Supplementary Material for: New Heuristic and
Evolutionary Operators for the Multi-Objective
Urban Transit Routing Problem, CEC 2013

Christine L. Mumford
School of Computer Science & Informatics,
Cardiff University

March 15, 2013

1 Introduction

These notes provide additional material to support the above paper, describing
the following:

e Visualization
e Data Set Generation
e Lower Bounds for passenger costs and operator costs

e Timings in relation to the size of the transit network (i.e.,(number of routes)*(average
number of nodes on each route).

e File formats for the data files for instances Mandl, Mumford0, Mumfordl, Mumford2
and Mumford3

e File formats for the results files

2 Visualization

The data sets can be visualized by plotting the supplied coordinates files, <in-
stance>Coords.txt (Fig. 1).

3 Data Set Generation

The data generation software was written to create instances according to input
parameters supplied by the user. Each instance consists of a connected transport
network with roads and bus stops (or other vehicle stopping nodes), but no
routes, because it it the function of the software described in the CEC paper
to construct these routes. Each instance is constrained within the boundaries
of an enclosing square region. To maintain a similar density of points, a side
length proportional to the square root of the number of nodes is used. The
coordinates for the nodes are generated within these boundaries from a uniform
random distribution, with the number of nodes and links input by the user,
giving control over the size and the complexity of the network, but leaving the



Mumford0

2

ey
=1

—
=
=2
—
o

o
y coordinate

Yy coordinate
=

0 2 4 6 8 .10 2 14 16 18
X coordinate X coorinate
Mumford?2 Mumford3

w
=
=T

~
S

~
S

X1\ ‘4 r‘ '
N 0
/AN '.A\:@ /‘\(\‘ A‘

a4/
A

Yy coordinate
—
5

Yy coordinate

A K
&/ '\
) YA

N
/

0 5 10 50 %5 30 0 50 B n B N
X coordinate X coordinate
Figure 1: Transport (road) Networks for the new Data Sets

software to decide exactly where the nodes and links will be placed within the
enclosing area. For convenience, the Euclidean distances between the generated
nodes corresponds to the travel time in minutes (the size of the enclosing square
is chosen to ensure that these travel times are reasonable).

The general level of demand is also determined by the user, but the actual
demand values between each pair of nodes is randomly generated by our soft-
ware using the input parameters. The user will supply an upper and a lower
bound (i.e., a demand range), and this range will apply to every node pair in
the network. As mentioned in the paper, the data sets Mumfordl, Mumford2
and Mumford3 were based on information manually extracted from bus route
network maps obtained for real cities: one in China (Yubei) and two in the
UK (Brighton and Cardiff). The approximate properties we used to help us
construct the data can be seen in Table 1, and the table defining the actual
properties of the test data is repeated from the paper for convenience (Table 2).

Careful attention was paid to the generation of links in the design of our
software. Firstly we require that all transport networks are connected; i.e.,
that at least one path will exist between every pair of nodes in the network,
so that each part of the network is reachable from any given starting point.
Furthermore, we wish to ensure that network connectivity resembles a real road
network, to avoid the excessive crossings of links. With these criteria in mind,



a two stage approach to generating the links was adopted:

1. The construction a minimum spanning tree (MST), according to the Euclidean dis-
tances between each pair of nodes, followed by

2. The addition of further links to match user requirements, choosing the shorter links
first.

The MST is constructed using Kruskal’s algorithm, and then the remaining links
are selected as follows:

1. A node is chosen at random;
2. The shortest unused link out of this node is selected and added to the network;

3. Repeat from 1. until the network has the required number of links.

Table 1: Properties of Real Data Sets

Location Number of Number of | Nodes | Mean Links | Mean Frequency of Routes
Nodes and Links Routes /Route /Node Visiting Each Node
Yubei 70 & 210 15 10 - 30 3 129
Brighton 110 & 385 56 10 - 22 3.5 8.15
Cardiff 127 & 425 60 12 - 25 3.35 8.98
Table 2: Our Data Sets
Instance Number of Number of | Nodes | LBpgss (mins) | LB,, = Minimum
Nodes and Links Routes /Route R(L) (mins)
Mandl 15 & 20 4-8 2-8 10.0058 63
Mumford0 30 & 90 12 2-15 13.0121 94
Mumford1 70 & 210 15 10 - 30 19.2695 294
Mumford2 110 & 385 56 10 - 22 22.1689 749
Mumford3 127 & 425 60 12 - 25 24.7453 928

4 Lower Bounds for passenger costs and opera-
tor costs

Lower bounds can be useful for estimating the solution quality of minimization
problems when optima are not known. The lower bound for the passenger cost
was well covered in the main paper. It is computed by simply assuming that
each passenger can travel from source to destination by travelling along the
shortest path in the transport network (with no transfers).

szzl dijoij(R)
Z:‘L,g‘:l dij

where «; is the shortest journey time from ¢ to j using route set R. Recall that
the operator cost is evaluated by adding together the lengths (travel time) of

Cp(R) = (1)



all the routes in a particular route set. Thus, a lower bound for operator cost
is given by:

LBoy = min[R(L) (2)

A value for min[R(L)] can be obtained by computing a minimum spanning
tree on the transport network. However, a better lower bound is found by
considering the number of routes in a route set and the allowable route lengths.
If we specify the minimum number of nodes allowed in a route as MIN, it
follows that the minimum number of edges in a given route within a route set,
R, is MIN —1. Thus the minimum number of edges that can be found in a route
set is max(r x (MIN — 1), (n —1)). (For the route set to be connected, there
must be at least (n — 1) edges to form a minimum spanning tree). min(R(L))
is calculated in two stages:

1. compute the sum of the n — 1 minimum spanning tree edges in the transport network,

2. if (MIN —1) > (n—1) add to the aforementioned MST length the sum of the lengths
of all further edges that need to be added, in order to bring the total number of edges
tor x (MIN —1).

Assume that the (n —1) MST edges can be spread evenly amongst the r routes,
with each route being initially assigned L%J edges and the remaining edges,
(n — 1) mod r, being distributed one per route for as many as is needed, fol-
lowing integer division. For example, if a minimum spanning tree contains 14
edges, and you have 6 routes, then each route will initially receive 2 edges (=
12 edges), and the remaining 2 edges will be added to 2 of the routes, so that
4 routes will each contain a total of 2 edges each, and 2 routes will contain a
total of 3 edges each.

A running total for min(R(L)) is initialized by adding together the lengths
of all the edges in a minimum spanning tree of the transport network. The
addition of further edges (if required) then proceeds by first sorting all the
transport network edges in non-descending sequence of travel time. These edges
are then selected in sequence, one at a time, starting with the smallest. The
first selected edge will inevitably be an MST edge, and thus a copy will have
been allocated already to one of the routes. However, the remaining r — 1 routes
will not contain this edge, so following selection of the first edge, the lengths
of r — 1 copies of the selected edge will be added (provided at least r — 1 are
required at this stage), and the running total of operator cost will be updated.
The process then continues by selecting the next smallest edge from the sorted
list. Once again, another r — 1 copies of this second edge may be added if it
is once more an MST edge. If it is not an MST edge then it can be assigned
to all r routes. This process is repeated until r x (MIN — 1) edges have been
assigned, assigning less than r or » — 1 copies of a selected edge, as needed, to
complete the allocation.

5 Timings in relation to the size of the transit
network

Figure 2 shows a graph for the average run times, in seconds, for the replicate
runs for Mandl, Mumford0, Mumforl, Mumford2 and Mumford3. The x axes



gives the average size of the transit network (i.e.,(number of routes)*(average
number of nodes on each route)), and the y axis gives the average run times
in seconds. A quadratic trend provides a good fit, although this is doubtful
to continue and the Floyd-Warshall algorithm runs in O(N?), which is a key
component of the evaluation function for each route set.

Nodes Versus Runtime

2.50E+05

T=0.2249N2-79.993N + 5530.9

2.00E+05 /

1.50E+05 /

1.00E+05 /

Runtime (secs), T

5.00E+04
0.00E+00 |4F—Ee / . :

il 200 400 G500 200 1000

|
1200

-5.00E+04
Average Number of Nodes, N

Figure 2: Average run times for MOEA versus number of nodes in the transit network

An Excel spread sheet is provided with the results giving the raw run times
of all the replicate runs and showing the computation used for the graph. The
sections below outline the formats for the other files.

6 File Formats for the Data Files

The file formats for instances Mandl, Mumford0, Mumfordl, Mumford2 and
Mumford3 are illustrated through the smallest instance: Mandl’s 15 node Swiss
network. For each instance there are 3 files:

e <Jinstance>Coords.txt
e <instance>TravelTimes.txt

e <instance>Demand.txt

First of all the coordinates file begins with the number of nodes on the first
line (15 in this case). The following 15 lines contain the (x,y) coordinates of the
problem. Please note that in the case of Mandl’s problem, the coordinates were
not supplied in the literature, so the ones included here are just approximate



so that a picture can be drawn. However, all the other instances (Mumford0,
Mumfordl, Mumford2 and Mumford3) have accurate (x, y) coordinates from
which all the other input parameters were computed (for the Demand matrix
and the Travel Times matrix).

MandlCoords.txt

o

o
~
o -
9
N o

0w
o
o -

o

o
PR WONDWOO OO oo
o]

DD UIR WO UNBONDWR
N NN WO o oo
IS

o
o
o))

The travel times matrix gives the travel times in minutes between nodes ¢ and
j. For all the instances used in the paper, these matrices are symmetrical. Note
that the travel times between each node and itself along the diagonal are all
zeros. Inf indicates that there is no direct link between node i and j

MandlTravelTimes.txt

0 8 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
8 0 2 3 6 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf

Inf 2 0 Inf Inf 3 Inf Inf Inf Inf Inf Inf Inf Inf Inf
Inf 3 Inf 0 4 4 Inf Inf Inf Inf Inf 10 Inf Inf Inf

Inf 6 Inf 4 0 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
Inf Inf 3 4 Inf 0 Inf 2 Inf Inf Inf Inf Inf Inf 3

Inf Inf Inf Inf Inf Inf 0 Inf Inf 7 Inf Inf Inf Inf 2
Inf Inf Inf Inf Inf 2 Inf 0 Inf 8 Inf Inf Inf Inf 2

Inf Inf Inf Inf Inf Inf Inf Inf 0 Inf Inf Inf Inf Inf 8
Inf Inf Inf Inf Inf Inf 7 8 Inf 0 5 Inf 10 8 Inf

Inf Inf Inf Inf Inf Inf Inf Inf Inf 5 0 10 5 Inf Inf

Inf Inf Inf 10 Inf Inf Inf Inf Inf Inf 10 0 Inf Inf Inf
Inf Inf Inf Inf Inf Inf Inf Inf Inf 10 5 Inf 0 2 Inf

Inf Inf Inf Inf Inf Inf Inf Inf Inf 8 Inf Inf 2 0 Inf

Inf Inf Inf Inf Inf 3 2 2 8 Inf Inf Inf Inf Inf 0

Finally, the demand matrix gives the daily demand for travelling between nodes
i and 7 as the number of passengers. Note again that the matrix is symmetrical,
and that each passenger therefore performs a return journey (round trip). One
interesting feature of Mandl’s problem is that there is no demand either to or



from node 15, yet it is always included in the route sets because the rules that
are used insist on every node being included.

MandlDemand.txt

0 400 200 60 80 150 75 75 30 160 30 25 35 O 0
400 0 50 120 20 180 90 90 15 130 20 10 10 5 0
200 50 O 40 60 180 90 90 15 45 20 10 10 5 0
60 120 40 O 50 100 50 50 15 240 40 25 10 5 0
80 20 60 50 O 50 25 25 10 120 20 15 5 0 0
150 180 180 100 50 O 100 100 30 880 60 15 15 10 O
75 90 90 50 25 100 0 50 15 440 35 10 10 5 0
75 90 90 50 25 100 50 O 15 440 35 10 10 5 0
30 15 15 15 10 30 15 15 0 140 20 5 0 0 0
160 130 45 240 120 880 440 440 140 O 600 250 500 200 O
30 20 20 40 20 60 35 35 20 600 O 75 95 15 0
25 10 10 25 15 15 10 10 5 250 75 0 70 0 0
35 10 10 10 5 15 10 10 O 500 95 70 O 45 0
0 5 5 5 0 10 5 5 0 200 15 0 45 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 File formats for the results files

There are TWO folders of results: MandlCompareFac2009, which gives the
results for that go with Table 2 in the CEC paper, and MainResults, which
provides the results that go with Table 3 in the paper. Both of these folders
include README files to explain the included results in detail. In Table 2, the
results are compared with the [Fan 2009] paper, and the results files consist of
10 files for each version of Mandl’s instance with 4, 6, 7 and 8 routes in the route
set. These files are numbered outfilel_1 to outfilel_10. The routes published in
the paper are also repeated in the file called MandlRoutes.docz.

In the main results folder, for each instance, Mandl, Mumford0, Mumford1,
Mumford2 and Mumford3, the SEAMO?2 algorithm is run for 200 generations
on populations of 200. For these results, 20 individual sets of non-dominated
solutions extracted from the replicate runs are stored for each instance in the
results files, numbered outfilel_1..20. The route sets for the best passenger ob-
jective and the best operator objective are reproduced in the file called Best
Route Sets.docz (these results are not included in the paper because of lack of
space.) Finally, for each set of 20 replicate runs the non-dominated solutions
have been extracted from the combined set of 20 files (Outfilel_1, Outfilel 2,
..., Outfile1_20). These files are called ParetoMandl.txt, ParetoMumford0.txt,
ParetoMumford1.txt, ParetoMumford2.txt and ParetoMumford3.txt. The for-
mat of the output files is illustrated below using examples from the results for
Mandl’s instance.



The file below shows the non dominated dual objective solutions from run num-
ber 1. The lefthand column contains the passenger objective, C)p, and the
righthand column the operator objective, C,.

Outfilel_1
1.0477200e+001 2.0400000e+002
1.0496468e+001 1.9200000e+002
1.0620424e+001 1.8900000e+002
1.0711625e+001 1.8100000e+002
1.0770713e+001 1.7900000e+002
1.0799615e+001 1.5400000e+002
1.0867694e+001 1.4400000e+002
1.0916506e+001 1.4300000e+002
1.0984586e+001 1.3700000e+002
1.1203597e+001 1.3300000e+002
1.1247913e+001 1.2800000e+002
1.1341040e+001 1.2600000e+002
1.1472704e+001 1.0900000e+002
1.1711625e+001 8.9000000e+001
1.2502890e+001 8.6000000e+001
1.3120745e+001 8.2000000e+001
1.3131021e+001 7.8000000e+001
1.3396917e+001 7.1000000e+001
1.3831728e+001 6.9000000e+001
1.4059730e+001 6.8000000e+001
1.4262042e+001 6.5000000e+001
1.4819525e+001 6.4000000e+001

ParetoMandl.txt contains the non dominated solutions extracted from ALL 20
results files.

ParetoMandl.txt

10.3301 224
10.3687 165
10.6519 161
10.7071 159
10.7951 150
10.8677 144
10.9165 143
10.9261 141
10.9396 130
11.097 129
11.0976 124
11.1574 106
11.4631 103
11.5228 102
11.7116 89
12.0963 76
12.6821 73
13.0546 72
13.1496 70
13.3301 69
13.4046 66
13.5478 65
14.2267 64
15.1304 63



