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Abstract

The goal of this thesis is to develop a system that improves urban transit networks.
A good transit network can reduce the number of vehicles on the road as people
will favor public transport over private transportation. This will eventually help
reduce congestion and environmental emissions.

The Urban Transit Routing Problem (UTRP) concerns the creation of route net-
works. UTRP is a complex and multiconstrained problem, in which the creation of
route networks can both be challenging and time consuming. Metaheuristics like
swarm intelligence methods have proven to be effective of finding sufficient solutions
to these types of NP-hard problems. In this contribution, a swarm inspired opti-
mization system is designed and presented, aiming to create efficient solutions to
the UTRP. The proposed system uses an ant colony approach with, unlike previous
techniques, additional attributes inspired by bee colony optimization and particle
swarm optimization.

A structured literature review is conducted to synthesize the relevant primary stud-
ies. All retrieved results are presented and analyzed. Further, because metaheuris-
tics require good parameter values to solve concrete problems optimally, a thorough
review and justification of each selected parameter is documented. This documen-
tation will contribute in providing a starting point for potential future research. A
comparison of a standard ant colony optimization (ACO) implementation is per-
formed to determine whether the proposed system improves the standard ACO.
To demonstrate the performance of the proposed system, obtained results are com-
pared against results published in the literature. Results are compared on the basis
of Mandl’s benchmark problem, which is a widely investigated and acknowledged
benchmark problem. The proposed system is also tested on larger networks, more
similar to real transit networks, to validate whether the proposed system supports
larger networks as input. This thesis will also report how the usage of the graph
database Neo4j has affected the development and quality of the proposed system.

Comparison of obtained results with the standard ACO implementation and other
published results are promising, especially regarding the average traveling time per
transit user.
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Sammendrag

Målet med denne oppgaven er å utvikle et system for å optimalisere rutenettverk
i byer, for å videre gjøre offentlig transport mer praktisk for passasjerer. Et godt
rutenettverk kan redusere antall biler p̊a veien ved at passasjerer velger kollek-
tivtransport fremfor egne transportmidler. Dette vil igjen bidra med å redusere
trafikkøer og miljøutslipp.

“Urban Transit Routing Problems” (UTRP) omhandler konstruksjon av rutenettverk
for kollektivtransport. UTRP er et komplekst og “multiconstrained” problem, der
konstruksjonen av rutenettene kan være b̊ade kompliserte og tidkrevende. Meta-
heuristiske metoder, som sverm intelligens, har vist seg å være effektive for å finne
tilstrekkelige løsninger p̊a denne typen “NP-hard” problemer. I dette bidraget, er
et sverm inspirert optimaliseringssystem utformet og presentert, med form̊alet om
å skape effektive løsninger til UTRP. Det foresl̊atte systemet bruker en “ant colony”
tilnærming med, i motsetning til tidligere løsninger, tilleggsattributter inspirert av
“bee colony optimalization” og “particle swarm optimalization”.

Et strukturert litteratursøk er gjennomført for å syntetisere relevante primærstudier.
Alle resultater blir presentert og analysert. Videre, fordi metaheuristics krever gode
parameterverdier for å løse konkrete problemer optimalt, er en grundig gjennom-
gang og begrunnelse for hvert valgte parameter dokumentert. Denne dokumen-
tasjonen kan være et utgangspunkt for potensiell fremtidig forskning. En sam-
menligning med en standard “ant colony optimalization” (ACO) implementasjon
er gjennomført for å vise om det foresl̊atte systemet forbedrer en standard ACO.
For å undersøke ytelsen til det foresl̊atte systemet, sammenlignes de oppn̊adde re-
sultatene mot resultater publisert i litteraturen. Resultatene er sammenlignet p̊a
basis av “Mandl’s benchmark problem”, som er et anerkjent og mye brukt “bench-
mark” problem. Det foresl̊atte systemet er ogs̊a testet p̊a større nettverk, mer likt
nettverk i ekte byer, for å validere om det foresl̊atte systemet støtter større nettverk
som input. Denne oppgaven vil ogs̊a rapportere hvordan bruken av grafdatabasen
Neo4j har p̊avirket utviklingen og ytelsen av det foresl̊atte systemet.

Sammenligningen av oppn̊adde resultater med den standard ACO implementasjo-
nen og andre publiserte resultater er lovende, spesielt n̊ar det gjelder gjennomsnit-
tlig reisetid per reisende.
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Chapter 1

Introduction

1.1 Background and motivation

Trondheim and neighboring municipalities are among the areas with the greatest
population growth in Norway [Miljøpakken, 2014]. More people lead to more traffic,
and without action, congestion and environmental problems in these urban areas
will continue to increase every year.

Private transportation has many advantages for the citizens compared to the pub-
lic ones, including a decreased travel time and a direct travel from the origin to
the destination. However, private transportation has some negative issues. An
increased number of vehicles on the roads, which further leads to increased traffic
jams, air pollution, noise, and accidents are some of these negative issues.

Having efficient public transportation systems can substantially reduce the neg-
ative effects of private transportation. Public transportation systems are better
suited for urban needs because they can transport more people per time unit than
cars, and they need much less space. The environment package for transportation in
Trondheim [Miljøpakken, 2014], aims to provide an improved public transportation
system. With this effort, they hope to increase the number of public transportation
passengers, and with this achieve lower emissions, decreased traffic jams, and less
traffic noise. An inadequately designed transit network can cause few route oppor-
tunities and high travel times for routes with high demand, resulting in less people
using the service. Therefore, public transportation systems should be improved by
providing a more suitable transit network, in order to convince more people to use
public transportation services instead of their private vehicles.

AtB [AtB, 2015] is responsible for planning and operating the transit network
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throughout Sør-Trøndelag County in Norway, which includes the city of Trondheim.
Bus services comprise the major component of the public transportation system in
the county, and in Norway generally. Moreover, bus services have specific attractive
features, such as flexible routes, low cost, easy implementation, flexible fleet size,
and use of existing facilities. AtB’s current solution consists of an experience
based route network, where transport planners has constructed reasonable transit
networks and schedules entirely manually, exploiting local knowledge. As a result,
the efficiency of the resulting networks is dependent on the designers’ experience
and their existing knowledge of constraints and transportation demands.

In the past, transit planners have done a reasonable job designing transit networks
and schedules without the assistance of scientific tools or systematic procedures.
Nevertheless, for a large network it is almost impossible to develop an efficient
transit route network and bus schedules relying only on experience and guidelines.
This is because, in large urban areas the number of bus routes and bus stops is
extremely large.

The problem of designing the optimal set of routes for a fleet of vehicles, to serve
a given set of customers, is referred to the Vehicle Routing Problem (VRP). The
Urban Transit Network Problem (UTNDP) is an example of this broad NP-hard
optimization problem and involves designing urban transit routes and schedules.
Because routing problems are represented as a road network by relevant locations
in a graph, a graph database can be a natural way to represent the data. VRP and
graph databases are described in depth in Section 2.2 on page 26 and Section 2.3
on page 27, respectively.

The manual attempts in providing acceptable solutions to VRPs are not able to
solve these large network problems optimally. In order to overcome and contribute
to this problem, the number of journal publications on VRPs has increased in re-
cent decades. The increase in research on these areas is also due to the progress in
computational resources, and this has opened new possibilities for modeling more
complex routing problems. Swarm Intelligence (SI) has proven to solve a great
number of NP-hard problems [Dorigo and Gabardella, 1997; Lucic and Teodorovic,
2003]. SI based algorithms are metaheuristic optimization algorithms and are typ-
ically used to find optimal solutions to combinatorial optimization problems. SI is
described in depth in Section 2.1 on page 21. The employment of such an autom-
atized method for generating bus routes, would not only release planning time for
AtB, but could also increase the quality of the network.

1.2 Goal and research questions

This thesis will focus on the development of a swarm intelligence system to optimize
bus routes in urban transit networks. We hope that this can result in an increased
number of public transportation passengers, when the designed network hopefully
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becomes more convenient for the passengers. This thesis will focus on creating
beneficial routes with a low average travel time, as well as keeping the number of
transfer per passenger at a minimum. This motivation is drawn to the following
goal:

Goal: Develop a system to improve urban transit networks.

Based on the proposed goal, the following research questions are formulated:

RQ 1: What is the state-of-the-art in solving Vehicle Routing Problems
using swarm intelligence methods and graph databases?
By answering this question, we will establish a theoretical foundation for the
thesis, as well as identify methods proposed in published literature. We are
in this thesis motivated in creating a solution that combines attributes from
different swarm intelligence methods, and this question will help us establish
if there have been any previous research attempting this. It will also help
us establish if graph databases have been used in combination with vehicle
routing problems and swarm intelligence methods in the past.

RQ 2: Is it efficient to add attributes from other swarm intelligence meth-
ods in order to improve a standard ant colony optimization imple-
mentation?
Ant colony optimization (ACO) algorithms have proven to solve NP-hard
problems in the past. However, the algorithm has some well-known limita-
tions, such as local convergence. By answering this question, we will establish
if an ACO algorithm can benefit in additional attributes from other swarm
intelligence methods.

RQ 3: Is it possible to apply the proposed system to optimize urban tran-
sit routes in large urban cities?
If the proposed system is to be used to optimize route networks in large urban
cities, it must be able to support large networks with many bus stops, roads,
and transit routes. This question aims to establish whether the proposed
system is possible to use when a given transit network becomes significantly
large.

1.3 Research methods

In this thesis, two research methods are applied. The first research method used is
a structured literature review, introduced by [Kofod-Petersen, 2014]. This research
is conducted in order to establish the state-of-the-art of using swarm intelligence
methods and graph databases to solve Vehicle Routing Problems. The results of
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the final synthesis are presented as the related work that further forms the basis
for the proposed problem statement.

The second research method is the design and development of the proposed system.
Experiments comparing the proposed system to a generic ACO algorithm and
several published methods are conducted. To ensure a sufficient comparison basis,
the proposed system use a well-known benchmark problem.

The proposed system also attempts to solve larger problems than the benchmark
problem described above. By larger problems, we mean a network with a realistic
number of bus stops, roads and routes in the route set. This will establish whether
the proposed system supports larger networks, which further allow us to discuss
the possible usability in a real urban city.

For all the experiments, numeric values of established performance criteria, includ-
ing average travel time, are presented. These values are further used to discuss the
performance of the proposed system

1.4 Thesis overview

Chapter 2 sets the context for this thesis. It starts by discussing the domain swarm
intelligence in Section 2.1, and includes theory about ant colony optimization, bee
colony optimization, and particle swarm optimization. In Section 2.2 the Vehi-
cle Routing Problem is described, along with the Urban Transit Network Design
Problem, which is a subproblem of the VRP. Section 2.3 describes the term graph
theory and puts it in context with graph databases. The graph database Neo4j is
also presented.

Chapter 3 describes the preparatory research conducted in order to define the prob-
lem to be solved in this thesis. Section 3.1 defines the research topic used in order
to guide the structured literature review [Kofod-Petersen, 2014], which further is
described in Section 3.2. Section 3.3 discusses and analyzes the related work and
will eventually answer RQ 1. Finally, in Section 3.4, the problem statement is
proposed based on the results presented in 3.3.

Chapter 4 describes the implemented system in detail. It starts with an overall
description in Section 4.1, followed by a description of the chosen development
environment in Section 4.2. Further, the assessments used in order to construct
solutions are explained in Section 4.3. Sections 4.4 - 4.11 are detailed descriptions
of each of the system’s steps.

Chapter 5 documents the experiments conducted in this thesis. The experiments
are divided into three parts, where each part contains the experimental plan, setup,
and results. Section 5.1 documents the parameter setting experiment, and will
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also document a justification of the selected parameters. Section 5.2 documents
the performance comparison experiments with the ACO implementation and other
published methods. Section 5.3 documents the network expansion experiments,
which are conducted on larger networks.

Chapter 6 concludes this thesis. Section 6.1 evaluates and discusses the results
obtained by the experiments in Chapter 5. Section 6.2 is the overall conclusion
which also answers the goal and research questions sat for this thesis. Section 6.3
presents the contributions, and finally, Section 6.4 ends this thesis by looking at
possible directions to take in the future.
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Chapter 2

Theory and Background

2.1 Swarm intelligence

Swarm behavior is found in many different species in nature, including fish schools
and bird flocks. Many species practice swarm behavior for a biological need to stay
together, because predators usually attack one individual, and not an entire flock.
Swarm behavior is also found in social insects like ants, wasps, bees, and termites.
They collaborate on tasks for building nests, gathering food and organizing pro-
duction. These social insect colonies have demonstrated that simple organisms can
perform complex tasks by continuously interacting with each other. The colonies
are highly distributed and self-organized, and they adapt well to changes in the
environment. Swarm intelligence (SI) [Beni and Wang, 1989] is a branch of arti-
ficial intelligence that is strongly influenced by the swarm behavior found in the
nature, attempting to adapt these characteristics in intelligent computer systems.
SI based algorithms, such as the ones described in 2.1.1 - 2.1.3, are metaheuristic
optimization algorithms. Metaheuristic algorithms are typically used to find good
solutions to combinatorial optimization problems, but they do not guarantee an
optimal solution.

2.1.1 Ant colony optimization

In nature, ants have proven to be extremely capable of finding an optimal or close
to optimal route from the nest to a food source [Deneubourg et al., 1990]. Ants
communicate by leaving a pheromone trail that other ants smell, and will follow
by a certain probability. Most ant species leave a pheromone trail when returning
to the nest from an important food source. The more pheromone units on a path
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(i.e. the more ants that have chosen it), the greater the probability that other ants
will choose it. The pheromone units on a path found early, but later discarded in
favor of a better path, will evaporate. This results in a smaller probability to be
selected, and thus ensures that better routes are favored.

In nature, ants are adaptable to changes, and manage to find the shortest path
even though an obstacle is added to the current shortest path. This is illustrated
in Figure 2.1. To the left, the ants have found an efficient route. In the middle, an
obstacle is added, and the ants explore different paths. To the right the ants have
found the most efficient route around the obstacle.

Figure 2.1: An illustration of how ants adapt to change

Ant colony optimization (ACO) is a class of graph representation based algorithms
designed to optimize routing problems. The first description of an ACO algorithm,
called Ant System (AS), was initially proposed by Dorigo et al. [1996]. The AS
strategy developed by Dorigo tries to simulate the behavior of real ants, but unlike
the ants in nature, pheromone trails are left by all ants. Algorithm 1 shows the
metaheuristic of ACO, as described by Dorigo et al. [2006]:

Algorithm 1 The Ant Colony Optimization Metaheuristic

Set parameters, initialize pheromone trails
while termination condition not met do

ConstructAntSolutions
ApplyLocalSearch (optional)
UpdatePheromones

end while
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The idea of ACO algorithms is to create a decentralized system with multiple
artificial ants. The artificial ants, like the one found in nature, influence each
others decisions by using “pheromone”. In the beginning, before any distinct
pheromone trail is laid, the artificial ants’ choices are random, and thus they per-
form a broad search in the environment. This randomness will decrease over time
as the pheromone trails become more distinct. At the end of each iteration an
amount of the pheromone evaporates. This reduces the probability of the artificial
ants getting stuck at local optima.

Many versions of ACO algorithms have been proposed in the literature, and among
the most successful are the Ant Colony System (ACS) proposed by Dorigo and
Gabardella [1997] and the MAX-MIN Ant System (MMAS) proposed by Stützle
and Hoos [2006]. The ACS implements both a local and a global pheromone update.
The local pheromone update are applied by all artificial ants after each construction
step, and the global pheromone update are applied by the evaluated best artificial
ant at the end of each iteration. The MMAS only allows the evaluated best artificial
ant to update the pheromone trail. The amount of pheromone given to the best
path is determined, within a certain bound, by the quality of the solution found.

2.1.2 Bee colony optimization

As described in Lucic and Teodorovic [2003], bees are capable of performing a
variety of complex tasks. Examples of these tasks are the collection and processing
of nectar, which may be considered as very organized. The idea is that a bee that
leaves the hive to gather nectar flies to the hives so-called “dance floor”. The bees
that already have found a good food source performs a “dance” at the dance floor
to advertise that they have found a satisfying food source. Newly arriving bees will
choose one of the dancers and follow it to the discovered food source. As stated in
Lucic and Teodorovic [2003], the mechanism of deciding which bee to follow is not
well understood. Nevertheless, it is considered that “the recruitment among bees
is always a function of the quality of the food source”. After a bee has gathered
and returned the food to the hive, the bee has three options [Lucic and Teodorovic,
2003]:

1. Abandon the food source and return to the dance floor, and again follow a
dancing bee

2. Continue to gather nectar from the food source without recruiting nest mates

3. Return to the dance floor and dance, and thus recruit nest mates before
returning to the food source

Bee colony optimization (BCO) is a method that, like ACO, aims to create a decen-
tralized optimization system with multiple agents, based on graph representation.
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The idea is to apply the collective intelligence of the food gathering process to an
optimization system. Like a typical ACO algorithm, a typical BCO algorithm is
inspired by the way bees acts in nature, but where some features are added, and
some are removed. Nikolic and Teodorovic [2014] describes a BCO algorithm where
the artificial bee only has two options after returning from a food source: (1) aban-
don or (2) recruit. Lucic and Teodorovic [2003] gives the artificial bees attributes
such as memory and perfect knowledge about the quantity of nectar collected by
other artificial bees. These modifications are done in order to be more suitable for
performing complex combinatorial problems.

2.1.3 Particle swarm optimization

As reported in Shi and Eberhart [1999], Particle Swarm Optimization (PSO) was
first introduced by Eberhart and Kennedy in 1995. PSO is inspired by how the
social behavior of flocks (such as flocks of birds) and schools (such as fish schools)
cooperates. The idea is to update the individuals velocity according to the indi-
vidual’s experience and its companions’ experience. This differs from other evolu-
tionary computational algorithms, like Genetic algorithms, which uses evolutionary
operators to manipulate the individuals. The basic concept is that each individ-
ual moves with a certain velocity and that this velocity is dynamically adjusted
based on the experience. Each individual is a volume less particle (i.e. a point)
in the D-dimensional search space. The ith particle position is represented as
Xi = (Xi1, Xi2...XiD). Each particle knows its own best position so far1, repre-
sented as Pi = (Pi1, Pi2...PiD), and the best position g, achieved among all the par-
ticles. These two positions are used to calculate the velocity, Vi = (Vi1, Vi2...ViD) ,
of the ith particle [Shi and Eberhart, 1999]:

Vid = w ∗ Vid + c1 ∗ rand() ∗ (Pid −Xid) + c2 ∗Rand() ∗ (Pgd −Xid)

where w is a decreasing parameter called inertia weight added to PSO to balance
local and global search, c1 and c2 are two positive constants, and rand() and Rand()
are two random functions in the range [0,1]. Figure 2.2 illustrates how the particles
in PSO explore in the early iterations of the algorithm, while figure 2.3 illustrates
how the particles tend to act more organized and coordinated at the late iterations.
The new position of the ith particle is calculated as follows [Shi and Eberhart, 1999]:

Xi = Xid + Vid

Because of the decreasing inertia weight, PSO may suffer from low global search
ability at the end of the run, and thus risking getting stuck at a local optimum.

1The position that gave the highest fitness value
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This may result in the algorithm failing to find the required optimum when the
problem to be solved is very complicated and complex [Shi and Eberhart, 1999].
However, PSO has proven to create sufficient solutions to NP-hard problems in-
cluding the Multi-Dimensional Knapsack Problem [Wan and Nolle, 2009] and the
Urban Transit Routing Problem [Kechagiopoulos and Beligiannis, 2014].
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Figure 2.2: Illustration of particles in a 2D-space in an early iteration of the PSO
algorithm (exploring)
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Figure 2.3: Illustration of particles in a 2D-space in a late iteration of the PSO
algorithm (exploiting)

25



2.2 Vehicle Routing Problem

The Vehicle Routing Problem (VRP) was first introduced by Dantzig and Ramser
[1959] and is a generic name given to a broad class of optimization problems. It can
be described as the task of designing the optimal set of routes for a fleet of vehicles
to serve a given set of customers. The problem involves making deliveries to a set
of customers with known demands on routes originating and terminating at one
or more depots. The objective of any routing problem is usually the minimization
of costs, such as reducing route lengths, number of vehicles, or minimize the total
route cost.

Routing problems are represented as a road network by relevant locations in a
graph. This graph will consist of a set of nodes and a set of edges, G = (V,E).
Nodes are directly connected by an edge, and the graph can be undirected or
directed.

2.2.1 Urban Transit Network Design Problem

The problem of designing urban transit routes and schedules is called the Urban
Transit Network Design Problem (UTNDP) and is a sub-problem of the VRP. The
aim with this problem is to design efficient urban transit routes and schedules on an
existing transit network while adhering to practical constraints. These constraints
can include the maximum and minimum length for each route and the number
of allowed routes in a route set. The two major components of UTNDP is called
the Urban Transit Routing Problem (UTRP) and the Urban Transit Scheduling
Problem (UTSP):

• UTRP is the task of developing a set of routes on an existing urban transit
network, following certain constraints. It can be defined as the physical design
of the UTNDP [Fan, 2009]. In a transit network, neighboring nodes (bus
stops) are linked by an edge. Each step in a tour, traveling from one node to
the next, is called a route, and a route will consist of several nodes connected
by edges to form a path. Further, a route set consists of several routes
combined. When all the routes in a route set are created, it will a form a
route network. The selection of the best-generated route set is defined by an
objective function. The goal is to find the optimal solution: The one with
the best objective function value among all feasible solutions [Ferrucci, 2013].
A route network should include all the nodes, but may not contain all the
edges present in the original transit network. The criteria for a good route set
includes that the entire transit demand is served and that a large percentage
of this demand is served through direct connections. In addition, the average
travel time per transit user should be as low as possible.
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• UTSP involves the development of schedules, arrival and department times,
for the public vehicles, to travel along predefined routes. It can also be
defined as the operational design of the UTNDP [Fan, 2009]. The contents
of the schedule involves minimizing the time a passenger has to wait at each
node (bus stop), following certain constraints, such as limited fleet size and
bus capacity. The total waiting time includes the waiting time at their origin,
in addition to the sum of the transferring time.

UTRP and UTSP are usually implemented sequentially because the develop-
ment of routes should be completed before the development of schedules.

There are some difficulties in solving the UTNDP. UTNDP is an NP-hard problem
due to the need to search for optimal solutions among a large number of possi-
ble solutions. Some of the constraints may be difficult to model and satisfy. The
generation and validation of the routes may involve a significant number of com-
putations, which makes the run time high. Also, travel demand may be difficult
to get hold of and are likely different from every hour of the day. The design will,
therefore, be flawed if the data is of poor quality.

2.3 Graph databases

A graph database management system (graph database) [Robinson et al., 2013] is
a database management system based on graph theory. The term graph theory
has been used in centuries and was first introduced by the Swiss mathematician
Leonard Euler (1707-1783). In 1736, he proved that there does not exist a closed
walk that crossed exactly once each of the seven bridges of the river Pregel in
Köningsberg, now called Kaliningrad [Alexanderson, 2006]. Figure 2.4 on the next
page shows Euler’s original drawings from his paper written in 1736 [Euler, 1741]
of the bridges in Köningsberg.
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Figure 2.4: Eulers original drawing of the Seven Bridges of Köningsberg

Graph databases use graph structures for semantic queries with nodes, edges, and
properties to represent and store data. The nodes represent entities, such as people,
accounts, or bus stops, while the edges represent the relationships, such as “Friend
of” or “Belongs to”, between the nodes. A property is relevant information that can
relate to either a node or an edge, such as “Name” or “Travel Time”. Applications
of graph databases can include calculating routes and finding the shortest path
between locations in a network, such as a road or rail network, airspace networks,
or logistical networks [Robinson et al., 2013, p.102].

2.3.1 Neo4j

Neo4j [Neo Technology, 2015] is an open-source graph database, implemented in
Java. It is ranked the most popular graph database worldwide [DB-Engines, 2015]
and is used by several large companies such as Telenor [ASA, 2015], Walmart [Wal-
mart, 2015] and Cisco [Cisco, 2015]. It is a native graph database optimized and
designed for storing and managing graphs and is known for extremely fast traver-
sals of relationship. The underlying data model of Neo4j is the labeled property
graph and is one of the most generic and versatile of all graph models [Robinson
et al., 2013, p.73]. This graph data model gives four different fundamental build-
ing blocks to structure and store data. These building blocks includes Nodes to
store entity information, Relationships to connect nodes to another, Properties for
relevant information, and Labels for creating subgraphs.
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A query that is extremely well suited for graph databases are queries for finding
the paths between different nodes in a graph. Neo4j can be used to see whether
a path exists, finding the optimal path, and looking for variability in the path
[Bruggen, 2014, p. 51]. Neo4j includes built-in methods for finding the shortest
path, including Dijkstra’s algorithm. Dijkstra’s algorithm [Cormen et al., 2009,
p.658-662] maintains a set S of vertices’ whose final shortest-path weights from
the source s have already been determined. The algorithm repeatedly selects the
vertex u = V − S with the minimum shortest path estimate, adds u to S, and
relaxes2 all edges leaving u. The running time of Dijkstra’s algorithm is O((V +
E)logV ) and it is guaranteed to find the shortest path [Cormen et al., 2009, p. 661].
The Relationships in a Neo4j database can have different RelationshipTypes that,
among others, enables the built-in Dijkstra’s algorithm to find the shortest path
using only specific RelationshipTypes.

2Making a change that reduces constraints.
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Chapter 3

Preparatory Research

3.1 Refining the research topic

Cohen and Howe [1988] introduced a five-stage model for evaluating AI research in
terms of a five-stage cycle, and the suggested model is used for evaluation through-
out the project. The first stage in this model involves refining the research topic
to a task and identifying a view of how to accomplish the task. As stated in
the motivation, Section 1.1 on page 15, congestion and environmental problems
in Trondheim is increasing every year due to the population growth, and efficient
public transportation systems can reduce the negative effects issues. Since AtB’s
current solution consist of an experience based route network, it may not be the
optimal solution. The task in this research is to optimize urban transit networks
using swarm intelligence methods. Further is the goal to develop a system that im-
proves urban transit networks, making them more convenient for passengers, and
thus increase the number of public transportation passengers.

3.2 Structured literature review

A Structured Literature Review is a formal way of gathering available information
from primary relevant studies [Kofod-Petersen, 2014; Kitchenham, 2007]. There
are several advantages in using this model. These advantages include mapping
out existing solutions, avoiding bias in the work, and highlighting areas where
additional research is required. As proposed, a review protocol is developed. This
protocol presents how each step is carried out, and the complete process is found
in Appendix A on page 89. Table A.2 on page 94 shows the 11 final literature that
were selected based on the protocol, which will form the foundation of our research.
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The results of the final data synthesis is presented in the next section, all describing
a vehicle routing problem attempted solved by a swarm inspired method. Review-
ing this previous research will allow us to answer RQ 1, which is concerned about
determining the state-of-the-art regarding swarm-intelligence, vehicle routing prob-
lems and graph databases. Further, the problem statement, based on the findings
in the related work, will be presented in Section 3.4 on page 38.

3.3 Related work

3.3.1 Vehicle Routing Problems

As stated, all the retrieved literature from the structured literature review has
studied the possibility of solving VRPs using swarm intelligence. Hsiao et al.
[2004], Salehi-nezhad and Farrahi-Moghaddam [2007], Tripathi et al. [2009], Dias
et al. [2014], Salehinejad and Talebi [2010], and Sedighpour et al. [2014] all use
swarm intelligence to solve vehicle routing problems involving cars transporting
either persons or goods.

Hsiao et al. [2004] presented an approach to search for the best path of a map
considering the traffic loading conditions. To do this, they proposed an ACO algo-
rithm to search for the shortest path from a desired origin to a desired destination.
The presented algorithm is a classic ACO algorithm without changes and compared
their algorithm to a brute method emphasizing on the time used to generate the
route. Their results state that if the map consists of more than 200 nodes, the ACO
performs better than a brute method. In fact, they found that the more nodes the
map contains, the higher the benefit of using the ACO algorithm.

Salehi-nezhad and Farrahi-Moghaddam [2007] presented an ACO algorithm to
search for the best path between two desired intersections in cities, called Ant-
based Vehicle Navigation algorithm. To get more accurate results than a standard
ACO algorithm they employed a method for rewarding and punishing the artificial
ants. The path found by the “best ants” are given more pheromone than the path
of the “bad ants”. In order to find the best path, the presented algorithm is con-
cerned about the parameters distance, width, traffic load, road risk, road quality,
and number of intersections. The algorithm was applied on a part of the city of
Kerman, and the results are encouraging and well described. The algorithm pro-
vides an easy method with low cost for vehicle navigation in cities without assisting
GPS.

Tripathi et al. [2009] solved the vehicle routing problem with stochastic demand, in
which the customer demand is modeled as a stochastic variable. They performed
this using an improved version of ACO, called ns-AAA SO. The proposed algorithm
orients the search progressively towards favoring the global optimal solution. To
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do this they define that a complete iteration consists of two tours: The first tour is
a social tour that corresponds to a standard ACO iteration. The second tour is a
neighborhood tour where the ants are allowed to communicate important informa-
tion found in the social tour and change their solutions. If the fitness value of the
new solution is better, the old solution found in the social tour is replaced. To favor
the optimal solution, the path of the global best path is given more pheromones.
Further, to prevent the search from entrapment into a local optima, a minimum
quantity of pheromone on any edge, tmin, is always maintained. The performance
of ns-AAA SO was compared with both a standard ACO algorithm and a genetic
algorithm. They found that ns-AAA SO performs better, regardless of the problem
instance, than the other two algorithms compared to.

Dias et al. [2014] introduced an inverted ACO (IACO) algorithm. The idea is that
the IACO algorithm inverts the logic of the classical ACO algorithm by converting
the attraction of ants towards pheromones into a repulsion effect. The proposed
approach was used in a decentralized traffic management system, where the drivers
acted as the inverted ants. The drivers were repelled by the scent of pheromones
(other drivers), and the system thus avoids congested roads. The described ap-
proach was compared to a shortest-time algorithm (ST), and the IACO algorithm
performs better than the ST algorithm with the respect to trip time, travel length,
fuel consumption and CO2 emissions. This is as long as a considerable amount
(25-50%) of the vehicles uses the inverted ant algorithm to decide which road to
choose.

Salehinejad and Talebi [2010] introduced a route selection system that uses an Ant
Colony System (AS), as described in Section 2.1.1 on page 21, to detect an opti-
mum multiparameter direction between two desired points in urban areas. Their
algorithm is called Fuzzy Logic-Ant Colony System (FLACS). FLACS differs from
other ACSs by the employment of fuzzy logic for the local pheromone updating.
The proposed system is concerned about the parameters Distance, Traffic Flow,
and Incident Risk on each edge. FLACS also implements a tabu list, where vis-
ited nodes are added to avoid cycles. The system is applied to a part of London,
United Kingdom, consisting of 42 junctions. Their proposed system is compared to
a standard ACS and a A∗-ACS emphasizing on the parameters mentioned above.
They found that FLACS performed better at average than both systems regarding
operational cost, regardless of the importance in the parameters. It is worth men-
tioning, the estimation of further traffic data is done by artificial neural networks,
and the traffic data for each system is not exactly the same.

Sedighpour et al. [2014] introduced a hybrid ACO (HACO) algorithm to solve the
open vehicle routing problem (OVRP). This is a subproblem of the classical VRP
where the vehicles are not required to return to the depot. To overcome some
of the shortcomings of the original ACO, such as slow computing speed and local
convergence, they made three improvements. First they equipped each node with a
candidate list containing nodes nearby that had not yet been visited. Second, they
applied several local search techniques to the n best solutions found each iteration
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to improve them further. Third, they decided the amount of released pheromone
based on the rank of the best-known solution found so far. The HACO algorithm
was compared with three versions of PSO (standard PSO, PSO without one-point
move (PSOWO) and PSO without neighbors (PSOWN) regarding performance.
The algorithms were tested on fifteen different sets, consisting of 19 to 72 nodes
with 2 to 7 vehicles fixed at the minimum possible. Their result table shows that
HACO performs better than the others regardless of the test case used.

3.3.2 Urban Transit Network Design Problems

Urban Transit Network Design Problem (UTNDP), a subproblem of VRP, considers
other objectives and requires other methods for generating solutions than classical
VRP problems. As mentioned in Section 2.2 on page 26, UTNDP is divided into
two parts. The first part includes creating urban transit routes on existing net-
works (UTRP) and the second part involves the development of schedules (UTSP).
Yang and Yu [2007], Jiang et al. [2010], Poorzahedy and Safari [2011], Nikolic and
Teodorovic [2014], and Kechagiopoulos and Beligiannis [2014] all describes solu-
tions related UTNDP.

Yang and Yu [2007] presented an optimization algorithm for an urban bus network
design (UBND), a problem closely related to the UTNDP. This algorithm is based
on Dorigo et al. [1996]s Ant Colony Algorithm (ACA), called coarse-grain parallel
ant colony algorithm (CPACA). CPACA is very similar to the original ACA, but
it applies less communication between the ants by dividing the colony of ants into
sub-colonies that runs in parallel and only communicate with each other. Their
results are compared with the classical MAX-MIN ant system (MMAS) [Stutzle
and Hoos, 1999] and with ACA with Ant-weight strategy (ACA+). They found
that CPACA performed best regarding both average direct traveler density and
run time.

Jiang et al. [2010] describes an improved ACO (IACO) algorithm to solve the
UTRP. The specific improvement made to the algorithm is the implementation of
a stagnation counter to determine whether the algorithm has fallen into stagna-
tion. When there is no better solution found after an iteration, the stagnation
will increase by 1. When the stagnation counter reaches a certain threshold, the
pheromone levels associated with each edge is reinitialized. This improvement is
done to compensate for the classical ACOs shortcomings of easily falling into stag-
nation and, therefore, obtain a local optimal solution. The IACO algorithm is, as
the algorithm described by Yang and Yu [2007], compared to the classical MMAS.
The results show significant improvement to the convergence speed compared to
MMAS. The also found that IACO performed better both regarding average num-
ber of iterations and average path distance.
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Poorzahedy and Safari [2011] proposed an Ant System for solving the bus network
design problem (BNDP). BNDP is defined as the study of choosing a subset of
interconnected bus routes among a given set of such routes. A successful solving
of the BNDP, similar to UTNDP, minimizes the total travel time of the users
of the network and the operational cost. Like the FLACS algorithm proposed
by Salehinejad and Talebi [2010] and described in Section 3.3.1 on page 32, the
proposed AS algorithm also employs a tabu list for each ant where visited nodes
are added. Their solution generates multiple nests across the transit network and
each nest is responsible for creating a subnetwork, which is combined to a complete
bus network at the end. The system is only concerned about one objective; a
combination of travel time for the users and the bus fleet size for the operator.
The application was used to design the bus network of Mashhad and was further
be compared with a genetic algorithm (GA). Their results show that their system
performs better than the GA in both the number of routes, fleet size, in-vehicle
travel time and waiting time. Both the GA and the AS performs significantly
better than the existing solution on all measures.

Nikolic and Teodorovic [2014] proposed a method for solving the UTNDP. To do
this, they used an improved version of the original BCO [Lucic and Teodorovic,
2003]. The bees start with an initial solution at each iteration, where the initial
solution is the best-known solution so far. The initial solution is only updated if a
better solution is found. The method was tested on Mandl’s benchmark problem of
a Swiss bus network [Mandl, 1980] and compared to competitive approaches (Mandl
[1980]; Shih and Mahmassani [1994]; Baaj and Mahmassani [1995]; Bagloee and
Ceder [2011]). The performance criteria used to measure the performance was
regard to the percentage of total transfer demands satisfied directly (d0), with one
transfer (d1), two transfers (d2), or with more than two transfers or not satisfied
at all (dunsat). The methods are also compared regarding total in-vehicle travel
time. The experiments are conducted on route set designs with four, six, seven and
eight routes. They found that the proposed method performed best regarding total
travel time and number of transfers if the order of importance was set to favor the
passengers and the number of lines were greater than 4. If the order of importance
was set to favor what was best for the operator, the method created the solution
with the smallest fleet size independent of number of lines, otherwise the method
performed mediocre regarding all the other measures.

Kechagiopoulos and Beligiannis [2014] designed and presented an original PSO al-
gorithm without any changes or improvements. Their goal was to find an efficient
solution to the UTRP. The target problem was, like Nikolic and Teodorovic [2014],
Mandl’s benchmark problem, and their algorithm was compared with competitive
approaches, including genetic algorithms and other metaheuristic approaches men-
tioned in literature [Baaj and Mahmassani, 1991; Chakroborty and Wivedi, 2002;
Kidwai, 1998; Fan and Mumford, 2010; Fan et al., 2009; Zhang et al., 2010; Chew
and Lee, 2012]. The algorithms were compared to the same performance crite-
ria and the same amount of route set sizes as Nikolic and Teodorovic [2014], but
instead of comparing total in-vehicle time, they used the average in-vehicle time

35



experienced by each passenger (ATT ). They found that the proposed algorithm
performs better than the competitors regarding ATT independent the route size
and achieves a better percentage of direct travelers (d0) except when the route set
size was four.

3.3.3 Discussion

Based on the proposed literature review we see that swarm intelligence inspired
system has proven to be useful solving multiple vehicle routing problems. During
the past decade, there has been published several research on the subject and many
of these reports promising results.

We see that a lot of the recently published research addresses the weaknesses of
classical SI-methods and makes changes to the original algorithms to overcome
some of these weaknesses. In these cases we believe the conducted experiments
should include comparison with the respective swarm method to indicate whether
or not their solution improved the addressed shortcomings. Tripathi et al. [2009],
Yang and Yu [2007], Salehinejad and Talebi [2010], and Jiang et al. [2010] all pre-
sented research where their swarm intelligence inspired algorithms were designed to
overcome some of the known weaknesses. They compared their solutions with other
corresponding swarm methods, achieving promising results. Because of this com-
parison, they can conclude whether or not the addressed weaknesses are improved.
Sedighpour et al. [2014] improved the classic ACO to overcome slow computa-
tional speed and local convergence. However, they did not compare the proposed
algorithm to other implementations of ACO, and the research will not be valid to
conclude whether or not it actually overcomes some of ACO’s weaknesses. Neither
Dias et al. [2014] nor Poorzahedy and Safari [2011] tests their solution against other
swarm intelligence methods, but against other reasonable algorithms, respectively
a Shortest Time-algorithm and GA. The comparison against GA in Poorzahedy
and Safari [2011] is relevant because they did not add additional features, other
than a tabu list of all visited nodes, to the AS algorithm. In Dias et al. [2014]’s
research, it makes sense to only test against a ST-algorithm, because they inverted
the core factor of ACO. A comparison against a standard ACO would, therefore,
be non-relevant. Salehi-nezhad and Farrahi-Moghaddam [2007] did not compare
their algorithm against any other algorithm at all, which makes their results hard
to verify.

The performance of metaheuristic methods, including swarm inspired methods, are
highly dependent on their parameter settings. The process of parameter tuning is
an important contribution to the field of swarm intelligence in general. Several
researches, including Salehi-nezhad and Farrahi-Moghaddam [2007] and Yang and
Yu [2007], describes their parameter setting as a product of “trial and error”.
We consider this to be a weakness of their research because it is not possible
to validate their results. Sedighpour et al. [2014], Poorzahedy and Safari [2011],
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and Kechagiopoulos and Beligiannis [2014] discussed and justified their parameter
settings by conducting their experiments in two parts; one for parameter setting
and one for performance. We consider this is a strength of their research.

The size of the test cases used is an important factor in determining both scal-
ability and robustness of the proposed algorithm. Nikolic and Teodorovic [2014]
and Kechagiopoulos and Beligiannis [2014] both uses Mandl’s benchmark prob-
lem as input. This benchmark problem, presented in Fig. 3.1 on page 39, is a
small network containing 15 nodes and 21 edges. Mandl’s network is widely used
and acknowledged by multiple researchers, including Baaj and Mahmassani [1991],
Chakroborty and Wivedi [2002], and Fan [2009]. This is a strength of their research
because it enables comparison of their results to a numerous of other solutions us-
ing the same benchmark problem. However, as mentioned, the Mandl network is
quite small. The robustness of their algorithms regarding both time and space
complexity could have been verified by also applying their algorithm to a larger
test case. Salehi-nezhad and Farrahi-Moghaddam [2007] also applied their solution
to a small test set, containing only 27 intersections and requiring only 5 ants and,
like the authors that used the Mandl Network, the robustness could have been
verified by also applying the algorithm to a larger test set.

3.3.4 Conclusion

Based on a review of the related work the first research question can be answered:

RQ 1: What is the state-of-the-art in solving vehicle routing problems
using swarm intelligence methods and graph databases?

The structured literature review did not retrieve any previous research that used
graph databases in combination with the vehicle routing problem and swarm in-
telligence. The state-of-the-art of solving vehicle routing problems using swarm
intelligence methods can be summed up to being inspired by original SI-methods,
but to add and remove features to make the methods more suited for the tasks. Ten
out of the eleven reviewed papers made changes to the original method. We notice
a trend of implementing a notion of the best known solution so far, and using this
to either directly or indirectly improve the solutions created by the individuals of
the swarm [Tripathi et al., 2009; Sedighpour et al., 2014; Nikolic and Teodorovic,
2014].

37



3.4 Problem statement

The goal of this research is to create a system to improve urban transit networks,
which further hopefully will increase the number of public transportation passen-
gers. As mentioned, the current solution of Trondheim’ transit network consist of
an experience based route network. This means the transit routes are not properly,
computationally optimized concerning the travel demand and travel time. In order
to contribute to this, we will in this thesis create a swarm intelligence inspired
algorithm for the UTRP. A good route network will ensure that routes having the
most traveling demands are satisfied with short paths and few vehicle transfers,
making travel demand a key variable for the algorithm. AtB [AtB, 2015] does
not possess accurate data about the travel demand, and detailed investigations
into measuring and predicting travel demand is a complex research problem, be-
yond the scope of this thesis. Demand values and travel times are all provided for
Mandl’s benchmark problem [Mandl, 1979]. For the UTRP, Mandl’s benchmark
problem is widely used, whereas a recognized metric is established for evaluating
the performance. Mandl’s benchmark problem will therefore be used as the input
data for most of the experiments in this thesis. The acknowledged performance
criteria will be used to determine the performance of the algorithm and comparing
the results with approaches published in the literature [Nikolic and Teodorovic,
2014; Kechagiopoulos and Beligiannis, 2014; Mandl, 1979; Kidwai, 1998; Fan and
Mumford, 2010; Chakroborty and Wivedi, 2002; Zhang et al., 2010; Chew and Lee,
2012].

A standard ACO has several advantages for VRP, such as natural parallelism and
continuous positive feedback, which allows good solutions to be identified fast.
However, the standard ACO often has the shortcoming of getting stuck at a local
optima. We will investigate the possibility of overcoming this drawback and to fur-
ther enhance the optimization process by improving the standard ACO. Changes to
the standard ACO has previously been done to overcome some of the algorithm’s
known weaknesses. Giving the ants knowledge of the visited nodes [Sedighpour
et al., 2014; Salehinejad and Talebi, 2010; Poorzahedy and Safari, 2011], and adding
a notion of the best-known solution so far [Tripathi et al., 2009; Sedighpour et al.,
2014] showed improved performance. PSO and BCO use related approaches for re-
warding the global best solution so far, and Kechagiopoulos and Beligiannis [2014]
and Nikolic and Teodorovic [2014] demonstrates good performance with their re-
spective PSO and BCO implementations. To answer RQ 2 on page 17, we will
investigate whether incorporating additional features with respect to how PSO
and BCO operate will improve the performance of the standard ACO.

RQ 3 on page 17 is concerned about whether the implementation can be used
to optimize real urban transit networks. This cannot be fully answered until it is
applied to a real city, but we will strive to create a method that is easily adaptable
with the concerns of public transportation in cities in mind. Real urban cities are
(often) a whole lot larger than Mandl’s relatively small network (Fig. 3.1 on page
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39). To test whether it is possible to apply the proposed algorithm on large transit
networks, the algorithm will be implemented in a way that it is easily adaptable
to various input values. Further it will be tested on large networks more similar to
real transit networks.

As mentioned in Section 3.3.4 on page 37, we did not find any previous research
that use graph databases in combination with the vehicle routing problem and
swarm intelligence. The graph database Neo4j [Neo Technology, 2015] have several
advantageous features for managing graphs, and we will in thesis explore how the
usage of Neo4j affects the development process and the quality of the solution.
In order to do this, the networks will be represented as Nodes and Relationships
in a Neo4j graph database, and the generated routes will be further be added to
the database. We will also strive to use the built-in methods in Neo4j in order
to establish their usability in solving UTRPs with a swarm intelligence inspired
system.

Figure 3.1: Illustration of Mandl’s Network as a graph
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Chapter 4

The Proposed System

4.1 Combined Swarm System

The basis of the proposed system, Combined Swarm System (CSS), is the ACO
metaheuristic shown in Algorithm 1 on page 22. As initiated in Section 3.4 on
page 38, some acknowledged attributes, inspired by PSO and BCO, will be added
to the solution. The artificial ants generated, henceforth called ants, will also
be given “memory”. This attribute is given the ants to recall whether a node is
visited in an earlier route within the same route set. This attribute is not linked to
any optimization method from swarm intelligence. The feature is added because
we observed by giving the ants memory, a higher amount of the generated route
networks corresponded to a connected graph. This is one of the system’s constraints
initiated in Section 4.3.1 on the next page.

One of the supplementary attribute inspired by SI is the Inertia Weight from PSO.
Inertia Weight is a decreasing parameter added to PSO for balancing local and
global search. As illustrated in Figure 2.2 on page 25 and Figure 2.3 on page 25,
the particle in PSO tends to explore more in early iterations, and becoming more
organized and coordinated in the later iterations of the algorithm. In the initial-
ization phase of CSS, an amount of the generated ants will be declared “crazy”.
A so-called “crazy ant”, will work randomly, and not consider edge values when
selecting nodes to be included in a route. The probability of an ant being declared
“crazy” is given by a predefined start value (CA), decreasing iteratively with the
inertia weight (IW).

The following attribute inspired by BCO is also added. As explained in 2.1.2 on
page 23, deciding which bee to follow in BCO is considered to be a function of
the quality of the food source found by the recruiter. After each iteration will
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an amount of the evaluated best ants be “followed” in the next iteration. The
“following ants” in the next iteration will follow the same path as the best ants
from the previous iteration unconditionally.

4.2 Development environment

The proposed system is implemented using the Java programming language. In
addition to being the programming language we are the most familiar with, Java
is one of the most used programming languages worldwide. Henceforth, the pos-
sibility of further contributions will enhance. Further, Neo4j offers a rich set of
integration possibilities for Java which are well documented. Nevertheless, com-
pared to languages like C++, Java is often considered slow and memory-intensive
[Alnaser et al., 2012]. However, Sestoft [2010] states that managed languages like
Java are easier and safer to use than traditional languages like C++. Sestoft [2010]
concludes, based on his conducted experiments, that “there is no obvious relation
between the execution speeds of different software platforms, even for the very
simple programs studied here: the C, C#, and Java platforms are variously fastest
and slowest”.

An embedded version of the Neo4j database is used to represent the network in-
cluding nodes, edges and the created routes. An embedded database is preferred to
lower the latency of the many reads and writes executed when running the system
compared to a stand-alone version.

To handle project dependencies, such as Neo4j, and configuration details, such as
how much memory that is allocated to the system, Apache Maven [Maven, 2015] is
used. Maven is a tool that can be used for building and managing any Java-based
project.

4.3 System assessments

The aim of designing a route network is to optimize specific criteria that define its
efficiency and quality. Also, some real world constraints should be satisfied. The
evaluation criteria and constraints used by the proposed system are inspired by
[Kechagiopoulos and Beligiannis, 2014].

4.3.1 Constraints

During the route set generation, described in Section 4.8 on page 48, the system’s
constraints are the following:
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1. No cycles (or backtracks) in the graph is allowed. In other words, a
node visited once in a route should not be visited again in the same route.
This corresponds to the real world constraint that a bus route should only
include a given bus stop once.

2. The route size is predefined. The routes shall not exceed the max-
imum or attain the minimum limit of nodes. This corresponds to the
real world constraint saying that a bus route should include at least a number
n bus stops, and must not exceed a number m of bus stops. This number is
usually sat by the bus service provider based the size of the transit network
and cost limitations.

3. The route set size is predefined. This corresponds to the real world
constraint that a service provider must be able to determine the number of
bus routes in the transit network. This number is, like Constraint 2, sat
based on the size of the transit network and cost limitations.

4. The created route sets must correspond to a connected graph. This
corresponds to the real world constraint saying that a passenger must be able
to travel between any two bus stops in the transit network.

4.3.2 Evaluation criteria

This evaluation of the ant’s performance is done after each route set generation
and is based on the following criteria:

1. The sum of the difference between the total travel time experienced by each
passenger and the travel time of the shortest possible path, referred to as
F1(r).

2. A score which reflects the percentage of passengers traveling either directly,
transferring once or transferring twice, referred to as F2(r).

3. A score which reflects the percentage of passengers transferring more than
twice, referred to as F3(r).

These evaluation criteria are used to calculate the Total Fitness, TOTFIT , of route
set r, which process is described in Section 4.9.2 on page 49.
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4.4 Initialization

4.4.1 Parameters

Nr. Parameter Description

1 s The Colony Size
2 i Number of iterations (the stop criteria)
3 E Percentage of pheromones to evaporate at each iteration

4 pv
The pheromone constant added to each edge, each time it
is visited by an ant

5 pb
Pheromone constant added to reward edges walked by fol-
lowing ants

6 AF Percentage of ants to be followed
7 CA The probability of a given ant to be declared “crazy”
8 RS The number of routes in a complete route set
9 Rmax The maximum number of nodes in a route
10 Rmin The minimum number of nodes in a route
11 IW The initial value for the Inertia Weight

Table 4.1: The parameters to be set for the system

The parameters of CSS are described in Table 4.1. The values of parameters
1-7, except parameter 4, are determined by a conducted experiment described in
Chapter 5 on page 53. For comparison reasons, the value of parameters 8-10 will be
the same as the parameters used in approaches described in the literature [Mandl,
1979; Kechagiopoulos and Beligiannis, 2014; Nikolic and Teodorovic, 2014; Kidwai,
1998; Fan and Mumford, 2010; Chakroborty and Wivedi, 2002; Zhang et al., 2010;
Chew and Lee, 2012; Baaj and Mahmassani, 1991; Mumford, 2013]. The values of
parameter 4 and 11 are constant at respectively 0.1 and 1.0.

The parameters E, CA and AF are all represented as percentages. E is stated
as a percentage because the pheromone level changes over time. In the beginning,
the level is quite small, and during the iterations the level increases. By stating E
as a percentage, an equivalent amount of pheromone evaporates at each iteration.
CA and AF are also stated as percentages to ensure that the quantity of both
“crazy ants” (described in Section 4.5 on the next page) and “ants to be followed”
(described in Section 4.10 on page 51) are the same regardless of the value of s.

4.4.2 Input data

The input data required includes:
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• data concerning the structure of the road network (nodes with coordinates)

• data concerning the travel times between the nodes

• data concerning the travel demand between the nodes

Examples of such files can be found in Appendix B on page 103.

4.4.3 Network generation

The network consists of nodes and relationships, and these are represented in the
graph database Neo4j. The nodes are created based on the files similar to the one
presented in Table B.1 on page 104, which consist of the number of nodes and
the coordinates for each node. These coordinates are used to represent the graph
visually. An example of such a visual representation can be found in Figure 3.1 on
page 39. The relationships between the nodes correspond to the travel time and
demand between the nodes. These data are gathered from files similar to the ones
presented in Table B.2 on page 104 and Table B.3 on page 105. Table B.2 shows
the travel time between every two nodes in minutes. Some of the travel times are
described as “Inf”, meaning there is no direct link between the two nodes. Table
B.3 shows the demand between every two nodes, which corresponds to the average
number of passengers traveling between every two nodes each day. Both Table B.2
and B.3 are symmetrical matrices. Because the generated networks are directed,
the travel time and demand between two nodes are the same in either direction.

4.5 Generating Combined Swarm colony

After the network initialization, a Combined Swarm colony is generated. Because
the basis of the system is ACO, the individuals of the Combined Swarm colony will
be referred to as ants. A colony consists of three types of individuals, and are the
following:

• Normal ants: “normal ant” chooses the next edge to walk by a probability
based on the edge value ev, described in Section 4.7 on the following page.

• Following ants: the “following ants”, FA, will follow the same path as
the best ants selected from the previous iteration. The amount of the ants
to be followed in the next iteration, n, is determined by a percentage, AF ,
described in Section 4.10 on page 51. The same amount of FA will choose
exactly the same nodes as the ant it is following.

The FA will add additional pheromone to the edges walked by the best ants
in the previous iteration, simply by walking the same path. To test if further
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boosting is beneficial, an additional pheromone constant, pb, will be added
to the edges walked by the FA. The amount of pb is selected after excessive
testing. It is worth mentioning that in the very first iteration, there are no
ants to be followed, and there will therefore neither be any FA.

• Crazy ants: By a given probability a normal ant is declared “crazy”. A
“crazy ant” chooses the next node at random, given the possible edges con-
nected to the current node.

The probability that a generated ant is declared crazy is partly determined
by a predefined value, CA, achieved by the parameter testing, and partly
determined by the inertia weight, IW . This probability, p, is calculated as
follows:

p = CA ∗ IW
As one can observe, the IW decreases at each iteration. This results in a
smaller probability for the ants to be declared “crazy” in the later iterations.
The rate in which the inertia weight decreases is dependent on the number
of iterations, i. At each iteration IW is updated as follows:

IW = IW − IW

i

It might be worth mentioning that the FAs can not be declared crazy.

4.6 Selecting start node

At the creation of each route in each ant’s route set, a start node is selected. This
start node should ideally be selected randomly to allow for a variation in the routes
created. We experienced, however, that if the start node is connected to another
node that is only connected by one edge, the ant would often get stuck with only
two nodes in the route set. Constraint 1 on page 43 specifies that no backtracking
is allowed, and a node connected to only one edge will always be a start or an end
node in a route. To prevent routes from containing only two nodes, nodes connected
to a node with only one connecting edge are not selected as start nodes. Examples
of such tabu nodes are node 2 and node 15 found in Figure 3.1 on page 39.

4.7 Selecting next nodes

How an ant selects the next node is dependent on which type of ant it is.

If ant a is a “crazy ant”, the next node is chosen randomly based on the possible
edges connected to the current node, without considering the edge value. If a is a
“following ant”, a consequently chooses the edges selected by the ant it is following.
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If a is a “normal ant” the next node selection is based on an evaluated edge value,
ev, for each of the possible edges, pe. pe is an edge that is connected to the current
node and a node not yet visited in the given route. If no such edge exists, the given
tour is terminated, else the value ev for each edge e in pe is calculated as follows:

eve =
pe
n∑

i=1

pi

+ α

where pe is the pheromone value of edge e, and n is the possible edges. α is a value
sat to 1 if the connecting node is not yet visited in a’s current route set, else it is
sat to 0. This is due to the “memory” attribute initiated in Section 4.1 on page 41.
eve is used to calculate the probability, prope, for e to be chosen, and is calculated
as follows:

probe =
eve
n∑

i=1

evi

Each edge is given a range between 0 to 1 based on the calculated probability.
Every real number between 0 and 1 is covered by a range exactly once. An edge
with a high probability is given a broad range and vice versa. A random decimal
number between 0 and 1 is used to determine which edge to choose. The edge that
holds the random number in the range is chosen, and the connecting node of that
edge is selected as the next node.

When an edge is selected, the pheromone value ep of this edge is updated. This
happens independently of ant type. ep is updated as follows:

ep +=
pv
Te

Where pv is a predefined pheromone constant and Te is the edge’s travel time. As
this formula shows, an edge with a shorter travel time is granted more pheromone
than an edge with longer travel time. This is inspired by how Hsiao et al. [2004]
updates pheromones, and designed to favor edges with lower cost, which, in this
case, is lower travel times.

If a is “following ant”, the chosen edge is granted additional pheromone, as men-
tioned in Section 4.5 on page 45. After the initial pheromone is added, ep is further
updated by the following formula:

ep +=
pb
Te
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where pb is as mentioned a predefined pheromone constant determined after exces-
sive testing.

4.8 Creating the route set

When a node is selected as the next node, it is added to the route, and declared as
the current node. If the current route has reached its maximum number of nodes,
Rmax, the current route is added to the route set and a new route is initialized. As
Constraint 3 on page 43 specifies, the route set size is predefined, and if the route
set has reached its limit, RS, no new route will be created. If RS is reached, a has
finished its tour, the route set is added to the Neo4j database and a is ready for
evaluation.

In Neo4j, each route, r, produced by each ant, a, in each iteration, i, is given a
RelationshipType, RT :

RT = iinaanrrn

where in is the given iteration number, an is the ant number, and rn is the route
number.

Neo4j’s built-in Dijkstra Algorithm is used to find both the shortest possible path
in the network and the shortest possible path using a given route set. The built-in
Dijkstra is capable of taking one or more RT s as input, and finds the shortest
path using only the given RT . If no such path exists, it returns null. The shortest
possible paths are used in the evaluation phase described in the next section.

4.9 Evaluation

After each ant in the Combined Swarm colony has created a complete route set,
the ant’s route sets are evaluated. The route sets are evaluated as a whole because
the connectivity and the paths chosen are dependent on the entire route set. The
results of the evaluation determine whether a better route set than the best so
far is achieved, in addition to determining which ants to be followed in the next
iteration.

4.9.1 Removing ants that did not fulfill the constraints

Constraint 4 on page 43 specifies that a passenger should be able to travel from
every node to every other node in the network. The first step in the evaluation
is, therefore, to remove ants that have generated route sets which correspond to a
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disconnected graph. For an undirected graph G to be classified as connected, there
must be a path between every pair of nodes.

4.9.2 Calculating Total Fitness

In the next step, a fitness function, TOTFIT (r), for the remaining ants’ route sets
are calculated. TOTFIT (r) is used to compare and evaluate the solutions of the
produced route sets. The calculation of TOTFIT (r) for route set r is described as
the sum of F1(r), F2(r) and F3(r):

TOTFIT (r) = F1(r) + F2(r) + F3(r)

4.9.2.1 Calculating F1(r)

F1(r) is referred to as the travel time experienced by each passenger compared
to the shortest possible route in the network. For every passenger p, F1(r) is
determined by the difference between the travel time of the shortest path given the
route set, TTspr, and the shortest possible path in the network, TTspn:

F1(r) =

p∑
i=1

TTspri − TTspni

σ

where σ is a positive user defined parameter used to control the importance of
F1(r) compared to F2(r) and F3(r). In the presented contribution σ is sat to be
ψ2, where ψ is the number of nodes in the network. In Fan [2009], the author
proposes two different methods for calculating TTspr given a specific route set. In
the first method, Method 1, the path with the shortest traveling time, not con-
sidering any transfer penalties, is chosen. In the second method, Method 2, the
transfer penalties are considered, and the path with the shortest traveling time,
including transfer penalties is chosen. To achieve the most accurate and realistic
results Method 2 is chosen for selecting r for p. This gives us the following equation
for calculating TTspr between two nodes:

TTspr = IV T + (γ ∗NT )

where γ is the transfer penalty, and NT is the number of transfers. For comparison
reasons, γ is sat to 5 minutes. IV T is the in-vehicle travel time and is equivalent
to the sum of the travel times associated with each edge in the route. IV T is
calculated using the built-in Dijkstra algorithm in Neo4j. The theoretical best
value for F1(r) is 0, denoting no difference between TTspr and TTspn.
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4.9.2.2 Calculating F2(r)

F2(r) reflects the percentage of passengers traveling from their origin to their des-
tination either directly, making a single transfer or transferring twice. Calculating
F2 is done using the following equation:

F2(r) = (τ ∗ d0(r)) + (φ ∗ d1(r)) + (ω ∗ d2(r))

where d0(r) is the percentage of passengers traveling directly, d1(r) is the percent-
age of passengers making a single transfer, and d2(r) is the percentage of passengers
transferring twice. τ is sat to −3, φ is sat to −2 and ω is sat to −1. The size of
τ , φ and ω is determined to favor route sets with many direct travelers over route
sets with many one transfer travelers, and one transfer travelers over two transfer
travelers. τ , φ and ω are all negative values because the smaller the values of both
F1(r) (described in Section 4.9.2.1 on the preceding page) and F3(r) (described
in Section 4.9.2.3), the better the route set. The theoretical best value of F2(r)
is -300, denoting 100% of the passengers traveling directly from their origin to
their destination. The theoretical worst value of F2(r) is 0, meaning all passengers
transfers more than twice.

4.9.2.3 Calculating F3(r)

F3(r) is a score that reflects the percentage of unsatisfied passengers. By unsatis-
fied passengers we mean passengers traveling from their origin to their destination,
where the number of transfers is more than 2. F3(r) is calculated using the follow-
ing formula:

F3(r) = (100 − d0(r) − d1(r) − d2(r)) ∗ β

where, d0(r), d1(r), and d2(r) are the same values described in Section 4.9.2.2,
and the number 100 represent 100%. β is a positive user defined parameter, which
determines how much a given ant should be “punished” for creating a route set
where one or more passengers must transfer more than twice. ψ is sat to 10, to be
correspondent to the values of τ , φ and ω described in Section 4.9.2.2. The theo-
retical best value of F3(r) is 0, which reflects no passenger being unsatisfied. The
theoretical worst value of F3(r) is 1000, meaning that all passengers are unsatisfied.

The sum of F1(r), F2(r), and F3(r) results in, as described above, the TOTFIT (r)
value of ant a. The lower the value of TOTFIT (r), the better the route set r.
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4.10 Selecting ants to be followed

After the TOTFIT (r) value of each ant is calculated, the ants are added to a list
sorted in descending order. The ant with the best TOTFIT (r) value is placed in
the first position and so on. As initiated in Section 4.5 on page 45, a percentage
of the colony becomes followers and follows the same path as one of the best ants
from the previous iteration. To determine the number of ants to be followed for
the next iterations, a value NAF , is calculated:

NAF = antssize ∗AF

where antssize is the number of ants that satisfied all constraints, described in Sec-
tion 4.9.1 on page 48. The value of AF is selected after excessive testing described
in 5.1 on page 53. Because the list is sorted with respect to the TOTFIT (r) value,
the NAF first ants in the list will be the NAF best ants. The NAF first ants will,
therefore, get a follower in the next iteration.

4.11 Pheromone evaporation

To simulate how pheromone on paths in the nature evaporate, an amount of the
pheromone on the edges will be removed after each iteration. The formula for up-
dating the pheromone value ep on edge e, according to evaporation, is as follows:

ep −= ep ∗
E

100

The processes described in Sections 4.5 - 4.11 combined, represents one iteration,
and are all executed i times. The ants are recreated each iteration, but the ants
initialized as “following ants” acts as clones of the best ants from the previous
generation. The edges, including the pheromone level, are carried over to the
next generation, along with the data from the global best ant so far. The system
terminates when i iterations have finished running.
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Chapter 5

Experiments and Results

5.1 Parameter settings

5.1.1 Experimental plan

Metaheuristics, like the ant colony optimization (ACO), requires good initial pa-
rameters to solve concrete problems optimally. The parameter settings experiment
will study the effect of the variation of the parameters, and will be conducted in
the attempt of finding the most optimal parameters for the system. As mentioned
in Section 3.3 on page 32, several authors refer to their parameter settings exper-
iments as a product of “trial and error”, without presenting the parameter values
tested. For contributing to the field and providing a starting point for future re-
search, this thesis includes a complete review of the conducted experiment. Also,
studying the effect of the additional parameters inspired by particle swarm opti-
mization (PSO) and bee colony optimization (BCO) will help establish whether
these attributes improves the standard ACO implementation. This is will further
help answer Research Question RQ 2 on page 17.

5.1.2 Experimental setup

The parameters used in the proposed system (CSS) are described in Section 4.4
on page 44, and the parameters to be tested are presented in Table 5.1 on the
following page. As one can see, each parameter is assigned a default value to be
held constant while the other parameters are tested. Each parameter are run with
minimum four different candidate values, presented in Table 5.2 on page 55. The
selected value will be the one that produce the lowest Total Fitness (TOTFIT ). As
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stated in Section 4.9 on page 48, the lower the TOTFIT , the better the solution.

The default- and candidate values for parameters s and i are both inspired by
the corresponding values described in related research [Salehi-nezhad and Farrahi-
Moghaddam, 2007; Poorzahedy and Safari, 2011; Sedighpour et al., 2014; Kecha-
giopoulos and Beligiannis, 2014]. The parameters E, AF , and CA are consid-
ered unique for the proposed system, and their default values are chosen based on
preliminary testing not included in this thesis. Even though the standard ACO
implementations include an evaporation parameter, E is unique for this research
because E is stated as a percentage. E, AF , and CA will be tested with values in
the range from 0% to 100%.

The idea of the parameter pb is to test whether rewarding edges in the best route
sets, by adding more pheromone to edges walked by the “following ants”, will boost
the system’s performance. The default value of pb is 0.0, which implies that no
extra pheromone is granted these edges. Because the amount of extra pheromone
granted each edge is dependent on both pb and AF , the candidate values of pb will
be tested with the selected value of AF . It is worth mentioning that the value of
pb must be seen in context with the value of parameter pv. The value of pv is the
constant added to each edge each time it is visited by an ant. The values for pv
will not be tested with different values because the value could, in fact, be any real
number, as long as it is constant. pv is, as mentioned in Section 4.4 on page 44, sat
to 0.1. Due to this, the candidate values of pb will be in the range from 0.0 to 1.3.

The value of the inertia weight, IW , will not be tested with different values and
is sat to 1.0. This is because, as described in Section 4.5 on page 45, IW directly
affects CA, and because an implementation of different inertia weight strategies is
beyond the scope of this thesis.

Parameter Description Default Value

s The Colony Size 50
i Number of iterations (the stop criteria) 50

E
Percentage of pheromones to evaporate at
each iteration

10%

CA
The probability of a given ant to be declared
“crazy”

10%

AF Percentage of ants to be followed 10%

pb
Pheromone constant added to reward edges
walked by “Following Ants”

0.0

Table 5.1: Parameters to be tested, and their default value to be held constant
while the other parameters are tested

For each candidate value of parameters s, i, E, and pb, 30 runs will be carried
out. For each candidate value of parameters AF and CA, 50 runs will be carried
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out. The reason for the increased amount of runs is because the results of AF and
CA will contribute in establishing RQ 2 on page 17. By running the system with
additional runs, the margin of error will most likely decrease and will thus increase
the validity of the results.

For all candidate values, the margin of error of the Confidence Interval with a con-
fidence level of 95% will be presented. In addition will the best and worst produced
TOTFIT value and the standard deviation be presented. For each parameter, the
value that resulted in the lowest average TOTFIT will be selected.

All runs will be executed on Ubuntu instances provided by the Google Cloud Plat-
form [Google, 2015]. The instances are of type “n1-highcpu-2”, containing two
2.6GHz Intel Xeon E5 (Sandy Bridge) virtual CPUs with 1.8 GB memory.

5.1.3 Experimental results

Table 5.2 presents the parameters and candidate values tested, in addition the se-
lected value for each parameter. The complete experimental steps with the corre-
sponding results can be found in, Appendix C, Table C.1 on page 108 and Table C.2
on page 108.

Parameter Candidate values Selected value
s 10, 50, 100, 125 50
i 10, 50 , 100, 125 125
E 10%, 25% 50%, 90% 25%
CA 0%, 5%, 10%, 25%, 50%, 100% 25%
AF 0%, 5%, 10%, 25%, 50%, 100% 5%
pb 0.0, 0.1, 0.5, 0.9, 1.3 1.3

Table 5.2: Results from the parameter settings experiment

5.1.4 Selecting final parameters

As one can observe in Table C.1 on page 108, increasing parameters s and i both
decrease the TOTFIT value. As mentioned in Section 4.9.2 on page 49, the smaller
the TOTFIT the better the solution. However, one aspect not considered in the
initial parameter setting experiment is that the size of s and i affects each other.
A colony of 50 ants with 125 iterations will produce close to similar results to 125
ants with 50 iterations, due to the fact that the total number of ants traversing
the network will be approximately the same. The most optimal would, therefore,
be to observe the results when increasing the value of these parameters together.
However, an increase in the swarm size or number of iterations both clearly affect
the computational cost of the proposed system. The average run time of each
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run, with candidate values of 50 and 125, is presented in Table 5.3. As one can
see, there is a difference in the running time with a colony size of 125 versus 125
iterations. Because the proposed system is going to be run an excessive amount
of times when testing performance, increasing both of these parameter values will
result in an increased run time. As seen in Table C.1, the value of 125 iterations
produce better results than a colony size of 125. Due to the run time difference
and the produced results, the selected value of parameter s is sat to 50 and i is sat
to 125.

Candidate value s i
50 181.9 187.7
100 883 756

Table 5.3: Running time in seconds for different candidate values of parameters s
and i

Observing the results of different values of E in Table C.1 on page 108, evaporat-
ing 25% of the pheromone each iteration gave the best average TOTFIT , closely
followed by 50%. The fact that a noticeable amount of pheromone evaporates each
iteration seems to be beneficial for the system. Evaporation is important when it
ensures that the pheromone level on routes explored in early iterations, but later
discarded in favor of others, decreases. However, based on the presented results, re-
moving over 90% at each iteration is a too excessive amount. The worst results were
achieved when E was 10%. Evaporating only a small percentage of the pheromone
may result in ants getting stuck at local optima because routes found in the early
iterations will contain significantly more pheromone than newly discovered routes.
By stating E as a percentage an equivalent amount of pheromone is removed from
each edge, independent of whether the pheromone level is big or small.

Parameter CA produced best results with a value of 25%, meaning there is a 25%
probability in that an ant is declared “crazy” at the beginning of each iteration.
As mentioned, a “crazy ant” makes completely random decisions and select edges
regardless of the pheromone value. CA will decrease at each iteration based on the
inertia weight, as described in Section 4.5 on page 45. The results in Table C.2 on
page 108 shows that the system benefits from the fact that some ants are declared
crazy. As stated in Section 4.1 on page 41, if some ants are declared crazy, the
probability of getting stuck at a local optima may decrease. However, if the value
is greater than 25%, the average TOTFIT results worsen. Not surprisingly, when
half or more of the colony acts completely random, and the system looses some
of the performing boosting features from ACO, such as favoring edges frequently
walked by other ants.

The amount of AF determines the amount of “following ants” (FA) in the next
iteration. An FA follow the same path as the best ants’ paths unconditionally.
Observing the results obtained in Table C.2 on page 108, the TOTFIT value
deteriorates when the amount of AF becomes greater than 25%. When the amount
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of FA becomes too high, a relatively large number of normal ants will not be able
to explore new (possibly better) routes in the next iterations. This may result in
the system not being able to escape from a local optima. However, as one also
can see, increasing the value computes better results than 0%. Rewarding some
good route sets boosts the systems performance, and 5% is selected as the final
parameter for AF .

The value of pb is as mentioned strongly dependent on the value of AF . This is
because the more following ants, the more pheromone added to each edge in the
best route sets. The values of pb was, therefore, tested with the selected value of
AF . As one can observe in Table C.2 on page 108, the TOTFIT value improves
with a large amount of pb. Granting the relatively small amount of edges selected by
AF with extra pheromone, does improve the performance of the proposed system.

The computed Confidence Interval does not become remarkably better after run-
ning the proposed system 50 times, compared to 30 times. Produced results re-
garding parameters run 30 times can, therefore, be considered valid.

5.2 Performance comparison

5.2.1 Experimental plan

When the value of each parameter is selected, the comparison studies will determine
the performance of the proposed system. The results produced by the proposed
system will be compared to results published by Mandl [1979], Kechagiopoulos and
Beligiannis [2014], Nikolic and Teodorovic [2014], Kidwai [1998], Fan and Mumford
[2010], Chakroborty and Wivedi [2002], Zhang et al. [2010], Chew and Lee [2012],
and Baaj and Mahmassani [1991]. Four different cases will be studied, each having
different number of routes. For our experimental results to be straight comparable
with the results published, cases with four, six, seven and eight routes in the route
set will be examined.

To determine RQ 2 on page 17, which is concerned whether the additional attributes
from swarm intelligence has improved a standard ACO algorithm, the proposed
system will be compared to a standard ACO implementation. The standard ACO
is identical to the proposed system, but without “following ants”, “crazy ants”, or
“memory”.

5.2.2 Experimental setup

To determine the performance of the proposed system, some performance criteria
will be used for evaluation. As stated in Kechagiopoulos and Beligiannis [2014],
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the criteria were first proposed by Chakroborty and Wivedi [2002] to have a fair
comparison between all system’s results. The performance criteria are the following:

• d0(%) - the percentage of passengers without any transfers.

• d1(%) - the percentage passengers transferring once.

• d2(%) - the percentage of passengers transferring twice.

• dunsat (%) - the percentage of unsatisfied passengers. An unsatisfied passen-
ger is described as a passenger with 3 or more transfers.

• ATT - the average travel time in minutes per transit user. In all approaches
published in the literature, the transfer penalty of 5 min is applied to each
route for each required transfer, and the same transfer penalty will be used
by the proposed system.

The criteria for good performance includes that the percentage of passengers sat-
isfied without any transfers is high and that the average travel time and the per-
centage of unsatisfied customers are low.

There will be carried out 50 runs per experiment, recording the values of d0, d1,
d2, dunsat, and ATT of the best produced solution each run. The best-produced
solution is the one with lowest TOTFIT value. After 50 runs the best, average,
median and worst solution for all runs will be presented along with the standard
deviation.

The experiments will be run on Ubuntu instances provided by the Google Cloud
Platform [Google, 2015]. For the experiments with four, six and seven routes,
the instances used will be of type “n1-highcpu-2”. These instances contain, as
mentioned in Section 5.1.2 on page 53, two 2.6GHz Intel Xeon E5 (Sandy Bridge)
virtual CPUs and 1.8 GB memory. For the experiment with eight routes an instance
of type “n1-standard-2” will be used, due to the increased memory usage. This
instance contains two 2.6GHz Intel Xeon E5 (Sandy Bridge) virtual CPUs and 7.5
GB memory.

5.2.3 Experimental results

Table 5.4 on the facing page presents the average produced results the proposed
system (CSS) and the standard ACO implementation has produced. Best, worst,
average, and median produced results in addition to the standard deviation can be
found in Appendix C, Table C.3 on page 109.
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System d0(%) d1(%) d2(%) dunsat(%) ATT
ACO avg 81.92 16.13 1.86 0.09 10.43
CSS avg 85.21 13.49 1.30 0.00 10.27

Table 5.4: The best route set, having four routes, constructed by the generic ACO
implementation and the proposed system.

Figure 5.1: Illustration of the best route set on Mandl’s Network, having four
routes, constructed by the proposed system

Fig. 5.1 shows the representation of the best route set, having four routes, produced
by CSS.

Table 5.5 on the next page presents the results produced by the proposed system,
having four routes, and results from route sets constructed by other approaches.
The published results are sorted in ascending order with respect to the ATT value.
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System d0(%) d1(%) d2(%) dunsat(%) ATT
Nikolic and Teodorovic [2014] avg 95.05 4.95 0.00 0.00 -1

Kechagiopoulos and Beligiannis [2014] best 91.84 7.64 0.51 0.00 10.64
Zhang et al. [2010] 91.46 8.54 0.00 0.00 10.65
Kechagiopoulos and Beligiannis [2014] avg 90.52 8.75 0.73 0.00 10.71
Chew and Lee [2012] best 93.71 6.29 0.00 0.00 10.82
Chew and Lee [2012] avg 92.88 6.91 0.20 0.00 11.16
Fan and Mumford [2010] best 93.26 6.74 0.00 0.00 11.37
Fan and Mumford [2010] SA2 avg 92.48 7.52 0.00 0.00 11.55
Fan and Mumford [2010] HC3 avg 91.83 8.17 0.00 0.00 11.69
Chakroborty and Wivedi [2002] 86.86 12.00 1.14 0.00 11.90
Kidwai [1998] 72.95 26.91 0.13 0.00 12.72
Mandl [1979] 69.94 29.93 0.13 0.00 12.90
CSS Best 87.73 10.98 1.28 0.00 10.03
CSS Average 85.21 13.49 1.30 0.00 10.27
CSS Median 85.81 13.29 1.09 0.00 10.26
CSS Worst 76.56 22.16 1.28 0.00 10.01
Standard Deviation 2.66 2.70 0.84 - 0.18

Table 5.5: Comparing the best route set, having four routes, produced by the
proposed system, with route sets constructed by other approaches.

1: ATT not supplied
2: Simulated Annealing based system
3: Hill Climbing based system
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Figure 5.2: Illustration of the best route set on Mandl’s Network, having six routes,
constructed by the proposed system

Fig. 5.2 shows the representation of the best route set, having six routes, produced
by CSS.

Table 5.6 on the next page presents the results produced by the proposed system,
having six routes, and results from route sets constructed by other approaches.
The published results are sorted in ascending order with respect to the ATT value.
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System d0(%) d1(%) d2(%) dunsat(%) ATT
Nikolic and Teodorovic [2014] 94.34 5.65 0.00 0.00 -
Kechagiopoulos and Beligiannis [2014] best 96.21 3.47 0.32 0.00 10.23
Kechagiopoulos and Beligiannis [2014] avg 95.62 4.28 0.10 0.00 10.28
Chew and Lee [2012] best 95.57 4.43 0.00 0.00 10.28
Chakroborty and Wivedi [2002] 86.04 13.96 0.00 0.00 10.30
Fan and Mumford [2010] best 91.52 8.48 0.00 0.00 10.48
Zhang et al. [2010] 91.12 8.88 0.00 0.00 10.50
Chew and Lee [2012] avg 93.85 5.88 0.24 0.03 10.51
Fan and Mumford [2010] SA avg 90.87 8.74 0.39 0.00 10.65
Fan and Mumford [2010] HA avg 90.23 9.26 0.51 0.00 11.69
Kidwai [1998] 77.92 19.62 2.40 0.00 10.78
Baaj and Mahmassani [1991] 78.61 21.39 0.00 0.00 11.86
CSS Best 89.53 9.25 1.22 0.00 10.03
CSS Average 87.17 12.0 0.82 0.00 10.11
CSS Median 87.93 10.98 0.77 0.00 10.03
CSS Worst 82.47 17.41 0.13 0.00 10.03
Standard Deviation 2.74 2.78 0.63 - 0.14

Table 5.6: Comparing the best route set on Mandl’s Network, having six routes,
produced by the proposed system with route sets constructed by other approaches.
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Figure 5.3: Illustration of the best route set on Mandl’s Network, having seven
routes, constructed by the proposed system

Fig. 5.3 shows the representation of the best route set, having seven routes, pro-
duced by CSS.

Table 5.7 on the next page presents the results produced by the proposed system,
having six routes, and results from route sets constructed by other approaches.
The published results are sorted in ascending order with respect to the ATT value.
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System d0(%) d1(%) d2(%) dunsat(%) ATT
Nikolic and Teodorovic [2014] 94.41 5.59 0.00 0.00 -
Chakroborty and Wivedi [2002] 89.15 10.85 0.00 0.00 10.15
Kechagiopoulos and Beligiannis [2014] best 97.17 2.83 0.00 0.00 10.16
Kechagiopoulos and Beligiannis [2014] avg 96.55 3.45 0.01 0.00 10.23
Chew and Lee [2012] best 95.57 4.42 0.00 0.00 10.27
Chew and Lee [2012] avg 96.47 3.53 0.00 0.00 10.31
Fan and Mumford [2010] best 93.32 7.13 0.32 0.00 10.42
Zhang et al. [2010] 92.89 7.11 0.00 0.00 10.46
Fan and Mumford [2010] SA avg 92.47 6.95 0.58 0.00 10.62
Kidwai [1998] 93.91 6.09 0.00 0.00 10.70
Fan and Mumford [2010] HC avg 92.21 7.13 0.66 0.00 10.74
Baaj and Mahmassani [1991] 80.99 19.01 0.00 0.00 12.50
CSS Best 89.85 8.67 1.48 0.00 10.03
CSS Average 88.49 10.72 0.79 0.00 10.08
CSS Median 88.12 10.92 0.90 0.00 10.03
CSS Worst 83.94 15.93 0.13 0.00 10.01
Standard Deviation 2.29 2.32 0.42 - 0.08

Table 5.7: Comparing the best route set on Mandl’s Network, having seven routes,
produced by the proposed system with route sets constructed by other approaches.
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Figure 5.4: Illustration of the best route set on Mandl’s Network, having eight
routes, constructed by the proposed system

Fig. 5.4 shows the representation of the best route set, having eight routes, pro-
duced by CSS.

Table 5.8 on the next page presents the results produced by the proposed system,
having six routes, and results from route sets constructed by other approaches.
The published results are sorted in ascending order with respect to the ATT value.
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System d0(%) d1(%) d2(%) dunsat(%) ATT
Nikolic and Teodorovic [2014] 96.40 3.60 0.00 0.00 -
Kechagiopoulos and Beligiannis [2014] best 97.75 2.25 0.00 0.00 10.13
Kechagiopoulos and Beligiannis [2014] avg 97.47 2.53 0.00 0.00 10.17
Chew and Lee [2012] best 97.82 2.18 0.00 0.09 10.19
Chew and Lee [2012] avg 96.16 3.84 0.00 0.09 10.31
Fan and Mumford [2010] best 94.54 5.46 0.00 0.00 10.36
Zhang et al. [2010] 93.14 6.86 0.00 0.00 10.42
Chakroborty and Wivedi [2002] 90.38 9.58 0.00 0.00 10.46
Fan and Mumford [2010] Simulated Annealing 93.65 5.88 0.47 0.00 10.58
Fan and Mumford [2010] Hill Climbing 93.23 6.18 0.59 0.00 10.69
Kidwai [1998] 84.73 15.27 0.00 0.00 11.22
Baaj and Mahmassani [1991] 79.96 20.04 0.00 0.00 11.86
CSS Best 91.01 7.9 1.09 0.00 10.01
CSS Average 89.16 10.05 0.8 0.00 10.06
CSS Median 88.7 10.21 0.77 0.00 10.03
CSS Worst 92.42 6.81 0.77 0.00 10.08
Standard Deviation 2.24 2.14 0.68 - 0.07

Table 5.8: Comparing the best route set on Mandl’s Network, having eight routes,
produced by the proposed system with route sets constructed by other approaches.

5.3 Network expansion

5.3.1 Experimental plan

To determine RQ 3 on page 17, the proposed system will be tested on larger net-
works than the Mandl Network. This research question is concerned about whether
or not it is possible to apply the proposed system to optimize transit networks in
large urban cities. The majority of real cities (often) consist of larger transit net-
works than the relatively small Mandl Network. As an example, Mandl’s transit
network contains 15 nodes (bus stops), whereas the transit network of Trondheim
municipality consist of 1289 bus stops (informed by Email correspondence with
AtB [AtB, 2015]). The network expansion experiments will establish whether the
proposed system supports larger networks as input, and if so, how these networks
affect the run time and the result quality.

5.3.2 Experimental setup

To test whether the proposed system supports larger networks, the generated net-
works added as supplementary material to Mumford [2013] will be used for these
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experiments. Coordinates for each node, travel time between connected nodes, and
demand values between each two nodes are all provided in this supplementary ma-
terial. In addition, the maximum number of nodes (Max(n)), minimum number of
nodes (Min(n)), along with the size of the route set (RSsize) are all specified. The
experiments will be run with the same parameter values as the selected parameter
values described in Section 5.1 on page 53.

Network Nodes Edges Min(n) Max(n) RSsize

Mumford0 30 90 2 15 12
Mumford1 70 210 10 30 15
Mumford2 110 385 10 22 56
Mumford3 127 425 12 25 60

Table 5.9: Networks with properties from the supplementary material from Mum-
ford [2013].

Method 1 will be used to generate routes on these networks, and not Method 2,
which is used when testing on Mandl’s network. As mentioned in Section 4.9.2.1 on
page 49, Method 1 selects the path with the shortest traveling time, not considering
any transitions, and the transfer penalties are added after the route is selected. In
Method 2, the transitions are considered, and the path with the shortest traveling
time, including transfer penalties, is chosen. As Table 5.10 shows, Method 2 per-
forms better. However, these experiments will be run in order to determine whether
the proposed system supports larger input, and due to the excessive difference in
run time, Method 1 is chosen for these experiments. The proposed system will
only be run 10 times for each network, and the produced results concerning the
performance criteria must, therefore, be considered as indicative.

Method d0 d1 d2 dunsat ATT Run time
1 24.16 37.79 28.53 9.52 13.36 2334
2 40.29 46.38 12.96 0.37 13.17 37161

Table 5.10: Comparing the run time in seconds for Method 1 and Method 2 on the
Mumford0 network.

The experiments will be run Ubuntu instances provided by the Google Cloud Plat-
form [Google, 2015]. The instances used will be of type “n1-standard-2”, which
contains two 2.6GHz Intel Xeon E5 (Sandy Bridge) virtual CPUs and 7.5 GB
memory.
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5.3.3 Experimental results

Table 5.11 presents the average results concerning the performance criteria, pro-
duced by the proposed system.

Instance d0(%) d1(%) d2(%) dunsat(%) ATT
Mumford01 23.43 39.36 28.78 8.43 13.5
Standard Deviation 1.12 2.72 2.42 1.29 0.21
Mumford11 11.03 24.2 30.16 34.61 20.78
Standard Deviation 0.52 1.09 0.89 0.68 0.55
Mumford22 - - - - -
Standard Deviation - - - - -
Mumford32 - - - - -
Standard Deviation - - - - -

Table 5.11: Results produced for the instances added as supplementary material
of Mumford [2013]

1: Number of iterations, i = 50
2: Failed due to generation of more RelationshipTypes than allowed by Neo4j.
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Chapter 6

Discussion and Conclusion

6.1 Discussion

6.1.1 Performance comparison

The best route set, having four routes, constructed by the proposed system (CSS), is
illustrated in Fig. 5.1 on page 59. Comparison of the standard ACO implementation
and CSS concerning the average produced results is presented in Table 5.4 on
page 59. The best, worst, and median results along with the standard deviation
can be found in Appendix C, Table C.3 on page 109.

As one can see in Table 5.4 on page 59, CSS performs on average better than the
ACO implementation concerning all the proposed performance criteria. Observing
Fig. 6.1, the ACO implementation performs on average worse than CSS already
in the first iteration. One reason for this difference is that the ants in ACO im-
plementations does not possess the “memory” attribute. This feature enables the
ants to “remember” which nodes is already visited in the same route set. Adding
this attribute makes the ants favor nodes not visited over nodes already visited,
and thus increase the probability of all nodes within the route set being visited at
least once. Constraint 4 on page 43 specifies that the route network must be con-
nected, and without the added memory, ACO will produce less solutions satisfying
this constraint. This again makes ACO produce more route sets that later will be
discarded, and thus not evaluated.
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Figure 6.1: Average TOTFIT value of 10 runs at each iteration for ACO and CSS

Another reason for the difference in performance is because the standard ACO
implementation has, as mentioned, a well-known shortcoming of entrapment in
local optima. This disadvantage is demonstrated in Fig. 6.1. As one can observe,
the ACO implementation manage to find good solutions fast. As described in
Section 2.1.1 on page 21, the ants will perform a broad search in early iterations,
due the lack of distinct pheromone trails. This randomness will decrease over time
as the pheromone trails become more defined. Because pheromone evaporate over
time, shorter paths will be favored over longer paths simply because shorter paths
takes a shorter time. Observing Fig. 6.1, after approximately 35 iterations the
amount of pheromone on the initial first best routes continue to increase. This will
decrease the probability of new ants exploring possible better paths. The evaluation
of the route set as a whole is done after each iteration, and this will determine how
good the produced route set is. Because of the lack in rewarding the best route
sets in the standard ACO implementation, there is no possibility for the ants to
communicate information about good solutions.

As one also can see in Fig. 6.1, the proposed system manage to get out of this in-
convenience, continuing to explore better solutions in the late iterations. Observed
in the parameter settings experiment, extracted in Table 6.1 on the next page, the
additional CA and AF parameters inspired by PSO and BCO, respectively, both
improved the average TOTFIT value.

The AF attribute is added to the proposed system to reward edges in the best
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Parameter CA AF pb AV G(TOTFIT )
CA 0% 10% 0.0 105.66

25% 10% 0.0 103.597
AF (and pb) 10% 0% 0.0 105.747

10% 5% 1.3 102.579

Table 6.1: A selection of the average TOTFIT with different parameter values for
CA and AF

route sets with additional pheromone. This feature was partly inspired by Tripathi
et al. [2009] and Sedighpour et al. [2014], who demonstrated that rewarding the
best solution found so far improved their proposed solution. Rewarding the best
solution may also be seen as the recruitment function in BCO. If an artificial bee
in BCO has produced a good route set it can “recruit” other nest-mates and thus
inform the others that a good route set is found. This process inspired to add the
“following” feature to the proposed system. After the route sets are evaluated, an
amount of the best ants with the best route sets is selected to be followed in the
next iteration. The same amount of ants will follow the same routes and thus create
the same route set. This will increase the pheromone units on the edges chosen by
the best ants from the previous iteration, which further increases the probability of
them being selected by other ants. Unlike the methods proposed by Tripathi et al.
[2009] and Sedighpour et al. [2014] are we rewarding the n best solutions, instead
of only the very best. Our system performed best with a relatively small amount of
followers, but it also benefited from giving these edges additional pheromone (pb).
Rewarding edges in a large amount best route sets will result in over appreciating
too many edges, which again will make it challenging to distinguish edges in good
route sets from edges in the best route sets. By allowing some ants to be followers,
it enables the ants to communicate good solutions with each other.

However, when the pheromone values on the best edges so far become too high,
the probability of discovering new and possible better paths will decrease. The CA
attribute was added to the proposed system to ensure more exploring throughout
the iterations. CA denotes the amount of “crazy ants”, which will explore edges
random, regardless of the pheromone values. CA is inspired by how the particles
in PSO explore solutions. In PSO, as mentioned in Section 2.1.3 on page 24, a
decreasing parameter called the inertia weight balances local and global search.
This makes the particles becoming more organized in the late iterations. Kecha-
giopoulos and Beligiannis [2014] showed that PSO can find promising solutions to
the UTRP, and our CA attribute are partially inspired by this. To balance the
global search by the “crazy ants” in the late iterations, the inertia weight (IW )
inspired by PSO was added to the proposed system. The amount of “crazy ants”
will decrease in line with IW , which again decreases in line with the number of
iterations. Decreasing the inertia weight in PSO may result in low global search
ability at the end of the run, and thus the possibly of getting stuck at a local op-
tima. However, in the proposed system, the “crazy ants” are not searching towards
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the best-known solution, and may thus prevent the same disadvantage.

To determine the solution quality of the proposed system, the system is compared
to approaches published in the literature. In Table 5.5 on page 60, the results
produced by CSS, having four routes, are compared with route sets published in
the literature. As one can observe in Table 5.5 on page 60, dunsat is 0, similar to all
other approaches. The theoretical best value of for this criteria is 0, which reflects
no passenger have to transfer more than two times. All approaches, except [Mandl,
1979; Kidwai, 1998; Chakroborty and Wivedi, 2002], perform better concerning the
d0, d1 and d2 criteria. However, the route set constructed by CSS produce a better
ATT compared to route sets constructed by all other approaches. One reason for
this is due to how the TOTFIT value is calculated. The calculation of TOTFIT is,
as mentioned in Section 4.9.2 on page 49, the sum of F1, F2 and F3. As described
in 4.9.2.1 on page 49, a weight parameter, σ, is used to control the importance of
F1, F2, and F3. In the proposed system, σ is sat to favor F1, which is directly
linked to a low ATT . Demonstrated in Fig. 6.2 on the next page, when traveling
from Node 7 to Node 14, the system will choose to transfer from Route 4 to Route 3,
which has a travel time of 20 minutes including a transfer penalty of 5 minutes. As
we can see, there is a direct route between Node 7 and Node 14, but this route has a
travel time of 27 minutes. As described in Section 4.9.2 on page 49, the route with
shortest overall travel time will be chosen. The F2 parameter is concerned whether
the proposed system has a high d0, denoting a minimum number of transfers. If
F2 was favored over F1, the route set shown in Fig. 6.2 on the next page would
get a worse TOTFIT and thus may not be considered as the best route set. It
is worth mentioning that the proposed system will not select F1 unconditionally.
As seen in the produced results, a high amount of d0 is still an important factor
when determining the best route set, but the selection of the best route set will be
determined concerning the ratio between the two parameters. As mentioned in the
motivation of this thesis, citizens often prefer private transportation because of the
decreased travel time when no detours are needed. Then again, another important
issue concerning passenger satisfiability, is not needing to change vehicles during
a trip. Whether a passenger would travel direct with a larger travel time, versus
transferring and thus decrease the travel time, is a matter of preferences. As one
can see in all the approaches published in the literature including the proposed
system, one will have to choose one at the expense of the other. One can argue
back and forth about the importance of each criterion. We believe that in a modern
urban city, a minimum travel time is the most important factor travelers. This is
because some travelers may desire to get as fast as possible from their origin to
their destination. We, therefore, choose to emphasize a short travel time. However,
as mentioned, the produced route network also possess a relatively high amount of
direct routes, giving many passengers opportunities to choose direct routes if it is
desired.
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Figure 6.2: A fragment of the best route set, having four route sets, constructed
by the proposed algorithm including transfer times in minutes between each node.

The best route set, having six routes, constructed by the proposed system is pre-
sented in Fig. 5.2 on page 61. The best route set, having seven routes, is presented
in Fig. 5.3 on page 63. The best route set, having eight routes, is presented in
Fig. 5.4 on page 65. The performance comparison for each route set size is found
in Table 5.6 on page 62, Table 5.7 on page 64, and Table 5.8 on page 66, respec-
tively. As one can observe, in all route set sizes the proposed system produce a
lower ATT than all other approaches, and d0 is below average, whereas dunsat is
still 0. As one can observe in Table 6.2, the amount of direct travelers increase,
and the average travel time decrease in line with the number of routes. This cor-
responds to the growth in performance in all other approaches. The probability
of finding direct routes and routes with small travel times will be greater as the
number of routes increases.

Route Set d0(%) d1(%) d2(%) dunsat(%) ATT
4 85.21 13.49 1.30 0.00 10.27
6 87.17 12.0 0.82 0.01 10.11
7 88.49 10.72 0.79 0.0 10.08
8 89.16 10.05 0.80 0.0 10.06

Table 6.2: Average produced values of the performance criteria for route set sizes
four, five, six and seven on Mandl’s Network
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6.1.2 Network expansion

The results produced by the proposed system on the networks provided by Mumford
[2013] is presented in Table 5.11 on page 68. As one can see, the value of parameter
i is sat to 50 when testing the networks Mumford0 and Mumford1. While testing
Mumford0 and Mumford1 with the original value for i, the proposed system did
not manage to produce any results. The reason for this is because the number of
generated RelationshipTypes exceeds the limit of RelationshipTypes sat by Neo4j,
which is 216 = 65536 RelationshipTypes. All of the Mumford networks have an
increased number of routes in the route sets (NRS) compared to route set sizes
tested on the Mandl Network. As mentioned in Section 4.4.3 on page 45, to distinct
the routes from each other, each route in each ant’s route set in each iteration has an
unique RelationshipType. The number of RelationshipTypes (NRT ) is, therefore,
dependent on both the number ants, the number of iterations and the NRS. As
demonstrated in Table 6.3 on the next page, neither of the Mumford-networks is
within this limit with the original value for i. However, by reducing i to 50, both
Mumford0 and Mumford1 was within the limit. As demonstrated in Section 5.1.3
on page 55, the higher the i, the better the result. Due to the reduction of i,
the results of the experiments run on the Mumford0 and Mumford1 networks have
suffered. To be able to run experiments on Mumford2 or Mumford3, either s
or i would have to be further reduced. Because further reduction of both these
parameters will lead to a further deterioration of the results, this was not carried
out.

As explained in Section 3.4 on page 38, we wanted to investigate how the usage of
Neo4j would affect our proposed solution. To accomplish this, we included some
artifacts from Neo4j, including the built-in Dijkstra. This built-in method can, as
mentioned in 2.3.1 on page 28, find all paths in addition to finding the shortest
possible path between two nodes. The method also includes the possibility of find-
ing the shortest path within one or more RelationshipTypes. This function makes
it possible to evaluate unique route sets created by unique ants. By adopting this
built-in method, the development time of the proposed solution was reduced. It
is also sufficient to apply this method on small networks, like the Mandl Network.
However, when the network size increases, an inadequate amount of Relationship-
Types are required to be generated.

Comparing the results produced by the proposed system on the Mumford0 and
Mumford1 networks to the results on the Mandl Network, one can see that the
performance regarding both the number of direct travelers and unsatisfied travelers
have worsened.

First of all, it is worth mentioning that the Mandl Network, the Mumford0 Network
and the Mumford1 Network are three different networks, and may not be entirely
comparable. However, given the increased route set sizes of the Mumford-networks,
the experiments should be able to produce similar results regarding direct travelers
and unsatisfied travelers as the experiments ran on the Mandl Network.
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A reason for the the inferior results, may be the reduction of the value of i. The
Mumford networks, which are twice or more the size than the Mandl Network, will
be explored by 3750 fewer ants in total. This results in a decreased probability of
finding the best route sets.

A second reason is, as mentioned in Section 5.3.2 on page 66, that Method 1 is
employed when selecting routes, whereas Method 2 is used in the experiments run
on the Mandl Network. In Method 1, the transfer penalties are not considered
when selecting a path, which will increase the probability of selecting paths with
many transfers. This again leads to an increased number of unsatisfied passengers,
and a decreased number of direct travelers compared to using Method 2. The
average travel time will also increase because transfer penalties are added to the
total travel time afterward.

NRS NRT 1

4 25000
6 37500
7 43750
8 50000
12 75000
15 93750
56 350000
60 375000

Table 6.3: Number of RelationshipTypes that will be generated using different
route set sizes, with 125 iterations and a swarm size of 50.

1: 50 (s) * 125 (i) * NRS

Finally, when calculating the TOTFIT value, as described in Section 4.9 on page 48,
F1(r) is emphasized more than both F2(r) and F3(r). As described in Section 6.1.1
on page 69, F1(r) is already favored when running the tests on the Mandl Network,
which resulted in the best average travel time over all the published systems com-
pared to. When the networks becomes significantly enlarged, such as the networks
provided by Mumford [2013], the value of F1(r) overwhelms the values F2(r) and
F3(r). The effect of F2(r) and F3(r) will thus border against zero. In Table 6.4 the
results of the average TOTFIT is shown for each of the test cases. As one can ob-
serve, the average TOTFIT is much larger for the Mumford0 and Mumford1 cases
compared to the Mandl cases. The value of F2(r) is, as stated in Section 4.9.2 on
page 49, between −300 and 0, and the value of F3(r) is between 0 and 1000. The
value of F1(r) is dependent on network size and the total demand, and as Table 6.4
on the next page demonstrated, dividing F1(r) on the nodeSize2 is not sufficient
for these network sizes.
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Number Network Average TOTFIT
1 Mandl (4 routes) 98.0
2 Mandl (6 routes) 89.5
3 Mandl (7 routes) 87.1
4 Mandl (8 routes) 83.4
5 Mumford0 3886.4
6 Mumford1 14459.8

Table 6.4: Average Total Fitness for all tests cases. 1-4 are the results of 50 runs,
5-6 are the results of 10 runs.

6.1.3 Run time

The run time for the proposed system is dependent on the NRS, the number of ants
(s), the number of iterations (i), the size of the network, and whether Method 1 or
Method 2 is used. Of course, the run time is dependent on both the s and i because
both parameters increase the number of route sets to be generated and evaluated.
Because a route set must be evaluated on the shortest travel time between every
two nodes in the network, the run time increases as the network expands. As
one can observe from Table 5.10 on page 67, the run time is highly dependent on
whether Method 1 or Method 2 is used. The run time is, in fact, more than ten
times greater when using Method 2 compared to Method 1. In Method 1, Dijkstra
only will only need to find the absolute shortest path between two nodes, while
in Method 2 Dijkstra will need to find all possible paths between the two nodes
to further evaluate them based on the travel time and potential transfer penalties.
The difference in using Method 1 and Method 2 will increase as both the network
and the NRS increases, due to the enlarged number of possible routes. As one can
see from the average run times regarding the experiments using the Mandl Network
in Table 6.6 on the next page, the run time increases drastically from 7 to 8 routes.
This is may be because, in the generation of 8 routes, the need for more memory
led to using an instance from Google with more memory and less CPU power.

Network Run time1

Mumford0 2368.0
Mumford1 5862.4

Table 6.5: Average run time in seconds of 10 runs using the Mumford Networks

1: Swarm size, s = 50, Number of iterations, i = 50
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Network Run time1

Mandl (4 routes) 673.0
Mandl (6 routes) 2442.1
Mandl (7 routes) 3891.1
Mandl (8 routes) 8515.9

Table 6.6: Average run time in seconds of 50 runs for each route set size on the
Mandl Network

1: Swarm size, s = 50, Number of iterations, i = 125

6.2 Conclusion

We have in this thesis demonstrated how swarm intelligence inspired methods can
create sufficient solutions to Urban Transit Routing Problems (UTRP). This is
managed by conducting a structured literature review [Kofod-Petersen, 2014], as
well as designing, implementing and excessively testing the proposed system. These
processes are performed in order to establish the formulated Research Questions,
introduced in Section 1.2 on page 16. RQ 1 is answered in Section 3.3.4 on page 37,
after a thorough analysis of the primary relevant studies.

The conducted experiments and a discussion of the obtained results helped establish
RQ 2 and RQ 3, which both are answered below.

RQ 2: Is it efficient to add attributes from other swarm in-
telligence methods in order to improve a standard ant colony
optimization implementation?

The proposed system, Combined Swarm System (CSS), is compared against a stan-
dard ACO implementation to establish if the additional attributes added from bee
colony optimization and particle swarm optimization were effective. The proposed
ACO implementation was identical to the proposed system, but without the addi-
tional “memory”, “following ants”, and “crazy ants” attributes. This resemblance
enabled a direct comparison of the two, and a viable comparison basis. The ob-
tained results demonstrate that the proposed system on average performs better
than the standard ACO implementation regarding all performance criteria.

The computational results of the proposed system were also compared with eight
other methods published in the literature. CSS shows promising and competitive
results, especially regarding the average travel time experienced by travelers. The
results are all compared on the basis of Mandl’s benchmark problem of a Swiss bus
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network, which is a well-known and accepted benchmark problem.

Based on the comparison of the standard ACO implementation and CSS we cannot,
unambiguously, conclude that the additional attributes inspired by PSO and BCO
were the only reason for the improved performance. The additional “memory” at-
tribute, inspired by Dorigo et al. [1996]; Sedighpour et al. [2014]; Poorzahedy and
Safari [2011]; Salehinejad and Talebi [2010], was also implemented in the proposed
system and is partly responsible for the performance improvement. However, re-
sults from the individual tests conducted on the additional parameters inspired
by PSO and BCO demonstrated further improvement. With this we can, there-
fore, conclude that the additional attributes inspired by other swarm intelligence
methods improved the standard implementation of ACO.

RQ 3: Is it possible to apply the proposed algorithm to opti-
mize urban transit routes in large urban cities?

We have conducted additional experiments on larger networks, more similar to real
transit networks. This is because the Mandl’s Network used for comparison is a
relatively small network. We have also investigated how the usage of a Neo4j graph
database affects our development process and the quality of the solution.

Neo4j includes several features that are advantageous for these types of routing
problems. However, the proposed solution as-is will not be possible to use for
optimizing transit routes in large urban cities. This is because the number of Rela-
tionshipTypes generated by the proposed system generally will be above the limit of
allowed RelationshipTypes in Neo4j. The number of RelationshipTypes generated
are dependent on the swarm size, number of iterations and allowed routes. As an
example, Trondheim consists of 42 routes compared to the 4-8 routes in the Mandl
Network. If we were to use the current solution to optimize the route network in
Trondheim, the number of RelationshipTypes created would be 8056250 whereas
the number of allowed RelationshipTypes in Neo4j is 65536. To use the proposed
system on larger networks, changes in the utilization or removal of Neo4j will have
to be done.

The run time of the proposed system is dependent on the method used for eval-
uation, as well as the size of the network, number of iterations and colony size.
However, generating urban transit routes are not a frequent task. Changing the
transit routes often will result in unsatisfied passengers due to the frequent need
to adapt to changes. Moreover, once an optimal urban transit network is created,
there will be no need for frequent changes. Because of this, the runtime will not be
an issue, given that the system creates a better solution than the one that already
exists.
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Overall conclusion

The goal of this thesis has been to develop a system in which improves urban transit
networks. The motivation is that the improved transit routes further can increase
the number of public transportation passengers. With a sufficient transit network,
public transportation will be more attractive to urban travelers.

A system for creating urban transit networks is developed. The proposed system
demonstrates good performance, especially regarding the average travel time per
transit user. The proposed system as-is is not possible to apply on large networks,
which a majority of real transit networks are, due to the described limitations of
the Neo4j implementation.

6.3 Contributions

In this thesis, we proposed a system for the urban transit routing problem. The
proposed Combined Swarm System creates feasible and efficient route networks
with Mandl’s benchmark problem [Mandl, 1979] as a basis. The system shows
especially promising results concerning the average travel time per transit user.

We have demonstrated that the performance of a standard ant colony optimization
algorithm improves when adding additional attributes inspired by other swarm
intelligence methods.

We also conducted experiments regarding the parameter setting. The parameter
settings have a great influence on the performance of metaheuristic methods, like
the proposed system. By describing the experiments conducted and justifying the
choices regarding the parameter setting, we contributed with a valuable starting
point for future research.

The implemented system also utilize the use of the graph database Neo4j. Neo4j
has several advantages, such as storing the objects as a graph and providing built-
in graph algorithms. However, we have demonstrated some shortcomings of Neo4j
for the proposed system. Both the advantages and shortcomings of Neo4j are
considered as a contribution to the field and future research.

We contributed with the results of a conducted Structured Literature Review. The
retrieved literature can provide important information to researchers who attempt
to solve vehicle routing problems with swarm intelligence in the future.
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6.4 Future work

Use Neo4j differently or remove from implementation

The proposed system does not perform sufficiently when the network size is bigger
than the Mandl Network. Supporting larger networks is vital, because most real
world transit networks are significantly larger than the Mandl Network. A rea-
son for the insufficient performance is that the current solution with Neo4j does
not support the excessive amount of RelationshipTypes required when the network
size increases. An implementation where the generated amount of Relationship-
Types were significantly smaller would have been an interesting approach. Neo4j’s
built-in method is used for the traversal of graphs and is dependent on Relation-
shipTypes to distinguish the generated routes. Adding the “properties” function
to edges instead of RelationshipTypes would be one approach to change the usage
of Neo4j. However, an implementation of Dijkstra’s algorithm from scratch will
then be required.

The run time of the proposed system is relatively large. The run time increases
fast if either the size of the network, number of iterations, the size of the colony
or number of routes in a route set increases. We believe the use of Neo4j is at
least partially responsible for this increase in run time. An implementation of the
current system without Neo4j would, therefore, be interesting in order to investigate
an possible change in run time.

Adjust the Total Fitness Function

The Total Fitness Function used for evaluation in the proposed system is sat to fa-
vor a low traveling time over the importance of number of transfers. This resulted
in the lowest average travel time of all the compared researches. However, this
favoring seems to increase as the network size increases. The influence of number
of direct transfers borders thus against zero, meaning the number of direct trans-
fers is not taken into consideration in the evaluation phase. A satisfied passenger
emphasizes both a minimum travel time and the a minimum number of transfers.
However, one would often have to choose one at the expense of the other. An
interesting approach would be to create a Total Fitness Function that easily allows
a service provider to determine the importance of the two.
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Use the proposed system to solve the Urban Transit Schedul-
ing Problem

The Urban Transit Network Design Problem (UTNDP) consist of two stages. The
first stage is to create the physical route network (UTRP), whereas the second stage
involves designing the schedules of the developed network (UTSP). This thesis has
focused on the UTRP, creating effective urban transit routes. However, deciding
when and how frequent a route should be serviced is also a vital part of optimizing
a transit network. To increase the number of public transportation passengers, the
schedules for the public vehicles must also be optimized. A good starting point
could be to investigate the solution proposed by Nikolic and Teodorovic [2014],
who solved both UTRP and UTSP using a BCO approach. Additional data must
be provided to solve the UTSP efficiently. This data should include information
about the demand between each bus stops different hours of the day.

Use the proposed system to optimize a transit network in a
large city

The motivation for implementing the proposed system was initially to optimize
the transit network in Trondheim. However, AtB (the bus service provider in
Trondheim) does not possess the required data, such as the average demand values
between each bus stop. An interesting approach would be to test the proposed
system on a large transit network where the transit routes are manually designed,
and where the service provider possesses the required data. These experiments
would allow further investigation of the strength and weaknesses of the proposed
system. It would also help determine how and if the system improves the current,
manually designed, transit network. As stated above, the proposed system does
not transfer well to large networks at this point, and changes must be done with
the implementation before this is possible.

81



82



Bibliography

Alexanderson (2006). About the cover: Euler and kÖnigsberg’s bridges: A histor-
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Appendix A

Structured Literature
Review

A.1 Protocol

A.1.1 Defining the problem

To conduct a structured literature review it is vital to decide the problem, P , to
be solved, and some constraints, C, to guide the search.

One of the goals for the environment package for transportation in Trondheim,
“Greener Trondheim”, is to improve the public transportation system [Miljøpakken,
2014]. From a meeting with AtB [AtB, 2015] we learned that the bus network in
Trondheim never has been computational optimized, and the existing solution is
purely based on experience. The problem formulation for this thesis was therefore
based on the idea to improve todays solution by optimizing the bus routes using
AI-methods.

• P: Optimizing the bus routes in Trondheim using AI-methods.

• C:

1. To computationally optimize the bus routes in Trondheim we wanted
to explore the possibility using methods from swarm intelligence. This
idea came from an initial, non-structured literature review were we did
a broad search among different artificial intelligence methods and route
optimizing.
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2. We believe that a part of solving the problem, P, is how we choose to
represent the network of the bus routes in Trondheim. We have some
experience with the graph database Neo4j. Neo4j has several benefits
that we believe we can take advantage of when solving P, including a
natural node-edge-structure and the possibility of saving information to
both the nodes and edges. We envision that the nodes will represent bus
stops, and the edges will represent the connectivity between the stops.

The problem and constraints is drawn to the following research question:

RQ 1: What is the state-of-the-art in solving vehicle routing problems
using swarm intelligence methods and graph databases?

A.1.2 Search terms

Search terms were decided based on the defined research question, and formed into
groups of synonyms:

• Group 1: Train, plane, bus, delivery

• Group 2: Path optimization, Scheduling optimization, Route optimization,
Planning, Multimodal

• Group 3: Bee colony optimization, Particle swarm optimization, Swarm in-
telligence, Ant colony optimization, BCO, PSO, ACO

• Group 4: Transit, Transportation, Traffic, Vehicle

• Group 5: Artificial intelligence, AI, Machine learning

• Group 6: Multi-agent

• Group 7: Routing

• Group 8: Neo4j, Graph database

A.1.3 Complete search term

The search terms and the groups of synonyms were assembled into a complete
search term:
(train OR plane OR bus OR delivery) AND (“path optimization” OR “scheduling
optimization” OR “route optimization” OR planning OR multimodal) AND (“bee
colony optimization” OR “particle swarm optimization” OR “swarm intelligence”
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OR “ant colony optimization” OR bco OR pso OR aco) AND (transit OR trans-
portation OR traffic OR vehicle) AND (“artificial intelligence” OR ai OR “machine
learning”) AND “multi-agent” AND routing)

A.1.4 Inclusion criteria

The list of sources for retrieving relevant literature with the corresponding results
is found in Section A.2 on page 94. To exclude irrelevant literature, some inclusion
criteria were decided to ensure a level of relevance to the very first pool. First of all,
duplicate literature, book of chapters, book of abstracts, book of references, litera-
ture not written in English, books, and literature with clearly irrelevant titles (for
example literature from different research areas) were removed based on title. After
that, we decided to filter out relevant literature based on the abstracts. Because
we had relatively many sources to related literature after the initial filtering (367),
we decided that we wanted the abstracts (or the keyword subsection) to explicitly
mention swarm intelligence or algorithms associated with swarm intelligence, while
it also described a problem connected to vehicle routing. For our literature review,
we decided to use the inclusion criteria solely on the title, abstract, and keywords.
After a discussion and reading a few abstracts we landed on the following inclusion
criteria:

• The main concern is route optimization focusing on vehicles.

• The study focuses on the use of swarm intelligence.

• The literature must contain an abstract.

• The literature must still exist (some literature were removed from its original
source).

• The literature must be free of charge.

After the inclusion criteria filtering, we had 42 sources to related literature, includ-
ing scientific papers and master theses.

A.1.5 Quality criteria

The Quality Criteria was determined to ensure quality in the final papers and to
filter away studies not theoretical relevant for our thesis, and are the following:

1. How relevant is it?

(a) Is the problem of the research a vehicle routing problem?
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(b) Is swarm intelligence the main optimization method?

2. Is there is a clear statement of the aim of the research?

3. Is the study put into a context of other studies and research?

4. Is a system of algorithmic design decisions justified?

5. Is the test data set reproducible?

6. Is the study algorithm reproducible?

7. Is the experimental procedure thoroughly explained and reproducible?

8. Is it clearly stated which algorithms their proposed algorithm is compared
to?

9. Are the performance metrics used in the study explained and justified?

10. Are the test results thoroughly analyzed?

11. Does the test evidence support the findings presented?

12. Has the architecture been implemented (and published)?

13. Is the amount / quality of citation satisfactory? (< 1
3 self-citation and > 10

citations)

A.1.5.1 Scoring

Point 1-13 was given a score, with the granularity of 0 (no), 1
2 (partly), and 1

(yes). For this structured literature review, we wanted to emphasize on the quality
criteria that covered the relevance. For retrieving the most relevant papers based
on the content and not just the quality of the paper, Quality Criteria 1a on the
previous page and 1b was multiplied by 3. Table A.1 on the next page shows the
papers that were read and scored according to the quality criteria:

A.1.6 Selecting the final literature

When selecting the final literature, we decided to do this solely based on the quality
criteria scores. The average score of the read literature was 12.95 ≈ 13. We decided
that literature given a score of 1.5 above average were selected. After this sorting,
we ended up with 11 final literature. These 11 literature are going to create the
foundation of our thesis. Table A.2 shows the selected literature.
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Title Author

“An ant based algorithm approach to
vehicle navigation”

Salehi-nezhad and Farrahi-Moghaddam

“An Ant Based Simulation Optimiza-
tion for Vehicle Routing Problem with
Stochastic Demands”

Tripathi et al.

“An Ant System application to the Bus
Network Design Problem: an algorithm
and a case study ”

Poorzahedy and Safari

“An improved Ant Colony algorithm for
Urban Transit Network Optimization”

Jiang et al.

“An Inverted Ant Colony Optimization
approach to traffic”

Dias et al.

“Ant colony optimization for best path
planning”

Hsiao et al.

“A parallel ant colony algorithm for bus
network optimization”

Yang et al.

“A simultaneous transit network design
and frequency setting: Computing with
bees”

Nikolić and Teodorović

“Dynamic Fuzzy Logic-Ant Colony
System-Based Route Selection System”

Salehinejad and Talebi

“Solving the open vehicle routing prob-
lem by a hybrid ant colony optimiza-
tion”

Sedighpour et al.

“Solving the Urban Transit Routing
Problem using a particle swarm opti-
mization based algorithm”

Kechagiopoulos and Beligiannis

Table A.2: Final selected literature

A.2 Search engines and search strings

In this structured literature review, we decided to search in seven different search
engines. The process of deciding which search engines to use was strongly influenced
by the suggestions in Kofod-Petersen [2014]. The complete search term, described
in Section A.1.3 on page 90, is built on terms from seven different groups. In
addition to the search of the complete search, a search consisting of one additional
group (group 8) was conducted in each of the different search engines. Group 8
consists of the words “neo4j” and “graph database”. This additional search was
done to investigate if the combination of swarm technology and graph databases
to solve a route optimization problem already had been studied. The results from
our search show that our search term combined with “neo4j” or “graph database”
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gave zero findings.

A.2.1 ACM Digital Library

Notes: ACM Digital Library did not support a mix of ANDs and ORs in its initial
input field, but this was possible in advanced search. The search string was not
modified, and the first search gave a satisfactory number of results.

Queries:

• (Train OR plane OR bus OR delivery) AND (“path optimization” OR “schedul-
ing optimization” OR “route optimization” OR planning OR multimodal)
AND (“bee colony optimization” OR “particle swarm optimization” OR
“swarm intelligence” OR “ant colony optimization” OR bco OR pso OR
aco) AND (transit OR transportation OR traffic OR vehicle) AND (“artifi-
cial intelligence” OR ai OR “machine learning”) AND “multi agent” AND
routing

Date of search: 2014-11-10

Results: 19

• (Train OR plane OR bus OR delivery) AND (“path optimization” OR “schedul-
ing optimization” OR “route optimization” OR planning OR multimodal)
AND (“bee colony optimization” OR “particle swarm optimization” OR
“swarm intelligence” OR “ant colony optimization” OR bco OR pso OR
aco) AND (transit OR transportation OR traffic OR vehicle) AND (“artifi-
cial intelligence” OR ai OR “machine learning”) AND “multi agent” AND
routing AND (“graph database” OR neo4j)

Date of search: 2014-11-10

Results: 0

A.2.2 ScienceDirect

Notes: In ScienceDirects advanced search it was only possible to perform a full
text search. The first search was within “all sciences” and this retrieved 100 results.
The next search was therefore just within “Computer Science”, which gave less,
but a lot more relevant literature. In addition to this books were excluded from
the results.
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Queries:

• (Train OR plane OR bus OR delivery) AND (“path optimization” OR “schedul-
ing optimization” OR “route optimization” OR planning OR multimodal)
AND (“bee colony optimization” OR “particle swarm optimization” OR
“swarm intelligence” OR “ant colony optimization” OR bco OR pso OR
aco) AND (transit OR transportation OR traffic OR vehicle) AND (“artifi-
cial intelligence” OR ai OR “machine learning”) AND “multi agent” AND
routing

Date of search: 2014-11-10

Results: 60

• (Train OR plane OR bus OR delivery) AND (“path optimization” OR “schedul-
ing optimization” OR “route optimization” OR planning OR multimodal)
AND (“bee colony optimization” OR “particle swarm optimization” OR
“swarm intelligence” OR “ant colony optimization” OR bco OR pso OR
aco) AND (transit OR transportation OR traffic OR vehicle) AND (“artifi-
cial intelligence” OR ai OR “machine learning”) AND “multi agent” AND
routing AND (“graph database” OR neo4j)

Date of search: 2014-11-10

Results: 0

A.2.3 CiteSeer

Notes: In CiteSeer you cannot perform a search within title, abstract and key-
words at the same time. It was therefore conducted a full text search by adding
the element text:() to the query. Some of the retrieved literature had an unknown
title with unknown authors, so theese were excluded from the results.

Queries:

• text:((Train OR plane OR bus OR delivery) AND (“path optimization” OR
“scheduling optimization” OR “route optimization” OR planning OR multi-
modal) AND (“bee colony optimization” OR “particle swarm optimization”
OR “swarm intelligence” OR “ant colony optimization” OR bco OR pso OR
aco) AND (transit OR transportation OR traffic OR vehicle) AND (“artifi-
cial intelligence” OR ai OR “machine learning”) AND “multi agent” AND
routing)
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Date of search: 2014-11-10

Results: 27

• text:((Train OR plane OR bus OR delivery) AND (“path optimization” OR
“scheduling optimization” OR “route optimization” OR planning OR multi-
modal) AND (“bee colony optimization” OR “particle swarm optimization”
OR “swarm intelligence” OR “ant colony optimization” OR bco OR pso OR
aco) AND (transit OR transportation OR traffic OR vehicle) AND (“artifi-
cial intelligence” OR ai OR “machine learning”) AND “multi agent” AND
routing) AND (“graph database” OR neo4j)

Date of search: 2014-11-10

Results: 0

A.2.4 SpringerLink

Notes: In SpringerLinks advanced search it was only possible to find literature
with either all the words, the exact phrase or at least one of the words in the
search string. For this reason the whole boolean search string was used in the
initial input field. The first search gave 200 results, so the next search was only
conducted within “computer science” and “engineering”. In addition to this only
results within “articles” were selected.

Queries:

• (Train OR plane OR bus OR delivery) AND (“path optimization” OR “schedul-
ing optimization” OR “route optimization” OR planning OR multimodal)
AND (“bee colony optimization” OR “particle swarm optimization” OR
“swarm intelligence” OR “ant colony optimization” OR bco OR pso OR
aco) AND (transit OR transportation OR traffic OR vehicle) AND (“artifi-
cial intelligence” OR ai OR “machine learning”) AND “multi agent” AND
routing

Date of search: 2014-11-10

Results: 28

• (Train OR plane OR bus OR delivery) AND (“path optimization” OR “schedul-
ing optimization” OR “route optimization” OR planning OR multimodal)
AND (“bee colony optimization” OR “particle swarm optimization” OR
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“swarm intelligence” OR “ant colony optimization” OR bco OR pso OR
aco) AND (transit OR transportation OR traffic OR vehicle) AND (“artifi-
cial intelligence” OR ai OR “machine learning”) AND “multi agent” AND
routing AND (“graph database” OR neo4j)

Date of search: 2014-11-10

Results: 0

A.2.5 IEEE Xplore

Notes: The search is done in full text, including metadata. The search string had
to be changed to fulfill IEEE’s criteria that the string only should contain 15 search
terms.

Queries:

• (“public transportation” AND (“path optimization” OR “route optimiza-
tion” OR planning OR multimodal) AND (transit OR traffic) AND (“arti-
ficial intelligence” OR ai OR “machine learning”) AND routing AND (“bee
colony optimization” OR “particle swarm optimization” OR “swarm intelli-
gence” OR “ant colony optimization”)

Results: 45

Date of search: 2014-11-10

• (“public transportation” AND (“path optimization” OR “route optimiza-
tion” OR planning OR multimodal) AND (transit OR traffic) AND (“arti-
ficial intelligence” OR ai OR “machine learning”) AND routing AND (“bee
colony optimization” OR “particle swarm optimization” OR “swarm intelli-
gence” OR “ant colony optimization”) AND neo4j)

Results: 0

Date of search: 2014-11-10

• (“public transportation” AND (“path optimization” OR “route optimiza-
tion” OR planning OR multimodal) AND (transit OR traffic) AND (“arti-
ficial intelligence” OR ai OR “machine learning”) AND routing AND (“bee
colony optimization” OR “particle swarm optimization” OR “swarm intelli-
gence” OR “ant colony optimization”) AND “graph database”)
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Results: 0

Date of search: 2014-11-10

A.2.6 ISI Web of Knowledge

Notes: In Web of Knowledge you cannot perform at full text search, and must
choose to search in “Topic”, “Title”, “Author”, “Author Identifiers”, “Editor”,
“Group Author”, “Publication Name”, “DOI” or “Year Published”. We decided
to use “Topic”, “Title” and “Publication Name” because it seemed the most rele-
vant to our search terms. The search was done in “All databases”, but only in the
“COMPUTER SCIENCE” research area. The original search string (see table ??)
had to be modified, because it gave no results in Web Of Knowledge. A few terms
were therefor excluded, and a few AND’s were switched with OR’s.

Queries:

• (“public transportation” OR traffic OR transportation OR transit OR “schedul-
ing optimization” OR “path optimization” OR “route optimization” OR
planning OR multimodal OR routing) AND (“bee colony optimization” OR
“particle swarm optimization” OR “swarm intelligence” OR “ant colony op-
timization” OR pso OR aco OR bco) AND (“artificial intelligence” OR ai
OR “machine learning”)

Results: 47 (Topic) + 0 (Title) + 0 (Publication Name)

Date of search: 2014-11-11

• (“public transportation” OR traffic OR transportation OR transit OR “schedul-
ing optimization” OR “path optimization” OR “route optimization” OR
planning OR multimodal OR routing) AND (“bee colony optimization” OR
“particle swarm optimization” OR “swarm intelligence” OR “ant colony op-
timization” OR pso OR aco OR bco) AND (“artificial intelligence” OR ai
OR “machine learning”) AND (neo4j OR “graph database”)

Results: 0 (Topic) + 0 (Title) + 0 (Publication Name)

Date of search: 2014-11-11

99



A.2.7 Google Scholar

Notes: Google Scholar only allows very short search strings, and we were therefor
forced to split the query into smaller pieces and do mulitple search, for so to add
the results togheter. The original search string had to be modified for making the
splitting tolerable and effective.

Queries:

• “public transportation” AND (“path optimization” OR “route optimization”
OR planning OR multimodal) AND (transit OR traffic) AND (“artificial
intelligence” OR ai OR “machine learning”) AND routing AND “bee colony
optimization”

Results: 21

Date of search: 2014-11-10

• “public transportation” AND (“path optimization” OR “route optimization”
OR planning OR multimodal) AND (transit OR traffic) AND (“artificial
intelligence” OR ai OR “machine learning”) AND routing AND “bee colony
optimization” AND neo4j

Results: 0

Date of search: 2014-11-10

• “public transportation” AND (“path optimization” OR “route optimization”
OR planning OR multimodal) AND (transit OR traffic) AND (“artificial
intelligence” OR ai OR “machine learning”) AND routing AND “bee colony
optimization” AND “graph database”

Results: 0

Date of search: 2014-11-10

• “public transportation” AND (“path optimization” OR “route optimization”
OR planning OR multimodal)AND(transit OR traffic)AND(“artificial intel-
ligence” OR ai OR “machine learning”)AND routing AND “particle swarm
optimization”

Results: 78

Date of search: 2014-11-10
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• “public transportation” AND (“path optimization” OR “route optimization”
OR planning OR multimodal)AND(transit OR traffic)AND(“artificial intel-
ligence” OR ai OR “machine learning”)AND routing AND “particle swarm
optimization” AND neo4j

Results: 0

Date of search: 2014-11-10

• “public transportation” AND (“path optimization” OR “route optimization”
OR planning OR multimodal)AND(transit OR traffic)AND(“artificial intel-
ligence” OR ai OR “machine learning”)AND routing AND “particle swarm
optimization” AND “graph database”

Results: 0

Date of search: 2014-11-10

• “public transportation” AND (“path optimization” OR “route optimization”
OR planning OR multimodal) AND (transit OR traffic) AND (“artificial in-
telligence” OR ai OR “machine learning”) AND routing AND “swarm intel-
ligence”

Results: 76

Date of search: 2014-11-10

• “public transportation” AND (“path optimization” OR “route optimization”
OR planning OR multimodal) AND (transit OR traffic) AND (“artificial in-
telligence” OR ai OR “machine learning”) AND routing AND “swarm intel-
ligence” AND neo4j

Results: 0

Date of search: 2014-11-10

• “public transportation” AND (“path optimization” OR “route optimization”
OR planning OR multimodal) AND (transit OR traffic) AND (“artificial in-
telligence” OR ai OR “machine learning”) AND routing AND “swarm intel-
ligence” AND “graph database”

Results: 0

Date of search: 2014-11-10
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• “public transportation” AND (“path optimization” OR “route optimization”
OR planning OR multimodal) AND (transit OR traffic) AND (“artificial
intelligence” OR ai OR “machine learning”) AND routing AND “ant colony
optimization”

Results: 119

Date of search: 2014-11-10

• “public transportation” AND (“path optimization” OR “route optimization”
OR planning OR multimodal) AND (transit OR traffic) AND (“artificial
intelligence” OR ai OR “machine learning”) AND routing AND “ant colony
optimization” AND neo4j

Results: 0

Date of search: 2014-11-10

• “public transportation” AND (“path optimization” OR “route optimization”
OR planning OR multimodal) AND (transit OR traffic) AND (“artificial
intelligence” OR ai OR “machine learning”) AND routing AND “ant colony
optimization” AND “graph database”

Results: 0

Date of search: 2014-11-10
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Appendix B

Input Data

B.1 Mandl’s Network

A method is, as mentioned, designed and implemented to produce a realistic transit
network based on the data from Mandl [Mandl, 1979]. The data includes a network
of 15 nodes and 21 edges, in addition to the travel times and travel demand for
each edge.

The data set is downloaded from Mumford [2013], and is presented in Table B.1
on the next page, Table B.1 on page 105, and Table B.3 on page 105.

The file presented in Table B.1 on the following page, includes 16 lines, with a
number indicating the amount of nodes, and the (x,y) coordinates for the 15 nodes.
These coordinates was not supplied in Mandl’s literature, so they are retrieved from
Mumford [2013] and are approximate for the picture to be drawn.
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x y
1 1 9
2 3 8
3 4.5 7.75
4 2.75 6.2
5 0.8 6.6
6 4.6 6
7 7 4.5
8 5.5 5
9 8.5 6.8
10 5.8 2.25
11 3.8 2.25
12 1.3 3.5
13 5.25 1
14 6.7 1.75
15 6.75 5.8

Table B.1: Coordinates for Mandl’s Network

Table B.2 shows the content of the travel time file. The presented travel times
matrix gives the travel times it takes in minutes between the nodes. This matrix is
symmetrical, travel times between each node and itself are zero, and “Inf” indicates
that there is no direct link between the nodes.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 0 8 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
2 8 0 2 3 6 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
3 Inf 2 0 Inf Inf 3 Inf Inf Inf Inf Inf Inf Inf Inf Inf
4 Inf 3 Inf 0 4 4 Inf Inf Inf Inf Inf 10 Inf Inf Inf
5 Inf 6 Inf 4 0 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
6 Inf Inf 3 4 Inf 0 Inf 2 Inf Inf Inf Inf Inf Inf 3
7 Inf Inf Inf Inf Inf Inf 0 Inf Inf 7 Inf Inf Inf Inf 2
8 Inf Inf Inf Inf Inf 2 Inf 0 Inf 8 Inf Inf Inf Inf 2
9 Inf Inf Inf Inf Inf Inf Inf Inf 0 Inf Inf Inf Inf Inf 8
10 Inf Inf Inf Inf Inf Inf 7 8 Inf 0 5 Inf 10 8 Inf
11 Inf Inf Inf Inf Inf Inf Inf Inf Inf 5 0 10 5 Inf Inf
12 Inf Inf Inf 10 Inf Inf Inf Inf Inf Inf 10 0 Inf Inf Inf
13 Inf Inf Inf Inf Inf Inf Inf Inf Inf 10 5 Inf 0 2 Inf
14 Inf Inf Inf Inf Inf Inf Inf Inf Inf 8 Inf Inf 2 0 Inf
15 Inf Inf Inf Inf Inf 3 2 2 8 Inf Inf Inf Inf Inf 0

Table B.2: Travel times for Mandl’s Network

Table B.3 on the facing page presents the demand file. The demand matrix in this
file shows the travel demand between each node pair, which is the average number
of passenger trips per day. This matrix is also symmetrical. There is no demand
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either to or from node 15, but it there is demand to node 9, which is only connected
to node 15. For coding reasons, is the numbers in the main diagonal (from to left
corner to bottom right corner) changed from all zero to all ’a’s.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 a 400 200 60 80 150 75 75 30 160 30 25 35 0 0
2 400 a 50 120 20 180 90 90 15 130 20 10 10 5 0
3 200 50 a 40 60 180 90 90 15 45 20 10 10 5 0
4 60 120 40 a 50 100 50 50 15 240 40 25 10 5 0
5 80 20 60 50 a 50 25 25 10 120 20 15 5 0 0
6 150 180 180 100 50 a 100 100 30 880 60 15 15 10 0
7 75 90 90 50 25 100 a 50 15 440 35 10 10 5 0
8 75 90 90 50 25 100 50 a 15 440 35 10 10 5 0
9 30 15 15 15 10 30 15 15 a 140 20 5 0 0 0
10 160 130 45 240 120 880 440 440 140 a 600 250 500 200 0
11 30 20 20 40 20 60 35 35 20 600 a 75 95 15 0
12 25 10 10 25 15 15 10 10 5 250 75 a 70 0 0
13 35 10 10 10 5 15 10 10 0 500 95 70 a 45 0
14 0 5 5 5 0 10 5 5 0 200 15 0 45 a 0
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a

Table B.3: Demand for Mandl’s Network
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Appendix C

Experimental Results

C.1 Parameter settings results
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Parameter s i E CI1 STD2 BEST WORST
s 103 50 10% 117.2441 ± 3.854 10.700 88.364 137.997

50 50 10% 105.424 ± 2.369 6.619 90.076 114.843
100 50 10% 99.890 ± 2.193 6.128 87.178 108.688
125 50 10% 97.994 ± 2.267 6.334 80.484 105.908

i 50 10 10% 113.209 ± 3.205 8.957 94.551 130.521
50 50 10% 105.044 ± 2.667 7.454 90.293 120.946
50 100 10% 101.013 ± 1.802 4.952 82.183 109.379
50 125 10% 96.144 ± 2.106 5.786 82.709 107.362

E 50 50 10% 104.395 ± 2.125 5.938 92.757 115.734
50 50 25% 103.274 ± 2.998 8.379 86.917 120.811
50 50 50% 103.486 ± 2.576 7.200 83.245 116.951
50 50 90% 104.252 ± 2.667 7.452 85.033 116.634

Table C.1: Steps with the corresponding results from the parameter settings ex-
periment (parameter s, i and E)

1 : Confidence Interval of Total Fitness (confidence level: 95%)
2: Population Standard Deviation
3: On average 14.467% of the iterations of each run did not create any ants that satisfied the initial Constraint 4

described in Section 4.3.1 on page 42.

Parameter CA AF pb CI1 STD2 BEST WORST
CA 0% 10% 0.0 105.66 ± 1.917 6.915 89.463 118.669

5% 10% 0.0 104.581 ± 1.576 5.686 93.975 119.024
10% 10% 0.0 104.064 ± 1.882 6.791 90.058 118.076
25% 10% 0.0 103.597 ± 2.082 7.511 88.545 119.022
50% 10% 0.0 105.100 ± 1.726 6.228 86.434 118.981
100% 10% 0.0 110.135 ± 2.26 8.153 91.194 125.927

AF 10% 0% 0.0 105.747 ± 1.487 5.364 89.031 114.771
10% 5% 0.0 104.389 ± 1.733 6.252 92.358 118.361
10% 10% 0.0 104.739 ± 1.861 6.714 91.345 123.648
10% 25% 0.0 104.632 ± 1.747 6.302 87.838 118.012
10% 50% 0.0 106.327 ± 2.214 7.986 89.808 119.931
10% 100% 0.0 120.245 ± 3.546 12.792 94.116 145.600

pb 10% 5% 0.0 104.882 ± 2.408 6.728 78.721 113.019
10% 5% 0.1 104.101 ± 2.303 6.435 89.282 116.23
10% 5% 0.5 103.192 ± 2.837 7.928 81.306 115.088
10% 5% 0.9 103.058 ± 1.665 4.653 92.982 111.865
10% 5% 1.3 102.579 ± 2.558 7.147 85.033 115.895

Table C.2: Steps with the corresponding results from the parameter settings ex-
periments (parameter CA, AF and pb)

1 : Confidence Interval of Total Fitness (confidence level: 95%)
2: Population Standard Deviation
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C.2 Performance comparison results

Algorithm d0(%) d1(%) d2(%) dunsat(%) ATT
ACO Best 84.07 15.03 0.90 0.00 10.08
ACO Average 81.92 16.13 1.86 0.09 10.43
ACO Median 82.66 15.29 1.16 0.00 10.42
ACO Worst 64.93 21.19 11.5 2.38 10.79
ACO Standard Deviation 4.87 3.75 1.83 0.37 0.32

CSS Best 87.73 10.98 1.28 0.00 10.03
CSS Average 85.21 13.49 1.30 0.00 10.27
CSS Median 85.81 13.29 1.09 0.00 10.26
CSS Worst 76.56 22.16 1.28 0.00 10.01
CSS Standard Deviation 2.66 2.70 0.84 - 0.18

Table C.3: Comparing the route sets of ACO and CSS, having four routes (all
results)
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