NTNU - Trondheim
Norwegian University of

Science and Technology

Hardware Acceleration of Convolutional
Neural Networks

Magnus Halvorsen

Master of Science in Computer Science
Submission date: June 2015
Supervisor: Donn Morrison, IDI
Co-supervisor: ~ Yaman Umuroglu, IDI

Norwegian University of Science and Technology
Department of Computer and Information Science

Abstract

Convolutional neural networks have been widely employed for image recognition
applications because of their high accuracy, which they achieve by emulating how
our own brain recognizes objects. The possibility of making our electronic devices
recognize their surroundings have spawned a vast number potential of useful
applications, including video surveillance, mobile robot vision, image search in
data centres, and more. The increasing usage of such applications in mobile
platforms and data centres have led to a higher demands for methods that can
compute these computational-insensitive networks in a fast and power efficient
way. One such method is by using application specific hardware accelerators.

In this report we will present such an accelerator, and use it to compute a
neural network that can recognize hand-written digits.

Sammendrag

Konvolusjonsnettverk er en veletablert metode som brukes i objektidentifisering
av bilder. Dette gjr den ved emulere hvordan hjernen vr bruker et nettverk av
neuroner til gjennkjenne objekter med synet vrt. Denne muligheten til f de elek-
troniske enhetene vre til gjennkjenne omgivelsene sine er gitt en kraftig kning
i applikasjoner som utnytter dette. Dette inkluderer videoovervkning, robotsyn,
bildesk i datavarehus, og mer. Denne kningen i mulige bruksomrdet innenfor mo-
bile platformer og datavarehus har frt til et kt behov for raske og energieffektive
metoder for prossesere slike nettverk. En slik metode er lage applikasjonsspesi-
fikke maksinvareakseleratorere.

I denne rapporten vil vi presentere en slik akselerator, og bruke den til pros-
essere et nettverk som gjennkjenner hndskrevne tall.

ii

Assignment

Candidate name: Magnus Halvorsen

Assignment title: Hardware Acceleration of Convolutional Neural Networks
Supervisors: Donn Alexander Morrison and Yaman Umuroglu

Assignment text:

This project will explore the design and implementation of convolutional neu-
ral networks (CNNs) in hardware with the intention of improving energy effi-
ciency over traditional implementation in software on a general-purpose CPU.
The overall goal is to build a standalone system that (time permitting) could be
trained interactively by a user (e.g., to recognise handwriting or faces from a we-
becam video stream) and then demonstrate learned patterns through recognition
of unseen samples.

The energy efficiency of the hardware implementation should be evaluated
against software equivalent running on a general-purpose CPU and this evaluation
should constitute a major aspect of the report.

The suggested platform is the Zynq FPGA board, but the student can also
investigate and weigh the advantages and disadvantages other platforms such as
SHMAC.

iii

Contents

Introduction
1.1 Motivation e
1.2 Assignment Interpretation L.
1.3 Report structure o
Background
2.1 Artificial Neural Networks
2.1.1 Definition e
2.1.2 Training e
2.1.3 Issues with object recognition
2.2 Convolutional Neural Network
2.2.1 Definitiono
2.2.2 Trainingo e
2.3 Potential for parallelism 0oL
24 ZedBoard
Related Work
3.1 Convolutional Neural Networks
3.2 Convolutional Neural Network in Hardware
Architecture
4.1 Network Topology and Dataset
4.2 What to accelerate
4.3 Software Architecture
4.3.1 Network Software.
4.3.2 Hardware driver
4.4 Hardware Architecture
4.4.1 Overview of Hardware Architecture
4.4.2 Accelerator Interface L.
4.4.3 The Accelerator’s Processing Unit

iv

444 The Convoluter e
4.4.5 The Hyperbolic Tangent
4.4.6 The Average Pooler
Results and Discussion
5.1 Hardware Resources
5.2 Performance
5.2.1 Setup
5.2.2 Discussion
Future work
Conclusion

42
42
43
43
44

49

52

List of Figures

2.1
2.2
2.3
2.4
2.5
2.6

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12

5.1
5.2
5.3
5.4
9.5

Neuron. 0 e e e 7
An Artificial Neural Network. 7
The LeNet-5 e e 11
Convolution and subsampling/max-pooling operation 13
Convolutional layer operation 14
Zyng-7000 system architecture. 17
The topology of the implemented network. 22
Feature map dependencies 24
Software architecture 26
FIFO order e 27
TxBdring 28
The system architecture 32
The interface of the accelerator. 34
Controller’s states 34
Accelerator’s processing unit L. 36
The Convoluter 38
Convolution example L 39
The Average Pooler 41
Accelerator performance L. 45
Accelerator performance, layer 1and 2 46
Accelerator performance, with DMA fix 46
Performance comparison 47
Performance when only processing layer 1 and 2. 48

vi

List of Tables

4.1
4.2
4.3
4.4

5.1
5.2

Number of connections in the network 25
Controller table 35
The constant used for the hyperbolic tangent approximation. . . . 40
The piecewise linear approximation of the hyperbolic tangent. . . . 40
Resource usage 43
Available resources e 43

Chapter 1

Introduction

1.1 Motivation

A Convolutional Neural Network (CNN) is a deep-learning algorithm architec-
ture that has become increasingly popular in the last decade. It is considered a
state of art technique for object recognition in images and sound, and it is ap-
plied in application such as video surveillance, mobile robot vision, image search
in data centers, and more [1] [2] [3] [4]. With the Internet-of-Things and today’s
tremendous amount of devices able to capture pictures and videos, the potential
for CNNs have vastly increased. By making our devices able to recognize its
surroundings, there could be a numerous amount of potential interesting appli-
cations.

Albeit CNNs perform great in terms of accuracy (see Chapter 3), they are very
computational heavy, which have limited their usability until recent years. The
computational structure of neural networks is highly parallelizable, which, when
exploited, can greatly increase performance. It is for this reason that general-
purpose central processing units (GPCPUSs) performs poorly when computing
such networks, as they are primarily designed for effective serial computations,
and are thus unable to exploit its parallel structure. Field-programmable gate ar-
rays (FPGAS), graphic processor units (GPUs) and application-specific integrated
circuits (ASICs) are hardware components that are (or can be) built to heavily
exploit parallelism, and have been shown to greatly outperform CPUs in parallel
applications [5].

While GPUs performs incredibly well on parallel applications, they have a
major drawback: power consumption. With power being the primary financial
cost of data centers and mobile devices having to operate on a limited power
budget [6], GPUs can be unsuitable for several applications. Thus, for CNN

applications that require lower power and high performance, FPGA and ASIC
accelerators have become increasingly popular (see Section 3.2). Simplistically,
an ASIC is an processor that is made specifically for one application, while a
FPGA is a component that contains a set of programmable logic blocks that can
be configured to have the same behavior as any arbitrary circuit. I.e. a FPGA
is a reconfigurable ASIC.

In our previous work [7], we investigated the mathematical model behind
neural networks and purposed a unimplemented accelerator architecture. In this
project, we have implemented a tweaked version of this architecture on a Zynq
FPGA, and constructed all the supporting hardware and software components
needed to get it running. In order to test its capabilities, we have used it to
compute the LeNet-5 [8], which recognizes handwritten digits. Our system has
shown to be 5.6x times as fast and power efficient than an ARM Cortex-A9
processor, and 5x as power efficient as an Intel Core i7 4710HQ CPU on certain
parts of the processing.

1.2 Assignment Interpretation

Based on the assignment description text, the following main tasks were identi-
fied:

Task 1 (mandatory) Implement a hardware accelerator for a Convolutional
Neural Network, with the intention of improving energy efficiency.

Task 2 (mandatory) Compare our accelerator to an equivalent pure-software
implementation on a general-purpose CPU, primarily in terms of power consump-
tion.

Task 3 (optional) Implement said system on a Zynq FPGA board, but weigh
the advantages and disadvantages of other platforms, such as SHMAC or other
FPGA platforms.

Task 4 (optional) Extend the system to be able to recognize objects from a
web-cam stream.

1.3 Report structure

For the convenience of the reader, we will here provide a quick overview of the
topic of the report’s chapters.

Chapter 2: Background gives an introduction to the mathematical model of
Artificial Neural Networks and Convolutional Neural Networks.

Chapter 3: Related Work gives an overview of the state of the art CNNs and
the most relevant recent hardware implementations.

Chapter 4: Architecture presents our implemented design for a CNN hard-
ware accelerator.

Chapter 5: Results and Discussion compares our design with an equivalent
implementation on a ARM and laptop CPU, in terms of performance and energy
efficiency, and the hardware resource usage of our design. The chapter will also
provide our analysis of the results.

Chapter 6: Future Work presents how our design can be further improved.

Chapter 7: Conclusion provides concluding remarks and a summary of the
identified tasks.

Chapter 2

Background

In order to be able to accelerate a system, it is important to understand the
mathematical model behind it. For this reason, we have included Section 2.1 and
2.2 from our previous work [7], which purposed a theoretical accelerator archi-
tecture. The sections will introduce the fundamental mathematics and concepts
behind the Convolutional Neural Network (CNN) model. They give a basic in-
troduction to both general neural networks and CNNs. Section 2.4 will present
the hardware platform we used to implement our accelerator.

2.1 Artificial Neural Networks

An Artificial Neural Network (ANN) [9][10] is a computational model that is
used for machine learning and pattern recognition. The name and basic concept
is inspired by how the animal brain uses a network of neurons to recognize and
classify objects. Depending on the input, different neurons activate (or fire),
making the brain able to decide what kind of pattern it is detecting.

An ANN can intuitively be viewed as a probabilistic classifier. Depending on
the input data, it will calculate the probability that the data belongs to a certain
class (e.g. an object in an image or an investment decision). The network can be
trained to recognize different classes by being provided a set of labeled training
data, e.g. a set of faces and a set of non-faces. It can then learn to decide whether
an image contains a face or not. This is called supervised learning. The network
can also be trained unsupervised, by providing it with a set of unlabeled images.
The latter technique is used to find hidden structures in the data, by learning
the network to recreate the input. But for this project only supervised learning
is relevant.

2.1.1 Definition

An ANN consists of a number of layers containing a set of so-called neurons (see
Figure 2.1), also known as units. A neuron takes in a set of values as input (e.g.
image pixels), where each value is associated with a respective weight. The input
and the weights are multiplied and summed, and the result is used to calculate a
non-linear activation function. Formally a neuron’s input and output is defined
as:

Input : {z1,22,...,2,} =X (2.1)

Output : f(wTx) szacz +b)=o0 (2.2)

Where w is the vector containing connection weights and b is the neuron bias.
f(...) is the activation function, which eumulates the activation of a neuron in
the brain, i.e. it decides whether the neuron is on or off. It also causes the values
in the network to have a reasonable value interval. f(...) tends to be either:

1
Si id 2.3
igmoid s f(2) = 1—— 2:3)
Hyperbolic tagent: f(z) = tanh(z) = % (2.4)
e*+e

The reason these functions are used is that they have the non-linear property,
which increases the expressivness of the network. Thus reducing the number of
neurons the network needs to solve a given problem. In addition both function
have ranges [0, 1] and [-1, 1], respectively, which translates well into probability
computation. I.e. you can view the value of the activation function as the
probability of that neuron activating.

An ANN consist of n; layers, each containing a set of neurons. The first layer
is the input layer, and the last layer is the output layer. The layers in between
are called the hidden layers. Each layer uses the previous layer’s output as input.
The input layer is provided with the initial input and uses it to calculate the
activation function for each of its neurons. The result is propagated to the first
hidden layer, and continues up until it reaches the output layer, which provides
the final output. This is known as a feedforward neural network.

The network takes in two parameters:

(W,b) = (WO (1) W@ p) W) plm) (2.5)

x1 wl

w2
X2 (0]

w3

x3

Figure 2.1: A single neuron with three inputs.

Where W is a 3-dimensional matrix containing the weight matrix for each layer.
WO contains the weight matrix for the Weights going from layer [to I+1. E.g.
in the case of Figure 2.2, W) € R3%4 and W) e R**2,

Hidden layer

Input layer

- ‘ Output layer
I ol

Figure 2.2: An Artificial Neural Network.

2.1.2 Training

During the training of the network, it is the parameters (W, b) that are altered
in order to adapt the network to the training data. This is done by providing the
network with a set of training samples, where an input and an expected output
is provided. By using a cost function we can then figure out how we should tune
our weights and biases in order to reduce the error rate. In other words, our goal
is to minimize a cost function over a set of training samples. This can be done
by using gradient descent and the backpropagation algorithm [11][12][8].

Let the cost function for a single training example (z,y) be defined as:

Cost(W,bi,y) = 5 (hw b (z) — 1)? (26)

Where z is the input, hw (2) is the actual output of our network and y is the

correct output. Then the cost function for m training examples ((zt, y!), (22, 4?), ...

is:

)\nlfl s; s;+1
Cost(W,b) ZCost W, b; 2")+ 5 Z (Wé-l-)2 (2.7)

i=1 =1 i=1 j=1

Where the first term is simply the average sum-of-squares error. The second
term is the regularization term, or weight decay term, which tends to reduce
overfitting. ANNs have a vast number of parameters, i.e. weights, which makes
it susceptible to random noise. This can greatly reduce the networks ability to
provide correct predictions, but this can be mended by the regularization term.

Based on this we can use gradient descent to compute how we should alter the
weights in order to reduce the cost function. One iteration of gradient descent
updates w and b as follows:

w_. o 0
Wy = w;; aaw@ Cost(W,b) (2.8)
]
m_w_, 9
b\ =b a—/-Cost(W,b) (2.9)
3()()

Where « is the learning rate, which is a predetermined constant. w - denotes
the weight between neuron j in layer 1, and neuron i in layer 1+1. b denotes the
bias associated with neuron ¢ in layer 14-1.

Note that this would only make us able to compute the gradient for the
output layer. In order to perform gradient descent on the hidden layers, we need
to propagate the error from the output layer backwards, to the hidden layers.
For this we use the backpropagation algorithm. Let ogl) denote the output of the

ith neuron in layer [, and z,(f) is the weighted sum of the inputs plus the bias for
the kth neuron in layer 1. Then the backpropagation algorithm can be formalized
as follows:

1. Perform a feedforward pass, computing the output of every layer.

2. For each output neuron k in the output layer, compute the error term:

S = Cost(W b;z,y) = —o0, (1 — 0") (yr — 0)") (2.10)

82,(6

3. For each hidden layer | = n; — 1,n; — 2,...,2 compute:

Si+1

1 _ ! I gl+1
6; = 0;(1 —0;) Z wij(sj
j=1

4. Compute the partial derivative for each weight and bias:

aa(l)Cost(W,b;x,y) — 0;1)5i(l+1)
wij

0 l
oy Cost W, b,) = 6

(2.11)

(2.12)

(2.13)

Now, combining gradient descent and the backpropagation algorithm we can

describe an algorithm to train our network:

1. Initialize the weights w(®) and b' to random values for every layer I

2. Do steps 3 to 5 until the Cost(W,b) function is low enough or converges.

This is referred to as an epoch.
3. Set Aw® := 0 and Ab(Y) := 0 for all I

4. Fori =1 tom,

(a) Use the backpropagation algorithm to compute V) Cost(W, b; 2 y(9))

and Vgl)C’ost(W,b; @ y®) for every layer I
(b) Set Aw(®) := Aw) 4 V1) Cost(W, b; z(9), y()).
(c) Set AbY) := AbD) + V1) Cost(W, b; 2(), y()).

5. Update the parameters:

wh) = w® — of(LAw®) 4 Aw®)]
m

bD = 50 _ o1 L ApO]
m

2.1.3 Issues with object recognition

While the ANN model have proven useful in several applications, it falls short
when it comes to object recognition in images. According to [8] there are three
major reasons for this: .

1. Topology. A fully connected ANN does not take into consideration the
topology of the input. An image has a strong 2D spatial locality correlation,
which makes it possible to combine low-order features (edges, end-points
etc.) in the same area into higher-order features (noses, ears etc.).

2. Scalability. Even small images contains a large amount of pixels/inputs,
e.g. a 32 x 32 image contains 1024 pixels/inputs. A fully connected network
with 100 hidden units would then end up with 1024 x 100 weights that needs
to be calculated in the first layer. Thus making it harder to scale for larger
images and rather inefficient .

3. Object variance.While objects are similar enough, on a higher level, to
be grouped together into a class, they can still be very different on a lower
level. E.g. a human face have several features that are needed for it to be
defined as a face, e.g. eyes, mouth, nose etc. But the size and shape of
these features tend to be very different from person to person. While it is
possible for a standard ANN to compensate for these internal differences
within a class, it would have to make three costly compensations. 1) The
network would have to be very large, 2) it would probably contain several
neurons with similar weight vectors positioned at different places in the
network, and 3) it would require a massive amount of training samples.

2.2 Convolutional Neural Network

A Convolutional Neural Network [8] (CNN) is an extension of the Artificial Neural
Network model, which is made specifically for object recognition in images or
speech recognition. It was made in order to solve the issues that the classic ANN
model faced.

2.2.1 Definition

The CNN model adds two additional types of layers, in addition to the standard
ANN layers: a convolution layer and a subsampling/pooling layer. The idea
behind the two new layers is to exploit the local 2D structure of images, i.e.
pixels close to each other are highly correlated. By using local correlation one
can extract and combine small local features (e.g. edges, corners, points) into

10

o1t C3:1. maps 16@10x10
- feature maps S4: f. maps 16@5x5
INPUT 6@28x28 e 16

S2:f. maps

32x32
B@14x1

Full Coanection ‘

Convolutions

Figure 2.3: An example CNN, the LeNet-5 [8]. It consists of two convolution and
subsampling/pooling layer pairs, which are connected to a fully connected ANN
with 10 output classes.

higher-order features (e.g. a nose, a mouth, a forehead), which can in the end be
recognized as an object (e.g. a face). A full network is illustrated in Figure 2.3.

Convolution layer

The convolution layer extracts a set of features from a set of input images. For
each feature, the respective feature is extracted from all the input images and
put in a feature map. E.g. if the filter extracts vertical edges, only the vertical
edges from all the input images would remain in the resulting feature map. Thus
different features can be extracted by having several feature maps that extracts
different features.

The extraction is done by performing a convolution operation on the image,
using a kernel that acts like a filter. The kernel is a 2D matrix that contains a
set of weights. Depending on values of the weights, convoluting the image with
the kernel will have wide range of effects, e.g. sharpening, bluring, edge detection
and feature extraction. By training our network we can configure the weights to
extract the features we need in order to recognize our desired classes.

After the convolution operation has been performed, a bias is added to every
element in the feature map and the result is sent through a non-linear function,
e.g. the hyperbolic tangent.

Formally we can define the convolution layer as follows. The layer accepts n
images X1, Xo,..., X, as inputs, and produces m feature maps, F, Fs,..., Fy,.

These feature maps are produced using a set of m learned kernels Wy, Wa, ..., W,,.

Each feature map F} is then produced by computing:

11

Gaussian connection

Subsampling Convolutions Subsampling Full connection

Fy = Tanh(b; + Y _ X; * W) (2.14)
i=1
Where F is the resulting feature map, X is the input image, W is the kernel
matrix, and b is the bias. X % W is the convolution operation, which is defined
as:

E k
Yij = Z Z Li+q,j+pWqp (2.15)
g=1p=1

Where z;; is a value of the input matrix, wy,y is a value in the k x k kernel
matrix, and y;; is a value of the output matrix.

E.g. consider the LeNet-5 in Figure 2.3, in the first layer C1 the input is
a single 32 x 32 image which is convoluted with 6 kernels, producing 6 feature
maps. Thus n = 1 and m = 6. The resulting feature maps are then further
processed by a subsampling/pooling layer S2 (see next section), which are used
as input to the next convolutional layer C3. The six processed feature maps are
then convoluted with 16 kernels, producing 16 new feature maps. Thus in this
layer n = 6 and m = 16.

This helps solve the first two issues from Section 2.1.3. The neurons in a
feature map share the same kernel, thus the same weights, which greatly reduces
the size of the network. The convolution operation applies a 2D filter on the
image, which makes the network able to exploit the spatial correlation in the
image.

Subsampling/pooling layer

Once a feature has been detected, the exact position become less important. For
example, the distance between the mouth and the eyes tend to vary between
persons. So in order to make the CNN not too sensitive to the relative placement
of features, the accuracy of the all feature maps needs to be reduced. This can be
done by subsampling (i.e. partitioning) the feature map into sx s non-overlapping
submatrices, and then perform a pooling operation on each respective matrix.
There are two types of pooling operations which are used for CNNs:

e Maz-pooling extracts the maximum value of the submatrix.

o Awverage-pooling extracts the average value of all the elements in the sub-
matrix.

Given an output of m feature map inputs, each output matrix can be defined
as:

12

3 o202
21| 13] 16| 22
5 0 |1 |3 |1
2 | s 34| 20| 32| 14 34 |32
5 |3 |5 |0 |1 * - -
3 |3 31 | 40| 19| 23 40 | 36
11211]s
25 | 18| 15| 36
5 111 1]2

Figure 2.4: Tlustration of the convolution and subsampling/max-pooling oper-
ations. The leftmost matrix is convulted with a 2 x 2 kernel, and the resulting
matrix is subsampled into four non-overlapping areas where the max value is
extracted.

O = Tanh(b; + subsample_pool (Fy)) (2.16)

Where O; is the t’th output matrix, b; is ¢’th bias, and F; is the ¢’th input
feature map, and the subsample_pool() function’s operation is defined as either:

0ij = Ma(Tixstp jxstq) gp€l,2,....s (2.17)
or

S

S
0ij = % DY Tirpita (2.18)

p=1g=1

Where o0;; is a value in the output matrix and f;; is a value in the feature
map, ¢ is a trained constant, and s is the dimension of the subsampling size. A
max-pooling operation is illustrated in Figure 2.4.

Thus, the subsample/pooling layer helps solve the two last issues from Section
2.1.3. By reducing the accuracy, the network is less sensitive to the difference
between instances of a class. This also causes the network size to be smaller,
since it does not require neurons to recognize the differences.

Figure 2.4 illustrates the convolution operation and the subsample/max-pooling
operation, while Figure 2.5 illustrates the full operation of the convolution and
subsampling/pooling layers.

2.2.2 Training

As mentioned, a CNN consists of three types of layers: a convolution layer, a
subsampling/pooling layer and fully connected layer. The latter is trained as
described in Section 2.1.2, using backpropagation and gradient descent. The two

13

Input images 4x6x6 5x4x4

Gl B

Output 5x2x2 5x2x2 5x2x2 Sxdx4

Figure 2.5: A visual overview of the operations performed by the convolution
layer and subsampling/pooling layer with four input images. Yellow represents
the convolution operation, and red represents the subsampling/max-pooling op-
eration.

other layers use the same general algorithm, but the error §' and the gradient of
Cost(W,b; x,y) is calculated differently.

Since the backpropagation aglorithm starts at the last layer and work its way
backwards, the error is first calculated for the fully connected layers. It is then
provided to the subsampling/pooling layer, and finally to the convolution layer.
Thus we first need to calculate the error for the subsampling/pooling layer, so
we can propagate it to the convolution layer.

The subsampling/pooling layer does not contain any weights, and can there-
fore not be tuned. Thus it only needs to propagate the error it receives. Depend-
ing on which pooling operation is used, there are two respective methods for this.
For max pooling, the error is simply propagated to the neuron that was chosen as
the maximum value, while the rest are set to zero. For average-pooling we have
to distribute the error evenly between all the responsible neurons. We there-
fore define the function upsample(...), which performs the correct propagation
operation depending on the type of pooler.

We can now formally define how to calculate the error and the gradient by

14

simply replacing the equations in step 3 and 4 in the backpropagation algorithm
with the following equations. For simplicity we assume that convolution and
subsampling/pooling is done in a single layer [.

8}, = upsample(W})"8;71) o f'(Z),) (2.19)

Where (WL)T is the weight matrix in layer |, 5;“ is the error matrix for
layer [+ 1, e is the element-wise product (i.e. Hadamard product), f/(Z!) is
the matrix containing the derivative of the activation function, and k indexes the
filter number. Le. it contains o, j(l —ok, j) for every neuron at index 4j in feature
map k in layer [.

Using this we can calculate the gradient:

m

0
mcost(vv, biz,y) = > (o)« a0 Y (2.20)
k =1
0 . _ (1+1)
WC’ost(W,b, x,y) = Z o (2.21)

2.3 Potential for parallelism

A vast amount of the computation required by a CNN can be parallelized. Thus,
in order to achieve the processing of the network it is important that these po-
tential parallelizations are identified and exploited. The most obvious being:

1. The convolution of a matrix n x n using a k X k kernel consists of (n — k +
1) x (n — k + 1) convolution operation, which each can be done in parallel.
Thus convoluting the whole matrix could potentially take only the time it
takes to perform one convolution operation.

2. The subsampling/pooling operation can also be parallelized by pooling all
of the individual submatrices at the same time.

3. The computation of each of the individual feature maps and their corre-
sponding subsampling/pooling. Which [13] referred to as inter-parallelism.

4. Tt is also possible to parallelize the computation of the feature maps that
take more than one matrix as input. This is the case in the subsequent
layers after the first. Which [13] referred to as intra-parallelism.

5. The activation of each neuron in the fully connected layer. One option is
to parallelize them by creating a binary tree multiplier, where you have n
units compute the product of the input and its respective weight, then you

15

n

use 5 units to add two of the results each, and so on until you have a single
value. This will reduce the time it takes from n time to logsn time if they
can all be done in parallel.

2.4 ZedBoard

We choose the ZedBoard as the development board for our implementation of our
accelerator prototype. It contains a Xilinx Zyng-7000 All Programmable System-
on-Chip (SoC) Z-7020, which consists of a dual-core ARM Cortez-A9 MPCore
based Processing System (PS) and an Artix-7 XC7Z020 FPGA as programmable
logic (PL) [14]. The PS includes on-chip memory, external memory interfaces, and
a number of I/O peripherals. The system offers the flexibility and scalability of an
FPGA, while providing performance, power, and ease of use typically associated
with ASIC and application specific standard product (ASSP) [15].

The PL makes use of the second version of the Advanced eXtensible Interface
(AXI4) bus protocol, which is part of the ARM Advanced Microcontroller Bus
Architecture (AMBA) [16]. There are three types of AXI4 interfaces:

e AXI4 - for high-performance memory-mapped requirements.
e AXI4-Lite - for simple, low-throughput memory mapped communication.

o AXI4-Stream - for high-speed streaming data.

As long as a component in the PL implements any of these interfaces, it can
be connected directly to the PS through a set of AXI4 bus ports. For the rest
of this report we will refer to AXI4-Lite as AXI, and AXI4-Stream as AXIS.
The prefixes S_ and M_ will refer to slave and master port, respectively. These
acronyms will be use extensively in Section 4.4.

The feature that makes the ZedBoard especially well-fitted for hardware ac-
celeration applications, is the tight coupling between the PS and the PL. The
ARM processors can be connected directly to any component in the PL area
through the extended multiplexed I/0 (EMIO) port or a set of general purpose
AXT ports (see Figure 2.6). In addition, there are four high performance (HP)
AXI4 ports that PL components can use to access external memory directly. At
max capacity the HP AXI4 ports have a bandwidth of 1200 MB/s. This inte-
gration of the PS with the PL allows levels of performance that the two-chip
solutions (e.g. an ASSP with an FPGA) cannot match due to their limited I/O
bandwidth, latency and power budgets [15].

16

Processing System

Flash Controfler
NOR, NAND, SRAM, Quad SP|

AMBA® Interconnect

|th
. 2x .
CAN
I X .
. UART I
GPID
2 SDID
. with DMA .
2x USH
. with DMA .
2x GigE

with DMA

Cortex™- A9 MPCore
32/32 KB 1/D Caches

iy
SPI
i
P
2
P

=
=
=
4
i
=]
i
w
o
=
=
=
o

XADC
2y ADC, Mux,
Thermal Sensor

Programmable Logic

Multi-Standard 1/0s (3.3V & High-Speed 1.8V)

Muitiport DRAM Controlier

DDR3, DOR3L, DDR2

BA Interconnect

(System Gates, DSP, RAM)

PCle GenZ
1-8 Lanes

Multi-Gigahit Transceivers

L

Figure 2.6: Zyng-7000 system architecture.

17

Chapter 3

Related Work

This section will give an overview of the current state of research on Convolutional
Neural Networks.

3.1 Convolutional Neural Networks

The mathematical fundamentals for Convolutional Neural Networks was intro-
duced as early as in the 1980s by Kunihiko Fukushima[l17][18], in form of the
neocognitron model. The model was later improved in 1998 by Yann LeCun, Lon
Bottou, Yoshua Bengio, and Patrick Haffner - who introduced the Convolutional
Neural Network model. In 2003 the model was simplified by Patrice Simard,
David Steinkraus, and John C. Platt [19], in an attempt to make it easier to
implement. The paper also mentions two of the main issues with CNNs: the
size of the training set and the time spent training. In order to achieve high
enough accuracy a CNN requires thousands of training samples, which needs to
be labeled. Processing all of these samples and fine-tuning the networks takes a
great amount of processing power, causing training to take days or weeks. These
issues caused CNNs not to gain popularity before mid-2000.

The rise of the Internet, digital cameras, and Big Data have provided us with
vast amounts of images which can be used for training. Improvements in the
speed and sophistication of computer hardware have reduced the training time
from days/weeks to hours. E.g. [20] purposes a GPU implementations which
reduced the epoch (see Section 2.1.2) training time from 35 hours to 35 minutes.
This demonstrates that highly parallel hardware vastly increases the efficiency of
neural networks compared to CPUs.

These recent advancements have renewed the interest in neural networks and
increased the research done on the field. As a result CNNs have become a leading

18

model within pattern recognition for computer vision. This can be illustrated by
the fact that CNNs implementations have won several pattern recognition con-
tests in the period 2009-2012, including IJCNN 2011 Traffic Sign Recognition
Competition[21] and the ISBI 2012 Segmentation of Neuronal Structures in Elec-
tron Microscopy Stacks challenge[22].

3.2 Convolutional Neural Network in Hardware

There have been several proposed hardware architectures during the last decade,
and below we will describe the more recent and relevant architectures. If the
reader is interested in even older implementations, one can refer to [23], [24],
[25], [26], and [27]. We have divided the architectures into two categories, mobile
co-processors and server co-processors. The first is small architectures that are
intended to fit into resource constrained environments, i.e. mobile applications,
while the second is larger architectures that have virtually no resource constraint.
But a common design goal for both categories are power efficiency.

Mobile co-processors

In [2] a CNN was implemented on a Virtex-4 SX35 FPGA from Xilinx. In this
implementation all the fundamental operations were accelerated by a special-
made ALU, and controlled by a 32 bit soft processor using macro instructions.
That is, they created macro instructions for convolution, non-linear function,
subsampling/pool and dot product between values at identical locations in mul-
tiple 2D planes and a vector. Training was done offline, and a representation of
the network was provided to the soft processor. With this implementation they
were able to process a 512 x 384 gray-scale image in 100ms, i.e. 10 frames per
second. The design was intended for use in low power embedded vision systems,
e.g. robots, and the whole circuit board used less than 15 W.

Farabet and LeCun later improved the mentioned architecture in [28]. In this
design they added multiple parallel vector processing units and allowed individual
streams of data to operate within processing blocks. They were able to achieve
30 frames per second using 15 W. In addition they predicted a planned ASIC
implementation of the system would increase the processing speed and reduce
the power to 1 W.

In [13] they explore how they can exploit the parallel nature of CNNs. They
introduce two types of parallelism found in CNNs, inter-output and intra-output.
The first one comes from the observation that each feature map and the cor-
responding subsampling/pooling computation can be done in parallel. This is
easily seen in the first layer. The second one refers to that the convolution of
several inputs are combined to produce one feature map (see Figure 2.5), where
the individual convolutions can be done in parallel. This one is present in all of

19

the convolution layers after the first layer. They exploit these observations by
purposing a dynamically configurable co-processor on a FPGA, which can switch
between computing several different feature maps in parallel and processing sev-
eral inputs to compute one feature map. By doing this they are able to fully
utilize the parallel nature of a CNN and reduce the intermediate storage on the
FPGA. Using a Virtex 5 SX240T FPGA with 1024 multiply-accumulate units
they were able to outperform a 2.3 GHz quad-core, dual socket Intel Xeon, and
a 1.35 GHz C870 GPU by 4x to 8x.

[29] presents an architecture they named the nn-X. For the implementation
they used a Xilinx ZC706 platform, containing a Kintex-7 FPGA and two ARM
Cortex-A9. They made a set of collections that contained acceleration units
for the convolution and subsampling/pooling operations. Each collection also
contained a data router which could route data to the accelerator units, or to other
collections in order to share data. The convolution and subsample/pooling layer
was procssed on the FPGA using the accelerators, while the fully connected layer
was processed by the arm processors. The authors claim that this architecture is
the fastest and most power efficient of all the purposed architectures for mobile
processors, to date. It is able to perform up to 227 G-ops/s, using 8W.

[30] focuses one the challenges of memory bandwidth related to deep convolu-
tional neural networks. They argue that while accelerators are fast, slow memory
makes it difficult to saturate the accelerators with enough data. To combat this
they purpose a memory access optimized routing scheme, where they reduce the
number of times a input map has to be transfered from memory to the accelera-
tor. A crucial point here is that in general the output map is the sum of several
convoluted input maps. Thus if an accelerator is only able to compute one output
map at a time, the input maps have to be transfered to the accelerator several
times. This architecture reduces the amount of such transfers by having a DMA
for every two accelerator, and making the DMA transfer the same data to both
of its accelerators. The accelerators will either produce an intermediate results or
a complete output map, depending on how many iterations it has run. There is
a total of eight accelerators, four which are used to combine intermediate results
into complete output maps, and four to compute intermediate results. Using this
memory scheme they were able to decrease the memory access by 2x and increase
the hardware utilization by 2x.

Server co-processors

Hardware acceleration of CNNs have also gained popularity within the data center
field. The Internet and Big Data have made it viable to have servers that perform
image classification, image recognition and natural language processing, using
CNNs. Since the main expense of data centers are power usage, using specialized
hardware accelerators that provides good performance at low power have gained

20

increased popularity. Thus recently there have appeared architecture suggestions
for much bigger FPGAs than the previously mentioned, since size is mostly a
problem for mobile applications.

One of the most prominent architectures is the one suggested in [1]. In this
paper they present a detailed analysis of computing throughput and memory
bandwidth utilization. Using the roofline model [31] they explored the design
space in order to detect possible optimizations, including loop tiling, unrolling and
pipelining. Based on these analysis they purpose a architecture for a hardware
accelerator. What separates this architecture from the previous ones is mainly
that the accelerator computes the whole layer in one go, instead of parts of the
layer and combining them later. That is, all the input data of a layer is inputted
to the accelerator, it computes, and outputs all of the output feature maps of
that layer. Previous implementations have primarily accelerated parts of the
layer, or one feature map at a time. This greatly decrease the off-chip traffic,
which is said to be the main performance sink for CNN accelerators. Such an
architecture requires an extensive amount of hardware resources, which is why
they implemented it on a Virtex 7. The reward is a throughput of 61.62 GFLOPS,
using 18.6 W.

Microsoft, who have experimented on using accelerators for CNNs in their
data centers, recently purposed an architecture which exceeds the previous one.
In [4] they present an hardware accelerator that fit into a Stratix V D5 FPGA,
and that can be integrated in their severs. Again, the main optimization is
preventing off-chip memory, which they achieve by using an on-chip data re-
distributor, making them able to compute several layers in a row. While the
previous mentioned architecture computed one layer at a time, this architecture
computes several, boosting the performance by 3x compared to the previous.
Thus the system is still slower than a GPU implementation on a Tesla K40,
which is 6x faster, but the accelerator is at least 2x as energy efficient.

21

Chapter 4

Architecture

In this chapter we will present our suggested architecture for a hardware acceler-
ated forward propagation of a Convolutional Neural Network used for recognizing
handwritten digits. The architecture will be presented in a top-down approach,
starting with the topology and dataset of the network, followed by an overview of
the software used, and finally, the hardware architecture of the accelerator. The
source files for the VHDL and software code used in this project can for the time
being be found at [32]

C5: 120
Input: 1@32x32 C1: 6@28x28

T =™

] 1
1

. S4: 16@5%5,
C3: 16@10x10 —_

V//ARN
]

Partially connected

Figure 4.1: The topology of the implemented network.

22

0

Fully connected

4.1 Network Topology and Dataset

We chose to implement a network with a smiliar topology as the LetNet-5 for
digit recognition, as seen in Figure 4.1. It consist of six layers:

e C1, convolution layer. Takes in a single 32 x 32 image of an digit.
The image is convoluted using six different trained kernels, and outputs six
respective 28 x 28 feature maps.

e S2, subsampling/average-pooling layer. Performs the subsample/average-
pooling operation on each of the six 28 x 28 feature maps from the previous
layer, using a respective trained value for each map. The resulting output
is six 14 x 14 subsampled feature maps.

e C3, partially-connected convolution layer. Takes in six 14 x 14 feature
maps which are partially connected to the sixteen 10 x 10 output feature
maps. These connections are shown in Table 4.2. The connections specifices
which inputs are needed to compute a given output. E.g. in order to
compute feature map 13, input 2, 4 and 5 are to be convoluted with the
13’s kernel. The respective convoluted inputs are then combined into a
single matrice, where a bias and activation function is applied to every
element - which give the resulting output feature map.

e S4, subsampling/average-pooling layer. Performs the subsample/average-
pooling operation on each of the sixteen 10 x 10 feature maps from the
previous layer, using a respective trained value for each map. The resulting
output is sixteen 5 x 5 subsampled feature maps.

e C5, fully connected convolution layer. Takes in a sixteen 5 x 5 feature
maps which are fully connected to the 120 1 x 1 output feature maps. Since
the size of the output feature maps are a single value, the feature maps are
basically standard neurons.

e F6, output layer. Takes in 120 neurons which are fully connected to
the 10 output neurons. The output neuron with the highest value is the
predicted value of the network.

There are three primary reasons for choosing this network. First, it is a rela-
tively small network, which simplifies the implementation by reducing the chances
of bugs and memory problems. Secondly, the kernel size of all the convolution
layers are the same. This allowed for a less complex implementation, since we
did not have to design our accelerator to support different kernel sizes, making
it easier for the accelerator to support all the convolution layers. Thirdly, this
network have been shown to work very well with the MNIST dataset, i.e. our own

23

1 0 o] o 0 .0 o o] 0 0o
2 o] o} 0 .0 .o | o] 0 o} 0 0
3 |o o | o .0 .o o o} o} o |o
4 o o o .0 .o o o o] o |o
5 o o0 o} | .o .0 o} o] o o o]
6 o] o] 0 .0 .o o 0 o] o] o

Figure 4.2: Table showing which of the six feature maps from S2 that are needed
in order compute the feature maps of C3.

experiments gave an accuracy of 99.1%. Since the aim of this project is exploring
hardware acceleration, we did not wish to spend time finding a working topology
for a given dataset. Using a topology that has been shown to give high accuracy
allowed us to focus more on acceleration rather than topology theory.

As mentioned, we used the the MNIST dataset, available at [33]. It consists
of 50 000 samples of handwritten digits ranging from 0-9, where 40 000 of the
samples are used for training and 10 000 samples are used to determine the
accuracy of the network.

4.2 What to accelerate

In order to decide which part of the network that should be accelerated one
has to determine the most computational expensive part of the network. In the
literature (see Chapter 3) there is a common consensus that the convolution layer
is the most demanding layer, and [28] and [1] states explicitly that it amounts
to about 90% of the total processing. We have confirmed this number in our
own experiments, through a simple mathematical analysis of the network and by
profiling a software implementation of the network.

Table 4.1 shows the number of connections for each layer in the network.
Each connection corresponds to a multiply-and-accumulate (MAC) operation,
e.g. 122304 MAC operations are required to compute Cl. Since the number
of activation functions to be computed is strongly correlated to the number of
connections, we refrained from including them in the analysis. We see that 97%
of the computations in our network is performed in the convolution layers, giving
a clear indication of what layers should be accelerated.

24

Layer Connections Percentage
C1 122304 0.37
S2 5880 0.02
C3 151600 0.46
S4 2000 0.006
C5h 48120 0.14
F6 120 0.004
Total 331104 1.0

Table 4.1: An overview of the number of connections in the network layers.

We also decided to accelerate the subsampling/pooling layers, even though
only 0.8% of computations are done there. The reason for this that we were
able to make a design where the subsampling/pooling could be done virtually in
parallel with the convolution, at a minimal cost to hardware resources (see Section
4.4.6. We deemed the small cost worth the 0.8% potential performance boost.
But more importantly, it makes our architecture eaiser to extend to compute
several layers in a row, without going back to software, which would greatly
reduce off-chip traffic and performance (see Chapter 6).

For future conveniences, we hereby define layer 1 as C1/S2, layer 2 as C3/54,
layer 3 as C5 and layer 4 as F6.

4.3 Software Architecture

This section gives an overview of software architecture used to compute the net-
work and to control the accelerator.

4.3.1 Network Software

We have made extensive use of Taiga Nomi’s C++ framework for neural networks,
available at [34], in our project. The framework was used in order to train
the parameters of our network, for measuring the efficiency of a pure software
implementation, and as a basis for the implementation that uses the hardware
accelerator. The framework treats each layer in the network as a separate software
module, which makes it easy to swap different implementations of a layer. This
simplified the process of integrating the hardware accelerator into the network,
since we could simply exchange the original modules with our own.

Figure 4.3 A shows a simplified version of the architecture of the pure software
implementation of our network. Each layer contains a set of pre-trained weights
which are loaded before the network starts processing the images. When an image

25

is inputted to the first layer, it performs the calculations described in Chapter 2
in software, and propagates the result to the next layer.

Figure 4.3 B shows how the original software was changed in order to make use
of the accelerator. As mentioned, we decided to accelerate the convolutional layer
and the subsample/average-pooling layer, thus we wrote a new software module
that would handle both operations. But instead of computing the operations in
software, the new module transfers the input data and the weight to the hardware
accelerator and extracts the result from the computations.

While our architecture supports accelerations of C5, we refrained from using
it in its current form. The reason being that currently the accelerator is only
able to compute one feature map at a time. Each computation comes with a
certain amount of overhead, i.e. transferring data to/from the accelerator and
configuring it. Thus for C5, which takes in 120 5 x 5 matrices, we figured that
input was so numerous and so small that it would cause too much overhead in
order to be efficient. In Chapter 5 we show data that confirms this claim.

Figure 4.3: A simplified overview of the software architecture with and without
hardware acceleration.

4.3.2 Hardware driver

A driver for the accelerator was written in order to create a simple and easy to
use interface to the hardware. As mentioned, in its current form the accelerator
is able to compute on feature map at a time, thus the input to the driver is all
the data required to compute said feature map. That is, a set of images, their

26

respective kernels and bias, the average pooling constant and its respective bias.
The driver then feeds this data to the accelerator, and returns the computed
feature map. Due to the architecture of the accelerator the input has to be
transferred in a certain order. The biases and average pooling constant first,
the weights second and the image last. Figure 4.4 shows in what order the data

should be in the accelerator FIFO buffer.

. Input map . Kernel . Bias D Empty

Figure 4.4: Shows how the data must be sequentially ordered in the input FIFO.
In this example the output feature map is computed using two input maps.

FIFO

For data transfer the driver uses a direct memory access controller (DMA)
IP from Xilinx. This is where most of work on the driver had to be done, since
the DMA interface is much more complex compared to the accelerator interface.
The DMA is configured to transfer the weights and image(s) to the accelerator’s
input buffer, and extract the data from the output buffer. Since the output buffer
is a FIFO, the DMA is able to extract each output value as they are produced,
instead of waiting for the accelerator to finish and then transfer all the output
data. Figure 4.4 shows how the data has to be structured when transferred to
the accelerator’s input buffer.

The processor can make use of the DMA by providing it with a set of buffer
descriptors (BD), also called a BD ring. Each descriptor provides the DMA with
the necessary information to perform a memory transfer: a source address and/or
a destination address (depends on type of channel), and the length of the packet
to transfer. One also need to set a start of file(SOF) and end of file (EOF)
control bit for the first and last BD in the ring, respectively.

Our DMA has two channels, a transmit (Tx) and receive (Rx) channel. For
the Tx channel the destination of the data is set to the address of the component
connected to the DMA’s Tx bus. Which in our case is the buffer which feeds the
accelerator. Similarly, the Rx channel’s source address is set to the component
connected to the Rx bus, i.e. the FIFO buffer containing the output of the
accelerator.

E.g. if a feature map requires two sets of input maps, weight and bias, then
Figure 4.5 shows a simplified version of the Tx BD ring. Since the BDs are
processed sequentially, the data will be transferred in the correct order, as in

27

Figure 4.4.

Buffer descriptor
Ring

<« S0F

<+ EOF

. Input map . Kernel . Bias

Figure 4.5: Simplified version of the Tx BD ring. First BD points to the location
of the bias, second to the weights, and the third to the image, etc.

Xilinx provides a software driver for the DMA that manages the BD rings and
initializes DMA transfers. A subset of the driver interface is listed below, showing
the functions we used to control the DMA. For a more detailed explanation of the
interface, please refer to the documentation in the driver source code, available
at [32]

Listing 4.1: XAxiDma driver interface

/% Retrievies the config structure required to initialize the DMA
*/
Config* XAxiDma_LookupConfig(u32 XAxiDma_id);

/* Initializes the DMA */
int XAxiDma_CfglInitialize (XAxiDma *dma, XAxiDma_Config *config);

/* Returns a pointer to the BD ring for the Rz channel */
XAxiDma_BdRing* XAxiDma_GetRxRing (XAxiDma *XAxiDmalInstPtr);

/% Returns a potinter to the BD ring for the Tz channel */
XAxiDma_BdRing* XAxiDma_GetTxRing(XAxiDma *XAxiDmaInstPtr);

28

/* Returns the maximum number of BDs given the available memory
size */

int XAxiDma_BdRingCntCalc(u32 bd_size, u32
size_of_available_memory);

/% Allocatetes memory for storing the BD ring */
int XAxiDma_BdRingCreate (XAxiDma_BdRing #*RxRingPtr, u32 BaseAddr,
u32 BdSize, u32 BdCount);

/% Allocated a number of BDs from the BD ring, which can be
configured at submitted for hardware processing */

int XAxiDma_BdRingAllc (XAxiDma_BdRing *BdRingPtr, u32 BdCount,
XAxiDma_Bd *FirstFreeBdInRing);

/% Sets of address the packet the BD should transfer. */
int AxiDma_BdSetBufAddr (XAxiDma_Bd *BdPtr, u32 addr);

/% Sets the length of the packet the BD should transfer */
int AxiDmaBdSetLength (XAxiDma_Bd *BdPtr, u32 length);

/% Set control signals for BD. E.g. SOF and EOF. */
XAxiDma_BdSetCtrl (XAxiDma_Bd *BdPtr, u32 CtrlMask);

/% Starts the channel. I.e. the DMA will start processing BDs as
soon as they are submitted to hardware */
int XAxiDma_BdRingStart (XAxiDma_BdRing #*BdRingPtr);

/% Submits the BD ring to hardware. Can not be accessed again
before hardware is done processing. */

int XAxiDma_BdRingToHw (XAxiDma_Bdring #*BdRingPtr, u32 BdCount,
XAxiDma_Bd *FirstBd);

/* Eztracts BDs from hardware after they are processed. Returns
mazimally BdCount BDs from hardware, but perhaps less */

int XAxiDma_BdRingFromHw (XAxiDma_BdRing *BdRingPtr, u32 BdCount,
XAxiDma *FirstBdRetrived);

/% Frees BdCount BDs after they have been processed by hardware.
Must be dome before the can resused for other transfers */

XAxiDma_BdRingFree (XAxiDma_BdRing *BdRingPtr, u32 BdCount,
XAxiDma_Bd *FirstBdToFree);

Below we will show in simplified C code how we have used the above interface
to configure and run, and transfer data to and from the accelerator.

The first thing that has to be done is to initialize the DMA driver, allocate
memory for the Tx and Rx BD rings, and start the channels.

void initializeDMA() {
XAxiDma Dma;
XAxiDma_Config *Config = XAxiDma_LookupConfig(Dmald);

29

XAxiDma_CfgInitialize (&Dma, Config);

SetupTx (&Dma) ;
SetupRx (&Dma) ;
}

void SetupTx(XAxiDma #*Dma) {
XAxiDma_BdRingPtr #TxRing = XAxiDma_GetTxRing(Dma) ;
int BdCount = XAxiDma_BdringCntCalc(MINIMUM_ALIGNMENT,
TxBdMemorySpaceHigh -TxBdMemorySpaceBase) ;
XAxiDma_BdRingCreate (TxRing, TxBdMemorySpaceBase,
MINIMUM_ALIGNMENT, BdCount);
XaxiDma_BdRingStart (TxRing) ;
}

void SetupRx (XAxiDma *Dma) {
/% Virtually the same as SetupTz */
}

This should only be necessary to do once, as long as one does not need more
BDs than what is currently allocated. Afterwards one can transfer data to the
accelerator, run the accelerator and retrieve the output the following way:

void computeOutputMap (XAxiDma *Dma) {

SetupTransferToAccelerator (Dma) ;
SetupTransferFromAccelerator (Dma) ;
WaitForTx (Dma) ;

RunAccelerator ();

WaitForRx (Dma) ;

}

void SetupTransferToAccelerator (XAxiDma *Dma) {

XAxiDma_Bd *Bdptr;

int BdCount = NumberOfInputMaps*3; /* Multiply with three,
because each input map needs to transfer three packets:
bias, weights and image. */

XaxiDma_BdRing *TxRing = XAxiDma_GetTxRing(Dma) ;

XAxiDma_BdRingAlloc (TxRing, BdCount, &BdPtr);

int index = 0;
for each input map {
for bias, weight and input map {
XAxiDma_BdSetBufAddr (BdPtr [index], PacketAddr);
XAxiDma_BdSetLength (BdPtr[index], LengthOfPacket);
index++;

}

30

XAxiDma_BdSetCtrl (BdPtr [0], SOF); /* First Bd in ring */
XAxiDma_BdSetCtrl (BdPtr [BdCount-1], EOF); /* Last Bd in 7ing
*/

XAxiDma_BringToHw (TxRing, BdCount, BdPtr [0]);
}

void SetupTransferFromAccelerator (XAxiDma #*Dma) {
int BdCount = 1; /* Only need to retrieve omne output map */
XAxiDma_bd *BdPtr;
XAxiDma_BdRing *RxRing = XaxiDma_GetRxRing(Dma) ;
XAxiDma_BdRingAlloc (RxRing, BdCount, &BdPtr);
XAxiDma_BdSetBufAddr (BdPtr, PacketAddr); /¥ specifies where

the output map should be stored */

XaxiDma_BdSetLength (BdPtr, PacketLength);
XaxiDma_BdRingToHw (RxRing, BdCount, BdPtr);

}

void WaitForTx (XAxiDma *Dma) {
XAxiDma_Bd *BdPtr;
XaxiDma_BdRing *TxPtr = XAxiDma_GetTxRing (Dma) ;

/* Get processed Bds from hardware */
int ProcessedBdCount = 0;
while (ProcessedBdCount < TotalBdCount) {
ProcessedBdCount += XAxiDma_BdRingFrome(Tthr, TotalBdCount
, BdPtr);
}

/% Free all Bds when transfer is complete */
XAxiDma_BdRingFree (TxPtr, ProcessedBdCount, BdPtr);
}

void WaitForRx(XaxiDma *Dma) {
/% Virtually the same as WaitForTz */
}

The interface to the accelerator is designed to be as easy to use as possible,

and requires little configurations. One simply needs to specify the layer that is
going to be processed and the number of input maps that is needed to compute
the output map. In addition, it is vitual that the input data is in the accelerators
input buffer before it is started. With this is mind, the accelerator can be used
in the following way:

void RunAccelerator () {
Xil_Out32(AcceleratorAddr+4, layer); //Set current layer
Xil_Out32(AcceleratorAddr+8, nof_input_mapsx); //Set the
number of input maps
Xil_Out32(AcceleratorAddr, 0); //Start processing

31

Where Xil_ Out32(u32 addr, u32 value) writes value to the memory location

of addr in the PL.

Programmable logic to
R ——

32b GPIO Axi Master High performance AXI 32b

m Slave Ports m

AXI Interconnect AXI Interconnect

Figure 4.6: The system architecture.

4.4 Hardware Architecture

In this section we will describe the hardware architecture of the system as a
whole, and more specifically, our accelerator. Do note that the descriptions and
the figures are simplified to some extent. This simplification is done with the
intent avoiding complex description and explanations. We will rather focus on

32

conveying the important ideas behind the design, instead of describing every tiny
detail of the architecture.

4.4.1 Overview of Hardware Architecture

Figure 4.6 shows the block diagram of our system architecture. In this design we
have to accelerators running in parallel, with their own respective DMA which is
used to feed them data. The DMA’s are connected to two of the four available
high performance AXI ports, which are optimized for high bandwidth access
from PL to external memory. The DMA has three bus interfaces that uses the
HP ports:

e The AXI slave port Memory-Mapped to Streaming (S_AXI_MM2S) is used
to transfer data from memory to the DMA. All the data transferred by
the DMA’s Tx channel is transferred to this port. The data can than be
rerouted to any arbitrary hardware module, as long as they implement a
S_AXIS bus port which is connected to the DMA’s M_AXI_MM2S port.

e The AXI master port Stream to Memory-Mapped (M_AXI_S2MM) is used
to transfer data from the DMA to external memory. The DMA receives
data from the S_AXI_S2MM which it rerouted to the M_AXI_S2MM if the
Rx channel is active.

e The Scatter-Gather (SG) is used to transfer BDs between software and
hardware. I.e. when software is done configuring the BDs and submit them
to DMA control, the DMA transfers the BDs from memory to itself, and
starts processing them. When the DMA is done processing the BDs are
returned to memory through the same port.

In order to configure and run the DMA, the processor is connected to it with
a S_AXI bus. This is used to tell the DMA where in memory it can find the BD
ring, when BDs are ready for processing etc.

The accelerators are connected to two FIFOs, one for input and the other for
output. The DMAs fill the input FIFO with data which the accelerator consumes,
and extracts the accelerator’s output data from the output FIFO. The processor
can configure the accelerator directly by writing to it via the S_AXI port.

The flash memory is used to store the trained parameters of the neural net-
work, and the input images and their respective labels. When the application
starts up, this data is parsed by the processor and then stored in the external
memory, so it can be accessed by the DMA later on.

33

Accelerator processing -
l unit

Figure 4.7: The interface of the accelerator.

4.4.2 Accelerator Interface

Figure 4.7 shows the block diagram for the interface of the accelerator. The
S_AXI bus, which the processor uses to configure the accelerator, is connected to
a controller. The input maps, weights and biases are streamed into the processing
unit via the S_AXIS bus, and the resulting output map is streamed out via the
M_AXIS bus.

nof_input_maps_processed < total_nof_input_maps
and
nof_pixels_processed = size_of_input_map

LOADING)

WEIGHTS (PROCESSING

nof_weights_loaded = total_nof_weights
nof_pixels_processed < size_of_input_map

nof_weights_loaded < total_nof_weights

Figure 4.8: The three states of the accelerator’s controller.

34

Layer Input map size Output map size Kernel size
1 32 x 32 14 x 14 5x5+3
2 14 x 14 5x5 OxX5+3
3 5x5 1x1 5x5+4+3

Table 4.2: Hard-wired values stored in the controller that are specific to the
network.

The controller is a state machine which controls the processing unit. It has
three states: idle, loading weights and processing, as seen in Figure 4.8. The
controller has two configurable registers, layer_nr and nof-input_sets. Layer_nr
specifies which layer the output map corresponds to, and nof-input_sets speci-
ficities how many input maps are required to compute the output map. The
controller have some hard-wired values which is related to the network it it sup-
posed to processes. So based on the layer, it knows the size of the input map(s),
output map and the kernel. E.g. for our specific network, the controller contains
a table equivalent to Table 4.2. Layer 1 corresponds to C1/S2, layer 2 to C3/S4
and layer 3 to C5. The reason for adding three to the kernel size is to include
the two biases and the average pooling coefficient.

The controller uses three control signals to manage the processing unit:

e load_weights. Tells the processing unit to extract data from the input buffer
to fill its kernel buffers.

e process.map. Starts the processing of a single input map, extracted from
the input buffer.

e final_map. Activated when the processing units starts processing its final
input map, so it can output the result to the output buffer when done
processing.

4.4.3 The Accelerator’s Processing Unit

As previously stated, the accelerator takes m images as input, I1,Is,...,I,, n
respective kernels K1, Ko, ..., K,, two biases and an average pooling coefficient,
and outputs a single processed image O. Using the input images, the kernel and
the bias, it performs the operations of the convolution and subsampling/average-
pooling layer for a single feature map. Thus the output O is a subsampled /pooled
feature map that has been produced by convoluting the images I, Io, ..., I,, with
the kernels K1, ..., K,.

The accelerator can thus compute the whole convolution and subsample/pool-
ing layer by doing the above computations for all the output feature maps in the

35

layer. One can exploit inter-parallelism by making several instances of the accel-
erator run in parallel. One can also exploit intra-parallelism, but then one need
to connect the different accelerator instances so they can add up the results from
the convolutions without using the intermediate convolution buffer; as described
in [13]. Unfortunately, within the given time frame we were unable to get a sys-
tem working that exploited inter- and intra parallelism. But the architecture is
designed to be easily extendable to support this, given more development time.
The accelerators consists of five major components (Figure 4.9):

e The convoluter. Performs the convolution operation on the input.

e The intermediate convolution buffer. Since the resulting feature map
is the sum of the convolutions of all the input images (with the exception of
the first layer), this buffer is needed to store the intermediate results from
the previous convolution, so that it can be accumulated with the current
convolution. In the first layer of the network there is only one input image
(i.e. n =1), thus no summation is needed.

e Tanh. Performs the non-linear hyperbloc tangent function on the feature
maps.

e Subsample/average-pooler. Performs the subsample/average-pool op-
eration on the feature map.

Layer_nr

Data_in —— Intermediate
convolution

buffer

Average |

Convoluter pooler

Figure 4.9: The architecture of the accelerator’s processing unit.

The layer_nr signal is used to specify whether it is C1/S2 or C3/S4 that is
being computed. The input image in the first layer is bigger than the images in
the second (32 x 32 vs 14 x 14), which the convoluter and the average pooler need
to (see Section 4.4.4 and 4.4.6). In addition in the second layer the intermediate
convolution buffer needs to be activated so it accumulate and store all the convo-
lutions needed to compute a single feature map. The mux is used to control which
data to propagate to the average pooler, directly from the convoluter (C1/52) or
from the buffer (C3/54).

36

In order to reduce resources spent and execution time, the accelerator uses
Q16.16 fixed-point arithmetic, which is shown to give virtually the same network
accuracy as floating-point arithmetic[35] [36] [37]. Something that has been con-
firmed by our own experiments. In order to implement fixed point arithmetic and
fixed to float conversion we used the IEEE proposed libraries by David Bishop,
available at [38].

In the following sections below we will provide a more detailed description of
the convoluter, the hyperbolic tangent unit and the average pooler.

4.4.4 The Convoluter

This module is inspired by [2]. The input is a n x n image, and the output is a
(n—k+1)x (n—k+1) feature map, using a k X k kernel. The kernel is stored in
internal registers that must be rewritten for each different feature map that is to
be computed. Every clock cycle, the module takes in a pixel as input, and after
a certain delay it will output a processed pixel almost every cycle. Each pixel is
inputted once, left to right, one row at a time.

It consists of 2D grid of multiply and accumulate (MAC) units which rep-
resents the convolution kernel. Thus the grid dimension is equal to the kernel
dimension. In every MAC unit there is a register that contains the respective
kernel weight. In every clock cycle the MAC units multiply the input pixel with
its weight, and then accumulates the result from the previous cycle of the MAC
unit to the left.

At the end of each row of MACs there is n — k shift registers. The result
of the last MAC in each row is stored in the first shift register, and the first
MAC in each row takes the value of the last shift register of the previous row as
accumulation input. The exception being the absolute first and last MAC unit.
Every clock cycle, the values in the shift registers are shifted to the right.

By providing this delay you only have to input each pixel once during the
convolution. Generally every pixel is needed for k x k convolution operations
(the exception being the pixels close to the boarders of the image). Thus the
shift registers are used to store the intermediate values of the convolutions until
a pixel that is needed for the respective convolution operation is inputted.

The delay these shift registers cause are the reason for the delay before valid
output pixels are produced. Thus from when the convolution starts, the output
will not be valid before £k — 1 rows of the image have been processed. And for
every new image row, there will be a k cycle delay before the output is valid.
The reason for this delay can be intuitively understood by remembering that the
input image is a n X n matrix, while the output matrixis a (n—k+1)x (n—k+1)
matrix.

Since the two layers in the network have different image sizes, but use the

37

Pixel_in

Shift registers.

0 + A + AI—F

|

w3 X z X

Pixel_out

Figure 4.10: The Convoluter, when n = 3 and k = 2.

same kernel size, we can use the module for both layers. This is done by having
the control signal layer_nr decide how many of the shift registers that are to be
used during convolution. In the first layer all of the shift registers are used, but
in the second only a subset is used. I.e. n — k + 1 of shift registers are used in
each row, where n is either 32 or 14.

The loading of the weights takes k& x k clock cycles, and the processing of
the image takes n x n clock cycles. Thus the total number of cycles it takes to
perform a full convolution of an image is n X n + k x k. But based upon the
papers refered to in Section 3 it seems that n tends to be larger than k. E.g. for
the first layer in the LeNet-5 [8], n = 32 and k = 5, the loading of the weights
take 25 clock cycles and the image processing 1024 cycles. This means that the
execution time of the convoluter is primairly bounded by the size of the image.
But the size of the kernel decides the hardware resource cost of the module, since
it requires k x k DSP slices on the FPGA.

4.4.5 The Hyperbolic Tangent

This module is based upon [39] using piecewise linear approximation. It takes
as input a single value z and outputs a linear approximation of the hyperbolic
function. Using a lookup table (Table 4.4) and the constants from Table 4.3 the
module decides which linear approximation to use. In order to meet the timing
constraints on the FPGA the module has a pipeline length of three.

38

525
32 4234 4
5123 %
3 4 7 5 2
412

Pixel_out

Pixel_out

Figure 4.11: Example showing the five first clock cycle of an convolution. The
weights of the kernel is already loaded into the MAC units, and every cycle a
new pixel from the image in inputted. In the last example you can see that 42 is
provided as the first output.

4.4.6 The Average Pooler

The average pooler performs the subsample/average-pooling operation described
in Section 2.2.1. The input is a (n — k + 1) X (n — k + 1) feature map, and the
output is a (n—k+1)/px (n—k+1)/p subsampled/average-pooled feature map,
where p is the dimension of subsample neighborhood.

39

Constants
my = —0.54324
mo = —0.16957
Cc1 = 1
co = 0.42654
dy = 0.016
ds = 0.4519
a=1.52
b= 2.57
Table 4.3: The constant used for the hyperbolic tangent approximation.
Conditions Output
0<|z|]<a sign(x) x[0.5xmy x |x[*+c1 times|z|+d]
a<lz|<b sign(z) x [0.5xma X [z]?+c2 times|z|+dz]
otherswise signed(x)

Table 4.4: The piecewise linear approximation of the hyperbolic tangent.

The average pooler performs basically two operations, pooling and averaging.
The input is divided into p x p non-overlapping neighbourhoods, which are also
refered to as pools. The pooling operation consist of simply summing the data
within the respective neighbourhoods. The averaging operation is to multiply
the summed pools with a trained average value, which produces a valid output.
Figure 4.12 gives an overview of the average pooler architecture, where the SUM
module and the shift registers are used for the pooling operation, while the trained
C value is used to average the sums.

Since the input is a 2D matrice that is inputted one value at a time left to
right, one row at a time, the average pooler will have to keep track of data from
(n—k+1)/p different neighbourhoods simultaniously. That is, after the average
pooler has received p inputs from the first neighbourhood, it will next receive p
inputs from the next neighbourhood, and so on until the end of the first row is
reached. It will then receive data from the first neighbourhood again. This will
continue until it has processed p rows, after which it will have processed the first
(n—k+1)/p neighbourhoods, i.e. a row of neighbourhoods. It can then continue
with the next row of neighbourhoods.

In order to keep track of (n — k+ 1)/p neighbourhoods at a time, the average
pooler contains a set of (n — k + 1)/p — 1 shift registers which are used to store
the intermediate sum of the neighbourhoods. The sum module keeps track of
the current neighbourhood and accumulate the input data if it belongs to said
neghbourhood. When a new neighbourhood is about to be inputted all the shift

40

registers are shifted one to the right, and the sum module extracts the value of
the rightmost register.

The control unit keeps track of when to shift the registers and when a neigh-
bourhood is fully summed. To do this the unit contains two counters, row_num
and column_num. When a new pixel is inputted the column_num counter is
incremented, and when it reaches the end of the row the row_num counter is in-
cremented. Every time column_num mod p = 0 another pool is encounted, and
the shift registers are shifted one to the right. When column_num mod p = 0
and row_num mod p = 0 the final value in a pool has been reached, and the final
sum is multiplied with the trained value C and outputted.

Datai |
Eas Controller

P —

oo} fa1-Tat

f Shift registers

Data out

Figure 4.12: The average pooler. The summation module and the shift registers
are used to sum up the respective pools. The trained value C is used to average
the summed pools.

The execution speed of the average pooler module is bounded by the size of
the feature map, (n — k + 1) x (n — k + 1) clock cycles, finishing one cycle after
the last pixel has been inputted. Thus by streaming the output of the convoluter
to the average pooler, both will finish only a few cycles apart, effectively running
both jobs in parallel. The resource usage of the module is bounded by the size of
the subsampling dimension, since it requires a number of shift registers equal to
the size of the dimension. In addition is consumes one DSP, which is used for the
averaging operation at the end. But essentially its resource usage is quite low.

41

Chapter 5

Results and Discussion

This chapter will present the results from performance testing our purposed ar-
chitecture. Section 5.1 will give an analysis of the hardware resource consumption
of our accelerator. In Section 5.2 we will describe the set up for our performance
measurements, give an analysis of the performance of our system, and how the
accelerator affect the different layer. We will also compare the performance of
the system with a software implementation running on a laptop CPU.

Remember from Section 4.2 that we defined layer 1 as C1/S2, layer 2 as
C3/83, layer 3 as C5, and layer 4 as F6.

5.1 Hardware Resources

As mentioned in Section 2.4 we used a Zedboard, with an Artix-7 FPGa, for pro-
totyping our suggested architecture. A short overview of the most vital resources
available on the Artix-7 can be seen in Table 5.2. Table 5.1 shows the resource
consumption of each accelerator as the number of accelerators increases. The
"DSPs: Convoluter” column shows how many DSPs the covoluter module within
the accelerator consumes.

As we can see from Table 5.1 the convoluter makes heavy usage of the DSPs.
In its current state it contains 5 x 5 MAC units, which optimally consumes four
DSPs each. When the number of available DSPs is reduced, the MAC units
need to exchange the DSP with LUTSs, which causes an massive spike in resource
consumption.

Since the accelerators optimal number of DSPs is 116 out the of 220 available,
increasing the number of accelerators from one to two does not cause any critical
spike in resource consumption. But the converting of 12 DSPs to LUT logic is
still significant, causing a total of 4000 more LUTSs being used. It reaches critical

42

NZi.a‘?(f:sel Slice LUTs Flip-flops DSPs Co]rjliilsl'ter
1 7986 3310 116 100
2 9941 3310 110 94
3 18699 3310 66 50
4 20971 3325 54 50

Table 5.1: Table showing how the resource usage varies for each accelerator as

the number of accelerators increases.

Slice LUTs 53,200
Flip-flops 106,400
DSPs 220

Table 5.2: Available resources on the Artix-7 FPGA

levels when we increase the number of accelerators to three, leaving only 50 DSPs
to be used by each convoluter. This causes each accelerator to consume 18699
LUTs, giving a total of 56097, which exceeds the maximum of available LUTs by
2897. Thereby limiting the number of accelerators to two, unless we change to
a bigger FPGA. While a bigger FPGA, e.g. an Virtex 7, would provide us with
more hardware resources, it would also increase the size of the chip and power
consumption. Making it unsuitable for mobile applications.

This unexpected consumption of resources is unfortunate, since we would
preferably wish to run at least four accelerators in parallel, in order to exploit
the bandwidth from all four high-performance AXI4 ports. We have been unable
to explore ways to reduce the convoluters consumption of DSPs due to time
constraints, but it is definitely something that should be done in future work.

5.2 Performance

5.2.1 Setup

In order to determine the execution speed and power efficiency of our system we
have compared it to the ARM Cortex-A9 CPU on the Zedboard and an ASUS
X550JK laptop with a Intel Core i7 4710HQ CPU. Both CPUs ran the pure
software implementation of the CNN, while our system used a combination of
hardware and software, as described in 4. The clock speed of the accelerator was
set to 100 MHz. We ran our own system with four different configurations:

e (0 layers. No acceleration. The ARM processor computes the whole network.

43

1 layer. The accelerator computes C1 and S2 (see Section 4.1, while the
ARM processor computes the rest.

2 layers. Accelerating C1, S2, C3 and S4.

3 layers. Accelerating C1, S2, C3, S4 and C5.

Two accelerators: 2 layers. Running two accelerators in parallel, both
accelerating two layers.

In order to determine the energy efficiency of the different systems we used
the metric images/J, i.e. number of images processed per Joule. We also in-
cluded a metric for measuring execution speed, using images/second. Despite
power efficiency being the main focus of this assignment, execution speed can be
interesting for several applications and is closely related to power usage. Note
that these images are 32 x 32, and thus processing one image corresponds to
331104 multiply-and-accumulate operations. Thus, if one wish to convert the
metric images/second to operations/second, one simply need to multiply with
that number.

The measurements were done by timing the processing of 10 000 images from
the MNIST dataset, while measuring the power consumption.

Total board power was determined by measuring the voltage over pin 1 and
2 on J21 current sense resistor on the Zedboard during execution. We can then
use the following equation to calculate the power consumption:

P = (V; - Vmeasured) X % (51)

Where V;,, is the input voltage 12V, Vi, cqsured 18 the measured voltage across
the pins, which have a resistance of R = 10mf2.

With the FPGA programmed and the accelerator activated the board mea-
sured to 4.18 W, while the ARM processor alone measured to 3.82 W. The second
core was turned off in both cases. We were unable to measure the power con-
sumption of the laptop directly, and therefore used the power estimation provided
by ASUS [40]. The laptop CPU uses 47 W, and including RAM, motherboard
and various peripherals, we estimate a total consumption of 60W. Do note that
this estimate is not completely accurate, and could potentially be lower.

5.2.2 Discussion
Analysis of the accelerator’s performance

Figure 5.1 shows how accelerating the different layers in hardware affect the
performance. We can see that accelerating one layer provides us with a almost

44

images,/second

g0
]
a0 I
20
0 E=l . [
ARM Cortex- 1 laver 2 layers 3 lavers Two
o] accelergtors:
2 lavers

Figure 5.1: Overview of how the performance changes with different configura-
tions of the system, when computing the whole network.

2x speed-up, while accelerating two layers give close to 6x speed-up. In stark
contrast, accelerating three layers slows down the system and performs even
worse than computing everything in software. We believe this is mainly due to
how we move data to the accelerator. Each of the 120 outputs from C5 are
computed using the same 16 input maps, but with a different set of 16 distinct
kernels. This means that in the current state of our system, we transfer the same
16 input maps 120 times to the accelerator. We consider this a rather ineffective
memory access scheme, and purpose a better one in Chapter 6.

Another interesting aspect of Figure 5.1 is that running two accelerators in
parallel provides virtually no speed-up compared to only running one. There are
two feasible explanations for this: 1) the accelerators get starved, i.e. they not
fed data fast enough, and 2) the main bottleneck in now layer 3, which reduces
the significance of improving performance for layer 1 and layer 2.

In order to determine which layer provided the biggest bottleneck, we decided
to measure the performance when removing layer 3 and 4 from the network. I.e.
only processing layer 1 and 2. The results can be seen in Figure 5.2.

Here we see that processing only the first two layers executes 4x faster than
processing the whole network. This means that C5/F6 stands for 75% of the
processing time of the whole network. Since C5 has 48120 connections and F6
has 120, it is clear that C5 is the main bottleneck.

This goes to show that accelerating layer 3 can provide a major boost to the
performance of our computing. But, as mentioned, the current scheme we are
using to accelerate layer 3 needs to be improved.

In addition, we can see that using the accelerator gives up to 51x speed-
up when processing layer 1 and 2. Which demonstrates how much faster the
accelerator is than the ARM processor.

45

images,'second

400
300

200
100
0

O larers 2 larers Twi accelerators 2 lavers

Figure 5.2: Performance when removing layer 3 and 4 from the network. I.e.
only processing layer 1 and 2.

But this does not explain why we get so little speed-up when running two
accelerators in parallel. Ideally, we should get a 2x speed-up compared to running
only one accelerator. In turns out that the DMA bug (see Section 4.3.2, which
forces us to re-initialize the DMA after it is done processing a BD ring, is part
of the explanation. This re-initialization causes the memory needed to store the
BD rings for the DMA channels to be reallocated every time, and this takes time.
In order to predict the performance if this bug was fixed, we measured the time
it took re-initialize the DMA and subtracted it from the execution time. This
produced the results seen in Figure 5.3.

images/second
go0
&00
400
200
u]
0 lgrers 2 lavers Tweo accelerators 2 lavers

Figure 5.3: Performance when processing only layer 1 and 2, and subtracting
DMA initializations.

We can see that this increases the performance by more than 2x, and brings
the configuration using two accelerators closer to being twice as fast as the one
using one accelerator. But we can still see that there is something that is pre-
venting the system to fully exploit having two accelerators running in parallel.
We suggest two probable reasons for this:

1. Currently the processor has to wait for the data transfers to and from the
accelerator to finish, without doing anything productively. This causes the
accelerators to be starved, since the processors have to set up the transfers

46

while the accelerators do not have to data to consume. Preferably it could
set up the other transfers while the accelerator is processing and/or the
DMA performs transfers, but due to the initialization bug we have been
unable to implement this.

2. Another fault of the design is that the input buffer to the accelerator has
to be filled before it can start processing. A better solution would be to
simply stream the data into the accelerator, and make stall when data is
not available.

images/second images/floule
2000,00 35,00
1800,00 30,00
100,00
25,00
1400,00
1200,00 20,00
000,00 15,00
500,00
&00,00 10,00
400,00 5,00

200,00
0,00 -

0,00 =
Laptop ARM Cortex-49 Accelerator Laptop #RI Cortex-A9 - Accelerator

Figure 5.4: Performance when computing the whole network.

Comparison to a Intel Core i7 4710HQ CPU

In Figure 5.4 we can see how our system performs compared to the laptop CPU
and the ARM Cortex-A9, when computing the whole network. In this comparison
we used our best performing configuration of the system, two accelerators in a
parallel that computed layer 1 and 2, while layer 3 and 4 was handled by the
ARM processor.

In the current state of the system, it gets handily outperformed by the laptop.
The laptop is 25x faster than our system, and almost 2x as power efficient. The
reason for this is the bottleneck created by layer 3 and 4, which is computed by
the ARM processor.

If we instead of comparing the performance of the whole network, compare
the performance when computing layer 1 and 2, our accelerator do much better.
As we can see from Figure 5.5, our accelerator is now 7.5x times slower than the

47

images/second imagesfloule

2500 -
70
2000
60
1500 50
a0
1000
30
500 2
] ;
o 0 -

Laptop #RM Cortex-49 - Accelerator Laptop ARM Cortex-43 Accelerataor

Figure 5.5: Performance when only processing layer 1 and 2.

laptop, but 2x as power efficient. If we also subtract the performance loss caused
by the DMA initialization bug, our accelerator become 5x as power efficient as
the laptop. This basically means if our accelerator is going to compete with a
state of the art CPU, it has to be extended to it can effectively compute layer 4.

But despite it not being able to out-perform a laptop CPU, our accelerator
would still do better on mobile platforms with power budgets. Our whole system
uses 4.18 Watt, while the laptop CPU itself uses 47 Watt. It should also be
noted that our system is only a prototype, and there are multiple optimizations
that can be done in order to boost performance. Chapter 6 will discuss these
optimizations.

48

Chapter 6

Future work

Developing a convolutional neural network hardware accelerator is a complex and
time consuming task. There are thus several performance related improvements
that we would wish to have implemented and tested, but sadly we ran out of time.
In this chapter we will give an overview the planned, but unfinished, features we
would wish to extend to our current architecture. The features are listed in a
priority order, and we will give some indication of how much work is required to
implement said features.

1. Use both of the ARM processors, instead of just one.

Computing a CNN is an embarrassingly parallel task, and should thus be
easily extendable to make use of both the ARM processors. A potential
scheme is that each of the processors is designated an DMA and accelerator,
which they can use to compute the network. Doing this can potentially
provide a 2x speed-up.

2. Improve the memory transfer and access scheme.

As we mentioned in Section 5.2.2, the current memory access scheme is
inefficient. This is because we transfer the same input maps multiple times
to the accelerator, since different output maps require the same input maps.
A better scheme would be to have two input buffers to the accelerator, one
for input maps and one for weights/bias. One could then transfer all the
input maps to the map buffer once, and let them reside there through
the computations of the whole layer. The accelerator could then access
the required input maps for the respective output map directly from that
buffer. Thus would reduce off-chip traffic greatly, since the input maps are
only transferred ones. It would require some extra control logic, so the
accelerator accesses the current input maps in the buffer.

49

3. Stream data through the accelerator, instead of filling the buffer
first.

Currently all the data required for computations are loaded into a buffer
before it is processed by the accelerator. Changing it so that the data
can be streamed directly into the accelerator would provide two potential
benefits: 1) faster processing, since data can be processed while the DMA
is transfering data to the accelerator, 2) reduced storage on chip, since we
no longer need to store all the data in an input buffer. Should be fairly
easy to extend the design for this, but due to time constraints, it was not
implemented.

4. Stay in hardware, instead of going back to software for next layer

The main reason [1] and [4] achieved high performance was by reducing off-
chip traffic. In the current state of our system, software has to be involved
for every feature map to be computed, and data is being transferred back
and forth between software and hardware several times. This is inefficient.
Thus extending the system with logic that can redistribute the output maps
as new input maps without involving software could provide a substantial
performance boost. But it will increase resource usage and development
time, and will probably require a bigger board. Both the mentioned papers
used FPGAs at the size of a Virtex 7. The mentioned improved memory
scheme is a step in this directions.

5. Explore ways to reduce the resource usage.

The primary focus of this project has been to get the prototype up and run-
ning, and little thought have gone to examine ways to minimize resource
consumption. Currently we only have enough resources to fit two accel-
erators on the board. Thus if we wish to extend the design and/or run
several accelerators in parallel, we either need to change to a bigger board
or minimize the resource usage of our design. Any future work would do
well to explore this area.

6. More accelerators in parallel.

Currently we are only running two accelerators in parallel, which both have
a respective DMA that moves their input and output data. The maximum
DDR bandwidth is at about 3.2 GB/s, and each DMA has access to a high-
performance port which can deliver up to 800 MB/s. This effectively means
that we are exploiting half of the available DDR bandwidth. Given a big
enough hardware platform or improvements to resource usage, as mentioned
in the above point, this feature should be simple to implement. But before
this can be exploited, the memory access scheme needs to be improved so
the accelerators do not get starved.

50

7. Hardware accelerate float to fixed.

Currently our system pre-processes the image and weights into fixed point
before processing them. If this system were to be integrated into system
using floating points it would be beneficial to do this transformation in
hardware. Currently we are able to do fixed point to floating point in hard-
ware using only one clock cycle, and thus we believe it should be possible
to do the same for float to fixed.

8. Test with bigger images.

In Chapter 5 we only compare the performance when computing a relatively
small network, i.e. the input is a 32 x 32 image. In other CNN applica-
tions, images tend to be much bigger (see Chapter 3). This could impact
the performance difference between our accelerator and the i7 CPU. l.e.
with bigger images that do not fit in the i7 cache, our accelerator may be
relatively faster than what is shown in Chapter 5. This should therefore be
tested.

o1

Chapter 7

Conclusion

In this report we have presented our hardware accelerator prototype for a Con-
volutional Neural Network. We have given a thorough description of our whole
system, and how it was implemented on a ZedBoard development board. We have
demonstrated the performance of our network by using it to compute a LeNet-5
inspired network, in order to classify handwritten digits. Compared to an ARM
Cortex-A9 we achieved a significant performance boost, and outperformed an i7
CPU on the two first layers of the network in terms of energy efficiency.

We set out to complete two mandatory and two optional tasks. We will here
give a quick summary of which of them were completed, and which ones remain
incomplete:

Task 1 (mandatory) Implement a hardware accelerator for a Convolutional
Neural Network, with the intention of improving energy efficiency. Completed.

We have in this project built a full system that is able to compute a CNN using a
handcrafted hardware accelerator. Chapter 4 gives a complete description of its
design and implementation, and Chapter 5 shows it improves energy-efficiency
by 5.6x over an ARM Cortex-A9 processor.

Task 2 (mandatory) Compare our accelerator to an equivalent pure-software
implementation on a general-purpose CPU, primarily in terms of power consump-
tion. Chapter 6 gives further suggestions on how this design’s performance can
be further improved. Completed.

Chapter 5 gives an detailed analysis of how our system performs in terms of both
execution speed and performance. While our accelerator is more power efficient

92

on the layers it was designed to enhance, it gets held back by the bottleneck cre-
ated by the layers that are not accelerated. Because of this our system is notable
to outperform a state of the art CPU. But the results provided gives a strong
indication with further improvements, it has the potential to do so.

Task 3 (optional) Implement said system on a Zynq FPGA board, but weigh
the advantages and disadvantages of other platforms, such as SHMAC or other
FPGA platforms. Partly completed.

Our design was implemented on a ZedBoard, which contains a Zynq FPGA board.
Section 5.1 provide some argumentation for using a bigger board, since it would
allow us to run more accelerators in parallel. But apart from that we have not
made any considerations of moving to another platform. This is mainly due to
the amount of work that had to be done to get our current design working, and
find ways to further optimize the design.

Task 4 (optional) Extend the system to be able to recognize objects from a
web-cam stream. Not completed.

Due to time constraints we were unable to complete this task.

93

Bibliography

1]

Chen Zhang, Yijin Guan, Peng Li, Bingjun Xiao, Guangyu Sun, and Jason
Cong. Optimizing FPGA-based Accelerator Design for Deep Convolutional
Neural Networks. Proceedings of the 2015 ACM/SIGDA International Sym-
posium on Field-Programmable Gate Arrays, pages 161-170, 2015.

Clément Farabet, Cyril Poulet, Jefferson Y. Han, and Yann LeCun. CNP:
An FPGA-based processor for Convolutional Networks. FPL 09: 19th Inter-
national Conference on Field Programmable Logic and Applications, 1(1):32—
37, 2009.

Shuiwang Ji, Ming Yang, and Kai Yu. 3D convolutional neural networks
for human action recognition. IFEE transactions on pattern analysis and
machine intelligence, 35(1):221-31, 2013.

Kalin Ovtcharov, Olatunji Ruwase, Joo-young Kim, Jeremy Fowers, Karin
Strauss, and Eric S Chung. Accelerating Deep Convolutional Neural Net-
works Using Specialized Hardware. Technical report, Microsoft Research,
2015.

FEric S. Chung, Peter a. Milder, James C. Hoe, and Ken Mai. Single-chip
heterogeneous computing: Does the future include custom logic, FPGAs,
and GPGPUs? Proceedings of the Annual International Symposium on
Microarchitecture, MICRO, pages 225-236, 2010.

M Duranton, K De Bosschere, and J Maebe. The HIPEAC Vision for Ad-
vanced Computing in Horizon 2020. pages 1-48, 2013.

Magnus Halvorsen. Convolutional Neural Networks and their Potential
Hardware Acceleration. Technical report, 2014.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick. Haffner. Gradient-
Based Learning Applied to Document Recognition. Proceedings of the IEEE
International Conference on Computer Vision, 1998.

o4

(9]

[19]

[20]

Marvin Minsky and Seymour Papert. Perceptrons: an introduction to com-
putational geometry. 1969.

Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer
Science+Buisness Media, LLC, 2006.

DE Rumelhart, GE Hinton, and RJ Williams. Learning representations by
back-propagating errors. Nature, 323:533-536, 1986.

J. Leonard and M. A. Kramer. Improvement of the backpropagation al-
gorithm for training neural networks. Computers € Chemical Engineering,
14(3):337-341, 1990.

Srimat Chakradhar, Murugan Sankaradas, Venkata Jakkula, and Srihari
Cadambi. A dynamically configurable coprocessor for convolutional neu-
ral networks. Proceedings of the 37th annual international symposium on
Computer architecture - ISCA 10, page 247, 2010.

Xilinx. Zyng-7000 product table. http://www.xilinx.com/publications/prod -mktg/zynq7000/

7000-combined-product-table.pdf.

Xilinx. Zyng-7000 overview. http://www xilinx.com/support/documentation/data_sheets/ds1

Zyng-7000-Overview.pdf.

Xilinx. AXI reference guide. http://www.xilinx.com/support/documentation/ip_documentati

Kunihiko Fukushima. Neocognitron: A Self-organizing Neural Network
Model for a Mechanism of Pattern Recognition Unaffected by Shift in Posi-
tion. Biol. Cybernetics, 202:193-202, 1980.

Kunihiko Fukushima and Sei Miyake. Neocognitron: A new algorithm for
pattern recognition tolerant of deformations and shifts in position. January
1982.

PY Simard, Dave Steinkraus, and JC Platt. Best practices for convolutional
neural networks applied to visual document analysis. Seventh International
Conference on Document Analysis and Recognition, 2003.

Dan C Cires, Ueli Meier, Jonathan Masci, and Luca M Gambardella. Flexible
, High Performance Convolutional Neural Networks for Image Classification.
IJCAI’11 Proceedings of the Twenty-Second international joint conference
on Artificial Intelligence - Volume Volume Two, pages 1237-1242, 2011.

Dan Cirean, Ueli Meier, Jonathan Masci, and Jiirgen Schmidhuber. Multi-
column deep neural network for traffic sign classification. Neural networks
: the official journal of the International Neural Network Society, 32:333-8,
August 2012.

%)

[22]

[27]

28]

[29]

D Ciresan, Alessandro Giusti, Luca M. Gambardella, and Jiirgen Schmid-
huber. Deep neural networks segment neuronal membranes in electron mi-
croscopy images. Advances in Neural Information Processing Systems, (25),
2012.

R.G. Girones and a.M. Salcedo. Implementation with FPGAs of a
pipelined on-line backpropagation. ICECS’99. Proceedings of ICECS ’99.
6th IEEE International Conference on FElectronics, Circuits and Systems

(Cat. No.99EX357), 2:8-11, 1999.

K Benkrid and S Belkacemi. Design and Implementations of a 2D Convolu-
tion Core for Video Applications on Fpgas. Digital and Computational Video,
2002. DCV 2002. Proceedings. Third International Workshopand Computa-
tional Video, 2002. DCV 2002. Proceedings. Third International Workshop,
(November):85-92, 2002.

F. Cardells-Tormo and P. Molinet. Area-efficient 2-D shift-variant convolvers
for FPGA-based digital image processing. IEEE Workshop on Signal Pro-
cessing Systems Design and Implementation, 2005., pages 209—-213, 2005.

Hui Zhang, Mingxin Xia, and Guangshu Hu. A multiwindow partial buffering
scheme for FPGA-based 2-D convolvers. IEEE Transactions on Circuits and
Systems II: Express Briefs, 54(2):200-204, 2007.

Antony W. Savich, Medhat Moussa, and Shawki Areibi. The impact of
arithmetic representation on implementing MLP-BP on FPGAs: A study.
IEEE Transactions on Neural Networks, 18(1):240-252, 2007.

Clement Farabet, Berin Martini, Polina Akselrod, Selcuk Talay, Yann Le-
Cun, and FEugenio Culurciello. Hardware accelerated convolutional neural
networks for synthetic vision systems. Proceedings of 2010 IEEE Interna-
tional Symposium on Circuits and Systems, pages 257-260, May 2010.

Vinayak Gokhale, Jognhoon Jin, Aysegul Dundar, Berin Martini, and Eu-
genio Culurciello. A 240 G-ops / s Mobile Coprocessor for Deep Neural
Networks. 2014 IEEE Conference on Computer Vision and Pattern Recog-
nition Workshops, pages 682-687, 2014.

Aysegul Dundar, Jonghoon Jin, Vinayak Gokhale, Berin Martini, and Fu-
genio Culurciello. Memory Access Optimized Routing Scheme for Deep
Networks on a Mobile Coprocessor. High Performance Extreme Comput-
ing Conference (HPEC), 2014 IEEE, pages 1-6, 2014.

96

[31]

[32]

Samuel Williams, Andrew Waterman, and David Patterson. Roofline: an
insightful visual performance model for multicore architectures. Communi-
cations of the ACM, 52(4):65-76, 2009.

Magnus Halvorsen. Convolutional Neural Network Accelerator, 2015.
https://github.com/magnhalv/Skole/tree/master /Master_Project.

Yann LeCun, Corinna Cortes, and Christopher J.C. Burges. MNIST
Database, 1998. http://yann.lecun.com/exdb/mnist/.

Taiga Nomi. Tiny-CNN, 2015.

A Tisan, S Oniga, D MIC, and A Buchman. Digital Implementation of The
Sigmoid Function for FPGA Circuits. ACTA TECHNICA NAPOCENSIS,
50(2):15-20, 2009.

Jordan L Holt and Jeng-neng Hwang. Finite Precision Error Analysis of Neu-
ral Network Hardware Implementations. IEEE Transactions on Computers,
42(3):281-290, 1993.

T Chen, Zidong Du, Ninghui Sun, Jia Wang, and Chengyong Wu. Dian-
Nao: a small-footprint high-throughput accelerator for ubiquitous machine-
learning. Proceedings of the 19th International Conference on Architectural
Support for Programming Languages and Operating Systems, 2014.

David Bishop. IEEE Purposed Fixed and Floating Point Packages, 2015.
http://vhdl.org/fphdl/.

Che W. Lin and Jeen Shing Wang. A digital circuit design of hyperbolic tan-
gent sigmoid function for neural networks. Proceedings - IEEE International
Symposium on Circuits and Systems, pages 856—859, 2008.

ASUS. ASUS X550JK Specifications, 2015.
https://www.asus.com/Notebooks_Ultrabooks/X550JK /specifications/.

o7

