
Inter-team Coordination in Large-scale
Agile Software Development
An Exploratory Case Study

Espen Andreassen

Master of Science in Computer Science

Supervisor: Torgeir Dingsøyr, IDI

Department of Computer and Information Science

Submission date: June 2015

Norwegian University of Science and Technology

Abstract

In later years agile development methodologies have seen a steady growth. Ag-
ile approaches were originally developed for small-scale contexts to cover the in-
creasing need for flexibility and the urge to be first-to-market with technology
in constant change. The benefits witnessed in this small-scale adoption has got
large organisations to open their eyes. Therefore, it has not been surprising to see
large-scale software development projects opt for the use of agile methodologies.
However, the research regarding agile development in a large-scale context is still
scarce.

Another aspect that has seen an increasing focus in the later years has been coor-
dination and coordination effectiveness, which are identified as important factors
in software development and team performance.

These two aspects are combined and looked further into in this research study. The
focus is on robust empirical studies performed on coordination in large-scale agile
software development projects, as well as an exploratory case study carried out
at a Norwegian large-scale agile software development project. The findings from
this case study was then compared to previously published research and theory on
coordination.

The main findings showed mainly similarities between existing studies and the
research performed in this master thesis. The most prominent coordination mech-
anisms and aspects identified as having a positive effect on coordination and team
performance were co-location, informal communication, presence of project man-
agement and owner, continuous change and improvement, mutual trust, and shared
mental models. However, some dissimilarities were also present. The most notice-
able of these were how informal communication arenas were existent to a large
degree in the case project despite some previously conducted research concluding
that such arenas should decrease when team and project size gets large.

Keywords: Large-scale; MTS; Multi-team systems; Coordination; Coordination
Effectiveness; Agile; Software Development; Software Engineering; Scrum; Mutual
Trust; Shared Mental Models; Co-location; Informal Communication; Continuous
Change and Improvement; Presence from Management; On-site Customer

Sammendrag

I senere år har smidig utviklingmetodikk sett en stadig vekst. Smidige tilnær-
minger var opprinnelig utviklet for små-skala kontekster for å dekke det økende
behovet for fleksibilitet og trangen etter å være først ute på markedet med teknolo-
gier i konstant forandring. Fordelene identifisert i små-skala smidig utvikling har
åpnet øynene til større organisasjoner. Derfor har det ikke vært overraskende å
se at stor-skala smidige programvareutviklingsprosjekter velger å gå for smidig
utviklingmetodikk. Likevel viser det seg at forskning på smidige utviklingme-
todikker innenfor en stor-skala kontekst er mangelfull.

Et annet aspekt som har sett et økende fokus i de senere årene har vært ko-
ordinering og koordineringeffektivitet, som er identifisert som viktige faktorer i
programvareutvikling og oppnåelse av teamprestasjoner.

Disse to aspektene er kombinert og videre forsket på i dette forskningstudiet.
Fokuset vil være på solide empiriske studier tidligere utført på koordinering i
stor-skala smidig programvareutviklingsprosjekter, i tillegg til en utforskende case-
studie ved et norsk stor-skala smidig programvareutviklingsprosjekt. Funnene fra
denne case-studien vil bli sammenlignet med funn fra tidligere publisert arbeid og
teori på koordinering.

Hovedfunnene viste hovedsakelig likheter mellom eksisterende studier og arbei-
det utført i denne masteroppgaven. De mest fremtredende koordineringmekanis-
mene og aspektene identifisert til å ha en positiv effekt på koordinering og team-
prestasjonnivå var samlokalisering, uformell kommunikasjon, tilstedeværelse fra
prosjektledelse og prosjekteier, kontinuerlig endring og forbedring, gjensidig tillit,
og felles mentale modeller. Det var derimot noen ulikheter i forhold til eksisterende
studier tilstede. Den mest synlige av disse var at uformelle kommunikasjonarenaer
i stor grad var eksisterende i case-prosjektet, selv om noe tidligere litteratur og
forskning hadde konkludert med at slike arenaer skulle minke i bruk når team- og
prosjektstørrelsen ble stor.

Nøkkelord: Stor-skala; MTS; Multi-team-systemer; Koordinering; Koordiner-
ingeffektivitet; Smidig; Programvareutvikling; Systemutvikling; Scrum; Gjensidig
Tillit; Felles Mentale Modeller; Samlokalisering; Uformell Kommunikasjon; Kon-
tinuerlig Endring og Forbedring; Tilstedeværelse fra Ledelse; Samlokalisert Kunde

Preface

I am now fulfilling my last year on a master degree in computer science where
I specialise in software, or more specifically, software systems. I was introduced
to agile development methodologies through different subjects at the “Norwegian
University of Science and Technology”, NTNU, and also got hands-on experience
working with Scrum in a subject called “TDT4290 - Customer Driven Project”.
This subject in particular sparked my interest in agile development methodologies
and the new ways of handling work and project organisation. After a summer
internship with EY (formerly known as Ernst&Young) I got more intrigued with
how communication and coordination was handled in real life business and IT
projects. Therefore, my previous experiences led to a motivation in exploring the
combination of agile development and coordination.

The work performed in this master thesis is carried out to give an insight in the
field of coordination in large-scale agile software development projects. I hope that
the research performed will be beneficial for other research as the topic at hand is
still scarcely studied.

I would like to use this opportunity to thank Torgeir Dingsøyr for his support, as-
sistance and knowledge throughout the research project as the supervisor. I would
also like to thank NTNU for giving me the opportunity to experiment with ideas
within the boundaries of the research project, and letting me acquire interesting
knowledge for the future.

Trondheim, June 19, 2015

Espen Andreassen

Contents

I Introduction and Theory

1 Introduction 1

1.1 Motivation . 2

1.2 Problem Description and Background 2

1.3 Scope, Limitations and Acknowledgement 3

1.4 Target Audience . 4

1.5 Report Outline . 5

2 Theory 7

2.1 Software Development Methodologies 8

2.2 Coordination . 16

2.3 Large-scale . 23

2.4 Multiteam Systems . 24

2.5 Efficiency, Effectiveness, Productivity and Performance in Coordi-
nation . 31

2.6 Shared Mental Models . 37

2.7 Mutual Trust . 39

II Research Methodology 43

3 Method 45

3.1 Literature Review . 46

3.2 Research Method . 49

III Results and Evaluation 55

4 Results 57

4.1 Clarification . 58

4.2 Overview of the Omega-project . 58

4.3 Coordination Arenas and Important Aspects 65

5 Discussion 93

5.1 Research Questions . 94

5.2 Evaluation of the Study . 102

IV Conclusion and the Road Forward 105

6 Conclusion 107

6.1 Research Questions . 108

7 Future Work 112

7.1 Suggestions for Future Research Focus 113

References i

V Appendices

A Interview Guide I

B Non Disclosure Agreement (NDA) IV

List of Figures

2.1 The Waterfall model. 9

2.2 The Scrum cycle. 12

2.3 Different strategies for distributed Scrum teams. 13

2.4 A theory of coordination in agile software development projects. . 19

2.5 A model of multiteam system effectiveness. 29

2.6 Components of coordination effectiveness from Strode et al. (2011). 32

2.7 Agile team productivity conceptual framework. 34

2.8 Graphical representation of the “Big Five” and supporting coordi-
nation mechanisms. 40

4.1 Main project releases in Omega. 59

4.2 Project execution model. 60

4.3 Omega-project’s organisation. 61

4.4 Initial development process. 63

List of Tables

2.1 Comparison of Scrum, Kanban and Scrumban [1]. 15

2.2 A taxonomy of scale of agile software development projects. 24

2.3 Dimensions of multi-team system (MTS) characteristics. 31

2.4 Impact of geographical dispersion on performance. 35

2.5 Summary of the distribution of suggestions over teamwork compo-
nents. 36

2.6 Sub-components identified of closed-loop communication with their
respective performance items. 36

2.7 Summary of impacts identified in the studies. 37

3.1 Databases used in the literature review. 47

3.2 Search words used in the literature review. 48

3.3 Participants in focus groups. 51

4.1 Team roles present in Scrum teams. 63

4.2 Overview of the Omega-project in a MTS fashion. 65

4.3 Coordination mechanisms used across the whole Omega-project. . 70

4.4 Coordination mechanisms used across teams within the specific or-
ganisations (Alpha, Beta and Gamma) in the Omega-project. . . . 71

4.5 Other coordination mechanisms and important aspects. 75

6.1 Summary of identified impacts on coordination and performance. . 110

Part I

Introduction and Theory

Chapter 1

Introduction

Contents
1.1 Motivation . 2
1.2 Problem Description and Background 2
1.3 Scope, Limitations and Acknowledgement 3
1.4 Target Audience . 4
1.5 Report Outline . 5

The introduction chapter takes a closer look at the motivation behind the per-
forming such a study. It also highlights the concrete problem description and
the background for this description, as well as the research questions at hand.
Afterwards, a closer look at the scope and limitations of the research project is
performed, as well as putting focus on the target audience of the master thesis.
Ending the chapter is a section giving a closer look at the report outline.

1

1.1 Motivation

In 2007 an article on the future of socio-technical coordination in global software
engineering was published by James D. Herbsleb [2]. In this work he gathered
previous research carried out on the area of coordination and looked at where
future studies could focus their attention. It is interesting to notice that already
at such an early stage focus on coordination and effective coordination mechanisms
in global projects were present. In his research he highlighted that there was a
pressing need for deeper understanding of which kind of coordination that will
be required in the globalisation witnessed, and which effect this will have on the
business world. This article was one of the main motivators for the master thesis.

Organisations and companies around the world are in a transformation phase with
a lot of them transitioning from traditional development methodologies to agile
approaches. An example is SAP AG moving from a waterfall-like approach to
the introduction of Scrum and a lean development style in a large-scale context.
From this transition experiences were extracted. A lot of these experiences focused
on the complexity of managing multi-team development when scaling Scrum [3].
This highlights and motivates the need for focus to be directed towards coordi-
nation, collaboration and communication studies in such large-scale agile software
development.

As will also be seen in this master thesis the large-scale agile development world
is not only present globally, but has slowly taken place at a domestic domain as
well. This further shows the topical and relevant nature of the study. The master
thesis was in that sense made even more interesting for the researcher because of
the case company and project taking place in Norway.

1.2 Problem Description and Background

Since the introduction of agile development methodologies their usage have seen
a steady growth. This has led to an increasing need for studies that reflect on
the consequences and different aspects following the paradigm shift. One of these
aspects is how coordination is handled [4–7]. At the International Conference on
Agile Software Development (XP2013) “Inter-team coordination” was voted the
number one burning topic in large-scale agile software development, with “Large
project organization” coming in second [8]. In the latest years there has evidentially
been an increase in companies and organisations performing development through
agile development methodologies in large-scale projects [8–14], but the effects have
not been well-documented [9, 15–19]. In the study this topic will be highlighted
with the focus on coordination in large-scale agile projects. Theory, literature and
models from the Software-field will be used and compared to other fields to see
which changes and similarities the paradigm shift has brought forth (theories and

2

literature from large-scale will be used where this is available). Below the research
questions are outlined:

“ Which similarities and dissimilarities in inter-team coordination
can be found between current literature on large-scale/MTS
projects, and a large-scale agile software development project in
practice? And which aspects and mechanisms were identified as
important for this inter-team coordination, as well as for general
team performance from the studied case project?

”The purpose of the study and the planned master thesis will therefore be a com-
bination of “To add to the body of knowledge”, “To solve a problem”, “To find the
evidence to inform practice”, ”To develop a greater understanding of people and
their world” and “To contribute to other people’s well-being” [20].

While research in small-scale agile software development is starting to get a good
track record [9, 17], there is a clear gap in the research surrounding coordination
in large-scale agile software development [8, 9, 15], and large-scale agile software
development in general [16, 17]. Therefore, this master thesis will contribute in
filling parts of the gap. This will involve “An exploration of a topic, area or field”,
as well as “An in-depth study of a particular situation” in the case study [20].

As stated above, small-scale agile software development research is starting to get
a good track record with successful findings. Because of these findings large organ-
isations have been interested in adopting the benefits agile software development
has shown over traditional development methods [4, 9–11]. The assumption that
agile methodologies will deliver the same benefits when scaled to larger organisa-
tions and projects is therefore an interesting topic.

The combination of filling the gap and looking at the aforementioned assumption
will be the pillars in the research outcomes.

1.3 Scope, Limitations and Acknowledgement

As time constraints were put on the master thesis it was obvious that some at-
tention had to be aimed towards the scope of the report and the limitations this
would imply. As mentioned in the previous section 1.2 large-scale agile projects,
and agile projects in general, are growing in numbers. With this growth a lot
of questions and interesting research problems arise. It is therefore important to
specify that this particular master thesis only aims to cover the described research

3

questions: “Which similarities and dissimilarities in inter-team coordination can be
found between current literature on large-scale/MTS projects, and a large-scale ag-
ile software development project in practice? And which aspects and mechanisms
were identified as important for this inter-team coordination, as well as for general
team performance from the studied case project?”.

Further, the research project does not aspire to introduce a brand new theory re-
garding the combination of large-scale, agile software development, coordination
and effectiveness. The objective is to find and categorise research performed con-
cerning the combination of these themes and look for common conclusions in their
findings, as well as identifying and calling attention to clear gaps that need to be
filled in the research field. After this empirical review has been conducted the
findings will be compared to a real life case project carried out at a large-scale
agile software development project in Norway.

To give some insight and a clearer picture of the study, theory from agile soft-
ware development, coordination and large-scale will be presented. Findings from
a literature review will also be given on the combination of the aforementioned
themes. It is important to note that the focus on coordination will primarily be
on coordination across teams and not on coordination within these teams.

It is important to acknowledge that some of the work gathered and used in this
master thesis was carried out in a preliminary study by the researcher [21]. Some
of this work is included in different chapters, e.g., the theory chapter. Also some
of this work has been rewritten or made more thorough and elaborated.

Lastly, the research study will not focus on frameworks and electronic tools sug-
gested to support the large-scale agile processes. In this study the focus will rather
be aimed towards robust empirical studies performed on the research area of co-
ordination in a large-scale context, as well as the interviews performed with all
involved organisations of the Omega-project.

1.4 Target Audience

It is important to have an audience in mind when researching and publishing a
work. In this particular master thesis the main effort has been on three types of
audiences:

• Researchers from the coordination and agile field could find such a research
interesting because of the small pool of research articles available on similar
work.

• Practitioners working with or adopting agile methodologies in a large-scale
context might find such a study interesting because it could give insight to
possible pitfalls and benefits.

4

• Computer science students could possible find such a work interesting
because most of the textbooks and research in general on agile software
methodologies and development has only included small-scale projects. It
could also give insight to how work is performed in real life projects, and not
only how the textbooks describe it.

1.5 Report Outline

Chapter 1: Introduction contains a brief and general introduction to the study
at hand and the motivation behind it.

Chapter 2: Theory looks at important aspects of the research question, namely
software development methodologies, coordination and coordination mecha-
nisms, large-scale and multi-team systems, and performance in coordination.

Chapter 3: Method explains how the literature review was carried out through-
out the research project, as well as describing the research method performed
to realise the study.

Chapter 4: Results gives an overview of the Omega-project, and takes a closer
look at findings from the case interviews performed at the different sub-
projects.

Chapter 5: Discussion contains a summarised look at the findings from the
results chapter, and connects these to the research questions. An evaluation
of the research study is also performed in this chapter.

Chapter 6: Conclusion carries out a summary of the most paramount points
of the results and discussion chapters.

Chapter 7: Future Work outlines possible routes to take in the research field
on inter-team coordination.

5

Chapter 2

Theory

Contents
2.1 Software Development Methodologies 8

2.1.1 Traditional Software Development 8
2.1.2 Agile Software Development 10

2.2 Coordination . 16
2.2.1 Malone and Crowston’s Coordination Theory 17
2.2.2 Mintzberg’s Coordination Mechanisms 17
2.2.3 Strode’s Theoretical Model of Coordination 18
2.2.4 Coordination in Large-scale 23

2.3 Large-scale . 23
2.4 Multiteam Systems . 24

2.4.1 MTS Characteristics 26
2.5 Efficiency, Effectiveness, Productivity and Perfor-

mance in Coordination 31
2.5.1 Strode’s Coordination Effectiveness 31
2.5.2 Some Studies on the Field 33

2.6 Shared Mental Models 37
2.7 Mutual Trust . 39

In this chapter theory and literature relevant to the study is presented. It starts of
with an introduction of both traditional and agile software development method-
ologies, with the main focus on Scrum. Afterwards a shift towards coordination
is taken. Some well-known literature is looked at, for example Malone and Crow-
ston’s coordination theory and Mintzberg’s coordination mechanisms. Further,
to put the study into context, a definition of large-scale is given and the reader
is introduced to a general overview of multi-team systems. Moving on a look
at different aspects of effectiveness in team coordination are introduced. To end

7

the chapter two important coordination mechanisms and aspects are highlighted,
namely mutual trust and shared mental models.

2.1 Software Development Methodologies

The term software development methodologies has been around for quite some
time now. These methodologies are frameworks for accomplishing a well-structured
development process. In this section a brief introduction to the most prominent
methodologies will be carried out. It will start with a quick look at the traditional
software development, before ending with a presentation of the new and agile way
of thinking. The main focus (on agile software development) will be on Scrum as
this is the methodology found in most of the literature gathered from the literature
review, but also some other methodologies and mechanisms are described, e.g.,
Kanban, Scrumban and pair programming.

2.1.1 Traditional Software Development

Traditional software development methodologies have a distinct pattern. This
pattern is sometimes called software development life cycle (SDLC) methodologies
which is often found in system engineering. These “life cycles” are in contrast to
the “iteration”-approach found in agile methodologies, such as Scrum. The most
well-known of these traditional software development methodologies is Waterfall
discussed further below.

Waterfall

The Waterfall methodology is one of the classic development models. It was first
described in a paper by W. W. Royce in 1970 [22]. The model was not yet named
in this paper, which it received later mostly due to its iconic structure (as shown
in figure 2.1).

In the aforementioned paper, it is suggested that all software development models
tend to go through two distinct phases: Analysis and Coding. The author argues
that it is not possible to write a software project without having a somewhat deep
understanding of the underlying problems that it needs to solve. Therefore an
analysis phase will always be required in advance of writing the program itself.
However, he also mentions that such a simple model is only suitable for programs
that are completed in a matter of days. Larger software projects require an ex-
tended number of steps.

For larger projects, the following steps are suggested:

8

Figure 2.1: The Waterfall model.

1. System and Software Requirements: The customer is involved with the
specification of the scope and requirements of the system. The resulting
documentation serves as a foundation to the next stages of development.

2. Analysis and Program Design: The requirements produced in the pre-
vious stage are used to create a system plan and various design documents.

3. Coding and Testing: The actual implementation of the project. This
also involves continuously testing on various levels (for example unit and
integration).

4. Operation and Maintenance: Once the project has been completed, it
has to be maintained during its usage. In addition to improving the program
in various ways, this may also involve the inclusion of extra features if the
customer so desires. These features can in themselves use the Waterfall
model.

The model initially suggested by W. W. Royce discusses a linear model in which
each of the aforementioned stages are used as distinct steps in the development
process. Each stage is required to be completed before the next is started. This
may be a sound premise in theory, but as suggested in the paper it is likely to
fail in practice. The argument used is that often during development, unforeseen
problems in the design are encountered. The linear model does not allow for a
return to a previous stage in development. Hence, it does not allow for changes in
the design that could potentially resolve such problems.

9

Therefore, an alternative model is suggested that allows for the process to return
to earlier stages if necessary. This may not be an ideal solution either, but it does
allow for encountered problems to be addressed during development.

2.1.2 Agile Software Development

As can be seen from the ending of the Waterfall-section there were doubts about its
applicability already at an early stage. With the advancement of business needs
and customer involvement something had to change. This opened the door for
the introduction of a new software development methodology, namely agile soft-
ware development. This new way of thinking tries to deal with collaboration in a
way that promotes adaptive planning, early delivery and continuous improvement,
making the development phase faster and more flexible regarding changes [23].

Scrum

In this section an introduction to one of the most popular agile software develop-
ment methodologies will be carried out, namely Scrum. This is based mainly on
Abrahamsson, Salo, Ronkainen and Warsta’s publication on agile methods [23].
In VersionOne’s “7th Annual State of Agile Development Survey” Scrum or Scrum
variants had a quoted 72% usage making it by far the most popular agile method-
ology in the survey [10].

Scrum is an iterative and incremental software development model (as shown in
figure 2.2). It has come forth from the realisation that development methods that
were common at the time of its introduction worked well in theory but did not in
practice. These methods, Waterfall included, were designed to provide a structured
and well-defined development process [24].

The agile software development processes, like Scrum, are part of a recent ap-
proach to software development. The idea with Scrum in particular is to divide
the development into short periods called “sprints”. This is done to focus effort for
a limited time on short-term goals. Iterating over these goals allows the process
to adapt the development plan based on progress but also to address any design
problems that arise.

In short, the team concentrates on isolated parts, and through this prioritises on
the most important tasks of the project first. The time span of a sprint is typically
between one and four weeks long.

In order to implement the requirements step by step and in an orderly fashion, a
repository is kept containing the features that have yet to be implemented. This
repository is called the “product backlog”. During development, the requirements
could change over time. Therefore the product backlog is not static; it changes
to the needs of the project with new topics being added, and obsolete ones being

10

removed. The items from the backlog that a team works on during a sprint is
called the “sprint backlog”.

Meetings are also a key part of Scrum. There are several different types of meetings:
sprint planning meeting, daily scrum meeting, backlog refinement, end of cycle and
Scrum-of-Scrums. The sprint planning meeting is held at the beginning of each
sprint cycle. Here the focus is on what work is to be done, and the sprint backlog
for the coming sprint cycle is set. The daily scrum meeting, also called the daily
stand-up, is a daily encounter (15 minutes) where each member of the project team
answer these three questions:

1. What have you done since yesterday?

2. What are you planning to do today?

3. Are there any impediments in your way?

Further, there is the backlog refinement, also called “grooming”. This is where tasks
are created, large tasks are decomposed into smaller ones, tasks are prioritised, and
the existing tasks are sized in the product backlog. Backlog refinement is often split
into two meetings. In the first meeting the product owner and other stakeholders
create and refine stories in the backlog. In the second meeting the project team
sizes the tasks in the backlog to make them ready for the next sprint. Planning
poker is an example of how this can be carried out.

The last listed meeting occurs at the end of each cycle, and is therefore called end
of cycle (meeting). This is actually two meetings: a sprint review meeting and
a sprint retrospective. At the sprint review meeting the work that is completed
and yet to be finished is reviewed. The completed work is also presented for the
stakeholders, often called “the demo”. At the sprint retrospective all members
reflect on the past sprint. Two main questions are answered:

1. What went well during the sprint?

2. What could be improved in the next sprint?

The Scrum team usually consists of five to nine members. It is important to note
that Scrum teams do not use traditional roles such as programmer, tester, designer
or architect. Instead the main goal for the Scrum team is to collectively complete
the tasks within the sprint.

To end the section a look at Scrum-of-Scrums is carried out. This will be a natural
shift towards the upcoming topic of “coordination” because Scrum-of-Scrums are
used as the coordination mechanism across teams in the Scrum methodology. It
works as the daily scrums (though usually implemented on a weekly basis because
of time constraints and the complexity to find common times for all teams), but

11

Figure 2.2: The Scrum cycle.

with one member assigned from each Scrum team to report completions, next
steps and impediments for their respective teams. It is important that these im-
pediments focus on the challenges that may impact coordination across teams and
might limit other teams’ work. The Scrum-of-Scrums will have their own backlog
aiming to improve the cross-team coordination [25]. Below the suggested questions
for the SoS meetings are listed [26]:

1. What did your team do since the previous meeting that is relevant to some
other team?

2. What will your team do by the next meeting that is relevant to other teams?

3. What obstacles does your team have that affect other teams or require help
from them?

4. Are you about to put something in another team’s way?

Takeuchi et al. identified three strategies for distributed Scrum teams. The first
type is isolated Scrum teams where teams operate as silos and no collaboration
across teams is performed violating the agile principles. The second type is Scrum-
of-Scrums which means overlapping Scrum teams. Here teams coordination, com-
municate and collaborate across teams through SoS meetings with participants
from each team involved. Lastly, totally integrated Scrum teams are suggested.
In this type teams are fully distributed and each team has members located at
several sites. This approach creates similar characteristics as co-location. Type B
is what is most common when several Scrum teams work together. The different
types are visualised in figure 2.3 [27].

12

Figure 2.3: Different strategies for distributed Scrum teams.

Kanban and Scrumban

Kanban is a logistic control system that is closely related to lean software develop-
ment. The word “Kanban” comes from two Japanese words: “kan” meaning visual
and “ban” meaning board. The system was developed by Taiichi Ohno, an indus-
trial engineer at Toyota. The reasoning behind developing this new system was to
achieve and maintain a high level of production [28].

Cocco et al. [29] described Kanban as the process of breaking down work to work
items which are descriptions on cards (often post-it notes). These cards are then
made visible for the entire team on a board. The board is used to show the flow of
work within the team (or project). The high visibility comes from the cards and
board showing which tasks are assigned to which member, shows communication
priorities, and highlights possible obstacles. An important feature of the Kanban
method is to minimize Work in Progress (WIP) by reducing the amount of work
items (cards) being developed at a time. This is done so the developers and
customer can focus on smaller amounts of work, and should lead to an optimised
process, as well as a reduced lead time. Compared to the Scrum methodology,
Kanban (being a lean method) is able to release new futures more constantly,
and not only at the end of each sprint iteration. Scrum is not able to change
the requirements and direction of development in the middle of a sprint iteration,
which Kanban can.

To get a more simplistic explanation of how the Kanban methodology works a
standard work flow example is described: If a developer start on a task he moves
this task from the “work to be done” section into the so-called “work in progress”
column of the Kanban board. If there for some reason is a dependence towards
other’s work this particular work has to be moved to the “on hold” or “waiting”

13

section of the board until the dependency is solved. After a task is completed it
is moved into the final section of the board called the “completed” section. Teams
also often use different colours to express the priority of the task, and tasks are
often allocated to some specific part of the development, e.g., development, test
etc.

In later years a new approach has slowly surfaced which combines the Scrum
and Kanban practices. This new methodology has been coined “Scrumban” (also
referred to as “Scrum-ban” and “Scrum ban”) [30]. The reasoning behind the
evolution of this new methodology was that some practitioners felt that Scrum and
Kanban did not fit all aspects of their work on their own with Scrum being too
strict for constant change and releases (fast paced environments), and Kanban not
being structured enough. The combination of the two methodologies is supposed
to create a practice that fits a fast paced development environment [1]. To get a
better overview of the differences between Scrum, Kanban and Scrumban table 2.1
is included.

Scrum Kanban Scrumban
Iterations 1-4 week sprints Continuous work

alongside releases
shorter than one
week or bigger it-
erations like goals

Continuous work
with short cycles
for planning and
longer cycles for
release

Work rou-
tines

Push and pull
principle mixed
with early binding
to team members

Pull principle
with late binding
to team members

Pull principle
with late binding
to team members

Scope limits Sprint limits total
work amount

Work in progress
limits current
work amount

Work in progress
limits current
work amount

Planning
routines

Sprint planning Release/iteration
planning, demand
planning

Planning on de-
mand for new
tasks

Estimation Must be done be-
fore start of sprint

Optional Optional

Performance
metrics

Burndown Cumulative flow
diagram, lead
time cycle time

Average cycle time

Continuous
improve-
ment

Sprint retrospec-
tive

Optional Short Kaizen
(continuous im-
provement) event
as an option

Continued on the next page. . .

14

Table 2.1 – continued from previous page
Scrum Kanban Scrumban

Meetings Sprint planning,
daily scrum,
retrospective

Can be avoided Short Kaizen
event

Roles Product owner,
Scrum master,
team

Team and other
work specific roles

Team and other
work specific roles

Team mem-
bers

Cross-functional
team members

Cross-functional
team members,
specialization is
allowed

Specialization or
preference to tasks

Task size The size that can
be completed in
sprint

Any size Any size

New items
in iteration

Forbidden Allowed whenever
queue allows it

Allowed whenever
queue allows it

Ownership Owned by a team Supports multiple
teams ownership

Supports multiple
teams ownership

Board Defined/reset
each sprint

Persistent Persistent

Prioritization Through backlog Optional Recommended on
each planning

Roles Scrum master,
product owner,
team

Not defined, may
vary

Not defined, may
vary

Rules Constrained pro-
cess

Only a few con-
straints, flexible
process

Slightly con-
strained process

Fit for Enterprise ma-
turity for teams
working on prod-
uct or especially
project which is
longer than a year

Support and
maintenance
teams, contin-
uous product
manufacturing

Startups, fast-
pace projects,
continuous prod-
uct manufacturing

Table 2.1: Comparison of Scrum, Kanban and Scrumban [1].

15

Pair programming

Pair programming is a common practice in software development where two de-
velopers work side-by-side on the same computer, continuously collaborating and
communicating on the same code. The thought behind the practice is to realise
several potential benefits, such as:

• Production speed is faster in the long-term, and the pair comes up with a
larger amount of possible solutions than two developers working individually
[31]. This is called the “pair programming advantage” [32].

• Code and general design quality is a lot higher (fewer bugs and defects) [31].
This is called the “pair defect advantage” [32].

• Better job-satisfaction working in pairs than alone [31].

• Pair programming increases learning as knowledge is constantly shared be-
tween the two programmers [31].

• As developers are so tightly coupled in pair programming the team-building
and communication improves [31].

There are three possible types of pairings in pair programming. These are ex-
plained below with their potential benefits and drawbacks:

• Senior-Senior: With two experts conducting the pair programming to-
gether this would in theory be the most productive pairing leading to the
best results, however, such a pairing has shown to often cause problems as
the seniors are less likely to question established practices [33].

• Senior-Junior: With a combination of both a senior and a junior developer
often new ideas and solution surface as the junior programmer is more likely
to question established practices, also leading to senior developers having
to think through these practices. It is however important that the junior
developer does not take an observer role, but is involved in the coding with
the expert [34].

• Junior-Junior: The last pairing has two novice developers collaborating.
Results have shown that two junior programmers working together yield
better results than the two junior developers working separately, and is often
used in academic settings [31].

2.2 Coordination

This section takes a look at different publications on coordination. It starts of
with Malone and Crowston’s well-known coordination theory. Moving on it takes

16

a closer look at Mintzberg’s coordination mechanisms. After this has been de-
scribed Strode’s theoretical model of coordination is outlined. Ending the chapter
is a brief look at the complexity factors introduced with a large-scale context in
coordination.

2.2.1 Malone and Crowston’s Coordination Theory

One of the most well-known papers on coordination theory was published by Mal-
one and Crowston in 1990 and further redefined in 1994 (the focus will be on this
paper) [35]. Their study spanned different fields and can therefore be seen as an
interdisciplinary coordination study. They listed an extensive amount of different
definitions of coordination, and through these proposed definitions come up with
a rather simple definition:

“ Coordination is managing dependencies between activities.

”These dependencies can occur when some task has to be postponed or extended
because of its connection to another task, resource or unit. Their theory is based
on a combination of coordination from several different disciplines such as com-
puter science, organization theory, operations research, economics, linguistics, and
psychology. They state that coordination consists of one or more coordination
mechanisms, and that each of these address one or more dependencies.

While Strode et al. acknowledges their coordination theory as very useful for iden-
tifying these so-called dependencies, categorising them, and identifying coordina-
tion mechanisms in a situation, they conclude that it is only a theory for analysis
and not intended to be used for prediction. Despite this being true, and the co-
ordination theory not being suitable for predicting outcomes such as coordination
effectiveness, their theory adds important information for better understanding of
how activities or artefacts support coordination in organisational settings [36].

2.2.2 Mintzberg’s Coordination Mechanisms

Around the 1980s Mintzberg performed a well-known studies on organisational
structures focusing on the division of labour into tasks to be carried out, and
the coordination of these tasks to complete the activities at hand [37]. With this
research six coordination mechanisms were identified in which organisations can
coordinate their work:

17

• In direct supervision there is typically one person, e.g., a manager, giving
orders to other members and with that coordinating their work.

• In the standardisation of work processes coordination of the work hap-
pens through standards such as guidelines, orders, rules and regulations.

• In the standardisation of outputs the work is coordinated by performance
standard measures of the outputs of the work.

• In the standardisation of skills coordination happens through standardis-
ation of skills and knowledge, typically before the personnel starts performing
the work.

• In the standardisation of norms it is the norms that are used to coordi-
nate, meaning all members operate according to the same beliefs.

• Inmutual adjustment the members coordinate their own work by informal
communication with each other.

For agile software development it is in particular the mutual adjustment mechanism
and standardisation of norms (shared mental models) that are present. Because
of their nature they are well suited for complex, dynamic and innovative environ-
ments. With the large focus on rapid and continuous delivery the use of informal
communication arenas and achieving shared mental models are to a great degree
existent in agile software development.

2.2.3 Strode’s Theoretical Model of Coordination

Strode et al. performed a multi-case study on three different co-located agile
projects in 2012 [36]. From these projects the findings led to a theoretical model
of coordination that will be outlined in this section. It is important to note that
these projects were not large-scale.

From these case studies three main components for the theoretical model were
extracted: Synchronisation, Structure and Boundary Spanning. These components
combine to what is called the “Coordination Strategy”. Coordination strategy is in
this context a group of coordination mechanisms that manage dependencies in a
situation. The theoretical model of coordination can be seen in figure 2.4. Below
the three main components will be explained in more detail:

Synchronisation

Synchronisation in this context consists of synchronisation activities and synchro-
nisation artefacts produced and used during these activities. Synchronisation ac-
tivities are activities performed by all team members simultaneously. They con-
tribute to a common understanding of the task, process, and or expertise of other

18

Figure 2.4: A theory of coordination in agile software development projects.

19

team members. Synchronisation artefacts on the other hand are artefacts that are
generated during synchronisation activities. These artefacts may be visible for the
entire team or largely invisible but available. The artefacts can take a physical or
virtual form, and are temporary or permanent.

Structure

Structure in this model is the arrangement of, and relations between, the parts
of something complex. It consists of three categories: proximity, availability and
substitutability. Proximity is the physical closeness of other (individual) team
members. Availability means that other team members are accessible for requests
or information. Lastly, substitutability has to do with the team members ability
to perform others’ work to maintain time schedules.

Boundary Spanning

The last component of the coordination strategy is boundary spanning. Boundary
spanning has to do with the interaction with other organisations or other business
units that are not involved in the project. It consists of three aspects: boundary
spanning activities, boundary spanning artefacts and a coordinator role. Boundary
spanning activities are activities performed to achieve help from some unit or
organisation not involved in the project. The boundary spanning artefacts are
artefacts produced to enable this external coordination. These artefacts have the
same characteristics as synchronisation artefacts. Lastly, the coordinator role is
a role taken by someone within the project team. His or her role is to support
interaction to outside personnel to extract resources or information needed in the
project at hand.

Coordination Effectiveness

There is another important part of the theoretical model of coordination, namely
the coordination effectiveness concept. This concept will be further explained in
section 2.5 that takes a look at coordination effectiveness.

Propositions

There are in total ten propositions (Proposition 1 has two parts) linking the co-
ordination concepts in Strode’s theoretical coordination model presented in figure
2.4. These are outlined below:

20

“ Proposition 1a: A coordination strategy that includes synchro-
nisation and structure coordination mechanisms improves project
coordination effectiveness when the customer is included in the
project team. Synchronisation activities and associated artefacts
are required at all frequencies – project, iteration, daily, and ad
hoc.

”“ Proposition 1b: A coordination strategy that includes synchro-
nisation, structure, and boundary spanning coordination mecha-
nisms improves project coordination effectiveness when the cus-
tomer is an external party to the project. Synchronisation ac-
tivities and associated artefacts are required at all frequencies
– project, iteration, daily, and ad hoc. Boundary spanning ac-
tivities and associated artefacts are required at all frequencies –
project, iteration, and ad hoc.

”“ Proposition 2: Synchronisation activities at all frequencies –
project, iteration, daily, and ad hoc, along with their associated
synchronisation artefacts, increase implicit coordination effective-
ness.

”“ Proposition 3: Structural coordination mechanisms i.e. close
proximity, high availability, and high substitutability, increase im-
plicit coordination effectiveness.

”
21

“ Proposition 4: High levels of boundary spanning coordination
mechanisms, i.e. boundary spanning activities at all frequencies –
project, iteration, and ad hoc, their associated boundary spanning
artefacts, and a coordinator role, increases explicit coordination
effectiveness.

”“ Proposition 5: Under conditions of high project complexity, in-
creasing the frequency of iteration and ad hoc synchronisation ac-
tivities will maintain coordination effectiveness. The production
of related synchronisation artefacts must be adjusted accordingly.

”“ Proposition 6: Under conditions of high project uncertainty,
to maintain synchronisation activity frequency and production of
associated artefacts, changing the priority of stories will maintain
coordination effectiveness.

”“ Proposition 7: A mono-project organisation structure enables
close proximity relative to multi- or matrix structures.

”“ Proposition 8: A mono-project organisation structure improves
availability relative to multi- or matrix style structures.

”
22

“ Proposition 9: Under conditions of high project uncertainty,
when the customer is not part of the team, increased boundary
spanning coordination mechanisms will maintain coordination ef-
fectiveness. The production of related boundary spanning arte-
facts must be adjusted accordingly.

”
2.2.4 Coordination in Large-scale

This section takes a closer look at general studies performed on large-scale coor-
dination and is not specifically focusing on software development. The section is
added to highlight the introduction of complexity that a large-scale context brings
with it.

Van der Ven et al. released an article in 1976 where they tried to identify determi-
nants of coordination modes within organisations. They state that an increase in
size will produce a trade-off between the increasing complexity and cost of coor-
dination at the administrative level. From the research two different coordination
forms are described, namely vertical and horizontal. The vertical communication
includes coordination through curators, while the horizontal communication occurs
by way of one-to-one communication. Their findings show that when team size
increases the coordination moves towards a more vertical and impersonal style [38].
This is backed up by John Child in a publication from 1973. Here he states that
with a growing complexity level there is likely that administrative problems will
occur regarding coordination and control [39].

2.3 Large-scale

Having looked at coordination in large-scale in section 2.2.4, what is actually this
so-called “large-scale”? This was a topic brought up at a workshop regarding
research challenges in large-scale agile software development where opinions re-
garding how large-scale should be defined varied a lot. Some suggestions were to
define it through project duration, project cost, number of people involved, num-
ber of remote sites and/or number of teams [8]. This issue was further analysed by
Dingsøyr, Fægri and Itkonen trying to work out a taxonomy of scale for agile soft-
ware development. Their results are summarised in table 2.2 where the taxonomy
of scale is based on the amount of teams involved in the development project [18].

Others have also discussed problems regarding large-scale. For example Schnit-

23

Level Number of
teams

Coordination approaches

Small-scale 1 Coordinating the team can be done using ag-
ile practices such as daily meetings, common
planning, review and retrospective meetings.

Large-scale 2-9 Coordination of teams can be achieved in a
new forum such as a Scrum of Scrums forum.

Very large-
scale

10+ Several forums are needed for coordination,
such as multiple Scrum of Scrums.

Table 2.2: A taxonomy of scale of agile software development projects.

ter and Mackert discuss the scaling of Scrum at SAP AG and concludes that in
their case the maximum involved development employees that may be organised
with regards to agile project management is 130 (This number sums up developers
in 7 teams (max. 70 people), the product team (max. 16), development infras-
tructure responsible (about 10), quality assurance and testers (about 25), general
management (about 10)) [3].

Another example is taken from Nord et al. defining large-scale by scope of the
system, team size, and project duration. They say that the size of the development
team must be more than 18 people and distributed into a few teams [40].

So the definition of a “large-scale agile project” used in this research will be:

“ An agile project must consist of a minimum amount of two teams
coordinating across the teams to be categorised as being large-
scale.

”
2.4 Multiteam Systems

As mentioned earlier the work environments have become more challenging and
complex in line with the growth of communication and information technology.
This growth has led to the globalisation of organisational work. With the glob-
alisation an increase in interconnectivity across organisational boundaries has be-
come apparent. Because of this trend new questions and problems have surfaced.

24

Unfortunately, these questions and problems have not been possible to adapt to
traditional organisational forms. This has led to the introduction of new and
different organisational forms, e.g., matrix and virtual organisations, and cross-
functioning and ad hoc project teams. One of these new organisational forms
focuses on projects where collaboration exists across traditional teams and organ-
isational boundaries. This form does not resemble traditional organisations or
large-scale teams, but can be seen as an aggregation that includes tightly cou-
pled arrangement of teams, where the different teams may have noticeable differ-
ent norms, expertise, missions, structures and operating procedures to the overall
work. Mathieu, Marks, and Zaccaro [41] defined the organisations corresponding
to the aforementioned form as multi-team systems (MTSs). Below their definition
follows:

“ Two or more teams that interface directly and interdependently in
response to environmental contingencies towards the accomplish-
ment of collective goals. MTS boundaries are defined by virtue
of the fact that all teams within the system, while pursuing dif-
ferent proximal goals, share at least one common distal goal; and
in doing so exhibit input, process and outcome inter-dependence
with at least one other team in the system [41].

”From this definition it is easy to see similarities with so-called “large-scale” projects
and organisations. Both large-scale projects’ and multiteam systems’ taxonomies
look at the amount of teams involved, where the minimum number is two, but
is typically larger than this number by a considerable margin. In both categories
the teams have to be somewhat interconnected, and the organisational boundaries
may be crossed, meaning teams can reside in different organisations. Mathieu et
al. [41] have therefore categorised MTSs into “internal MTSs” where the whole
system or project is situated within an organisation, and “cross-boundary MTSs”
where teams are located in different organisations, hence organisational boundaries
have to be crossed to achieve collaboration.

One of the most distinguishing factors of multi-team systems is their focus on goal
hierarchies. As mentioned above interdependencies are not only witnessed within
teams, but also across them. From the definition of MTSs the teams have different
proximal goals, but all share at least one distal goal. Mathieu et al. [41] define the
feature of these goal hierarchies that are relatively common across different MTSs
as:

1. MTS goal hierarchies have a minimum of two levels

2. Goals at higher levels entail greater interdependent actions among more com-

25

ponent teams than goals at lower levels

3. The superordinate goal at the apex of the hierarchy rests on the accomplish-
ment by component teams of all lower order goals

4. Higher order goals are likely to have a longer time horizon than lower order
goals

5. Goals vary in their priority and valence

2.4.1 MTS Characteristics

Having looked at the features of multi-team systems the attention is shifted to-
wards their attributes. These attributes are what separate different MTSs. The
attributes are classified into three dimensions, compositional, linkage and develop-
ment attributes, and will be presented in the following sections. Most of the theory
in the coming sections is collected from a multi-team system book by Zaccaro et
al. [42]. The different dimensions are summarised in table 2.3.

Compositional Attributes

In the compositional dimension several demographical features of the MTS and
characteristics of component teams are looked at. In total there are ten attributes,
and these will be outlined in this section. Regarding the magnitude of the MTSs
two attributes are used. Firstly the “number” of component teams located within
the MTS, and secondly the total “size” of the MTS, meaning the amount of indi-
vidual members involved in the multi-team system.

Another compositional attribute that was earlier mentioned as a distinguishing
factor is “boundary spanning”. This attribute is concerned with where the differ-
ent component teams originate from. If all component teams come from the same
organisation it is an internal MTS, while if the component teams come from two
or more organisations it is an external MTS. External MTSs are more complex
and are more likely to run into task and social complexity than its counterpart.
In this context, social complexity refers to diversity, scale, scope, and dynamism
of stakeholders in the MTS’s environment [43, 44]. There are two more attributes
concerned with boundary spanning which are at a higher detail level. Firstly the
“organisational diversity” looks at the total amount of organisations represented in
the MTS. With a higher number of organisations the likelihood of a higher level
of social complexity rises. Secondly the “proportional membership” outlines the
percentage of teams from different organisations. With an unbalanced propor-
tional membership there is a risk that the influence level will be greater from the
organisation(s) with the highest amount of teams.

26

The sixth compositional attribute is concerned with how similar the different com-
ponent teams’ core task and goals are. This attribute is called “functional diver-
sity”. With an increase in this so-called functional diversity, problems may occur.
Another important factor in MTSs is “geographic dispersion”. There are three
degrees of geographical dispersion, namely co-located, partially co-located, and
fully dispersed. Some problems that have been witnessed in dispersed projects has
been communication issues, coordination difficulties and trust building. Building
on the geographic dispersion is an attribute called “cultural diversity”. If teams
are dispersed and the boundaries extend the national borderline this could lead to
cultural clashes.

The ninth attribute in the compositional dimension is “motive structure”. This
attribute refers to the degree to which the different teams commit to the MTS,
and how compatible and closely linked the team goals and the MTS goals are. A
problem that can occur in the compositional attribute is that a team’s proximal
and/or distal goals are in conflict with the overall goals of the MTS leading to
more complex inter-team processes. With an increase in incompatibility in goals
between the MTS and the compositional team(s) this can lead to team members
being less committed to the overall goal hierarchy of the multi-team system. Mo-
tive structure may also be associated with the last compositional attribute called
“temporal orientation”. Temporal orientation is concerned with the amount of
resources dedicated to the MTS by each component team.

As can be seen the compositional attributes are important factors in inter-team
dynamics within MTSs. Focus on team composition is important to keep the level
of effectiveness high, as well as prohibiting evolution of subgroups.

Linkage Attributes

Moving on the focus is shifted towards the so-called linkage dimension. Link-
age mechanisms and attributes are concerned with how teams are arranged and
connected within a multi-team system. The first attribute is concerned with the
amount of coordination between different component teams that is needed and is
called “interdependence”. The degree of interdependence will differ from different
MTSs, but with an increasing interdependence the amount of inter-team processes
necessary will increase to achieve high MTS effectiveness.

Two other linkage attributes that often correlate are “hierarchical arrangement”
and “power distribution”. Hierarchical arrangement focuses on how teams are
organised within the MTS with regards to their responsibility level of goal attain-
ment. The more proximal goals the component team is involved with, the higher in
the hierarchical arrangement they are. As for power distribution the focus is on the
relative influence that component teams have within a multi-team system. Often
the teams placed higher in the hierarchical arrangement, meaning they have more
proximal goals, also have a bigger influence and power. Other factors that could

27

lead to higher power can be team size, the team’s functional centrality to the core
mission of the MTS, and/or the parent organisations having assigned the team
with authority. Both attributes will likely influence communication, interaction
and collaboration between the component teams in a multi-team system.

Moving on to the forth and fifth linkage attributes the focus is shifted towards the
communication structures of MTSs. Firstly “communication networks” refer to the
most common interaction and communication patterns between and within com-
ponent teams. These networks can be fully decentralised (everyone are interactive
with everyone), fully centralised (everyone communicate to and through one single
member of the MTS), and various patterns between these two boundary points.
It is important to notice that the chosen communication network in a multi-team
system will have a great impact on the task efficiency of the MTS. Lastly “commu-
nication modality” is concerned with which modes are used to communicate across
component teams within a multi-team system. These can be, e.g., face-to-face
interaction, electronic communication, or a mixture of the two. Often the degree
of which modes are used is closely linked to the aforementioned compositional at-
tribute called “geographic dispersion”. With co-located teams preferring a higher
amount of face-to-face communication.

Developmental Attributes

The last dimension of multi-team systems is the developmental dimension. Devel-
opmental attributes are concerned with the developmental dynamics and patterns
of MTSs. The first attribute looks at how the MTS was put to life, its “gen-
esis”. The origin of MTSs can either occur through appointment from parent
organisations, or they may emerge from collective initiative of several teams. The
type of genesis can have an impact on different aspects of a MTS, e.g., the distal
goal. Another developmental attribute is “direction of development” and looks at
the direction the MTS takes from its origin. For example the MTS could have
emerged from a specific event, but then move towards a more formalised entity as
time passes. Another development path could be the MTS being formally planned
in anticipation of a possible situation occurring, but when the event does occur
actually evolve in membership and linkages.

Two other developmental attributes are “tenure” and “stage”. The tenure attribute
is concerned with the anticipated duration of the MTS, while the stage attribute
looks at which particular stage of development the MTS is in. Starting as a
newly formed multi-team system it will evolve through different phases to finally
becoming a mature MTS. The stage of MTS development will often give a hint to
the efficiency of the MTS’s inter-team processes.

The last two developmental attributes together combine to the group term “trans-
formation of system composition”, meaning if there are changes to the composition
as the MTSs develop and move through the different phases of development. The

28

Figure 2.5: A model of multiteam system effectiveness.

first of these focuses on “membership constancy” and refers to how constant or
fluid the number of component teams are. Often in more complex and turbulent
environments the amount of component teams may change over the course of the
MTS’s lifespan. Lastly “linkage constancy” is concerned with how the component
teams are connected. The focus is on if these linkages between the component
teams in a multi-team system is constant or if they change as the MTS progresses.
Again the likelihood of fluidity in coordination structures between teams is higher
when the MTS is located in more turbulent and dynamic environments.

In the above sections three dimensions of multi-team systems and their attributes
have been presented. It is important to note how the different attributes can be
factors in achieving effective MTSs and MTS processes. A simple model of MTS
effectiveness is outlined in figure 2.5, where the attributes of the compositional,
linkage and developmental dimensions can be seen as predecessors of different
intra-team and inter-team processes. The effects of these attributes on the total
effectiveness of the multi-team system would be arbitrated by these intra- and
inter-team processes.

29

Dimension Attribute Explanation

Compositional

Number Number of component teams within the
MTS

Size Total number of individual members
across teams

Boundary status Component teams come from single or-
ganization (internal) versus multiple or-
ganisations (external or cross-boundary)

Organisational di-
versity

In a cross-boundary MTS, the number
of different organisations represented
among the component teams

Proportional
membership

In a cross-boundary MTS, the percent-
age of teams from different organisations

Functional diver-
sity

Degree of heterogeneity in the core pur-
poses and missions of component teams

Geographic dis-
persion

Co-located or dispersed component
teams

Cultural diversity Degree to which component teams come
from different nations or cultures

Motive structure Degree of commitment of each compo-
nent team to the MTS; the compatibil-
ity of team goals and MTS goals

Temporal orienta-
tion

Level of effort and temporal resources
expected of each component team

Linkage

Interdependence Degree of integrated coordination (e.g.,
input, process, outcome) among mem-
bers of different component teams

Hierarchical
arrangement

Ordering of teams according to levels of
responsibility

Power distribu-
tion

The relative influence of teams within
the MTS

Communication
structure: Net-
work

The typical patterns of inter-team com-
munication

Communication
structure: Modal-
ity

The modes of communication (e.g., elec-
tronic, face-to-face, or mixed) that occur
across component teams

Developmental

Genesis The initial formation of an MTS as ei-
ther appointed or emergent

Direction of de-
velopment

From emergent to formalised; an evolu-
tion from an early formal state

Tenure The anticipated duration of the MTS
Continued on the next page. . .

30

Table 2.3 – continued from previous page
Dimension Attribute Explanation

Stage The stage of MTS development from
newly formed to mature

Transformation of
system composi-
tion: Membership
constancy

Fluidity versus constancy of component
teams as members

Transformation of
system composi-
tion: Linkage con-
stancy

Fluidity versus constancy of linkages
among component teams

Table 2.3: Dimensions of multi-team system (MTS) characteristics.

2.5 Efficiency, Effectiveness, Productivity and Per-
formance in Coordination

There has been released a good amount of papers regarding effectiveness, produc-
tivity and efficiency in project literature. Unfortunately research in this area that
focuses on large-scale is scarce. Therefore, the work highlighted in this section
will mainly be extracted from small-scale studies. To start the section of a closer
look at the aforementioned study by Strode et al. [45] will be performed, before a
summary of some different field studies on the matter will be carried out.

2.5.1 Strode’s Coordination Effectiveness

Part of the theoretical model of coordination by Strode et al. seen in figure 2.4 is
the so-called “coordination effectiveness”. This concept was developed by Strode
et al. in 2011 having used the same three agile projects discussed earlier, as well
as a non-agile software development project as a foundation [45]. Coordination
effectiveness is defined as the outcome of a particular coordination strategy. Co-
ordination effectiveness is split into two components: an implicit and an explicit
part.

The implicit part is concerned with coordination that occurs without explicit
speech or message passing, this happens within work groups. It has five com-
ponents: “Know why”, “Know what is going on and when”, “Know what to do and
when”, “Know who is doing what”, and “Know who knows what”. These aspects
are pretty self-explanatory.

31

	

Coordination	 Effectiveness	

Implicit	 Explicit	

Know	
why	

(shared	
goal)	

Know	
what	 is	
going	
on	 and	
when	

Know	
what	 to	
do	 and	
when	

Know	
who	 is	
doing	
what	

Know	
who	
knows	
what	

Right	
place	

Right	
thing	

Right	
time	

Figure 2.6: Components of coordination effectiveness from Strode et al. (2011).

The explicit component on the other hand is concerned with the physical aspects
of the project. It states that the objects involved in the project have to be in the
correct place, at the correct time and in a state of readiness for use. A summary
of the combination of explicit and implicit coordination effectiveness is provided
in figure 2.6.

To end this subsection a definition of coordination effectiveness from Strode et al.
is provided:

“ Coordination effectiveness is a state of coordination wherein the
entire agile software development team has a comprehensive un-
derstanding of the project goal, the project priorities, what is go-
ing on and when, what they as individuals need to do and when,
who is doing what, and how each individuals work fits in with
other team members work. In addition, every object (thing or
resource) needed to meet a project goal is in the correct place or
location at the correct time and in a state of readiness for use from
the perspective of each individual involved in the project [45].

”
32

2.5.2 Some Studies on the Field

Below four studies that try to identify important factors of coordination’s impact
on team performance are described.

Team Effectiveness 1997-2007: A Review of Recent Advancements and
a Glimpse Into the Future

Mathieu et al. takes a look at literature published on team effectiveness in a
ten year period. They look at several different aspects regarding the nature of
teamwork [46]. It is important to note that the main focus of this article is on
small-scale teams, and that the publications used are not gathered directly from
the software and agile field. However, the article gives perspectives that are note-
worthy. The main focal point here will be on Mathieu’s chapter on organisational
contexts, and the section on multi-team systems coordination in particular.

One aspect that was identified in several studies having a positive impact on per-
formance was an “openness climate”. What was concluded at the macro organisa-
tional level was that a support for an openness climate at the broader level of the
organisation had a positive impact on team level processes.

Quite a few studies were identified on multi-team systems coordination as well.
Here, the findings showed a positive correlation between inter-team coordination
and intra-team coordination. Hyatt et al. indicated that teams perform more
effectively as self-contained units when they have robust information networks, as
well as communication and cooperation channels, both within and between teams
[47]. This again highlights the importance of studies focusing on coordination in
large-scale.

Interpretative Case Studies on Agile Team Productivity and Manage-
ment

Melo et al. performed a multi-case study on three large Brazilian IT companies
that were using agile methods in their projects [48]. The objective of the research
was to provide a better understanding of which factors that had an impact on agile
team productivity. To document teamwork effectiveness they used the well-known
theoretical model “Input-Process-Outcome” (IPO). Their input factors were “Indi-
vidual and Group characteristics”, “Stage of team development”, “Nature of task”,
“Organizational context” and “Supervisory behaviors”. One process-category was
identified: “Group processes”. Lastly they identified two outcome-groups, namely
“Agile team productivity” and “Attitudinal and Behavioral”. All of these are sum-
marised constituting the conceptual framework for their agile team productivity
in figure 2.7.

33

Figure 2.7: Agile team productivity conceptual framework.

After collecting the data from their multi-case study they mapped the results in
a thematic map on agile productivity factors. These findings showed three main
groups of team management and their impact on productivity. For this study
it is the “Inter-team coordination” and “Team design choices” that are interesting
because of their impact on coordination to a larger degree, meaning “Team member
turnover” is left out.

In “Team design choices” four roots of impact were identified: “Team size”, “Team
members skills”, “Team collocation” and “Team members allocation”. Out of these
team collocation and team size seem to effect coordination effectiveness the most.
Their findings showed that smaller teams led to better communication and align-
ment, while collocation had a positive influence on team productivity as it helped
overcome invisible barriers between teams in a hierarchical company.

For “Inter-team coordination” two roots were identified: “Lack of commitment
among teams” and “Inappropriate coordination rules among teams”. One of the
main reasons for negative impact was identified to be external dependencies be-
cause projects often were left waiting for results of entities outside the project team.
So a problem in inter-team coordination was misalignment, hence, synchronisation
is an important factor.

34

Dispersion, Coordination and Performance in Global Software Teams:
A Systematic Review

Anh et al. performed a systematic literature review (SLR) to collect relevant stud-
ies on dispersion, coordination and performance in global software development
(GSD), and highlighted the findings of impact factors in a thematic mapping [49].
It is important to note that the findings are not from agile software development,
but they are still interesting because of the global aspect in the literature used.
The results are briefly summarised in table 2.4:

Type Impact on team performance
Presence of geographical
dispersion

Negative (work takes longer time, less effective
communication and coordination)

Number of sites/Team size Negative (complicates coordination and hampers
communication)

Large time zone differ-
ences between teams

Negative (creates coordination problems because
of the complexity introduced)

Table 2.4: Impact of geographical dispersion on performance.

Team Performance in Agile Development Teams: Findings from 18 Fo-
cus Groups

Dingsøyr and Lindsjørn carried out a focus group study looking at which factors
the agile software practitioners in the research perceived as influential on effec-
tive teamwork [50]. This paper focuses on the team performance of individual
teams, but is included because of its agile nature. To place the suggestions from
the participants into categorise Dingsøyr et al. decided to use the “Big Five”
model proposed by Salas et al. [51] leading to eight teamwork components: “Team
leadership”, “Mutual performance monitoring”, “Backup behaviour”, “Adaptabil-
ity”, “Team orientation”, “Shared mental models”, “Mutual trust” and “Closed-loop
communication”. A summary of the distribution of all suggestions over these com-
ponents is outlined in table 2.5.

35

Teamwork component Foster Hinder Total
Team leadership 90 139 229
Mutual performance monitor-
ing

49 22 71

Backup behaviour 44 57 101
Adaptability 46 50 96
Team orientation 91 65 156
Shared mental models 104 59 163
Mutual trust 97 58 155
Closed-loop communication 122 90 212
Sum 643 540 1183

Table 2.5: Summary of the distribution of suggestions over teamwork components.

The teamwork component with the strongest connection to coordination is “closed-
loop communication”. Looking at table 2.5 a lot of emphasis was aimed towards
the component from the practitioners (second highest total count). This again il-
lustrates the importance of coordination. The sub-components identified of closed-
loop communication are outlined in table 2.6.

Sub-component Foster Hinder
Co-location Physical presence

Co-location
Physically placed together

People are distributed
Distance
Not co-located

Openness Open communication
Openness in the team
Open dialogue

Secrecy
Retaining information

Infrastructure Process support tools
Suitable office spaces
Tools that work

Bad tools
Bad office facilities

Visualising status
and progress

Informative workspace
Visualise things that go well
Whiteboard/task-board

No whiteboards

Social atmosphere Good atmosphere
Fun
Friendly tone

Scolding
Antisocial environment
Bad atmosphere

Table 2.6: Sub-components identified of closed-loop communication with their
respective performance items.

As can be seen from table 2.6 a lot of attention was directed towards location

36

of team members, infrastructure and supportive tools, and organisational culture.
The presence of co-location, a good infrastructure and supportive tools, and an
open and social climate seem to all have a positive effect on team effectiveness.

Summary

The findings from the different studies are summarised in table 2.7. Note that it
could be argued that misalignment and synchronisation, as well as team collocation
and presence of geographical dispersion, are contrasts of each other. They are
however included in the summary table because they were identified as important
aspects in the different studies.

Type Impact
Organisational openness culture Positive
Misalignment Negative
Synchronisation Positive
Team co-location Positive
Presence of geographical dispersion Negative
Number of sites/Team size Negative
Large time zone differences between teams Negative
Infrastructure/Supportive tools Positive

Table 2.7: Summary of impacts identified in the studies.

2.6 Shared Mental Models

Shared (or team) mental models were originally proposed by Cannon-Bowers et
al. in 1990 [52], building on prior research in cognitive psychology on individuals’
mental models. Rouse et al. [53] defined the mental model of an individual as a
“mechanism whereby humans generate descriptions of system purpose and form,
explanations of system functioning and observed system states, and predictions of
future system states”. Hence, the mental model of a human-being can be seen as
that individual’s perception of the world, or put in other words, his reality. In
similar fashion to individuals’ mental models, Cannon-Bowers et al. propose that
team members have shared mental models in regards to the equipment, interac-
tion patterns, team procedures etc. within their respective teams. Below their
definition of a shared mental model is outlined:

37

“ Knowledge structures held by members of a team that enable
them to form accurate explanations and expectations for the task,
and, in turn, to coordinate their actions and adapt their behaviour
to demands of the task and other team members [54].

”Cannon-Bowers et al. [54] goes on to suggest four shared mental models (or team
mental models as they called them) that should be present to achieve a higher
degree of team effectiveness: “equipment model”, “task model”, “team interaction
model” and “team model”. Firstly the “equipment model” is concerned with the
technology used by the team to perform their team tasks, and their shared un-
derstanding of this technology. The “task model” looks at how team members
perceive the team procedures, strategies, environmental conditions, and task con-
tingencies. The third mental model described by Cannon-Bowers et al. is the
“team interaction model” which captures how members understand their own and
other team personnels’ responsibilities, norms, and interaction patterns. The last
model suggested is the “team model” which reflects how team members understand
the others’ skills, attitudes, knowledge, strengths and weaknesses.

Mathieu et al. [55] however argued that these four team mental models suggested
by Cannon-Bowers et al. [54] could be divided and categorised into two areas.
The first of these he called “task-work” containing the “equipment” and “task”
models, and the second he labelled “teamwork” including the “team interaction”
and “team” models. The “task-work” mental models describe how team members’
mental models are structured in regards to the equipment and procedures used to
carry out their tasks. The “teamwork” mental models on the other hand outline
how team members’ mental models are structured in regards to team interaction
processes and the perception of other team members’ knowledge. In the study by
Mathieu et al. they found that both task-work mental model similarity and team-
work mental model similarity were notably positively related to team processes,
e.g., communication, cooperation and coordination, which in turn were to a large
degree associated to team performance.

Yu et al. [56] also performed a conceptual analysis using shared mental model
theory as a lens to examine three agile practices from Xtreme Programming (XP)
and Scrum (system metaphor, stand-up meeting, and on-site customer). The
objective of their research was to examine and understand how agile methodology
practices enable software development teams to accomplish effective teamwork.
In a short summary their work shows that the creation of shared mental models
is one of the main benefits that agile development methodologies and practices
brings with them, where the main benefit is enabling better collaboration within
the teams. Their work demonstrates that the analysed agile practices assist the

38

progress of the four stages of shared mental model development: knowing, learning,
understanding and executing. Further, the research shows how agile practices
contribute to achieving the two earlier mentioned shared mental models: teamwork
and task-work.

2.7 Mutual Trust

Trust has been an aspect brought up by several researchers and seems to be closely
linked to the previously described shared mental models. The general thoughts on
mutual trust tends to be that it is an important aspect for achieving efficient teams
and coordination within and across teams. However, a lot of these researchers use
different definitions of the word. In this work the definition of trust used is the
one Sheila Simsarian Webber provided in 2002 [57]:

“ The shared perception that individuals in the team will perform
particular actions important to its members and will recognise and
protect the rights and interests of all the team members engaged
in their joint endeavour.

”One of the more recognised papers on teamwork by Salas et al. [51] highlights
the importance of mutual trust. In their work they describe a set of “Big Five”
which generates teamwork, however they stress that these five dimensions can
not function without three supporting and coordinating mechanisms. These three
coordinating mechanisms are namely shared mental models, mutual trust and
engagement in closed-loop communication. A graphical representation of their
model can be witnessed in figure 2.8, but will not be further explained.

There has been identified several impacts that trust can have on teams and team
members. Bandow published a research on teamwork where she highlighted that
trust affected several team processes and outcomes, e.g., membership contribution,
team participation, product quality and cycle time. She further outlined that it
is important that team members feel that their voice is heard, if not they will
most likely be less willing to share their opinions and information. As a worst
case scenario this might even lead to members not participating in information
sharing arenas as they fear other members will perceive them as incompetent [58].
Also, without sufficient trust the team members might waste time and effort on
checking each other as opposed to collaborating [59]. In general achieving mutual
trust within projects seems to allow for information to flow more freely between
the members. Without it there is a big chance it could spiral negatively and grow

39

Figure 2.8: Graphical representation of the “Big Five” and supporting coordination
mechanisms.

40

in concern where productivity goes down.

Similar findings to Salas et al. [51] were identified by Moe et al. [60] when they
carried out a case study on a Scrum project. They state that “without sufficient
trust, team members will expend time and energy protecting, checking and in-
specting each other as opposed to collaborating to provide value-added ideas. It is
evident that trust is a prerequisite for shared leadership, feedback, and communi-
cation. Our finding regarding the lack of trust also confirms previous research on
trust [58], such that team members may not be willing to share information if they
fear being perceived as incompetent”. This highlights that trust is also identified
as an important aspect in agile development.

Trust was also identified as a key factor both in small and large R&D projects
by Nygaard et al. [61]. They argue that small projects generally have a high
level of trust because of the tight connections witnessed between partners and
coordination benefits, while the larger projects usually benefit from having a high
degree of variety in knowledge sources. They state that trust is a key factor
for explaining exchange of knowledge and the creation of coordination benefits for
organisations in most industries. They state that trust among partners supporting
coordination and the aforementioned variety of knowledge flows within the projects
is of uttermost importance to increase the likelihood of success. They back their
work up by pointing to previous literature on similar research by McEvily et al.
[62].

41

Part II

Research Methodology

43

Chapter 3

Method

Contents
3.1 Literature Review . 46

3.1.1 General Outline . 47
3.1.2 Snowball Sampling . 48
3.1.3 General Accumulation 49

3.2 Research Method . 49
3.2.1 Case Selection . 50
3.2.2 Data Collection . 50
3.2.3 Data Analysis . 53

The research study used different methods to gather relevant publications and
theory. These are further outlined in this chapter starting with a detailed look at
the literature review performed, as well as highlighting other parts of the gathering
methodology, namely snowball sampling and general accumulation of papers. After
this has been performed the research method is outlined in more detail. The focus
here will be on “case selection”, “data collection” and “data analysis”.

45

3.1 Literature Review

For this study a literature review was chosen as one of the information gathering
methods. For the searching process and selection of articles in the literature re-
view certain recommendations from systematic reviews were followed. The general
procedure of such a review is outlined in L1 below. It is important to note that
the searching had an open-mindedness regarding search words and the selection
process.

L1 - The steps of a systematic review [63]:

1. Framing questions for a review.

2. Identifying relevant work.

3. Assessing the quality of studies.

4. Summarizing the evidence.

5. Interpreting the findings.

Some of the benefits and objectives of a literature review are summarised in L2
below.

L2 - Objectives of a literature review [20]:

• Show that the researcher is aware of existing work in the chosen topic
area.

• Place the researcher’s work in the context of what has already been
published.

• Point to strengths, weaknesses, omissions or bias in the previous work.

• Identify key issues or crucial questions that are troubling the research
community.

• Point to gaps that have not previously been identified or addressed
by researchers.

• Identify theories that the researcher will test or explore by gathering
data from the field.

46

• Suggest theories that might explain data the researcher has gathered
from the field.

• Identify theories, genres, methods or algorithms that will be incorpo-
rated in the development of a computer application.

• Identify research methods or strategies that the researcher will use in
the research.

• Enable subsequent researchers to understand the field and the re-
searcher’s work within that field.

3.1.1 General Outline

As explained in subsection 3.1.3 a set of articles and publications were provided
by the supervisor to give an overview on the field and agile software development
in general. This made it easier to classify which studies to look for and how to
evaluate their relevance and rigour. The databases used in the literature review
are summarised in table 3.1. When searching in these databases concepts and
keywords were combined to match the research question as well as other interest-
ing combinations. These concepts and keywords are outlined in table 3.2. It is
important to note that the last concept was additional search words used because
of their close relation to coordination and team performance.

Name Impact
ISI Web of Science apps.webofknowledge.com
ACM Digital Library dl.acm.org
Science Direct (Elsevier) sciencedirect.com
Google Scholar scholar.google.com

Table 3.1: Databases used in the literature review.

Concept Keywords
Coordination Communication, Collaboration, Inter-team coor-

dination, Closed-loop communication
Agile Scrum, XP, Crystal, Lean, Kanban, Scrumban,

Scrum ban, Scrum-ban, Extreme Programming,
Xtreme Programming, Pair programming, Pair-
programming

Continued on the next page. . .

47

Table 3.2 – continued from previous page
Concept Keywords
Large-scale Global, Multiteam systems, Multi-team systems,

MTS, Multi-agent systems, Distributed, Interna-
tional

Effectiveness Efficiency, Productivity, Performance
Additional search words Co-located, Collocated, Colocated, Co located,

Distributed, Dispersed, Global, Globally, Inter-
national, Mental model, Team mental model,
Shared mental model, Strategic mental model,
Trust, Mutual trust

Table 3.2: Search words used in the literature review.

The literature review provided an extensive amount of findings, unfortunately a
lot of the publications were focusing on small-scale development. Therefore, a se-
lection process had to be carried out. Here all abstracts of the collected literature
were read and publications with the highest relevance were chosen. The articles
that were still left after this selection process were then read thoroughly where
some were discarded to give an appropriate amount of publications. The analy-
sis outlined above focused mainly on finding articles focusing on large-scale agile
inter-team coordination, meaning such articles were given a higher score when
identified. Some other aspects that contributed to the score were mentioning of
global projects, effectiveness and inter-team coordination in general. This process
was important because of the time constraints specified on the study, and to obtain
relevant and rigorous literature to insure a robust study.

3.1.2 Snowball Sampling

Snowball sampling is a term that reflects how new studies are selected through
already chosen studies (based on their similarities) [64]. This was done in two
ways in the research. In table 3.1 a list of databases used for the literature review
are summarised. Some of these databases provided snowball sampling in the way of
suggesting similar articles when a specific publication was selected from a search.
This is the first way of snowballing used. The second way was through using
reference lists in selected articles and publications. This extraction lead to a lot of
well-written and recognised papers.

48

3.1.3 General Accumulation

Articles were also accumulated through a supervisor and fellow research students.
At the start a handful of publications were received from the supervisor, and other
papers were also acquired throughout the study. It is important to note that all
the articles were inspected in the same manner as the publications found from the
literature review to make sure their relevance and rigour were appropriate.

3.2 Research Method

Because there has been few studies on the field of inter-team coordination in large-
scale agile software development an exploratory case study was chosen as the
research method. An exploratory case study is an excellent fit to get a greater
understanding of somewhat unexplored territories, as well as spawning possibilities
for further research. Details about exploratory case studies is further outlined in
the quotation below.

“ An exploratory study is used to define the questions or hypotheses
to be used in a subsequent study. It is used to help a researcher
understand a research problem. It might be used, for example,
where there is little in the literature about a topic, so a real-
life instance is investigated, in order to identify the topics to be
covered in a subsequent research project [65].

”To choose an appropriate case organisation and project certain criteria had to be
present. These are further discussed in section 3.2.1. In the end one case was
selected as the focus because of its availability, as well as the case successfully
fulfilling the case criteria. The case was described as the most successful large-
scale agile software development project in Norway so far. The project will be
referred to as “Omega” throughout this thesis and was a project to develop a
new office automation system for the public department “Gamma”. The Omega-
project ran from 2008 to 2012, and had at most 13 development teams involved.
The distribution of these teams were six Gamma-teams, as well as four Alfa-teams
and three Beta-teams. “Alfa” and “Beta” were contracted consulting companies in
the Omega-project. The project as a whole is outlined in more detail in chapter
4.

Data collection was granted by all three organisations. Before the data collection
took place it was important to get a better overview of the project and case at hand.

49

Therefore available data was looked at in detail, e.g., public presentations. Because
of this early review the complexity level of the Omega-project was identified at
the initiating stages of the case study with a total of 175 people being involved in
the project and sub-projects. As a result of the data collection starting some time
after the project had ended a few challenges had to be dealt with, e.g., personnel
availability and possible holes in memories of participants.

3.2.1 Case Selection

Before the case study was conducted several criteria for a fitting case project
were agreed upon. Seeing as the research was suppose to focus on large-scale
development/multi-team systems it was important to find a case where minimum
two teams were present in the project, as well as collaborating across the teams.
It was also important that the project performed in the case was an agile software
development project. Another criteria was that the length of the project had to
be suitable, meaning that the project had been ongoing for a reasonable amount
of time. The reasoning behind this was that the amount of data would be richer,
and it would be easier to find patterns over a longer period of time.

There were also other criteria which were preferable, but not mandatory. One of
these criteria was that it would be desirable if there were several roles within the
project as a whole and the project teams. This had to do with the possibility
of people with different roles within a project having various experiences from
the course of the project leading to valuable data, or put in other words, having
different points of view within the project. Another preferred criteria was having a
large-scale project with several organisations involved. With several organisations
involved there will be different cultures and protocols involved, and therefore a
lot of interesting data could surface when comparing the approach of the different
organisations.

3.2.2 Data Collection

For the data collection in the exploratory case study focus groups were selected.
In these focus groups aspects that are known to be challenging in large-scale agile
software development were brought up, as well as general discussion on the topics of
large-scale software development, inter-team coordination and team performance.
Focus groups are further outlined in L3, and were primarily selected because of
their ability to accumulate extensive and valuable amounts of research data.

In total three focus groups were conducted, one for each of the organisations in-
volved. The topic that was looked at in the focus groups was “Inter-team coor-
dination and knowledge sharing”. The reasoning behind conducting focus groups
for each of the organisations, and not performing them on a project level, was to
make sure that an openness was achieved, and that data concerning specific or-

50

ganisations were not lost. As mentioned in section 3.2.1 there might be differences
in cultures and methodologies between organisations, and these might not have
been present in the focus groups if they were held on a joint basis.

The organisations were asked to provide their most relevant personnel to attend
each focus group. In total 8 participants were involved in the focus groups. The
participants had several roles in the Omega-project: development managers, scrum
masters, (sub-)project managers, developers, delivery managers, functional archi-
tects and technical architects. It is important to note that most of the focus group
participants were employees in management positions in the project. Most of these
participants started as developers before switching to management roles through
the course of the project. Because of the availability of personnel and topic in the
focus groups no pure developers were present. The distribution of participants in
the different focus groups is summarised in table 3.3.

Theme Organisation Number of par-
ticipants

Alpha 2
Inter-team coordination and
knowledge sharing

Beta 3

Gamma 3

Table 3.3: Participants in focus groups.

Before the focus group sessions were conducted interview guides were developed
(these can be seen in appendix A), as well as a rough timeline of the project. The
timeline was used to freshen the participants’ memories about key events. In the
focus groups the role of the researcher was to moderate the discussion and take
notes. At the start of each focus group the participants were asked to explain
their role(s) in the Omega-project. All of the focus group meetings were recorded
digitally and transcribed at a later point in time, and whiteboard drawings were
documented through pictures. In total the three focus groups resulted in 94 pages
of transcribed material. Minutes of each focus group was also sent to each of the
corresponding participants for needed information and review.

51

L3 - Focus group [66]:

“ Focus groups are a form of group interview that capitalises
on communication between research participants in order
to generate data. Although group interviews are often
used simply as a quick and convenient way to collect data
from several people simultaneously, focus groups explicitly
use group interaction as part of the method. This means
that instead of the researcher asking each person to re-
spond to a question in turn, people are encouraged to talk
to one another: asking questions, exchanging anecdotes
and commenting on each others’ experiences and points
of views. The method is particularly useful for exploring
people’s knowledge and experiences and can be used to
examine not only what people think but how they think
and why they think that way.

”The interaction in focus groups can be used to achieve seven main goals:

• To highlight the respondents’ attitudes, priorities, language, and
framework of understanding;

• To encourage research participants to generate and explore their own
questions and develop their own analysis of common experiences;

• To encourage a variety of communication from participants, tapping
into a wide range and form of understanding;

• To help to identify group norms and cultural values;

• To provide insight into the operation of group social processes in the
articulation of knowledge (for example, through the examination of
what information is censured or muted within the group);

• To encourage open conversation about embarrassing subjects and to
permit the expression of criticism;

• Generally to facilitate the expression of ideas and experiences that
might be left underdeveloped in an interview and to illuminate the re-
search participants’ perspectives through the debate within the group.

52

3.2.3 Data Analysis

After all the research data from the data collection phase was transcribed the
data analysis could commence. An important aspect in qualitative data analysis
is abstracting the research data to themes and patterns important to the research
topic. Several steps were taken to find these themes and patterns. To start of
the data analysis the 94 pages of transcribed material were read through twice to
get a general overview of the data. After this was done a more thorough read-
through was performed where the text was segmented into different themes, e.g.,
roles, methodologies and general descriptive information. Some of the themes that
were identified were then further examined because of their relevance towards the
research topic.

53

Part III

Results and Evaluation

55

Chapter 4

Results

Contents
4.1 Clarification . 58
4.2 Overview of the Omega-project 58

4.2.1 MTS Categorisation Overview 64
4.3 Coordination Arenas and Important Aspects 65

4.3.1 Co-location . 75
4.3.2 Informal Communication Arenas 77
4.3.3 Continuous Change and Improvement 80
4.3.4 Presence from Project Management and Owner 84
4.3.5 Mutual Trust and Shared Mental Models 87

In this chapter results from the case study will be highlighted. Starting of the
chapter is an introduction and overview of the Omega-project, as well as a clas-
sification of the project in a multi-team system context. When this is performed
the findings from all three focus groups are presented.

57

4.1 Clarification

Before giving an overview of the Omega-project, both in a general fashion and in
a multi-team system context, it is important to clarify that all quotations used
in this chapter are translated from Norwegian to English by the researcher. The
reason for this is because the focus groups and interviews carried out in the case
study were conducted in Norwegian.

4.2 Overview of the Omega-project

To start of the result chapter it is important to get a clear overview of how the
project was organised and conducted. The Omega-project was initiated and con-
ducted by the public sector department Gamma. Gamma saw a need for a new
office automation system, and especially argued that a new system was needed
because the current platform was outdated and about to be abandoned. It is
important to note that with the commencement of the Omega-project little was
known about the content of the public reform, and therefore an agile develop-
ment methodology and mindset was selected to take into account the high level of
uncertainties and complex nature of the proposed project.

Omega is one of the largest IT development projects in Norway to date, consisting
of approximately 175 members, where 100 of these came from five external com-
panies. The project had a final budget of roughly 140 million euro. It lasted for
about four years (January 2008 to March 2012) and had a strict deadline because
of the reform. Around 800.000 person hours were used in developing ∼300 epics
with a total of ∼2500 user stories. All of these were divided into 12 main releases
(there were also smaller releases throughout the project). Figure 4.1 shows how
these 12 releases where located in the timeline of the project.

The initial project execution model consisted of six phases involving different per-
sonnel. The planned project execution was as follow: Starting of the project was a
general requirements phase where potential impacts also were assessed. Here both
business resources and architects were present. Following the general overview
phase was a requirements analysis phase, again with both business and archi-
tecture resources. After these more general phases the solution description was
worked on. The solution description was the main responsibility of the archi-
tecture unit, but business resources, developers, test resources and the heads of
delivery were included. Going into the construction and approval phases all re-
sources were collaborating to get continuous deliveries finished for production. In
the production phase the main responsibility was put on the heads of delivery, but
business and line resources were also present throughout the whole process, and
architects, developers and testers were included in parts of the phase. The whole
project execution model can be seen in figure 4.2.

58

Figure 4.1: Main project releases in Omega.

59

Figure 4.2: Project execution model.

The project was organised with a “project director” at the top of the hierarchy
mainly focusing on external relations. Underneath the project director there was
a “project manager” responsible for operations. Omega also had four sub-projects
with one “sub-project manager” each. These sub-projects were architecture, busi-
ness, development and test, and are further described below. There were also a
“controller” (or “secretary”) present for administrative reasons. As can be seen from
figure 4.3 the project used a matrix structure where the business and development
sub-projects were both closely linked to the test and architecture sub-projects.

• Architecture: Architects were in general responsible for the overall archi-
tecture of the project, but more specifically focused on solution description.
They were also important in dealing with dependencies in Omega, and con-
tinuously updated a dependency map. The sub-project had head architects
at a project management level and technical and functional architects located
on a team level.

• Business: The business and line resources were present in the whole ex-
ecution of the project (as can be seen from figure 4.2). The responsibility
of the business sub-project was to categorise needs and requirements, and
then defining these into epics and user stories in a product backlog. In this
sub-project there was a product owner team, but also other business and line
resources (approximately 30 members at a peak period). Both functional and

60

Figure 4.3: Omega-project’s organisation.

61

technical architects from the Scrum teams were also involved in the business
sub-project.

• Development: The construction sub-project was further divided into three
sub-projects led by Alpha, Beta and Gamma. The Gamma organisation had
at most six development teams involved with both their own personnel and
external consultants hired in from five different consulting companies. Alpha
had at most four teams, while Beta had a maximum of three development
teams. All 13 component teams worked corresponding to the Scrum method-
ology and delivered on a common demo day at the end of every three-week
sprint iteration. There was also a system environment team present which
was in charge of development and test environments. All roles of the Scrum
teams are outlined in table 4.1.

• Test: The test sub-project had responsibility for all the testing of the project
and the providing of deliverables from the development teams. Hence, they
were important for quality assurance. The sub-project included a test leader,
as well as test personnel from the development teams.

The main focus of this master thesis has been on the development of the system,
and the personnel involved in this process. The development iterations had four
phases: “analysis of need”, “solution description”, “construction” and “approval”.
These are further described below. The development process can be seen in figure
4.4.

• Analysis of need: Starting of each development release was an analysis
phase. Here the focus was on functionality to be included in the coming
release, and identifying and working out user stories. The product owner
was involved in this process and was, e.g., responsible for prioritising the
product backlog.

• Solution description: After identifying and working out general user sto-
ries in the “analysis of need” phase the user stories were further developed
and made more comprehensive in the “solution description” phase. These
user stories were also assigned to epics, and further estimated in approx-
imate work-hours to completion before being assigned to different Scrum
teams. Design and architectural choices were also determined in this phase.

• Construction: The construction phase typically consisted of five to seven
sprint iterations per main development release. Here all development was
carried out, and all work was functionally tested.

• Approval: In the last phase of each development release the delivered func-
tionality was tested, both formal and non-formal functional testing was per-
formed. This was done to assure both the internal and external interfaces
were working as expected.

62

Figure 4.4: Initial development process.

The development phase consisted primarily of several Scrum teams typically in-
volving eight to nine members each. The roles in the different Scrum teams are
further outlined in table 4.1. It is however important to remember that all mem-
bers were somewhat cross-functional in the project. This means that a tester could
for example have been 60% tester, 30% developer and 10% designer, and a Scrum
master could have been 50% leader, 30% architect and 20% developer.

Role Description of role
Scrum master The Scrum master facilitated all meetings such as

the daily stand-up, demo presentations, retrospec-
tives and iteration planning. Some teams rotated
the role, while others had a fixed Scrum master.

Functional architect The functional architect was typically working 50%
with analysis and design, and 50% as a developer.

Technical architect About half of the time went towards technical design,
while the other half usually was spent developing.

Tester The person with the title “tester” was not responsi-
ble for doing all the testing, but was rather respon-
sible for the tests being conducted. He was also in
charge of writing and delivering test criteria to the
sub-project test. The tests at the team level was unit
tests, integration tests, system tests and system in-
tegration tests. Some of the teams did not have fixed
testers, but rotated the role somewhat, e.g., at Beta.

Developer Each team had a mixture of four to five junior and
senior developers.

Table 4.1: Team roles present in Scrum teams.

63

4.2.1 MTS Categorisation Overview

To get a better overview and insight on how the project fits in a large-scale and
MTS perspective a short description and classification is carried out. This is
done through the use of multi-team system’s three dimensions and their respective
attributes, namely the “compositional”, “linkage” and “development” dimension.
For a description of each attribute please take a closer look at table 2.3. The
overview of Omega is outlined in table 4.2.

Dimension Attribute

Compositional

Number There was a maximum of 13 development
teams at any given time (but also other
teams involved such as project manage-
ment)

Size Approximately 175 members were involved
in the MTS

Boundary sta-
tus

The MTS is classified as an “external
MTS”, meaning there were more than one
organisation involved in the project

Organisational
diversity

There were in total five organisations tak-
ing part in the project, though three of
these were the main organisations with the
most members allocated to the project

Proportional
membership

Alpha had four development teams (31%),
Beta had three teams (23%) and Gamma
had six component teams (46%)

Functional di-
versity

Somewhat high degree of heterogeneity in
core purposes and missions of the develop-
ment teams

Geographic
dispersion

The teams were co-located in the same
open-plan office space

Cultural diver-
sity

Low degree

Motive struc-
ture

High degree

Temporal ori-
entation

High degree

Continued on the next page. . .

64

Table 4.2 – continued from previous page
Dimension Attribute

Linkage

Interdependence The degree of interdependence varied
throughout the course of the project. The
degree was also higher between certain
teams compared to others, especially teams
working on similar functionality

Hierarchical
arrangement

Development teams were located at the
same level in the hierarchical arrangement

Power distri-
bution

The development teams had an even power
distribution

Communication
structure:
Network

Both informal and formal communication
patterns were used

Communication
structure:
Modality

Mainly face-to-face communication

Developmental

Genesis Appointed
Direction of
development

Became a formalised MTS, but now fin-
ished

Tenure Approximately four years
Stage Finished
Transformation
of system
composition:
Membership
constancy

Some fluidity depending on need through-
out the Omega-project

Transformation
of system
composi-
tion: Linkage
constancy

Some communication lines and arenas were
fluid, changing base on a need basis, while
others were constant through the whole
project

Table 4.2: Overview of the Omega-project in a MTS fashion.

4.3 Coordination Arenas and Important Aspects

After the transcription and coding of the three interviews it was soon established
that the amount of coordination arenas carried out throughout the course of the
Omega-project was extensive. The different coordination arenas and mechanisms

65

witnessed in the project were both performed across the three organisations (Al-
pha, Beta and Gamma), and across teams within each of the specific organisations.
These coordination mechanisms are summarised in three tables. Table 4.3 sum-
marises all the coordination mechanisms identified across the boundaries of the
organisations. Table 4.4 outlines different coordination methods used within the
different organisations to achieve coordination, collaboration and communication
across their respective teams. While table 4.5 describes several other mechanisms
and aspects which were deemed important in the success of the project.

Considering the sheer amount of coordination mechanisms and other important
aspect it was necessary to decide which ones to prosecute further. After reading
through both the transcribed interviews and the coding numerous times some
mechanisms and aspects seemed to surface in several of the interviews. The main
themes identified were these five elements which will be investigated and described
further in the coming sections (it is important to note that some of these might
overlap to some degree, e.g., co-location and the use of informal communication
arenas):

• Co-location

• Informal communication arenas

• Continuous change and improvement

• Presence from project management and owner

• Mutual trust and shared mental models

Coordination mech-
anism

Description of mechanism

Metascrum A meeting similar to Scrum of Scrums but with less
details which was held twice per week. Attending the
metascrum was the project leaders and all the sub-
project leaders from test, architecture, business and
development. A “technical metascrum” was tested,
but was shortly shut down after initiation.

Continued on the next page. . .

66

Table 4.3 – continued from previous page
Coordination mech-
anism

Description of mechanism

Planning day The planning day was a form of kick-off for each
sprint iteration where the project members met up
with the project owner. The planning day was per-
formed on three levels: project, organisation (Alpha,
Beta and Gamma) and team. A rough sketch of the
focus areas and work to be performed in the com-
ing sprint was presented with a distribution towards
each of the three organisations by the project owner.
After this the organisations distributed the work on
their respective teams, and lastly the teams got to-
gether separately and worked out a contract with
estimated work to be performed which was delivered
to the project owner team. Before the planning day
commenced the developers also had a “developer fo-
rum” where development-oriented information and
discussion was carried out. This was however held
on an organisation basis, and not across the three
organisations.

Demo Demo presentations were held by all Scrum teams at
the end of each sprint iteration where everyone could
attend. Each team was allocated approximately 10
minutes. There were also larger demo presentations
for the project owner when a new release was fin-
ished. Some teams in addition started performing
smaller demo sessions within the iterations to get
rapid feedback.

Pre-planning day Before the “planning day” was carried out a pre-
planning day was performed. Here typically different
types of architects (especially functional architects)
and the project owner (as well as some other mem-
bers of the project owner’s team) met to create a
rough classification and allocation of work to the dif-
ferent Scrum teams for the coming sprint iteration.
The allocated work was listed in a prioritised man-
ner.

Continued on the next page. . .

67

Table 4.3 – continued from previous page
Coordination mech-
anism

Description of mechanism

Dependency meeting A meeting held between all Scrum masters from the
Alpha, Beta and Gamma teams. This meeting was
held on the “Planning day” where the focus was on
discovering dependencies across Scrum teams. How-
ever, these meetings faded away early on because of
the dependencies being discovered and handled else-
where.

Solution description /
“Master plan”

At the start of the Omega-project a larger solution
description phase was performed involving a lot of ar-
chitects (as can be seen from figure 4.2). This lead to
a “master plan” for the project and was documented
in an issue tracker program called Jira. The “master
plan” was continuously altered throughout the course
of the development phase as outlined in figure 4.4. In
the solution description meetings important aspects
were discussed such as coordination across organi-
sations and management of activities. An example
of what came out of these meetings was a depen-
dency map of the whole Omega-project, which was
in constant change. Part of the solution description
meetings were also negotiation and estimation meet-
ings which were important for the contract for each
release.

Jira and Wiki/Conflu-
ence

Different programs and forums were used for docu-
mentation and tracking within the project. In Jira
all user stories and epics were located, and differ-
ent information about the project and current sprint
iteration could be seen on different levels, such as
project and team level. The dependency map for
the whole Omega-project was also located in Jira.
Confluence was the main program used as a wiki.
Here solution descriptions, team routines, routines
across teams, system documentation, check lists, ret-
rospectives, architectural guidelines, functional test
etc. were all located.

Open-space An arena held on a voluntary and need basis, which
was used for exchanging experiences. It was however
only used during a few of the releases. Participants
suggested the topics beforehand, leading to agendas
for the open-space sessions.

Continued on the next page. . .

68

Table 4.3 – continued from previous page
Coordination mech-
anism

Description of mechanism

Jabber Jabber was introduced as an instant messaging ser-
vice in the Omega-project after being identified as
something needed in one of the Open-space sessions.
Here project members could ask both formal ques-
tions, e.g., technical questions, and informal ques-
tions or activities, e.g., wine lotteries.

Lunch seminars Lunch seminars were kind of similar to the “open-
space” sessions. Typically two to three topics were
held by project-personnel on relevant and interest-
ing topics, often regarding themes correlated to the
current situation of the project. As with the “open-
space” session these seminars were also held on a
certain period of the project before fading away.

Front-end meeting The front-end developers worked with a complex
framework called Flex. Because of this a lot of coor-
dination had to be handled between teams working
with this framework from all organisations. There-
fore, front-end meetings were held, were typically
the most prominent Flex-developers happened to be
present.

Technical architecture
forum

At the technical architecture forum all technical ar-
chitects met up to discuss what was to be done in the
coding base to prevent coordination issues. These
meetings were slowly fading away because the need
was covered in other arenas.

Architecture council At these gatherings an architecture council listened
to all team architects present their respective team’s
tasks for each sprint iteration.

Business meeting The business part of the Omega-project was coor-
dinated through meetings where the business archi-
tects from Alpha, Beta and Gamma met up with
the business unit from the project owner. Here the
sprint iteration queue, and the current status of the
project and sprint was presented. This meeting was
held around one time each week or every other week.

Continued on the next page. . .

69

Table 4.3 – continued from previous page
Coordination mech-
anism

Description of mechanism

Bug-board discussion The quality assurance unit with its testers had fre-
quent meetings around bug-boards, especially after
new releases and around acceptance testing. In the
period after a new release these meetings were often
held on a daily basis. Here all the bugs were gone
through and allocated to the responsible Scrum team
in either Alpha, Beta or Gamma.

Table 4.3: Coordination mechanisms used across the whole Omega-project.

Coordination mech-
anism

Description of mechanism

Scrum of Scrums (SoS) Scrum of Scrums were meetings held by all organi-
sations (Alpha, Beta and Gamma) ranging from two
to three times per week. In these meetings all Scrum
masters from the corresponding organisation, as well
as project management (project leader, test leader,
head technical architect, head functional architect,
business leader and development leader). The main
goal of the SoSs was to identify and handle obsta-
cles. There were also held a few SoS meetings across
organisations to handle potential changes to the con-
tracts.

Technical corner The “technical corner” was a meeting Beta had in an
early stage of the project. It was held on Fridays
for about 1-1,5 hour. Here team architects presented
important themes for the Beta-members. After a
while it was shut down because of lack of interest
and topics.

Experience forum The experience forum was an arena established in
the Alpha-organisation for exchanging experiences.
Here Scrum masters and the development manager
met to discuss topics such as retrospectives, the
planning day, and how work was performed by the
Alpha-organisation’s Scrum teams. It could be seen
as a coaching-session with exchange of ideas and
thoughts.

Continued on the next page. . .

70

Table 4.4 – continued from previous page
Coordination mech-
anism

Description of mechanism

Retrospective Retrospectives were used on several levels in the
project. All of the organisations used it on a pure
Scrum team level, but some also used it on both
the solution description personnel and in the project
management team. The retrospectives for each
Scrum team were held after the demo on Fridays.
Here negative and positive information and aspects
were brought forward and documented in Conflu-
ence. A few “global retrospectives” were also tested
but swiftly faded away.

Technical and func-
tional architecture
meetings

Both technical and functional architects had separate
meetings within the different organisations. These
meetings were typically short and held on a weekly
or biweekly basis. The meetings were as mentioned
brief and were primarily used for status updates, and
keeping the technical and functional managers up-to-
date to make the cross-coordination meetings with
the other organisations easier and more precise.

Supplier meeting At Alpha a supplier meeting was held by the project
leader for all Alpha-members. The project leader
contributed with practical information regarding the
project. In these meetings different members held
presentation on different topics such as clean code,
test driven development and project guidelines to
keep the technical level of the personnel up to
scratch.

Meeting about queue Alpha also had a meeting regarding “what was next
in the queue?”, “what is the next delivery?”, “what is
the status on current user stories?” and “what is it
that we feel is needed to drive the queue forward?”.
These meetings were held with the functional archi-
tect, development manager and product owner from
Gamma.

Table 4.4: Coordination mechanisms used across teams within the specific organ-
isations (Alpha, Beta and Gamma) in the Omega-project.

71

Mechanism/Aspect Description
Stand-up Daily stand-ups were used on all Scrum teams in

the project. Here obstacles, progression and possible
needs were voiced around the Scrum-boards. Intro-
duced by Gamma was also the way of organising the
stand-up meeting such that they were held on differ-
ent timeslots. This made it possible for members to
attend several stand-ups if necessary.

Board discussion An important aspect for coordination, discussion and
status updates in the project was the frequent use
of whiteboards. The stand-up meetings were for in-
stance held around these boards, and on these boards
the workload for each sprint iteration was put up and
updated as the sprint moved along. The backside of
the boards were left open to carry out informal dis-
cussion when needed.

Co-location One of the biggest impacts on the project, and co-
ordination, collaboration and communication within
the project was the radical co-location. This co-
location came at an early stage (with the introduc-
tion of Alpha and Beta) in the project where all
teams, as well as project management, were located
in an open-plan office space at the same floor.

Project management
in same location

In both Alpha and Beta management by “walking
around, talking around” was brought up. Because
the project management was located in the same of-
fice space as the other project teams it was easy for
them to keep track and manage by just being present.
With management being close by it was, e.g., possi-
ble for development managers to have informal com-
munication with each Scrum master every day, mak-
ing sure they were up-to-date on the progress. This
lead to easier decision making and problem handling
for the project management team. Another impor-
tant and positive factor was that decision making
could be taken rapidly through more informal are-
nas, as teams could address project management at
once without having to book formal meetings every
time a decision had to be made.

Continued on the next page. . .

72

Table 4.5 – continued from previous page
Mechanism/Aspect Description
Informal communica-
tion

Another important impact on the coordination and
general information sharing was the extensive use of
informal communication. These communication are-
nas seemed to be very important in the agile mind-
set because of the pressure to deliver within a short
period of time. With the use of informal commu-
nication arenas decisions could be made faster than
using formal arenas such as having to book meetings
where, e.g., timeslots had to match for participants.
As the project progressed the informal communica-
tion arenas were more and more present, often re-
placing some of the formal communication arenas.

Joint coffee break An informal communication arena that was present
throughout the Omega-project was the ongoing dis-
cussion around the coffee machine area. There were
even joint coffee breaks at 2PM every day. These in-
formal meetings saw a growth as the project moved
along.

Pair programming Pair programming was introduced by Beta and
adopted by some of the other organisations. Often
the pairs consisted of one senior and one junior de-
veloper. The main reasons for using pair program-
ming was to achieve a higher standard on the coding,
increase knowledge (especially of junior developers)
and to build better relationships and trust within
teams. Pair programming was also tested across
teams, but was not deemed successful.

Trust Another important aspect of the project was trust,
both within and across organisations, but also be-
tween the organisations (Alpha, Beta and Gamma)
and the product owner. Trust was increased through
several ways, e.g., social gatherings, co-location and
a general openness culture. With the increase in
trust between the different project-members there
was an increase in informal communication arenas,
and a decrease in formal ones, leading to more rapid
decision making, in line with the agile mindset.

Continued on the next page. . .

73

Table 4.5 – continued from previous page
Mechanism/Aspect Description
Rotation of team mem-
bers

At Beta some rotation of members across the Scrum
teams happened. This was mainly to spread com-
petence and knowledge across teams to make them
more “all round teams” able to handle different types
of work. There were also a few rotations because of
personal chemistry.

Rotation of team
placement

Another decision made by Beta and Gamma was to
change location within the office space of some teams.
This was a deliberate move by the project manage-
ment to achieve better collaboration and communica-
tion, especially on the informal level, between teams
working on similar parts of the project.

Alpha/Beta-personnel
placed in Gamma
teams

An aspect that might have been important both for
trust and the informal communication was that both
Alpha and Beta members were located in Gamma
teams. This probably made it easier to get infor-
mal communication going at an early stage of the
Omega-project because some members knew each
other across the organisations and teams already.

Continuous planning
and change

Self-organising was present at different levels in
Omega such as team, organisation and project level.
At the team level the teams changed their ways as the
project moved along introducing new and removing
old aspects, e.g., moving from pair programming to
individual programming when knowledge increased.
At both the organisational level and the project level
different communication arenas were changed on a
need-basis. This had mainly to do with the respec-
tive arenas being covered elsewhere, e.g., through in-
formal communication. Another part of the project
where continuous planning and change was present
was within the dependency mapping and solution de-
scription.

Continued on the next page. . .

74

Table 4.5 – continued from previous page
Mechanism/Aspect Description
3-level hierarchy from
product owner

Mentioned by Gamma was the way the product
owner was organised within the project. At the top
of the food change the main product owner sat, then
three representatives from the product owner were
located at Alpha, Beta and Gamma, and at the bot-
tom of the hierarchy the product owner had func-
tional experts and architects inside or close to the
teams. This led to easier decision making as the rep-
resentatives further down the hierarchy could answer
on the behalf of the product owner, or at least knew
who to ask for the answer increasing the pace of de-
velopment and problem solving.

Table 4.5: Other coordination mechanisms and important aspects.

4.3.1 Co-location

After the introduction of Alpha and Beta into the Omega-project in 2009 it was
decided that all the development teams (as well as project management teams
attached to the project) were to be co-located in a single-floor open office space.
In all of the interviews conducted this was something that was brought up as
an important factor for achieving a high level of efficient coordination within the
project. Some quotations are included from one of the project leaders at Alpha to
give a brief overview of his thoughts:

“ But also sitting in the same landscape [was important], when you,
e.g., can see that a team has been drawing on the board for two
hours, then it is time to head over and check what is going on, and
if you can contribute. [...] So I think being located on the same
floor was an important factor. It is something I have noticed at
Zeta [another large-scale development project], not being located
at the same floor, it is a lot more difficult to keep track of what
is going on.

”This project leader further explained the importance of being co-located in the

75

project, and how this could be an aspect hard to replicate in other large-scale
projects because of the sheer amount of personnel and size connected to such
development:

“ It is easy to recreate metascrums, Scrum of Scrums and the ex-
perience and knowledge sharing. The concrete, specific aspects
are easy to replicate, but the team dynamics, having every-
one located at the same floor, constant communication, the
togetherness witnessed, and similar things, the less concrete as-
pects, they are harder to reproduce.

”The views regarding co-location identified in the Alpha-interview was also shared
by interviewees from the other interviews. An architect from Beta described an
example of two teams located in the building next-door, where this small distance
already caused problems for communication and general collaboration:

“ I for instance talked to a management team located with an envi-
ronment team in the building next-door, and they rarely experi-
enced visitors from other units of the project. So having to walk
up one stair [which was one meter long], as well as opening and
closing two doors seemed to be enough [to hinder communication].

”Another project leader, now from Beta, also added his thoughts on the impact of
co-location on communication, collaboration and coordination which nicely sums
up the general view of the interviewees:

“ I think being co-located was a big advantage, especially having
all the teams located on the same floor and space. If you are, e.g.,
located at each side of a town or building it would be a barrier
for communication.

”
76

4.3.2 Informal Communication Arenas

An aspect that was identified several times throughout the different interviews
was the mentioning of “informal communication arenas”. Several of the intervie-
wees seemed to suggest that the informal communication witnessed in the project
was one of the reasons behind achieving a higher degree of efficiency in the ev-
eryday work. In the interview with Gamma one of the project leaders from the
organisation noted that the high degree of verbal face-to-face communication in-
ternally in the project was important. It was especially three arenas that were
mentioned numerous times (outside of the general day-to-day conversations and
communication): shared lunches, fixed joint coffee breaks, and the extensive use
of whiteboards.

What was also mentioned as an enabler for the high level of informal communi-
cation arenas was the aforementioned co-location of the project teams. A Scrum
master from Gamma noted:

“ With short distance to the other teams it was easy to make deci-
sions orally and upfront, and we avoided misunderstandings that
could have occurred with having to write everything down on
paper, sending e-mails and similar stuff. You could handle every-
thing upfront.

”A functional architect from Beta also had similar thoughts on the matter of in-
formal versus formal meetings on the spot. As can be seen from the quotation
below he felt that it was easier to just handle the needed discussion then and there
without having to go through formal arenas, such as booking meeting-rooms which
were located on another floor. Again this shows the impact of co-location on the
increased use of informal communication arenas:

“ When spontaneous need for discussion emerged, the need to walk
up a few floors or having to book a meeting-room or similar, it
was just too cumbersome.

”Another aspect that was mentioned as a possible support for the informal com-
munication arenas was having consultants from both Alpha and Beta located in
Gamma-teams. This was both noted in the interview with Beta and Gamma. An

77

architect from Gamma had the following to say on the matter:

“ But there were quite a few Alpha- and Beta-consultants in the
Gamma-teams. So there were always several members knowing
each other across the teams and organisations, meaning the in-
formal channels were definitely present.

”Not only was the use of informal communication present from an early stage of
Omega, it also seemed to be increasing throughout the project. Quite a few of the
interviewees highlighted the increasing use of whiteboards, joint coffee breaks and
common lunches. There was even introduced an internal system called “Jabber”
where project members could ask anything, e.g., technical questions or arranging
wine lotteries. An architect from Beta suggested that the use of formal arenas
seemed to be of a higher importance in the earlier stages of the project, but
decreased after a while when people knew who to contact for different inquiries:

“ I imagine that the need for such [formal] meeting-places are im-
portant in the start, but less important as the members get to
know each other. You get more comfortable with just approach-
ing the person you know can fix the issue.

”The most important aspect of the use of informal communication seemed to be
that things got handled instantly, and were not left alone, or postponed to the
formal meetings. One of the project leaders at Alpha tried to describe how this
was important to achieve an agile way of developing and working:

78

“ What is important in agile [development]? You need to deliver
within three weeks. Then you don’t have the time to wait for
someone to read through all his e-mails before he answers yours
after two weeks of waiting. You should rather just approach the
person and ask for a few minutes of his time. You might even
get the answer in ten seconds, but having to open and read an
e-mail is time-consuming. But it is important to not overdo it
[the informal communication] either, because this could lead to
disturbances in the workplace. There is always a balance [between
formal and informal communication].

”An architect at Beta further outlined this aspect of informal communication de-
scribing how these arenas in turn made the formal arenas less complex and time-
consuming because, e.g., dependence issues were already dealt with and did not
have to be handled in the formal meetings:

“ I think there were few [dependencies], because the teams did not
wait for the Scrum of Scrums, they handled it then and there.
[...] I felt that the informal channels worked better than trying
to arrange formal meetings where things were discussed [e.g., de-
pendencies].

”Some side effects were also spawned with these informal arenas. Something that
was witnessed as a response to the increasing use of informal communication across
and within the teams was the use of earplugs or headsets. As a project manager
at Alpha described it:

“ If you saw someone wearing a headset you instantly became more
restrictive towards approaching and talking to that person.

”Even though the informal communication arenas seemed to be more and more
present throughout the course of the project some interviewees highlighted that

79

there has to be a balance between the informal and formal channels, and that
a project will not function efficiently without both being existent. As a project
leader from Beta put it:

“ I think you need both [informal and formal arenas], but without
the informal communication and the common determination to
work things out, then I don’t think large-scale projects will work.
However, I don’t think you can manage to control such a project
well enough with only formal channels.

”
4.3.3 Continuous Change and Improvement

A third aspect that was identified as being important for the project was how
everything was continuously improving through change, especially coordination
arenas. When it was identified that an arena had ceased to serve its purpose it
was shutdown. The decision to stop or start using a particular meeting or arena
was typically decided in the metascrum-meetings as one of the project leaders at
Gamma put it:

“ We adjusted which meetings were used on a need basis within the
project. Some arenas were present throughout the whole project,
while other came and went. I believe this was important. [...]
E.g., we could identify in a metascrum-meeting that there were
areas which needed more, or less, coordination.

”As mentioned in the previous section on “informal communication arenas” there
seemed to be a growing use of informal channels, e.g., more use of whiteboards,
and more joint coffee breaks and lunches. A project leader at Alpha argued that
the efficiency and production level evolved with the small continuous changes and
improvements, but admitted that this was probably hard to measure:

80

“ What would have been interesting to see if we had proper story-
points was the actual growth in story-points delivered. Unfortu-
nately these story-points were bound to hours, so it is not possible
to say that we were way better at the end compared to the be-
ginning, even though we definitely were. And I believe this was
because of all the small changes we made. Some large, but mainly
the small continuously improvements which were performed on all
levels.

”The same project leader further added to this discussion. He felt that being able
to actually set aside time for knowledge sharing and general thoughts was an
important aspect of the continuous improvement, mentioning retrospectives as
one of the factors:

“ The first delivery was somewhat a “try-and-fail” process. When
the second delivery came along we had had done it before, and
some of the stuff was standardised. And then we had continuous
improvement throughout. We were even allowed to set aside time
for this. Often people do not think about using retrospectives.

”The continuous change and improvement was not only identified in the changing
of which meetings were in use, but also in other areas of the project. A project
leader at Beta mentioned how the teams were self-organising, as well as how they
decided to rotate some of the teams and team members to achieve more generalised
component teams:

81

“ Self-organisation was a reoccurring thing. E.g., you could not
force a self-organising team to do pair programming strictly
throughout the whole project, but could have it as a principle,
and then let the team decide when it was not needed anymore.
[...] But after a while we identified the need of spreading the
knowledge and competence, to go from specialised teams to more
general teams. From specialists to all-rounders.

”Especially the architectural side of the project seemed to have a lot of changes in
their communication channels. Both architects from Beta and Gamma noted this.
Two architects from Beta expressed their views on the matter talking about the
so-called “technical corner”, as well as testing a technical metascrum which was
rapidly shut down:

“ At the start of the project we ran a “technical corner” every Friday
with each team architect highlighting and explaining their work
or other aspects they felt were important for the other architects.
After a while these meetings disappeared. [...] I imagine that the
need for such [formal] meeting-places are important in the start,
but less important as the members get to know each other. You
get more comfortable with just approaching the person you know
can fix the issue. [...] And after a while we tested a similar forum
as metascrum on a technical level, but this shortly shut down.

”An architect from Gamma also mentioned a similar case where the “technical
architecture forum” was after a while stopped or performed less frequently because
the information need was gathered elsewhere. He further explained why these
meetings were used to a lesser extent, which briefly explained was to achieve a
higher degree of efficiency:

82

“ For a long period of time we had a “technical architecture forum”,
but it disappeared because we managed to fulfil the information
needs by other means. We for example had some months where
it was used more, but this continuously changed over time. But
as I said, when these meetings vanished it was because the in-
formation needs were covered between us architects with shorter
meetings because we got to know each other better. [...] Nearing
the end of the project the meetings were shorter and happened
less frequently. As you could see there were several meetings and
if we were to carry out all of these throughout the project we
would not have been able to perform any work. We therefore
tried to limit at least some of the meetings.

”Ending the section, two interviewees from Gamma shared their thoughts on the
continuous change and improvement witnessed in the project. They stressed that
everything was based on a need-basis, and that it is hard to pinpoint specific
meeting arenas that were more important than others in the project, but rather
highlighted that it was the aspect of changing meetings based on needs that was
crucial for achieving a high efficiency. An architect put it this way:

“ You asked which arenas we had, but these changed over time.
As we got better at communicating with each other we saw that
some information needs were already covered by other arenas, or
that some information needs were not covered at all. Hence, a lot
of the meeting channels came and went, while some were present
throughout the whole course of the project. [...] It is kind of hard
to pinpoint the “most important meeting”, but I feel that the most
important aspect was that meetings changed over time to fit the
needs of the project.

”Adding to the discussion one of the project leaders from Gamma had this to say,
putting focus on the agile mindset that was important within the Omega-project:

83

“ New meeting arenas were spawned with time passing, but others
were removed when the need ceased to exist. It is the presence of
an agile mindset to change based on needs.

”
4.3.4 Presence from Project Management and Owner

Moving on to the fourth aspect that was identified as being important for Omega
after reviewing the interviews was the emphasize on having both project manage-
ment and representatives from the project owner located close to the development
teams. Two project leaders from Alpha commented on the matter. They felt the
presence of project management on site made it easier to gather information on the
ongoing status of the project, and just generally being able to have a continuous
conversation and close attendance with the component teams. One of the project
leaders noted:

“ I was often early at the office, and then being able to just walk up
to the Scrum-boards checking what had been done since yesterday,
it was very useful for the project management. [...] But also us
sitting in the same landscape. When you notice a team struggling
in a discussion for hours you can just walk over and maybe have
insight that solves the issue then and there.

”Adding to the discussion another project leader pointed out:

“ Within the teams, at least something I tried, was minimum having
one conversation with each of the Scrum master every day. Doing
this I knew what everyone was doing so I could prioritise correctly
with the information I gathered. Having this information you
could act as an “information carrier” which made decision making
and problem solving easier.

”
84

As mentioned in the introduction to the section it was also important having
representatives from the project owner so closely attached to the project. Two
project leaders form Alpha outlined it in this fashion:

“ Availability was important in regards to clarifications and prob-
lem solving. With the teams being able to just approach the
person they knew had, e.g., worked on the solution description
from Gamma and ask for further details. Also that the customer
actually invested their best business architects. They sat right
next to us, just past the coffee machine, and were typically avail-
able 95% of the time. [...] And they had, not power, but at least
the authority to make decisions. It was not like they had to check
with fourteen other people before you got your answer. The an-
swer came then and there, but obviously sometimes it had to be
discussed further. In eight out of ten instances you would get your
answer at once, or they would follow you over to look further at
the problem at hand and then draw a conclusion.

”One of the two project leaders also highlighted that at times when there were lots
going on in the project even bosses from the project owner could be present:

“ When we faced tougher stages throughout the project several
bosses from the project owner were present. They walked around
and talked to people as well, so it was not only us doing that.

”Continuing the focus on the project owner, an architect and a project leader at
Gamma brought up some interesting insights on how the project owner was located
and present within the project. They expressed how the project owner had a 3-
level hierarchy inside Omega. Especially the lower level of this hierarchy which
was the functional experts from the product owner were highlighted as important
figures in the success of the project:

85

“ There was a product owner team that was co-located in the same
floor as the rest of us. [...] They sort of had a hierarchy. There
was a product owner on top which was responsible for everything.
Then underneath him there were three product owners, one for
each of the organisations [Alpha, Beta and Gamma]. And at the
bottom level, at least at Gamma, there were quite a few func-
tional responsible personnel which represented, or could at least
answer or find the answer, on behalf of the product owner. [...] I
experienced that our product owner was more of an administra-
tor, but the functional experts were essential because they had
such a strong connection to the project, and I believe that was
fundamental for everything running so smoothly.

”Lastly, both interviewees from Alpha and Beta brought forward an aspect they
referred to as “leadership by walking”. By this they meant that the project man-
agement teams were often on their feet trying to gather information to create a
better overview and status of the project, as well as breaking down the barriers
between top management and the development teams. An architect and project
leader from Beta put it this way:

“ And we walked around the office on a regular basis. I often tried
to take a different path when I came to work just so I could walk
past and talk to teams that were not located as naturally for
me to normally communicate with them. [...] And then there is
also the problem where you get so used to sitting in the project
management corner, so when you walk up to for example the more
fresh developers they somewhat feared you. You need to work on
making sure people know it is not dangerous to say what they
mean, to gain trust is not something you just buy.

”A project leader from Alpha had some similar thoughts on the aspect of “walking
around and talking around”, and how this was important for gaining a better
knowledge of the user stories and status of the project in general. It neatly sums up
the section and again highlights the importance of having the project management
close-by to gather insight within the project:

86

“ In regards to walking around, we kind of had a good knowledge
of all the user stories. This was because we had been in several
of the discussions already, meaning you often had picked up some
information here and there. So if they for example were discussing
something you could jump into the discussion and say “no, that
was not what we said we were going to develop, it is in fact this
over here”.

”
4.3.5 Mutual Trust and Shared Mental Models

The last identified aspect that seemed to be brought up as an important factor in
all three interviews was the growing trust, as well as a better shared understanding
from the project members throughout the course of the development. A problem
faced at an early stage of the project, at least by some teams, was an individualistic
focus by the teams. Meaning the teams were too focused on performing well as a
team, and did not point their attention to the total delivery of the project. Hence,
it is important to aim focus on both managing effective teams, sub-projects and
the project as a whole to deliver at a fast pace. A product owner at Beta had this
to say on the matter and added an example:

87

“ After a while we were concious about the issue of an individu-
alistic focus. We for instance removed all the burn down charts
which were lined up next to each other in Jira. This was per-
formed after a discussion on the matter where we agreed that a
too individualistic team focus was not necessarily good. We tried
to turn the focus towards us as a sub-project, and that we deliv-
ered together. [...] How much team this and that delivered did
not mean as much, as long as we coordinated and collaborated to-
wards the final delivery everything was good. [...] Another thing
was that we for a long time had a poor access to environments
in regards to integration testing, value chain testing and similar.
After a while when we got everything up and running it was clear
that the code we delivered and what was going to be presented in
the demo, as well as being put into the production chain, needed
to work throughout. And because of this it was important that
everything worked together in the demo presentations. We got a
better unified focus within the sprint iterations.

”A project leader at Alpha had similar thoughts, and nicely summed it up:

“ It is all about optimising the totality. A team is better than an
individual member, and a sub-project is better than each of the
teams on their own.

”One arena that was used to gain a more unified work and structure across and
within the teams was the knowledge exchanging arenas. A project leader at Alpha
described how the teams through the sharing of experience gained a better shared
mental model and mindset, things became normalised:

88

“ It was an extreme togetherness within the teams. On the sur-
face they worked on a very similar way because of knowledge and
experience exchanging and similar arenas. For example how the
Scrum-boards worked, they were basically normalised so they had
almost the same standard in every team. There were colour dif-
ferences, but except for that they were practically the same. [...]
And this was typically something that came through the use of
knowledge and experience exchange, that we normalised to have
the same shared mindset.

”An few interviewees from Beta especially highlighted “pair programming” as an
important source for knowledge and experience exchanging:

“ As for knowledge and experience exchanging we worked a lot with
pair programming. Pair programming was in general the rule.

”There were also other aspects besides knowledge and experience exchanging arenas
that seemed to have an effect on the trust and unity achieved between the teams
and team members. A few interviewees from both Alpha and Beta brought up the
fact that there were also more informal arenas outside of the office:

89

“ And something that was good with sprints was that they had a
beginning and an end. And a good thing with the end of each
sprint was that the teams had a shared lunch, typically after
the demo at the end of a sprint iteration. [...] Sometimes we
went out after work and took a beer together. The teams had
different rituals, e.g., some travelled on trips. Even the project
management was included. [...] We saw that quite a few of the
teams went out on town after the retrospectives. [...] There were
several social gatherings, e.g., trips out on town. I believe that a
lot of things happened there which were not directly visible, but
in turn were important for project members gaining trust and
building a better unity.

”It was not only the social aspects that seemed to be important for the closely
linked teams. A couple of project leaders at Alpha brought up the aforementioned
co-location as an aspect that was important to gain a better understanding of, and
trust for, your fellow project members:

“ The thing here was that we were in a way three organisations.
Generally there was a good togetherness across the whole project.
Everyone worked together. We were all located in the same office
space, everyone were close-by. And if, e.g., one of our developers
was going to use something that someone else had developed he
could just approach that person or team. We were a unity, and
people knew each other. [...] I think that if Beta had been lo-
cated far away, then I wouldn’t have been able to talk to this and
this person. The fact that we knew each other, and knew where
everyone was located and what they worked on made it possible
to just approach the correct person for specific questions.

”However, a somewhat downside with the extreme unity witnessed within the teams
arose in the project. The downside was that it was a lot harder to make changes
to the teams, they were so tightly connected. A project leader at Alpha noted:

90

“ At least something I remember was that the teams had an extreme
togetherness. Because of this trying to perform any changes to
the teams could became problematic. They were incredibly tight-
knit.

”The trust building was not only present within and across the project teams. An
architect at Gamma highlighted that it was also important that the trust between
the project owner and project teams was there. This was something that grew
together with the progress of the project. He explained his thoughts on the matter:

“ I heard some of our architects say that there were some tough ne-
gotiations with the customer about the target price at the start.
I believe they were pretty intense. However, after a while they
became easier because you had more trust in each other. [...] I
believe having a trust between the organisations and the customer
was a precondition for being able to make negotiations more effi-
cient and less formal.

”To end this section a quote from one of the project leaders at Alpha is included.
As with both co-location and constant communication he believes it is hard to
replicate such a togetherness which was witnessed within the Omega-project:

“ It is easy to recreate metascrums, Scrum of Scrums and the ex-
perience and knowledge sharing. The concrete, specific aspects
are easy to replicate, but the team dynamics, having everyone
located at the same floor, constant communication, the togeth-
erness witnessed, and similar things, the less concrete aspects,
they are harder to reproduce.

”
91

Chapter 5

Discussion

Contents
5.1 Research Questions . 94

5.1.1 Co-location . 94
5.1.2 Informal Communication Arenas 95
5.1.3 Continuous Change and Improvement 96
5.1.4 Presence from Project Management and Owner 97
5.1.5 Mutual Trust and Shared Mental Models 99
5.1.6 Summary . 101

5.2 Evaluation of the Study 102
5.2.1 Research Process . 102
5.2.2 Generalisation . 102
5.2.3 Is it agile? . 102

In this chapter a closer look at the findings from the result-chapter is carried out.
After all of these findings are highlighted a summary will be presented. Ending
the chapter an evaluation of the study is performed to give a better understanding
of the research and case.

93

5.1 Research Questions

The results in chapter 4 outlined in detail several aspects identified from the three
interviews carried out at the case project. These results will be further discussed
in this chapter, focusing on comparing the results with appropriate theory and
literature mainly described in chapter 2. The discussion will revolve around the
research questions of the master thesis:

“ Which similarities and dissimilarities in inter-team coordination
can be found between current literature on large-scale/MTS
projects, and a large-scale agile software development project in
practice? And which aspects and mechanisms were identified as
important for this inter-team coordination, as well as for general
team performance from the studied case project?

”
5.1.1 Co-location

It was evident from the interviews that co-location played a big part in achieving
a high level of efficiency, both in a development productivity aspect, as well as a
coordination aspect. Several interviewees brought up the factor of co-location and
highlighted that some teams located only a building away faced lack of communi-
cation. As one of the project leaders at Beta put it:

“ I think being co-located was a big advantage, especially having
all the teams located on the same floor and space. If you are, e.g.,
located at each side of a town or building it would be a barrier
for communication.

”This is definitely in line with previous findings in similar research. As identified
in studies on the field outlined in section 2.5.2 several of these pointed out that
co-location had a positive impact on coordination efficiency and team performance
in general. Both Melo et al. [48] and Dingsøyr et al. [50] highlighted the correlation
between co-location and coordination effectiveness.

In section 2.4 regarding multi-team systems co-location was also brought up. Here

94

problems such as communication issues, coordination difficulties and problems
with trust building were highlighted as complications with dispersed projects.

5.1.2 Informal Communication Arenas

Another aspect that was brought up by several of the interviewees was the exten-
sive use of informal communication within the Omega-project. One of the Scrum
masters at Gamma highlighted an interesting thought that the wide-ranging use
of informal communication arenas might have been present because of the teams
being co-located. This gives the researcher belief that there could be a connection
between the two aspects. This view is shared by Cockburn in an article on project
methodology selection [67]. He states that:

“ The most effective form of communication (for transmitting ideas)
is interactive and face-to-face, as at a whiteboard.

”His work implies that co-located developers will have more frequent communica-
tion and therefore have a higher productivity level than people being dispersed.
It is interesting that he brought up whiteboards as an example, as this was some-
thing several interviewees highlighted as important for communication (especially
informal communication). Dingsøyr et al. [50] also pointed at the importance of
such visualising tools which can be seen in table 2.6. However, Cockburn goes on
to say that as project and team size increases the informal communication should
decrease, ending in communication effectiveness going down. In the case project
at hand this does not seem to have been the case. Even though there were sev-
eral teams and personnel involved the informal communication was present to a
large degree, and at times seemed to be more efficient than formal communication
arenas.

Some of the interviewees pointed out that there seemed to be less need for the
formal meeting-places because members got to know each other better throughout
the project. It is important to note that with the increase in use of informal
communication arenas witnessed in the Omega-project, this did not mean formal
communication was not important or present. As one of the project leaders at
Beta highlighted:

95

“ I think you need both [informal and formal arenas], but without
the informal communication and the common determination to
work things out, then I don’t think large-scale projects will work.
However, I don’t think you can manage to control such a project
well enough with only formal channels.

”It seems as if a good balance between formal and informal communication are-
nas are a key part in achieving a high level of coordination efficiency and team
performance. However, it seems like informal communication will have a larger
weight on the scale in this balance. This is in line with Mintzberg’s [37] coordina-
tion mechanism called “mutual adjustment” which states that “members coordinate
their own work by informal communication with each other”, and seems to be the
coordination mechanism most present in agile development.

Two modes of communication structures that were brought up in section 2.4 on
multi-team seemed to be closely connected to informal communication and general
communication arenas, namely the network and modality attributes. What was
an interesting aspect in the MTS-theory was that these two modes seemed to
be closely linked to the geographic dispersion attribute, with co-located teams
preferring a higher amount of face-to-face communication. This is definitely in line
with the findings of the case study, and again highlights the correlation between
co-location and informal communication arenas.

5.1.3 Continuous Change and Improvement

What also seemed to be an important factor in the project was how well the teams,
team members and project as a whole adapted based on needs. In a way all levels
of the project could be seen as self-organising, in line with the agile mindset. In
particular communication and coordination, as well as knowledge sharing, arenas
seemed to experience continuous change. A project leader at Gamma put it this
way:

96

“ We adjusted which meetings were used on a need basis within the
project. Some arenas were present throughout the whole project,
while other came and went. I believe this was important. [...]
E.g., we could identify in a metascrum-meeting that there were
areas which needed more, or less, coordination.

”Having such a mindset focusing on adaptation might not be as easy in all projects,
especially for companies which are not used to working with agile methodologies.
Therefore this is an area where more focus could be directed because the adaptation
policies seemed to achieve higher project performance on several levels. The matter
at hand was nicely summed up by one of the interviewees:

“ New meeting arenas were spawned with time passing, but others
were removed when the need ceased to exist. It is the presence of
an agile mindset to change based on needs.

”It is important to note that there is a somewhat linkage between the changing of
coordination arenas and the increase in use of informal communication, as well as
trust and shared mental models which will be discussed in section 5.1.5. This has to
do with the project members finding it easier to keep a fast paced communication
flow and the communication getting better as the members got to know each
other, leading to the discovery of communication arenas that were both needed
and redundant.

5.1.4 Presence from Project Management and Owner

Moving on to the fourth identified aspect was how the presence of both the project
management and project owner affected the project. Having the project manage-
ment co-located with the developers seemed to have a big impact on general perfor-
mance within the project. Because the different members of the project manage-
ment teams were present it was easier for them to maintain a good overview of the
status and relevant information throughout the course of the project. Therefore it
gives the researcher reason to believe there is a correlation between co-location of
the project management with the development teams, and the performance level
achieved in Omega. The researcher also believes there are ties between the pres-

97

ence of project management, and the increasing use of informal communication
channels. With the the project management being co-located they could coor-
dinated and communicate on a more regular and freely basis with other project
personnel. One of the project leaders at Gamma illustrated it this way:

“ Within the teams, at least something I tried, was minimum having
one conversation with each of the Scrum master every day. Doing
this I knew what everyone was doing so I could prioritise correctly
with the information I gathered. Having this information you
could act as an “information carrier” which made decision making
and problem solving easier.

”Further some of the interviewees pointed out the importance of having the cus-
tomer involved closely with the project. As a couple of project leaders at Alpha
pointed out the project owner had representatives typically available 95% of the
time. And these representatives had authority to make decisions. This is backed
up by some of Strode’s [36] propositions of coordination effectiveness showed in
section 2.2.3. Proposition 1a states the following:

“ Proposition 1a: A coordination strategy that includes synchro-
nisation and structure coordination mechanisms improves project
coordination effectiveness when the customer is included in the
project team. Synchronisation activities and associated artefacts
are required at all frequencies – project, iteration, daily, and ad
hoc.

”Further proposition 3, which is closely linked to co-location as well, states that
close proximity, high availability, and high substitutability will increase implicit
coordination effectiveness. This was definitely the case in the Omega-project where
especially close proximity and high availability were focused on, but some mea-
sures were also taken to achieve higher substitutability, such as Beta trying to
convert specialised teams towards more general teams so they could collaborated
and substitute if needed.

It was also noted by one of the project leaders at Alpha that at times when there
were higher complexity levels in the project the bosses from the project owner were
present. This is also something included in Strode’s work covered by proposition 5

98

which states that to maintain coordination effectiveness when facing high project
complexity the frequency of iteration and ad hoc synchronisation activities should
be increased. Below a quote from the mentioned project leader is included:

“ When we faced tougher stages throughout the project several
bosses from the project owner were present. They walked around
and talked to people as well, so it was not only us doing that.

”One of the architects at Beta also expressed his belief that the presence from the
project management team helped build trust between them and the rest of the
project members. This shows possibilities for a connection between the presence
of the project management, and mutual trust, which will be further discussed in
the coming section.

Lastly, Yu et al. [56] as part of their study took a closer look at the aspect of on-
site customers. They stated that this was identified as one of the most beneficial
agile practices to achieve higher team performance. They also highlighted that on-
site customer participation in agile practices improves the development of shared
mental models, or more specifically the task-work mental model. This was also
witnessed at Omega, leading to there being a possible connection between the
presence of the customer (and other management personnel) and the improvement
of shared mental models, as well as trust.

5.1.5 Mutual Trust and Shared Mental Models

The last of the five identified aspects from the case interviews was mutual trust
and shared mental models. These two aspects seem to be closely linked to each
other. Previous research on both areas have shown that they have an extensive
impact on communication, collaboration and coordination, as well as team and
project performance in general [51,55,58,59]. Mathieu et al. [55], e.g., found that
there was a notable positive correlation between task-work mental model similarity
and teamwork mental model similarity, and team process, which in turn were to a
large degree connected to team performance. Mintzberg also stated in his work on
coordination mechanisms that if you standardise norms the members will operate
according to the same belief [37]. This was present in the project, e.g., with
the Scrum-boards being normalised adopting a similar approach to the so-called
“Scrumban”.

As stated in chapter 4 there were problems with an individualistic focus from
project teams at an early stage of the project. This led to teams not aiming
their attention towards the total delivery of the project. After this was handled,

99

meaning project management changed the mindset of the teams towards a shared
understanding, productivity and collaboration increased. This is supported by the
previously mentioned research. As one of the project leaders at Alpha put it:

“ It is all about optimising the totality. A team is better than an
individual member, and a sub-project is better than each of the
teams on their own.

”In Omega the experience and knowledge exchanging arenas played a large part in
adopting shared mental models. Especially “pair programming” seemed to be a
key factor. Some of the benefit with this practice seem to be improved production,
better code quality, enhanced job-satisfaction, increased knowledge sharing, and
team building and improved communication [31,32]. Some, if not all, were evident
at the Omega-project.

Another factor that seemed to affect trust-building was social arenas outside of
the office. Team members often went out together, e.g., to celebrate the end of a
sprint. These social gatherings seemed to have a positive effect on how members
perceived others. Dingsøyr et al. [50] found similar findings in their focus group
study where they deemed “social atmosphere” as an important sub-component of
closed-loop communication which in turn was important for team performance.
This is summarised in table 2.6. One of the interviewees expressed his thoughts
on the matter of social gatherings and their impact on the project:

“ There were several social gatherings, e.g., trips out on town. I
believe that a lot of things happened there which were not directly
visible, but in turn were important for project members gaining
trust and building a better unity.

”Another factor that seemed to have an impact on mutual trust and shared mental
models was the openness culture witnessed in the project. Again this was some-
thing identified by Dingsøyr et al. [50] as being important to achieve a higher
level of performance, and is summarised in table 2.6. This leads the researcher
to believe that there might be a connection between informal communication and
mutual trust.

Lastly, co-location also was identified as a key aspect for gaining better understand-
ing and trust between project members. Which again highlights the importance

100

of co-location in such projects. Two project leaders at Alpha shared their views
on the matter explaining how they thought being located in the same office space
made it easier to become a unity. It led to members knowing each other, gaining
better shared mental models regarding aspects of the project.

5.1.6 Summary

As can be seen from the previously described sections several important aspects for
increasing coordination and general performance were identified. As can also be
witnessed most of these aspects have previously been identified as important both
in small-scale and large-scale project literature, as well as in agile and software
development, and other fields and industries. Looking at the research questions
several aspects have in turn been shown to be similar in a large-scale/MTS agile
software development project, and in previous research on inter-team coordination
and coordination in general.

As shown in table 2.5, 2.6 and 2.7 showing the summary of impacts on team
performance and coordination from previously conducted studies, several of these
aspects are identified in this case study, e.g., co-location having a positive impact.
However, some dissimilarities were found. The most prominent of these were
regarding informal communication. Cockburn [67] stated that with a large team
and project size the informal communication levels should be lower, ending in
communication effectiveness decreasing. This was not the case in this large-scale
project where the informal communication arenas seemed to increase throughout
the course of the project leading to improved communication, coordination and
collaboration.

What could be important to note for practitioners is that some of the aspects
identified in this study in general are harder to replicate than more concrete as-
pects. This was highlighted by one of the project leaders at Alpha. He stated the
following:

“ It is easy to recreate metascrums, Scrum of Scrums and the ex-
perience and knowledge sharing. The concrete, specific aspects
are easy to replicate, but the team dynamics, having everyone
located at the same floor, constant communication, the together-
ness witnessed, and similar things, the less concrete aspects, they
are harder to reproduce.

”
101

5.2 Evaluation of the Study

Before moving on to the final conclusions, as well as ending the discussion-chapter,
a brief evaluation of the study is carried out by the researcher. This is done to
give a better understanding of the research at hand, and to build confidence and
trustworthiness in both the researcher and the study.

5.2.1 Research Process

Because of the time constraints on the master thesis, as well as the members
originally involved in the Omega-project being allocated elsewhere, it was hard to
perform several interview rounds. It would have been beneficial if the case study
was performed in iterations where, e.g., the identified coordination mechanisms
and aspects from the first round of interviews could have been looked at in a more
detailed manner. Also, because of the time constraints several of the identified
aspects and mechanisms witnessed in the project were not further investigated.
Therefore, there are still many possible research paths to take within the research
material. In general, it would have been beneficial having more time and resources
to complete more interviews digging deeper and collecting even richer and more
detailed data.

5.2.2 Generalisation

For other researchers and practitioners it might be interesting to take a closer
look at the generalisation level of the study. One aspect that is important to
note in this complex project was that there were several organisations involved in
every phase of the project. Further, the development somewhat based itself on
re-engineering, but was mainly focusing on developing a brand new system as the
old system was being phased out. Another aspect that in some sense was unique
for such a large project was that almost all the teams were co-located in the same
open-plan office space, something that is not as easy to replicate because of the
cost involved. Having these aspects in mind, the researcher still believes that the
Omega-project can be generalised and most of the findings should be applicable
for other large-scale development projects.

5.2.3 Is it agile?

Something that was important for the master thesis was that the case study had to
be agile, considering the research questions aimed to discover important coordina-
tion mechanisms and aspects within large-scale agile software development. From
the interviews it was obvious to see that a lot of the project members were some-

102

what new to agile methodologies and the agile way of thinking at the initiation of
Omega. However, because of project management being firm on the demand of
performing the project in an agile manner the other members quickly adopted to
this. As one of the project leaders at Alpha described:

“ There were quite a few interested in working with an agile ap-
proach and willing to try new things, read up on these new as-
pects, and even contributing with proposals and ideas. Agile de-
velopment was new for most of the project members, at least at
such a large scale. And there were loads of eager souls within the
teams who had several thoughts and started spontaneous discus-
sions. People for examples asked question such as: Shouldn’t we
try this? Or what about this? I felt it was a vibrant culture.

”

103

Part IV

Conclusion and the Road
Forward

105

Chapter 6

Conclusion

Contents
6.1 Research Questions . 108

In this chapter the findings from both the results- and discussion-chapter are fur-
ther looked at and summarised. The focus of the conclusion-chapter is to make
verdicts and decisions based on both previous research and the performed case
study to answer the initial research questions.

107

6.1 Research Questions

“ Which similarities and dissimilarities in inter-team coordination
can be found between current literature on large-scale/MTS
projects, and a large-scale agile software development project in
practice? And which aspects and mechanisms were identified as
important for this inter-team coordination, as well as for general
team performance from the studied case project?

”As can be seen from table 4.3, 4.4 and 4.5 several coordination mechanisms and
other influential aspects were identified in the Omega-project. Some of these were
further investigated and more thoroughly analysed in chapter 5. Looking back
at chapter 2, 4 and 5 involving theory, results and discussion some conclusions
regarding the research questions can be drawn.

In general the large-scale agile development project that has been studied showed
a lot of similarities to previously conducted research and their findings. However,
some dissimilarities were present. The most prominent of these was Cockburn’s
statement that informal communication should decrease with the project and team
size becoming large leading to a decline in communication effectiveness [67]. This
was not the case in Omega where the informal communication arenas actually
seemed to increase throughout the course of the project leading to improved com-
munication, coordination and collaboration, despite of the project size being so
large

To summarise the findings of the master thesis and to answer the second part of
the research question a brief description of each identified coordination mechanism
or other important aspects are outlined in table 6.1. It is important to note that all
of these factors and sources are deemed to have a positive impact on coordination
effectiveness and general team performance, meaning a lack of their presence will
have a negative effect.

108

Mechanism/Aspect Impact Description of impact on inter-team
coordination and performance

Co-location Positive Co-location led to improved communica-
tion quality and generally more commu-
nication being achieved, especially on an
informal level. This in turn improved the
general performance levels of both teams
and the project as a whole. Being co-
located was seemingly the most dominant
positive factor witnessed in the project,
and closely linked to several of the other
mechanisms and aspects identified, e.g.,
mutual trust and informal communication
arenas.

Informal communica-
tion

Positive The most dominant communication type
was informal communication. The use of
such arenas grew throughout the project
leading to better flow in inter-team coordi-
nation, collaboration and communication.
Because of this, better knowledge, gen-
eral overview and status of the project was
achieved elevating the performance stan-
dard within Omega.

Leadership presence Positive Also identified as an important aspect
of the Omega-project was the presence
of both the project management and the
project owner. With such leadership
present so closely to the development
teams inter-team coordination and gen-
eral problem solving could be handled on a
fast paced level excelling team and project
performance. This aspect seemed to be
closely linked to both co-location and mu-
tual trust.

Continued on the next page. . .

109

Table 6.1 – continued from previous page
Mechanism/Aspect Impact Description of impact on inter-team

coordination and performance
Mutual trust Positive Another important mechanism brought up

in the case interviews was mutual trust.
Mutual trust was mainly achieved through
social gatherings and co-location such that
members got to know each other leading
to a unity. This links mutual trust to
both co-location and informal communi-
cation, but also seemed to be closely re-
lated to shared mental models and the
presence of project management (as this
increased trust between the project man-
agement and developers). In general the
achieved mutual trust led to team mem-
bers more easily communicating with each
other improving coordination and collab-
oration, as well as general performance in
both the teams and the project as a whole.

Shared mental models Positive An aspect identified as having a posi-
tive impact on inter-team coordination
and performance levels of the project was
shared mental models. As the project
moved along team members seemed to get
a better understanding of other members
leading to their mental models being more
equal. It was especially knowledge and ex-
perience sharing arenas that led to achiev-
ing such shared mental models. With
the team members getting a better un-
derstanding of others, inter-team coordi-
nation levels improved, as well as general
performance standards.

Continuous change
and improvement

Positive In Omega there was a focus on adapting
based on a need basis to achieve more ef-
ficient work. The impact of this on inter-
team coordination was that communica-
tion arenas were in constant change to im-
prove how coordination and general col-
laboration was handled.

Table 6.1: Summary of identified impacts on coordination and performance.

110

111

Chapter 7

Future Work

Contents
7.1 Suggestions for Future Research Focus 113

In this chapter possible research for the future is highlighted. Several focus areas
are described such as the possibility to create a model for coordination mechanisms
in a large-scale context. In general more solid empirical case studies have to be
performed on the research field.

112

7.1 Suggestions for Future Research Focus

With the introduction and growth of using agile approaches in large-scale software
development and multi-team systems a lot of focus needs to be aimed in this
direction. This is backed up by results gathered at the International Conference
on Agile Software Development (XP2013) where “inter-team coordination” was
voted the number one burning topic in large-scale agile software development,
with “large project organisation” coming in second [8]. This study has primarily
looked at important coordination mechanisms and other closely related aspect
that affects the performance level of such development projects. Through the
study some remarks were made.

What was interesting in the research was that several of these coordination mech-
anisms and aspects seemed to be somewhat correlated. This leads the researcher
to believe that there might be possible to build a model for important aspects of
inter-team coordination in large-scale development and multi-team systems. How-
ever, for this to be realised more empirical case studies have to be carried out on
similar projects to see if the different mechanisms and aspects are reoccurring.

Hence, it would have been interesting to perform a similar study on a different
large-scale agile development project and comparing the findings and results to
this particular study. For future research a multi-case study could be a possibility
to gain more solid data.

As aforementioned it would be interesting to see if it is possible to build a concrete
model for mechanism and aspect involved in inter-team coordination and gen-
eral team performance. A possibility could be to use Strode’s theoretical model
of coordination as a platform, but focusing on a large-scale context (seeing as
this model is built from case studies on small-scale agile software development
projects). Especially the the synchronisation component, different complexity fac-
tors introduced by large-scale, the coordinator role, and the proximity aspect of
the structure component must be looked into closely.

In earlier chapters it was identified a dissimilarity between previous research on in-
formal communication and what was witnessed in the Omega-project and brought
forward by the case interviews. This is an interesting remark, and might be an area
for further research too analyse if it was a one time ting occurring in this project,
or if this is something repeating itself in other successful large-scale projects.

As one of the project leaders at Alpha also pointed out, it is harder to recreate the
less concrete coordination mechanisms and aspects. This might also be an area
which could benefit from future research focus, in the sense that making these
important aspects easier to replicate will serve practitioners in adopting these in
their development, leading to better performance standards.

In general more solid empirical case studies need to be performed on coordination
mechanisms and related aspect, and their effect on performance achieved in multi-

113

team system and large-scale agile software development.

114

Bibliography

[1] “A guide to scrumban.” http://www.aboutscrumban.com/. [Online; accessed
10-June-2015].

[2] J. D. Herbsleb, “Global software engineering: The future of socio-technical co-
ordination,” in 2007 Future of Software Engineering, FOSE ’07, (Washington,
DC, USA), pp. 188–198, IEEE Computer Society, 2007.

[3] J. Schnitter and O. Mackert, “Large-scale agile software development at sap
ag,” in Evaluation of Novel Approaches to Software Engineering (L. Maciaszek
and P. Loucopoulos, eds.), vol. 230 of Communications in Computer and
Information Science, pp. 209–220, Springer Berlin Heidelberg, 2011.

[4] J. Ågerfalk, B. Fitzgerald, and O. In, “Flexible and distributed software pro-
cesses: old petunias in new bowls?,” Communications of the ACM, vol. 49,
no. 10, pp. 26–34, 2006.

[5] D. Leffingwell, Scaling Software Agility: Best Practices for Large Enterprises
(The Agile Software Development Series). Addison-Wesley Professional, 2007.

[6] A. Cockburn, Agile Software Development. Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc., 2002.

[7] D. Batra and W. Xia, “Balancing Agile and Structured Development Ap-
proaches to Successfully Manage Large Distributed Software Projects: A Case
Study from the Cruise Line,” Communications of the Association for Infor-
mation Systems, vol. 27, no. 1, pp. 379–394, 2010.

[8] T. Dingsøyr and N. B. Moe, “Research challenges in large-scale agile software
development,” ACM SIGSOFT Software Engineering Notes, vol. 38, p. 38,
Aug. 2013.

[9] M. Paasivaara, “Inter-team coordination in large-scale globally distributed
scrum: Do Scrum-of-Scrums really work?,” ESEM, pp. 235–238, 2012.

[10] V. O. N. E. Com, “7th Annual State of Agile De-
velopment Survey.” http://www.versionone.com/pdf/

i

http://www.aboutscrumban.com/
http://www.versionone.com/pdf/7th-Annual-State-of-Agile-Development-Survey.pdf
http://www.versionone.com/pdf/7th-Annual-State-of-Agile-Development-Survey.pdf
http://www.versionone.com/pdf/7th-Annual-State-of-Agile-Development-Survey.pdf

7th-Annual-State-of-Agile-Development-Survey.pdf, 2013. [Online;
accessed 15-November-2014].

[11] J. Vlietland and H. van Vliet, “Towards a governance framework for chains of
Scrum teams,” Information and Software Technology, vol. 57, pp. 52–65, Jan.
2015.

[12] M. Lindvall, D. Muthig, and A. Dagnino, “Agile software development in large
organizations,” Computer, pp. 26–34, 2004.

[13] E. C. Lee, “Forming to Performing: Transitioning Large-Scale Project Into
Agile,” Agile 2008 Conference, pp. 106–111, 2008.

[14] M. Paasivaara, S. Durasiewicz, and C. Lassenius, “Using Scrum in Distributed
Agile Development: A Multiple Case Study,” 2009 Fourth IEEE International
Conference on Global Software Engineering, pp. 195–204, July 2009.

[15] M. Pikkarainen, J. Haikara, O. Salo, P. Abrahamsson, and J. Still, “The im-
pact of agile practices on communication in software development,” Empirical
Software Engineering, vol. 13, pp. 303–337, May 2008.

[16] S. Freudenberg and H. Sharp, “The top 10 burning research questions from
practitioners,” Software, IEEE, 2010.

[17] K. V. Haaster, “Agile in-the-large: Getting from Paradox to Paradigm.” 2014.

[18] T. Dingsøyr, T. E. Fægri, and J. Itkonen, “What is Large in Large-Scale? A
Taxonomy of Scale for Agile Software Development.” 2013.

[19] D. Reifer, F. Maurer, and H. Erdogmus, “Scaling Agile Methods,” IEEE Soft-
ware, vol. 20, pp. 12–14, July 2003.

[20] B. J. Oates, Researching Information Systems and Computing. Sage Publica-
tions Ltd., 2006.

[21] E. Andreassen, “Coordination effectiveness in large-scale agile software devel-
opment.” Preliminary study performed for a planned master thesis and case
study, 2014.

[22] Dr. Royce, Winston W., “Managing the Development of Large Software Sys-
tems,” 1970.

[23] P. Abrahamsson, O. Salo, J. Ronkainen, and J. Warsta, “Agile software de-
velopment methods - Review and analysis,” Tech. Rep. 478, VTT PUBLICA-
TIONS, 2002.

[24] Takeuchi, Hirotaka and Nonaka, Ikujiro, “New New Product Development
Game,” 1986.

ii

http://www.versionone.com/pdf/7th-Annual-State-of-Agile-Development-Survey.pdf
http://www.versionone.com/pdf/7th-Annual-State-of-Agile-Development-Survey.pdf
http://www.versionone.com/pdf/7th-Annual-State-of-Agile-Development-Survey.pdf

[25] J. Sutherland, “Agile Can Scale: Inventing and Reinventing SCRUM in Five
Companies,” vol. Vol. 14, No. 12, Dec. 2001.

[26] M. Cohn, “Advice on Conducting the Scrum of Scrums Meeting.”
https://www.scrumalliance.org/community/articles/2007/may/
advice-on-conducting-the-scrum-of-scrums-meeting, 2007. [On-
line; accessed 11-December-2014].

[27] H. Takeuchi and I. Nonaka, Hitotsubashi on Knowledge Management. Wiley,
2004.

[28] D. Anderson, Kanban. Blue Hole Press, 2010.

[29] L. Cocco, K. Mannaro, G. Concas, and M. Marchesi, “Simulating kanban and
scrum vs. waterfall with system dynamics,” in Agile Processes in Software
Engineering and Extreme Programming (A. Sillitti, O. Hazzan, E. Bache,
and X. Albaladejo, eds.), vol. 77 of Lecture Notes in Business Information
Processing, pp. 117–131, Springer Berlin Heidelberg, 2011.

[30] C. Ladas, “Scrum-ban.” http://leansoftwareengineering.com/ksse/
scrum-ban/, 2008. [Online; accessed 10-June-2015].

[31] A. Cockburn and L. Williams, “Extreme programming examined,” ch. The
Costs and Benefits of Pair Programming, pp. 223–243, Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 2001.

[32] F. Padberg and M. Muller, “Analyzing the cost and benefit of pair program-
ming,” in Software Metrics Symposium, 2003. Proceedings. Ninth Interna-
tional, pp. 166–177, Sept 2003.

[33] K. M. Lui and K. C. C. Chan, “Pair programming productivity: Novice-novice
vs. expert-expert,” Int. J. Hum.-Comput. Stud., vol. 64, pp. 915–925, Sept.
2006.

[34] L. Williams and R. Kessler, Pair Programming Illuminated. Addison-Wesley,
2003.

[35] T. W. Malone and K. Crowston, “The interdisciplinary study of coordination,”
ACM Comput. Surv., vol. 26, pp. 87–119, mar 1994.

[36] D. E. Strode, S. L. Huff, B. Hope, and S. Link, “Coordination in co-located ag-
ile software development projects,” Journal of Systems and Software, vol. 85,
no. 6, pp. 1222 – 1238, 2012. Special Issue: Agile Development.

[37] H. Mintzberg, Mintzberg on Management: Inside Our Strange World of Or-
ganizations. Free Press, 1989.

[38] A. H. Van De Ven, A. L. Delbecq, and R. Koening Jr., “Determinants of
Coordination Modes within Organizations,” American Sociological Review,
vol. 41, no. 2, pp. 322–338, 1976.

iii

https://www.scrumalliance.org/community/articles/2007/may/advice-on-conducting-the-scrum-of-scrums-meeting
https://www.scrumalliance.org/community/articles/2007/may/advice-on-conducting-the-scrum-of-scrums-meeting
http://leansoftwareengineering.com/ksse/scrum-ban/
http://leansoftwareengineering.com/ksse/scrum-ban/

[39] J. Child, “Predicting and understanding organization structure,” Administra-
tive Science Quarterly, vol. 18, no. 2, pp. 168–185, 1973.

[40] I. O. Robert L. Nord and P. Kruchten, “Agile in distress: Architecture to the
rescue.” 2014.

[41] J. Mathieu, M. Cobb, and S. Zaccaro, “Multiteam systems,” in International
handbook of work and organizational psychology, pp. 289–313, SAGE Publi-
cations, Sept 2001.

[42] S. Zaccaro, M. Marks, and L. DeChurch,Multiteam Systems: An Organization
Form for Dynamic and Complex Environments. Organization and manage-
ment series, Taylor & Francis, 2012.

[43] V. Bentz and C. for Creative Leadership, Explorations of scope and scale: the
critical determinant of high-level executive effectiveness. Technical Reports,
Center for Creative Leadership, 1987.

[44] S. Zaccaro, The Nature of Executive Leadership: A Conceptual and Empirical
Analysis of Success. American Psychological Association, 2001.

[45] D. E. Strode, B. G. Hope, S. L. Huff, and S. Link, “Coordination effective-
ness in an agile software development context.,” in PACIS (P. B. Seddon and
S. Gregor, eds.), p. 183, Queensland University of Technology, 2011.

[46] J. Mathieu, M. T. Maynard, T. Rapp, and L. Gilson, “Team Effectiveness
1997-2007: A Review of Recent Advancements and a Glimpse Into the Fu-
ture,” Journal of Management, vol. 34, pp. 410–476, June 2008.

[47] D. E. Hyatt and T. M. Ruddy, “An examination of the relationship between
work group characteristics and performance: Once more into the breech,”
Personnel Psychology, vol. 50, no. 3, pp. 553–585, 1997.

[48] C. De O. Melo, D. S. Cruzes, F. Kon, and R. Conradi, “Interpretative case
studies on agile team productivity and management,” Inf. Softw. Technol.,
vol. 55, pp. 412–427, Feb. 2013.

[49] N.-D. Anh, D. S. Cruzes, and R. Conradi, “Dispersion, coordination and per-
formance in global software teams: A systematic review,” in Proceedings of
the ACM-IEEE International Symposium on Empirical Software Engineering
and Measurement, ESEM ’12, (New York, NY, USA), pp. 129–138, ACM,
2012.

[50] T. Dingsøyr and Y. Lindsjørn, “Team performance in agile development teams:
Findings from 18 focus groups,” in Agile Processes in Software Engineering
and Extreme Programming (H. Baumeister and B. Weber, eds.), vol. 149 of
Lecture Notes in Business Information Processing, pp. 46–60, Springer Berlin
Heidelberg, 2013.

iv

[51] E. Salas, D. E. Sims, and C. S. Burke, “Is there a ” Big Five” in Teamwork?,”
Small Group Research, vol. 36, pp. 555–599, Oct. 2005.

[52] J. Cannon-Bowers, E. Salas, and S. Converse, “Cognitive psychology and team
training: Shared mental models in complex systems,” vol. 33, pp. 1–4, 1990.

[53] W. B. Rouse and N. M. Morris, “On looking into the black-box - prospects
and limits in the search for mental models,” Psychological Bulletin, vol. 100,
no. 3, pp. 349–363, 1986.

[54] J. Cannon-Bowers, E. Salas, and S. Converse, “Shared mental models in expert
team decision making,” in Individual and group decision making: Current
issues, pp. 221–246, Lawrence Erlbaum Associates, Inc., 1993.

[55] J. Mathieu, T. Heffner, G. Goodwin, E. Salas, and J. Cannon-Bowers, “The
influence of shared mental models on team process and performance,” Journal
of Applied Psychology, vol. 85, pp. 273–283, 2000.

[56] X. Yu and S. Petter, “Understanding agile software development practices us-
ing shared mental models theory,” Information & Software Technology, vol. 56,
pp. 911–921, 2014.

[57] S. Webber, “Leadership and trust facilitating cross-functional team success,”
Journal of Management Development, vol. 21, no. 3, pp. 201–214, 2002.

[58] D. Bandow, “Time to create sound teamwork,” The Journal for Quality and
Participation, no. 24, pp. 41–47, 2001.

[59] R. Cooper and A. Sawaf, Executive EQ: Emotional Intelligence in Leadership
and Organizations. Berkley Publishing Group, 1998.

[60] A. A. Nils Brede Moe and T. Dybå, “Challenges of shared decision-making: A
multiple case study of agile software development,” Information and Software
Technology, vol. 54, no. 8, pp. 853–865, 2012. Special Issue: Voice of the
Editorial Board Special Issue: Voice of the Editorial Board.

[61] S. Nygaard and A. Russo, “Trust, coordination and knowledge flows in r&d
projects: the case of fuel cell technologies,” Business Ethics: A European
Review, vol. 17, no. 1, pp. 23–34, 2008.

[62] B. McEvily and A. Marcus, “Embedded ties and the acquisition of competitive
capabilities,” Strategic Management Journal, vol. 26, no. 11, pp. 1033–1055,
2007.

[63] K. S. Khan, R. Kunz, J. Kleijnen, and G. Antes, “Five steps to conducting a
systematic review.,” Journal of the Royal Society of Medicine, vol. 96, pp. 118–
121, Mar. 2003.

[64] L. A. Goodman, “Snowball sampling,” Ann. Math. Statist., vol. 32, pp. 148–
170, 03 1961.

v

[65] R. Yin, Case Study Research: Design and Methods. Applied Social Research
Methods, SAGE Publications, 2009.

[66] J. Kitzinger, “Focus group research: using group dynamics to explore per-
ceptions, experiences and understandings,” in Qualitative Research In Health
Care, pp. 57–70, Open University Press, 2005.

[67] A. Cockburn, “Selecting a project’s methodology,” IEEE Software, vol. 17,
pp. 64–71, July 2000.

vi

Part V

Appendices

Appendix A

Interview Guide

Introduction and Information

• Background on research study and what the information will be used for

• Inform about interview being recorded

• Inform about anonymity

• Inform about the participation being voluntary

• Describe what will happen at the end of the study

Organisation

• Draw teams and communication arenas between teams

• Who were sitting where?

Timeline Exercise

• Identify important events in the project

Inter-team Coordination

• How was the work organised in your part of the project?

• What kind of dependencies were there between the teams in your part of the
project? Examples?

I

• How were dependencies managed? Examples?

• What was managed in established forums and what was managed outside of
the forums? Examples?

• Who were involved in managing dependencies between teams? Examples?

• Did you encounter challenges with managing dependencies? Examples?

• Did you change the way you managed dependencies during the project?
Examples?

• What practices do you think were most important in order to manage de-
pendencies between teams? Examples?

• Are there any practices you think had little importance for managing depen-
dencies?

• How did the division of the project into three main parts influence the coor-
dination between teams?

• Were there differences in inter-team coordination across the sub-projects?

Knowledge Sharing

• What type of knowledge was important to share between teams in this
project?

• What kind of practices were used in order to share knowledge?

• How would you evaluate the different practices used?

• Was there any knowledge that was difficult to share?

• Is it possible to identify “knowledge communities” within the project?

• Which of these communities were official and which were unofficial?

• How was the work organised within the communities?

• How was knowledge sharing influenced by having several companies working
together in the project?

• Which knowledge sharing arenas would you argue were most important for
the project?

• Did a team know what other teams were working on?

• Were you able to shift workload across teams? Why was this easy/hard?

• Were there any tool support?

II

Retrospective

• What worked well?

• What was challenging?

III

Appendix B

Non Disclosure Agreement
(NDA)

The reseracher had to sign a Non Disclosure Agreement to be allowed the data
from the case study. The NDA is attached on the next page.

IV

V

	I Introduction and Theory
	Introduction
	Motivation
	Problem Description and Background
	Scope, Limitations and Acknowledgement
	Target Audience
	Report Outline

	Theory
	Software Development Methodologies
	Coordination
	Large-scale
	Multiteam Systems
	Efficiency, Effectiveness, Productivity and Performance in Coordination
	Shared Mental Models
	Mutual Trust

	II Research Methodology
	Method
	Literature Review
	Research Method

	III Results and Evaluation
	Results
	Clarification
	Overview of the Omega-project
	Coordination Arenas and Important Aspects

	Discussion
	Research Questions
	Evaluation of the Study

	IV Conclusion and the Road Forward
	Conclusion
	Research Questions

	Future Work
	Suggestions for Future Research Focus

	References

	V Appendices
	Interview Guide
	Non Disclosure Agreement (NDA)

