data might help improve the prototype’s usefulness.

Populating a prototype with data can be done in two ways, either man-
ually inputing the data, or referencing an external data source. Manually
inputing large amounts of data is time consuming and can result in selection
bias by only selecting data that fit nicely with the protoype, an example
of this would be only selecting movies with short titles. This way missing
edge cases, such as a string of text that is too long, and how they should be
handled can quickly happen. Enabling the software developers who will take
over the prototype development to quickly reference an external data source,
can help overcome these issues.

1

1.1. MOTIVATION CHAPTER 1. INTRODUCTION

(a) A movie prototype using dummy
data

(b) A movie prototype using real data

(c) An actor prototype using dummy
data

(d) An actor prototype using real data

Figure 1.1

2

CHAPTER 1. INTRODUCTION 1.2. GOALS AND RESEARCH QUESTIONS

1.2 Goals and Research Questions

Goal Explore how a wireframe prototype can be populated with real data
from an external source by providing the prototype with a little extra infor-
mation.

Research question 1 What kind of input must be provided in order to
specify which data goes where?

Research question 2 How can real data enhance a prototype?

1.3 Approach

This thesis is based on doing ”Design and Creation” research for information
systems as defined in [6]. When doing design and creation research some
IT related artefacts are created, in this case the result is what’s called an
Instantiation artefact, a working system that demonstrates the method for
populating a prototype with data. The system will be a ’proof of concept’
prototype rather than a finished product for use by the public.

The design and creation process is an iterative one, consisting of five
steps: awareness, suggestion, developement, evaluation and conclusion. The
idea is that by iteratively cycling through each step one will gain a better
understanding for the next cycle.

Awareness is the recognition and definition of a problem.

Suggestion is the process of moving from recognizing the problem to propos-
ing possible solutions to them.

Development is the process of actually developing the system proposed in
the suggestion process.

Evalutation is the process of examining and assessing the developed arte-
fact.

Conclusion is the process of summing up the results from the entire process.

The research process will however not strictly follow the design and cre-
ation cycle at all times. In the starting phase, more time and effort will be
spent on throughly understanding the problem at hand as well as finding
ways to solve the problems. Some effort will go into developing a provisional
simple version of a subset of the system in order to better understand how

3

1.4. THESIS STRUCTURE CHAPTER 1. INTRODUCTION

(a) Chart illustrating the relative
amount of time early on in the project

(b) Chart illustrating the relative
amount of time later on in the project

Figure 1.2

everything should be stitched together. This way, some alternatives that
might prove unsuitable during implementation can be discovered earlier on.

In the later phases, more of the focus will be shifted towards actually
developing the application as well as evaluating the product rather than the
awareness and suggestion steps. This is natural as in the later phases, some
of the suggestions will have been evaluated as either suitable or not.

Figures 1.2a and 1.2b illustrate how time will be spent in each stage
relatively in the early and later phases respectively.

1.4 Thesis Structure

This master’s thesis is split into a total of seven chapters, the first being the
introductory chapter providing information regarding the motivation behind
the thesis as well as the research methodology used.

Chapter 2 - Background covers the ground the reader should be familiar
with before reading the rest of the thesis. It provides information regarding
prototypes, and data models, as well as information regarding the work of
Fredrik Larsen which this thesis builds on.

Chapter 3 - Analysis and Requirements presents examples of how
existing applications display data and elicits requirements for the applcation
to be based on the examples. It also proposes solutions on how wireframe
prototypes can be annotated in order to populate it with data.

4

CHAPTER 1. INTRODUCTION 1.4. THESIS STRUCTURE

Chapter 4 - Results presents the choices that have been made regarding
implementation and scope, as well as information on how the application is
implemented and tested in order to be able to evaluate it.

Chapter 5 - Discussion provides answers to the research questions, eval-
uates the test results, discusses how well the chosen method will fare against
models and prototypes of different complexities and the application’s poten-
tial.

Chapter 6 - Conclusion summarises the results and implications thereof.

Chapter 7 - Future Work provides insight into what kind of features
that can or should be implemented at a later time.

5

1.4. THESIS STRUCTURE CHAPTER 1. INTRODUCTION

6

Chapter 2

Background

2.1 What Are Prototoypes

This section introduces the concept of prototypes, their goals as well as defin-
ing the kind of prototype this thesis will be.

A UI prototype illustrates the intended design and functionality, and
helps capture requirements for a system to be. Depending on the kind of
study, they can even be used to determine whether a software system should
be developed at all [5]. In short, prototypes are used as a means to acquire
knowledge related to the development of software.

2.1.1 Protype Processes

Various prototypes are used with different processes in mind. These pro-
cesses can be separated into exploratory prototyping, experimental proto-
typing and evoloutionary prototyping [5]. Exploratory prototyping is used
to examine and understand the problem at hand often through the develop-
ment of several design options. Experimental prototyping is the process of
creating provisional versions of the product in order to gain more knowledge
for the next prototype iteration. Evolutionary prototyping on the other hand
is performed by iteratively working on and improving an existing prototype.
An evolutionary prototype can end up being the final product if it meets all
the requirements that the finished product should.

2.1.2 Prototype Implementations

The implementation of prototypes distinguishes between two classifications,
namely horizontal and vertical prototyping [5].

7

2.1. WHAT ARE PROTOTOYPES CHAPTER 2. BACKGROUND

Figure 2.1: Illustration of verticality

Horizontal prototypes focus on building a specific layer, for instance the
user interface (UI) layer or functional layer such as database transactions.
A horizontal UI prototype focuses on covering a wide range of the necessary
UIs for the application to be.

Vertical prototypes focus on building the necessary layers of a specific
part of the software to be, for instance implementing both the user interface
as well as database transactions to get a functional prototype.

By implementing some of the horizontal elements of the prototype ver-
tically, functionality for parts of the system can be made complete. Imple-
menting all of the horizontal elements vertically can result in a complete
version of the final application. Figure 2.1 illustrates how a handful of pro-
totyping tools relate to each other when it comes to verticality. The top of
the stack focuses only on a single layer of the development process, namely
the UI. Further down the stack, more layers are used, such as linking and
data source connection. At the bottom, a fully developed part of the system
is done using the actual programming framework for the final product.

2.1.3 Prototype Fidelity

When working with UI prototypes it’s normal to create prototypes with
different levels of fidelity. A prototype’s level of fidelity is judged according
to how complete a user percepts it to be rather than its similarity to the
actual application. The fidelity levels is often separate into two, namely
low-fidelity prototypes and high-fidelity prototypes [9].

Low-fidelity prototypes are simple drafts of the intended layout for the
software to be, providing little to no user interaction. The goal with low
fidelity prototypes is to establish a logical process flow and elicit knowledge

8

CHAPTER 2. BACKGROUND 2.2. EXISITING TOOLS

regarding requirements rather than defining the exact look of the software.
Demonstration of the workflow is often done by someone skilled at operating
the prototype rather than having the users interact with it, in addition the
demonstration is carefully scripted in order to convey a story.

High-fidelity prototypes are in contrast to low-fidelity prototypes fully
interactive and faithfully represent the software to be. The core funtioncality
of the UI is represented in high-fildelity prototypes, they may however not
be implemented fully vertically instead providing predefined results for some
of the protoype’s features.

2.1.4 What Kind of Prototype Does This Thesis Cre-
ate?

This thesis builds on the work of Fredrik Larsen by adding a new layer of
functionality, namely data binding. Fredrik Larsen’s work is an extension to
Wireframesketcher and resulted in an application that is itself a prototype.
By adding a new layer of functionality to the tool it’s brought one step closer
to being an actual product rather than just a protoype. Repeating this
process of expanding the prototype’s functionality can, in the end, result in
a finished product. The prototype process used can therefore be seen as an
evolutionary one.

As illustrated in figure 2.1, Fredrik Larsen’s work resulted in a tool that
goes a step further than Wireframesketcher by adding a layer of program-
ming to it. As stated this thesis builds on his work, since a new layer of
functionality is added to the tool, namely data binding, it will naturally be
a little deeper vertically.

The fidelity of a prototype is largely determined by the tool used to create
the prototype. Some tools only allow crude illustrations, close to drawings,
others provide functionality for creating a look that can exactly represent
the final design. Wireframesketcher lands somewhere in the middle of simple
drawings and sketches and the final design. However, the generation and use
of JavaFX moves the fidelity from medium-low to high.

2.2 Exisiting Tools

This section describes different tools that can be used to create prototypes
as well as teir ability to display real data. The fidelity of the tools range
from low to high, starting with the lowest fidelity tool, then moving on to
the higher fideilty tools.

9

2.2. EXISITING TOOLS CHAPTER 2. BACKGROUND

Figure 2.2: An exmaple paper prototype

2.2.1 Pen and Paper

Creating UI prototypes using pen and paper is a fast, simple and cheap pro-
totyping method [9]. The result is typically low fidelity and static prototypes
such as the one illustrated in figure 2.2. These are mostly used to convey
the intended overall layout for the application to be. Testing using paper
prototypes is often done by placing the relevant pieces of paper represent-
ing the current state of the application in front of the tester. In order to
move from one state to another, the tester notifies the facilitator of the in-
tended action, the facilitator then replaces the existing piece of paper with
new pieces of paper representing the new state. The test scenario is typically
very scripted, making the facilitator’s management job easier. This is by all
means a manual process and is usually done at the early stages of prototype
development.

Protoyping using pen and paper is a manual and non-digital process and
therefore provides no mechanism for binding data from an external source to
the prototypes, this process must therefore be manually handled.

2.2.2 Photoshop

Stepping up from the analog world of pen and paper and moving on to the
digital world of computers it’s possible to create UI prototypes of higher
fidelity using drawing or photo editing tools such as Photoshop1. Photoshop
allows the user to create all the UI components digitally making the prototype
to look a lot better than with sketches using pen and paper. These kinds
of tools do however not provide any additional form of functionality such as

1Photoshop can be found at http://www.adobe.com/no/products/photoshop.html

10

http://www.adobe.com/no/products/photoshop.html

CHAPTER 2. BACKGROUND 2.2. EXISITING TOOLS

Figure 2.3: A Wireframesketcher UI prototype using real photos

point and click to move on to the next state. Performing test scenarios can
be done by using printouts in the same manner as with pen and paper.

Photoshop is designed to edit photos, not to create prototypes with ad-
vanced functionality. Naturally it provides no functionality for binding ex-
ternal data to its view elements other than manually entering it.

2.2.3 Wireframesketcher

Wireframesketcher is a piece of software desgined for creating so called Wire-
frame prototypes for UIs2. A wireframe prototype is an illustration of the
design, much like creating a prototype using pen an paper, rather than the
exact design solution. Wireframesketcher is built around using pre-fabricated
template models to boost productivity and therefore supports a various set
of view elements, such as windows, web browsers, buttons and so on. It does
however support defintion of custom widgets and allows for real photos to
be used with the prototype. Figure 2.3 illustrates a prototype created using
Wireframesketcher.

Each state the prototype should be able to be in is modeled inside separate
screen files. By creating links from one screen to another, it’s possible to
dynamically navigate between states, making test scenarios feel more like a
real workflow than testing using printouts. Figure 2.3 illustrates how three
linkes are represented using yellow circles. It should be noted that each state
is static, meaning that the only form of user input allowed is clicking on links
in order to move to a different state. There are no features to support text
input or to add additional functionality to the wireframe prototype.

2Wireframesketcher can be found at http://www.wireframesketcher.com/

11

http://www.wireframesketcher.com/

2.2. EXISITING TOOLS CHAPTER 2. BACKGROUND

Due to Wireframesketcher’s static nature there is no way to bind data to
the view elements other than manually entering it.

2.2.4 Fredrik Larsen’s Work

Fredrik Larsen’s work [4] builds on Wireframesketcher by adding more functi-
nality to the prototype through generating a runnable JavaFX application
based on a wireframe model. The JavaFX application enables user input
handling making the prototype much more functional than a simple Wire-
framesketcher prototype. For the generated application to understand how
it should react to user input, the developers must annotate the different view
elements using Wireframesketcher. Features such as hiding text or displaying
text input from the user can be achieved using a combination of decorator
elements.

The decorator elements needed to annotate the wireframe model correctly
are separated into three areas of responsibility.

The Data Decorator which is colored blue, is responsible for defining the
different variables that can be used by the runnable JavaFX applica-
tion.

The Style Decorator which is colored thistle purple, is responsible for
defining how the view elements should be displayed, such as chang-
ing or hiding text displayed based on the state of a data variable.

The Action Decorator which is colored red, is responsible for defining
what should happen when actions such as pressing buttons occur.

Figure 2.4a illustrates a Wireframesketcher screen file annotated in order
to define the functionality for the JavaFX application in figure 2.4b.

As with basic Wireframesketcher, no method for binding data from an
external source to the prototype exists other than manually entering the
necessary data.

2.2.5 Axure

Axure is another tool that can greatly increase the fidelity of the prototypes
created with it3. Fredrik Larsen’s work provides functionality for simple
interaction with the JavaFX prototype through variables, Axure takes this
interaction a step further and provides additional features such as describing
the timing of interaction events. The two products differ however in terms of

3Axure can be found at http://www.axure.com/

12

http://www.axure.com/

CHAPTER 2. BACKGROUND 2.2. EXISITING TOOLS

(a) Annotation example using Fredrik Larsen’s
work

(b) The corersponding
JavaFX application gen-
erated from the anno-
tated wireframe model

Figure 2.4

usage area and the results they produce. While Axure is focused on allowing
the designers to build the prototype from the ground up, Fredrik Larsen’s
work is based on being able to annotate an existing wireframe model and
turning it into a runnable program. The output between the two also differ
in that Axure produces HTML and JavaScript code for demonstration using
web browsers, Fredrik Larsen’s work on the other hand produces ecore mod-
els, fxml and java code which can be used as a basis for later implementation.

Axure does provide the use of data stored using Excel by copying the data
cells into Axure. However, data provided in other formats, such as relational
databases or XML-documents is not supported. Using large amounts of
complex data with Axure doesn’t seem to be a viable option.

2.2.6 Programming

There is one obvious way of creating prototypes not yet discussed, that is
through programming. There exists several tools that allow developers to
create UIs using drag and drop, making the process of building the UI pretty
fast and separate from coding4. The tools then generate the underlying

4A list of graphical UI builders can be found here https://en.wikipedia.org/wiki/

Graphical_user_interface_builder

13

https://en.wikipedia.org/wiki/Graphical_user_interface_builder
https://en.wikipedia.org/wiki/Graphical_user_interface_builder

2.3. FREDRIK LARSEN’S ANNOTATION METHOD CHAPTER 2. BACKGROUND

files necessary for the view which must then be complemented with manual
programming in order to provide any sort of interaction features. Android
applications can be developed using such a process. A tool for designing the
UI using drag and drop is first used to create the corresponding XML-files
describing the view. After the view is created the developers must manually
code the functionality it should provide.

Creating high fidelity prototypes through programming comes at the cost
of being a lot more time consuming than creating lower fidelity prototypes
using say Wireframesketcher. It should be noted that when creating proto-
types this way a lot of the finer functionalities can be replaced by dummy
functions that simply produce predefined results for the test scenarios.

There are a couple of advantages in creating prototypes using program-
ming. One advantage with programming the prototypes is that the code can
be reused for the final implementation, another is the fact that the program-
ming framework’s whole toolset is available. This means that the developers
will have complete control over how to access and format the data needed by
the prototype. This control however comes at the cost of possibly unneces-
sarily high complexity and quite long development times.

2.3 Fredrik Larsen’s Annotation Method

This section introduces the annotation method Fredrik Larsen proposed in
his master’s thesis.

During his work on the master’s thesis, Fredrik Larsen came to the conclu-
sion that an appropriate method for annotating the different view elements
is by using annotation boxes, called decorators, and arrows to decorate each
view element rather than providing a separate annotation view. By annotat-
ing the view elements this way it’s possible to annotate view elements that
themselves don’t provide any method for further description.

Since this thesis will build on Fredrik Larsen’s work, and therefore his
software, it’s natural to continue with his decorator method for annotating
the view elements. His annotation method provides a solid foundation for
further expanding the functionality provided through the use of decorators.

2.4 Model Driven Engineering

Model driven engineering (MDE) is a software development methodology
based on defining models for a particular problem domain to solve the task at
hand [10]. It raises the level of abstractaion away from language specifics such

14

CHAPTER 2. BACKGROUND 2.4. MODEL DRIVEN ENGINEERING

as Java and C# to domain specific languages (DSL). The models created as
part of MDE are used as the basis for later automated model code generation.
An example of a software package based on MDE is the Eclipse Modeling
Framework (EMF) which will be discussed later.

2.4.1 What are Data Models?

This section delves into the concept of data models, what they are, what
types of models exist and different model implementations.

A data model is a meaningful representation of a concept or real world
entity, based on structuring data elements and their relations [15]. Take for
instance a person. A person has a name, a birthdate, a height, eye color, hair
color and so on. All of these features are attributes that describe a person. In
order to represent the concept of a person, one would define a person model
containing the relevant features that help describe a specific person. A very
simple person model can for instance only contain the name of the person,
whereas a more complex person model might contain the person’s name and
the person’s parents. The latter example would be a model having properties
that themselves are represented with the same model.

Meta Model and Instance Model

The simple definition of models can be made more complex by separating
the model into a meta model and an instance model. The two concepts are
tightly connected which will be illustrated shortly.

The meta model describes what kind of information is necessary and how
it relates to other information in order to represent some concept. Continuing
with the person example, the meta model is the definition of what information
is needed to represent a person. The person meta model can for instance
require information about the person’s name, birthdate, and parents. It
does however not contain any information related to a particular person.

The instance model describes a particular instance that satisfies the rules
given by its meta model. Using the person meta model from the previous
paragraph, an instance of the meta model can be a person named ”Matthew
McConaughey” with birthdate ”November 5, 1968” and parents ”James” and
”Mary”.

Data Model vs View Model

When working with applications that present data in some way, it’s often the
case that the information presented doesn’t exactly match the structure of

15

2.4. MODEL DRIVEN ENGINEERING CHAPTER 2. BACKGROUND

Figure 2.5: Illustration of the relationship between a data model, a view
model and a view

the underlying data model. Figure 2.5 is an example of such a mismatch. The
application window on the right hand side displays the name of an actor and
the number of movies the actor has starred in. The yellow boxes represent
the underlying data model, in this case an actor is associated with a name,
a biography and a list of movies. The application however will only display
the name of the actor (which exists directly in the underlying data model)
and the number of movies he has starred in (which must be inferred from the
movies property for the actor). The purple boxes represent the view model
for the application and only contains data that is relevant for the view.

Utilising view models is a way to simplify the view’s implementation.
Since the view model contains all the data that the view needs, all the view
has to do is to display this data. Figure 2.5 illustrates this nicely by displaying
the number of movies the actor has starred in. Since the view model contains
this value directly, the view won’t have to calculate the number of movies,
only display the value provided by the view model instance. The view model
can thus contain data that doesn’t exist or explicitly exist in the underlying
data model.

2.4.2 Eclipse Modeling Framework - A Modeling Tool

The Eclipse Modeling Framework (EMF) is Eclipse’s implementation of a
model driven engineering tool [1]. EMF distinguishes between the meta
model called ecore, and the instance model which can be persisted as an
XMI file or used as a runtime instance. The ecore meta model is later used
as part of a process to generate the necessary code for the domain model. The
model can be edited at any time and code regenerated to facilitate changes
in the specifications.

EMF uses XMI files to persist instances for the ecore meta model. These
XMI files are read by EMF during runtime and turned into instances in the

16

CHAPTER 2. BACKGROUND 2.5. IMPLEMENTATIONS OF META MODELS AND INSTANCE MODELS

object oriented format, allowing programming statements to be executed on
them.

EMF provides built in support not only for its native ecore and XMI,
but also XSD and XML which is a popular format for storing models and
meta models. Tools for converting other types of meta models and instance
models into XSD and XML exist, making EMF usable for several types of
models.

2.5 Implementations of Meta Models and In-

stance Models

The following section will look into some implementations of the meta model
and instance model pair and how to query such models using query languages.

2.5.1 Relational Database Models

A relational database is a structured collection of data persistently stored
using tables [8]. Each table usually represents some model or concept. In
relational databases, tables can have references to each other in order to reuse
data instead of storing several copies.

The relational database schema is the meta model for a relational database
containing the definition of the different tables and how they relate to each
other. Figure 2.6a illustrates a schema for a simple movie database. In order
to have a many to many relation between entries in the Actor and Movie
table a third table, called ActorMoviePair, is created.

As stated above, the instance data for a relational database is stored in
tables as illustrated in figure 2.6b. By performing what is called a join, it’s
possible to retrieve the correct combination of data when the desired data is
spread out over multiple tables.

Structured Query Language

The query language used for querying into relational databases is Structured
Query Language (SQL). It enables the users to insert, query, update and
delete data from the database using queries [8]. In order to do something
with any kind of data, an operation must be specified in addition to where the
operation should be performed. The following query returns a table contain-
ing only the titles for all the movies that the actor ’Matthew McConaughey’
has starred in. The simple example gets quite complex since two joins are
needed in order to get the desired output.

17

2.5. IMPLEMENTATIONS OF META MODELS AND INSTANCE MODELS CHAPTER 2. BACKGROUND

(a) Meta model represented using a relational databse schema

(b) Instance model for the meta model

Figure 2.6

SELECT title FROM Movies

JOIN ActorMoviePair ON ActorMoviePair.movieid=Movies.id

JOIN Actors ON Actors.id=ActorMoviePair.actorid AND

Actors.name=’Matthew McConaughey’;

2.5.2 Object Oriented Models

Object oriented modeling is based on representing data using concepts and
entites in the form of objects. The instance models are typically only part
of a runtime instance, and therefore only exist in-memory, not as a persis-
tent entity. Figure 2.7a illustrates how the concepts of movie and actor can
be modeled as objects using the UML notation. In contrast to relational
databases, there is no need for a separate entity containing relations between
a pair of movie and actor, instead, direct links between the two entites are
used. Figure 2.7b represents the runtime instance model for the correspond-
ing meta model. A runtime instance model can be serialised into various
document formats in order to persist or interchange data.

18

CHAPTER 2. BACKGROUND 2.5. IMPLEMENTATIONS OF META MODELS AND INSTANCE MODELS

(a) Meta model representation for objects

(b) Instance model representation for objects

Figure 2.7

19

2.5. IMPLEMENTATIONS OF META MODELS AND INSTANCE MODELS CHAPTER 2. BACKGROUND

Java and other programming languages

If the data model is available during runtime as in-memory objects, a natural
way of navigating it is using an object oriented language, such as Java. With
Java 8, Lambdas have been introduced making filtering a lot simpler than
before [2]. The following statement retrieves the movie titles that ”Matthew
McConaughey” has starred in.

List<String> titles = new ArrayList<String>();

db.allActors.stream()

.filter(a -> a.name.equals("Matthew McConaughey"))

.findFirst().get().movies.forEach(m -> titles.add(m.title));

Other languages, such as JavaScript also provide methods for filtering
lists. The obvious power in using a programming language like Java is that
it provides a powerful set of features, this power however comes at the cost
of verbosity.

Object Constraint Language

The Object Constraint Language (OCL), was not designed with the inten-
tion to be a query language, but rather a language for describing rules and
constraints that apply to Meta Object Facilities and validating them [7].
However, it supports funtionality for retrieving specific objects and infor-
mation regarding their type. As the name implies, it’s based on describing
objects and is therefore quite similar to object oriented languages, such as
Java, when it comes to querying. The following statement retrieves the movie
titles that ”Matthew McConaughey” has starred in.

allActors->select(name = ’Matthew McConaughey’)->at(1).movies.title

EMF provides an implementation of OCL that works in two ways, one is
to use OCL statements directly on the XMI document model inside Eclipse,
the other is to use it as a parser for use with Java code. Since it’s split
into these two different modules, it’s possible to perform the queries directly
on the XMI model and quickly verify their correctness, then use the queries
inside the prototype.

2.5.3 Document Oriented Models

Document oriented models store models as persistent documents, such as
XML or JSON. Documents such as XML follow a strict structure, and are
human readable [12]. Storing data in documents allows for the data to be
easily interchanged with several systems. The data can either be created

20

CHAPTER 2. BACKGROUND 2.5. IMPLEMENTATIONS OF META MODELS AND INSTANCE MODELS

directly inside the document or a runtime model can be serialised into it.
Various document formats exists, among them are XSD an XML, JSON-
Schema and JSON, and ECORE and XMI. Below, an example using XSD
and XML will be shown. The XSD [14] document describes the meta model
for the corresponding XML document containing an instance model. A XML
document is stored as a tree structure with a single root node being the entry
point for the document.

Listing 2.1: The XSD schema for the meta model
<?xml version="1.0"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" >

<xs:element name="db">

<xs:complexType>

<xs:choice maxOccurs="unbounded">

<xs:element name="allMovies" type="movieListTypeContainment"/>

<xs:element name="allActors" type="actorListTypeContainment"/>

</xs:choice>

</xs:complexType>

</xs:element>

<xs:complexType name="movieListTypeContainment">

<xs:sequence>

<xs:element name="movie" type="movietype" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="actorListTypeContainment">

<xs:sequence>

<xs:element name="actor" type="actortype" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="actortype">

<xs:sequence>

<xs:element name="actorID" type="xs:ID"/>

<xs:element name="name" type="xs:string"/>

<xs:element name="birthdate" type="xs:date"/>

<xs:element name="biography" type="xs:string"/>

<xs:element name="movies" type="movieListTypeRef"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="movietype">

<xs:sequence>

<xs:element name="movieID" type="xs:ID"/>

<xs:element name="title" type="xs:string"/>

<xs:element name="runtime" type="xs:integer"/>

<xs:element name="synopsis" type="xs:string"/>

<xs:element name="actors" type="actorListTypeRef"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="movieListTypeRef">

<xs:sequence>

<xs:element name="movieIDREF" type="xs:IDREF" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="actorListTypeRef">

<xs:sequence>

<xs:element name="actorIDREF" type="xs:IDREF" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

</xs:schema>

21

2.5. IMPLEMENTATIONS OF META MODELS AND INSTANCE MODELS CHAPTER 2. BACKGROUND

Listing 2.2: The correpsonding XML instance model
<?xml version="1.0"?>

<db xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="db.xsd">

<allMovies>

<movie>

<movieID>m1</movieID>

<title>Interstellar</title>

<runtime>169</runtime>

<synopsis>A team of explorers travel throu...</synopsis>

<actors>

<actorIDREF>a1</actorIDREF>

<actorIDREF>a2</actorIDREF>

</actors>

</movie>

<movie>

<movieID>m2</movieID>

<title>Dallas Buyers Club</title>

<runtime>117</runtime>

<synopsis>In 1985 Dallas, electrician and h...</synopsis>

<actors>

<actorIDREF>a1</actorIDREF>

</actors>

</movie>

</allMovies>

<allActors>

<actor>

<actorID>a1</actorID>

<name>Matthew McConaughey</name>

<birthdate>1969-11-04</birthdate>

<biography>Matthew McConaughey was born...</biography>

<movies>

<movieIDREF>m1</movieIDREF>

<movieIDREF>m2</movieIDREF>

</movies>

</actor>

<actor>

<actorID>a2</actorID>

<name>Anne Hathaway</name>

<birthdate>1982-11-12</birthdate>

<biography>Anne Hathaway was born in...</biography>

<movies>

<movieIDREF>m1</movieIDREF>

</movies>

</actor>

</allActors>

</db>

XML Path Language

XML Path Language (XPath) [13] is a query language aimed at navigating
a XML document. Since the XML documents are structured as sorted trees
navigation is done from a root down to the different child elements. The
statements however do not need to start at the root as it’s possible to select
nodes based on their type rather than their relationships to each other. The
following statement retrieves the movie titles that ”Matthew McConaughey”
has starred in. In order to retrieve the actor nodes for a specific movie it’s
necessary to perform manual checks against each actor, making the retrieval
of linked nodes cumbersome.

/db/allMovies/movie

[(actors/actorIDREF)=(//actor[name=’Matthew McConaughey’]/actorID)]

/title

22

Chapter 3

Analysis and Requirements

3.1 Requirements

By looking at existing applications and websites based on displaying data in
different ways, it will be easier to elicit the prototype tool’s requirements.
The following sub sections will shed some light on what view elements are
bound to data and how they relate.

3.1.1 Binding Data to View Elements

In order to populate a prototype with data, it will be necessary to provide
a way of binding the external data to each view element responsible for
displaying said data. Figure 3.1a is a screenshot taken from IMDb.1 It
displays different data for the movie ”Interstellar”, such as its poster, title
and synopsis. Figure 3.1b illustrates which of the view elements must be
bound to external data by enveloping them with a blue-dashed box.

From this example it’s clear that a way of binding data to specific view
elements is necessary, otherwise nothing of interest would be displayed inside
each of the blue-dashed boxes. Figure 3.1a is just a small cut-out from the
original screenshot, many more elements are actually bound to data. An
efficient way to bind each view element to data will therefore be necessary.

Binding external data to view elements requires the prototype to know
where the data comes from. Being able to specify the location of the data
source is therefore necessary.

1IMDb is an acronym for International Movie Database and can be found at
www.imdb.com

23

3.1. REQUIREMENTS CHAPTER 3. ANALYSIS AND REQUIREMENTS

(a) Detailed information about a specific actor

(b) Highlighting the different view elements that must be
binded to data

Figure 3.1

24

CHAPTER 3. ANALYSIS AND REQUIREMENTS 3.1. REQUIREMENTS

(a) List of genres (b) List of genres illus-
trating the different data
binding elements

Figure 3.2

3.1.2 Binding Data to Simple Lists

The previous section described the need to be able to bind the data to each
of the view elements on-screen. The following section looks into binding
data to simple lists. Figure 3.2a shows a list of popular movie genres, taken
from IMDb. Each element is simple, meaning that each element in the list
only displays a single value, in this case a string. Figure 3.2b illustrates the
bindings. As in the previous section, each blue-dashed box represents a single
view element bound to a single data value. The purple-dashed box illustrates
that the entire collection of view elements is a list.

Utilising the fact that the data is a collection of values can help save time
assigning the values to the list. Manually binding each view element to their
own data values can be a tedious task, especially if we are dealing with a
large collection. Binding the list view element to the entire collection and let
the prototype automatically bind each view element to the collection element
will make the process less tedious.

3.1.3 Binding Data to Complex Lists

This section will further expand on the examples from the two previous
sections by looking at complex lists. Complex lists are lists where each list

25

3.1. REQUIREMENTS CHAPTER 3. ANALYSIS AND REQUIREMENTS

element will display more than a single data value, as illustrated in figure 3.3a.

Each of the lists are marked and numbered in figure 3.3b using purple
boxes. The figure displays a total of six lists, four of which display their
bounded data in unique ways. Lists 2 through 4 display their data in the
same manner.

Even though lists 2 through 4 and list 6 have the same kind of input,
namely a collection of tracks, their visual output is different. The same is true
for list 1 and 5, their input is a collection of playlists. Lists 2 through 4 display
a track art, track number, name of the user publicising the track, track name
and the number of playbacks all in one line. List 6 however spreads this
information out on several lines and includes additional information such as
the number of likes, reposts and comments for the specific track.

This provides a clear indication there is not only one single way of dis-
playing the data for a given input.

Another thing to note are the orange-dashed boxes inside each of the lists.
After the first iteration of implementation it became clear that repeating the
data binding step for the same kind of group layout was inefficient. The need
to reuse reoccuring groups of view elements was therefore deemed necessary.
These reoccuring groups of view elements are marked with orange-dashed
boxes in figure 3.3b and are called view components. The blue-dashed boxes
inside the view components still represent a single piece of data bound to
a single view element. Borrowing from object-oriented programming, each
orange-dashed box can represent a class, or meta model, of how the list
should treat its input data. These view components need not be limited to
lists only, thereby maximizing their reuse. Both the information regarding
the profile as well as the information regarding the currently playing song
could potentially be seen as view components that should be reuseable in
other parts of the application.

3.1.4 Filtering Data

Another popular website feature is being able to search or filter the data
displayed. Figure 3.4a shows the search function available on IMDb. Search-
ing for the movie ”Interstellar” results in the dropdown list containing only
elements relevant for the search query ”Interstellar”. Figure 3.5b shows a
different method for filtering the data. Instead of allowing the user to input
text, the ”search criteria” is predefined.

Other than their way of defining the search filter, the two examples also
behave differently in that IMDb only applies one filter, the search filter, while

26

CHAPTER 3. ANALYSIS AND REQUIREMENTS 3.1. REQUIREMENTS

(a) Profile page on soundcloud.com

(b) Highlighting the different view elements that must be bound to
data. Also illustrates the need for lists and reusing view elements.

Figure 3.3

27

3.1. REQUIREMENTS CHAPTER 3. ANALYSIS AND REQUIREMENTS

the Amazon2 example allows several filters to be used at the same time, thus
further refining the filtering results. Figure 3.5b shows three different lists
of filters. Each filtering list allows several filters to be applied at the same
time to either constrain or widen the result, depending on how the filtering
is performed.

Looking at figure 3.5a, there are three filter categories, namely ”Interna-
tional Shipping”, ”Operating System” and ”Monitor Display Size”. If only
one filter from each category is applied, then performing filtering iterativly
works well since the results should satisfy all the constraints. However, if
more than one filter from a certain category is to be applied, this will not
work because not all of the filters selected are supposed to be satisfied at the
same time. For instance, filtering for ”Mac OS X” and ”Linux” is supposed
to result in a collection containing elements that satisfy either ”Mac OS X”
or ”Linux” or both. Applying each filter iteratively however will result in a
collection of elements that must satisfy both ”Mac OS X” and ”Linux”.

For filtering to be performed correctly by the prototype, it must therefore
be possible to somehow specifiy which filter combinations will widen the
result and which will constrain them.

3.1.5 Selecting Data

When data is presented in a list, it will often only display a sort of summary
for each list element. Figures 3.3a and 3.4a illstrate this. In order to see
the detailed information for a specific element it must be selected. Selecting
the movie ”Interstellar” from the search drop down list in figure 3.4a will
send the user to a different page containing more information regarding that
particular movie, such as the information displayed in figure 3.1a.

In order to implement this kind of functionality, it’s necessary to allow
the developers to somehow specifiy how or where view elements should look
for the selected data.

3.1.6 Requirements Summary

This section lists the requirements for the prototype tool to be developed
related to what kind of functionality should be incorporated. The first list
includes the requirements that are considered strictly necessary in order to
increase the usefulness of using external data. The second list includes the
requirements that are considered features nice to have, given that the time
left to incorporate them is sufficient.

2Amazon is a website selling goods online and can be found at www.amazon.com

28

CHAPTER 3. ANALYSIS AND REQUIREMENTS 3.1. REQUIREMENTS

(a) Using the search bar on IMDb

(b) The elements in the list are bound to the data resulting from
the search query. The background has been blurred to make it
easier to understand what is interesting in this screen.

Figure 3.4

29

3.1. REQUIREMENTS CHAPTER 3. ANALYSIS AND REQUIREMENTS

(a) The left hand pane shows different filtering options for different
categories.

(b) The left hand pane illustrates the different binding possibilites
for the different categories.

Figure 3.5

30

CHAPTER 3. ANALYSIS AND REQUIREMENTS 3.1. REQUIREMENTS

The requirements in the first list are chosen because they are needed in
order to create a prototype that can at least display the data for a given
test scenario, such as: ”You want to see more information for the movie
Interstellar”. By constraining the test case, functionality that is dependent
on user input, such as search criteria, need not be implemented because it’s
expected that the tester will work towards completing the given test.

The requirements that are nice to have are features that help make the
prototype feel even more real and don’t constrain the test case in the same
way. The above test case can be rephrased to: ”You want to see more
information for your favorite movie”. The user can then see more information
regarding a movie of his/her choice, rather than a predefined movie. Enabling
the tester to affect the prototype output can actually help with cases not
thought of, such as what to do if the movie doesn’t exist or is misspelled.

The following features are deemed necessary

Using Data Sources The system should be able to use at least one external
data source in order to have some data to populate the prototype with

Binding Data to Simple View Elements In order for the system to ac-
tually display any data from the external data source, a way of binding
the data to the basic view elements is necessary.

Creating View Components To make the prototype development more
modularised and efficient, enabling the creation and reuse of view com-
ponents, i.e a grouping or collection of basic view elements, is necessary.
View components can be especially pratical when it comes to displaying
complex lists.

Binding Data to Lists As the examples have shown, lists are heavily used
when it comes to displaying lots of data.

The following features are deemed nice to have

Filtering Data Allowing the user to filter data will help make the prototype
feel even more real. This is a feature that is also popular in many
applications that use data. However, since test cases can constrain
what to search for, it’s not strictly necessary to incorporate this kind
of feature.

Selecting Data A lot of the program flow is based on selecting various
”things”, such as a single movie from a list of movies. Therefore, en-
abling the prototype to display elements based on user input is a valid

31

3.2. PROPOSED SOLUTION CHAPTER 3. ANALYSIS AND REQUIREMENTS

feature to require. However, as with filtering data, the test cases can be
constrained in such a way that it’s not strictly necessary to incorporate
this kind of feature.

3.2 Proposed Solution

This section will look into some solutions to binding external data to view
elements in the prototype. In order to keep the examples clean, new and
simple UI prototypes will be created rather than using the screenshots from
the previous section. The examples will all be based on creating a prototype
for a simple movie application that satisfy the requirements deemed necessary
in section 3.1. The solutions proposed in this section will only target the
method for binding data to view elements, not how the underlying code
should be implemented.

To annotate the different view elements Fredrik Larsen’s decorator method
will be used. The decorator model concept helps annotate view elements that
themselves don’t provide any way of describing them. In addition it’s a very
easy to understand method providing a clean look at which elements are
annotated and how.

The examples will use OCL for querying data since the language is fairly
easy to understand. This doesn’t mean that OCL must or even should be
used for binding data to the view elements.

3.2.1 Using Data Sources

In order to have some data to populate the prototype with, it’s necessary to
provide the location for the data source. The simplest case is when only one
source of data is necessary, as shown in 3.6a. The yellow decorator simply
means that the data stored in the location given as input should be used as
the data source. Since only one data model will be used, the context can be
inferred when navigating the data.

A problem arises when multiple data sources will be used. Since the
data sources are not separated by an identifier, such as a variable name,
the context for the data bindings can’t necessarily be inferred. Figure 3.6b
illustrates a way to enable multiple data models. Each of the data sources
are bound to their own variables, making it easy for data bindings to choose
which data model should be used as source for binding data to view elements.

Forcing the data source to be stored as a variable will make all contexts
behave and usable in the same manner, and help in making the context used
clear.

32

CHAPTER 3. ANALYSIS AND REQUIREMENTS 3.2. PROPOSED SOLUTION

(a) Single data source (b) Using multiple data sources

Figure 3.6

3.2.2 Binding Data to Simple View Elements

The previous section only looked at how data sources can be referenced in
the prototype, not how to bind data to view elements. This section discusses
the data binding step by building on the contexts defined in the previous
section, as well as expanding the functionality of the contexts mentioned.

The following example illustrates a simple application displaying a little
information regarding the actor ”Matthew McConaughey”, using data from
the data source. Figure 3.7a shows the desired output for the application.
Figure 3.7b illustrates how the prototype can be annotated in order to achieve
the desired output. In addition to the yellow decorator defined in the pre-
vious section, purple decorators are added for this prototype. Each purple
decorator contains a statement and has an arrow pointing from it to a view
element. Naturally, the idea is that the view element will be bound to the
data result from the given statement. Conceptually, the arrow represents the
equal sign and the view element represents the variable name for the data
result, therefore there is no need to include in the statement a variable name
and an equals sign.

The example is a very simple one, yet the following sub-statement is
repeated three times for the elements to be working with the same actor
data.

db.actors->select(name = ’Matthew McConaughey’)->at(1)

Adding more elements using information from the same actor will result in
even more repetions of the sub-statement. If we wanted to change the actor
displayed in the output we would have to manually replace the name of the
actor for all of the purple assignment boxes. This can be tedious, in addition,
when there are a lot of assignments we might miss updating one or more of
them. In order to overcome this issue it would be great to be able to store
the actor in a varible which could easily be used as a starting point for the
assignments.

Figure 3.7c illustrates how the actor instance can be stored in a variable
by allowing the yellow decorators to no only contain the main data model
instance, but also sub-instances. The prototype is easier to read and under-

33

3.2. PROPOSED SOLUTION CHAPTER 3. ANALYSIS AND REQUIREMENTS

(a) Desired output for a simple prototype

(b) Inelegant method of binding data to view elements

(c) Elegant method of binding data to view elements

Figure 3.7

stand as it’s now, it’s also quicker and less prone to errors when changing
the actor displayed in the output.

3.2.3 Creating and Using View Components

This section provides a look at how view components can be created and
used in order to make the prototype more modular.

Looking at different websites it becomes clear that many of the elements
on-screen have the same layout. This is very typical for lists and other
manners of displaying a collection of data, figure 3.3a shows an example of
this.

Figure 3.8a shows a simple example where two elements clearly use the
same kind of layout, namely a portrait to the left, a name on the top and a
birthdate on the bottom. The prototype needed to create this output can be
made using the currently proposed solution for binding data to view elements.
Figure 3.8b illustrates this. From the figure it becomes clear that the same
type of assignments are repeated twice for each kind of view element. Had

34

CHAPTER 3. ANALYSIS AND REQUIREMENTS 3.2. PROPOSED SOLUTION

the example included more information for the actor and actress even more
of the assignments must be duplicated. Adding more actors or actresses to
be displayed would result in each kind of assignment being duplicated even
more. This clearly doesn’t scale well.

In order to overcome the issue of repeating the same kind of assignments,
one can lend a principle from the object oriented paradigm, namely classes.
By defining the group of view elements and their data bindings as a class,
or view component, one would only need to provide the data instance that
satisfies the constraints for the view component, the properties will then
automatically bind to the correct view elements.

Figure 3.8c illustrates how a view component can be defined. A new type
of annotation box has been added, the orange one. The orange decorator is
responsible for defining the name of the view component, much like defining
the name of a class, so that it can be referenced other places in the prototype.
The view component assignments look a little different from the ones in the
previous sections, they don’t include a context variable name for the data
instance to work with. That is because the assignments will automatically
work with the data instance, or context, provided by the view component.

Now that the the view component has been defined, the prototype must
be able to use it. Figure 3.8d illustrates how to do just that. The number
of assignments has been reduced from six to two, making the prototype look
cleaner. The assignments now consist of two lines, one being the data value
the other being the name of the view component to use. An important thing
to note is that the assignments now try to bind complex data to a group of
view components, whereas in the previous example the assignments simple
data values were bound to simple view elements. Since there is not necessar-
ily any obvious way of binding complex data to view elements, the complex
data must be split into simple data assignable to simple view elements. What
happens if the complex data uses a view component, then one or more of the
assignments for the view component results in complex data? A view compo-
nent should be able to have assignments that use other view components. As
long as there is a base case view component having only simple assignemnts,
the view components can be handled in a recursive manner.

3.2.4 Binding Data to Lists

The power of using an existing data source is easily illustrated by displaying
a big chunk of it using lists. Ideally, the developers should be able to display
lots of data using lists through little effort. This section will look at how a
list can bind data to each of its elements.

Figure 3.9a shows an example of a list containing simple view elements,

35

3.2. PROPOSED SOLUTION CHAPTER 3. ANALYSIS AND REQUIREMENTS

(a) Desired output for a simple prototype

(b) Inelegant method of binding data to view elements

(c) Defining a view component

(d) Elegant method of binding data to view elements

Figure 3.8

36

CHAPTER 3. ANALYSIS AND REQUIREMENTS 3.2. PROPOSED SOLUTION

namely strings. One way to bind data to each of the view elements in the list
would be to try and make assignments for each element in the list, illustrated
in figure 3.9b. This method might be fine for hand-picking a small number
of data from a large data set, it would however be very slow and not at all
scaleable for larger lists. It will also result in a very cluttered prototype that
might be difficult to read.

Figure 3.10a shows a different example of a list. Unlike the previous
example, this one uses complex elements to display more information about
each data element. Using a similar annotation method as presented for the
simple list yields something like figure 3.10b. For each list element there
exists three assignments, one for the name, one for the birthdate and one for
the portrait. Each of the assignments naturally point to the view element
it should bind the data to. The example contains three list elements all of
which have view elements that can have data directly bound to them using
assignments. However, for the remaining data elements that don’t fit inside
the list, there is no logical way of binding the data to the correct view element.
This is differs from the case for simple lists, where all elements can just point
to the list itself even though there is not enough visual space in the list. In
addition to being a very inefficient means of binding data to lists, it won’t
work for all kinds of lists, making the method unsuitable.

One possible solution is to assign the entire data list to the visual list,
then having the software be responsible for binding each of the data values to
the correct view elements. Figure 3.9c illustrates how this can be achieved.
The data result from the assignment is a collection of names, each of which
can be directly bound to a simple view element due to the fact that the
data values themselves are simple. For complex data values, the tale will be
quite similar. By utilising the notion of view components, it’s possible to
specify that each of the elements in the list will display data using a specific
view component. Figure 3.10c illustrates how the list can be annotated to
facilitate the use of the view component defined in figure 3.8c.

In addition to being an efficient way of binding data to lists, it’s simple
to understand, easy to swap out the data to display and doesn’t clutter
the prototype more than necessary. One might argue that hand-picking the
elements for the list is harder, but that is entirely dependent on the language
used to query the data. OCL for instance provides many features for selecting
only a subset of data.

37

3.2. PROPOSED SOLUTION CHAPTER 3. ANALYSIS AND REQUIREMENTS

(a) Desired output for a
list containing simple el-
ements

(b) Inelegant method of binding data to a list

(c) Elegant method of binding data to a list

Figure 3.9

38

CHAPTER 3. ANALYSIS AND REQUIREMENTS 3.2. PROPOSED SOLUTION

(a) Desired output for a list containing complex elements

(b) Inelegant method of binding data to a complex list

(c) Elegant method of binding data to a complex list

Figure 3.10

39

3.2. PROPOSED SOLUTION CHAPTER 3. ANALYSIS AND REQUIREMENTS

40

Chapter 4

Results

4.1 Choices

This section will go through the choices regarding technology, features and
scope for this thesis.

4.1.1 Underlying Technology

The main underlying technologies for the protoype software to be developed
is largely determined from what Fredrik Larsen used, which is a combination
of Wireframesketcher, EMF and JavaFX as well as programming language
called Xtend.

EMF will help with dynamically creating the necessary view models and
instances for the prototypes. In addition, EMF is based on using ecore and
XMI files for storing the meta model and instance model respectively. Since
many sources of information can be converted to ecore and XMI, either di-
rectly or through successive conversions, using EMF’s ecore and XMI format
as the source for data to populate the prototype with is a fair choice.

JavaFX will naturally be used since this is the technology Fredrik Larsen
chose for the runtime application. Switching it out with something else would
mean to start entirely from scratch, rendering Fredrik Larsen’s code unusable
for this thesis. Due to time constraints, starting from scratch is not an option.

Xtend provides a lot of syntactic sugar for the Java programming lan-
guage, it’s however resource intensive. The computer that will be used to
develop the prototoyping tool is not sufficiently powerful to efficiently han-
dle Xtend for software development, therefore normal Java code will be used
instead.

41

4.1. CHOICES CHAPTER 4. RESULTS

4.1.2 Navigational Language Chosen

Four different query languages where introduced in section 2.5. Each of these
languages work best with data models that are available in their respective
domains. As EMF is the chosen framework for developing the software, using
the models native to emf, namely ecore and XMI, is a natural choice.

SQL is aimed at querying into relational databases, however an XMI file
is not a relational database. SQL is therefore not suitable for this application.

XMI is a variant of XML, therefore using a navigation language, such
as XPath, based on navigating XML documents can be a good alternative.
Retrieving linked nodes is however cumbersome compared to other languages,
such as Java and OCL.

Since ecore- and XMI files can be loaded into a runnable Java program as
in-memory objects, using languages based on navigating dynamic instances
can be a great idea. Using a language such as Java will therefore be intuitive,
it is however necessary to provide a sort of mapping from the java statement
to the instances since methods like getters will not directly work without
providing the instances’ class definition or using reflection.

An alternative to writing Java code is to use OCL for navigating the
data. EMF provides an OCL parser that allows both the expected type as
well as the actual value from a query to be retrieved. Using the OCL parser
will spare a lot of work related to creating a parser from scratch. Another
advantage in using OCL is that it’s simple to make queries that selects only
a subset of elements that meet some constraint.

Due to the existing OCL parser within EMF and that it’s a language
fairly easy to learn, OCL will be the langauge used for binding data to view
elements.

4.1.3 Scope - Focus on Data Retrieval

In order to make this project manageable within the alloted time it’s neces-
sary to limit the scope. There are four operations that can be performed on
persitent data, namely create, read, update and delete, shortened CRUD [3].
Three of the operations are related to modifying the persistent data, this
functionality is however not strictly necessary for conducting usability tests
with the prototype. Allowing a tester to create, update or delete data can be
simulated by constraining the test case to expect a certain input, then use
another data model containing the data that should be inserted or modified.
This thesis will therefore focus on reading data only.

The implemented prototyping tool will be further further limited to not
support filtering specified by a user during testing due to time constraints.

42

CHAPTER 4. RESULTS 4.1. CHOICES

(a) Context with location statement

(b) Contexts with location and selection from existing context

Figure 4.1

4.1.4 Decorators to Use

An important aspect of annotating using decorators is which kind of decora-
tors are necessary to provide an intuitive way of annotating the view elements.
Fredrik Larsen created three different decorators, namely data, action and
style. Each have their own area of functionality, however, these areas don’t
perfectly fit the needed functionality for populating a wireframe prototype
with data. This thesis will therefore propose three additional decorators to
use, namely context, assignment and view component.

Context Decorator

The context decorator will be responsible for providing the main contexts for
a specific screen file. A context contains a variable name and an assignment
statement, and is colored yellow. The variable name is necessary in order to
be able to access the correct content when binding data to a view element. A
context statement can either be the location of an XMI file, starting with a
slash, or a selection from an existing context. Figures 4.1a and 4.1b illustrate
this.

The context decorator is a lot like Fredrik Larsen’s data decorator with
regards to functionality. It has been chosen to be a seperate part however
because in addition to storing a value, it’s also responsible for storing the
statement producing that value. Also, it will be easier to implement, which
is an imporant factor due to the time constraints.

Assignment Decorator

The assignment decorator is responsible for actually binding data to a view
element. Unlike the context decorator, the assignment decorator won’t con-
tain a variable name because the value it produces is not expected to be used
by other elements in the view. Ordinarily, an assignment will be a one-liner,
however, an assignment can produce a complex value, such as an object, and

43

4.1. CHOICES CHAPTER 4. RESULTS

(a) Assignment for simple value (b) Assignment for complex value

Figure 4.2

Figure 4.3: A view component named ”ActorViewComponent” that expects
a value of type ”Actor”

must be able to correctly handle this. A second, optional line in the assign-
ment decorator defining which view component the complex result should be
associated with must be used.

Figures 4.2a and 4.2b illustrate both simple and complex assignment an-
notation boxes using the contexts defined in figure 4.1b. The complex assign-
ment in figure 4.2b uses a view component named ”ActorViewComponent”.
In order to actually assign the value produced from the purple assignment
box, an arrow must be drawn from it to the view element it binds the data
to.

View Component Decorator

The view component decorator is responsible for defining which group of
view elements are part of a view component and the assignments it contains.
The decorator contains a name for the view component as well as the name
of the type it expects as input. Initially, the view component didn’t require
type declaration, however, at later development iterations it became clear
that this was necessary. As with the assignment boxes, an arrow must be
drawn to the view elements it references. Unlike the assignment boxes, no
value is actually produced from the view component decorator.

An assignment using a view component passes its value to the view com-
ponent which then delegates to its sub-assignments the values that should
be bound to the correct view elements. Figure 4.3 illustrates what a view
component annotation box can look like. The first argument is the name of
the view component, ”ActorViewComponent”, the second argument is the
name of the expected type, ”Actor”.

44

CHAPTER 4. RESULTS 4.2. IMPLEMENTATION

4.1.5 Handling Type

Each data value in a data model is of a specific type, be it Integer, String,
Object or some other custom type. How they should be handled by the
prototype depedens on the what type it’s dealing with.

During the first two development iterations, type declaration was not
enforced in order to make everyhting as general as possible. However, after a
discussion with the supervisor it became clear that enforcing type declaration
was necessary.

When it comes to assignments that directly use a context, it is possible
to automatically infer the type it produces by using the built in OCL parser.
Therefore, forcing these kinds of assignments to explicitly declare a type is
unnessecary. However, an assignment that is part a view component can’t
be directly interpreted by the OCL parser since it doesn’t know what type to
start parsing the statement on. One way to solve this problem is to enforce
type declaration for assignments, after all, the developer must have some
idea of what the expected type for the assignment is. Alternatively, type
declaration can be enforced for the view component owning the assignment.
This way the OCL parser can be used to infer the type for the assignment
given the type of the view component, and the assignments can be kept as
simple as possible.

Forcing the view component to declare a type means that it can’t neces-
sarily be reused by values of different type having the same fields, they have
to be of the same type or super type.

The choice to force the view components to declare their type rather than
the assignments was made because the number of assignments that will be
used per screen will be higher than the number of view component definitions.
Forcing each assignment to declare a type will be much more cumbersome
than forcing its view component definition to declare its type.

4.2 Implementation

This section describes the different implementation iterations as well as the
key points to how the prototype is implemented.

4.2.1 Implementation Iterations

The implementation was done through several iterations. The first iteration
focused on enabling simple data binding by using contexts and simple assign-
ments. Each assignment were stored using general types, such as an Object
and EObject rather than the more specific String or Integer types, leaving

45

4.2. IMPLEMENTATION CHAPTER 4. RESULTS

the handling of type to the code responsible for populating the runnable
JavaFX application.

During the second iteration view components were implemented, again
in a general way. The view components did in other words not expect any
specific type, other than that it had to be an EObject, which is a general
object used in EMF. Making it general meant that assignments of different
types could use the same view component as long as they had the necessary
fields.

Making everything general seemed like a good idea initially, but after
demonstrating the results to the supervisor, it became clear that the gener-
ated view models were hard to understand. Another issue with the general-
ization was that the code needed to run and populate the JavaFX application
got very complex, making further support for lists and complex lists a lot
harder than it needed to be. After some discussion with the supervisor, the
decision to make the view models less general was made.

The third iteration focused on modifying the existing code to adhere
to a less generalised view model. Since each decorator needs to provide
its expected type, the view component’s implementation was changed to
require information on its expected type, thereby allowing its assignments to
interpret their expected types as well. The result was a view model that was
a lot easier to understand than the previous implementation.

During the fourth iteration support for both simple and advanced lists
were added. After the shift towards a more specialised view model, imple-
menting lists was quite straight forward.

The fifth and final iteration was mostly focused on making the code easier
to understand and fixing bugs. Since there was some development time left,
a feature not deemed necessary was quickly implemented, namely selection.
The selection works by providing Fredrik Larsen’s Action decorator with a
variable name and type, then storing it in a special selection model.

4.2.2 Final Implementation

The prototype is implemented with focus on separating between the data
model and view model for the prototype, as well as sepearating between the
meta model and instance model.

Wireframesketcher is built around creating what is called screens. Each
screen is its own file and represents one screenshot. Each screen that displays
any kind of external data will have two different types of models associated
with them, one being the data model which is the source of the prototype’s
data and can be shared between multiple screens, the other being the view

46

CHAPTER 4. RESULTS 4.2. IMPLEMENTATION

model which represents the data the screen actually needs which is unique
for each screen.

The data model is defined external to the prototype and is therefore not
part of the implementation. The view model on the other hand is generated
based on the screen files. A generated ecore file contains at least one class
having the same name as the screen file, and optionally one class for each
view component defined.

Main Ecore Class The main class for the ecore file contains one field for
each context element, and one field for each assignment not part of a view
component. Each of these fields are given the appropritate type and contains
extra information associated with them in the form of details. Each context
will be given a name based on its variable name and have exactly one detail
associated with it. Depending on whether the context contains the location
of the XMI file, the detail will be named ”xmiLocation” and contain the
actual location of the XMI file or it will be named ”ocl” and contain the
statement given as part of the context. Figure 4.4 illustrates the pattern for
context fields.

Each assignment is given a name based on its statement and contain ei-
ther two or three details depending on whether it uses a view component or
not. Every assignment contains at least two details, one named ”ocl” con-
taining the actual statement for the assignment, the other name ”layoutId”
containing the actual id value for the view element the assignment points
to. If an assignment uses a view component, the detail ”useComponent”
contains the name of the view component the assignment uses. Figure 4.4
illustrates the pattern for assignment fields, both as part of the main screen
and as part of a view component.

The fields are ordered in a way such that their statements can be executed
in a top-down order, making instance population easier.

View Component Classes Each of the view components for a screen
will be its own class containing only fields that are its assignments. Unlike a
main class the view component class has one detail associated with it named
”expectedType” which contains the name of the expected type for the view
component. The assignments have the exact same type of details as the
assignments part of the main class. Figure 4.4 shows the pattern for a view
component.

Selection To accomodate selection, a separate model named selection-
Model is generated. This model is shared by the entire generated prototype,

47

4.3. TESTING THE IMPLEMENTED SOFTWARE CHAPTER 4. RESULTS

Figure 4.4: Sample showing the pattern for a generated ecore file

and contains the name for all selections, their types, as well as their details
regarding each view element that can affect their value. The selection model
is made accessible by contexts that contain the value #selectionModel.

The generated ecore meta models for the screens is later used at runtime
to create instances of them. To populate the instances with the correct data,
the runnable prototype need only perform the statements for each of the
fields in its class.

4.3 Testing the Implemented Software

In order to be able to verify how well the proposed method and implemented
solution works it must be tried out. The screenshots from section 3.1 will be
used as the basis for creating design prototypes in Wireframesketcher since
these are real world applications. The prototypes will then be annotated
according to the proposed method. The resulting JavaFX prototype will not
look exactly like the reference screenshots due to the prototyping tool’s lack
of styling options.

The tests are separated into three different scenarios, all based on the
requirements deemed necessary. The selection requirement is not part of the
test scenarios since it is part of requirements deemed nice to have. The first
and simplest scenario is based on displaying information regarding a special
movie. The second scenario displays the top 10 list of 2014 from IMDb and
illustrates how view components work. The third scenario, illustrated using

48

CHAPTER 4. RESULTS 4.3. TESTING THE IMPLEMENTED SOFTWARE

Figure 4.5: The class diagram for the IMDb experiments

Soundcloud1, is even more complex than the second scenario in that the
elements part of view components themselves use view components.

For the prototype to display any external data, two different data models
were created, one for the IMDb scenarios and another for the Soundcloud
scenario. Both models were created based on what kind of data is displayed,
they do however not represent the scenarios’ view model, but rather possible
versions of the underlying data model. Figures 4.5 and 4.6 illustrates the
IMDb and Soundcloud data models respectively.

4.3.1 Binding Data to Simple View Elements

The first scenario illustrates how simple data binding works. The detailed
view for the movie ”Interstellar”, figure 4.7a, is the basis for the desgined
wireframe prototype shown in figure 4.7b. By correctly annotating the wire-
frame prototype a JavaFX application resembling the source is be generated.

Since the prototype doesn’t display the same kind of information multiple
times there is no need for using view components. The necessary annota-
tions are illustrated in figure 4.8. The three assignments movie.genres,
movie.writers.name and movie.actors.name produce lists but point to

1Soundcloud is a website for sharing and discovering music. It can be found at
www.soundcloud.com

49

4.3. TESTING THE IMPLEMENTED SOFTWARE CHAPTER 4. RESULTS

Figure 4.6: The class diagram for the Soundcloud experiment

50

CHAPTER 4. RESULTS 4.3. TESTING THE IMPLEMENTED SOFTWARE

(a) Details for the movie Interstellar

(b) Corresponding wireframe design for figure 4.7a

Figure 4.7

51

4.3. TESTING THE IMPLEMENTED SOFTWARE CHAPTER 4. RESULTS

Figure 4.8: The annotated screen file

labels. To handle this, the application was implemented in such a way that
lists bound to labels will concatenate each elements’ toString() representation
separated by a comma.

After the wireframe prototype has beeen correctly annotated, the genera-
tion program is run to produce the necessary fxml and ecore files. Figure 4.9a
shows what the resulting ecore-file looks like. Some of the assignemnts and
contexts have been expanded to show the details they contain. The resulting
JavaFX application is shown in figure 4.9b.

4.3.2 Binding Data to Complex View Elements

Both the second and third scenario illustrate how binding with complex,
reoccuring elements works. The simpler of the two scenarios is related to
displaying a list of the top 10 movies of 2014 along with a couple of other
user generated lists. The more complex one displays lists inside lists as well
as multiple lists taking the same kind of data as input but displaying it
differently.

Top 10 Movies of 2014 Scenario

The following scenario is based on IMDb’s list of the top 10 movies of 2014.
Figure 4.10 is a screenshot taken from their website, the corresponding wire-
frame prototype created in Wireframesketcher is shown in figure 4.11. All
the list elements have been replaced by placeholder view elements that await
real data when annotated and generated into a runnable prototype.

52

CHAPTER 4. RESULTS 4.3. TESTING THE IMPLEMENTED SOFTWARE

(a) Ecore file for the generated JavaFX prototype

(b) The final JavaFX program

Figure 4.9

53

4.3. TESTING THE IMPLEMENTED SOFTWARE CHAPTER 4. RESULTS

Figure 4.10: Sample screenshot containing multiple reoccurring elements

54

CHAPTER 4. RESULTS 4.3. TESTING THE IMPLEMENTED SOFTWARE

Figure 4.11: Corresponding wireframe design for figure 4.10

55

4.3. TESTING THE IMPLEMENTED SOFTWARE CHAPTER 4. RESULTS

Figure 4.12: The view component annotation definitions

Unlike the first scenario, this one requires the use of view components
to correctly and effieciently bind data to the different view elements. The
first step to creating view components is to group each view element part
of a single view component together and placing a duplicate of them at a
different location in the screen file. An example of the necessary duplicate
view groups along with their annotations is shown in figure 4.12. The view
component decorator need only point somewhere inside the group of view
elements to be associated with the view group. Each of the assignments part
of a view component must point exactly to the view elements they will bind
to.

Each of the lists in figure 4.13 have been annotated with an assignment
pointing to its list view group. For the application to understand that the
group of elements it’s working with is actually a list, the group must be given
a property name of ”list” using Eclipse. Otherwise the application expects a
single view component to be displayed instead of a list. Figure 4.14 illustrates
how a group of view elements is given the property name ”list” using Eclipse.

The resulting ecore file for the prototype contains three classes, the class
named ”top10” which is the screen that will be displayed and the classes
”MovieSummary” and ”StaffListSummary” which represent the definitions
for the two types of view components the screen will use. Each of the view
components will also have separate fxml files generated for them. When
running the generated prototype, a JavaFX application like figure 4.16 is

56

CHAPTER 4. RESULTS 4.3. TESTING THE IMPLEMENTED SOFTWARE

Figure 4.13: The annotated wireframe prototype excluding the definition of
the view components

Figure 4.14: Providing a group of view elements with the ”list” property
name

57

4.3. TESTING THE IMPLEMENTED SOFTWARE CHAPTER 4. RESULTS

Figure 4.15: Ecore file for the generated ”Top 10” application

displayed.

Soundcloud Profile Page Scenario

The last scenario is based on using the profile page for a Soundcloud user as
illustrated in figure 4.17. Soundcloud’s profile page is a lot more complicated
than the ”Top 10” list from the previous scenario. The main list in the
middle have list elements that temselves contain lists. In addition, there are
multiple ways to display lists of playlists and tracks each of which must be
defined. The corresponding wireframe prototype for the Soundcloud profile
page is shown in figure 4.18.

All steps from the previous scenario must be taken here as well. Each of
the view elements part of a single view component is grouped together then
duplicated and moved to a different location in the screen file. Each of the
list elements in the main screen and inside the view components are grouped
and given the property name ”list” using Eclipse. The annotated screen and
view components can be seen in figures 4.19 and 4.20.

The generated ecore file resembles the one in the previous example. A
total of five classes are generated, the first being the class for the main
screen namely ”soundcloud”, the other four each represent their own view
component. As in the previous example, fxml files for each of the four view
components are generated. The runnable JavaFX application is shown in
figure 4.22.

58

CHAPTER 4. RESULTS 4.3. TESTING THE IMPLEMENTED SOFTWARE

Figure 4.16: JavaFX application for the ”Top 10” application

59

4.3. TESTING THE IMPLEMENTED SOFTWARE CHAPTER 4. RESULTS

Figure 4.17: A profile page for a Soundcloud user

Figure 4.18: The wireframe prototype of the Soundcloud profile page

60

CHAPTER 4. RESULTS 4.3. TESTING THE IMPLEMENTED SOFTWARE

Figure 4.19: The annotated screen for the Soundcloud profile page

Figure 4.20: The view component annotations for the Soundcloud profile
page

61

4.3. TESTING THE IMPLEMENTED SOFTWARE CHAPTER 4. RESULTS

Figure 4.21: The generated ecore file for the annotated Soundcloud proto-
types

Figure 4.22: JavaFX application for the Soundcloud profile page

62

Chapter 5

Discussion

5.1 Test Results Discussion

The three scenarios illustrate both the extents and limits with populating the
prototypes with data. All three scenarios are data intensive, therefore their
fidelity is greatly increased when populated with real data. The most tedious
part of developing the prototypes was creating the wireframe model for each
of the applications as well as their data models. Both of these artefacts are
assumed to already exist when the time to annotate the wireframe prototype
comes which is why that phase will not be part of the evaluation of the test
results.

Correctly annotating the wireframe model and grouping the view com-
ponents is both fast and straight forward. The first scenario only contains
simple view elements that can be directly bound to data, totaling at 19 as-
signments and 3 contexts. Drawing the arrows from the assignments is very
easy for the larger and isolated view elements as there is no question exactly
which view element they point to. Unfortunately this is not the case for
smaller and more densely located view elements. Since the labels for each
small text element is significantly larger than the actual text inside it, some
of the labels will partly overlap making the arrow heads sometimes point to
the wrong view elements. The center part of the screen containing the rating
score and related elements borders on being too small for annotation using
arrows. The height of the labels is defined by Wireframesketcher and can’t
be altered, therefore using this application for prototypes that will have a lot
of small text elements close to each other is not guaranteed to work correctly.

63

5.1. TEST RESULTS DISCUSSION CHAPTER 5. DISCUSSION

Formatting Data Correctly

Most of the view elements can display the data they are given in the way
intended by the developer since they are already in the correct format, such
as the ratings and the movie title. A problem arises when the data is not in
the correct format such as the release date for the movie. Next to the title
the release year should be displayed, the date is however not stored as a year
only, it is stored and represented as ”11/7/14 12:00 AM”, which is clearly
not the format intended. One way to overcome this problem is to create a
custom definition of a date which stores the date as separate year, month
and day, thereby making it easy to access the year value only. It should be
noted that the application does what it’s supposed to do, the assignment
correctly retrieves the data for the view element using an OCL statement.
OCL however isn’t a programming language designed for formatting output,
this must be left to some other kind of language and input. Another for-
matting difference can be seen for the number of reviews, the source formats
the number as ”2,327” while the prototype displays it as ”2327”. Adding
support for text formatting will help with the fidelity but is not necessarily
a part of binding data to view elements. The advantage with displaying the
data as is, is that it illustrates which parts of the application must format
the provided data.

View Components Reduces the Amount of Work

The second scenario displays more data than the first one, yet it needs fewer
assignments, only five for the actual screen and another ten assignments for
the view components. This is due the introduction and use of view compo-
nents. Using view components can greatly reduce the amount of assignments
needed as long as the view elements can be grouped into view components
and is reused, otherwise the total number of assignments will increase. This
is not to say that it is definitely a bad idea to use view components even
when they won’t be reused since the main screen will become less cluttered.
The rating part of the first scenario could for instance be extracted into a
view component, reducing the number of assignments cluttering the main
screen.

View Component Implementation Issues

Even though the introduction of view components is beneficial, the way they
are implemented should have been done a little differently. Currently each
view component can only be used by the screen it’s defined inside of, thereby
reducing the efficiency with which they can be used. The choice to make them

64

CHAPTER 5. DISCUSSION 5.1. TEST RESULTS DISCUSSION

local to the screen was made due to ease of implementation, it does however
seem like this was a bad choice. For a complete prototype application, some
view components might be reused in several screens. Having to redefine
the same kind of view component several times seems counter intuitive. In
addition, each view component will have an fxml file generated for it. Instead
of having just one fxml file for a view component, each view component that
should be the same view component will have a separate fxml file generated
for it. This is not exactly optimal if one would want to use the generated
files as a basis for the final implementation.

Little Need to Modify the Wireframe Model

The third scenario displays even more data than the second one as well as
displaying it in several ways. The total number of assignemnts for the entire
screen and view components has been bumped up to 33, far exceeding the first
two scenarios. Still, the amount of time spent annotating the different view
elements and view components is quite low compared to the time it took
to create the wireframe models. Even though the screen is quite complex
with several lists and view components, not a lot of changes needed to be
made to the wireframe model to accomodate data binding. Initially, each
view element in the wireframe model is not part of any group, however to
use view components, each view element part of a single view component
must be grouped together. This process is fairly quick in Wireframesketcher,
all that needs to be done is selecting the correct elements, right click and
select ”group”. Once the view elements have been correctly grouped, one
of each kind of view group is duplicated and moved someplace else for view
component annotation.

Each part of the screen that is supposed to be a list must also be grouped
and given the property name ”list” using Eclipse. Again, the grouping pro-
cess is straight forward. Since the application treats each list with a specific
view component provided through the assignment, it doesn’t matter what
kind of elements are inside the list group. A list group can in other words
contain nothing and still be populated with view components, the only thing
the list group will affect is its physical size on screen. This kind of decoupling
makes it fairly fast to switch out the view components that should be dis-
played in the list. A downisde to this solution can be seen in figure 4.22. Each
list inside the major list has a fixed size instead of snapping to the smallest
size possible, this is one of the downsides of not providing the possibilty to
further describe how the list should behave. In addition, each element part
of a list must use the same view component, forcing all elements follow the
same exact design. The problem with adding such functionality is that the

65

5.2. AREAS OF USE CHAPTER 5. DISCUSSION

prototype creation borders closer and closer to complete programming.

Other List Functionality

An issue that can go by fairly unnoticed is the numbering of list elements.
Looking at figures 4.16 and 4.22, some of the elements part of the same
list have the exact same element number, the number 1. Looking at the
sources this is not how it should be, element number one should display the
number ”1”, elment number two should display number ”2” and so on. This
number is however not part of the underlying data, rather a part of how the
underlying data is sorted. What this means is that the movie ”Interstellar”
doesn’t contain a data field for its position inside the top 10 list, this number
must instead be calculated based on its position inside the list. Storing its
position as a data field makes little sense as the movie can be part of several
lists and also have its position changed, having to update this position each
time something changes makes very little sense. Adding support for this kind
of functionality is not strictly related to binding data from an external data
source, it would however be feature that is nice to have as it is something
that can be very useful for lists that rank its data in some way.

5.2 Areas of Use

This thesis has been focused on enabling a prototype to use data from an
external source, much like an actual software application would. Naturally,
the tool developed is suitable for creating prototypes reliant on displaying
data in a static manner such as the examples presented in section 3.1. As
long as the data is available in the correct format, whether it already exists
or must be created, the tool should work well.

The tool will however fall short when it comes to creating prototypes for
dynamic applications reliant on data since the implemented functionality is
focused towards static screens rather than dynamic ones. Using the proto-
typing tool to prototype non-intensive data applications, such as Photoshop
or Word will not prove fruitful as the data features of the tool won’t be used.

5.3 How Can Real Data Enhance a Prototype

This thesis has provided a look into how a prototype can be populated with
data, but so far not much discussion has been made on how using real data
can be useful.

66

CHAPTER 5. DISCUSSION 5.4. DATA MODEL COMPLEXITY AND PROTOTYPE CREATION

Using real data with a prototype can be handled in two ways, one is to
manually enter all relevant data, the other is to populate the prototype with
data using something like this thesis’ proposed method. The problem with
manually entering data is that it’s time consuming and that the format of the
displayed data might automatically be correct because it is made by a person,
rather than being read from an actual data source. A major advantage with
binding data to a prototype is that the format of the data will be dependent
on the underlying data, exposing possible issues with the data format. An
example of this would be that the text string can be too long for a textfield
and should therefore be cut at some point with trailing dots, or a long name
where the middle name should only be represented by the first letter and a
dot. Even something as simple as a date being stored as a string rather than
a date, can prove problematic when working with data view elements, the
”Top 10 Movies of 2014” test scenario illustrated this.

Exposing issues like the ones mentioned will also help with understan-
ing how suitable the underlying data model is for the intended design, and
thereby how to overcome possible issues in using the data model with the
prototype. If the underlying data model is designed from scratch with the
design prototype in mind, making sure their formats work together will be
easier.

If the prototype is developed for a customer, being able to use the cus-
tomer’s data can help them become more engaged in the development as the
product will be more directly relatable, rather than displaying some generic
data. Having a more engaged customer can help with communication, espe-
cially surrounding features wanted, and in the end result in a product better
suited for their needs.

5.4 Data Model Complexity and Prototype

Creation

This section discusses how the complexity of the model can affect the proto-
type creation stage.

A very simple data model will not need complex statements in order to
correctly navigate the data model, the movie example used throughout this
thesis is an example of just that. The statements will be short and easy to
read, making the annotation boxes small and thereby keeping the screen file
relatively free from clutter.

A more complex or poorly optimized model can however result in long and
complex statements that can be hard to understand. Figure 5.1 illustrates

67

5.4. DATA MODEL COMPLEXITY AND PROTOTYPE CREATION CHAPTER 5. DISCUSSION

Figure 5.1: Poorly designed model

a poorly designed model having only unidirectional relationships with the
actor. In order to get a collection of all the movies that agent number one
has had clients star in, one would end up with the following statement:

allMovies->select(

actors->asBag()->intersection(allAgents->at(1).clients)->size() > 0)

The statement is kind of difficult to understand as it stands by itself. It’s
even more difficult to actually create a valid and correct statement. If there
had been a bidirectional relationship between the actor and movie objects,
the statement would be a lot simpler and look like this:

allAgents->at(1).clients.movies

Even if the underlying data model is complex or poorly optimized, the
screen file can still be kept quite clean since the annotation boxes can be
resized without the text content being altered. Therefore using complex
data models will mostly affect the complexity of the statements. Making
sure the model is suitable and that a suitable navigation language for the
specific model used is paramount in order to make the statements as easy to
create and read as possible.

Working with complex models might not be possible to avoid, therefore
providing a more dynamic development environment can help make the work
easier. By allowing the decorators to display their statement results upon
hovering or providing a clickable way of selecting the desired data rather
than manually writing statements can help ease the work flow. Alternatively
generating a new and more suitable data model based on the original one
might be a better solution.

68

CHAPTER 5. DISCUSSION 5.5. DOES THE METHOD SCALE

5.5 Does the Method Scale

This section discusses how the proposed method for populating a prototype
with data scales in terms of large and advanced screens.

As illustrated in the examples from section 3.1, a lot of the elements
displayed on-screen share the same kind of layout. Because of these similar
layouts the need for something that enabled reuse of view components was
deemed necessary. By reusing view components, large and complex screens
can be kept fairly clutter free, especially when the same view components is
reused several times. Even if all the groups of view elements use a unique
layout, it’s possible to create view components for each type of layout in
order to minimize the number of assignments that are directly on top of the
relevant screen area.

The way the software is currently implemented, means that each view
component created is only usable by the screen it’s defined in. This however
battles reuse and will make the method scale less well than what it should.
It would probably have been better to allow view components to be reused
across screens, making the total number of existing view components lower
than what is currently the case. This way unnecesary duplicate versions of
the same view component can be avoided.

5.6 Expanding The Functionality

Due to limited time, some features that would be nice to have in order to
make the prototyping tool more feature rich were set aside. As stated in
section 4.1.3, only the read operation would be implemented, in addition,
features such as filtering were omitted. Adding support for these features
will undoubtedly increase the prototype’s fidelity if the alternative is to not
provide any such features for the uasbility tests. The same goes for enabling
modification of the underlying data during usability tests. Having to man-
ually create variations of the underlying data to accomodate any predefined
modification scenarios can be quite time consuming. Time spent creating
these data variations might be better spent elsewhere in the prototyping or
even development process. Therefore, adding functionality for both filtering
and modification can be justified.

An important question to ask is when should one stop adding new fea-
tures to the tool. As more and more functionality is added to the tool, the
prototype gets closer and closer to a complete version of the actual product.
Providing extra functionality however comes at the cost of increased com-
plexity and time spent on developing the prototype rather than implementing

69

5.7. NEW METHOD FOR DEVELOPING SOFTWARE CHAPTER 5. DISCUSSION

the actual application. Another issue with expanding the feature set is how
these features should be utilised. Using the current annotation method to
incorporate new features can lead to screen-files overflowing with decorators
thereby negating the readability they provide.

5.7 New Method for Developing Software

This section will discuss how the proposed method for populating a prototype
with data in combination with Fredrik Larsen’s work could be used as a new
method for developing simple software applications.

The method for populating a prototype with data proposed in this thesis
provides a rapid and robust way of building runnable prototypes. Combining
Fredrik Larsen’s implemented functionality with the implemented data bind-
ing functionality results in a simple piece of software. Starting by creating
the application’s interface then annotating it with functionality and data is
a fairly simple process to understand. This process can be seen as a form
of programming using gui elements. The threshold for developing a simple
application this way is much lower than having to manually code up all the
gui-elements as well as code the functionality and data binding routines.

Even though developing a standalone application this way is fast, the
functionality currently implemented is not powerful enough to provide the
developer with full control over the layout and actions taken. Adding support
for modifying the existing data source and filtering through search will vastly
improve the range of data dependent applications that can be developed this
way.

Writing a new piece of software based on the same principles as those
proposed by this thesis and Fredrik Larsen can be used as the base for a new
software development method. Important aspects for such a piece of software
would be to provide a more dynamic development experience than what is
currently available using a combination of Wireframesketcher, Eclipse, EMF
and JavaFX.

5.8 Reusing the generated Code to Create

Software

This section discusses how the prototype’s generated code can be used as
part of the final software implementation.

The code generated as part of the prototype follows an intuitive structure
which can be used as a starting point for any further implementation of the

70

CHAPTER 5. DISCUSSION 5.8. REUSING THE GENERATED CODE TO CREATE SOFTWARE

prototype. As stated in section 4.2, each of the screens will have a generated
ecore meta model for it, containing all relevant elements for the screen. In
addition, an fxml file for each screens’ layout is generated. These two types
of files can be used as either an indication of necessary fields or as a source
for any later implementation.

Even though the generated code is well structured, it is not currently
optimized for human readibility. The variable names for each assignment
field follow a very simple pattern which is not necessarily unique enough,
in addition all variable names have a trailing number, making the names a
little hard to read and not great for later manual code creation. Allowing
the developers to specify a variable name for each of the assignments can
help overcome this issue. The fxml-files are not currently suited to be used
as the source for any later implementation because they are created in such
a way that it’s easy to programmatically add fxml elements where they are
supposed to be instead of actually containing the fxml elements. In order
to base any further development directly on the generated code, the two
problems adressed should be handled.

71

5.8. REUSING THE GENERATED CODE TO CREATE SOFTWARE CHAPTER 5. DISCUSSION

72

Chapter 6

Conclusion

The main goal of this thesis was to explore how a wireframe prototype can
be populated with real data by adding a little extra information to the pro-
totype. This goal has been achieved through looking at how existing appli-
cations display their data, leading to the definition of requirements and a
proposed method for describing what data should be displayed where.

The method for describing where data will be displayed builds on Fredrik
Larsen’s idea of using decorators containing a description of what should take
effect. Three new decorators were developed, namely assignment, context
and view component, in order to provide a foundation for populating the
prototype with data. A key feature was to allow the developers to define
a template for how a set of data is displayed using the view component
decorator, which very much resembles how object oriented languages allow
the definition of classes.

The application developed closely followed the planned method for pop-
ulating the prototype with data. It’s implementation is based on using EMF
to create and store the relevant annotation data. Each Wireframesketcher
screen being populated with data have a view model generated for it that
is used when running the prototype. This view model is populated during
runtime using the underlying data model.

The advantages in using real data are many, among them is the increased
fidelity the prototype will have. However, the power of populating the proto-
type with data is most evident when it’s done by referencing the data rather
than manually inputing and possibly selecting optimal data to display. Issues
such as the underlying data’s format and its compatibility with the planned
application can in this way be exposed.

73

CHAPTER 6. CONCLUSION

74

Chapter 7

Future Work

Given more time, at least two extra features would be implemented, namely
filtering and modification of data. Even though both features can be circum-
vented by constraining test cases, they can prove valuable in order to speed
up the prototype development time compared to making new data models
or screen files.

Displaying the exact underlying data works fairly well at this point, how-
ever not all data is displayed as inteded by the designers. An example of this
is visible in figure 4.16 where the date displayed should only display the year
and the numbers should have commas for every third digit. Expanding the
functionality for the existing Style decorator created by Fredrik Larsen could
be a possible route to go in order to achieve this.

Developing prototypes using the prototyping tool created is currently a
three-step process. The first step is to annotate the wireframe model and save
it. The second is to start the file generation process followed by manually
refreshing the folder containing the generated files. The third and final step is
to run the generated prototype. Cutting the number of steps down by forcing
Eclipse to automatically generate the necessary files and refresh the correct
folder when saving the annotated wireframe model will make the process a
lot cleaner and much more efficient.

75

CHAPTER 7. FUTURE WORK

76

Appendices

77

Using the Prototyping Tool

This section provides a short explanation on how to use the code created as
part of the thesis.

Getting the Code From Github

The code created as part of this thesis can be found on the following address
https://github.com/magnusjerre/MasterThesisCodeFinal. The commit
representing the final version for the thesis is named Updated README, was
commited on June 13, 2015 and has the following sha:
2ecd8ffde9ac7aaa1cfc6aa7c830a3d965cddc61

Using the Prototype Tool

In order to use the prototyping tool with test scenarios from section 4.3, the
following three steps must be completed:

1. Locate the package named generator, then the file named Genera-
tor.xtend, right click and select run as Java application.

2. Refresh the package named data generated and verify that the new files
generated are visible in Eclipse.

3. Locate the package named application, then the file named AppCon-
troller.xtend, right click and select run as Java application.

In order to change which Wireframesketcher project to generate a proto-
type for, locate the package named application, then open the file named Con-
stants.xtend and change the value of SUB PROJECT NAME to the name
of the Wireframesketcher project to generate code for.

79

https://github.com/magnusjerre/MasterThesisCodeFinal

APPENDIX . USING THE PROTOTYPING TOOL

80

Bibliography

[1] Marcelo Paternostro Ed Merks Dave Steinberg, Frank Budinsky. EMF
Eclipse Modeling Framework. Addison-Wesley, 2008.

[2] James Gosling, Bill Joy, Guy Steele, Gilad Bracha, and Alex Bcukley.
The java language specification java se 8 edition. Technical report, Or-
acle America, 2015.

[3] Cory Janssen. Create, retrieve, update and delete
(crud). http://www.techopedia.com/definition/25949/

create-retrieve-update-and-delete-crud. [Online; accessed
2015-06-11].

[4] Fredrik Haugen Larsen. From sketches to functional prototypes. Mas-
ter’s thesis, Norwegian University of Science and Technology, 2014.

[5] Horst Lichter, Matthias Schneider-Hufschmidt, and Heinz Züllighoven.
Prototyping in industrial software projects—bridging the gap be-
tween theory and practice. In Proceedings of the 15th International Con-
ference on Software Engineering, ICSE ’93, pages 221–229, Los Alami-
tos, CA, USA, 1993. IEEE Computer Society Press.

[6] Briony J Oates. Researching Information Systems and Computing. Sage
Publications Ltd., 2006.

[7] Object Management Group. Object Constraint Language Version 2.4,
2014.

[8] ORACLE. A relational database overview. https://docs.oracle.com/
javase/tutorial/jdbc/overview/database.html. [Online; accesssed
2015-05-22].

[9] Jim Rudd, Ken Stern, and Scott Isensee. Low vs. high-fidelity proto-
typing debate. interactions, 3(1):76–85, January 1996.

[10] Douglas C. Schmidt. Model-driven engineering. IEEE Computer, 2006.

81

http://www.techopedia.com/definition/25949/create-retrieve-update-and-delete-crud
http://www.techopedia.com/definition/25949/create-retrieve-update-and-delete-crud
https://docs.oracle.com/javase/tutorial/jdbc/overview/database.html
https://docs.oracle.com/javase/tutorial/jdbc/overview/database.html

BIBLIOGRAPHY BIBLIOGRAPHY

[11] Carolyn Snyder. Paper prototyping, The fast and easy way to design
and refine user interfaces. Morgan Kaufmann Publishers, 2003.

[12] W3C. Extensible markup language (xml) 1.0 (fifth edition). http://

www.w3.org/TR/REC-xml/#sec-origin-goals. [Online; accessed 2015-
05-28].

[13] W3C. Xml path language (xpath) 3.0. http://www.w3.org/TR/

xpath-30/. [Online; accessed 2015-05-28].

[14] W3C. Xml schema part 1: Structures second edition. http://www.w3.
org/TR/xmlschema-2/. [Online; accessed 2015-05-28].

[15] Wikipedia. Data model. https://en.wikipedia.org/?title=Data_

model. [Online; accessed 2015-06-13].

82

http://www.w3.org/TR/REC-xml/#sec-origin-goals
http://www.w3.org/TR/REC-xml/#sec-origin-goals
http://www.w3.org/TR/xpath-30/
http://www.w3.org/TR/xpath-30/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xmlschema-2/
https://en.wikipedia.org/?title=Data_model
https://en.wikipedia.org/?title=Data_model

	Abstract
	Sammendrag
	Preface
	Problem Description
	Introduction
	Motivation
	Goals and Research Questions
	Approach
	Thesis Structure

	Background
	What Are Prototoypes
	Protype Processes
	Prototype Implementations
	Prototype Fidelity
	What Kind of Prototype Does This Thesis Create?

	Exisiting Tools
	Pen and Paper
	Photoshop
	Wireframesketcher
	Fredrik Larsen's Work
	Axure
	Programming

	Fredrik Larsen's Annotation Method
	Model Driven Engineering
	What are Data Models?
	Eclipse Modeling Framework - A Modeling Tool

	Implementations of Meta Models and Instance Models
	Relational Database Models
	Object Oriented Models
	Document Oriented Models

	Analysis and Requirements
	Requirements
	Binding Data to View Elements
	Binding Data to Simple Lists
	Binding Data to Complex Lists
	Filtering Data
	Selecting Data
	Requirements Summary

	Proposed Solution
	Using Data Sources
	Binding Data to Simple View Elements
	Creating and Using View Components
	Binding Data to Lists

	Results
	Choices
	Underlying Technology
	Navigational Language Chosen
	Scope - Focus on Data Retrieval
	Decorators to Use
	Handling Type

	Implementation
	Implementation Iterations
	Final Implementation

	Testing the Implemented Software
	Binding Data to Simple View Elements
	Binding Data to Complex View Elements

	Discussion
	Test Results Discussion
	Areas of Use
	How Can Real Data Enhance a Prototype
	Data Model Complexity and Prototype Creation
	Does the Method Scale
	Expanding The Functionality
	New Method for Developing Software
	Reusing the generated Code to Create Software

	Conclusion
	Future Work
	Appendices
	Using the Prototyping Tool

