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Objective 

The German electricity market has undergone significant changes in the recent years. 
Increasing infeed from renewable sources had lead to higher risk in the German 
electricity market. This paper suggests that quantile regression model will give helpful 
insight of the electricity market and risk analysis. 
 
First, we employ quantile regression model to investigate and compare electricity demand 
and residual demand model. Second, we analyze the electricity price by using quantile 
regression. 
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Abstract  

 

Article 1 “Demand and Residual Demand Modelling using Quantile Regression”. 

Residual demand, the difference between demand and renewable production, is important 
variable in predicting the future price and the future need for energy storage for 
intermittent renewables production. The residual demand represents the load that can not 
be met by renewable production and must be served by conventional power plant, 
electricity imports or storage capacity. However, little is known about predicting the 
residual demand itself as well as its quantiles. We therefore model demand and residual 
demand using ordinary and linear quantile regression, and thereafter compare the results 
for the hourly electricity consumption in Germany. We find that that the residual demand 
is less predictable than demand. Our paper makes two contributions to the literature: (1) 
unlike other studies it analyses the residual demand by using quantile regression (2) it 
compares the results of demand and residual demand.  

 

 

Article 2 “Day Ahead Electricity Price Modelling using Quantile Regression”. 

This paper analysis the relation between several fundamental variables and German day-
ahead electricity price for each hour. The study performed quantile regression on the 
electricity prices and reveals important effects that are missed by ordinary regression. 
Ordinary regression would assume that the relation to be the same for high and normal 
electricity prices on a specific hours. While the quantile regression measures the 
dependence of the extreme event. Examine these extreme event on the price is an 
important aspect of effective risk management. The results indicate that the effect from 
the factors on electricity price vary substantially across the quantiles, thus confirming the 
high complexity of the electricity price.  

 

 

 

 

 



  



 

 

Sammendrag  

 

Artikkel 1 “Etterspørsel og Residual etterspørsel modellering med Kvantilregresjon”. 

Residual etterspørsel, differansen mellom elektrisitets forbruk og fornybar produksjon, er 
en viktig variabel for å predikere fremtidig kraftpriser og fremtidig behov for 
energilagring for fornybarproduksjon. Residual etterspørsel representerer forbruk som 
ikke kan dekkes av fornybar produksjon og må betjenes av termiske kraftverk, 
kraftimport eller energilagring. Lite er kjent om prediksjon av residual etterspørselen, så 
vel om dens kvantiler. Vi har derfor modellert og sammenlignet elektrisitets etterspørsel 
og residual etterspørsel ved hjelp av vanlig klassisk regresjon og lineær kvantilregresjon. 
Resultatene fra denne artikkelen tyder på at residual etterspørselen er mindre forutsigbart 
enn elektrisitets etterspørselen. Denne artikkelen gjør to bidrag til litteraturen: (1) I 
motsetning til andre studier analyserer denne artikkelen residual etterspørselen ved hjelp 
av kvantilregresjon (2) Den sammenligner resultatene av elektrisitets etterspørsel og 
residual etterspørsel. 

 

 

Artikkel 2 ”Kraftpris modellering ved hjelp av Kvantilregresjon.”  

Denne artikkelen analyserer forholdet mellom flere avhengig variabler og spot-priser i 
det tyske kraftmarkedet. Studiet utfører kvantilregresjon på strømpriser og avslører 
viktige effekter som er fraværende med klassisk regresjonsanalyse. Klassisk regresjon 
antar at forholdet er den samme for både høye og normale strømpriser for en bestemt 
time. Mens kvantilregresjon måler også avhengigheten av ekstreme kraftpriser. Å 
undersøke ekstrempriser er en viktig del av effektiv risikostyring. Resultatene fra denne 
artikkelen tyder på at effekten fra de avhengige variablene på kraftprisen varierer for de 
ulike kvantilene, og bekrefter at kraftprisen er kompleks.   

 

 

 



DEMAND AND RESIDUAL DEMAND MODELLING USING 
QUANTILE REGRESSION  

Linh Phuong Catherine Do1, Peter Molnar 2 

 
Residual demand, the difference between demand and renewable production, 

is important variable in predicting the future price and the future need for energy 
storage for intermittent renewables production. The residual demand represents the 
load that can not be met by renewable production and must be served by 
conventional power plant, electricity imports or storage capacity. However, little is 
known about predicting the residual demand itself as well as its quantiles. We 
therefore model demand and residual demand using ordinary and linear quantile 
regression, and thereafter compare the results for the hourly electricity consumption 
in Germany. We find that that the residual demand is less predictable than demand. 
Our paper makes two contributions to the literature: (1) unlike other studies it 
analyses the residual demand by using quantile regression (2) it compares the 
results of demand and residual demand.  

Keywords: demand modelling, residual demand, renewables, quantile regression 
 
 
 

1. Introduction 

In the recent years, Germany has established environmental policies to 
phase out nuclear power and promote progressive replacement of fossil fuels by 
renewables sources. From support schemes for renewables energy, Renewable 
Energy Act (EGG), the renewable got priority access to the grid and subsidies by 
fixed feed in tariffs. At the same time, the efficiency of the renewables technology 
is improving; the economies of scale lead to lower component cost. As a result, 
the renewable installed capacities have grown continuously. According to a report 
by Wirth H. (2015), the German installed renewables account for 31% of total 
production; the goal is to reach 35% of renewable energy by 2020, as well reduce 
CO2 emissions and increase energy efficiency. The report also states that during 
2014, the renewable sources have contributed 31% of net electricity consumption 
on a normal day and up to 50% on weekend. 

                                                
1 Norwegian University of Science and Technology, Norway, e-mail: linhphuo@stud.ntnu.no 
2 Norwegian University of Science and Technology, Norway, email: peter.molnar@iot.ntnu.no 
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The increasing amount of renewable sources and their volatility in 
production has introduced challenges for different market participants. The power 
producers need to consider the fluctuations from both load and renewable energy 
infeed when submitting daily price bids. A market with high infeed of renewable, 
like Germany, requires a more integrated demand model. As for the grid 
operators, increasing renewable infeed is challenging both from the perspective of 
stability of the grid and security of supply. They need to balance the demand and 
the supply. Since the production of renewable sources is price inelastic3, it makes 
sense to look at the balancing problem as balancing the demand minus renewables 
with the supply of conventional power producer4. 

The penetration of renewable sources into the supply mix has introduced 
two extreme and challenging situations: high and low residual demand (Nicolosi 
M., 2012). Firstly, the maximum residual demand is the condition when the 
demand for electricity is high and at the same time the amount of renewable 
production is low. This situation requires flexible conventional power plants that 
can ramp up, electricity imports or storage systems. This has initiated discussions 
regarding different forms of capacity markets, potentially replacing the traditional 
energy market. Another solution to high residual demand is incorporating flexible 
demand, where the large industrial consumers are willing to reduce their 
consumption by selling the already purchased demand. The second situation is 
low residual demand; the demand for electricity is low and at the same time the 
amount of electricity produced by renewable is high. The transmission and 
distribution grid can develop into a bottleneck when the renewable energy sources 
generate sufficient electricity. This setting can happen in weekend or holiday with 
high renewable production. The situation with low residual demand requires 
enhance of transmission grid, flexible conventional power plants and the 
possibility to increase the export from Germany.  

Residual demand is one of the main characteristics in German power 
market. It specifies the maximum market share left for the conventional power 
producer. We will therefore in this paper closely examine residual demand and its 
fundamental variables.  

The word residual demand has not reached a common definition. In this 
paper we use the term residual demand as a demand minus wind and solar 
electricity production. This distinction is meaningful because wind and solar 
electricity producers supply electricity independently on the price. Hence, we can 
consider wind and solar electricity as a negative demand to the system. 
                                                
3 The renewable energy production is price inelastic because it does not react to price changes.  
4 Conventional power producer include power producer using  fossil fuels and nuclear. 
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Earlier studies use the residual demand in strategic price bidding in day-
ahead market (Baillo A. et al., 2004; Vazques S. et al., 2013), and forward market 
(Wagner A., 2014). Motamedi A. (2012) provides a residual demand model to 
forecast electricity prices. Schill W. P. (2014) uses residual demand for energy 
system analysis and analyzes flexibility options with storage technologies. The 
previously studies approach different aspects of residual demand. However, little 
is known about predicting the residual demand itself as well as its quantiles. 

Most of the researchers have modeled electricity demand with a traditional 
ordinary least square method. This method is useful for finding the tendencies and 
the average relation between the demand and the explanatory variables. The 
alternative quantile regression method, introduced by Koenker R. & Basset Jr G. 
(1978), evaluates the dependence of the normal and the extreme event. The 
extreme event constitute a major source of risk to market participants in the 
electricity market. Hence, examine these extreme event on the electricity 
consumption is important part in risk management. 

The quantile regression application has been widely applied in financial 
risk management and been recently used in energy market studies: household 
energy consumption (Kaza . 2010), oil prices (Lee C. C. and Zeng J. H., 2011),  
on electricity price (Hagfors L. I. et al. 2014), CO2 emission allowance price 
(Hammoudeh S. et al. 2014). This paper aims to contribute to the quantile 
regression literature by applying this method on both the aggregated electricity 
demand and residual demand. This analysis is relevant because it provides a more 
comprehensive picture of the effects from the variables on the electricity 
demand/residual demand in normal time and periods with extreme 
demand/residual demand. 

This paper is organized as follows. Section 2 describes the data used to 
model demand and residual demand. The results from ordinary and linear quantile 
regressions are presented and compared in sections 3 and 4, respectively. Finally, 
concluding remarks are given in section 5. 

 
 
 

2. Data  

In this section we will first describe the fundamental variables that we 
used to model demand. We will thereafter analyze the load and renewables data, 
and then combine these two variables in order to obtain the residual demand.  
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The electricity demand is influenced by at least the following variables: 
trend, weather and holidays (Genethliou D. et al. 2014). Instead of using some 
deterministic function as a trend, we use economic trend approximated by the 
industrial production. As we can see on figure 1 the electricity load pattern 
depends on the day of the week. We therefore introduce six dummies for the days 
of the week, where Wednesday is taken as base weekday  

  

        Figure 1 Typical load pattern 

Incorporating religious and public holidays effects are important in 
creating load forecast, because the electricity consumption on a holiday is usually 
lower than normal day (Fezzi C., 2007). Similar to Pardo A. et al. (2002) we 
describe the holiday effect by incorporating binary dummy variables. We 
distinguish the different load reductions into two distinct groups, Minor and Major 
holiday, because the Minor holidays has lower load reduction than Major 
holidays. We also consider dummies for one day lagged Major holiday, because 
of the effect on adjacent days. Further, details on the composition of Minor and 
Major holidays variables are elaborated in Appendix A.  

There are several weather variables that are likely to effect electric 
consumption. The average outside temperature is most commonly used among 
researchers, and we use this variable in our paper. The temperature data is taken 
from the cities with highest population densities and geographically dispersed. We 
choose to retrieve temperature data from Munich, Berlin, Dusseldorf and 
Stuttgart. The average daily temperature from these four cities is used in our 
models. Figure 2 depicts that the relationship between temperature and load is non 
linear; the temperature and the load has an increasing linear relationship when the 
temperature is above 20Co and decreasing relationship when temperature is below 
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17Co. The break appears to be around 18Co. There are several options to model 
the temperature: One of them is quadratic function (Gupta, E., 2011), another 
method is Logistic Smooth Transition model (Cancelo, J. R. et al., 2008). The 
traditional approach is to divide the model into two linear parts by transforming 
the average temperature to Heating Degree Days (HDD) and Cooling Degree 
Days (CDD) (Pardo A. et al., 2002). We choose to omit CDD, because it is not 
relevant for Germany.  

 

Figure 2    Scatterplot of the total load and the average outdoor temperature. 

In additionally to the HDD, we use hours of daylight (DL) in order to 
reduce bias of electricity demand sensitivity to temperature variables. High DL 
will reduce energy usage for lighting and usage related to activities that are 
usually indoors (Molnar P., 2011). Furthermore, the DL can explain most of the 
calendar effect of the electricity consumption in Germany (Do L. & Molnar P., 
2014).  

Industrial Production (IP) captures economic conditions in the country. 
Electricity consumption depends on Industrial Production, and particularly in a 
country like Germany, where 43% of the industry belongs to energy intensive 
industries (IEA, 2014).  

Table 1 presents the explanatory variables used in this paper to model 
demand and residual demand. Table 2 denotes whether the explanatory variables 
is daily or hourly granularity. 
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Table 1 

Overview of fundamental variables used in the analysis 
Variable Description Data source 

Demand lag 
 
 

The aggregated demand for the same hour of the previous day. European Network of Transmission 
System Operators: www.entsoe.eu 

Residual 
demand lag 
 
 
 
 
 

Residual demand is actual renewable production subtracted from 
demand. Residual demand lag is residual demand for the same 
hour of the previous day 

European Network of Transmission 
System Operators: www.entsoe.eu 
 
Transmission system operators: 
www.50Hertz.com  , www.amprion.de 
www.transenbw.de , www.tennetso.de 
 

Actual Solar 
electricity 
Infeed.  
 

The actual aggregated solar electricity production in Germany. 
 
 
 

Transmission system operators: 
www.50Hertz.com  , www.amprion.de 
www.transenbw.de , www.tennetso.de 
 

Expected Wind 
electricity 
Infeed 
 

Forecasted aggregated wind infeed in Germany. German 
transmission system operators publish this data in the late 
afternoon the day before the delivery day. 
 

Transmission system operators: 
www.50Hertz.com  , www.amprion.de 
www.transenbw.de , www.tennetso.de 
 

HDD 
 
 
 
 
 
 
 

Heating degree days is an indication for the need of heating, 
HDD = max(Tref  - T, 0)  where Tref is the reference temperature 
equal 18 degrees, and T describes the weighted average outdoor 
temperature for the day. The temperature data is taken from the 
cities with highest population densities and are geographically 
spread: Munich, Berlin, Dusseldorf and Stuttgart. 
 

The German Weather Service: 
www.dwd.de 
 
 
 
 
 
 

IP lag 
 
 
 

Three months moving average on the Industrial Production time-
series (IP) is applied to smooth out jumps. IP lag is the moving 
average industrial production value on the previous day. 
 

OECD Statistics: stats.oecd.org 
 
 
 

Mon, Tue, Thu, 
Fri, Sat, Sun 
 

Binary dummy variables, where Wednesday is taken as base 
weekday. 
 

Calendar: www.timeanddate.com 
 
 

Holiday 
 
 
 

Binary dummy variable on major holiday and holidays with high 
load reduction. For more information about the composition of 
this variable, see appendix A.  
 

Own data 
National holidays: www.bmi.bund.de 
School holiday: www.holidays-info.com 
 

Holiday lag 
 
 
 

Binary dummy variable on the day before holidays.  
 
 
 

Own data 
National holidays: www.bmi.bund.de 
School holiday: www.holidays-info.com 
 

Minor holiday 
 
 
 

Binary dummy variable on minor holiday, local holidays and 
holidays with lower load reduction. For more information about 
the composition of this variable, see appendix A. 
 

Own data  
Local holidays in Germany: 
www.timeanddate.com 
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DL 
 
 
 
 
 
 
 
 
 
 
 

Hours of Daylight (DL) is determined by first calculating the 
sun's inclination angle λt where lt is [1,365] and 1 represent 
January 1st etc. Thereafter calculate DL, where δ  is the latitude 
in Germany, see Kamstra M. J. et al (2003).
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Table 2 
Data granularity of the explanatory variables in our model 

Variable Resolution 

Demand lag Hourly 

Residual Demand lag Hourly 

IP Daily 

HDD Daily 

DL Daily 

Expected Wind Hourly 

Actual solar Production Hourly 

Mon, Tue, Thu, Fri, Sat, Sun Daily 

Major holiday Daily 

Major holiday lag Daily 

Minor holiday Daily 
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The German hourly electricity load data is retrieved from the European 
Network of Transmission System Operators for Electricity. Our dataset contains 
data from July 1, 2011 to July 1, 2013. The load data is the hourly average active 
power consumed by all installation connected to the central and the distribution 
network. This load data includes the production from conventional power plant 
and network feed-in from renewables.  

 The biggest share of renewables production in Germany consists of wind 
and solar. Moreover, production of these two renewables is completely price 
inelastic. We therefore focus only on these two renewables in our paper and use 
the term renewables as interchangeably with wind and solar. The wind and solar 
production data have been converted from 15 min data to hourly data.  

 

Figure 3 Total load, wind infeed and solar infeed structure in Germany. The top 
panel use weekly values and bottom panel use hourly values. 

We further want to study how renewables sources are related to the 
electricity demand. The top panel in figure 3 shows that the demand and the wind 
production have slightly similar seasonally pattern. In general, the energy 
consumption and the average wind production are higher during winter than 
during summer. As oppose to the wind production, the average solar production is 
highest in summer and lowest in winter.  

The relationship between the renewables and the load data is examined by 
plotting the wind and solar production against total load, see figure 4 and 5. The 
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wind and solar production is weakly correlated with the hourly load. However, we 
can depict four extreme situations. Both the first and the second situations are not 
challenging situation, because the market can cope with low/high infeed when the 
demand is low/high. The third and the fourth situation illustrate the maximum and 
the minimum residual demand, respectively. We have in the introduction 
discussed that both situations are challenging for the market participants. As 
illustrated on figure 4 and 5, the maximum residual demand occurs statistically 
more often than the minimum residual demand.  

 

Figure 4 Scatterplot Wind infeed and total load Figure 5 Scatterplot Solar infeed and total  
load in Germany 2011-2013.      in  Germany 2011-2013. 

Table 2 shows the descriptive statistics of the load, wind and solar time-
series. The actual solar production is highest around the noon and zero during the 
night. In contrast to solar production, the wind production is high throughout the 
day. Both wind and solar production has an average production that is lower than 
the median, which indicate that there is a strong effect of outliers. In general, the 
wind and solar production are highly volatile.  

The electricity load fluctuations are higher than the deviation of the wind 
and solar production. Further, the combination of demand and renewables, also 
called residual demand, has higher volatility than the deviation of demand.  
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Table 2 
Descriptive Statistics Demand, Wind, Solar and Residual Demand 

 for hour 8am, 12pm and 12am 
Hour Mean 

(MW) 
Median 
(MW) 

Max  
(MW) 

Min  
(MW) 

St.dev 
(MW) 

Demand 8am 54700.1 58322.0 70205.0 29644.0 10229.9 
Demand 12pm (noon) 62437.0 65542.0 74271.0 38327.0 7769.0 

Demand 12am 47691.8 47476.0 63020.0 37101.0 4766.6 
Expected Wind 8am 5291.3 3943.8 23911.0 372.8 4292.2 

Expected Wind 12pm 5513.1 3936.3 23698.0 253.0 4688.5 
Expected Wind 12am 5379.0 4200.0 24216.8 490.0 4229.6 
Solar production 8am 1058.8 473.6 4834.8 0.0 1244.7 

Solar production 12pm 8662.3 8178.0 21481.1 311.6 5108.6 
Solar production 12am 0.0 0.0 0.0 0.0 0.0 
Residual Demand 8am  49181.8 52042.7 70785.5 14941.9 11372.8 

Residual Demand 12pm 48143.9 48752.3 74173.3 17697.6 10435.6 
Residual Demand 12am 42818.0 43150.6 60959.0 18106.7 6377.3 

 

 

3. Demand and residual demand modeling 

Logarithmic transformation of the demand is sometimes used when the 
purpose is to overview the price elasticity of demand (Bianco V. et al, 2009). 
However, we found the electricity load data to have a linear relation to almost all 
variables and will therefore model the data directly.  

We use a linear regression models for demand and residual demand, which 
is specified in Eq.1 and Eq.2, respectively. We estimate 24 separate linear 
regression model for each hour during the day. This approach is based on Do L. & 
Molnar P. (2014) earlier work. They find that 24 separate linear model performed 
overall better than single equation model for short-term prediction of electricity 
demand in Germany. The separate linear model assumes that each hour have 
different features (Ranaweera D. et al., 1997). Hence, each hour can not be 
explain by the coefficient in the same systematic way. This approach requires 
fewer variables than single equation model, because the insignificant variables are 
omitted.  
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Yi,t = ai,1+ ai,2HDDt + ai,3IPt−1+ ai,4nWn,t + ai,5Ht +
n=1
n≠3

7
∑

ai,6Ht−1+ ai,7MHt + ai,8DLt + ai,9Yi,t−1+εt

                          (1) 

Zi,t = ai,1+ ai,2HDDt + ai,3IPt−1+ ai,4nWn,t + ai,5Ht +
n=1
n≠3

7
∑

ai,6Ht−1+ ai,7MHt + ai,8DLt + ai,9Zi,t−1+εt

                          (2) 

where Y is demand, Z is residual demand, HDD is Heating Degree Days, Wn are 
dummy variables for days of the week, H is a major holiday variable, MH is a 
minor holiday variable, DL is Hours of Daylight and i represent the hour. 

The coefficients from these regressions are presented in table 3 for three 
selected hours of the day (other hours are not reported in this paper due to space 
limitations). These results illustrate significant differences in modeling demand 
and residual demand. 

First of all, R2 shows that the models are able to explain much more of the 
variation of demand then residual demand. This is due to stochastic nature of wind 
and solar production. As previous discussed the wind and solar production exhibit 
different yearly seasonality.  

We therefore propose a second residual demand model in Eq.3, which 
incorporates the dynamic nature of the wind and solar separately. Eq.3 is a 
modification of Eq.2 where the lag residual demand is replaced by three variables: 
lagged demand, forecasted wind production and lagged solar production.  

Zi,t = ai,1+ ai,2HDDt + ai,3IPt−1+ ai,4nWn,t + ai,5Ht +
n=1
n≠3

7
∑

ai,6Ht−1+ ai,7MHt + ai,8DLt + ai,9Windi,t + ai,10PVi,t−1+ ai,11Yi,t−1+εt

    (3) 

where Z is residual demand, Y is demand, Wind is expected wind, PV is actual 
solar production and the other variables are already defined under Eq. 2.  
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The results from ordinary regression of Eq. 3 are shown in table 3. The 
result from R2 shows that Eq. 3 describes the data better than Eq. 2. Hence, Eq. 3 
is an improved residual demand model compared to the previous model, Eq. 2. 
Moreover, the three new variables in Eq.3, lagged demand, forecast wind and 
lagged solar production, are significant for almost all hours of the day. The 
estimated coefficients of wind are around -1, indicating the expected wind infeed 
to be almost the same as actual wind production. Unlike the wind, the coefficient 
of PV is above -1. This might be due to the inaccuracy of using lagged values. We 
will from now on consider Eq.3 when we use the term residual demand. 

The demand model, Eq. 1, is compared to the residual demand model, Eq. 
3 in the following paragraphs. The coefficient sign for the day type dummies (day 
of the week) is mostly negative for all hours. This implies that the electricity 
consumption is normally lower than Wednesday (base day). Further, we observe 
that the magnitude in demand reduction is higher for weekend than for weekday. 
This is also visible on the residual demand. Additionally, the level of demand and 
residual demand reduction is quite similar on Major and Minor holidays. Another 
similarity between demand and residual demand model is the impact of HDD 
variable (transformation of temperature). In both model, we observe the effect 
from HDD to be higher during early morning and night hours than noon.  

The impact from DL is different on demand and residual demand model. 
The estimated coefficient of DL has higher effect on residual demand than on 
demand. This is because on average days with less daylight is also days with low 
solar production. 

There are two main reasons why we investigate the model using linear 
quantile regression. Firstly, the results of ordinary regression show differences in 
demand and residual demand modeling, which indicate that the renewables 
production change the affect of the variables on the demand. We therefore employ 
econometric techniques to investigate in detail the relationship between the 
intermittent renewable resources and the demand. The investigations are based on 
modeling the demand and residual demand by using quantile regression. 

Secondly, applying quantile regression brings new insight that can not be 
obtained with other estimators; the quantile regression approach analyzes the 
relationship at mean and at the different point on the demand/residual demand 
distribution. The variables that affect the demand/residual demand may have a 
weak relationship to the mean of the demand/residual demand, but stronger 
relationship with other parts of the demand/residual demand distribution. The 
quantile regression will give a more complete picture of the effect of the 
explanatory variables on the demand/residual demand.  
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4. The Linear Quantile Regression 

The quantile regression is an extension of ordinary regression method, 
where the optimization objective change from minimizing the residual sum of 
square to minimizing the residual sum with different q weights on residual above 
than below the mean value, see Eq. 4. 

min q−1Yt≤αiqXi,t( )
t=1

T
∑ Yt − (αi

qXi,t )( )
     

(4)

 
1Y

t≤αi
qXi,t

1 if
0

Yt ≤αi
qXi,t

otherwise

"
#
$

%$  

where Y is the actual value, αi
qXi,t

 
is the predicted quantile from the model, X is a 

vector with independent variables and q is specific quantile from 0 to 1. 

The optimization objective estimates the parameters for the linear 
regression. The linear regression can be described as in Eq.5: 

      
(5)

  

      
(6) 

where  is conditional quantile of the demand,  is 
conditional  quantile of the residual demand, X is independent variables, q is the 
quantile  and  is the error term. 

Eq. 5 and 6 uses the same equation specification as Eq.1 and 3, 
respectively. However, we estimate these equations for different quantiles. The 
model is estimated for 5th, 25th, 50th, 75th and 95th quantile for each hour of the 
day. Based on previous results from ordinary regression we focus on the impact of 
lagged demand and lagged residual demand, HDD, DL, weekend dummy 
variables and holidays dummy variables.  

One of quantile regression’s most appealing features is that it enables to 
describe the relationship between the independent variable and the 
demand/residual demand not only on the mean but also on the tail of the 

Qq(Yi,t Xi,t ) =αi
qXi,t +εt

Qq(Zi,t Xi,t ) =αi
qXi,t +εt

Qq(Yi,t Xi,t ) Qq(Zi,t Xi,t )

εt
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conditional demand/residual demand. Furthermore, it also reveals the risk of 
immediate changes of the independent variable and the effect they will have on 
the demand/residual demand. 

 Additionally, the quantile regression model provides a set of different 
sensitivities for each quantiles compare to one. The distribution of independent 
variables gives information about asymmetric and non-linear effects on the 
demand/residual demand. This insight can be useful when making strategies to 
hedge against future loss and risk (Alexander C., 2009). 

Another advantage to this approach is its reveals information about the 
tail, or how various risk factors affect the extreme demand/residual demand. The 
extreme demand/residual demand constitute a major source of risk to market 
participants in the electricity market. Hence, examining the tail can show the risk 
exposure that the conventional power producer have regarding to weather, 
renewables, among others.  

The quantile regression is run in Stata 12.1. The standard error for the 
estimated coefficients for demand and residual demand model is obtained by 
using the pair bootstrapping procedure proposed by Buchinsky M. (1995). This 
bootstrapping method does not require the standard error to be identically 
distributed or homoscedastic.  

The following sections describe the results of demand and residual from 
quantile regression. Each section begins with a description of the results from 
demand model, and is followed by a comparison of the demand and residual 
demand model. The estimated coefficients of the explanatory variables from 
quantile regression are displayed in figures 6-24. 

Lagged demand:  Figure 6 illustrates the estimated coefficients from 
quantile regressions for demand. The estimated coefficients of lagged demand are 
significant and positive for all hours, but greater in magnitude for the intermediate 
quantiles (median, 25th and 75th quantile) than the extreme quantiles (5th and 95th). 
This suggests that the current demand provides more information about the future 
mean electricity consumption than about the possible future extremely high or low 
consumption. Moreover, this difference is more pronounced during the day than 
during the night. This can be explained by the fact that the load variation is higher 
during the day period.  

Figure 7 depicts the estimated coefficients from quantile regressions for 
residual demand. The most notable difference between figure 6 and 7 is the 
difference between the 5th and 95th quantile. Both the extreme quantile in figure 6 
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is lower than the intermediate quantiles. However, the 5th quantile in figure 7 is 
higher than the other quantile during the night, indicating that the previous low 
residual demand are more likely to be on the same level the next day. 

 

                Figure 6 Coefficient Demand lag  Figure 7 Coefficient Residual Demand lag 

Friday dummy variable: Figure 8 presents the estimated Friday dummies 
on demand under different quantiles plotted against hours. The extent of negative 
effect of Friday on demand corresponds to the demand reduction on Friday 
compare to the previous day. Hence, our analysis shows that the electricity 
consumption is lower on Fridays compare to the previous day. Or more specific, 
the load reduction is larger during night, afternoon and evening period. These 
three observations are consistent with the typical load profile of Friday in 
Germany, see figure 1. As we observe on figure 1, the difference between the load 
profile on Thursday and Friday is the load reduction during the night, afternoon 
and evening.  

The median coefficient of Friday has the same pattern on both demand and 
residual demand, figure 8 and 9 respectively. Unlike figure 8, the quantiles in 
figure 9 are more dispersed.  
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  Figure 8 Coefficient of Friday for Demand   Figure 9 Coefficient of Friday for Residual Demand  

Saturday dummy variable: The Saturday coefficient has same effect on 
demand and residual demand for all hours. The quantiles coincide for most of the 
period, illustrating that the quantile regression approach is not useful for this 
variable.  

 

Figure 10 Coefficient of Saturday for Demand         Figure 11 Coefficient of Saturday for Residual 

Sunday dummy variable: As figure 12 depicts, the electricity 
consumption is lower on Sundays than the base day (Wednesday). The level of 
load reduction is higher for the day period, and is largest at the morning and 
afternoon hours. An explanation for this is that the business activities are lower on 
weekends than on weekdays. Furthermore, the impact on the demand is higher for 
the extreme quantiles (5th and 95th) than the intermediate quantiles (median, 25th 
and 75th). Hence, there are tail dependencies. Sunday dummy variable has quite 
similar effect on both demand and residual models. 
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Figure 12 Coefficient of Sunday for Demand     Figure 13 Coefficient of Sunday for Residual 
Demand  

Major holiday dummy variable: Our quantile regression results suggest 
that the electricity consumption is lower on holidays. The disparity between 
electricity consumption on holiday and workday is about than 20 GW for the 
median, 5th, 25th and 75th, and represents the load reduction on a typical holiday. 
The 95th quantile is not statistically significant for all hours. We therefore 
conclude that the conditional high demand is not affected by Major Holiday 
dummy variable. However, the holidays with mean or low demand will be mostly 
explained by the Major holidays dummy variable.  

Figure 14 and 15 exhibit that Major holiday has the same impact on the 
demand and residual demand during the night hours. When looking at the day 
period, the quantiles of residual demand are much more dispersed than the 
quantiles of demand. 

 
Figure 14 Coefficient of Holiday for Demand            Figure 15 Coefficient of Holiday for Residual    
 Demand  
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Major holiday lagged dummy variable: Figure 16 illustrates the 
estimated coefficient of Major Holiday from quantile regression. The results 
suggest that the average day after a holiday has higher electricity consumption 
than a holiday. In details, the results reveal that the consumption level during the 
night is lower than previous night. But the consumption level during the day is 
higher than previous day period. The spread between quantiles denotes the 
different load reduction that depends on the holiday. 

 

    Figure 16 Coefficient of Holiday  lagged  Figure 17 Coefficient of Holiday for lagged 
for Demand                      lagged Residual Demand 

Minor holiday dummy variable: The Minor holiday component has high 
impact on the consumption, where the impact is higher during day than the night. 
As figure 18 depicts, the Minor holiday coefficients show different load reduction 
depending on the conditional quantile. The reason for this is that not all business 
and industry activities in Germnay are closed on minor holidays. Further we 
observe that the electricity consumption is lower on the 5th quantile than on 25th, 
50th, 75th and 95th quantile. This means that the Minor Holiday variable is 
important when predicting lower levels of consumption (5th quantile). 
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  Figure 18 Coefficient of Minor Holiday   Figure 19 Coefficient of Minor Holiday         
for Demand            for Residual Demand 

Heating degree days: As figure 20 depicts, the estimated coefficient of 
HDD is positive for all hours, whereas the magnitude of the coefficiets is higher 
for the night hours. This finding can be explained by the fact that lower 
temperature during night leads to higher heating activities. Moreover, the 95th 
quantile is more sensitive to temperature compare to other quantiles during the 
night hours. This suggests that temperature has higher impact on extreme high 
electricity usage than on electricity usage in ordinary times. 

As previous discussed in section 3, the HDD variable has quite the same 
predicting power on demand and residual demand. Further examination on figure 
20 and 21 shows that quantiles of HDD are more dispersed for the residual 
demand compared to demand model. The larger spread between the quantiles can 
be explained by the uncertainty regarding the renewable production. 

 

Figure 20 Coefficient of HDD for Demand      Figure 21 Coefficient of HDD for Residual Demand  
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Hours of Daylight: The DL has almost no effect on demand during night 
hours and describes the nonexistence of daylight during night, see figure 22. The 
figure also shows that DL is negative for all hours, and drops around 8am and 
6pm. This finding means that DL has higher impact on the early morning and 
afternoon hours. Moreover, the quantiles are more dispersed during the early 
morning and afternoon hours than other time periods of the day. The distributions 
of the quantiles reflect the temporal differences in sunrises and sunsets throughout 
the year. During the year, the reduction of number of hour of daylight happens 
during those early morning and afternoon hours; for instant number of hour of 
daylight in December is lower than in June. Further, on the early morning and 
afternoon hours, the impact of the DL on the electricity demand is higher for the 
extreme quantiles (5th and 95th) than the intermediate quantiles (median, 25th and 
75th). Hence, we conclude that hours of daylight have higher influence on the 
extreme than the ordinary electricity consumption values.  

A comparison of the demand and residual demand model suggests that DL 
has higher effect on residual demand than on demand, since the coefficient in 
figure 23 exhibits higher magnitude than the coefficient in figure 22. This 
suggests that there is a strong relation between renewable production and hours of 
daylight. We observe two observations that suggest the combination of both wind 
and solar has some kind of strong cyclic yearly pattern. Firstly, the estimated 
coefficient of DL in figure 23 exhibit clear pattern during the night. Secondly, the 
peaks are shifted from 8am and 6pm towards 10am and 4pm.  

Another notable difference between the demand and residual demand is 
the position of the peaks of the extreme quantiles (5th and 95th). While figure 22 
shows that both extreme quantiles have nearly the same effect on demand, figure 
23 shows that DL has lower influence on high residual demand values (95th 
quantile) than on low residual demand values (5th quantile).  
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      Figure 22 Coefficient of DL for Demand       Figure 23 Coefficient of DL for Residual Demand  
 

Wind forecast: Figure 24 draws the estimated coefficients from quantile 
regression, showing the relation between residual demand and wind production. 
The estimated coefficients of expected wind production are significant and 
negative for all hours, whereas the magnitude of coefficients is highest during the 
night hours. The spread between the quantiles is also larger during the night.  

 PV production lag: Similar to the wind, the coefficient of PV has 
negative effect on the residual demand across different quantiles. The coefficient 
of solar production is zero during the night and around -0.5 during the day.  

 

Figure 24 Coefficient Expected Wind Figure 25 Coefficient PV Productions 
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6. Conclusions 

In this empirical analysis we studied the differences and similarity in 
modelling demand and residual demand (the difference between demand and price 
inelastic solar and wind production) using both ordinary regressions and quantile 
regressions.  

Overall, the estimated results from quantile regression indicated that 
fundamental variables have different effect on electricity demand/residual demand 
across the quantiles. This means that the quantile regression aproach clearly 
provided a more comprehensive picture of the underlying range of disparities in 
the fundamental variables of demand/residual demand than the ordinary 
regression. However, the quantile regression approach was not necessary when 
the quantiles of the variable coincided. This situation did happen for the Saturday 
dummy variable.  

We found that residual demand was less predictable than demand. The 
quantile regression model showed that the conditional quantiles of the residual 
demand are more widely spread than conditional quantiles of demand. The effect 
was visible for all hours. Our results did not only confirm that the renewables lead 
to more challenge in predicting the load, but also illustrate how this challenge can 
be addressed. Our findings have implications for future research on the demand 
modeling, particularly in countries with increasing renewables infeed. 

 

 

Appendix A. Major and Minor holiday 

The electricity load reduction is different on local holidays and public holidays. 
We choose to distinguish the different load reduction by transforming the type of 
the day to a percentage weight. The weighting is based on dividing the load at the 
day with Wednesday at the same week. The calculated weights are compared to 
Wednesday at the same. If Wednesday is a holiday, use the Wednesday from the 
previous week. The result is grouped in two categories, higher and lower load 
reduction. These two groups is in table 4 consider as category A and B, or major- 
and minor holiday. We introduced binary dummy variable Ht and MHt, which 
respectively represent major- and minor holiday.  
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Table 4 
Categorize Major Holiday and Minor-Holiday in respectively Category A and B, * denotes 
National Public holiday except for 24th Dec and 31th Jan. ** denotes local holidays in the 

biggest cities as Munich, Dusseldorf, Berlin and Stuttgart 
Type of day Date Monday Tuesday Wednesday Thursday Friday  Saturday Sunday 
Non holiday 

 
0.95-1 0.97-1 1 0.96-1 0.98-0.99 0.82-0.9 0.72-0.83 

 
(Category A Major holiday) 

Current Special Day * 
New Years 1st January 

 
0.78 

 
0.70 0.80 0.79 0.64 

Good Friday Change each year 
    

0.74-0.82 
  Easter Monday Change each year 0.70-0.72 

      Labor Day 1st May 
 

0.74 
 

0.75 0.70 0.76 0.68 
Ascension Day Change each year 

   
0.75-0.78 

   Whit Monday Change each year 0.68-0.77 
      German Unity 

Day 3rd October 0.74 
 

0.77 
 

0.76 0.83 0.76 
Christmas Day 24th December 0.68 

 
0.74 0.75 0.82 0.73 

 Christmas 25 25th December 
 

0.62 
 

0.68 0.73 0.77 0.68 
Christmas 26 26th December 0.68 

 
0.62 

 
0.68 0.74 0.77 

New Years Eve 31th December 0.84 
 

0.76 0.74 0.80 0.73 
  

 
(Category B Minor holiday) 

Local holiday** 
Epiphany  6th January 0.87 0.91 0.95 0.93 

 
0.95 

 Whit Sunday Change each year 
      

0.67-0.73 
Corpus Christ Change each year 

   
0.82-0.87 

   Peace Festival  8th August 0.98 
  

0.95 0.97 0.87 0.78 
Assumption of 
Mary 15th August 0.93 

  
0.98 0.95 0.82 0.77 

Reformation Day 31th October 0.88 
 

0.94 
 

0.94 0.83 0.75 
All Saints Day 1st November 0.82 0.85 

 
0.85 

 
0.79 0.79 

Repentance day Change each year 
  

0.98-1 
     

Bridging proximity days that follow a special day that occur in weekday 
Day after 
Ascension Day Change each year 

    
0.86-0.89 

  Day before 
Christmas 23th December 

 
0.84 

 
0.95 

  
0.71 

 
Bridging proximity days that follow a special day that occur in weekend 
Day after New 2nd January 0.85 

     
0.77 
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Year 
 
School holiday/ Non Bridging proximity days that follow a special day and occur on a weekday 
Easter Holiday Change each year 0.98-1 0.95-1 0.98-1 0.92-1 0.84-0.97 0.79-.90 0.68-0.74 
Christmas 
Holiday Change each year 0.80-0.89 0.80-0.9 0.79-0.91 0.74-0.82 0.76-0.95 0.70-0.88 0.65-0.92 
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DAY AHEAD ELECTRICITY PRICE MODELLING USING 
QUANTILE REGRESSION  

Linh Phuong Catherine Do1, Peter Molnar 2  

This paper analysis the relation between several fundamental variables and 
German day-ahead electricity price for each hour. The study performed quantile 
regression on the electricity prices and reveals important effects that are missed by 
ordinary regression. Ordinary regression would assume that the relation to be the 
same for high and normal electricity prices on a specific hours. While the quantile 
regression measures the dependence of the extreme event. Examine these extreme 
event on the price is an important aspect of effective risk management. The results 
indicate that the effect from the factors on electricity price vary substantially across 
the quantiles, thus confirming the high complexity of the electricity price.  

Keywords: price modelling, renewables, ordinary regression, quantile regression 
 
 
 

1. Introduction 

The liberalization of power market in German has introduced competition 
and increased market participants’ exposure to risk. In the new market structure, the 
extreme electricity price volatility can be higher than for financial instruments and 
commodities. This has forced market participants to consider not only volume risk 
but also price risk. Coupling to the price risk, the market participants face risk 
associated to unexpected outage, fluctuation in demand, fuel price and emission 
allowances. The expansion of renewable energy in Germany and its volatility in 
production has increased the day-ahead electricity price variance even further 
(Jacobsen, H. K. and Zvingilaite E 2010, Green, R. and Vasilakos, N, 2010). Hence, 
being able to understand how the fundamental drivers of electricity price affect the 
electricity price is necessary in order to manage the risks involved in the market. 
This has turn major interest in modeling and forecasting electricity price.  

The day-ahead electricity price exhibits a number of intrinsic features, which 
are unique in comparison to commodity prices, gas and oil. The electricity price is 
more volatile than any commodity price, because it is not storable at reasonable 

                                                
1 Norwegian University of Science and Technology, Norway, e-mail: linhphuo@stud.ntnu.no 
2 Norwegian University of Science and Technology, Norway, email: peter.molnar@iot.ntnu.no 
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economic cost and it is limit by transmission constraints. Furthermore, the 
electricity price is characterized to have volatility clustering and large spikes. The 
possibility for extreme price movements increases the risk for the market 
participants. Hence, modeling the probability of simultaneous extreme price 
observations, usually called tail dependence, can be more important than the central 
expectations (Bunn D. et al, 2013). We will in this paper analyze how electricity 
price react to fundamental variables, when the price is abnormally low or high, for 
instant negative price and spikes.   

Prior studies estimate the dependency of the extreme electricity price by 
Markow regime switching (Lindstrom E. & Regland F., 2012; Eichler M, Turk D., 
2013). This model involves multiple equations that characterize the time series 
behavior in different regime: the drop, the base and the spike process. This approach 
separates the extreme price dependence from the normal dependence. Cherubini et 
al. (2004) propose an alternative framework; they use copula function to define the 
degree of dependence and the structure of dependence between electricity price and 
its fundamental variables. Most of the researchers used Markow regime switching 
or copula function in order to evaluate the dependency of the electricity price, 
however a strand of the literature decomposes the dependence in linear quantile 
regressions (Bunn D. et al 2013; Hagfors L. I. et al 2014). Compare to the other 
empirical methods, the quantile regression model is relatively easy to use and 
interpret. In additionally, the conditional variables are estimated directly for each 
quantile of the distribution. 

The quantile regression application has been widely applied in financial risk 
management and been recently adopted in energy market studies: household energy 
consumption (Kaza N. 2010), oil prices (Lee C. C. and Zeng J. H., 2011), ), CO2 
emission allowance price (Hammoudeh S. et al, 2014) and UK electricity price 
(Bunn D. et al 2013; Hagfors L. I. et al 2014). This paper contributes to the existing 
quantile regression literature by study the impact of the fundamental variables on 
the German day-ahead electricity price across different quantiles. This analysis is 
relevant because it provides a more comprehensive picture of the effects from the 
variables on the electricity price in normal time and periods with extreme price. 

The first feature of our analysis is to examine the determinants of the day-
ahead electricity price from the point of view of ordinary regression, using hourly 
instead of daily electricity prices. However, the ordinary regression model will give 
an incomplete picture of the relationship of fundamental variables and the price 
when the electricity price distribution is not normal. We will therefore in our second 
analysis use the quantile regression method, introduced by Koeker R. & G. Basset 
Jr. G. (1978).  
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This paper is organized as follow. Section 2 provides a short overview of the 
German electricity market. Section 3 discusses the relationship between renewables 
and extreme prices. Section 4 describes the fundamental variable used in this study. 
Since there does not exist public data for forecasted demand, we create our own 
demand forecast model in section 5. The results from ordinary and linear quantile 
regression of the electricity price are presented in sections 6 and 7, respectively. 
Finally, conclusions are drawn in section 8. 

 

 

2. The German electricity market  

The German electricity market was fully liberalized in 1998. In the 
liberalization process eight utilities merged to four utilities: RWE, E.ON, Vattenfall 
and EnBw Energie. These four vertically integrated utilities were responsible for the 
supply transmission and balancing of electricity. As the European directive 
considered that the liberalization was slow, they establish an unbundling policy. For 
this reason the four utilities sold a majority stake of their transmission share to third 
parties. Today, there are still four larger electricity generator and four transmission 
companies, but they act independently. The market is liberalized for both supply 
and retail electricity market. The German market is considered as competitive 
environment although there exist some degree of market power3 (Janssen M. & 
Wobben M, 2008).  

The Merit Order curve (the supply curve) and the demand curve are 
important components in understanding the electricity market. Figure 1 illustrates 
the Merit Order curve as a sorted short-term marginal cost curve of electricity 
production; the renewables has the lowest marginal cost, followed by nuclear 
energy, lignite, hard coal, natural gas and oil power plant. As depict in figure 1 the 
short-term marginal cost consists mainly of fuel and CO2 cost. This suggests that 
increasing the marginal cost of the input variables leads to an increase in the 
electricity price. The demand curve is inelastic, meaning that the demand remains 
almost unchanged with change in electricity price (Sensfu F. et al, 2008). The 
electricity consumption is therefore predictable.  

The intersection between the supply and the demand curve determinates the 
clearing price and the given demand for electricity. Every day, a day-ahead auction 

                                                
3 Market power is the market participants’ ability to set to the price above short-term marginal cost, 
or withholding generation to create prices above marginal cost. 
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for each of the 24 hours takes place at 12pm. Each hour is dominated by different 
type of power plant (Murray B., 2009); where the conventional power plants remain 
to be the price setting utilities in the German market. Normally, the nuclear energy, 
lignite and the coal power plants cover the base load4, while the gas power plants 
cover the peak load5 (Sensfu F. et al, 2008).  

The renewables production got priority access to the grid and has nearly zero 
marginal cost. As a result, the renewable production enters at the base of the Merit 
Order curve and shifts the curve to the right, so that cheaper conventional power 
plant set the price (Zachman G., 2013). This means that additional renewable infeed 
to the grid will reduce the electricity prices.  

 

Figure 1 Stylized example of the stepwise marginal cost function and demand function for 
day and night. 

 

 

3. Renewables and extreme prices 

Lindstrom E. & Regland F. (2012) study the electricity prices for six 
European electricity markets and find that frequency of extreme event is positively 
correlated with amount of installed renewables sources to the grid. The extreme 
events are in this paper denotes as drops (negative prices) and spikes (price that is 
                                                
4 The base load is supply that has constant capacity during the delivery period and generally operates 
24 hours. 
5 The peak load is the load higher than average supply. 
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three standard deviation above the mean value). In the German market, the 
frequency of the electricity price drops is higher than the spikes, see figure 2 and 3.  
The amount of negative prices increased with the penetration of renewables sources. 

Further examination of our data shows that the negative prices occur more 
often during the night than day, while the price spikes appear during the day, see 
figure 4 and 5. 

 
Figure 2   Amount negative price during a day.   Figure 3   Amount price spikes during a day. 
 
 
 

      
Figure 4   Distribution of negative prices.   Figure 5   Distribution of price spikes. 

 
The reason behind negative electricity prices is that must-run inflexible 

utilities, like nuclear power plants, are willing to pay the consumer, because the cost 
of shutting down excess the loss of accepting negative price (Keles et al. 2011). 
Additionally, high amount of solar and wind generation with essentially zero 
marginal cost, coupled with lower demand leads to negative electricity prices, see 
figure 6.  

 The electricity price spikes can occur for many different reasons, for 
instance unpredicted generation outage or transmission failures. Another reason is 
high demand coupled with low renewable production, which results in additional 
firing of power plants higher on the merit order curve and push the prices up, see 
figure 7. 
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Figure 6 Snapshot view of the EEX Market  Figure 7 Snapshot view of the EEX Market 

negative electricity price     electricity price spikes. 
 
 
 

4. Data 

This paper uses hourly day-ahead German electricity prices (Physical 
Electricity Index) provided by the European Energy Exchange market (EEX). We 
choose the day-ahead prices over intra day prices because they represent a larger 
share of the trading volume. The electricity price dataset cover the period from July 
1st 2011 to July 1st 2014.   

Earlier studies applied logarithmic transformation to the electricity price 
series in order attains variance stabilization (Conejo A. J. et al, 2005; Bunn D. et al 
2013; Hagfors L. I. et al 2014). As opposed to this, Karakatsani N. V. & Bunn D. 
W. (2010) argue that the variance stabilization is not relevance in the electricity 
market, because the method conceals detailed statistical properties and gives error 
effects. Further, the electricity price data consists of some periods with negative 
prices, which can not be logarithmised. We choose to use the prices directly rather 
than the log prices.   

As previous discussed demand and supply are important in electricity price 
formation process, and their components should be included in our model. The 
supply side is determined by several factors; the underlying fuel of the power plants, 
emission allowances and production of renewables energy (Paraschiv F. et al, 
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2014). The electricity consumption represents the demand side. As the demand is 
almost inelastic, the day-ahead electricity prices are strongly affected by 
unscheduled plant outages (Bunn et al, 2013). A clear understanding of the 
underlying factors is important in developing insight about the electricity price. In 
the following paragraphs, we will describe the choice of the fundamental drivers of 
the electricity price.  

According to Sensfu F. et al. (2008) the different electricity generation has 
distinct fuel price dependencies, like the coal power plants is depending on the coal 
price and the gas power plants is depending on the gas price. Mjelde J. W. & 
Bessler D. A. (2009) study two US electricity markets, and include uranium prices 
along with other fuel prices. Ferkingstad et al (2011) use cointegrated model on the 
Northern Europe and find the electricity prices to have strong connection with the 
gas prices, while coal and oil prices are less important. However, Parashiv F. et al 
(2014) studies the German electricity price and finds that coal, gas and oil are 
important fundamental variables driving the electricity prices, whereas coal price is 
more notable during off peak hours6 and the gas and oil prices are important for the 
peak hours7. This finding is inline with Murray B. (2009) theory; the relationship 
between fuel prices and the electricity price is depended on the marginal electricity 
price setting technology used at the specific hour. We will now describe the fuels 
price drivers of the German electricity price. 

Normally, the nuclear power plants run at almost constant power due to 
economic reasons, even when the load is lower (International Atomic Energy 
Agency, 1999). The nuclear power plants have low marginal cost on the Merit 
Order curve. They are therefore less important in modeling the electricity price and 
we omit this variable. 

The coal and lignite are the primary fuels (45%, in 2013) in the electricity 
market used to cover the base load (AG Energiebilanzen, 2015). Unlike hard coal, 
the lignite is based on the local distribution and there is currently no market price 
formation for the lignite. The coal price is represented by future contract on the 
price of coal imported to northwestern Europe via Amsterdam, Rotterdam and 
Antwerp. 

As oppose to the coal power plants, the gas power plants are mainly used to 
cover the peak load due to its flexibility to ramp up and down. Both contracts from 

                                                
6  The off peak hours refer to periods with low electricity demand. The following periods is specified 
as off peak hours: (12am-7am), (12pm-5pm) and (9pm-12am). 
7 The peak hours refer to periods with high electricity demand. The following periods are specified 
as peak hours:  (7am-12pm) and (5pm-9pm). 
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Gaspool and NetConnect Germany (NCG) are traded in Germany. We choose to use 
NCG contracts because of the higher liquidity in this market. 

The production from oil power plants serve as a small fraction, (1%), of the 
total electricity production (AG Energiebilanzen, 2015). The oil price has therefore 
a low impact on the Merit Order curve (Sensfu F. et al., 2008). Further, the oil 
consumption is dominated by the transport sector and the industry (IEA, 2012). 
Hence, the oil price might serves as a proxy for the economic activity and the 
transport fuel for the coal fuel. In this paper, the European Brent spot price is used 
to represents the oil fuel cost.  

Based on the arguments above, we choose to include coal, gas and oil prices 
in our model. The fuels are converted to the same currency, by using time series of 
spot change ($/Euro) from Skandinaviska Enskilda Bank (SEB).   

The CO2 markets are a national and international attempt to increase 
investment in cleaner technology, by fuel switching or reducing usage of carbon 
intensive power plants to less carbon intensive power plants. Both Fell H. (2010) 
and Parashiv F. et al (2014) find the short-term influence of CO2 price on the 
electricity price to be higher in off peak hours than in peak hours. This is because 
the coal emits twice as much CO2 as natural gas. We will therefore expect the CO2 
price to have higher effect on the electricity for periods where the coal power plant 
is the price setting technology.  

When the CO2 price is also considered to the coal and the gas price, the price 
difference between these two commodities can be reduced or even reversed. This 
phenomenon where the marginal cost of the gas power plants is lower than coal 
power plants is known as fuel switching (Zachmann, G. 2013).   

The installed capacity and production from renewables sources have 
increased in the recent years. We therefore incorporate a RES variable to denote the 
long-term trend of renewable production. The RES variable is represented by the 
ratio of renewable production to total electricity production. 

The biggest share of renewables production in Germany consists of wind 
and solar. Moreover, production of these two renewables is completely price 
inelastic. We therefore focus only on these two renewables in our paper and use the 
term renewables as interchangeably with wind and solar. The wind and solar 
production data have been converted from 15 min data to hourly data. Woo C. K. et 
al. (2011) and Keles D. et al. (2013), employ econometric techniques to investigate 
the impact of wind on the electricity price level in the respectively Netherlands and 
German markets. Both papers find that the wind productions have reduced the 
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electricity prices. We therefore expect the renewables to have negative impact on 
the electricity price in Germany.  

The demand variable will be represented by the expected aggregated 
electricity consumption in Germany. We create our own demand forecast model 
since there is currently no publicly available forecast demand data for Germany. 
The forecast demand data is further elaborated in section 5. 

The reserve margin, the share of the total supply that is available, is negative 
correlated to the electricity price and represents the level of scarcity in the market 
(Boogert et al. 2008). Electricity prices can rise above marginal operating cost to 
include a scarcity premium. We therefore include ex ante available power plant 
capacity. This data is reported voluntary and do not reflect the total available 
capacity in Germany.  

Table 1 denotes whether the fundamental variables of the electricity price is 
daily or hourly granularity. Table 2 is an overview of the fundamental variables 
used to model electricity price.  

 

Table 1 
Data granularity of the explanatory variables in our model 

Variable Resolution 

Price lag Hourly 

Coal price Daily 

Gas price Daily 

Oil price Daily 

CO2 price Daily 

Expected Wind Hourly 

Actual solar Production Hourly 

Available power plant capacity Daily 

Forecast demand Hourly 

Demand lag Hourly 

RES Daily 
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Table 2 
Overview of fundamental variables used to model electricity price 

Variable Units Description Data source 
Price lag 
 
 

EUR/MWh 
 
 

The electricity wholesale price for the same 
hour of the previous day. 

European Energy Exchange: 
www.exx.com 

Coal price 
 
 
 
 

EUR/metric 
tonnes 
 
 
 

The front month contract on API2 coal index. 
This index based upon the price of coal 
imported to northwestern Europe via 
Amsterdam, Rotterdam and Antwerp.  
 

Intercontinental Exchange:  
www.theice.com/index 
 

Gas price 
 
 

EUR/MWh 
 
 

The NetConnect Germany (NCG) day-ahead 
prices.  
 

European Energy Exchange: 
www.eex.com 
 

Oil price 
 
 
 
 

EUR/barrel 
 
 
 
 

The European brent crude spot price.  
 
 
 
 

U.S. Energy information 
Administration: 
http://www.eia.gov/dnav/pet/hist/LeafH
andler.ashx?n=pet&s=rbrte&f=d 
 

CO2 price 
 
 

EUR/1000t 
CO2 
 

The front month contract on European Union 
Emission allowance (EUA). 
 

Intercontinental Exchange:  
www.theice.com/index 
 

Expected 
Wind 
 
 
 

MWh 
 
 
 
 

Forecasted aggregated wind infeed in Germany. 
German transmission system operators publish 
this data in the late afternoon the day before the 
delivery day. 
 

Transmission system operators: 
www.50Hertz.com , www.amprion.de 
www.transenbw.de , www.tennetso.de 
 
 

Actual 
solar 
Production 
 

MWh 
 
 
 

The actual aggregated solar electricity 
production in Germany. 
 
 

Transmission system operators: 
www.50Hertz.com , www.amprion.de 
www.transenbw.de , www.tennetso.de 
 

Available 
power plant 
capacity 
 

MWh 
 
 
 

Ex ante expected power plant availability, 
reported voluntary by utilities. EEX publish this 
data at 10am the day before the delivery day. 
 

European Energy Exchange: 
www.eex.com 
 
 

Forecast 
demand 
 
 
 
 

MWh 
 
 
 
 
 

Expected aggregated demand in Germany. 
Details regarding this variable will be further 
considered in section 5. 
 
 
 

Own data 
German Weather Service: www.dwd.de 
OECD Statistics: stats.oecd.org 
European Network of Transmission 
System Operators: www.entsoe.eu 
 

Demand 
lag 
 

MWh 
 
 

The aggregated demand for the same hour of the 
previous day. 
 

European Network of Transmission 
System Operators: www.entsoe.eu 
 

Share of 
renewables 
production 
(RES) 
 

% 
 
 
 

The share of electricity production from the 
renewables sources. Three months moving 
average on the monthly electricity production 
time-series is applied. 
 

European Network of Transmission 
System Operators: www.entsoe.eu 
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The descriptive statistics of the hourly variables: electricity price, load, wind 
and solar time-series are shown in table 3. The electricity price fluctuations are 
higher for the peak hour; also the extreme spikes appear during peak hours. The 
extreme negative prices occur during off peak and in the morning peak hours.  

The actual solar production is highest around the noon and zero during the 
night. In contrast to solar production, the wind production is high throughout the 
day. Both wind and solar production have an average production that is lower than 
the median, which indicate that there is a strong effect of outliers. In general, the 
wind and solar production are highly volatile.  

The electricity consumption has higher volatility during the day than the 
night. The average demand is quite near the median value. This suggests that there 
are few outliers.  

 
Table 3 

Descriptive Statistics electricity price, wind, solar and demand 
  for hour 3am, 8am, 12pm, 19and 12am 

 Mean 
(MW) 

Median 
(MW) 

Max  
(MW) 

Min  
(MW) 

St.dev 
(MW) 

Price 8am 45.31 47.45 183.49 -156.92 19.20 
Price 12pm (noon) 46.52 46.36 130.27 -8.30 15.43 

Price 19pm 53.46 52.82 210.00 11.01 18.51 
Price 12am 35.56 35.73 57.94 -90.98 9.92 

 
Wind 8am 5473.4 3943.8 23911.0 372.8 4292.2 

Wind 12pm 5666.1 3936.3 23698.0 253.0 4688.5 
Wind 19pm 5761.5 4208.0 23708.3 362.5 4489.8 
Wind 12am 5644.7 4200.0 24216.8 490.0 4229.6 

PV 8am 1171.4 528.5 5524.9 0.0 1372.2 
PV 12pm 9601.4 9096.6 22417.1 311.6 5535.4 
PV 19pm 1966.0 779.3 8673.3 0.0 2346.7 
PV 12am 0.0 0.0 0.0 0.0 0.0 

 
Demand 8am 55573.7 58484.0 72982.0 29644.0 10293.2 

Demand 12pm 63166.1 65651.0 76324.0 38327.0 7841.4 
Demand 19pm 60060.0 60179.0 76860.0 38192.0 7916.3 
Demand 12am 48400.6 47911.0 63020.0 37101.0 4955.5 
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5. Demand Forecasting 

There is currently no publicly available data on forecast demand for 
Germany. We will therefore begin our analysis by constructing our own demand 
model.  

The electricity consumption in Germany can be influenced by the following 
fundamental variables: trend, holidays and weather (Genethliou D. et al., 2014). 
Based on the work by Do L. & Molnar P. (2014a) we choose following explanatory 
variables for electricity demand: industrial production as the trend, holiday 
dummies and weather factors, like hours of daylight and heating degree days. 
Another important feature of the electricity load is seasonality, because the 
electricity load pattern depends on the day of the week. We therefore incorporate 
dummies variables for six out of seven days of the week. An overview of the 
fundamental variables used to model electricity demand and its source are depicted 
in Appendix A. 

 We use 24 separate linear regressions to estimate demand forecast values for 
each hour of the day. The model is performed with a rolling window of one year.  
Eq. 1 shows the specification of the demand in hour i:  

Yi,t = ai,1+ ai,2HDDt−1+ ai,3IPt−1+ ai,4nWn,t + ai,5Ht +
n=1
n≠3

7
∑

ai,6Ht−1+ ai,7MHt + ai,8DLt + ai,9Yi,t−1+εt

                          (1) 

where Y is demand, HDD is Heating Degree Days, Wn are dummy variables for days 
of the week, H is a major holiday variable, MH is a minor holiday variable, DL is 
Hours of Daylight and i represent the hour.  

Table 4 and 5 show performance of the demand model in terms of mean 
absolute (MAPE), R2 and mean absolute error (MAE) for in-sample and out-sample, 
respectively. The in-sample period is from July 1, 2010 to July 1, 2011. The out-
sample periods is from July 1, 2011 to July 1, 2014. The overall forecast 
performance of the demand model is good. The model performs better during the 
night than the day. 
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Table 4 
In-sample results for estimated demand Eq. 1 

The hourly MAPE (%) and R2  

 1am 2am 3am 4am 5am 6am 7am 8am 9am 10am 11am 12pm 
MAPE 2.06 2.21 2.15 2.07 2.01 2.27 3.05 3.21 2.78 2.51 2.50 2.69 

R2 
0.93 0.93 0.93 0.94 0.94 0.94 0.93 0.93 0.93 0.93 0.92 0.92 

 
 1pm 2pm 3pm 4pm 5pm 6pm 7pm 8pm 9pm 10pm 11pm 12am 

MAPE 2.50 2.69 2.81 2.89 2.81 2.59 2.20 2.04 2.00 1.86 1.78 1.91 
R2 0.92 0.92 0.92 0.92 0.93 0.94 0.95 0.94 0.94 0.93 0.94 0.94 

 

Table 5 
Out of-sample results for estimated demand Eq. 1, 

The hourly MAPE (%) and MAE (GW) 
 1am 2am 3am 4am 5am 6am 7am 8am 9am 10am 11am 12pm 

MAPE 2.23 2.34 2.38 2.32 2.18 2.20 2.78 2.99 2.75 2.48 2.38 2.32 
MAE  0.99 0.99 0.98 0.96 0.92 0.96 1.32 1.54 1.50 1.41 1.40 1.41 

 
 1pm 2pm 3pm 4pm 5pm 6pm 7pm 8pm 9pm 10pm 11pm 12am 

MAPE 2.33 2.45 2.53 2.59 2.60 2.49 2.28 2.16 2.11 2.06 2.07 2.20 
MAE 1.40 1.44 1.46 1.46 1.47 1.43 1.32 1.24 1.17 1.10 1.07 1.04 

 

 

6. Price modeling 

 Similar to the demand model, we generate a multiple regression model for 
the price. The reason we use separate equation is because each hour displays a 
rather distinct price profile, reflecting the daily variation of demand, fuel costs and 
operational constraints (Chen D. & Bunn D.W., 2010). Furthermore, the extensive 
research on price forecasting has generally favored the multi-model specification for 
short-term predictions (Chen D. & Bunn D.W., 2010; Florentina E. et al., 2014). 

Based on the description of the electricity market in Germany given in 
section 2 and the availability of the data, we specify 24 separate linear regression 
models to estimate electricity prices in Germany. Eq.2 is estimated for each hour i:  
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Pr icei,t = ai,1+ ai,2 Pr icet−1+ ai,3Coalt−1+ ai,4Gast−1+
ai,5Oilt−1+ ai,6CO2t−1+ ai,7Windi,t + ai,8Solari,t−1+ ai,9ACt +
ai,10FDi,t + ai,11Di,t−1+ ai,12RESt +εi,t

 (2) 

where Y is electricity day-ahead price, Coal is front month coal contract, Gas is day-
ahead gas price, oil is spot oil price, CO2 is the price on emission allowance, Wind 
is expected wind production , PV is actual solar production, AC is available power 
plant capacity, FD is forecast demand and D is demand and RES is share of 
renewables production. 

The coefficients from Eq.2 are presented in table 6 for four selected hours of 
the day (other hours are not reported in this paper due to space limitations). In order 
to give a more comprehensive picture of the results, we provide a graphic 
representation on the estimated coefficient from ordinary regression in figure 8. 

 

Table 6 
OLS estimates for electricity price for hour 8am, 12pm, 19pm and 12am.  

* and ** indicates that the coefficient is significant at 5% and 1 % level, respectively  

 
8am 12pm 19pm 12am 

Price lag 0.2777** 0.2555** 0.4165** 0.1789** 
Coal price 0.0634 0.1273** 0.1170** 0.0705** 
Gas price 0.9106** 0.9925** 0.9644** 0.3302** 
Oil price -0.0145 -0.0610 -0.0743* -0.0255 

CO2 price 0.1746 0.5009* 0.5037 0.5552** 
Expected wind -0.0013** -0.0010** -0.0012** -0.0012** 
Actual lag solar -0.0017** -0.0005** -0.0009**  0.0000** 

Available capacity -0.0005** -0.0005** 0.0000 -0.0005** 
Expected demand 0.0015** 0.0011** 0.0013** 0.0006** 

Demand lag -0.0005** -0.0003** -0.0005** -0.0001** 
Share of renewables -31.8660* -13.5641 5.2588 -42.4102** 

Constant -7.7822 -9.4167 -42.9155** 32.7119** 
R2 0.77 0.68 0.74 0.70 
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        Figure 8 OLS estimates for day-ahead electricity price.  
The shaded area represents 95% confident band for ordinary regression estimates.   

 

We choose to standardize the estimated regression coefficient of wind, coal 
and gas because it enables us to compare the relative effects of the independent 
variables that have different units of measurement. The coefficients of the 
independent variables represent the number of standard deviation Y changes with an 
increase of on standard deviation in X. These coefficients can be interpreted as the 
measures of importance of the explanatory variables. The coefficient is standardize 
by following formula (Allen M. A, 1997): 

byx *= byx (
ssx
ssy
)                           (3) 

where byx* is the standardize coefficient, byx is the unstandardized coefficient, ssx is 
the standard deviation of the dependent variable and ssy is the standard deviation of 
the independent variable. The standardize coefficients for wind, coal and gas are 
presented in table 7 for four selected hours of the day. 
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Table 7 
Standardize coefficient for wind, coal and gas for hour 8am, 12pm, 19pm and 12am.  

 
8am 12pm 19pm 12am 

Coal price 0.01 0.02 0.02 0.02 
Gas price 1.05 1.43 1.16 0.74 
Exp Wind -0.30 -0.32 -0.29 -0.51 

Price lag: The estimated coefficients from the ordinary regression of the 
lagged price are positive and denote the tendency of the electricity price to continue 
to move in its present direction. The electricity price that was recently high is more 
likely to continue to remain high and vice versa. This is in accordance with the 
study by Bunn D. et al (2013), which also found the lagged electricity price to have 
positive effect on the electricity price.  

Forecast demand and lag demand: Figure 8 shows that a marginal 
increase in demand will increase the electricity price by a larger amount during the 
day than the night.  

The variable of lag demand is significant and negative for all hours. This can 
be an indication that our load forecasts are not perfect and yesterday’s load still 
provides useful information. 

Available power plant capacity: The linear regression estimates indicate 
that the available power plant capacity has negative impact on the electricity price. 
A marginal 1MWh decrease in available power plant capacity, for instance 
unscheduled maintenance, will increase the electricity price.  

Fuel price: The coefficients of coal price are significant for the hours before 
and after peak load. This can be explained by the fact that the lignite power plants 
are also a price setting technology during off peak hours. 

The gas price is significant and positively correlated to the electricity prices. 
This degree of influence of the gas price on the electricity price is higher during the 
peak hours. Further as table 7 shows, the standardize coefficients of gas price are 
larger in comparison to the standardize coefficients of the coal price during peak 
hours, and reflect the greater degree of important of gas price. However, the gas 
price is also significant during the off peak hours. This finding is different from the 
recent study by Paraschiv F. et al. (2014), which reported that gas price is only 
important for the peak hours.  
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The coefficient of oil price is not significant. This suggests that the oil price 
has no on the electricity prices.  

Emission allowance CO2 price: The positive coefficient of CO2 price 
indicates that there is co movement between the electricity price and the CO2 price; 
an increase in CO2 price will increase the electricity price. This effect is visible for 
most of the time throughout the day, because the CO2 price is affected by the usage 
of fossil fuel; the conventional power plant is usually price setting technology for 
most of the hours thought the day, and the CO2 price will increase the marginal cost 
of generating electricity. Our results shows that the effect of CO2 price is not largely 
different on the off peak or peak hours, which appears out of line with our 
hypothesis. As previous discussed in section 4, we believed that the influence of 
CO2 price on the electricity price to be higher in off peak hours than in peak hours, 
because the coal emits twice the CO2 content of natural gas.  

Renewables sources: The effects of renewables on German electricity 
prices are estimated by using exogenous terms for total expected wind production, 
actual solar production, and share of electricity production from the renewables 
sources (RES). The share of total renewable capacity has a positive impact on the 
electricity prices during the peak hours, but on average a decreasing effect on the 
electricity price. The positive coefficients of RES during peak can be explained by 
displace high cost natural gas electricity that average out the low cost renewable 
production. For example the situations when the demand for electricity is high and 
at the same time the renewable production is low, requires flexible gas power plants 
that have high marginal cost to cover the demand. As a result, turning additional 
high cost power plant will average out the price lowering effect from renewables. 

The negative coefficients of RES during off peak hours support the theory 
that the renewables is driving down wholesale prices. Moreover, this is confirmed 
by negative coefficients of the wind and solar production. 

The impact from the wind on the prices varies throughout the day. A 
marginal increase in produced wind will decrease the electricity price with a higher 
amount during the night than the day. This result is inline with the previous 
discussion in section 3; the negative prices usually happen during the night hours, 
because of low demand and excess wind production.  

The standardize coefficient of the wind is higher than the standardize 
coefficient of the coal. This suggests that the electricity price is more directly 
connected to the wind production and less to the marginal cost of coal power plants. 
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The infeed from solar production has lower impact on the electricity price 
compare to the wind production, because the total installed capacity of the wind 
account twice the solar sources (AG Energiebilanzen, 2015). We further observe the 
coefficient of solar production to be high during day and zero during night. This 
finding is accordance with the solar production level.  

Our findings from ordinary regression shows that the price lag, fuel prices, 
emission allowances and demand have a positive effect on the electricity prices. The 
results also show that available power plant capacities and renewables have a 
negative impact on the electricity prices.  

Range of R2 is between 0.58 and 0.79 suggest a quite credible fit to the data. 
The lowest R2 value is during night period, which means that the parameters 
describe better the fundamentals during day period, than the night period. 

We will further provide additional empirical evidence on how the 
fundamental variables influence the electricity prices, by using linear quantile 
regression.  

 

 

6. Quantile Regression of the Electricity Price  

The quantile regression is a further extension of ordinary regression method, 
where the optimization objective change from minimizing the residual sum of 
square to minimizing the residual sum with different q weights on residual above 
than below the mean value, see Eq. 4. (Koenker R., 2005). 

     
(4)

 

 

where Y is the actual value, 
 
is the predicted quantile from the model, X is a 

vector with independent variables and q is specific quantile from 0 to 1.  

min q−1Yt≤αiqXi,t( )
t=1

T
∑ Yt − (αi

qXi,t )( )

1Y
t≤αi

qXi,t

1 if
0

Yt ≤αi
qXi,t

otherwise
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#
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qXi,t



Day Ahead Electricity Price Modelling using Quantile Regression  
 

 45 

The optimization objective estimates the parameters for the linear 
regression. The linear regression can be described as in Eq.5: 

 

      
(5)

 
 

where  is conditional quantile of the electricity price, X is independent 
variables, q is the quantile  and  is the error term. 

 Eq.5 uses the same equation specification as Eq. 2, but estimates these 
equations for different quantiles. The model is estimated for 5th, 25th, 50th, 75th and 
95th quantile for each hour of the day. 

The advantage of quantile regression, relative to the ordinary method, is that 
it estimates the effect of the explanatory variables not only on the conditional mean 
(OLS), but also the effect on the conditional quantiles. In order words, the quantile 
regression estimate a set of regression lines compare to just one line. As a result, the 
distribution of the electricity price can be fully captured by using several quantiles. 
The quantile can reveal the risk of immediate changes of the independent variable 
and the effect they will have on the electricity price.   

Additionally, the quantile regression gives a set of different sensitivities for 
each quantiles distribution of the independent variables. The distribution of 
independent variables gives information about asymmetric and non-linear effects on 
the electricity price. This can be useful when making hedging strategies, 
buying/selling weather derivatives to hedge against future loss and risk (Alexander 
C., 2009). 

The quantile regression method reveals information about the tail, or how 
various risk factors affect the extreme prices. Extreme prices can have a devastating 
impact on the returns. Hence, the tail can show the risk exposure that the market 
participants have regarding to fuel price, renewable production, among others. 
Further, computing the tail risk (VaR or expected shortfall) can give valuable 
information for the market participants in developing optimal strategies for risk 
management.  

The quantile regression is run in Stata 12.1. The standard error for the 
estimated coefficients for demand and residual demand model is obtained by using 
the pair bootstrapping procedure proposed by Buchinsky M. (1995). This 
bootstrapping method does not require the residuals to be homoscedastic, because it 

Qq(Yi,t Xi,t ) =αi
qXi,t +εt

Qq(Yi,t Xi,t )

εt
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derives clustering adjusted robust standard error of the quantile regression 
estimates. 

Figures 9-18 provide graphic representations on the estimated coefficient of 
the explanatory variables from quantile regression. 

Price lag: Figure 9 illustrates the estimated coefficient from quantile 
regression of the lag price. The quantiles of the price are more dispersed during the 
night than the day. The 5th quantile is prominently higher than the other quantiles 
during the night, meaning that the low off peak prices8 are likely to be on the same 
level the next day. The 95th quantile is higher than the other quantiles for the peak 
hours. This suggests that the current price provides more information to the future 
higher peak prices9 than the lower peak prices.   

 

       Figure 9   Coefficient of Price lag   

Expected Demand and lag demand: The distribution of the estimated 
coefficient of the expected demand is different during the day and night. The 
variable has a quite uniform effect over all quantiles for the morning peak prices, 
while dispersed effect for the off peak prices. Further, the positive correlation 
between demand and electricity prices is greater in magnitude at the lower tail (5th 
and 25th quantiles) of the distribution than the upper tail (75th and 95th quantiles) 
during the night. This suggests that the base load have diverse effect on the price.  

                                                
8 The electricity prices during off peak hours. The off peak hours are specified as: (12am-7am), 
(12pm-5pm) and (9pm-12am). 
9 The electricity prices during peak hours. The peak hours are specified as:  (7am-12pm) and (5pm-
9pm). 
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Figure 10 Coefficient of Expected Demand   Figure 11 Coefficient of Demand lag  

Available power plant capacity: As previous discussed, a reduction of 
available capacity will increase the electricity prices because of level of scarcity. 
We therefore observe negative relation between the available capacity and 
electricity price.  

The quantiles of the power plant availability coincide for the night hours, 
and diverge for the day hours particularly the peak hours. This can be explain by the 
fact that residual demand, the difference between demand and solar and wind 
production, is more volatile during the peak hours due to the intermittent 
renewables production (Do L. & Molnar P., 2014b); a quickly change in residual 
demand can cause additional firing of power plants higher on the merit order curve 
pushing the prices up. As figure 12 depicts, this effect is significantly enhanced in 
the lower quantiles and weakened on the 95th quantile for peak prices. This suggests 
that the scarcity premium is lower for the already extreme high electricity prices 
than for the low and normal electricity prices. The low scarcity premium for the 
already extreme electricity peak prices can be explained by electricity import from 
cross border countries with lower electricity prices than in Germany. This is also 
known as market coupling; the cross border countries with lower electricity price 
will meet demand at higher price in Germany and the result is a reduction of price in 
Germany. 
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Figure 12 Coefficient of Available Capacity  

Fuels: The estimated coefficients of the coal price are highest before and 
after peak hours. Further, the impact of the coal prices on the electricity prices is 
higher for the extreme quantiles, 5th and 95th, than the median, 25th and 75th 
quantile. Hence, there is tail dependence, meaning that the extreme coal prices 
movements have higher impact on the electricity prices.  

 As figure 14 depicts, the effect of the gas price on the electricity price is 
highest during peaks hours. The positive relationship between gas price and the 
electricity prices is greater in magnitude at the upper tail (75th and 95th quantiles) of 
the distribution than the lower tail (5th and 25th quantiles) during the peak hours. Gas 
prices at the 5th quantile of the electricity prices is related with an increase in the 
electricity prices around 0.8 EUR/MWh while the 95th quantile is related with 1.1 
EUR/MWh during the peak hours. This can be explained by market power; when 
the demand is high the utilities have more room to exercise their market power by 
setting prices significantly above marginal costs.  

 

Figure 13 Coefficient of Coal price    Figure 14 Coefficient of Gas price   
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Emission allowances CO2 price: The confidence bands indicate how 
significant the coefficient is. They are not plotted in figure 15, but will be discussed 
in following paragraph. 

The CO2 price has positive impact on the electricity price. The extreme 
quantiles, 5th and 95th, of CO2 price are not statistically significant for all hours. The 
5th quantile is significant at the same time as the 95th quantile is insignificant, and 
vice versa. This implies the structure of dependence is asymmetric. The off peaks 
hours have upper tail (75th and 95th quantiles) dependency and lower tail (5th and 
25th quantiles) independency. Hence, the lower electricity off peak price is not 
affected by increase in CO2 price, because it is usually set by the renewable sources 
and nuclear power. The 95th quantile is not significant during peak hours. In other 
words, the CO2 price has negligible effect on the extreme high electricity prices 
during peak hours. This can be explained by the lower additional CO2 cost on the 
natural gas and oil compare to coal fuel.  

 

   Figure 15 Coefficient of CO2 price  

Renewables: As previously discussed in section 4, the RES variable has low 
impact on the electricity price during the evening peak hours due to high cost gas 
power plant even out the low cost renewables production. The estimated coefficient 
of RES is negative and significant for 0-12pm and 20-24pm, but only for the 
intermediate and upper quantiles (75th and 95th quantile), whereas for the lower 
quantiles (5th and 25th quantile) have no significant effects. This result indicates that 
the lowest electricity price is less affected by the trend of increasing share of 
renewables. We further see on figure 17 that the electricity price is more affected by 
the short-term production from renewables.  

 

2 4 6 8 10 12 14 16 18 20 22 24

−1

−0.5

0

0.5

1

1.5

Hours

C
O

2 
pr

ic
e

 

 

95 %
75 %
50 %
25 %
5 %



Day Ahead Electricity Price Modelling using Quantile Regression  
 

 50 

 

    Figure 16 Coefficient of RES 

 

Figure 17 Coefficient of wind production.     Figure 18 Coefficient of solar production. 

The estimated coefficient of expected wind production is significant and 
negative for all hours, whereas the magnitude of coefficients is higher for the night 
hours. Further study on the night hours shows that the negative impact of wind 
production with electricity price is greater in magnitude at the 5th quantile than at 
the 95th quantile. During the morning and the afternoon peak hours, the impact of 
the wind production on the electricity prices is higher for the extreme quantiles, 5th 
and 95th, than the median, 25th and 75th quantile.  

The infeed from solar production has quite uniform effect on the electricity 
price during the day, except for the morning and afternoon peak prices. The 
estimated coefficients from quantile regression of solar production exhibit tail 
dependency. 
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In overall, the quantile regression coefficients are found to give a more 
comprehensive picture of the relationship between fundamental variables and the 
electricity price. For most quantiles the estimates are outside the ordinary least 
square confident band, suggesting that the ordinary regression estimates is not 
sufficient. Moreover, this suggests that the quantile regression is important to 
identify the shortcoming of ordinary regression.  

 

 

8. Conclusions 

The study in this paper identified the main explanatory variables of day-
ahead electricity price in Germany, and analyzes the impact of the variables on 
electricity price by ordinary regression and quantile regression models.  

The estimation results from ordinary regression methods indicate that the 
price lag, fuel prices, emission allowances and demand have a positive effect on the 
electricity prices. The results show that available power plant capacities and 
renewables have a negative impact on the electricity prices. We find that the wind 
and solar production has a negative impact on the electricity price in short term. 
However, in long term the impact of renewables on electricity will be negated by 
the increase in more expensive flexible generation. We therefore see that the 
renewables have positive impact on the electricity price in the peak hours. 

Our empirical finding from quantile regression shows high complexity of the 
electricity price, which makes it challenging to summaries the findings. We 
conclude that our findings show a more comprehensive picture of the electricity 
price in Germany. The finding can have important implications for the market 
participants who want to manage the risks involved in the electricity market. 
Particularly, examine the extreme event on price and computing the risk (VaR or 
expected shortfall) is an important aspect of effective risk management. 

This model can be use as a reference for further work on the German energy 
market and it is also transferable to other electricity market with high penetration of 
renewables. However, the model needs to be adapted to the local conditional, but 
these changes do not affected the fundamentals of the model.  
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Appendix A. Variables used to forecast demand 
Table 8 

Overview of variable used to model demand 
Variable Description Data source 

Demand lag 
 
 
 

The aggregated load for the same hour of the previous day. The 
load data include production from thermal energy and network 
feed-in from renewable energy. 
 

European Network of Transmission 
System Operators: www.entsoe.eu 

HDD 
 
 
 
 
 
 
 

Heating degree days is an indication for the need of heating, 

 where Tref is the reference 
temperature equal 18 degrees, and T describes the weighted 
average outdoor temperature for the day. The temperature data 
is taken from the cities with highest population densities and are 
geographically spread: Munich, Berlin, Dusseldorf and 
Stuttgart. 
 

The German Weather Service: 
www.dwd.de 
 
 
 
 
 
 

IP lag 
 
 

Three months moving average on the Industrial Production 
time-series (IP) is applied to smooth out jumps. IP lag is the 
moving average industrial production value on the previous day. 
 

OECD Statistics: stats.oecd.org 
 
 
 

Mon, Tue, Thu, 
Fri, Sat, Sun 
 

Binary dummy variables, where Wednesday is taken as base 
weekday. 
 

Calendar: www.timeanddate.com 
 
 

Holiday 
 
 
 

Binary dummy variable on major holiday and holidays with 
high load reduction. For more information about the 
composition of this variable, see appendix B.  
 

Own data 
National holidays: www.bmi.bund.de 
School holiday: www.holidays-info.com 
 

Holiday lag 
 
 
 

Binary dummy variable on the day before holidays.  
 
 
 

Own data 
National holidays: www.bmi.bund.de 
School holiday: www.holidays-info.com 
 

Minor holiday 
 
 
 

Binary dummy variable on minor holiday, local holidays and 
holidays with lower load reduction. For more information about 
the composition of this variable, see appendix B. 
 

Own data  
Local holidays in Germany: 
www.timeanddate.com 
 

DL 
 
 
 
 
 

Hours of Daylight, (DL), is determined by first calculating the 

sun's inclination angle where lt is [1,365] and 1 represent 
January 1st etc. Thereafter calculate DL, where is the latitude 
in Germany, see Kamstra M. J. et al (2003).

 

 

 

 

Own data  
 
 
 
 
 
 
 

HDD = max(Tref  - T, 0)

λt
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Appendix B. Major and Minor holiday 

The electricity load reduction is different on local holidays and public 
holidays. We choose to distinguish the different load reduction by transforming the 
type of the day to a percentage weight. The weighting is based on dividing the load 
at the day with Wednesday at the same week. The calculated weights are compared 
to Wednesday at the same. If Wednesday is a holiday, use the Wednesday from the 
previous week. The result is grouped in two categories, higher and lower load 
reduction. These two groups is in table 9 consider as category A and B, or major- 
and minor holiday. We introduced binary dummy variable Ht and MHt, which 
respectively represent major- and minor holiday.  

Table 9 
Categorize Major Holiday and Minor-Holiday in respectively Category A and B, * denotes 

National Public holiday except for 24 Dec and 31 Jan. ** denotes local holidays in the biggest 
cities as Munich, Dusseldorf, Berlin and Stuttgart 

Type of day Date Monday Tuesday Wednesday Thursday Friday  Saturday Sunday 
Non holiday 

 
0.95-1 0.97-1 1 0.96-1 0.98-0.99 0.82-0.9 0.72-0.83 

 
(Category A Major holiday) 

Current Special Day * 
New Years 1st January 

 
0.78 

 
0.70 0.80 0.79 0.64 

Good Friday Change each year 
    

0.74-0.82 
  Easter Monday Change each year 0.70-0.72 

      Labor Day 1st May 
 

0.74 
 

0.75 0.70 0.76 0.68 
Ascension Day Change each year 

   
0.75-0.78 

   Whit Monday Change each year 0.68-0.77 
      German Unity 

Day 3rd October 0.74 
 

0.77 
 

0.76 0.83 0.76 
Christmas Day 24th December 0.68 

 
0.74 0.75 0.82 0.73 

 Christmas 25 25th December 
 

0.62 
 

0.68 0.73 0.77 0.68 
Christmas 26 26th December 0.68 

 
0.62 

 
0.68 0.74 0.77 

New Years Eve 31th December 0.84 
 

0.76 0.74 0.80 0.73 
  

(Category B Minor holiday) 
Local holiday** 
Epiphany  6th January 0.87 0.91 0.95 0.93 

 
0.95 

 Whit Sunday Change each year 
      

0.67-0.73 
Corpus Christ Change each year 

   
0.82-0.87 

   Peace Festival  8th August 0.98 
  

0.95 0.97 0.87 0.78 
Assumption of 
Mary 15th August 0.93 

  
0.98 0.95 0.82 0.77 
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Reformation 
Day 31th October 0.88 

 
0.94 

 
0.94 0.83 0.75 

All Saints Day 1st November 0.82 0.85 
 

0.85 
 

0.79 0.79 
Repentance day Change each year 

  
0.98-1 

     
Bridging proximity days that follow a special day that occur in weekday 
Day after 
Ascension Day Change each year 

    
0.86-0.89 

  Day before 
Christmas 23th December 

 
0.84 

 
0.95 

  
0.71 

 
Bridging proximity days that follow a special day that occur in weekend 
Day after New 
Year 2nd January 0.85 

     
0.77 

 
School holiday/ Non Bridging proximity days that follow a special day and occur on a weekday 
Easter Holiday Change each year 0.98-1 0.95-1 0.98-1 0.92-1 0.84-0.97 0.79-.90 0.68-0.74 
Christmas 
Holiday Change each year 0.80-0.89 0.80-0.9 0.79-0.91 0.74-0.82 0.76-0.95 0.70-0.88 0.65-0.92 
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