
Diversity Guided Adaptive Evolutionary
Algorithm

Julius Buset Asplin
Nicolay N Thafvelin

Master of Science in Computer Science

Supervisor: Keith Downing, IDI

Department of Computer and Information Science

Submission date: June 2015

Norwegian University of Science and Technology

Julius Buset Asplin & Nicolay Thafvelin

Diversity Guided Adaptive
Evolutionary Algorithm

Master Thesis, Spring 2015

Artificial Intelligence Group
Department of Computer and Information Science
Faculty of Information Technology, Mathematics and Electrical Engineering

i

Abstract

Parameter tuning in Evolutionary Algorithms (EA) generally result in subopti-
mal choices of values because of the complex dependencies between the parame-
ters. Furthermore, different scenarios during a run of the EA often have different
optimal parameter values.

This thesis aims to better the understanding of how information about previously
successful applications of genetic operators can be used to improve the quality
of the search by using derandomised self-adaptive parameter control; We utilise
the genetic differences between an offspring its parent to adapt a mutation vec-
tor. It also explores two different selection strategies that maintains diversity in
the population, and the general effect that diversity has on the exploration and
exploitation of the solution space.

The adaptive mutation scheme proposed in this thesis has shown to improve the
speed of the EA significantly while still being able to solve a wide range of math-
ematical functions as well as practical problems. Supplemented with a simple
scheme that maintains diversity it becomes a more robust implementation well
suited for multiple types of problems; especially for problems with computation-
ally expensive fitness tests.

Keywords

Genetic algorithms, derandomised self-adaptation, strategy parameter control,
step size control, selection strategy, genetic diversity.

ii

Sammendrag

This is a Norwegian translation of the abstract.
Finjustering av parametere brukt i Evolusjonære algoritmer (EA) resulterer van-
ligvis i suboptimale valg av verdier grunnet komplekse avhengigheter mellom
parametrene. Ulike scenarier under en kjøring av EA har dessuten ofte forskjel-
lige optimale parameterverdier.

Denne avhandlingen tar sikte p̊a å bedre forst̊aelsen av hvordan informasjon om
tidligere vellykkede anvendelser av genetiske operatorer kan brukes til å forbedre
kvaliteten p̊a søket, ved hjelp selvjusterende parameter kontroll, som baserer seg
p̊a forskjellene mellom genotypen til forelder og avkom. Oppgaven utforsker ogs̊a
utvelgingsstrategier som forsøker å opprettholde mangfoldet i populasjonen, og
generelt hvordan genetisk mangfold p̊avirker utforskningen av løsningsrommet
s̊avel som utnytting av gode omr̊ader i løsningsrommet.

Den adaptive mutasjonsprosedyren som blir foresl̊att i denne avhandlingen har
vist seg å forbedre hastigheten p̊a EA betydelig, og samtidig være i stand til
å løse et bredt spekter av matematiske funksjoner, samt praktiske problemer.
Supplert med en enkel ordning som ivaretar mangfold blir dette en robust im-
plementasjon, godt egnet for flere typer problemer; spesielt for problemer hvor
testing av individene er ressurskrevende.

iii

Preface

This document was written as the author’s master’s thesis at the Department of
Computer and Information Science at the Norwegian University of Science and
Technology, during the spring of 2015. We would like to thank our supervisor,
Keith L. Downing, for his guidance throughout our work.

Julius Buset Asplin & Nicolay Thafvelin

Trondheim, June 11, 2015

iv

Contents

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Goals and Research Questions . 2
1.3 Research Method . 2
1.4 Contributions . 3
1.5 Thesis Structure . 3

2 Background Theory and Motivation 5
2.1 Evolutionary Algorithms . 5

2.1.1 Genetic Algorithms . 6
2.1.2 Genetic Representation . 8
2.1.3 Recombination . 9
2.1.4 Balancing Exploration and Exploitation 9
2.1.5 Parameter Control versus Parameter Tuning 10
2.1.6 Vector-Based Mutation . 12

2.2 Related Work . 15
2.2.1 Diversity-Guided Evolution 16
2.2.2 Controlled Vector-Based Mutation 20

2.3 Structured Literature Review Protocol 25
2.3.1 Search Procedure . 25
2.3.2 Selection Criteria . 25

2.4 Motivation . 26

3 Architecture 29
3.1 Genetic Representation . 29
3.2 Reproduction . 30

3.2.1 Mutation . 30
3.2.2 Recombination . 32
3.2.3 Summary . 33

v

vi CONTENTS

3.3 Selection Schemes . 33
3.3.1 Parent Selection . 34
3.3.2 Distance Measures . 34
3.3.3 K-Nearest Neighbours . 35
3.3.4 Contribution to Diversity as an Objective 37

3.4 Implementation . 39
3.4.1 Genetic Algorithm . 39
3.4.2 Graphical User Interface and Data Management 41
3.4.3 Visualisation . 43

3.5 Technology . 45
3.5.1 Go Programming Language 45
3.5.2 Sails.js Server . 45
3.5.3 MongoDB . 46

4 Experiments and Results 47
4.1 Test Setup . 47

4.1.1 Test Functions . 47
4.1.2 Pole-Balancing Problem . 52
4.1.3 Robot Arm Function . 55

4.2 Experimental Setup . 57
4.3 Results . 59

4.3.1 Test Functions . 59
4.3.2 Convergence Speed and Robustness 60
4.3.3 Different Problem Sizes . 62
4.3.4 Rotated Solution Space . 64
4.3.5 Pole-Balancing Problem . 66
4.3.6 Robot Arm Function . 67
4.3.7 Diversity . 68
4.3.8 Adaptive Mutation . 72

4.4 Contribution to Diversity as an Objective 75

5 Evaluation and Conclusion 77
5.1 Evaluation . 77

5.1.1 Robustness . 77
5.1.2 Speed of Convergence . 81
5.1.3 K-Nearest Neighbours versus Contribution to Diversity . . 84
5.1.4 Adaptive Mutation . 87
5.1.5 Robot Arm Function . 88
5.1.6 Pole-Balancing Problem . 89

5.2 Conclusion . 89
5.3 Future Work . 91

CONTENTS vii

5.3.1 Adaptive Rate of Mutation 91
5.3.2 Covariance Matrix . 91
5.3.3 Weighing Diversity . 91
5.3.4 Phenotype Diversity . 92
5.3.5 Steady-State Implementation 92
5.3.6 The Island Model . 92

Bibliography 93

A Appendices 1
A.1 Videos . 1
A.2 Graphical User Interface . 2
A.3 Unique Gene Values . 6
A.4 Adaptive Mutation Results . 8

viii CONTENTS

List of Figures

2.1 A state diagramming of the EA . 6

2.2 An overview of types of parameter settings 11

2.3 The effect on probability density curves of mutation vectors using
different parameters . 13

2.4 Illustration of diversity-triggered phases, toggling between explore
and exploit . 16

2.5 Illustration of how solutions can be dominated by others in multi-
objective function optimisation . 19

2.6 Illustration of DE’s utilisation of known good solutions. 26

3.1 Illustrates two scenarios where shortest distance and average dis-
tance will lead to different decisions. 38

3.2 State diagram of the GA implementation 41

3.3 Illustration of how the mutation vector, the crossover vector and
the parents’ genomes are used to construct the offspring. 42

3.4 Pictures from the GUI . 43

3.5 Advanced visualisation through the GUI. 44

4.1 Landscape of mathematical benchmark functions 48

4.2 Illustration of how rotation of the solution space can turn a sepa-
rable problem into a non-separable problem. 52

4.3 Robot arm with four segments . 56

4.4 Fitness graphs for four of the benchmark functions 62

4.5 Graphs of the average distance between each individual and its
closest neighbour, compared with the respective fitness graphs. . . 69

4.6 Shows the average distance between each individual and its closest
neighbour in the population for comparison of the two selection
schemes proposed in this thesis. 76

ix

x LIST OF FIGURES

5.1 Illustrates two scenarios where the mutation step size decreases to
such an extent that it is impossible for the genes to escape local
optimums . 78

5.2 Visualisation of Convergence . 83
5.3 Illustrates how different fitness landscapes affect the trade-off be-

tween fitness and contribution to diversity. 87

A.1 Gui list . 2
A.2 Comparing statistics between different GA implementations 3
A.3 Graph tool . 4
A.4 Visualisation of pole balancing problem 5

List of Tables

4.1 Definition of the benchmark functions and the range of their pa-
rameters . 49

4.2 Definition of the benchmark functions and the range of their pa-
rameters . 50

4.3 Pole balancing variables . 53
4.4 Input Parameters for Robot Arm Function 56
4.5 Results from the mathematical benchmark functions 60
4.6 Success rate from the mathematical benchmark functions 61
4.7 Results from running 30 dimensions on some of the mathematical

benchmark functions . 63
4.8 Success rate from running 30 dimensions on some of the mathe-

matical benchmark functions . 63
4.9 Results from running 200 dimensions on some of the mathematical

benchmark functions . 64
4.10 Success rate from running 200 dimensions on some of the mathe-

matical benchmark functions . 64
4.11 Result from the mathematical benchmark functions with rotated

solution space . 65
4.12 Success rate from the mathematical benchmark functions with ro-

tated solution space . 66
4.13 Results from running single and double pole-balancing problem . . 67
4.14 Success rate for the different pole-balancing tests 67
4.15 Results from running 4-, 8- and 16-segmented robot arm 68
4.16 Success rate and speed from running 4-, 8- and 16-segmented robot

arm . 68
4.17 Displays statistics on the number of unique gene values throughout

runs. 71
4.18 Shows the contributions of mutation and recombination regarding

the adaptation of the mutation step size for genes 74

xi

xii LIST OF TABLES

4.19 Success rate and speed of AM-CD in comparison to AM-KN 76

A.1 Results from testing SEA with higher selection pressure on Bal-
ancing Pole . 5

A.2 Success rate for SEA with higher selection pressure on Balancing
Pole . 5

Glossary

AI Artificial Intelligence.

ANN Artificial Neural Network.

DE Differential Evolution.

EA Evolutionary Algorithms.

GA Genetic Algorithms.

GP Genetic Programming.

GUI Graphical User Interface.

MSC Mutative Strategy Parameter Control.

PSO Particle Swarm Optimization.

xiii

xiv Glossary

Chapter 1

Introduction

This chapter introduces the work that will be done for this thesis and the mo-
tivation behind it. We present the main goal of this thesis and the subordinate
questions behind the goal. In Section 1.3 we describe the research methodology
applied in our efforts to reach our goal. The succeeding section outlines how
this thesis contributes to the scientific community. Finally Section 1.5 gives an
overview of how the rest of the thesis is structured.

1.1 Background and Motivation

Evolutionary Algorithms (EA) has received increasing interest over the last decade
from both the academic and the industrial fields. EAs perform well in approx-
imating solutions for a wide variety of problems and do so without making as-
sumptions about the underlying problem. This is probably why EA has shown
success in many different fields of study, from art and economics to robotics and
chemistry.

In many real applications of EAs, a prohibiting factor is the computational com-
plexity. This complexity is due not to EA but to the fitness testing of the problem.
Fitness approximation is one method to overcome this, but it is still unclear and
theoretical in what way EA can benefit from the approximation model[Jin, 2005].
Another way to reduce computational complexity when fitness testing is expen-
sive is to spend more computational resources on the EA in order to make more
educated guesses about what alterations of the genomes to test.

1

2 CHAPTER 1. INTRODUCTION

1.2 Goals and Research Questions

In this thesis we focus more on the number of fitness tests needed than on the run
time of the EA. We explore whether some alterations to an individual’s genome
can be considered more likely to produce successful offspring than others, based
on information that is available to the EA by default. At the same time we
examine ways to maintain diversity and whether an individual’s contribution to
diversity can help define the successfulness of an individual.

We endeavour to use information about previously successful alterations to a
genome to shape the next alterations in a positive way with respect to the prob-
ability of producing more successful alterations. The goal can be summarised as
followed:

Goal Explore how information from the evolution of a population’s genomes can
be used to improve the evolutionary algorithm.

Research question 1 How can knowledge about previously successful alterations
in each gene be used to improve the quality of future guesses in evolutionary
algorithms?

Research question 2 How can selection based upon measured contribution to
the diversity be used to improve the explorative abilities of evolutionary
algorithms?

1.3 Research Method

The goals and research questions mentioned in the previous section will be ad-
dressed by designing and implementing a system which is easily able to run many
variations of EA. The EA will run both novel mutation methods, addressed in
RQ1, and selection schemes that promote diversity within the population, ad-
dressed in RQ2.

We will also implement a Graphical User Interface (GUI) that makes it possible
to control multiple systems running the EA implementation. This system will
store the results of the EA to permanent storage. Through the GUI it should
be possible to compare the results from different runs of the EA, enabling us to
compare our EA implementation against similar implementations. We will also
create different visualisation methods enabling us to see different aspects of the
algorithm when running.

1.4. CONTRIBUTIONS 3

1.4 Contributions

This thesis aims to contribute to a better understanding of how EA’s population
properties can be utilised to reduce computationally expensive fitness testing.

We can outline the contribution of this thesis in a few key values:

• Better understanding of how adaptive gene-specific mutation can lead EAs
to better guesses for each generation

• Better understanding of how information from the population’s genomes
can be used to maintain valuable diversity in the population

• Better understanding of just how valuable diversity really is and when it is
more or less valuable

1.5 Thesis Structure

The rest of this thesis is structured as follows:

Chapter 2 will start with background theory to EA and other disciplines that
is necessary to understand for this thesis. We will also present a structured
literature review of related work; we will look into similar implementations
of the EA. At the end of the chapter, we present the motivation behind the
thesis and why the goal and research questions, defined in Section 1.2, are
important to address.

Chapter 3 outlines the architecture of the system needed to reach our goals. We
also propose an implementation combining and adapting different methods
discussed in Chapter 2.

Chapter 4 investigates the current state of the implementation. Here we will
also explain the different experiments we have decided to use for testing
our implementation and the results we have achieved.

Chapter 5 discusses the results, provides a conclusion and presents some pos-
sible future work.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Background Theory and
Motivation

This chapter presents the background needed to understand the content and the
related work of this thesis. Section 2.1 gives an introduction to Evolutionary
Algorithmss and the key problems encountered when designing such algorithms.
The balancing of exploration and exploitation, automated control of parame-
ters and alternative genetic operators are of particular interest to this thesis and
are therefore discussed in particular detail throughout the section. Section 2.2
presents similar work done in the field, using techniques such as differential evo-
lution, covariance matrix adaptation and diversity-guided evolution. Finally, in
Section 2.3 and 2.4, we discuss the procedure used to find relevant work and the
motivation for the thesis.

2.1 Evolutionary Algorithms

Evolutionary Algorithms (EA) refers to a class of algorithms within the field of
Artificial Intelligence (AI) that is inspired by biological evolution. EA takes basic
concepts and principles from evolutionary biology, like reproduction mutation and
survival, and uses them in a search for a good solution for a given problem. EA is
adaptable to a wide variety of problems because it makes few assumptions about
the underlying problem.

There are numerous subcategories of EA, such as genetic algorithm, evolution-

5

6 CHAPTER 2. BACKGROUND THEORY AND MOTIVATION

ary programming, genetic programming and evolutionary strategy. Most of these
subcategories were independently developed in the 1990s but share many similar-
ities and were thus grouped under the main topic of EA [Yu and Gen, 2010]. In
this thesis we will focus mainly on implementations utilising the genetic algorithm
approach.

Figure 2.1: A state diagramming of the EA illustrating the main states of an EA and
the possible next states.

2.1.1 Genetic Algorithms

A Genetic Algorithms (GA) is an iterative procedure that consists of a candidate
solution space which is built up of a population of individuals. Each individual
is represented by a set of properties, also called a genome. How the genome is
represented is problem dependent, but it is usually represented as a binary vector
or a real-valued vector. In Section 2.1.2 a more thorough insight will be given to
this topic.

The evolution process starts by initialising the population with randomly or
heuristically generated individuals. Then, as seen in Figure 2.1, the popula-
tion is evaluated by a fitness function, which commonly is the objective function
of the optimisation problem being solved. In the next step, individuals with bet-
ter results from the fitness testing have a higher probability of having offspring.
After selection of survivors, the reproduction stage is started. There are many
techniques of reproduction, but the most standard is illustrated in Figure 2.1. An
offspring is usually created through recombination and mutation of the genomes
belonging to the offspring’s parents. How many parents the offspring has and
how the parents are selected vary for different implementations of GA. A more
thorough overview of this topic will be done in Section 2.1.3 The GA terminates
after the recombination step if the stop criteria is reached, or a certain predeter-
mined number of generations have been executed. This stop criteria is usually
a predefined fitness value that is deemed acceptable. If the stop criteria is not

2.1. EVOLUTIONARY ALGORITHMS 7

reached, it continues for another generation, as illustrated in Figure 2.1.

When constructing a GA, there are several design decisions to take into account:

Representation The first thing to consider is how the problem can be repre-
sented in the GA and what parameters of the problem should be evolved.
For some problems this is trivial. However, for other problems, such as the
travelling salesman problem, the representation becomes essential to the
success of the algorithm.

Genotype Representation Each individual has a set of parameters which can
be mutated and altered; this is called the genotype, or genome. As men-
tioned earlier, the best representation for the genotype is to a large extent
problem dependent, but it is often represented as a binary vector or a real-
valued vector.

Phenotype Representation The phenotype is the solution that is applied to
the problem. This might be the topology and the synaptic weights of an
Artificial Neural Network (ANN) or as simple as input variable values to a
complex mathematical function. For many problems there is not a strong
apparent distinction between the genotype and phenotype. However, some
phenotype conversions are so complex that it is impossible to see intuitively
what the phenotype is going to look like merely by looking at the genotype.

Genetic Operators The purpose of the genetic operators is to explore new
parts of the solution space that are in some way close to the solutions that
scored relatively well during the fitness evaluations. Mutation makes rela-
tively small random alterations to genes in the genome to explore nearby
solutions, while crossover combines the genotype of two or more individuals
to possibly get the best evolved parts from each of them in the new indi-
vidual. Both of these operators can be applied in different ways and with
different parameters expressing the extent and frequency of their applica-
tion. For instance, questions like the following might be of interest: How
many genes should be mutated? Of what size should the alterations be?
How many parents should be combined to create an offspring? And how
many points of crossover should be applied?

Fitness Measure The choice of fitness measure can also have a crucial impact
on the behaviour of the EA. If, say, you are evolving an ANN for the control
of an agent to perform well on several tasks in an environment, the fitness of
an individual could simply be the number of tasks it managed to execute.
However, since most randomly constructed ANNs would not even begin
to approach the task at hand, it is unlikely that the EA would ever find
a solution that scored any better than another. Thus, the EA would not

8 CHAPTER 2. BACKGROUND THEORY AND MOTIVATION

have any preference for which areas of the solution space to examine further.
For this reason it is important to have a fitness evaluation that is able to
differentiate most solutions in the search space and to do so accurately.

Selection Strategy Last but not least, a proper selection strategy should be
chosen. The choice of selection strategy has huge impacts on the behaviour
of the EA. Different selection strategies behave differently in different situa-
tions with regard to exploration and exploitation. There are a wide variety
of different selection algorithms, such as roulette selection and tournament
selection. The book ”Introduction to Evolutionary Algorithms” by Yu and
Gen [2010] further explains how the standard selection algorithms work.

We have directed our focus towards the genetic operators and selection strategies,
in other words, the less problem-specific design choices.

2.1.2 Genetic Representation

There are many ways of representing the genetics in GAs, and the main categories
are real valued, binary and integer [Rothlauf, 2006]. How the genetics should be
represented is to a large extent dependent upon the problem. But as shown
through an empirical study of real-valued and binary genetic representation, the
EAs that use real-valued genetic representation had more consistent results for
each run [Janikow and Michalewicz, 1991]. Real-valued genetic representation
also had a better performance, which was argued to be caused mainly by the
ability to represent higher precision with less variables in the computer.

In this thesis our main focus will be on real-valued optimisation problems. Using
binary code to represent real values has some drawbacks, such as the Hamming
Cliff problem [Yu and Gen, 2010]. A Hamming Cliff is when two adjacent values
have big hamming distance between them; the neighbouring integers 7 and 8 are
a good example. The number of bits that need to be flipped, or mutated, to
change a 7 into an 8 when the underlying genetic representation is regular binary
code is 4 (from 0111 to 1000), even though in reality they are as close as two
integers can be. By contrast, the neighbouring problem refers to the problem
that the hamming distance between numbers like 0 (0000) and 8 (1000) is only 1
while the real valued difference between the numbers is 7. Therefore, considering
the drawbacks along with other points such as ease of implementation and the
ability to easily represent huge continuous spaces of values for each gene, we have
chosen to focus on real-valued genetic representation.

2.1. EVOLUTIONARY ALGORITHMS 9

2.1.3 Recombination

Many researchers have discussed how recombination of two individuals should be
done. In Kauffman [1993] it is also discussed whether recombination of individ-
uals is beneficial at all. Whether recombination is a useful strategy depends on
the character of underlying objective function. For problems with a very rough
fitness landscape, recombination often gives poor results. Manually tuning the
parameters for recombination for each problem is time consuming and difficult.
But there are methods for controlling these parameters, which we will come back
to in Section 2.1.5.

Several different techniques for recombination of individuals exist. Among these
are single-point crossover, uniform crossover and arithmetic crossover. As men-
tioned in Section 2.1.2, we will focus on real-valued optimisation using real-valued
genetic representation. Both Kita et al. [1999] and Deb and Beyer [2001] have
defined some useful guidelines for how good real-valued recombination should be
performed. Their main concern in these guidelines is to preserve the statistical in-
formation of the parents when performing the recombination. It is also important
that the offspring should provide as much diversity as possible to the population,
but without neglecting the preservation of statistical information. Recombina-
tion techniques like single-point and uniform crossover do not fulfil this criterion
and are therefore not recommended for real-valued genetic representation [Yu
and Gen, 2010].

Arithmetic crossover is one type of recombination scheme that satisfies their
guidelines. It works by performing a linear operation that combines two parent
genomes to create an offspring. For two parents X = (x1, x2, ..., xn) and Y =
(y1, y2, ..., yn), their offspring Z = (z1, z2, ..., zn) is created following Equation
2.1, where α is a random number from the uniform distribution between 0 and
1.

Z = αX + (1− α)Y (2.1)

2.1.4 Balancing Exploration and Exploitation

Exploration and exploitation are two important aspects of search problems. Bal-
ancing both has proven to be difficult, and this topic has been given much focus,
especially in the EA research community [Črepinšek et al., 2013]. A substantial
difference between EAs and classic search methods is that EAs maintain and
evaluate a whole population of solutions at the same time. The main idea is to

10 CHAPTER 2. BACKGROUND THEORY AND MOTIVATION

keep individuals from different areas of the solution space that exert promising
characteristics. By doing so, there is a higher probability of finding several inter-
esting traits. This will not only broaden the search, but in the process, it might
also combine traits from different parts of the solution space, through crossover,
to reach even better solutions.

A significant problem for searches in the solution space of approximation problems
is local optimums that do not contain satisfactory solutions to the problem. Local
and global optimums are points in the solution space in which no small alteration
of the genome will provide an increase in fitness. In most searches for solutions
to hard approximation problems, the search ends in either a local or the global
optimum. Unsatisfactory local optimums pose a threat to the progression of
search algorithms, EAs included. For an individual in a local optimum, big
and improbable alterations to the genome might be necessary in order to find a
competitive solution in terms of fitness.

Maintaining diversity in the population has both proactive and reactive effects.
By letting weaker solutions survive, the algorithm can keep searching other parts
of the solution space when the best solution so far lies in a local optima. After
some generations, the weaker solutions might have led the search to solutions
that are better than those in the local optimum, and thus continued progression
is achieved. Furthermore, if the entire population resides within a local optimum,
then letting weaker solutions survive might increase the probability of breaking
out of the local optimum. And it helps if they are further from the point of the
local optimum.

A limiting factor to the use of diversity measures in EAs is that it can be very
difficult to measure the difference between two individuals. This is especially the
case for populations where the size of the genome can vary among individuals
[Mattiussi et al., 2004].

2.1.5 Parameter Control versus Parameter Tuning

Tuning of the parameters for EAs is both a time-consuming and difficult task.
The issue of controlling the parameters during the run of the EA is therefore an
important and promising area of evolutionary computation. Eiben et al. [1999]
defined classification rules for different types of parameter control. They defined
two major groups for setting the parameters: parameter tuning and parameter
control.

Parameter tuning is the manual setting of different parameters before the run of
the algorithm. This is usually done by tuning one parameter at a time. It gener-

2.1. EVOLUTIONARY ALGORITHMS 11

Figure 2.2: Overview of types of parameter control methods for EA (adapted from
Eiben et al. [1999])

ally results in suboptimal choices of values because of the complex dependencies
between the parameters [Eiben et al., 1999]. Furthermore, different scenarios
during a run of the EA often have different optimal parameter values.

An alternative to parameter tuning is to change the parameters during the run
of an EA by defining rules from which this change should occur. This is what
parameter control aims to do. As illustrated in Figure 2.2, parameter control can
be divided into three subgroups, which are listed below.

Deterministic The parameters are adjusted by some deterministic rule. This
rule usually contains a time-varying schedule, such as the current generation
of the GA, from which it modifies the parameters deterministically. And it
does not use any sort of feedback from the GA.

Adaptive The parameters in an adaptive scheme are changed based on feedback
from the search, e.g. the quality of solutions, the fitness of each individual
relative to the population or diversity within the population.

Self-adaptive Here the parameters have the chance to co-evolve with the in-
dividual to which they are applied. The parameters are encoded into the
representation of the individual and are included in the recombination and
mutation of the individual.

There is a wide variety of EA implementation aiming at controlling all sorts of
parameters, such as mutation, recombination and selection strategy. Examples of
such implementations that are fairly relevant for this thesis will be investigated
in Section 2.2

12 CHAPTER 2. BACKGROUND THEORY AND MOTIVATION

2.1.6 Vector-Based Mutation

In this section we will investigate different methods that use some type of vector
to guide the population through the solution space. The theory of attributing
site-specific mutation rates to different sites of the DNA, so-called among-site
rate variation [Yang, 1996], has its root in biological models of evolution.

In traditional GAs, one global mutation operator is applied to all genes in the
genome. But there are many potential benefits to using more-complex mutation
schemes that handle each gene differently. Some of these benefits are listed below.

• The same magnitude of change applied to different genes in the genome
might have different effects on the fitness of a solution. For instance, if the
goal is to create the best recipe for Christmas gingerbread, a small change
in the amount of pepper might have a huge impact on the taste compared
to the same change in the amount of flour.

• Genes with different-sized ranges of possible values can make it impossible
within certain mutation schemes to choose global mutation parameters that
are tailored for all genes.

• Poor knowledge about the solution space might lead a programmer of an
GA to set an unreasonable large space of possible parameter values. If the
mutation operator uses the size of the range of the parameter to determine
the magnitude of change to apply, then unreasonably large ranges might be
a problem.

Furthermore, if the mutation parameters in the vector are adapted throughout
the run of the algorithm, even more powerful traits can emerge.

• Decreasing the rate or magnitude of change in already fine-tuned genes,
and conversely increasing the rate or magnitude of change in genes that
exert more flexibility in their values, can provide huge speed-ups for the
search. If a gene is particularly fine-tuned, changing it along with the more
flexible genes will in all probability have negative effects. Thus, it will
dampen or even outweigh the positive effects from other changes in the
genome that occurred simultaneously. For instance, when 10 parameters
are evolved and 8 of them are fine-tuned within their global optimum, then
with a global average step size for change through mutation, all changes
done to the already fine-tuned genes will lead to decreases in fitness values.
This happens even if the two nonoptimal parameters are changed to their
optimal. This scenario makes it difficult for the last parameters to evolve
to their optimal values.

• Usually when GAs are employed, the optimisation problem is nonseparable,

2.1. EVOLUTIONARY ALGORITHMS 13

meaning that the effects of a change in one parameter cannot be known
without the context of the other parameters. Otherwise, if it is known
that the problem is separable, then the search could be divided, separated
into several searches, one for each gene, and the solutions simply combined
afterwards. Figuring out which parameters correlate more with each other
and mutating these simultaneously might be beneficial.

Figure 2.3: Roughly sketches the effects of using different types of mutation. The
lines present outcomes of equal probability in different scenarios using different types
of mutation. The x- and y-axis denote the magnitude of change done to each gene. (a):
One global mutation parameter. (b): Independent mutation parameters for each gene.
(c): Covariance parameters and positive covariance between the mutation sizes. (d):
Covariance parameters and negative covariance between the mutation sizes. (e): All
scenarios in the same plot to show the potential benefits of using more parameters to
specify the sort of change that is likely to be successful.

An obvious upgrade from a single adaptive parameter for the individual as a
whole is to have one or more free mutation parameters for each gene [Ostermeier
et al., 1994; Vafaee and Nelson, 2010]. The parameters for each gene can be
seen as an n-dimensional mutation vector for the genome, where n is the number
of genes being evolved. A further extension would be to include a complete
covariance matrix that also tracks the way each gene evolves relative to each
other gene [Hansen and Ostermeier, 2001]. Genes that are in no way correlated
will only distort each other’s feedback from fitness testing if they are all changed
simultaneously. In the extreme case where no genes are concerned with the state
of the others, the natural thing to do is to separate the problem into several
approximation problems, one for each parameter that is to be evolved. However,
since GAs are applied to the search problem, one can assume that the optimal
value of every parameter is dependent on the state of at least one other parameter.
From this follows an interest in figuring out which parameters are more correlated

14 CHAPTER 2. BACKGROUND THEORY AND MOTIVATION

than others.

Figure 2.3 illustrates how the different mutation schemes mentioned above can
affect the mutation of two genes. The figure shows the shape of lines of equal
probability of occurrence in different scenarios. As illustrated by Figure 2.3(a),
with a single global mutation step size, the genes have equal probability of mu-
tating by any given amount, and the amount by which a gene is changed is
independent of the amount by which other genes are changed. Figure 2.3(b) is
an example of a curve of equal probability when each gene has its own mutation
parameter for the expected size of a mutation. Mutations to Genex are likely
to be much bigger in size than mutations to Geney. Finally, Figure 2.3(c) and
(d) are examples in which parameters regarding the covariance between the two
step sizes are defined. For Figure 2.3(d) for instance, if Genex is changed by
a lot, then the probability of Geney being changed by a lot is significantly de-
creased. In Figure 2.3(c), the opposite is the case. If either (c) or (d) are correct
in their approximation of what combination of mutation sizes is likely to be most
successful, then the benefit from using such detailed specifications is huge.

Differential Evolution

Differential Evolution (DE) is a subcategory of GAs which uses the distance be-
tween two arbitrary individuals in the population to construct mutation vectors.
DE was suggested in 1997 by Storn and Price [1997], with the aim of being easy
to use, requiring few control parameters and also being robust. DE is used mainly
for multidimensional real-valued optimisation functions because of the required
real-valued vector structure of the population.

The main difference of DE compared to other GAs lies in the recombination
and mutation operators. DE utilises site-specific mutation through the use of
a mutation vector. The mutation vector is generated by exploiting information
retrieved from the genome of multiple individuals in the population.

During the reproduction stage, a mutation vector, muti, is generated for each
individual, x1, x2, ..., xi. The mutation vector for individual xi is generated by
creating a simplex from three random individuals in the population, r1, r2, r3 ∈
{x1, x2, ..., xi}, where r1 6= r2 6= r3 6= xi. From these three individuals, the
mutation vector is then defined by Equation 2.2, where F is a real and constant
factor which usually resides in the range between 0 and 1.

muti = r1 + F ∗ (r2 − r3) (2.2)

2.2. RELATED WORK 15

After the mutation vector is generated, a uniform crossover is performed, with
a constant crossover probability CR ∈ [0, 1]. But unlike most other GAs, the
recombination is not done with other individuals; instead it is performed with
the mutation vector generated for that individual. In other words, an offspring,
oi, is created by uniform crossover operation between muti and xi. The new
offspring is inserted into the population only if it outperforms its parent, xi, in
fitness score. If it does not outperform its parent, then the offspring and muti
are disposed of, and the parent xi remains untouched.

Particle Swarm Optimisation

Particle Swarm Optimization (PSO) belongs to swarm intelligence of AI, which
is the collective behaviour of decentralised and self-organised systems. The al-
gorithm was originally developed to simulate social behaviour by representing
the movement of organisms. But the algorithm was simplified by Eberhart and
Kennedy [1995] so it could be used for optimisation tasks.

The basic PSO works by having a swarm of moving particles that explores the
search space. The movement of a particle is defined by a simple formula, inspired
by the movement of real particles, which gives each particle a velocity. In the
updated version of PSO, inertia was also included for particles [Shi and Eberhart,
1998]. In contrast to real particles, the movement formula also takes into account
the best-known position that each particle as visited and the best-known position
in the whole swarm. The result is that particles are attracted by each other, their
own best experienced solution, and the best position that is known overall.

PSO shares many similarities with the GA. Both utilise population-based search
methods. Both methods also move from a set of points in the search space to
another set of points in an iterative procedure. But in contrast to GAs, the
particles in PSO do not reproduce. You could say the particles only ”mutate” in
the form of moving through the search space according to their velocity vector.

2.2 Related Work

In this section we will inspect related work done in the same research area as
addressed in the research questions defined in Section 1.2. In the first section,
we will investigate research done using some type of diversity measure for bal-
ancing the exploration and exploitation of population. In Section 2.2.2 we will
explore different parameter-controlled EA implementations using different types
of vector-based mutation.

16 CHAPTER 2. BACKGROUND THEORY AND MOTIVATION

2.2.1 Diversity-Guided Evolution

Diversity in the population is definitely one of the key issues for the performance
of EAs, mainly to avoid premature convergence. Most selection algorithms intro-
duce a random factor to maintain diversity in the population, such as tournament
selection and roulette wheel selection. But few algorithms endeavour to guide
the population using diversity. The measure of diversity is usually used only as
a parameter to analyse how EAs perform [Ursem, 2002]. In this section we will
investigate three papers which use some type of diversity measure in different
ways to maintain diversity in the population.

Diversity-Triggered Phases

Figure 2.4: Illustration of diversity-triggered phases, toggling between explore and
exploit depending on the diversity in the population. This figure is adapted from Ursem
[2002]

Ursem [2002] has created an extension to the EA which can be used for multiple
types of EAs and is fairly simple to implement. The extension aims to prevent the
EA from premature convergence by alternating between two phases, explore and
exploit. The alternation between the phases is triggered by a diversity measure of
the population. The diversity measure used by Ursem [2002] is the distance from
each individual to an average point of all individuals in the solution space. The
average point consists of the average values of each gene individually. This is not
the most accurate measure of diversity in the population, but it requires very little
computation compared to other diversity-measuring techniques [Ursem, 2002].

2.2. RELATED WORK 17

The two phases of the algorithm are illustrated in Figure 2.4. The algorithm
starts by running the EA in the usual manner; this is called the exploit phase.
As time passes, the population converges to a local optimum, causing the diver-
sity to decrease. When the diversity reaches a given threshold, diversitylow, the
algorithm switches to the explore phase. The explore phase mutates the indi-
viduals’ genomes until the diversity in the population reaches a given diversity
threshold, diversityhigh. This phase does not require any fitness testing; it only
calculates the distance-to-average point after each mutation cycle. The imple-
mentation also uses a vector-based mutation to speed up the explore phase, which
we will look at in Section 2.2.2.

Their extensions were added to a standard GA implementation, and it outper-
formed other well-known non-diversity-guided GA implementations on multi-
modal optimisation functions. The explore phase prevented premature conver-
gence to some extent, but it was difficult to choose appropriate diversity thresh-
olds. They mentioned in further work that deterministic parameter control on
diversitylow and diversityhigh would make this simpler.

Diversity Measure for Replacement Scheme

Lozano et al. [2008] use a rather different approach to maintain the diversity
within the population. They propose a replacement scheme in a steady state
EA. Steady state EAs differs from standard EAs in that there are no generation
steps. In a steady state EA, each new individual competes on its own against the
current population. The replacement scheme determines whether an individual
should be included in the population and which individual it replaces.

Lozano et al. [2008] proposed a replacement scheme in which individuals whose
contribution to diversity is relatively small are more likely to be replaced than
those with a higher contribution to diversity. Whenever a new individual is under
evaluation, the set, D, of all individuals within the population whose fitness is
worse than the new individual’s, is created. If the individual in D with the
lowest contribution to diversity has a lower contribution to diversity than the
new individual, then the new individual takes its place. Otherwise, the new
individual simply replaces the individual in D with the worst fitness, given that
the set is not empty. The contribution to diversity is given by the distance (e.g.
Hamming distance, Euclidean distance) between the individual and its nearest
neighbour.

In this way the replacement scheme strives to remove solutions that have poor
scores in both fitness and contribution to diversity. However, the reward for
having a greater contribution to diversity can be seen as a delayed execution.

18 CHAPTER 2. BACKGROUND THEORY AND MOTIVATION

Contribution to diversity merely determines the order in which individuals are
replaced, giving diverse solutions more time to explore their uniqueness before
they are replaced.

As we mentioned in Section 2.1.4, a weak solution with high diversity may lead
to finding a better optimum after some generations. Lozano et al. [2008] explain
that the reason for kicking out the worst solutions even when their contribution to
diversity is higher is the increased ability to converge: ”For most practical prob-
lems, the refinement of the best regions of the search space (i.e. the convergence)
requires the loss of population diversity.” [Lozano et al., 2008]

Their implementation performed significantly better than the other diversity-
guided implementations they used for comparison. But when we compared the
results with that of Ursem [2002], mentioned above, we see significantly better
results on the part of Ursem [2002]. We cannot be sure whether this outper-
forming is caused by a better method of maintaining diversity, as it may well
be caused by the structural difference between steady-state and generation-based
EA, differences in the genetic operators or different parameter settings.

A somewhat similar but much more minimalistic approach to maintaining di-
versity is deterministic and probabilistic crowding. Probabilistic crowding was
introduced by Mengshoel and Goldberg [1999]. The key point is to maintain
diversity by having individuals compete with the individuals that are the most
similar to themselves.

Diversity as Objective

To the best of our knowledge, de Jong et al. [2001] were the first to use diversity as
an objective in a multiobjective EA. In multiobjective EA, the proposed solution
is tested on more than one evaluation function, i.e. objective functions. The
results from these functions are combined in some way to determine the overall
value, i.e. fitness of the individual. de Jong et al. [2001] proposed using the
diversity gain from adding an individual to the population as an objective in
their multiobjective approach. They used the average squared distance to the
other population members to represent the diversity gain.

In addition to using diversity gain as an objective, they follow up by removing all
dominated individuals from the selection. An individual is dominated if another
individual has a better or equal score on all objective functions. The truth
statement below, 2.3, expresses the state of the population after the selection
phase. For every two individuals within the population, there exists an objective
function for which the first individual has a better score and one for which the
other has a better score.

2.2. RELATED WORK 19

Figure 2.5: Illustration of how solutions can be dominated by others in multiobjective
function optimisation. This figure is adapted from de Jong et al. [2001]. Each axis
represents the score on an objective function, and each point represents an individual’s
scores.

∀x, y ∈ P : ∃f ∈ OF : f(x) > f(y) ∧ ∃f ∈ OF : f(y) > f(x) (2.3)

Figure 2.5 shows examples of dominated individuals. In this particular illustra-
tion, there is a negative correlation between the score on one objective and the
score on another. This is not always the case, but it is particularly likely when
diversity and fitness are the two objectives. It follows naturally from the fact that
increased fitness in a region will lead to more surviving offspring in that same
region, which in turn decreases the contribution to diversity in that particular
region.

de Jong et al. [2001]’s multiobjective approach was used in Genetic Programming
(GP), which is a specialisation of GA. In GP each solution is usually represented
by a tree structure that can vary in size. Consequently, calculating the distance
between individuals is done quite differently than in real-valued GA, where the
size of the genome remains fixed throughout each run of the algorithm.

However, the desired behaviour is the same. de Jong et al. [2001] reported that
when large portions of the population are centred in a small area of the fitness
landscape, then a potential for scoring well on the diversity function dissipates the
population. Conversely, when individuals with the same score in diversity have

20 CHAPTER 2. BACKGROUND THEORY AND MOTIVATION

similar scores in fitness, the individuals that merely scored well on the diversity
function are removed from the population. When some area is discovered to have
quite good fitness values, more offspring survive in this region, and thus the gain
from diversity in the region decreases.

In their results, de Jong et al. [2001] saw that much smaller population sizes
could be applied because of the diversity objective, and the algorithm needed
significantly fewer evaluations than regular GP without their added objectives,
which, in addition to diversity, included an objective for minimising the size of
the tree.

2.2.2 Controlled Vector-Based Mutation

In Section 2.1.6 we investigated the theory behind vector-based mutation. In this
section we will inquire into research done in this field which also used some type
of parameter control.

Adaptive Probabilistic Mutation Vector

Inspired by the among-site mutation rates from the biological model, Vafaee and
Nelson [2010] created an adaptive scheme for their mutation operators. Instead of
randomly flipping bits, their mutation operator specified different mutation rates
for different genes in the individuals. These gene-specific rates were derived from
the highly fit individuals in the population in a probabilistic manner, creating a
global mutation vector which worked as an attractor for the mutation of different
genes. This implementation had decent results. It performed better than the
other implementations they compared it to, both with better scores and lower
standard deviations.

The Markov chain of this implementation was later derived, which proved the
convergence of their implementation [Vafaee et al., 2014]. A Markov chain is a
state space that undergoes transitions between the states using a probabilistic
trajectory, where the next state depends only on the current. It is natural to
view GA as a Markov chain, considering the current population as the current
state. The Markov chain of Vafaee and Nelson [2010] was derived using a well-
known Markov chain analysis model for GA [Nix and Vose, 1992]. This method
works well because it makes no assumptions restricting the population size or the
trajectory of the Markov chain.

2.2. RELATED WORK 21

Adaptive Average-Point Mutation

In Section 2.2.1 we investigated Ursem [2002]’s diversity-guided EA. In that work
a very simple adaptive mutation vector is used in the exploration phase. Instead
of random mutation in the exploration phase, the average point in the population
is exploited. The mutation vector of an individual is created by creating a vector
phasing in the opposite direction of the average point. Logically this speeds up
the exploration phase drastically, but it is difficult to say whether this improves
the end results. Ursem [2002] did not report how their implementation performed
without this feature.

It is also worth mentioning the adaptive mutation scheme used by Srinivas and
Patnaik [1994], which is especially good at exploring local optimums while main-
taining some level of exploration. In their approach, the basins of attraction are
subject to much disruption, while the attractor points are subject to less disrup-
tion. So the individuals at the basins of attraction are mutated to find possible
new paths that lead to other optimums while individuals near the attractor point
are mutated to find the exact point of attraction. Finding out which individuals
are at the basins of attraction, and which are not, is not trivial. Srinivas and Pat-
naik [1994] simply uses the fitness of each individual relative to the best-achieved
fitness so far to make this distinction. Though it is an old paper, the results were
good compared to the standard genetic algorithm, and we find the idea behind
it very interesting.

Self-Adaptive Differential Evolution

DE uses a simplex-based vector for the mutation of each individual, as we ex-
plored in Section 2.1.6, and the low number of input parameters used in DE
makes it a good candidate for parameter control. As mentioned in Section 2.1.6,
DE requires only two parameters: the crossover rate, CR, and the fraction, F , of
the difference between two individuals to use when when generating the mutation
vector. Brest et al. [2006] proposed a method making both of these parameters,
CR and F , self-adaptive. In their implementation, each individual has its own
values for F and CR which are used during the creation of their offspring. The
parameter values are then passed on from parent to child, but there is a given
probability of mutating the CR and F . The parameter values for the child, F g+1

i ,
is defined as follows:

F g+1
i =

{
Fl + r1Fu if r2 < τF
F gi otherwise

}

22 CHAPTER 2. BACKGROUND THEORY AND MOTIVATION

CRg+1
i =

{
r3 if r4 < τCR
CRgi otherwise

}
(2.4)

r1...r4 are taken randomly from the uniform distribution [0, 1], τF and τCR are
user defined probabilities of mutating F and CR, and Fl is the lower and Fl+Fu
is upper bound of F ; F ∈ [Fl, Fl + Fu]. By using this technique the probability
of using the same parameters during the creation of the child as was used dur-
ing the creation of the parent is (1 − τF). Consequently, once good a value is
deemed successful through the survival of an offspring it will continue applying
the same value under the creation of its offspring, though with some exploration
of arbitrary different values.

Standard DE already performs very well on mathematical optimisation problems,
and with this simple extension of DE, the results were improved. Furthermore,
this implementation has the advantage of having no parameters which need to
be tuned for different problems.

Another approach using the adaptive scheme for DE is the fuzzy adaptive DE by
Liu and Lampinen [2005]. The mutation parameter, F , and the crossover param-
eter, CR, are adapted using a fuzzy logic control approach. The implementation
exploits the fitness values and genetic information from the current population to
adapt F and CR. The fitness values and genetic information are depressed and
fed to a fuzzy logic controller (FLC), which maps input to output using different
membership functions.

This is a very complex approach to achieve adaptation, especially in comparison
to the self-adaptive DE. It performed well compared to the standard DE, espe-
cially for higher-dimension problems. However, the self-adaptive DE looks even
more promising in its results.

Strategy Candidate Pool

Qin et al. [2009] and Mallipeddi et al. [2011] extended self-adaptation in DE
to include strategy candidate pools. In DE, several different techniques can be
applied to generate mutation vectors.

The standard approach is to pick three random individuals from the population
and use them to generate the mutation vector. However, this makes for a huge
space of possible vectors; Some of these vectors might be more likely to produce
successful offspring than others. Other approaches include always using the best

2.2. RELATED WORK 23

individual combined with one randomly picked individual, or using only a single
random individual or the best individual as the mutation vector.

These different approaches have different characteristics and have their raison
d’etre in different states of a search. Qin et al. [2009] and Mallipeddi et al.
[2011] kept different strategies in a candidate pool and measured their respective
success rates in succeeding generations. The ones that had a higher success rate
in previous generations were favoured for the generation of new trial vectors in
succeeding generations.

The most defining difference between the two is that the Qin et al. [2009] simply
updates the possibility of being assigned each strategy for all individuals, while in
the latter, each strategy and control parameter has an equal probability of being
chosen. If a specific strategy is able to produce an offspring that scored better
than its parent, then this offspring will try the same strategy again to produce its
own children in the succeeding generation. While the approach used by Qin et al.
[2009] did somewhat better than that of Brest et al. [2006] for problems of 10
and 30 dimensions, the implementation in Mallipeddi et al. [2011] outperformed
both on 50 dimensions of the test functions.

GA-PSO

Some efforts have been made to combine GA and PSO; among these are Kao and
Zahara [2008]. In their hybrid algorithm, an GA works in parallel with a PSO
in each generation. At the start of a generation, the population is split in two
by their fitness. The GA is assigned the more fit individuals while the PSO is
assigned the less fit half of the population. The idea is to combine a PSO’s swift
convergence with a GA’s ability to explore and escape local optimums.

We include this as a related work because PSO has a characteristic, its speed,
which is similar to that of vector-based mutation. Kao and Zahara [2008] achieved
good results in terms of success rate on many functions.

However, the biggest problem size that was tested on was 10 dimensions of the
Rosenbrock test function with a small range for each gene. In terms of efficiency
with respect to the number of fitness evaluations needed, the hybrid algorithm
seemed to have the same characteristics as regular PSO.

Derandomised Self-Adaptive Mutation

Ostermeier et al. [1994] introduced a completely derandomised method of doing
Mutative Strategy Parameter Control (MSC). This derandomised approach was

24 CHAPTER 2. BACKGROUND THEORY AND MOTIVATION

further extended to adapt a complete covariance matrix in Hansen and Ostermeier
[2001].

In their paper they point out that selection of strategy parameter settings in
MSC is indirect, and thus, because of the highly stochastic outcome of applying
a specific mutation parameter setting for one generation, the selection process for
parameter settings will be highly disturbed.

In other words, since the same step size can be produced from virtually any stan-
dard deviation, the success of a change in the standard deviation parameter can-
not be based on the success of a single sample from it. With greater change rates
for the parameter settings, the underlying information is increasingly stochastic
and thus unreliable.

At the same time, it is beneficial to have a high change rate on both the strategy
parameter level and the actual problem parameters in order to achieve a swift
adaptation. This creates a trade-off between swift adaptation and the validity
of the selection process that is difficult to optimise. Consequently, the possible
change rate of each strategy parameter decreases with the number of strategy
parameters that are being adapted.

In order to ensure the use of valid information when adapting the mutation
parameters, Ostermeier et al. [1994] use the realised mutation step sizes that led
to fit individuals to approximate the ideal standard deviation for the mutation.
This technique can be applied to determine the global step size parameter and
the step size for each gene in the solution and to construct a complete covariance
matrix that holds values for the covariance between all pairs of genes. The latter

demands a great number of free strategy parameters, n
2−n
2 .

The core concept of their algorithm is simple. Comparing the realised mutation
step size for selected individuals to the expected mutation step size given the
previous settings can offer some insight as to whether the standard deviation
should be increased or decreased. For a single global step size, the length of the
entire vector of individual step sizes for each gene is compared to its expected
length. In the case of each gene-specific mutation step size, σi, independently,

the expected deviation is σi

√
2
π [Ostermeier et al., 1994].

Hansen and Ostermeier [2001] found that this derandomised approach for covari-
ance mutation matrix adaptation was able to adapt more efficiently to nonsepara-
ble problems than its randomised counterpart and the derandomised approaches
without covariance parameters. For problems with huge differences in sensitivity
for each axis (gene), gene-specific mutation parameters proved to have huge bene-
fits. Hansen and Ostermeier [2001] also discuss many aspects of adaptation speed
and the liability of the information received in different adaptation processes.

2.3. STRUCTURED LITERATURE REVIEW PROTOCOL 25

2.3 Structured Literature Review Protocol

This section describes the structured literature review protocols used to find
literature for this thesis.

2.3.1 Search Procedure

We defined a search procedure to enhance the efficiency and the quality of the
results when searching for relevant research. We decided to utilise a given set of
tools and defined a list of keywords which proved to give good results.

Search Keywords ”diversity”, ”parameter control”, ”adaptive”, ”vector muta-
tion”, ”differential”. Most of the search keywords were used in combination
with evolutionary computation types, such as ”evolution”, ”evolutionary
algorithms”, ”genetic algorithm”, ”genetic programming”, ”evolutionary
strategies”.

Following is a list of the search tools which were used to find appropriate research.

Google Scholar Used for search.

Wikipedia Sources of articles on Wikipedia were used to find relevant papers.

Survey paper references For instance, we used references from Črepinšek et al.
[2013].

Introduction to Evolutionary Algorithms (2010) One of the most popular
modern books on evolutionary algorithms, by Yu and Gen [2010].

2.3.2 Selection Criteria

There is a vast amount of research done in the field of EA, and selecting the
right papers was a difficult procedure. We therefore defined some criteria that
we required the papers to fulfil, which can be summarised as follows:

• Released in the last 20 years. Exceptions made for articles concerning the
origin of a topic.

• Published by a trusted publisher, such as Springer, IEEE and MIT Press
Journals.

• Cited by at least 10 other publications. Exceptions made for recently pub-
lished papers given they were published by a trusted publisher.

26 CHAPTER 2. BACKGROUND THEORY AND MOTIVATION

2.4 Motivation

In this thesis we wish to combine and adapt existing approaches that have been
discussed throughout this chapter to produce a traditional genetic algorithm ca-
pable of solving a wide range of problems with great speed. Through our search
for relevant literature, we found that our questions have been asked before, and
several different proposals have been made. However, we see room for a novel
technique which combines adaptive vector mutation with promotion of diversity.

One important aspect of GA which we take interest in is the mutation of individ-
uals. It has been shown that a fixed mutation rate can be expected to be subopti-
mal when balancing exploration and exploitation [Cervantes and Stephens, 2009].
A special interest lies in the utilisation of a mutation vector, inspired by DE, to
guide the individuals in a direction of the search space. Figure 2.6 shows how
DE utilises existing information in the population to create a mutation vector,
instead of doing random guesses, which is the default for standard GA. The infor-
mation used by DE is known to produce good individuals, at least for a specific
point in the solution space, and this information is used to create new individuals;
the vector that is added to a random individual to make up the vector that is
used during crossover is the exact difference between two known good solutions.
Notice in Equation 2.2, that if r1 = r3 and F = 1, then muti = r2. That is
to say that the result would be a solution which is known to be quite good. If
0 < F < 1, then muti would be somewhere on the direct line between r1 and r2.
By applying a vector that is known to be good for one of the existing individuals
to any other of the existing individuals, the rate of success is increased. This
technique seems to work, but it differs slightly from what we were looking for in
the sense that information about successful mutations are used indirectly.

Figure 2.6: Illustration of how DE utilises information from the populations genomes
to produce new individuals. r1, r2 and r3 are the individual solutions used to pro-
duce muti (mut) following Equation 2.2. The x- and y-Axis are simply values for two
arbitrary genes in their genomes.

2.4. MOTIVATION 27

PSO utilises information about the best solutions found thus far to perform a
vector-based mutation in a direct and deterministic way through the speed and
acceleration of each particle. Although this is not at all based upon previously
good mutations, but rather on the direction of good solutions, we believe in the
idea of letting each particle do its own exploration with its own inertia.

We take special interest in the adaptation process proposed by Hansen and Os-
termeier [2001], as it gives a very direct answer to our first research question.
However, while they view the entire population as a single search, we endeavour
to uphold the search behaviour of the more traditional GA, where individuals
can be viewed as conducting their own search and competing with others to find
the best solutions.

As we have mentioned earlier, balancing exploration and exploitation of GA is
of particular interest in this thesis. Throughout this chapter we have inves-
tigated different methods that exploit information from both the search space
and the population to improve future guesses and maintain the diversity in the
population, and they all showed promising results. Furthermore, truly adaptive
mutation rates will inevitably result in convergence to an optimum when fitness
is the only basis for selection. In order to avoid premature convergence, some
maintenance of diversity is imperative.

28 CHAPTER 2. BACKGROUND THEORY AND MOTIVATION

Chapter 3

Architecture

In this chapter, we put forth a GA with a novel mutation and selection scheme
which combines and adapts different methods discussed in Chapter 2. We also
explain the implementation of the system and the technologies we have used. We
start out by presenting the genetic representation in Section 3.1. In Section 3.2
an explanation of the reproduction scheme of the GA is exhibited. The genetic
operators we have used and the motivation for using these operators will be pre-
sented here. Following this, the two selection schemes which promote diversity in
the most direct way will be presented in Section 3.3. Section 3.4 will present the
actual implementation of the GA, along with the system used to test different im-
plementations and various analytical visualisation tools. And finally, Section 3.5
presents an overview and a short explanation of the technologies used for this
thesis.

3.1 Genetic Representation

Because of the drawbacks with binary representation mentioned in Section 2.1.2,
and because of the nature of our approach, we have chosen real-valued genetic
representation. Furthermore, we have limited our research to fixed-sized genomes
because of the difficulty of measuring diversity among individuals with different-
sized genomes mentioned in Section 2.1.4. In general, our focus is on solving
continuous functions for which possible solutions can be represented genetically
by N-dimensional vectors.

29

30 CHAPTER 3. ARCHITECTURE

3.2 Reproduction

The different operators and their respective adaptation schemes used under repro-
duction are presented in this section. In summary, we apply a Gaussian mutation
combined with probability of mutation and N-point crossover. However, one free
strategy parameter is assigned to each gene, and this parameter partially deter-
mines the size of the mutations done to this gene. These parameters are adapted
using a derandomised adaptation scheme, similar to the scheme used by Hansen
and Ostermeier [2001], which was examined in Section 2.2.2.

3.2.1 Mutation

Our mutation scheme is presented in Equation 3.1. We use a probability of
mutation, so only a fraction of the genes will undergo the Gaussian mutation
during a single reproduction.

Xo,g =

{
Xp,g if r ≤ Pm
Xp,g +Mg otherwise

}
Mg = σp,gng,1ng,2

(3.1)

Xo/p,g : The value of gene g, for offspring (o) / parent (p).

r ∈ U(0, 1) : Value taken randomly from the uniform distribution be-
tween 0 and 1.

Pm : User-defined global value stating the probability of muta-
tion for all genes.

ng,i ∈ N (0,
√

π
2) : Values taken randomly from the Gaussian distribution

with mean 0 and standard deviation
√

π
2 .

σp,g : Adaptive strategy parameter stating the average size of
mutations done to the parent’s (p) gene g.

The probability of mutation, Pm, determines the likelihood of mutating a gene
during reproduction. Having Pm = 0.1 would result in approximately 10% of the
genes in the genome being mutated when creating a new individual. And the
standard deviation for the number of genes that are mutated would be nṖm(1−
Pm) = 0.9n, where n is the number of genes in the genome.

3.2. REPRODUCTION 31

The size of the mutation applied to a gene is the result of multiplying two distinct
values drawn from a Gaussian distribution, N (0,

√
π
2). A randomly drawn value

from this distribution has an expected deviation from the mean, 0, of exactly 1,
which is useful when the realised values during mutation are used in an adaptation
process. The result of using the product of two values drawn from this distribution
instead of just one is that the standard deviation of the deviation from the mean
is larger. That is to say, the result, Mg, will vary more in size, with many small
values and some very large values. While the variance of the absolute value of
values drawn from this distribution is about 0.57, the variance of the absolute
value of the product of two such values is about 1.465. However, the expected
value remains at exactly 1. This is expressed in Section 3.2.1.

E(ng,1ng,2) = E(ng,1) · E(ng,2)
1 = 1 · 1

V ar(ng,1ng,2) = V ar(ng,1)V ar(ng,2) + E[ng,1]2V ar(ng,2) + E[ng,2]2V ar(ng,1)
1.465 = 0.572 + 2(12 · 0.57)

(3.2)

Adaptation

In general, for self-adaptive strategy parameters, the success of any specific value
is determined by whether it produces viable offspring. This is to a certain extent
up to chance, both because whether an individual will survive is quite dependent
upon the state of the rest of the population and because strategy parameters
themselves are not deterministic in their application. However, the adaptation
that occurs when reacting to positive feedback, meaning the survival of an off-
spring, does not necessarily have to be random. By using the information about
the outcomes from the probabilistic parts of the application of the strategy pa-
rameters, it is possible to make a somewhat educated guess about which way to
change the respective parameter and by how much. In this way, the process of
adaptation can become derandomised.

In the algorithm presented in this thesis, each individual has a strategy param-
eter for each gene in the genome. Each of these strategy parameters represents
the standard deviation of the Gaussian distribution used for mutation of the re-
spective gene. Equation 3.3 shows how these strategy parameters are adapted
as they are passed on from parent to child. It is important to note that the
adaptation of these strategy parameters occurs only if the value of the respective
gene has changed from parent to child, that is to say, when there is something to
adapt to. One could argue that no change is something to adapt to as well, but

32 CHAPTER 3. ARCHITECTURE

since it is not the likelihood of change but rather the magnitude of change to the
gene that is represented in the strategy parameter, we refrain from adapting the
parameters when no change has occurred.

σo,g = σp,g +
|Xo,g −Xp,g| − σp,g

τ
(3.3)

σo/p,g : Standard deviation for the size of the distribution used for
Gaussian mutation on gene g, for offspring (o) / parent (p).

|Xo,g −Xp,g| : The absolute difference between the parent’s and the off-
spring’s value for gene g. In other words, the mutation or
change that happened to gene g during the creation of the
offspring.

τ : User-defined parameter that determines the contribution of
a single sample relative to the samples from previous gen-
erations. In other words, the memory of the parameter, or
alternatively, the adaptation speed.

Because the expected absolute value for a mutation is σp,g, there is no implicit
bias towards either decreasing or increasing the value as the number of mutations
goes towards infinity. However, it is worth noting that the probability of getting a
mutation value that is lower than σp,g is about 0.66. Consequently, adaptations
towards smaller mutation sizes are greater in number but smaller in size than
adaptations towards bigger mutation sizes.

3.2.2 Recombination

In Section 2.1.3, we briefly discussed the most common recombination schemes
for EA. We tested some of these schemes on our implementation and settled
for N-point crossover between two individuals with 0.25 as the probability for
crossover at any given point on the genome. Though recombination is not the
focus of this thesis, the applied recombination scheme, if any, has a huge impact
on the evolution of the mutation strategy parameters. A newly created individual
will inherit the strategy parameters of only one of the parents used for recombi-
nation. Because these parameters adapt to any change in their respective gene, a
successful recombination that resulted in a different value for one or several genes
would influence the adaptation of the respective mutation strategy parameters.
This will be further discussed in Sections 4.3.8 and 5.1.4.

3.3. SELECTION SCHEMES 33

3.2.3 Summary

To summarise, our approach can be viewed as a hybrid between DE and the
derandomised adaptive mutation scheme introduced by Ostermeier et al. [1994].
Although the derandomised adaptation scheme introduced by Ostermeier et al.
[1994] is similar to what we propose, there are some big differences between
them. While their algorithm strives to mimic the contours of the fitness landscape
around the entire population, ours is a slightly adapted version of the classical
GA but gives each individual separate treatment with respect to the path it has
travelled from its ancestors. Ostermeier et al. [1994] redefines the population
each generation, while our implementation is more traditional.

The mutation scheme in DE uses the difference between the values of two arbi-
trary individuals within the population. This approach can be expected to have
some of the same characteristics as the implementation we propose because of
the utilisation of known good mutation vectors, which is illustrated in Figure 2.6,
and because of the fact that crossover will affect the adaptive strategy parameters
which will render them somewhat similar to mutation vectors in DE. However,
a key difference is, again, that we separate each individual from the rest of the
population and set the mutation based on what has worked for each individual
in the past.

The main advantage of using a derandomised adaptation scheme is that the adap-
tation is done based on more reliable data. For classical self-adaptive strategy
parameters, the parameters are subject to random mutation. This means that
a child inherits its parent’s strategy parameters but with a change to them that
is determined by arbitrary mutation. Although GAs following the scheme pre-
sented here still have individuals inheriting their parents’ strategy parameters,
the alterations done to these parameters are determined not by random mutation
but rather by the amount of change applied to their respective genes during the
production of the new successful individual.

3.3 Selection Schemes

As we discussed in Section 2.1.4, diversity is the main reason for selecting indi-
viduals that are inferior in terms of fitness. Furthermore, our mutation operator
is constructed in such a way that if finding a better solution is difficult, then the
strategy that is most likely to succeed for the best individuals is to not explore
at all. Thus, we suspect that the mutation parameters will converge to zero.
This is a problem for most self-adaptive schemes. Consequently, we wanted to

34 CHAPTER 3. ARCHITECTURE

experiment with a selection scheme that selects the individuals which are passed
on to the next generation step where their contribution to diversity is rewarded.

Some selection schemes were discussed in Chapter 2, and we were torn between
two schemes we found especially interesting. We implemented an adapted ver-
sion of both of these and thoroughly tested them with different settings. Their
architecture will be discussed in this section, along with a brief description of
selection scheme used for selecting parents for mating.

3.3.1 Parent Selection

For parent selection we have used the classical roulette selection, where the prob-
ability of getting selected is given by a nonlinear ranking scheme based on the
individual’s fitness. This ranking scheme is adapted from Yu and Gen [2010]
and is given by Equation 3.4, where 0 ≤ α ≤ 1 is the parameter that controls
the selection pressure. The population is sorted by fitness score in descending
order; the first individual is the one with the best fitness score. Equation 3.4
shows the probability of the i’th individual being selected, pi. This results in the
probability of the best individual being selected to be α, and the probability for
other individuals being selected declines in a nonlinear manner after that.

pi = α(1− α)i (3.4)

3.3.2 Distance Measures

In order to give a measure of diversity contribution, a measure of distance between
two individuals must be defined. The most minimalistic approach to this would
be to simply define it as the Manhattan distance between the genomes of the
two. However, there are several reasons why normalising the distance for each
gene in the genome can bring about better approximations of how similar the
two individuals are.

One reason for normalisation is that genes in the genome might have different
ranges in which they take on their values. The obvious go-to solution for this
is to normalise by dividing by the range that is predefined by the programmer.
However, the range of possible values for the genes is not necessarily a good
representation of the actual span of values that is realistic to find in good solutions
to the problem. It is not unlikely that 90% of the predefined range for each
variable provides practically useless solutions and that after just a few number

3.3. SELECTION SCHEMES 35

of generations, these intervals of useless values have been inspected for the last
time. If so, it is probably better to treat the remaining 10% as though it were
the entire range of values for the gene. The normalisation function as described
by Equation set 3.5 accounts for this possibility by using the difference between
the biggest and the smallest value of the gene that is currently represented in the
population as the normalisation factor for that gene.

norm(g, P) =

{
gmax − gmin if gmax 6= gmin

range(g)
105 otherwise

}
gmin = min

i∈P
Xi,g

gmax = max
i∈P

Xi,g

(3.5)

Xi,g : The value of gene g, for individual i.

P : A population of individuals.

norm(g, P) : Normalisation factor for gene g, given population P.

In addition to partially taking into account potential useless intervals of gene
values, this normalisation method also rewards diversity for each gene based on
the current range of values represented for this gene in the population. That is
to say, it rewards diversity where there is little of it, which is another reason for
normalising when trying to approximate contribution to diversity. We can now
define the normalised distance between two individuals as follows (Equation 3.6):

Dist(i, j, P) =
∑
g∈G

|Xi,g −Xj,g|
norm(g, P)

(3.6)

G : The number of genes in the genome.

3.3.3 K-Nearest Neighbours

The most similar scheme to the one proposed next is perhaps deterministic crowd-
ing, as presented by Mengshoel and Goldberg [1999]. In deterministic crowding,
the individuals are grouped in such a way as to maximise the similarity of individ-
uals within each group, and the individuals with the highest fitness score in each

36 CHAPTER 3. ARCHITECTURE

group are chosen for survival. A difficulty with the implementation of this idea is
that the problem of finding the groupings that maximise similarities within the
groups is itself an NP-hard problem. Consequently, a good approximation is the
closest one can get, and the question of what algorithm to use is raised.

Inspired by these simple approaches, we implemented a selection scheme where
each selected individual removes its k-nearest neighbours from the candidate pool
before a new individual is selected. The pseudocode for this selection process is
given in Algorithm 1.

Data: Population, GenerationSize, SurvivalRate
Result: Survivors

SurvivorCount ← GenerationSize × SurvivalRate

K ← b |Population|−SurvivorCountSurvivorCount c
Candidates ← Population
Survivors ← ∅

while |Survivors| < SurvivorCount do
Best ← Individual in candidates with the best fitness score
Survivors ← Survivors + Best
Candidates ← Candidates − Best
for i=1 to K do

NearestNeighbour ← individual in Candidates that is closest to Best
Candidates ← Candidates − NearestNeighbour

end

end

return Survivors

Algorithm 1: Selection Scheme: K-Nearest Neighbours. Note that the measur-
ing of distance follows Equations 3.6 and 3.5, with the set of Survivors as the
population, P in 3.5. Note also that this implementation is suboptimal in terms
of execution speed. It is used here to simplify the interpretation of the result.

This approach is quite similar to deterministic crowding, differing mainly in the
incremental formation of crowds. Each crowd is centred on the best individual in
the remaining candidates, and the only concern is the distance to this particular
individual. We have not found any good reasons for taking into account the
distance between individuals that will not be included in the set of survivors.
Hence, it makes sense to centre the groupings on specific individuals after they

3.3. SELECTION SCHEMES 37

have been chosen for survival and minimise the sum of distances to the selected
individual within the groupings.

3.3.4 Contribution to Diversity as an Objective

Inspired by de Jong et al. [2001], we wanted to employ a selection scheme to GA
which uses diversity measures directly as an objective. Its architecture and the
motivation behind the choices made throughout its development are described in
this section.

Measures of Contribution to Diversity

The first question to address was how to quantify an individual’s contribution
to diversity. Under the construction of the algorithm, we were especially torn
between two measures: distance to closest neighbour (Equation 3.7) and average
distance to all selected individuals (Equation 3.8).

CD(c, Survivors) = min
s∈Survivors

Dist(c, s) (3.7)

CD(c, Survivors) =
∑

s∈Survivors
Dist(c, s) (3.8)

CD(c, Survivors) : Candidate c’s contribution to diversity, given already-
selected survivors.

Survivors : Individuals that have already been selected for survival.

c : Arbitrary candidate for survival selection.

de Jong et al. [2001] used the average distance to all other individuals as a measure
of contribution to diversity. Lozano et al. [2008], on the other hand, used the
distance to the closest neighbour as the measure of an individual’s contribution to
diversity. Their steady-state implementation uses a replacement scheme where
each new individual eliminates the individual with the lowest contribution to
diversity among the individuals with a worse fitness score than itself, given that
the lowest-scoring individual has a lower contribution to diversity than the new
one. If not, the new individual replaces the worst individual in the population,
given that it scored better than the worst individual in terms of fitness.

38 CHAPTER 3. ARCHITECTURE

From Equations 3.7 and 3.8, it follows that the selection process is incremental.
For each individual that is selected for survival, the remaining individuals’ con-
tributions to diversity must be re-evaluated, taking the newly selected individual
into account. This makes for a time-consuming selection process as the number

of individuals rises. Its run time is O
(

(n−1)!
(n−a)!

)
, where n is the number of individ-

uals and a is the number of individuals in the final selection. Consequently, this
scheme is rational to apply only when fitness testing is far more time consuming
than the GA.

Figure 3.1: Illustrates two scenarios where shortest distance and average distance
will lead to different decisions, when selection is done considering the contribution to
diversity.

Figure 3.1 illustrates two scenarios where shortest distance and average distance
will lead to different decisions. In the first scenario, (a), the individual on the left
clearly contributes more to the diversity of the population than the candidate on
the right. However, choosing the candidate on the left partially inhibits further
exploration around the neighbour of the candidate on the right. However, in
the second scenario, (b), the opposite seems to be the case. We consider the
candidate on the right to contribute more since it is almost as far away from its
nearest neighbour as the candidate on the left, and since its nearest neighbour is
an exploring candidate itself.

Using shortest distance, there are only two ways in which an exploring individual
can produce successful offspring. The first is to find a solution that replaces itself.
The second is to make big leaps in solution space to get a high contribution to
diversity even when its parent is still alive. That being said, such examples might
not make much sense in a solution space with 100 dimensions, or even 10 for that
matter.

3.4. IMPLEMENTATION 39

Weighing Contribution to Diversity against Fitness

In Section 3.3.2, we discussed how distance between two individuals can ben-
efit from being normalised with respect to each gene and the different values
represented within the population. In the case of weighing CD against fitness,
normalisation is at least as important. Difference in magnitude for these mea-
sures is likely to be huge. The most natural solution in this case is the equivalent
of the normalisation factor expressed by Equation set 3.5. In other words, the
size of the range of values present in the set of remaining candidates. However, in
the case of contribution to diversity, we know the minimum possible value, which
is 0, and we therefore substitute gmin with 0. The multi-objective score for an
individual is then simply calculated by adding them together with CD multiplied
by a user defined weight, as expressed by Equation 3.9.

Score(c, normFitness, normCD) =
Fitness(c)

normFitness
+ α

CD(c)

normCD
(3.9)

The weight, α, will have a significant impact on the behaviour of the algorithm
and is therefore subject to fine-tuning. Algorithm 2 shows the pseudocode for
this selection scheme.

3.4 Implementation

This section presents an overview of the implementation of the GA and the system
used to test and display various aspects of the GAs. We will explain how the
huge amount of data will be managed and how this data will be used for different
types of visualisations in the GUI.

3.4.1 Genetic Algorithm

In order to compare multiple versions of our own algorithm both to one another
and to other well-known algorithms, we have implemented an easy mouldable core
to which it is easy to add any number of different operators and selection schemes.
The core of the GA is the glue which holds the different modules together.

Figure 3.2 is a simple illustration of what this core looks like. From the figure
we can see the core needs a ParentSelector, a set of Operators, a Phenotyper, a
Tester and a SurvivalSelector. All these components are interfaces consisting of

40 CHAPTER 3. ARCHITECTURE

Data: Population, GenerationSize, SurvivalRate, Weight
Result: Survivors

SurvivorCount ← GenerationSize × SurvivalRate
Candidates ← Population
Survivors ← ∅
s ← Individual in Candidates with best fitness score
for c in Candidates do

c.CD ← +∞
end

while |Survivors| < SurvivorCount do
for c in Candidates do

c.CD ← Min(c.CD, Dist(c, s))
end

normFritness ← Range in fitness among Candidates
normCD ← Range in CD amond Candidates

bestScore ← −∞
for c in Candidates do

score ← Score(c, normFitness, normCD)
if score > bestScore then

bestScore ← score
s ← c

end

end

Survivors ← Survivors + s
Candidates ← Candidates − s

end

return Survivors

Algorithm 2: Selection Scheme: Diversity as Objective. Note that the measur-
ing of distance follows Equations 3.6 and 3.5, with the set of Survivors as the
population, P in 3.5. Note also that this implementation is suboptimal in terms
of execution speed. It is used here to simplify the interpretation of the result.

one or two methods each. In Figure 3.2 there are three operators; however, any
number of operators is possible. We found the unlimited number of operators to

3.4. IMPLEMENTATION 41

Figure 3.2: A state diagram of the GA implementation giving an overview of the
structure and illustrating how the modules interact during a generation step of the GA.

be quite useful because it made it possible to test many different combinations of
operators without having to change the code in between each test. Figure 3.4b
in Section 3.4.2 shows the benefit of this architecture during testing.

The operator interface contains a single method: ApplyOperator, which takes
as parameters the parents, a mutation vector and a crossover vector. Both the
mutation vector and the crossover vector are as long as the genome and start out
containing only zeros. Each operator changes these vectors as they are applied,
and finally the vectors are used along with the parent genomes to create the
genome of the offspring, as depicted by Figure 3.3.

Each number in the final crossover vector dictates from which parent the gene
should be taken, with the number being the parent’s index in the parent array.
A ”0” on the i’th place in this vector means that the i’th gene of the offspring
should be taken from the first parent in the parent array. After the child genome
has been put together from values in the parents’ genomes, the mutation vector
is simply added to the genome vector.

3.4.2 Graphical User Interface and Data Management

As mentioned in Section 1.3, we wanted to have a system for data management
and visualisations of the data from different runs of the EA implementation.

42 CHAPTER 3. ARCHITECTURE

Figure 3.3: Illustration of how the mutation vector, the crossover vector and the
parents’ genomes are used to construct the offspring.

This system was achieved by implementing a web server. A web server provided
us with a simple way of creating the GUI through HTML and CSS and some
JavaScript. By using an existing web framework, we could easily connect the
server to a database for storing, managing and serving the vast amounts of data
generated by the GA. Storing all this data made it possible to generate tables,
graphs and different types of visualisations from different runs of the GA.

The code for the web server is completely separated from the GA implementation
mentioned in Section 3.4.1. The only integration the GA implementation needed
was a way to receive tasks from the web server. This was done by connecting
the GA implementation to TCP sockets hosted by the server. The task which
is assigned is effortlessly created in the GUI, as shown in Figure 3.4b. Here we
have taken advantage of the highly mouldable core of our GA implementation
by using check boxes to enable the different modules discussed in the previous
section. Here we can also define the modules’ respective parameters.

We also implemented a method for queueing multiple tasks with different module
settings for the GA; this is shown in Figure 3.4a. As seen here there are some
check boxes to specify what kind of data should be stored from the run in the
database and how often. For example, in Figure 3.4a, the checkboxes for Age and
Fitness are checked and will be included every 10 generations from the GA. Both
having this queue of tasks and connecting GAs through TCP sockets enabled
us to take advantage of multiple computers running the GA implementation
by connecting them to the server. This made it less time consuming to do the
required testing and experimenting with the GA. We have created a video showing
how the process of creating a new setup for an GA, and also how a task can be
queued: http://folk.ntnu.no/thafveli/createEA

3.4. IMPLEMENTATION 43

(a) Illustrates how tasks can be queued in the GUI

(b) Modifying the core of GA
through the GUI

Figure 3.4: Pictures from the GUI

3.4.3 Visualisation

For visualisation we have implemented multiple methods of inspecting the GA
implementation. In this section, we will discuss the most important visualisa-
tion tools used. A description of other visualisation tools created is included in
appendix A.2, a set of videos from the GUI can also be found in the appendix A.1.

The main view of the GUI is a very basic list of all the runs of the GA. Here we
have created methods enabling us to easily separate different runs with different
settings and see how well they performed. We also implemented a graph tool
where we can view the parameters for each generation which were selected when
queueing the tasks. The graph tool will be used to present some of the results

44 CHAPTER 3. ARCHITECTURE

in the next chapter. Here we will also discuss the different types of parameters
which can be inspected.

Advanced Visualisation

For more advanced inspection of how the GA implementation behaves in the
solution space, a method enabling us to inspect the genomes of the best individual
and that individual’s ancestors was implemented. This visualisation shows how
the genome moves in the solution space for each ancestor of the best individual.
It works by mapping the genome of each individual to a two-dimensional plane
where the genomes are grouped together in pairs. The odd-indexed genes are
then given a position on the x-axis of the plane, and the even-indexed genes get
a position on the y-axis. For example, a real-valued genome g = [0.1, 0.2, 0.4, 0.5]
would be mapped as two points in the two-dimensional plan, placed at [0.1, 0.2]
and [0.4, 0.5].

Figure 3.5: Advanced visualisation through the GUI, showing how the best individ-
ual’s and its ancestors’ genomes move in solution space.

In Figure 3.5, a screenshot taken from the GUI shows how this visualisation
looks. The figure shows the genome of one individual trying to optimise the

3.5. TECHNOLOGY 45

20-dimensional Rosenbrock function. Therefore, it is possible to see 10 small
coloured dots, one dot showing the placement of a pair of genes. The visualisation
also shows a big circle around the dots; this symbolises the mutation step size,
σ, for that particular gene pair. The mutation step-size circle is visible only for
GAs using the adaptive mutation scheme presented in Section 3.2.1.

In the background of the visualisation, we render a black-and-white heat plot
of the benchmark function, where black symbolises minimums of the function.
Figure 3.5 clearly shows the distinctive valley-shaped contours of the Rosenbrock
function, which also can be seen in the 3D heat plot of Rosenbrock in Figure 4.1b
in the next chapter.

3.5 Technology

In this section, we will summarise the different technologies used for the imple-
mentation.

3.5.1 Go Programming Language

For the GA implementation, we wanted to use a language that could easily pro-
vide us with a concurrent environment so we could exploit the parallel architec-
ture of modern computers. We therefore chose Go Programming Language.

Go Programming Language (Golang) [Pike, 2009] provides a concurrency through
simple primitives. This makes it easy to construct streaming data pipelines that
make efficient use of both the I/O and all CPUs.

3.5.2 Sails.js Server

As mentioned earlier, we wanted to separate the EA implementation from the
GUI and storage. We decided to use the Sails.js framework, which runs on
Node.js, for the server. The reasoning behind this was that we were familiar with
this framework, it is simple to set up, it is flexible and it provides many powerful
extensions for data storage.

46 CHAPTER 3. ARCHITECTURE

3.5.3 MongoDB

To manage the vast amounts of data sent from each generation of the EA, we
utilised MongoDB, which is a schemaless database providing fast storage and
search. The schemaless property was an important criterion because it made it
easy and less time consuming to create and change schemes for the data stored
in the database.

Chapter 4

Experiments and Results

In this chapter, we will present the experimental setup and the results obtained
from various tests of the architecture suggested in chapter 3. In Section 4.1,
we present the different tests that have been conducted and the setup for each
of them. In Section 4.2, the setup of our implementations of the GA will be
presented, along with three other GA implementations and their respective setup.
Finally, in Section 4.3, the results achieved for each of the GA implementations
will be presented.

4.1 Test Setup

To address the goals and research questions defined in 1.2, we have implemented
21 common mathematical benchmark functions for optimisation problems, as well
as two more-practical problems: pole-balancing problem and robot arm. In this
section, we will discuss the selected tests and their setup.

4.1.1 Test Functions

An important criterion for the test functions is the ability to compare results to
that of similar algorithms in related work. For this reason, we have implemented
21 common test functions for optimisation. These test functions provide insight
into the general performance of different algorithms, as well as into what types of
functions a particular algorithm is more or less befitting. Furthermore, because

47

48 CHAPTER 4. EXPERIMENTS AND RESULTS

(a) 2 Dimensional Griewank (b) 2 Dimensional Rosenbrock

Figure 4.1: Landscape of mathematical benchmark functions

the fitness landscape of each one these functions is known, they are also quite
useful for analytical purposes.

The most widely used optimisation problems for GA are multimodal functions
like Ackley, Griewank, Levy and Rastrigin. Although these functions have a gen-
eral decrease towards their global minimum, they are difficult because they do
not decrease monotonically towards the minimum. This can be seen in the figure
presenting the fitness landscape of Griewank, Figure 4.1a. The global optimum
is easily spotted, and there is a general decrease of function value towards it, but
there are no monotonically decreasing paths to it. Functions like Rosenbrock,
Beale, Booths and Matyas, on the other hand, do have paths towards the mini-
mum on which the function value decreases monotonically. This can be seen in
the figure presenting the fitness landscape of Rosenbrock, Figure 4.1b. However,
their challenge is to coordinate the change in one gene to the change in the other
gene that is used in the function. Last but not least, there are functions that
have quite specific challenges related to them. Among these are Easom, Step
and Bunkin. For instance, Easom’s fitness landscape is flat everywhere but for a
small area around π in which the function value drops to zero.

In Tables 4.1 and 4.2, we have listed the selected test functions, all of which
were obtained from Jamil and Yang [2013]. We have split the table into some
categories to separate the different types of landscape they have.

Many Local Minima

Name Function D Range

f1 Ackley f(x) = 20 + e− 20 exp

(
− 0.2

√
1
n

D∑
i=1

x2i

)
100 −5 ≤ x, y ≤ 5

f2 Ackley 2D f(x, y) = −20 exp
(
−0.2

√
0.5 (x2 + y2)

)
− exp (0.5 (cos (2πx) + cos (2πy))) + e+ 20 100 −5 ≤ x, y ≤ 5

f3 Bukin N.6 f(x, y) = 100
√
|y − 0.01x2|+ 0.01 |x+ 10| . 50

−15 ≤ x ≤ −5 −3 ≤
y ≤ 3

f4 Cross-in-tray f(x, y) = −0.0001

(∣∣∣∣sin (x) sin (y) exp

(∣∣∣∣100−
√
x2+y2

π

∣∣∣∣)∣∣∣∣+ 1

)0.1

100 −10 ≤ x, y ≤ 10

f5 Eggholder f(x, y) = − (y + 47) sin
(√∣∣y + x

2
+ 47

∣∣)− x sin
(√
|x− (y + 47)|

)
10 −512 ≤ x, y ≤ 512

f6 Griewank f(~x) = 1
4000

D∑
i=1

(xi − 100)2 −
D∏
i=1

cos

(
xi−100√

i

)
100 −600 ≤ x ≤ 600

f7 Hölder table f(x, y) = −
∣∣∣∣sin (x) cos (y) exp

(∣∣∣∣1− √x2+y2π

∣∣∣∣)∣∣∣∣ 100 −10 ≤ x, y ≤ 10

f8 Levy f(x) = sin2(πw1) +
d−1∑
i=1

(wi − 1)2(1 + 10sin2(πwi + 1)) + (wd − 1)2(1 + sin2(2πwd))

wi = 1 + xi−1
4

100 −10 ≤ x ≤ 10

f9 Rastrigin f(~x) =
D∑
i=1

(x2i − 10 cos(2πxi) + 10) 100 −5.12 ≤ x ≤ 5.12

f10 Schaffer N. 2 f(x, y) = 0.5 +
sin2(x2−y2)−0.5

(1+0.001(x2+y2))2
10 −100 ≤ x, y ≤ 100

Bowl-Shaped

Name Function D Range

f11 Sphere f(x) =
∑n
i=1 x

2
i 100

−∞ ≤ xi ≤ ∞, 1 ≤
i ≤ n

Table 4.1: Definition of the benchmark functions, and the range of the parameters used for testing of the implementation.
Column D defines the dimensionality used when testing, if nothing else is specified

Plate-Shaped

Name Function D Range

f12 Booth’s f(x, y) = (x+ 2y − 7)2 + (2x+ y − 5)2 100 −10 ≤ x, y ≤ 10

f13 Matyas f(x, y) = 0.26
(
x2 + y2

)
− 0.48xy 100 −10 ≤ x, y ≤ 10

f14 McCormick f(x, y) = sin (x+ y) + (x− y)2 − 1.5x+ 2.5y + 1 50
−1.5 ≤ x ≤ 4, −3 ≤
y ≤ 4

Valley-Shaped

Name Function D Range

f15 Three-hump f(x, y) = 2x2 − 1.05x4 + x6

6
+ xy + y2 100 −5 ≤ x, y ≤ 5

f16 Rosenbrock f(x) =
∑n−1
i=1

[
100

(
xi+1 − x2i

)2
+ (xi − 1)2

]
20

−∞ ≤ xi ≤ ∞, 1 ≤
i ≤ n

Steep Ridges/Drops

Name Function D Range

f17 Easom f(x, y) = − cos (x) cos (y) exp
(
−
(
(x− π)2 + (y − π)2

))
100 −100 ≤ x, y ≤ 100

Other

Name Function D Range

f18 Beale’s f(x, y) = (1.5− x+ xy)2 +
(
2.25− x+ xy2

)2
+
(
2.625− x+ xy3

)2
40 −4.5 ≤ x, y ≤ 4.5

f19 Goldstein–Price f(x, y) =
(
1 + (x+ y + 1)2

(
19− 14x+ 3x2 − 14y + 6xy + 3y2

))(
30 + (2x− 3y)2

(
18− 32x+ 12x2 + 48y − 36xy + 27y2

)) 30 −2 ≤ x, y ≤ 2

f20 Step
D∑
i=1

b|xi|c 100 −100 ≤ x ≤ 100

f21 Styblinski–Tang f(x) =
∑n
i=1 x

4
i−16x2i+5xi

2
100

−5 ≤ xi ≤ 5 1 ≤ i ≤
n

Table 4.2: Definition of the benchmark functions and the range of the parameters used for testing of the implementation. Column D defines the dimensionality
used when testing, if nothing else is specified

4.1. TEST SETUP 51

Dimensionality

One advantage with the use of mathematical test functions is that the dimension-
ality of the problems are easily changed. We will primarily use 100 dimensions
for the benchmark functions; however, for some of the test functions, we have
decreased the number of dimensions. The reason for this is that we wanted to
bring about the most interesting results. Consequently, whenever none of the
implementations were able to get close to the global optimum, we decreased the
number of dimensions until at least one of them did. This was done to retrieve
more interesting data from the test functions. Column D of Tables 4.1 and 4.2
defines the dimensionality that was used for the runs of the respective function,
but we might specify otherwise for specific runs.

Increasing and decreasing the difficulty is not the only benefit of being able to
change the number of dimensions to the problem. One can also test the robustness
of an algorithm on different dimensionalities in general. Some algorithms are
more capable of solving problems of different dimensionality than others, and
some algorithms have input parameters that can be changed to adapt to different
types of problems and different numbers of dimensions.

Rotation of Solution Spaces

A general disadvantage of using the mathematical test functions defined in Ta-
bles 4.1 and 4.2 is that most of them are separable for each gene, or for each
pair of genes. All values for a specific gene, or pair of genes, have a specific
contribution to the fitness score regardless of the state of the rest of the genome.
In other words, it is possible to solve the problem for one or two dimensions at
a time and find the global optimum this way. However, by rotating the solution
space, this possibility is lost, and the contribution to fitness that results from
changing the value of a gene is dependent upon the values of all the other genes
as well. Figure 4.2 is a simple illustration of how changing the value of a gene
affects more than one parameter in the final rotated solution and consequently
how the optimal value of either of the two genes change with the value of the
other gene. With randomised rotation, 100 dimensions and many local optima
along each axis, the dependencies between genes at different points in the solution
space would, of course, be much more complex.

52 CHAPTER 4. EXPERIMENTS AND RESULTS

(a) (b)

Figure 4.2: Illustration of how rotation of the solution space can turn a separable
problem into a non-separable problem. and represent the values of Gene1 and
Gene2, while and represent the corresponding values applied in the final solution
after rotation. Simply imagining the problem is to minimize the sum of each solution
value is sufficient to see that the effect of a change to Gene2 is dependent upon the
value of Gene1, and vice versa. Changing the value of Gene2 from zero to one bares no
effect on the fitness of the solution, as 0.707 + 0.707 = 1.414. In a more complicated
scenario with local optimums along each axis, the dependency is even stronger.

To achieve the equivalent of a rotated solution space, the vector solution of an
individual is rotated with a rotation matrix which was created under the ini-
tialisation of the search. The rotation matrix rotates a vector of 1s to a vector
whose values are taken randomly from the uniform distribution between -1 and
1, U(−1, 1) and then normalised to be of the same length as the vector of 1’s.

4.1.2 Pole-Balancing Problem

Pole balancing is a problem with a more practical grounding than the mathe-
matical optimisation functions, and it comes from the field of ANN and control
theory [Brownlee, 2005]. The problem consists of a cart and an inverted pendu-
lum (pole). While the cart is restricted to move on the horizontal axis, the pole is
connected to the top of the cart and pivots freely around its point of connection.
The goal is to balance the pole for as long as possible by applying a horizontal
force to the cart.

4.1. TEST SETUP 53

The control system of the pole-balancing problem is a closed feedback loop with
four input parameters and two output parameters. The four real-valued parame-
ters, θ, θ̇, x and ẋ, make up the input. θ is the angle of the pole, θ̇ is the angular
velocity of pole, x is the position of the cart and ẋ is the velocity of the cart.
The controller outputs two parameters, o1 and o2, which are used as shown in
Section 4.1.2 to determine the force, Ft, applied to the cart. sgn is a function
that returns -1 if its input is less than zero, 1 if its input is greater than zero and
0 if its input is zero. The resulting force is aligned with the cart and affects its
movement along the x-axis.

∆o = o1 − o2

Ft =

{
Fmax ∗ sgn(∆o) if |∆o| > 0.2
0 otherwise

} (4.1)

Symbol Definition Value
g Gravity 9.81m/s2

d Test Duration 600s
τ Time step size 0.02s⇒ 50Hz
h Track limit 2.4m
r Pole failure angle 12 degrees
mc Mass of cart 1kg
mp Mass of pole 0.1kg
lp Pole length 0.5m

Fmax Max force 1N

Table 4.3: Pole balancing variables

The cart’s position and velocity, as well as the angle and the angular velocity of
the pole, are updated using the discrete time function defined by Section 4.1.2,
where t defines the current time step and τ is the size of the time steps. The
discrete time function requires both the acceleration of the cart and the angular
acceleration of the pole; these are calculated following Section 4.1.2. The system
also requires a set of constants, which are presented in Table 4.3.

54 CHAPTER 4. EXPERIMENTS AND RESULTS

xt+1 = xt + τ ẋt
ẋt+1 = ẋt + τ ẍt
θt+1 = θt + τ θ̇t
θ̇t+1 = θ̇t + τ θ̈t

(4.2)

θ̈t =
g sin θt + cos θt

(−Ft−mplθ̇2t sin θt
mc+mp

)
l
(
4
3 −

mp cos2 θt
mc+mp

)

ẍt =
Ft +mpl

⌊
θ̇2t sin θt − θ̈t cos θt

⌋
mc +mp

(4.3)

The fitness score of the pole-balancing problem is set to the number of times the
actor fails to balance the pole during the test. A test lasts for 10 minutes, but
if an actor fails 200 times before the time has run out, the number of fails will
be estimated based on the performance so far. Whenever the angle of a pole is
more than θ, determined by the number of times the pole’s angle θ > r during
the duration, d, of the test, the test is reset with a new random pole angle. If the
pole falls over more than a certain number of times, the test is terminated, and
the individual is assigned the projected number of failures it would have gotten
if the test had completed its duration. We also reset the test every 60 seconds,
giving the pole a new random start angle, to make sure the controller was able
to balance the pole in different situations.

To increase the difficulty, we have also conducted tests on the double pole-
balancing problem. Double pole balancing is a quite simple extension to the
balancing pole problem. In this extension, a second pole is to be balanced along
with the first. Although the second pole follows the same set of rules as the first,
it is shorter and will therefore fall faster than the first. A natural consequence of
adding the second pole is the introduction of two new parameters to the feedback
loop, θ2, the angle, and θ̇2, the angular velocity, for the second pole. Furthermore,
two static variables are required: the mass for the second pole, mp2 = 0.04kg,
and length of the second pole, lp2 = 0.2m. We also had to increase Fmax to be
2N because of the extra mass added by the second pole.

Artificial Neural Networks

We used an evolving artificial neural network (ANN) as the controller of the
pole-balancing feedback loop. To give a short summary of what an ANN is, it

4.1. TEST SETUP 55

is a system inspired by biological nervous systems. ANNs consist of a set of
interconnected nodes, called neurons, which work in parallel to solve a specific
problem. Each neuron has a set of inputs and outputs, called connections. The
output from a neuron to a connection is defined by the connection’s numeric
weight and the neuron’s activation function. This activation function produces
a numerical output, usually between 0 and 1, based on the input received. We
have used the Sigmodial activation function defined by Equation set 4.4.

SIt =
|IN |∑
i=1

wNiNi,t−1

yt = yt−1 + SI−yt−1+Bias
Tau

σ(y) = = 1
1+e−βy

(4.4)

We use a feed-forward ANN with layer base structure; this means the ANN is
divided into multiple layers of neurons, where each neuron is connected to all
neurons on the next layer. For the pole-balancing problem, only two layers were
required to get a perfect score on the test, the input layer and the output layer.

Genetic Representation

For each neuron that is not an input, three parameters are evolved: Bias in the
range [-3, 3], Tau in the range [1, 5] and β in the range [1, 10]. In addition, and
most importantly, the weight of each connection, wNi , is evolved in the range [-1,
1].

4.1.3 Robot Arm Function

Robot arm is a more practical problem commonly used in neural network litera-
ture [An and Owen, 2001]. It has been adapted to an optimisation problem which
consists of finding angles for joints and lengths for arm segments. The goal is
then to get the end of the arm is as close as possible to the target position; this be
seen in Figure 4.3. Each joint can take on any angle between 0 and 2π, and each
arm segment can take on a length between 0 and 1. Table 4.4 displays the input
parameters, which are directly mapped from the genome. The target position is
generated at the beginning of a search, as expressed by the set of Equations 4.5.

56 CHAPTER 4. EXPERIMENTS AND RESULTS

Figure 4.3: Robot arm with four segments. θ defines the angle between two joints,
while L gives the length of a segment. The goal is to change the θs and Ls so is
moved to

Symbol Definition Value
θi Angle of the i’th joint [0, 2π]
Li Lenght of the i’th arm segment [0, 1]

Table 4.4: Input Parameters for Robot Arm Function

Lt = 1 + r1(S − 1)

θt = r2π

xt = LtCos(θt)

yt = LtSin(θt)

(4.5)

r1 and r2 are taken randomly from the uniform distribution between 0 and 1. The
fitness score is simply the distance between the end of the arm and the target, as
shown in Figure 4.3. The Equation set 4.6 shows how the end position, x and y,
of the robot arm is calculated, as well as the final fitness score.

x =
∑n
i=1 LiCos

(∑i
j=1 θi

)
y =

∑n
i=1 LiSin

(∑i
j=1 θi

)
fitness =

√
(x− xt)2 + (y − yt)2

(4.6)

4.2. EXPERIMENTAL SETUP 57

4.2 Experimental Setup

We have selected a set of algorithms from the related work to implement and
compare our implementation with. The deciding factors when choosing the algo-
rithms to compare were their relation to the work of this thesis and also the results
presented in the paper. In this section, we present the selected algorithms, the
reason why we selected them and the parameter values used when testing them.

To get a fair comparison of the different algorithm implementations, we have
set the number of offspring per generation to be the same for all of them. This
implies that all algorithm implementations do the same number of fitness evalua-
tions each generation, which enables us to see the robustness of the different GA
implementations. Each of the implementations has a population size of 100 indi-
viduals at the start of each generation step and performs 100 fitness evaluations
to test new offspring for each generation step.

Adaptive Mutation Only (AM)

In the GA setting marked AM, we use the adaptive mutation scheme described
in Section 3.2, alongside somewhat regular GA settings. For recombination we
use N-point crossover, and for parent selection we use roulette selection with
nonlinear ranking, given by the Section 3.3.1, with α = 0.02.

During survival selection, we simply selected the best individuals with no ex-
ceptions. This implies 100% elitism. The number of survivors is set to 100%
of the number of individuals created each generation, which corresponds to 100
survivors when the generation size is 100. In other words, of the 100 survivors of
the previous generation and the 100 newly created offspring, 100 will survive to
make up the parent pool in the next generation. For the rate of adaptation, we
found τ = 1.5 to give the best results, although up to 3 seems to give somewhat
similar results.

Adaptive Mutation using K-Nearest (AM-KN and AM-KN*)

The difference between AM and AM-KN is the selection scheme used during
the selection of survivors each generation. While AM uses the simplest selection
scheme possible, AM-KN makes an effort to maintain diversity within the pop-
ulation by using the selection scheme discussed in Section 3.3.3. As with AM,
AM-KN also has 100 survivors, which is the same as the number of offspring
created each generation.

58 CHAPTER 4. EXPERIMENTS AND RESULTS

We have also created a different setup for AM-KN as an effort to push the speed
of convergence to a level comparable with that of AM; we will refer to this as AM-
KN*. This setup uses the same parameters as AM-KN except for the parameter
controlling the selection pressure during parent selection, α in Section 3.3.1, which
is set to 0.05. We also increased τ to 2.5 for the mutation operator.

Differential Evolution (DE)

Differential evolution (DE), which was discussed Section 2.1.6, is one of the algo-
rithms we chose to compare ourselves with. This is a very interesting implemen-
tation because of the mutation vector it utilises, which shares some similarities
with our implementation; this will be investigated more closely in Section 5.1.
The results presented on the mathematical benchmarks in Storn and Price [1997]
are also quite good.

DE requires only two parameters to be defined: the amplification factor of the
differential variation, F , and the crossover rate, CR. We used the recommended
initial values for these, which are

F = 0.5
CR = 0.9

Self-Adaptive Differential Evolution (SA-DE)

In Section 2.2.2, we presented the self-adaptive differential evolutionary (SA-DE)
algorithm. This is a very interesting implementation because of its simplicity, and
the results it achieved on the mathematical optimisation problems are very good.
Overall, SA-DE is the most impressive algorithm we have seen in our study of the
field in terms of results relating to both robustness, speed, and simplicity. And
as mentioned before, DE also shares many similarities with our implementation.
Therefore, SA-DE was an obvious choice to compare our implementation with.

SA-DE has taken advantage of self-adaptive parameter control for the two pa-
rameters required for DE. Therefore, the only parameters which are required for
SA-DE are the range that CR and F can take on, including the change rate for
both of them. We used the same settings as defined in Brest et al. [2006], where
cr =change rate:

Fcr = 0.1, Fmin = 0.1, FMax = 1

CRcr = 0.1, CRmin = 0, CRmax = 1

4.3. RESULTS 59

Standard Evolutionary Algorithm (SEA)

We also implemented a more classical form of EA for comparison. As inspiration
for appropriate mutation settings, we looked to Ursem [2002]. Here they use
time- and range-scaled Gaussian mutation as expressed in Equation 4.7, where t
is the number of generations passed since the search began. The starting value of
the global mutation size parameter is set to 10% of the user-defined range, which
is presented in Tables 4.1 and 4.2 for each gene individually. For recombination
we used N-point crossover with the same settings as AM. For both parent and
survival selection, we used the same settings as AM except for an elitism of 10%
as opposed to 100%.

σ =
1√
t+ 1

(4.7)

4.3 Results

This section presents the results of various tests and experiments. We start out
by displaying the results relating to the general performance of the implementa-
tions. Then we show the results of some tests regarding specific aspects, such as
convergence speed, diversity and the adaptation of the control parameters.

4.3.1 Test Functions

Table 4.5 shows the average score after 5000 generations. The score is averaged
over 100 independent runs for each of the GA implementations. The number
written in parentheses is the standard deviation of the average score. The results
written in bold blue are roughly estimated the best results achieved for that
function. By roughly estimated we mean the results with the lowest exponent;
for example 0.02 has the exponent -2, while 0.002 has the exponent -3 and is thus
a better result. But a score of 0.009 will still be roughly estimated to be as good
a result as 0.002.

60 CHAPTER 4. EXPERIMENTS AND RESULTS

SEA DE SA-DE AM AM-KN AM-KN*
f1 0.90 (0.06) 0.60 (3.24) 1e-14 (2e-15) 9e-3 (0.09) 7e-15 7e-15
f2 12.7 (0.93) 1.80 (2.24) 1e-16 (7e-16) 2.31 (2.44) 0 0.62 (1.28)
f3 74.1 (7.70) 133 (27.1) 1.29 (3.27) 0.69 (0.08) 21.7 (15.2) 3.42 (1.57)
f4 0.09 (0.02) 0.04 (0.09) 2e-6 (1e-5) 0.06 (0.10) 2e-3 (0.02) 0.03 (0.07)
f5 431 (182) 68.8 (79.4) 2e-4 230 (129) 2e-4 (1e-5) 39.2 (63.7)
f6 0.47 (0.03) 1e-3 (3e-3) 7e-5 (7e-4) 4e-3 (0.02) 7e-5 (7e-4) 2e-3 (4e-3)
f7 7.64 (4.67) 133 (21.1) 0.13 (0.04) 1.23 (1.92) 0.20 (0.73) 0.52 (1.24)
f8 0.53 (0.94) 1.03 (0.88) 5e-3 (0.04) 6.31 (3.53) 0.41 (0.86) 4.33 (3.36)
f9 90.5 (7.66) 531 (128) 5e-16 (5e-15) 77.3 (12.3) 31 (6.12) 53.8 (9.25)
f10 3e-6 (2e-6) 0.19 (0.12) 0 3e-3 (3e-3) 1e-5 (9e-5) 7e-5 (3e-4)
f11 7.89 (0.72) 2e-17 (2e-17) 2e-46 (3e-46) 9e-61 (1e-60) 2e-39 (2e-39) 1e-67 (2e-67)
f12 5.70 (0.64) 5e-8 (3e-8) 4e-12 (2e-12) 3e-25 (2e-25) 6e-18 (8e-18) 7e-30 (3e-30)
f13 0.62 (0.07) 8e-5 (4e-5) 2e-5 (9e-6) 4e-10 (2e-10) 2e-7 (5e-7) 2e-15 (1e-15)
f14 3.67 (3.30) 1.69 (2.27) 0.97 (1.88) 5.06 (4.60) 0.46 (1.19) 4.83 (4.29)
f15 2.32 (0.71) 1.04 (0.50) 0.40 (0.35) 4.84 (0.99) 1.80 (0.65) 4.43 (1.00)
f16 75.2 (48.5) 0 0.03 (0.36) 55.4 (132) 21.6 (25.2) 36 (82.2)
f17 18 (1.57) 11 (0.95) 10.5 (0.98) 3.44 (1.61) 1.68 (1.24) 0.71 (0.96)
f18 4.31 (1.67) 0.12 (0.28) 0.03 (0.14) 4.16 (2.39) 1.05 (0.80) 3.96 (1.98)
f19 156 (104) 9.08 (26.1) 8.35 (15.3) 333 (125) 57.4 (45.6) 292 (113)
f20 0 0.36 (1.13) 0 0 0 0
f21 167 (46.7) 192 (44.1) 1.03 (3.67) 151 (42.7) 23.4 (15.2) 144 (45.5)

Table 4.5: Results from the mathematical benchmark functions, averaged over 100
independent runs. The numbers in parentheses denote the standard deviation. Results
written in bold blue are the best results for that particular function.

4.3.2 Convergence Speed and Robustness

Table 4.6 shows the success rate of each of the GA implementations. We choose
to exclude SEA from this table because of a very low success rate on most of the
mathematical benchmarks. How often the GA achieves a satisfying result gives
an indication of how robust the algorithm is. We have defined a satisfying result
on the test functions as whenever an individual has a genome vector, G, for which
Equation 4.8 holds true. This equation measures the Manhattan distance of the
genome, G, to the global optimum, O, when the range of the gene, rangei, is
taken into consideration; this distance has to be less than 10−5.

1

|G|
∑
i∈G

|gi −Oi|
rangei

<
1

105
(4.8)

The table also includes the speed of the GA compared to the other implementa-
tions. This is noted in parentheses as a multiple of the best GA implementation’s

4.3. RESULTS 61

speed. The speed is defined by the average generation where the GA completed
the successful runs. Column G denotes the generation which the best GA com-
pleted. The algorithm which has the best speed, which is 1, is written in bold
red .

We can clearly see in Table 4.6 that SA-DE has the best success rate, while AM-
KN* has the greatest speed. The trade-off between speed and success rate will
be evaluated and discussed in the next chapter. We have also included in Figure
4.4 four fitness plots of some of the benchmark functions to give an overview of
the speed and robustness of each the GA implementations throughout the run.
All the fitness plots are log10 scaled on the y-axis to give a better overview of the
fitness plot.

DE SA-DE AM AM-KN AM-KN* Best
f1 97% (3.5) 100% (1.8) 99% (1.2) 100% (1.5) 100% (1) 619
f2 50% (3.9) 100% (2) 40% (1.2) 100% (1.3) 80% (1) 505
f3 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 5000
f4 68% (7.2) 85% (8.5) 73% (1) 19% (7.9) 81% (1.3) 537
f5 39% (3.5) 100% (3) 3% (1) 100% (2.3) 54% (1.5) 449
f6 90% (3.3) 99% (1.6) 85% (1.2) 99% (1.6) 83% (1) 640
f7 0% (0) 0% (0) 66% (1) 84% (3.9) 84% (2) 948
f8 4% (3.3) 98% (1.5) 0% (0) 65% (1.7) 3% (1) 697
f9 0% (0) 100% (1) 0% (0) 0% (0) 0% (0) 3548
f10 1% (4.9) 100% (2.7) 41% (2.4) 98% (1.3) 95% (1) 980
f11 100% (3.2) 100% (1.7) 100% (1.1) 100% (1.6) 100% (1) 630
f12 100% (3.4) 100% (2.5) 100% (1.4) 100% (1.8) 100% (1) 1181
f13 0% (0) 0% (0) 100% (1.5) 67% (1.8) 100% (1) 2695
f14 59% (3.5) 75% (2.4) 28% (1.4) 86% (1.5) 23% (1) 416
f15 5% (1.9) 27% (1) 0% (0) 0% (0) 0% (0) 1278
f16 100% (1) 99% (1.5) 0% (0) 0% (0) 0% (0) 2187
f17 0% (0) 0% (0) 3% (1.6) 18% (1) 53% (2.1) 1891
f18 85% (1.5) 95% (1.5) 1% (1.1) 19% (1) 0% (0) 2497
f19 85% (1.8) 74% (2.3) 0% (0) 16% (1) 0% (0) 697
f20 74% (4.3) 91% (1.8) 100% (1.1) 100% (1.3) 100% (1) 218
f21 0% (0) 94% (1) 0% (0) 18% (1.1) 0% (0) 954

Table 4.6:
Success rate from the mathematical benchmark functions, averaged over 100 indepen-
dent runs. Values written in bold blue are the best success rate for that particular
function. The numbers in parentheses define the speed of the implementation in com-
parison to the others, where the values written in bold red are the greatest speed
achieved. Column ”Best” defines the average generation where the implementation with
the greatest speed completed.

62 CHAPTER 4. EXPERIMENTS AND RESULTS

SEA DE SA-DE AM AM-KN AM-KN*

(a) 100D Griewank (f6) (b) 100D Styblinski–Tang (f21)

(c) 100D Matyas (f13) (d) 20D Rosenbrock (f16)

Figure 4.4: Fitness graphs for four of the benchmark functions, averaged over 10 in-
dependent runs. The y-axis denotes the log10 scaled fitness value for the best individual
in the population, whilst the x-axis defines the generation.

4.3.3 Different Problem Sizes

To get a good perspective of the robustness of a GA, we tested all the GA im-
plementations on different problems sizes for many of the benchmark functions.
In Table 4.7, we have included the results when running the benchmark func-
tions on 30 dimensions, and in Table 4.9, the results from running some of the
benchmarks on 200 dimensions are shown. We excluded the functions where we
already had to adjust the dimensionality to get any of the GA implementations
find the global optimum. In Tables 4.8 and 4.10, the related success rate and
speed table for 30 and 200 dimensions are included. All the tables are averaged

4.3. RESULTS 63

over 100 independent runs.

SEA DE SA-DE AM AM-KN AM-KN*
f1 0.10 (9e-3) 3e-15 3e-15 3e-15 3e-15 3e-15
f2 0.39 (0.04) 0 0 0.13 (0.56) 0 8e-15 (3e-14)
f4 4e-4 (8e-5) 0 0 0 0 0
f6 0.02 (6e-3) 0 0 2e-3 (5e-3) 2e-3 (3e-3) 4e-3 (6e-3)
f7 0.04 (7e-3) 28.9 (8.42) 1e-3 (1e-14) 1e-3 (3e-10) 1e-3 (4e-6) 1e-3 (1e-6)
f8 2e-3 (3e-4) 1e-32 (5e-48) 1e-32 (5e-48) 1e-32 (5e-48) 1e-32 (5e-48) 1e-32 (5e-48)
f9 0.38 (0.05) 78.4 (22.9) 0 10.4 (3.17) 1.34 (0.79) 4.23 (2.37)
f11 0.04 (8e-3) 2e-55 (2e-55) 1e-104 (3e-104) 6e-195 5e-148 (1e-147) 2e-51 (8e-51)
f12 0.03 (8e-3) 4e-32 (2e-31) 6e-31 (2e-30) 0 0 0
f13 3e-3 (7e-4) 5e-21 (5e-21) 2e-22 (4e-22) 5e-30 (3e-30) 5e-26 (2e-25) 4e-49 (5e-49)
f15 0.03 (0.09) 4e-53 (7e-53) 6e-95 (2e-94) 0.87 (0.35) 0.07 (0.13) 0.69 (0.33)
f20 0 0 0 0 0 0
f21 11.3 (13.9) 2.83 (8.48) 0 8.48 (9.38) 0 7.07 (11.4)

Table 4.7: Results from running 30 dimensions on some of the mathematical bench-
mark functions, averaged over 100 independent runs. The numbers in parentheses
denote the standard deviation. Results written in bold blue are the best results for
that particular function.

SEA DE SA-DE AM AM-KN AM-KN* Best
f1 0% (0) 100% (2.9) 100% (2.3) 100% (1.3) 100% (1.1) 100% (1) 312
f2 0% (0) 100% (3.1) 100% (1.7) 95% (1.7) 100% (1) 100% (1.1) 299
f4 0% (0) 100% (20.9) 100% (8.1) 100% (1) 100% (7.7) 100% (1.4) 181
f6 0% (0) 100% (2.9) 100% (2.2) 80% (1.3) 75% (1.3) 65% (1) 309
f7 0% (0) 0% (0) 100% (4.8) 100% (1) 100% (3.4) 100% (1.2) 545
f8 0% (0) 100% (3.6) 100% (2.3) 100% (1.5) 100% (1.4) 100% (1) 290
f9 0% (0) 0% (0) 100% (2.3) 0% (0) 15% (1) 0% (0) 597
f11 0% (0) 100% (2.9) 100% (2.5) 100% (1.6) 100% (1.2) 100% (1) 281
f12 0% (0) 100% (3.1) 100% (2.7) 100% (1.5) 100% (1.6) 100% (1) 422
f13 0% (0) 100% (2.2) 100% (2.2) 100% (1.6) 100% (1.8) 100% (1) 958
f15 0% (0) 100% (3.3) 100% (2.7) 0% (0) 75% (1.6) 5% (1) 301
f20 100% (1.6) 100% (4.9) 100% (2.5) 100% (1.1) 100% (1.3) 100% (1) 69
f21 0% (0) 90% (5.9) 100% (2.1) 50% (1) 100% (1.4) 70% (1) 199

Table 4.8: Success rate from running 30 dimensions on some of the mathematical
benchmark functions, averaged over 100 independent runs. Values written in bold
blue are the best success rate for that particular function. The numbers in parentheses
define the speed of the implementation in comparison to the others, where the values
written in bold red are the greatest speed achieved. Column ”Best” defines the
average generation where the implementation with the greatest speed completed.

64 CHAPTER 4. EXPERIMENTS AND RESULTS

SEA DE SA-DE AM AM-KN AM-KN*
f1 2.20 (0.08) 2.26 (4.08) 5e-8 (2e-7) 2e-12 (9e-13) 4e-6 (9e-7) 4e-13 (2e-13)
f2 63.9 (2.91) 38 (11.8) 0.13 (0.56) 4.24 (3.34) 9e-11 (3e-11) 3.92 (2.98)
f4 1.00 (0.18) 0.96 (0.42) 0.01 (4e-3) 0.37 (0.24) 0.06 (0.04) 0.22 (0.20)
f6 1.10 (7e-3) 6e-3 (0.01) 0.01 (0.02) 3e-3 (6e-3) 1e-9 (3e-10) 2e-3 (4e-3)
f7 91.6 (18.4) 290 (27.8) 20.8 (2.84) 12.7 (5.19) 3.97 (3.22) 6.48 (4.22)
f8 11.4 (4.89) 12.2 (3.83) 0.16 (0.22) 28.5 (7.88) 5.56 (3.99) 29.7 (7.49)
f9 440 (20) 812 (441) 72.7 (14.1) 201 (24.1) 106 (11.4) 172 (17.9)
f11 69.5 (4.81) 2e-5 (1e-5) 3e-24 (9e-24) 1e-21 (1e-21) 6e-9 (3e-9) 3e-23 (3e-23)
f12 44.7 (3.30) 0.09 (0.03) 9e-5 (5e-5) 2e-9 (4e-10) 8e-3 (4e-3) 2e-12 (9e-13)
f13 4.37 (0.38) 0.21 (0.04) 0.04 (8e-3) 5e-4 (1e-4) 0.96 (0.67) 6e-6 (2e-6)
f20 7.25 (1.04) 17.4 (11.6) 0.1 (0.44) 0 0 0

Table 4.9: Results from running 200 dimensions on some of the mathematical bench-
mark functions, averaged over 100 independent runs. The numbers in parentheses
denote the standard deviation. Results written in bold blue are the best results for
that particular function.

SEA DE SA-DE AM AM-KN AM-KN* Best
f1 0% (0) 5% (3.1) 100% (1.2) 100% (1.1) 100% (1.9) 100% (1) 1486
f2 0% (0) 0% (0) 95% (1.2) 10% (1) 100% (1.5) 20% (1) 1096
f4 0% (0) 0% (0) 0% (0) 20% (1) 0% (0) 25% (1.2) 1353
f6 0% (0) 80% (2.7) 90% (1) 80% (1.1) 100% (2) 80% (1) 1544
f7 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 15% (1) 4271
f8 0% (0) 0% (0) 55% (1) 0% (0) 0% (0) 0% (0) 1642
f9 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 5000
f11 0% (0) 100% (2.8) 100% (1) 100% (1.1) 100% (2.1) 100% (1) 1474
f12 0% (0) 0% (0) 0% (0) 100% (1.2) 0% (0) 100% (1) 2815
f13 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 5000
f20 0% (0) 5% (4) 95% (1) 100% (1.2) 100% (1.4) 100% (1) 599

Table 4.10:
Success rate from running 200 dimensions on some of the mathematical benchmark
functions, averaged over 100 independent runs. Values written in bold blue are
the best success rate for that particular function. The numbers in parentheses define
the speed of the implementation in comparison to the others, where the values written
in bold red are the greatest speed achieved. Column ”Best” defines the average
generation where the implementation with the greatest speed completed.

4.3.4 Rotated Solution Space

As discussed in Section 4.1.1, we wanted to test the robustness of the GA imple-
mentations when the problems were nonseparable by rotating the solution space.
Table 4.11 shows the results from these runs, while Table 4.12 displays the speed

4.3. RESULTS 65

and success rate. Both tables are averaged over 100 independent runs and utilise
the same formatting as defined previously.

For most of the benchmarks, both the speed and the success rate of the different
GAs are somewhat similar to what we showed in Table 4.6. But we can see there
are some benchmark functions where all the GA implementations failed to find
the global optimum, and the results are quite bad, with a very high standard
deviation.

SEA DE SA-DE AM AM-KN AM-KN*
f1 1.62 (0.09) 1e-9 (1e-9) 1e-14 (2e-15) 0.20 (0.42) 7e-15 7e-15
f2 27.1 (4.06) 12.1 (6.40) 7.23 (4.83) 36.3 (9.86) 2.72 (2.92) 22.6 (8.36)
f3 1207 (348) 971 (316) 1034 (311) 1247 (312) 1046 (359) 1079 (287)
f6 0.71 (0.04) 6e-4 (2e-3) 7e-5 (7e-4) 7e-4 (3e-3) 3e-11 (4e-11) 4e-4 (2e-3)
f8 1.38 (0.82) 0.80 (0.64) 0.76 (0.64) 6.67 (3.33) 0.26 (0.33) 3.45 (1.88)
f9 210 (41.6) 828 (23.2) 391 (39.6) 593 (324) 887 (24.7) 867 (22.8)
f11 8.27 (0.52) 2e-17 (1e-17) 2e-46 (9e-47) 9e-61 (3e-60) 2e-39 (3e-39) 2e-67 (4e-67)
f12 6.89 (0.85) 6e-8 (4e-8) 1e-11 (1e-11) 7e-22 (1e-21) 1e-17 (1e-17) 3e-28 (6e-29)
f13 1.02 (0.10) 1e-4 (4e-5) 3e-5 (2e-5) 1e-8 (6e-9) 2e-7 (1e-7) 9e-13 (4e-13)
f16 1138 (2610) 3.93 (16.4) 5.46 (17.3) 984 (2698) 142 (707) 248 (1251)
f17 23.4 (0.57) 23.8 (0.20) 23.4 (0.35) 23.7 (0.24) 23.8 (0.22) 23.8 (0.23)
f18 9.10 (3.85) 0.79 (1.11) 3.56 (1.95) 5.82 (2.17) 1.92 (1.48) 5.15 (2.07)

Table 4.11: Result from the mathematical benchmark functions with rotated solu-
tion space, averaged over 100 independent runs. The numbers in parentheses denote
the standard deviation. Results written in bold blue are the best results for that
particular function.

66 CHAPTER 4. EXPERIMENTS AND RESULTS

SEA DE SA-DE AM AM-KN AM-KN* Best
f1 0% (0) 100% (3) 100% (1.5) 81% (1.3) 100% (1.6) 100% (1) 680
f2 0% (0) 1% (1.9) 2% (1) 0% (0) 36% (1) 0% (0) 1260
f3 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 5000
f6 0% (0) 93% (2.8) 99% (1.8) 92% (1.1) 100% (2.3) 95% (1) 947
f8 0% (0) 3% (2.1) 10% (1.2) 0% (0) 35% (1) 0% (0) 1490
f9 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 5000
f11 0% (0) 100% (3.2) 100% (1.4) 100% (1.1) 100% (1.6) 100% (1) 611
f12 0% (0) 100% (3.2) 100% (2.3) 100% (1.4) 100% (1.7) 100% (1) 1266
f13 0% (0) 0% (0) 0% (0) 100% (1.5) 14% (1.6) 100% (1) 3108
f16 0% (0) 68% (1) 23% (1.1) 0% (0) 0% (0) 0% (0) 4436
f17 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 5000
f18 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 5000

Table 4.12: Success rate from the mathematical benchmark functions with rotated
solution space, averaged over 100 independent runs. Values written in bold blue are
the best success rate for that particular function. The numbers in parentheses define
the speed of the implementation in comparison to the others, where the values written
in bold red are the greatest speed achieved. Column ”Best” defines the average
generation where the implementation with the greatest speed completed.

4.3.5 Pole-Balancing Problem

In Table 4.13, the results of the pole-balancing problem for each of the GA
implementations are shown. The table uses the same formatting as we defined
for Table 4.5. The score given corresponds to the number of fails during the 10-
minute simulation, or an approximation of the number of fails if it reached 200
fails before 10 minutes had passed. A more thorough description of the testing
was given in Section 4.1.2.

Table 4.14 shows the success rate and speed of each of the GA implementations.
The table uses the same formatting as defined for Table 4.6, apart from the success
rate, which is not a rough estimate. To have a successful run, the individual had
to be able to balance the pole throughout the whole test.

We ran four different types of the pole-balancing problem, each having a different
difficulty level. All the parameters for the test, such as cart weight, pole length
and max force, were defined in Section 4.1.2. The four different tests are described
as follows:

p1.1 = This is the simplest test. Here it is required to balance only a single pole,
and the input neurons are mapped directly to the output neurons.

p1.2 = Same test as p1.1, except that we have included one hidden layer with four
neurons. This makes the test harder because the genome of the individual

4.3. RESULTS 67

becomes longer, making it difficult to evolve the parameters because of the
ANN’s nonseparable nature.

p2.1 = This test requires the individuals to be able to balance two poles with
different lengths, as defined in Section 4.1.2. The input neurons are mapped
directly to the output neurons. This test is harder than p1.1 because it both
has more input neurons and requires more precision.

p2.2 = This test also includes two poles. It is similar to p1.2 in that we have
included one hidden layer, but the hidden layer in this case has six neurons.
Having both two poles and a hidden layer makes this test the most difficult.

SEA DE SA-DE AM AM-KN AM-KN*
p1.1 0 0 0 1.84 (12.6) 0 0
p1.2 10.9 (38.2) 0 3.92 (23.1) 22.1 (52.1) 0 2.08 (14.6)
p2.1 10.1 (47.8) 0 0 0.06 (0.42) 0 0.54 (2.56)
p2.2 92.3 (176) 484 (86.6) 565 (42.7) 146 (207) 280 (205) 23 (46.3)

Table 4.13:
Results from running single and double pole-balancing problem, with different num-
bers of hidden layers. Scores are averaged over 50 independent runs. The numbers in
parentheses denote the standard deviation. Results written in bold blue are the best
results for that particular setup.

SEA DE SA-DE AM AM-KN AM-KN* Best
p1.1 100% (1.2) 100% (2.6) 100% (3.7) 96% (1.3) 100% (1.5) 100% (1) 12
p1.2 92% (1) 100% (4.3) 92% (5) 84% (1.5) 100% (2.6) 98% (1) 58
p2.1 90% (1.3) 100% (1.9) 100% (3.8) 98% (1.1) 100% (1.2) 92% (1) 70
p2.2 6% (1.2) 0% (0) 0% (0) 9% (1) 0% (0) 12% (1.1) 386

Table 4.14: Success rate for 50 runs of the different pole-balancing tests. Values
written in bold blue are the best success rate for that particular function. The
numbers in parentheses define the speed of the implementation in comparison to the
others, where the values written in bold red are the greatest speed achieved. Column
”Best” defines the average generation where the implementation with the greatest speed
completed.

4.3.6 Robot Arm Function

Table 4.15 displays the results of the 4 (r4), 8 (r8) and 16 (r16) segmented robot
arm. The scores are averaged over 100 independent runs. The formatting of the
table is the same as in Table 4.5, with the roughly estimated result written in
bold blue .

68 CHAPTER 4. EXPERIMENTS AND RESULTS

SEA DE SA-DE AM AM-KN AM-KN*
r4 1e-5 (2e-5) 2e-7 (4e-7) 1e-4 (1e-4) 5e-6 (5e-5) 3e-6 (7e-6) 3e-6 (9e-6)
r8 8e-6 (1e-5) 2e-4 (6e-4) 2e-4 (1e-4) 9e-3 (0.09) 2e-4 (4e-4) 1e-4 (2e-4)
r16 3e-3 (0.03) 4e-3 (3e-3) 2e-4 (2e-4) 4e-5 (3e-4) 2e-3 (2e-3) 8e-3 (0.06)

Table 4.15: Results from running 4-, 8- and 16-segmented robot arm, averaged over
100 independent runs. The numbers in parentheses denote the standard deviation.
Results written in bold blue are the best results for that particular setup.

SEA DE SA-DE AM AM-KN AM-KN* Best
r4 0% (0) 0% (0) 20% (4.6) 98% (1) 10% (2) 21% (3.1) 445
r8 0% (0) 9% (4.5) 0% (0) 97% (1) 49% (2.3) 36% (2.8) 1056
r16 0% (0) 0% (0) 0% (0) 68% (1.1) 4% (1) 5% (1.1) 2665

Table 4.16: Success rate and speed from running 4-, 8- and 16-segmented robot arm,
averaged over 100 independent runs. The numbers in parentheses define the speed of
the implementation in comparison to the others, where the values written in bold red
are the greatest speed achieved. Column ”Best” defines the average generation where
the implementation with the greatest speed completed.

Table 4.16 presents the success rate and speed for all the robot arm tests. The
speed and success rate are calculated in the same manner as discussed in Sec-
tion 4.3.2.

We can clearly see AM outperforms the other GA implementations in speed,
success rate and results. The reason is to some extent the phenotype and genotype
representations of the solutions, which will be discussed in the next chapter,
Section 5.1.5.

4.3.7 Diversity

In order to get a picture of the type of exploration that results from different
implementations, we have graphed the mean of the distance between individuals
and their closest neighbours in the population for two of the benchmark functions.
It is worth mentioning that the plot of both mean distance and max distance
between individuals are very similar to the minimum distance; therefore, and
because we have used the minimum distance in our selection schemes, we chose
to plot only the minimum distance. The calculation of the distance between two
individuals follows Equation 4.9, where range(g) is the user defined range for gene
g.

4.3. RESULTS 69

SEA DE SA-DE AM AM-KN AM-KN*

(a) Minimum distance for 100D Hölder ta-
ble (f7)

(b) Fitness for 100D Hölder table (f7)

(c) Minimum distance for 100D Ackley
(f1)

(d) Fitness for 100D Ackley (f1)

Figure 4.5: The graphs on the left, (a) and (c), show the average distance between
each individual and its closest neighbour. Their respective fitness graphs, (b) and (d),
are on the right. For (a) and (c) the y-axis defines the log10 scaled minimum distance
between individuals. For (b) and (d) the y-axis defines the log10 scaled fitness score.
All the graphs are averaged over 10 independent runs.

Dist(x, y) =
∑
g∈G

|Xx,g −Xy,g|
range(g)

(4.9)

Figure 4.5 shows the fitness plot both of Ackley (f1) and Hölder table (f7)
(Figures 4.5a and 4.5c) in comparison to the measured minimum distance from

70 CHAPTER 4. EXPERIMENTS AND RESULTS

every selected individual to its closest neighbour (Figures 4.5b and 4.5d). Both
of the plots are averaged over 10 independent runs of the Hölder table (f7)
benchmark function and log10 scaled along the y-axis.

One can clearly see that the distance plot of Hölder table (f7) is distinctly dif-
ferent from its fitness plot, while Ackley (f1) has strong similarities between the
plots. This is likely caused by the landscape of the benchmark function. f1 has
one global optimum, while f7 has four global optimums, one in each corner of
the search space. Having global optimums in each corner gives a high minimum
distance if the same genes for two separate individuals are placed in different
optimums, even though the fitness is decreasing. For f1, on the other hand, all
the genes comes closer and closer to the same optimum, causing the minimum
gene distance to decrease at the same rate as the fitness score.

Unique Gene Values

Table 4.17 displays statistics about the number of unique gene values for each
gene that coexists within the population. The number of unique gene values in
a population, P , for any given gene, g, is calculated following Equation set 4.10.
Although these equations suggest that the statistics are based upon the actual
number of unique genes, it would be just as correct to view these values as the
percentage of the maximum possible number of unique genes per gene. This is
because the number of individuals in the population, P , happens to be 100 for
all the measurements.

Unique(P, g) =
|P |∑
i=1

UniqueV al(i, g)

UniqueV al(i, g) =

{
0 if ∀(j < i) Xi,g = Xj,g

1 otherwise

} (4.10)

Xi/j,g: The i’th/j’th individuals’ value for gene g.

P : The population of individuals.

4.3. RESULTS 71

AM AM-KN
Mean SD Min Max Mean SD Min Max

Meangen 17.23 3.59 8.73 26.80 27.09 4.23 16.85 38.09
Mingen 14.48 1.90 2.00 21.00 23.64 1.76 10.00 31.00

(a) 10 runs of 100D Sphere (f11) (1000 Generations). The average fitness result was
1.2e-08 (Min: 6.2e-09) for AM, and 2.9e-4 (Min: 1.6e-4) for AM-KN

SEA DE SA-DE
Mean SD Min Max Mean Min Mean Min

Meangen 20.84 3.92 11.59 31.21 99.80 98.87 99.92 99.49
Mingen 17.34 2.90 4.00 25.00 94.07 75.00 97.28 85.00

(b) 10 runs of 100D Sphere (f11) (1000 Generations). The average fitness result was
101 (Min: 84.7) for SEA, 6.5 (Min: 4.5) for DE, and (2.0e-05, 7.6e-06) for SA-DE.

AM AM-KN
Mean SD Min Max Mean SD Min Max

Meangen 15.72 5.10 2.92 26.68 17.70 6.70 3.03 30.97
Mingen 6.71 2.38 1.00 14.00 8.64 2.34 1.00 18.00

(c) 10 runs of 100D Hölder table (f7) (2500 Generations). The average fitness result
was 0.59 (Min: 4.9e-3) for AM, and 0.60 (Min: 6.2e-3) for AM-KN

SEA DE SA-DE
Mean SD Min Max Mean Min Mean Min

Meangen 16.06 4.63 5.84 28.04 40.96 1.41 60.24 41.72
Mingen 12.75 2.85 1.00 21.00 5.24 1.00 28.62 5.00

(d) 10 runs of 100D Hölder table (f7) (2500 Generations). The average fitness result
was 52.0 (Min: 30.7) for SEA, 131.9 (Min: 102.6) for DE, and 9.8 (Min: 6.0) for SA-DE.

Table 4.17: These tables display the statistics on the number of unique gene values
per gene within the population. The numbers from which these statistics are generated
are calculated following Equation set 4.10. The first row presents the statistics averaged
over all generations in ten distinct runs. The second row shows the minimum values
experienced for each of these statistics over the course of the runs. For the particularly
interesting cells we have used a bold font, and the cells that are mentioned in the text
are coloured blue .

72 CHAPTER 4. EXPERIMENTS AND RESULTS

There are several interesting points to note about these tables, and we have used
bold font and colour for the values we found particularly interesting. On Sphere
(f11), for instance, AM-KN has an average number of unique gene values per
gene that is 27.09/17.23 = 1.57 times higher than that of AM. And the average of
the minimum number of unique values found for a gene is 16.85/8.73 = 1.93 times
larger for AM-KN than AM, while for the maximum it is only 38.09/26.80 = 1.42
times higher. DE and SA-DE have practically no nonunique gene values in the
population for a typical generation during runs of Sphere (f11). The average
minimum number of unique gene values for a gene in the genome is 98.87 for
DE and 99.49 for SA-DE, out of a total of 100 possible. Tables 4.17a and 4.17b
are definitely better representations of the average results showed for all test
functions. In fact, most of the other test functions have close to identical statistics
to that of Sphere (f11), and this can be seen in the extra tables we have included
in appendix A.3. Hölder table (f7) had the most deviant statistics, and we see
that the deviation is significantly larger for DE and SA-DE than for AM-KN.
Meanwhile, the average number of unique genes per gene is reduced only by
17.23 − 15.72 = 1.51 compared to that of Sphere (f11). Note that the average
minimum number of unique gene values for a gene is as low as 1.41 for DE on
Hölder table (f7). This is likely to be caused by the fact that if there is only
one value represented for a gene, then no mutation will ever occur to this gene
because of the population based mutation scheme in DE.

4.3.8 Adaptive Mutation

One of the actions we have taken to analyse the behaviour of the adaptive control
parameters has been to compare the contribution of mutation to that of crossover.
We mentioned in Section 3.2.2 that crossover will have an effect on the adaptation
of the control parameters. Whenever the value of a gene changes from parent to
child, the respective control parameter will adapt to the amount of change that
occurred.

Table 4.18 shows how the control parameters have adapted overall. It shows by
how much, and in which direction, each operator has influenced the adaptation.
Because the size of these parameters usually changes radically over the genera-
tions, we needed some way to normalise the changes so that all changes occurring
in any generation could be represented. We came to the conclusion that the best
way to do this was to divide each change by the average size of all the adaptive
parameters in the population before adaptation. It is, however, important to
note that changes that are big relative to the size of the respective parameter but
small relative to the average size of these parameters do not get the representa-
tion they deserve in Table 4.18. The columns in Tables 4.18a to 4.18d display

4.3. RESULTS 73

the following values:

%: The fraction of control parameters that were adapted during repro-
duction because of the respective operator(s).

% |Avg|: The fraction of the total magnitude of adaptation caused by the
respective operator(s).

%Avg: The fraction of the total directed change in the strategy parameters
caused by the respective operator(s).

%+: The fraction of adaptations caused by the respective operator(s)
that increased the size of the control parameter.

|Avg|: The average magnitude of change done to the strategy parameters
during adaptation caused by the respective operator(s).

Avg: The average value that was added to the strategy parameters during
adaptation caused by the respective operator(s).

If mutation and crossover both played a part in changing the value of a gene
during recombination, then the change will be included only in the last row.
That is to say that ”Mutation” means mutation alone, and ”Crossover” means
crossover alone. We realise that Table 4.18 might still be difficult to understand;
for this reason we have included a more extensive explanation of how these values
were calculated and why the overrepresentation of adaptation of large strategy
parameters was difficult to avoid in appendix appendix A.4.

% %|Avg| %Avg %+ |Avg| Avg
Total 44.88 100 100 43.21 41.08 -5.66

Mutation 1.38 3.33 4.4 40.89 44.37 -8.09
Crossover 35.79 78.55 70.75 44.53 40.45 -5.02
Combined 7.7 18.13 24.84 37.49 43.39 -8.19

(a) 10 runs of AM on 100D Sphere (f11) (1000 generations). Average fitness achieved:
1.9e-08 (Min: 8.4e-09).

% %|Avg| %Avg %+ |Avg| Avg
Total 49.48 100 100 45.72 44.33 -0.99

Mutation 1.52 3.51 -19.82 44.6 50.61 6.45
Crossover 39.73 77.2 186.11 46.39 42.63 -2.31
Combined 8.23 19.29 -66.27 42.73 51.4 3.99

(b) 10 runs of AM-KN on 100D Sphere (f11) (1000 generations). Average fitness
achieved: 2.3e-4 (Min: 1.3e-4).

74 CHAPTER 4. EXPERIMENTS AND RESULTS

% %|Avg| %Avg %+ |Avg| Avg
Total 42.78 100 100 44.15 24.99 -3.77

Mutation 0.04 0.16 0.49 35.48 39.1 -18.06
Crossover 34.15 80.37 70.99 45.64 25.16 -3.35
Combined 8.59 19.47 28.52 38.27 24.24 -5.36

(c) 10 runs of AM on 100D Hölder table (f7) (2500 generations). Average fitness
achieved: 0.59 (Min: 4.9e-3).

% %|Avg| %Avg %+ |Avg| Avg
Total 43.14 100 100 47.92 18.32 -3.92

Mutation 0.13 1.6 5.83 27.74 94.27 -73.83
Crossover 34.15 65.35 -17.96 49.51 15.12 0.89
Combined 8.85 33.05 112.15 42.1 29.51 -21.47

(d) 10 runs of AM-KN on 100D Hölder table (f7) (2500 generations). Average fitness
achieved: 1.6e-2 (Min: 5.2e-3).

Table 4.18: These tables show the contributions of mutation and recombination re-
garding the adaptation of the mutation step size for genes. The meanings of the different
rows and columns are presented in the text above (Section 4.3.8). Each table contains
data from 10 runs of AM or AM-KN on a single problem. Tables 4.18a and 4.18b con-
tain data from runs on Sphere (f11), while Tables 4.18c and 4.18d contain data from
runs on Hölder table (f7).

Notice that the percentage of change that was caused by mutation alone is signif-
icantly lower than what is expected with Pmut = 0.1 and less than 50% overall.
This percentage was expected to be at least 0.1 × 0.5 = 0.05 = 5%, given that
there are no advantages from combining mutation and crossover. But in all our
results, we see that this number is significantly lower than that, and for Hölder
table (f7) (Tables 4.18c and 4.18d), the average number of genes that are changed
only by mutation is as low as 0.04 for AM and 0.13 for AM-KN. However, it is
important to note that even though mutation alone represented only 0.13% of
all instances of change for AM-KN on Hölder table (f7), it was responsible for
5.83% of the total amount of directed change to the parameters. Another in-
teresting point is the tendency we see for the fraction of mutations that bring
about an increase in the step-size parameters. We mentioned in Section 3.2.1

that the expected fraction of values drawn from N (0,
√

2
π) that have an absolute

size greater than 1 is about 33%. For Hölder table (f7), the deviations from this

4.4. CONTRIBUTION TO DIVERSITY AS AN OBJECTIVE 75

expectation are small, but on Sphere (f11), there seems to be a significant devi-
ation with the fractions at 40.89% and 44.6%. We would also like to point out
that the direction in which each operator contributes the most is quite different
when the selection scheme that promotes diversity is used. On Sphere (f11),
which is more representative of the more common behaviour of the algorithms, it
is clear that for AM all operators contribute in all directions equally. That is to
say that the size of their contributions in the positive direction relative to those
in the negative direction is about the same. For AM-KN, on the other hand, we
see that where mutation is involved, there is an average directed impact on the
parameters that is opposite to the directed impact of crossover.

4.4 Contribution to Diversity as an Objective

In this section, we present some of the results of running the selection scheme
discussed in Section 3.3.4. We will refer to this implementation as AM-CD (adap-
tive mutation with contribution to diversity). We have chosen to present these
results in a separate section because the results showed that this scheme at the
very least needs alterations to be able to contribute with something that cannot
be gotten from the selection scheme proposed in Section 3.3.3.

AM-CD uses the same setup as AM, but it also requires a set of parameters for
the selection scheme. The weight, α, defined in Equation 3.9 was set to 1. The
number of survivors was 100, the same as the number of offspring created in a
generation.

Table 4.19 displays the success rate and speed of AM-CD in comparison with AM-
KN; this table uses the same formatting as defined for Table 4.5. See Section 4.3
for more details on the meaning and calculation of the results in these tables.

(a) 100D Sphere (f11) (b) 100D Hölder table (f7)

76 CHAPTER 4. EXPERIMENTS AND RESULTS

(c) 100D Ackley (f1) (d) Robot Arm with 4 segments.

Figure 4.6: These graphs show the average distance between each individual and its
closest neighbour in the population. is AM-CD, is AM-KN, and is AM-KN*.
The distance between two individuals is defined by Equation 4.9. The y-axis is the log10
scaled average minimum distance between individuals, and the x-axis is the generation
number.

AM AM-CD AM-KN AM-KN* Best
f1 99% (1.2) 100% (1.3) 100% (1.5) 100% (1) 619
f2 40% (1.2) 95% (1.1) 100% (1.3) 80% (1) 505
f3 0% (0) 0% (0) 0% (0) 0% (0) 5000
f4 73% (1) 93% (2.1) 19% (7.9) 81% (1.3) 537
f5 3% (1.8) 7% (1) 100% (4.1) 54% (2.7) 250
f6 83% (1.2) 90% (1.5) 99% (1.6) 83% (1) 640
f7 66% (1) 80% (2.3) 84% (3.9) 84% (2) 948
f8 0% (0) 33% (1.3) 65% (1.7) 3% (1) 697
f9 0% (0) 0% (0) 0% (0) 0% (0) 5000
f10 41% (2.4) 3% (2.2) 98% (1.3) 95% (1) 980
f11 100% (1.1) 100% (1.3) 100% (1.6) 100% (1) 630
f12 100% (1.4) 100% (1.7) 100% (1.8) 100% (1) 1181
f13 100% (1.5) 13% (1.8) 67% (1.8) 100% (1) 2695
f14 28% (1.4) 63% (3.1) 86% (1.5) 23% (1) 416
f15 0% (0) 0% (0) 0% (0) 0% (0) 5000
f16 0% (0) 0% (0) 0% (0) 0% (0) 5000
f17 3% (1.6) 25% (2.4) 18% (1) 53% (2.1) 1891
f18 1% (1.1) 5% (1.6) 19% (1) 0% (0) 2497
f19 0% (0) 0% (0) 16% (1) 0% (0) 697
f20 100% (1.1) 100% (1.1) 100% (1.3) 100% (1) 218
f21 0% (0) 8% (1) 18% (1.2) 0% (0) 839
r4 98% (1) 43% (1.5) 10% (2) 21% (3.1) 445
r8 97% (1) 95% (1.1) 49% (2.3) 36% (2.8) 1056
r16 68% (1.1) 85% (1) 4% (1) 5% (1.1) 2638

Table 4.19: Success rate of AM-CD in comparison to AM-KN, averaged over 50
independent runs. Values written in bold blue show the best success rate for that
particular function. The numbers in parentheses define the speed of the implementation
in comparison to the others, where the values written in bold red are the greatest speed
achieved. Column ”Best” defines the average generation where the implementation with
the greatest speed completed.

Chapter 5

Evaluation and Conclusion

This chapter concludes this report. In Section 5.1, we start by evaluating the
data presented in the previous chapter.Section 5.2 concludes the work of this
thesis with a retrospective on the research question presented at the beginning.
Then at the end, Section 5.3, we will investigate potential future work.

5.1 Evaluation

Looking back at the research questions defined in Section 1.2, the main goal
was to utilise information in genomes of individuals to improve guesses for the
evolutionary algorithms. This goal has been achieved by using both a gene-
specific mutation rate and a diversity-guided selection scheme for the GA, which
were discussed in Chapter 3. In this section, we will evaluate the results achieved
by this method in comparison to the other implementations presented in the
previous chapter. We will endeavour to explain the results from Chapter 4 and
investigate important properties of the GA, such as robustness and speed of
convergence.

5.1.1 Robustness

As predicted in Section 3.3, our adaptive mutation scheme needs to be comple-
mented with a selection scheme that rewards diversity in order to solve many
of the test functions, and it seems that AM-KN has a big contribution in that

77

78 CHAPTER 5. EVALUATION AND CONCLUSION

respect. However, AM is able to solve more problems than we expected, and
when it does find the global optimum, it does so in fewer fitness evaluations than
most of the other implementations almost every time. This can be seen in Table
4.6.

(a) AM gene trapped at local optimum on
Griewank (f6)

(b) AM-KN gene trapped at local opti-
mum on Beale’s (f18)

Figure 5.1: Illustrates two scenarios where the mutation step size decreases to such
an extent that it is impossible for the genes to escape local optimums

Through investigation of what types of benchmarks AM is able to solve, we found
that most of the benchmark functions shared the common property of having
only one global optimum. This category includes problems such as Sphere (f11),
Booth’s (f12) and Matyas (f13). We suspect that the reason for this is because of
the way our mutation operator converges to optimums, which we will investigate
more closely in Section 5.1.2.

AM is often able to find the global optimums of problems such as Griewank (f6)
and Schaffer N. 2 (f10), which have multiple local optimums. This can be seen in
Table 4.6. However, to find out what happened when AM converged prematurely,
we used the advanced visualisation tool mentioned in Section 3.4.3. Here we saw
a tendency that was not so unexpected; one or more of the genes were trapped
in a local optimum because of a very small mutation step size for the respective
gene(s). This tendency is illustrated in Figure 5.1a, which is taken from the
visualisation tool running 100 dimensions of Griewank (f6). All the genes except
one have flocked around the global optimum, while the last gene is trapped at a
local optimum with a close-to-zero mutation size parameter. It is clear that this
mutation size is not sufficient to move to a better value for this gene in a single
mutation.

5.1. EVALUATION 79

In Table 4.5, we see that the robustness of AM-KN is close to that of SA-DE.
However, it falls short of SA-DE on somewhat distinct types of functions. While
SA-DE finds the global optimum for Rastrigin (f9), Levy (f8) and Beale’s (f18),
progress stagnates for AM-KN. We can only speculate as to why that is, but
an investigation into how AM-KN failed, using the advanced visualisation tool,
showed the same tendencies as AM had. One or two genes were simply stuck
at the wrong value, with really small values for the mutation operator. Figure
5.1b displays such an example for AM-KN running the Beale’s (f18) benchmark.
One can clearly see that one gene pair is stuck at a local optimum with a very
small mutation step size, while the rest of the genes have found the area of the
global optimum. The whole ancestral history can be viewed as a video here:
http://folk.ntnu.no/thafveli/beale.

All the mathematical test functions presented in Tables 4.1 and 4.2 share a quite
specific feature which poses a threat to most adaptive search algorithms. The
fitness of a particular genome is the sum of the individual scores for each gene,
or pair of genes. Consequently, genes, or gene pairs, are quite often in a state of
the search where the size of potential gains in fitness is a lot smaller than the size
of potential losses. By being concerned only with cutting losses due to mutation
of genes that have already acquired a good value, an adaptive algorithm might
prematurely dial down the mutation of the respective gene or genes to such an
extent that they are rendered incapable of escaping local minimums once the
other genes have caught up with them in the search. This seems to be a bigger
problem for AM and AM-KN than for DE and SA-DE. A potential reason for
this is that DE never propagates good values for genes without changing them
first. Whenever two genomes are merged together in DE, the genes from the
first parent’s genome remain the same as they were, while all genes from the
other parent are mutated. Consequently, it is unlikely that even a single pair of
individuals within the population has a single identical-valued gene. This can
be seen in Table 4.17b, which displays the statistics on the number of unique
gene values during the run of the function Sphere (f11). Each individual has to
find the same optimum through this combination of mutation and crossover in
order for there to be convergence at a single optimum. For AM and AM-KN, on
the other hand, if only a single individual fine-tunes a good value inside a local
optimum, it is possible for this value to propagate to the entire population. The
reason for this is that mutation vectors can be removed from the population if
they are unable to produce viable offspring. All mutation vectors might share
a single ancestor from only a few generations back. In fact, tests showed that
the number of steps back in the chain of ancestors one has to take to find the
first common ancestors was often as low as 20, even when the total number of
ancestors in the chain was over 1000. That is to say that the first 980 ancestors in
the chain of ancestors for each individual in the population were identical; their

80 CHAPTER 5. EVALUATION AND CONCLUSION

evolutionary paths differ only in the last 20 ancestors.

The number of unique genes is a type of diversity that is imperative for the
mutation operator in DE. We see that for almost any given generation in the
course of a search, there are as many different values for each gene as there are
individuals in the population. Since the mutation scheme in AM is not dependent
upon having a multitude of different values represented in the population, the
search speed can be improved by quickly sharing successful values. However, it
might be the case that this type of diversity is the main reason for the increased
robustness on the mathematical test functions.

Dimensionality

From Tables 4.7 and 4.9, it is clear that both AM and AM-KN are fairly robust
over a wide range of different problem sizes. However, as shown in Table 4.10, the
speed of convergence is not as impressive for 200 dimensions as it is for 30 and
100 dimensions when compared to that of SA-DE. We suspect that the constant
probability of mutation is the reason for this. For a larger set of dimensions,
this can result in too many simultaneous mutations for there to be a realistic
likelihood of success. If you throw a die a couple of times in your algorithm, you
can call it stochastic, but if you throw it a million times, then you have com-
pletely lost the element of surprise in the grand scheme of things. The sum of N
independent random variables from a given distribution has a standard deviation
that is only

√
N times bigger than the standard deviation of a single variable.

We point this out because it has consequences for our implementation. With
a constant mutation rate, the probability of gain in fitness quickly approaches
zero for larger genomes. Furthermore, AM’s ability to adapt through mutation
is decreased significantly. The expected size of the sum of adaptations during
a single reproduction is zero. And as the number of dimensions increases, the
standard deviation from this mean relative to the size of the mutation vector as
a whole approaches zero. This might be the reason why the speed of convergence
is less impressive for larger genomes. The first of these problems, the problem
of too much simultaneous mutation, would be solved by having an adaptation
scheme for the mutation rate as well, like SA-DE. This will be further discussed
in Section 5.3.1.

Rotated Solution Space

As discussed in Section 4.1.1, rotating the solution space can create a nonsepa-
rable problem out of an originally separable problem. Table 4.11 shows that for

5.1. EVALUATION 81

benchmark functions where both AM and AM-KN prematurely converge on the
nonrotated problem, it is even worse when the solution space is rotated. Fur-
thermore, the overall speed of convergence is lower. Both DE and SA-DE also
perform worse on these problems, but generally not to the same extent, and with
a lower standard deviation than that of AM and AM-KN.

In the rotated versions of these problems, a lot more of the genes in the genome
need to change simultaneously to make a leap in one of the two-dimensional
solution spaces within the rotated solution. Although it is not much to go by,
Table 4.12 shows that AM-KN is less reduced in its capability to solve these
problems than the others.

5.1.2 Speed of Convergence

The adaptive mutation operator proposed in this thesis has a significantly better
speed of convergence than SEA, DE and SA-DE. Table 4.6 in Section 4.3.2 illus-
trates this point. Notice that AM and AM-KN* are faster than DE and SA-DE
on every problem for which they find the global optimum. The number of fitness
tests needed to reach the goal defined in Section 4.3.2 is between 1.5 and 6.54
times lower for AM-KN* than for SA-DE whenever they both reach the goal.
Between AM-KN* and DE, and AM-KN* and SEA, this ratio is even higher.
For 30-dimensional versions of the problems, the gap is even larger. However,
as mentioned in Section 5.1.1, the speed of convergence relative to the other
implementations is not as impressive on the 200-dimensional problems.

An advantage AM, AM-KN and even SEA have in comparison to DE and SA-DE
in speed of convergence is the fact that both DE and SA-DE never propagate good
values for genes without changing them first. As mentioned in Section 5.1.1, this
trait is likely to increase the robustness for DE and SA-DE on the mathematical
benchmarks, but it is also likely to be the reason why AM and AM-KN* need
far fewer fitness evaluations to find the global optimum in many cases. Evidence
for this can be seen in all the fitness plots in Figure 4.4, where we see both DE
and SA-DE start out with less swift progress than the other implementations.
At the start of a run on a benchmark, the ability to trade good gene values is at
its highest. But it can also be a bad idea to focus on a set of values before the
entire solution space has gotten a fair exploration, so it can be both a blessing
and a curse.

Another advantage is the ability to increase selection pressure during parent
selection. While Self-Adaptive Differential Evolution (SA-DE) and DE, because
of their population-based mutation scheme, give all individuals the same number

82 CHAPTER 5. EVALUATION AND CONCLUSION

of reproductions, one can adjust the selection pressure on the more classical
implementations of GA and let the better individuals reproduce more frequently.

The fast convergence of AM can also be explained by the way the mutation
operator is constructed. When only the smaller changes to a gene’s value result
in successful individuals, the mutation step size of the respective gene decreases
in size. After some period of time, the algorithm usually ends up exploring
only a single optimum until it has found the bottom, or top, of this particular
optimum. As seen in the results, Table 4.5, this is a sufficient technique for
problems containing only one optimum, such as Sphere (f11), Booth’s (f12) and
Matyas (f13). AM is often the fastest to reach the goal, and on average it finds
the best solution after 5000 generations.

However, for problems with multiple local optimums, this technique becomes
more problematic. We can still see from the fitness plot for Hölder table (f7)
and Griewank (f6), Figures 4.4a and 4.5a, that AM is one of the fastest of
the implementations at the beginning of the run, but it sometimes converges
on the wrong optimum for one or two of the genes. Looking at the advanced
visualisation in Figure 5.2a for the problem Rastrigin (f9), we see that AM
quickly finds optimums close to the global optimum. And the mutation step
sizes decrease very rapidly when these local optimums are found, causing the
genes to be trapped in those optimums. The whole ancestral history can be
viewed as a video here: http://folk.ntnu.no/thafveli/rastrign. Although we see
the same tendency on functions like ackley and griewank, we suspect that it is not
a problem to the same extent, because of the general difference in depth of these
optimums and how quickly these local optimums are found. For Rastrigin (f9)
and Levy (f8), the differences in fitness score between the top of a peak and the
bottom of a valley are huge relative to the difference in fitness score between most
local optimums and the global optimum. This is not the case for problems like
Ackley (f1) and Griewank (f6), where there is a much stronger general decline
in function value towards the global optimum. Therefore, it is not surprising that
finding the bottom of a valley in Rastrigin (f9) quickly becomes more attractive,
while finding the correct optimum remains attractive for a longer period of time
on Ackley (f1) and Griewank (f6).

Including a selection scheme that promotes diversity to AM, as we have done
with AM-KN, slows down the speed of convergence to some degree but helps to
avoid premature convergence on many of the problems. The evidence of this can
be seen both in Table 4.6 and in the fitness graphs in Figure 4.4. This is not an
unexpected behaviour. Converging in general means doing smaller and smaller
increments of change. And increased diversity entails a larger overall distance
between individuals, which in turn has an effect on the sizes of change that occur
during crossover. Furthermore, the likelihood of survival when producing an

5.1. EVALUATION 83

individual that is similar to the parent is decreased, which leads to favouring of
higher mutation step sizes.

More surprising is the speed of convergence achieved by AM-KN*. When increas-
ing the selection pressure during parent selection, the stalling of convergence in
favour of a more diverse population lasts for shorter periods of time. From the re-
sults, we see that the speed of convergence is in general even greater for AM-KN*
than for AM. We speculate whether this is partially because the selection scheme
for survival promotes bigger leaps in solution space. In AM, going for no gain
at all through minimal change can be a successful strategy because individuals
that reproduce often are the ones with highest fitness to begin with, which might
result in passive search strategy. In AM-KN*, on the other hand, being close to
another individual is ultimately a bad thing because if an individual is the closest
neighbour of another individual, then it has to have a better fitness score than
that particular individual in order to survive. However, the impressive speed of
convergence might also be caused only by the increased selection pressure.

(a) AM converging at local optimums
running Rastrigin (f9)

(b) AM-KN slow convergence for
Hölder table (f7)

Figure 5.2: Visualisation of Convergence

An issue we found with the adaptive mutation scheme is the lack of conver-
gence when the test functions contain multiple global optimums. The genes
jump between the different global optimums when a crossover happens between
two individuals whose genes are in two different optimums. We could clearly
see this effect using the visualisation tool when running both AM and AM-KN
on Cross-in-tray (f4) and Hölder table (f7). Both of these functions have four
global optimums. Figure 5.2b shows a run with AM-KN on Hölder table (f7)
where the global optimums are located in each corner of the solution space. By

84 CHAPTER 5. EVALUATION AND CONCLUSION

looking at the ancestral history of the best individual, we could clearly see that
the GA finds the area of the global optimums, which happens quite fast. But the
jumping effect mentioned above results in very large mutation step sizes, making
it somewhat difficult for the population to converge. The whole ancestral history
can be viewed as a video here: http://folk.ntnu.no/thafveli/holdertable. The
jumping effect causes the mutation step size to increase, because the mutation
step size adapts to the distance the gene has moved from parent to offspring. An
increase in the expected size of the mutation makes it difficult for the population
to explore a single global optimum to find a better solution. Naturally, this is
especially a problem when promoting diversity. Although it is reasonable to keep
searching the space for better solutions at this type of range, since good solutions
already have proven to be this far apart from one another, it might be better to
give up the large change after a while so that convergence may occur. We should
say that some exploitation still occurs even for AM-KN and AM-KN*, but from
Table 4.6, we can see that the speed of these implementations compared to AM is
significantly lower. From Figure 4.5b, one can see that SA-DE maintains a very
high diversity throughout its runs on Hölder table (f7), and partially because of
this, it is much slower to converge and, as a result, never reaches the goal within
5000 generations. It is safe to assume that the high diversity is the result of
exploring more than one global optimum for many of the gene pairs.

5.1.3 K-Nearest Neighbours versus Contribution to Diver-
sity

From Table 4.19, we see that the selection scheme presented in 3.3.3, AM-KN, in
general performed better than the selection scheme put forth in 3.3.4, AM-CD.
Perhaps most surprisingly, AM-CD performed significantly worse on the pole-
balancing problem, while it did quite good on the robot arm problem.

We can only speculate why AM-CD is outperformed, but we are starting to
believe that despite all the problems with weighing fitness against contribution
to diversity, which will be discussed in Section 5.1.3, the real problem is that
increased diversity in many cases does not lead to continued progress towards
the goal. Some differences among genomes might simply be irreconcilable, and
others might be reconcilable but the reconciliation might not contribute to the
continued progress of the search. In biological evolution, there is such a thing as
a species, and it might be beneficial to use this term in EA as well.

Maintaining diversity contributes to increased robustness, but too much of it can
inhibit the algorithm’s capability to find any good solution at all. If a solution
does not bring about a viable offspring for some period of time, then perhaps

5.1. EVALUATION 85

it is best not to pursuit continued exploration of that particular location of the
solution space, at least not alongside the other coexisting individuals. This is
exactly what happens in AM-KN; diverse solutions are given second chances, but
because of the selection pressure during parent selection, each new generation is
denser in the areas with greater fitness. Consequently, a location in a solution
space that is inferior in terms of fitness is bound to be rejected eventually.

For the problems with multiple optimums, it seems that AM-CD performs quite
well compared to AM-KN and AM-KN*. For Cross-in-tray (f4), Hölder table
(f7) and the robot arm problem (r4, r8, r16), AM-KN has a hard time converging
because of the constant jumping between optimums. AM-CD does not seem to
be affected by this problem, or at least not to the same extent. In AM-KN an
individual’s survival depends on it not being the closest neighbour of a superior
individual, and the exact magnitude of the distance does not matter at all. For
individuals in AM-CD, it is less important whether it is the closest neighbour
and more important how close it is to its closest neighbour within the set of
survivors. In other words, the difference between being the closest and the second-
closest neighbour of a selected individual can have great significance in AM-KN,
even if the second-closest neighbour is almost as close as the closest neighbour.
Meanwhile, in AM-CD this would imply only a slight disadvantage, and the
disadvantage can be overcome by having a higher fitness than the second-closest
neighbour. This type of nuance is the advantage of using the values associated
with diversity directly rather than blindly following some rule, as in AM-KN.
In Figure 4.6, we can see that for the problems with a single global optimum,
AM-CD lies in between AM-KN and AM-KN* in terms of diversity. But in
Figure 4.6, we see that the populations in AM-CD are generally less diverse than
the populations in both AM-KN and AM-KN*. For the problems where diversity
is plentiful, AM-CD has lower diversity than AM-KN and AM-KN*. In Cross-in-
tray (f4) and Hölder table (f7), the distance between two arbitrary individuals
is determined largely by the number of genes for which their genes are in different
global optimums. The more gene pairs are in different optimums, the longer the
distance between the individuals. In AM-KN it is important to always maximise
the uniqueness of the selection of optimums in the genome, but for AM-CD
fitness becomes increasingly important as the relative increase in contribution to
diversity decreases. Whether an individual is at different optimums for 7 or 8
pairs of their genes is not that relevant in AM-CD, but it might be crucial in
AM-KN. It is plausible that the performance on the robot arm problem has more
or less the same explanation.

86 CHAPTER 5. EVALUATION AND CONCLUSION

Computational Complexity

The results presented in Table 4.19 imply that AM-CD would be the wrong
choice for most problems. This is not only due to the results but also because
it is more complicated in terms of implementation, and much worse in terms
of computational complexity. On the mathematical benchmarks, these selection
schemes were the bottlenecks of the implementations. KN does not slow down
the run of the algorithm to the same extent as CD. When the solution spaces
were rotated, there was not much difference between the running time of AM-
KN compared to SEA, DE and SA-DE. AM-CD, on the other hand, was slower
by approximately one order of magnitude even for the rotated solution spaces.
However, on the pole-balancing problem, the computational complexity of the
fitness testing was about two orders of magnitude higher than that of the rest of
the algorithm.

Weighing Contribution to Diversity against Fitness

We found that the main difficulty with our approach was to find a balanced
weighting between the reward for fitness and the reward for being more distant
to the already-selected individuals. We experimented with several ways of weigh-
ing diversity and fitness. Our key discovery was that using values for contribution
to diversity directly was difficult, if not impossible. Irregularities in the increase
in fitness over distances in the solution space contribute to irregularities in the
outcome of applying these diversity values directly. Furthermore, most fitness
assessments do not present an accurate measure of the utility of different solu-
tions. A fitness score that is ten times better than another rarely means that the
solution is ten times as good, if such an idea even makes sense to talk about. For
this reason, it is hard to quantify the utility of a small gain in fitness and thus
know when and where to value diversity over fitness; when to explore.

As mentioned in Section 4.4, the fitness is set to its inverse, 1
Fitness , before it is

used to calculate the multiobjective score of an individual. The reason for this is
that it transforms the fitness landscape drastically. The actual fitness landscapes
of minimisation problems are often more similar to Figure 5.3(a) than (b). Using
the inverse of the fitness values will shift all fitness landscapes towards being
more like Figure 5.3(b) than (a) because a decrease of any size will make a bigger
difference to the reverse of the fitness when the initial fitness is low than when
the initial fitness is high.

Figure 5.3 illustrates how different fitness landscapes affect the difference between
fitness score and contribution to diversity. In Figure 5.3(a), because of the shape

5.1. EVALUATION 87

Figure 5.3: Illustrates how different fitness landscapes in local optimums affect the
trade-off between fitness and contribution to diversity. In (a) change in gene value
relative to change in fitness increases the further away from the optimum an individual
is. In (b) the opposite is the case.

of the optimum, spreading out in the basin of the optimum trades a little fit-
ness for a lot of diversity contribution. However, in Figure 5.3(b), the opposite
is the case, and the further a solution is from the optimum, the less diversity
contribution is gained per unit of fitness lost. In the experiments where we used
the actual fitness value, the results were significantly worse. Making an effort to
transform the fitness landscape towards that of Figure 5.3(a), as opposed to (b),
generally has a positive effect.

We suspect that knowing the global optimum could contribute to setting a fair
weight on a difference in fitness based on how far the fitness score is from the
score at the global optimum. An additional parameter describing the curvature of
the fitness landscape might also add to the ability to set a fair weight. However,
in this thesis, we present a generic algorithm which assumes no such information
and leave this aspect as possible future work.

5.1.4 Adaptive Mutation

The statistics on the adaptation of the control parameters displayed in Table 4.18
are really interesting. Although mutation occurs to about 10% of genes, as
the probability of mutation dictates, most of the mutation occurs along with
a crossover. We found this somewhat peculiar and almost as if it had naturally
adopted part of the scheme in DE, where crossover always goes hand in hand
with mutation and vice versa.

To test whether the separation of mutation and crossover in the scheme was
nothing but something to overcome, we tried changing the mutation operator
to mutate only genes that also had been subject to a change due to crossover.

88 CHAPTER 5. EVALUATION AND CONCLUSION

The results of the tests were significantly worse than they were without this
alteration, and we are not quite sure why this is the case. However, it seems
that the mutation size parameters were too high, as opposed to too low, which
usually was the case when AM stagnated. This led us to believe that the tendency
towards the combination of mutation and crossover is nothing but a strategy that
increases the likelihood of survival. It is important to point out that what tends
to survive is not synonymous with what contributes to the continued progress of
the search. Nevertheless, it might be the case that some tuning with regard to
partially joining mutation and crossover would help. More research is needed to
pinpoint the effects of coupling mutation and crossover.

Another interesting point in these tables is the percentage of successful mutations
that led to an increase in the size of the control parameter. These were signifi-
cantly higher than expected, and our own prediction had been that the tendency
would be towards lower values rather than higher because in the majority of
cases, low changes in values are more likely to succeed than higher values. As
of now, we have no idea why this is. We suspect that comparing the proba-
bility density function for successful values to that of the original distribution,

N (0,
√

2
π), might help to figure this out. But due to a shortage of time, this is

left as possible future work.

5.1.5 Robot Arm Function

The robot arm problem proved to be quite useful for displaying a particular
weakness in both AM-KN and DE. We touched on this particular problem in
Section 5.1.2, where we discussed the problem with functions that have multiple
global optimums. For the robot arm problem, the difficulty is that not only are
there many global optimums, but there is also the problem of measuring the
distance between two proposed solutions. If an individual proposes the angle
2π for joint i, while another individual proposes 0, then with respect to this
particular genome, they are completely identical in terms of their phenotype.
However, a naive distance measure like the one we have used will view these gene
values as being as far apart from one another as they can get. It is easy to picture
how one can work around this fact, but it does require an implementation that
is not oblivious to the specific problem at hand. Furthermore, solutions can be
symmetric and thus practically identical even though they appear to be far apart
in terms of distance between their genome vectors.

As shown in both Tables 4.15 and 4.16, AM outperforms all the other implemen-
tations in both speed and robustness for 4-, 8- and 16-segmented robot arm. The
outstanding performance of AM is likely to be caused by the way AM converges

5.2. CONCLUSION 89

to optimums, as we examined in Section 5.1.2, which seems to be a sufficient
technique for the robot arm problem. We suspect that the issue with measuring
the distance between solutions is the reason for the poor results on the part of
AM-KN compared to its simplified counterpart, AM.

5.1.6 Pole-Balancing Problem

Tests on the pole-balancing problem also yielded some quite interesting results,
which are presented in Table 4.13. AM-KN* is definitely the best choice out of
these five implementations for these problems. What we find the most interesting,
however, is the performance of SEA, DE and SA-DE. SEA is one of the better-
performing implementations on this problem; its scores are about as good as
that of AM. DE and SA-DE, on the other hand, generally use several times as
many generations on average than the other implementations. Considering the
significantly better speed of SEA, along with a good success rate, it seems that
SEA would be a better option for the pole-balancing problem than both DE and
SA-DE, and perhaps also AM-KN. AM-KN trades off speed of convergence for a
higher success rate, while AM-KN*, with its increased selection pressure, is the
fastest implementation, as well as being robust.

It is worth mentioning that SEA undoubtedly benefits from the fact that finding
a satisfying solution to this problem does not require as much precision as it does
for the benchmark functions. Consequently, reducing the mutation step size is
not necessary for finding a perfect solution. We were suspicious as to whether or
not AM-KN* simply performed better because of its increased selection pressure,
and so we did additional tests with the same selection pressure for SEA as for
AM-KN*. The results from these tests can be seen in Tables A.1 and A.2 in
appendix A.2, and they show that SEA does not benefit overall from the increased
selection pressure.

5.2 Conclusion

Throughout this thesis, we have investigated methods that can be applied to GAs
to improve the guesses for each generation, resulting in fewer fitness evaluations.
Looking back at the research questions defined in Section 1.2, we wished to ex-
tract and utilise information from the population of genomes to improve the GA.
This goal has been achieved through an adaptive mutation scheme that utilises
the genetic differences between an offspring and its parent to adapt a mutation
vector, along with a selection scheme which promotes diversity. Although the

90 CHAPTER 5. EVALUATION AND CONCLUSION

fundamental principles of DE, as presented by Storn and Price [1997], did not at
first seem to be what we were looking for, we found that it exhibits many of the
same characteristics. DE utilises information about previously good mutations
indirectly, which was discussed in Section 2.1.6. It also preserves the diversity
in the population through its parental replacement strategy, combined with a
mutative strategy, which by its nature maintains practically 100% diversity in
terms of unique genotype values (Section 4.3.7).

The adaptive mutation scheme proposed in this thesis has shown to improve the
speed of the GA significantly, which was discussed in Section 5.1.2, and is still
able to solve a wide range of test functions as well as the two practical problems.
This can be seen in the results presented in Table 4.6. However, as expected, it
tends to get trapped in local optimums with mutation control parameters that
are too small to make the leap to better areas of the solution space.

Having a selection scheme that maintains diversity is crucial to be able to solve
many of the multimodal problems, such as Eggholder (f5), Ackley 2D (f2) and
Levy (f8). We have also shown that with a simple diversity-promoting selection
scheme, it is possible to increase the selection pressure during parent selection,
which can result in an even greater speed of convergence as well as increased
robustness, as we reviewed in Section 5.1.2. However, there are many difficulties
with measuring the distance between two proposed solutions, and we see one of
them in the results for the robot arm problem, as we investigated in Section 5.1.5.
Furthermore, we have seen that fitness and diversity within a population are
intertwined; converging requires the loss of diversity. For these reasons, and
the problem with weighing it against differences in fitness, which is discussed
in Section 5.1.3, the selection scheme proposed in Section 3.3.4 (AM-CD) seems
to fall short of the simple selection scheme proposed in Section 3.3.3 (AM-KN).
However, we still believe that more work on the former can yield fruitful results,
which will be discussed in future work Section 5.3.3.

Comparing the results for AM-KN* to SEA, DE and SA-DE and the results in re-
lated work, as well as papers that are not mentioned in this thesis, suggests it is a
very good implementation of GA with respect to the speed of convergence. Using
the adaptive mutation scheme alone often causes the GA to converge prematurely,
but supplemented with a simple scheme that maintains diversity, it becomes a
good implementation well suited for multiple types of problems, especially those
with computationally expensive fitness tests.

5.3. FUTURE WORK 91

5.3 Future Work

Some questions were not answered during our work and are left as future work.
Among these are several difficulties regarding measuring and weighing diversity
and including additional adaptive control parameters.

5.3.1 Adaptive Rate of Mutation

Parameter tuning can be time consuming, and good adaptation schemes often
give better results than even the best-tuned parameter values. Our mutation
scheme is adaptive on the part of the size of each mutation, but the rate of
mutation is constant. We have tried a few different adaptation schemes for the
mutation rate, the simplistic approach in SA-DE included, but in our experience,
these control parameters either seem to have little or no effect or tend towards
the lowest possible mutation rate. We suspect that a problem with this approach
is that mutation rate parameters with a close-to-zero mutation rate simply steal
good gene values from the other individuals through crossover, while playing a
safe game with respect to exploring completely new values through mutation. If
so, it would explain why SA-DE does not seem to have this problem, since it
always combines mutation and crossover.

5.3.2 Covariance Matrix

Hansen and Ostermeier [2001] improved the results of their algorithm by adapting
a complete covariance matrix for all the parameters evolved. Because of the vast
numbers of control parameters to adapt, a large data set seems necessary to
get a good approximation of the contours of the fitness landscape. However, a
covariance matrix in terms of mutation rate, rather than mutation step size would
be somewhat easier to adapt because of the smaller range of values. Specific genes
may need to change simultaneously in order to provide a better result, and a low
mutation rate inhibits this from happening. A covariance matrix for the rate of
mutation could solve this problem.

5.3.3 Weighing Diversity

We have discussed some of the difficulties with measuring and weighing diversity
in Section 5.1.3. Some of these may actually have simple solutions whenever the
problem and certain features of it are known. For instance, knowing the required

92 CHAPTER 5. EVALUATION AND CONCLUSION

fitness score gives an insight into when to explore and when to exploit. A small
difference in fitness is more relevant the closer the individual is to achieving a
requirement for satisfaction. Furthermore, we have yet to do tests with different
weights for diversity for each individual depending on its fitness score relative
to the rest of the population. This could bring about more exploitation in the
optimums and more exploration around them, and is inspired by Srinivas and
Patnaik [1994].

5.3.4 Phenotype Diversity

Measuring distance purely in the genotype representation has obvious drawbacks,
which can be seen in the results for the robot arm problem. However, this does
not entail that two solutions cannot be more or less similar. Knowing whether
the solution space is circular and symmetric might help for problems such as the
robot arm problem.

5.3.5 Steady-State Implementation

There are several perks of steady-state execution, the most important of which
is the significantly lower asymptotic limit to speed up with respect to parallel
execution. The implementation presented in this thesis ended up with an imple-
mentation that almost fits the requirements for steady-state execution. Finding
a suitable adjustment which enables steady-state execution could make it more
relevant in scenarios where this limit is an issue.

5.3.6 The Island Model

The Island Model is another way to make room for more parallel execution,
but it can also be a great way to preserve diversity Sudholt [2015]. Using the
adaptive mutation scheme proposed in this thesis along with different Island
Model implementations could prove to be more robust and even faster than AM-
KN* in the same way AM-KN* outperformed AM. Preserving diversity definitely
helps with the exploration of the solution space, but it makes little sense to
recombine two individuals whose differences are irreconcilable. In other words,
there is a limit to how much diversity a single interbreeding population can take
advantage of. Consequently, it makes sense to segregate parts of the population in
order to make simultaneous searches at different locations of the solution space.

Bibliography

An, J. and Owen, A. (2001). Quasi-regression. Journal of Complexity, 17(4):588
– 607.

Brest, J., Greiner, S., Boskovic, B., Mernik, M., and Zumer, V. (2006). Self-
adapting control parameters in differential evolution: A comparative study on
numerical benchmark problems. Evolutionary Computation, IEEE Transac-
tions on, 10(6):646–657.

Brownlee, J. (2005). The pole balancing problem. A Benchmark Control Theory
Problem. Swinburne University of Technology.

Cervantes, J. and Stephens, C. R. (2009). Limitations of existing mutation rate
heuristics and how a rank ga overcomes them. Evolutionary Computation,
IEEE Transactions on, 13(2):369–397.

de Jong, E., Watson, R., and Pollack, J. (2001). Reducing bloat and promoting
diversity using multi-objective methods.

Deb, K. and Beyer, H.-G. (2001). Self-adaptive genetic algorithms with simulated
binary crossover. Evolutionary Computation, 9(2):197–221.

Eberhart, R. C. and Kennedy, J. (1995). A new optimizer using particle swarm
theory. In Proceedings of the sixth international symposium on micro machine
and human science, volume 1, pages 39–43. New York, NY.

Eiben, A. E., Hinterding, R., and Michalewicz, Z. (1999). Parameter control in
evolutionary algorithms. Evolutionary Computation, IEEE Transactions on,
3(2):124–141.

Hansen, N. and Ostermeier, A. (2001). Completely derandomized self-adaptation
in evolution strategies. Evolutionary computation, 9(2):159–195.

93

94 BIBLIOGRAPHY

Jamil, M. and Yang, X.-S. (2013). A literature survey of benchmark functions for
global optimisation problems. International Journal of Mathematical Modelling
and Numerical Optimisation, 4(2):150–194.

Janikow, C. Z. and Michalewicz, Z. (1991). An experimental comparison of binary
and floating point representations in genetic algorithms. In ICGA, pages 31–36.

Jin, Y. (2005). A comprehensive survey of fitness approximation in evolutionary
computation. Soft computing, 9(1):3–12.

Kao, Y.-T. and Zahara, E. (2008). A hybrid genetic algorithm and particle swarm
optimization for multimodal functions. Applied Soft Computing, 8(2):849–857.

Kauffman, S. A. (1993). The origins of order: Self-organization and selection in
evolution, chapter Biological Implications of Rugged Fitness Landscapes.

Kita, H., Ono, I., and Kobayashi, S. (1999). Multi-parental extension of the
unimodal normal distribution crossover for real-coded genetic algorithms. In
Evolutionary Computation, 1999. CEC 99. Proceedings of the 1999 Congress
on, volume 2, pages –1588 Vol. 2.

Liu, J. and Lampinen, J. (2005). A fuzzy adaptive differential evolution algo-
rithm. Soft Computing, 9(6):448–462.

Lozano, M., Herrera, F., and Cano, J. R. (2008). Replacement strategies to pre-
serve useful diversity in steady-state genetic algorithms. Information Sciences,
178(23):4421 – 4433. Including Special Section: Genetic and Evolutionary
Computing.

Mallipeddi, R., Suganthan, P. N., Pan, Q.-K., and Tasgetiren, M. F. (2011).
Differential evolution algorithm with ensemble of parameters and mutation
strategies. Applied Soft Computing, 11(2):1679–1696.

Mattiussi, C., Waibel, M., and Floreano, D. (2004). Measures of diversity for pop-
ulations and distances between individuals with highly reorganizable genomes.
Evolutionary Computation, 12(4):495–515.

Mengshoel, O. J. and Goldberg, D. E. (1999). Probabilistic crowding: Deter-
ministic crowding with probabilistic replacement. In Proc. of the Genetic and
Evolutionary Computation Conference (GECCO-99), pages 409–416.

Nix, A. and Vose, M. (1992). Modeling genetic algorithms with markov chains.
Annals of Mathematics and Artificial Intelligence, 5(1):79–88.

BIBLIOGRAPHY 95

Ostermeier, A., Gawelczyk, A., and Hansen, N. (1994). A derandomized approach
to self-adaptation of evolution strategies. Evolutionary Computation, 2(4):369–
380.

Pike, R. (2009). The go programming language. Talk given at Google’s Tech
Talks.

Qin, A. K., Huang, V. L., and Suganthan, P. N. (2009). Differential evolution
algorithm with strategy adaptation for global numerical optimization. Evolu-
tionary Computation, IEEE Transactions on, 13(2):398–417.

Rothlauf, F. (2006). Representations for genetic and evolutionary algorithms. In
Representations for Genetic and Evolutionary Algorithms, pages 9–32. Springer
Berlin Heidelberg.

Shi, Y. and Eberhart, R. (1998). A modified particle swarm optimizer. In Evolu-
tionary Computation Proceedings, 1998. IEEE World Congress on Computa-
tional Intelligence., The 1998 IEEE International Conference on, pages 69–73.

Srinivas, M. and Patnaik, L. M. (1994). Adaptive probabilities of crossover and
mutation in genetic algorithms. Systems, Man and Cybernetics, IEEE Trans-
actions on, 24(4):656–667.

Storn, R. and Price, K. (1997). Differential evolution – a simple and efficient
heuristic for global optimization over continuous spaces. Journal of Global
Optimization, 11(4):341–359.

Sudholt, D. (2015). Parallel evolutionary algorithms. In Springer Handbook of
Computational Intelligence, pages 929–959. Springer.

Ursem, R. (2002). Diversity-guided evolutionary algorithms. In Guervós, J.,
Adamidis, P., Beyer, H.-G., Schwefel, H.-P., and Fernández-Villacañas, J.-L.,
editors, Parallel Problem Solving from Nature — PPSN VII, volume 2439 of
Lecture Notes in Computer Science, pages 462–471. Springer Berlin Heidelberg.

Vafaee, F. and Nelson, P. C. (2010). An explorative and exploitative mutation
scheme. In Evolutionary Computation (CEC), 2010 IEEE Congress on, pages
1–8. IEEE.

Vafaee, F., Turan, G., Nelson, P. C., and Berger-Wolf, T. Y. (2014). Among-
site rate variation: Adaptation of genetic algorithm mutation rates at each
single site. In Proceedings of the 2014 Conference on Genetic and Evolutionary
Computation, GECCO ’14, pages 863–870, New York, NY, USA. ACM.

Črepinšek, M., Liu, S.-H., and Mernik, M. (2013). Exploration and exploitation
in evolutionary algorithms: A survey. ACM Comput. Surv., 45(3):35:1–35:33.

96 BIBLIOGRAPHY

Yang, Z. (1996). Among-site rate variation and its impact on phylogenetic anal-
yses. Trends in Ecology & Evolution, 11(9):367 – 372.

Yu, X. and Gen, M. (2010). Introduction to Evolutionary Algorithms. Decision
Engineering. Springer, Dordrecht.

Appendix A

Appendices

A.1 Videos

In this section a list of videos taken from the GUI of different visualisation tools
is presented. The complete list of all the videos have been embedded at http:

//folk.ntnu.no/thafveli, to make it simpler to view the videos.

Genes of Beale’s (f18) , http://folk.ntnu.no/thafveli/beal
This video show a AM implementation trying to solve the 100 dimensional
Beale’s function in the advanced visualisation tool. It shows how the gene
loses their ability to escape global optimums because of a decrease in the
standard deviation of the mutation.

Genes of Hölder table (f7) , http://folk.ntnu.no/thafveli/holdertable
This video show a AM implementation trying to solve the 100 dimensional
Holder Table function in the advanced visualisation tool. It shows how the
gene loses their ability to escape global optimums because of a decrease in
the standard deviation of the mutation.

Genes of Rastrigin (f9) , http://folk.ntnu.no/thafveli/rastrign
This video show a AM implementation trying to solve the 100 dimensional
Rastrigin function in the advanced visualisation tool. It shows how the
gene loses their ability to escape global optimums because of a decrease in
the standard deviation of the mutation.

Creating and running an implementation , http://folk.ntnu.no/thafveli/
createea

1

http://folk.ntnu.no/thafveli
http://folk.ntnu.no/thafveli
http://folk.ntnu.no/thafveli/beal
http://folk.ntnu.no/thafveli/holdertable
http://folk.ntnu.no/thafveli/rastrign
http://folk.ntnu.no/thafveli/createea
http://folk.ntnu.no/thafveli/createea

2 APPENDIX A. APPENDICES

This video show how a new GA implementation in the GUI, by enabling
different modules. The video also shows how we can queue tasks for this im-
plementation, and how we select what kind of data that should be stored.

Pole Balancing , http://folk.ntnu.no/thafveli/polebalance
This video show the visualisation for the pole balancing problem, viewing
a run from a run with AM.

Comparing statistical data , http://folk.ntnu.no/thafveli/compare
This videos shows how statistical data from the diffrent GA implementa-
tions can be compared in the GUI.

A.2 Graphical User Interface

In this section is a more extensive explanation of the GUI, extending what we
was described in Section 3.4.2.

List View

Figure A.1: Gui list

http://folk.ntnu.no/thafveli/polebalance
http://folk.ntnu.no/thafveli/compare

A.2. GRAPHICAL USER INTERFACE 3

The main view of the GUI is the list view, which is shown if Figure A.1, here
we can manage all the runs and different settings which was required to get the
statistical data presented in Section 4.3. From the list view we can queue task,
view visualisation and show graphs from the different runs.

We have separated between to main types of settings, ea settings and task set-
tings. The EA settings contains the setup for the different ea implementations.
The different ea implementations is created by enabling different operators and
defining the required parameters, this was reviewed in Sections 3.4.1 and 3.4.2.
While the task settings holds the settings for the test we conducted, settings such
as dimensions, generation size and the number of generations to run.

Graph Tool

Figure A.2: Comparing statistics between different GA implementations

To enable us to compare the statistical data generated by the different GA im-
plementations we implemented a very simple list whit check-boxes, as shown in
Figure A.2, where we can select the algorithm which we want to compare. When
the pressing the compare button the graph tool is shown, which can be seen in
Figure A.3. Here we have check-boxes for which types of data we want to plot
in the graph view. For instance in Figure A.3 we have selected to plot fitness
min of all the GA implementations. On http://folk.ntnu.no/thafveli/compare a
video showing the process of comparing the statistical data from 50 dimensions
of the easom function for all the implementations.

Pole Balancing Problem

Another visualisation tool we implemented is a visualisation for the pole balancing
problem. This visualisation renders the run of the best individual when the GA

4 APPENDIX A. APPENDICES

Figure A.3: Graph tool

is done. The visualisation shows the cart and the poles and an arrow which
symbolises the force applied to the cart, as can be seen in Figure A.4.

We also included a rendering of the neural network, which can be seen above
the cart and poles in Figure Figure A.4. This network shows the the neurons
as blue dots and connections between the neurons as lines. The connections is
coloured pink if the weight is negative and blue if positive. The width of a con-
nection line is defined by the connection weight. When running the visualisation,
which can be done by pressing the play button, the neurons expand and contract
depending on output of that neuron. A video from this tool can be viewed at
http://folk.ntnu.no/thafveli/poleBalance

This visualisation enabled us to see what happened with both the pole balancing
problem and what actually happened in the ANN, which helped us debugging
the code, and also made the task more exiting to work with.

A.2. GRAPHICAL USER INTERFACE 5

Figure A.4: Visualisation of pole balancing problem

SEA SEA* AM AM-KN*
p1.1 0 0 1.84 (12.6) 0
p1.2 10.9 (38.2) 21.2 (52.7) 22.1 (52.1) 2.08 (14.6)
p2.1 10.1 (47.8) 13.4 (81.7) 0.06 (0.42) 0.54 (2.56)
p2.2 92.3 (176) 238 (290) 146 (207) 23 (46.3)

Table A.1: This table shows the result from the tests on Balanving Pole using a higher
selection pressure for SEA. SEA* is the version of SEA that has the same selection
pressure as AM-KN*

SEA SEA* AM AM-KN* Best
p1.1 100% (1.4) 100% (1) 96% (1.4) 100% (1.1) 11
p1.2 92% (1.4) 86% (1) 84% (1.9) 98% (1.3) 44
p2.1 90% (1.3) 90% (1.9) 98% (1.1) 92% (1) 70
p2.2 6% (1.2) 2% (1.3) 9% (1) 12% (1.1) 386

Table A.2: This table shows the success rates from the tests on an using a higher
selection pressure for SEA. SEA* is the version of SEA that has the same selection
pressure as AM-KN*.

6 APPENDIX A. APPENDICES

A.3 Unique Gene Values

In this section we present some of the additional result tables for the statistics
on the number of unique gene values. These tables are simply more of the same
type of results we presented in Section 4.3.7, though from the runs other test
functions.

AM AM-KN
Mean SD Min Max Mean SD Min Max

Meangen 17.08 3.61 8.49 26.68 26.85 4.24 16.58 37.86
Mingen 14.76 2.30 2.00 21.00 22.94 2.11 8.00 31.00

(a) 10 runs of 100D Ackley (f1) (1000 Generations). The average fitness result was
1.28e-05 (Min: 7.89e-06) for AM, and 1.5e-3 (Min: 1.3e-3) for AM-KN

SEA DE SA-DE
Mean SD Min Max Mean Min Mean Min

Meangen 20.57 3.92 11.27 30.94 99.22 97.69 97.04 94.41
Mingen 17.67 2.95 4.00 26.00 82.35 63.00 75.46 52.00

(b) 10 runs of 100D Ackley (f1) (1000 Generations). The average fitness result was
3.62 (Min: 3.59) for SEA, 0.92 (Min: 0.8) for DE, and (4.5e-3, 1.1e-3) for SA-DE.

AM AM-KN
Mean SD Min Max Mean SD Min Max

Meangen 17.04 3.62 8.37 26.63 26.76 4.28 16.36 37.88
Mingen 13.62 1.79 1.00 21.00 22.52 1.92 8.00 31.00

(c) 10 runs of 100D Levy (f8) (1000 Generations). The average fitness result was 7.64
(Min: 5.27) for AM, and 0.15 (Min: 2.93e-05) for AM-KN

SEA DE SA-DE
Mean SD Min Max Mean Min Mean Min

Meangen 21.45 4.05 11.60 32.02 99.86 99.07 99.96 99.35
Mingen 18.39 3.09 4.00 26.00 96.76 80.00 98.97 89.00

(d) 10 runs of 100D Levy (f8) (1000 Generations). The average fitness result was 6.96
(Min: 3.76) for SEA, 1.4 (Min: 0.38) for DE, and (1.2e-06, 6.4e-07) for SA-DE.

A.3. UNIQUE GENE VALUES 7

AM AM-KN
Mean SD Min Max Mean SD Min Max

Meangen 17.93 4.15 8.21 27.17 27.31 4.37 17.58 37.51
Mingen 12.18 1.76 1.00 19.00 21.52 2.33 3.00 29.00

(e) 10 runs of 50D McCormick (f14) (1000 Generations). The average fitness result
was 5.03 (Min: 1.9e-3) for AM, and 1.26 (Min: 1.9e-3) for AM-KN

SEA DE SA-DE
Mean SD Min Max Mean Min Mean Min

Meangen 19.67 3.88 11.21 28.88 97.65 92.84 97.50 92.20
Mingen 16.56 2.56 3.00 23.00 76.22 42.00 85.84 52.00

(f) 10 runs of 50D McCormick (f14) (1000 Generations). The average fitness result
was 9.3 (Min: 3.7) for SEA, 1.9e-3 (Min: 1.9e-3) for DE, and 1.26, (Min: 1.9e-3) for
SA-DE.

AM AM-KN
Mean SD Min Max Mean SD Min Max

Meangen 18.19 3.82 9.07 28.12 23.90 4.55 12.54 35.44
Mingen 11.31 1.96 1.00 19.00 17.30 2.19 3.00 26.00

(g) 10 runs of 100D Rastrigin (f9) (2500 Generations). The average fitness result was
76.01 (Min: 62.68) for AM, and 26.47 (Min: 20.89) for AM-KN

SEA DE SA-DE
Mean SD Min Max Mean Min Mean Min

Meangen 18.98 3.85 9.96 29.22 98.95 95.80 99.83 99.09
Mingen 16.17 2.58 3.00 23.00 90.04 66.00 93.94 77.00

(h) 10 runs of 100D Rastrigin (f9) (2500 Generations). The average fitness result was
265 (Min: 250) for SEA, 790 (Min: 776) for DE, and 37.9 (Min: 29.9) for SA-DE.

AM AM-KN
Mean SD Min Max Mean SD Min Max

Meangen 17.26 5.33 2.19 27.61 22.69 6.09 6.17 35.15
Mingen 10.46 0.88 1.00 19.00 16.32 1.00 1.00 24.00

(i) 10 runs of 50D Easom (f17) (2500 Generations). The average fitness result was 4.6
(Min: 1.0) for AM, and 1.3 (Min: 0.0) for AM-KN

8 APPENDIX A. APPENDICES

SEA DE SA-DE
Mean SD Min Max Mean Min Mean Min

Meangen 24.85 6.91 8.81 37.21 81.33 62.43 81.83 64.08
Mingen 18.86 2.69 2.00 28.00 70.58 34.00 73.36 40.00

(j) 10 runs of 50D Easom (f17) (2500 Generations). The average fitness result was 19.3
(Min: 17.0) for SEA, 17.9 (Min: 16.3) for DE, and 17.8 (Min: 17.0) for SA-DE.

A.4 Adaptive Mutation Results

This section contains a more detailed description of the values presented in Ta-
ble 4.18 and Section 4.3.8, as well as result tables from run of different problems.
Equation set A.1 contains the mathematical definitions of the values presented
in Table 4.18.

f(r, op) =

1 If operator op was the cause

of change in reproduction r.

0 Otherwise

%op =

∑
f(r, op)

|R|

% |Avg|op =

∑
|Ar| f(r, op)∑
|Ar|

%Avgop =

∑
Arf(r, op)∑

Ar

%+op =

∑
f(r, op)pos(r)

%op

|Avg|op =

∑
f(r, op) |Ar|∑
f(r, op)

Avgop =

∑
f(r, op)Ar∑
f(r, op)

(A.1)

A.4. ADAPTIVE MUTATION RESULTS 9

∑
:

∑
r∈R

, is the total set of all new genes that have been created throughout

the run of the algorithm on a problem.

Ar: The adaptation, the change, in reproduction r, relative to the average
size of the control parameters in the population before adaptation.

op: Either ”Mutation”, ”Recombination”, ”Both”, or ”Total”. f(r,”Total”)
is true whenever an adaptation has taken place, f(r, Total) = 1 ⇐⇒
Ar 6= 0. However, only one of f(r,”Mutation”), f(r,”Crossover”), and
f(r,”Combined”) is 1 for the same r.

Unfortunately we could not simply use the relative change, meaning the size of the
change relative to the size of the parameter, because all changes that decrease
the parameters are smaller relative to the initial parameter than changes that
increase the parameters. And sadly it does not help to use the change relative to
the new parameter value, nor the change relative to the smallest of the old and the
new parameter. However, we came to the conclusion that the best way to do this
was to divide each change by the average size of all adaptive parameters within
the population before adaptation. Although changes to the larger parameters
within the population still get overrepresented in this normalisation scheme, it is
beneficial because it makes it possible to generalise over thousands of generations.
Tables A.4c and A.4d are examples of how this normalisation is imperfect to say
the least. We see that the average size of change is one order of magnitude larger
than the average size of the mutation parameters in the population. Easom (f17)
has a flat fitness landscape with tiny drops around (π, π), and whenever a gene
pair has found this valley their mutation size parameters must drop drastically
in order to pinpoint the exact position of the optimum. Consequently there
should be a tremendous variation in the size of the mutation size parameters,
and evidently this seems to be the case.

Below are some additional result tables from runs of different test functions.

% %|Avg| %Avg %+ |Avg| Avg
Total 44.91 100 100 43.33 41.36 -5.39

Mutation 1.37 3.28 4.46 40.87 44.53 -7.88
Crossover 35.81 78.59 70.1 44.68 40.77 -4.73
Combined 7.74 18.12 25.44 37.53 43.52 -7.96

(a) 10 runs of AM on 100D Griewank (f6) (750 generations). Average fitness achieved:
1.68e-05 (Min: 7.71e-06).

10 APPENDIX A. APPENDICES

% %|Avg| %Avg %+ |Avg| Avg
Total 49.49 100 100 45.67 44.38 -0.97

Mutation 1.51 3.47 -19.06 44.46 50.32 6.1
Crossover 39.74 77.27 185.49 46.34 42.7 -2.25
Combined 8.24 19.26 -66.41 42.65 51.37 3.9

(b) 10 runs of AM-KN on 100D Griewank (f6) (750 generations). Average fitness
achieved: 2.79e-2 (Min: 1.19e-2).

% %|Avg| %Avg %+ |Avg| Avg
Total 42.04 100 100 46.08 39.79 0.1

Mutation 0.35 2.18 -268.14 41.23 105.08 -31.21
Crossover 33.32 78.61 1826.42 47.78 39.46 2.22
Combined 8.37 19.21 -1458.26 39.52 38.37 -7.04

(c) 10 runs of AM on 50D Easom (f17) (1500 generations). Average fitness achieved:
9.47 (Min: 6.0).

% %|Avg| %Avg %+ |Avg| Avg
Total 44.21 100 100 46.89 37.99 0.09

Mutation 0.44 1.99 -498.46 30.57 75.51 -42.72
Crossover 35.44 80.52 2410.13 48.42 38.16 2.58
Combined 8.33 17.48 -1811.65 41.21 35.27 -8.26

(d) 10 runs of AM-KN on 50D Easom (f17) (1500 generations). Average fitness
achieved: 3.6 (Min: 2.4e-3).

% %|Avg| %Avg %+ |Avg| Avg
Total 44.59 100 100 42.3 41.66 -6.23

Mutation 1.47 3.25 3.03 40.7 40.94 -5.72
Crossover 35.41 77.8 80.23 43.3 40.81 -6.3
Combined 7.7 18.95 16.74 37.99 45.72 -6.04

(e) 10 runs of AM on 100D Ackley 2D (f2) (1000 generations). Average fitness achieved:
2.14 (Min: 6.71e-07).

A.4. ADAPTIVE MUTATION RESULTS 11

% %|Avg| %Avg %+ |Avg| Avg
Total 48.97 100 100 44.38 45.46 -2.49

Mutation 1.61 3.95 -11.95 44.04 54.73 9.13
Crossover 39.19 76.34 154.99 44.74 43.37 -4.83
Combined 8.18 19.71 -43.02 42.72 53.66 6.44

(f) 10 runs of AM-KN on 100D Ackley 2D (f2) (1000 generations). Average fitness
achieved: 9.39e-05 (Min: 7.02e-05).

% %|Avg| %Avg %+ |Avg| Avg
Total 44.02 100 100 40.41 39.64 -9.16

Mutation 0.19 0.49 0.39 42.19 44.2 -8.17
Crossover 35.1 78.86 71.6 41.75 39.2 -8.23
Combined 8.73 20.65 28.01 35 41.29 -12.95

(g) 10 runs of AM on 50D McCormick (f14) (500 generations). Average fitness
achieved: 4.71 (Min: 1.9e-3).

% %|Avg| %Avg %+ |Avg| Avg
Total 49.05 100 100 44.08 42.69 -3.15

Mutation 0.36 0.98 -3.79 51.24 56.85 16.33
Crossover 39.36 77.57 103.81 44.79 41.27 -4.08
Combined 9.33 21.45 0 40.79 48.15 0

(h) 10 runs of AM-KN on 50D McCormick (f14) (500 generations). Average fitness
achieved: 0.32 (Min: 1.9e-3).

% %|Avg| %Avg %+ |Avg| Avg
Total 43.41 100 100 43 37.34 -6.34

Mutation 0.77 2.07 3.56 39.22 43.44 -12.68
Crossover 34.6 79.29 73.69 44.33 37.14 -5.86
Combined 8.04 18.63 22.75 37.62 37.58 -7.79

(i) 10 runs of AM on 100D Rastrigin (f9) (750 generations). Average fitness achieved:
86.86 (Min: 75.62).

12 APPENDIX A. APPENDICES

% %|Avg| %Avg %+ |Avg| Avg
Total 45.91 100 100 45.65 44.51 0.14

Mutation 1.31 3.39 -0.9 42.77 52.75 -0.03
Crossover 36.56 76.24 -831.74 46.28 42.61 -1.43
Combined 8.04 20.38 932.66 43.26 51.81 7.35

(j) 10 runs of AM-KN on 100D Rastrigin (f9) (750 generations). Average fitness
achieved: 102.47 (Min: 74.1).

	Introduction
	Background and Motivation
	Goals and Research Questions
	Research Method
	Contributions
	Thesis Structure

	Background Theory and Motivation
	Evolutionary Algorithms
	Genetic Algorithms
	Genetic Representation
	Recombination
	Balancing Exploration and Exploitation
	Parameter Control versus Parameter Tuning
	Vector-Based Mutation

	Related Work
	Diversity-Guided Evolution
	Controlled Vector-Based Mutation

	Structured Literature Review Protocol
	Search Procedure
	Selection Criteria

	Motivation

	Architecture
	Genetic Representation
	Reproduction
	Mutation
	Recombination
	Summary

	Selection Schemes
	Parent Selection
	Distance Measures
	K-Nearest Neighbours
	Contribution to Diversity as an Objective

	Implementation
	Genetic Algorithm
	Graphical User Interface and Data Management
	Visualisation

	Technology
	Go Programming Language
	Sails.js Server
	MongoDB

	Experiments and Results
	Test Setup
	Test Functions
	Pole-Balancing Problem
	Robot Arm Function

	Experimental Setup
	Results
	Test Functions
	Convergence Speed and Robustness
	Different Problem Sizes
	Rotated Solution Space
	Pole-Balancing Problem
	Robot Arm Function
	Diversity
	Adaptive Mutation

	Contribution to Diversity as an Objective

	Evaluation and Conclusion
	Evaluation
	Robustness
	Speed of Convergence
	K-Nearest Neighbours versus Contribution to Diversity
	Adaptive Mutation
	Robot Arm Function
	Pole-Balancing Problem

	Conclusion
	Future Work
	Adaptive Rate of Mutation
	Covariance Matrix
	Weighing Diversity
	Phenotype Diversity
	Steady-State Implementation
	The Island Model

	Bibliography
	Appendices
	Videos
	Graphical User Interface
	Unique Gene Values
	Adaptive Mutation Results

