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Problem Description

The main purpose of this thesis is to develop a model to price the credit value adjustment
for interest rate swaps. The interest rates are modeled under the Cheyette framework
and the credit value adjustment is priced by using Least Square Monte Carlo.

1. Brief introduction and discussion of interest rates, interest rate derivatives and in-
terest rate models with a particular focus on the Cheyette model

2. Brief introduction of counterparty credit risk (CCR) and the credit value adjustment
(CVA)

3. Implementation of CVA calculations on interest rate swaps under the Cheyette
framework using a Least Square Monte Carlo approach

4. Comparison to other methods

5. Overall assessment of the model and discussion of the obtained results
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Abstract

In this thesis we consider two alternatives to the Brute Force approach for credit value
adjustment (CVA) calculations for interest rate swaps. Both methods, the Proxy approach
as well as the CVA Notional apply a regression-approximation for the portfolio value by
using the least squares Monte-Carlo algorithm. We see how the performance of the Proxy
approach is dependent on the approximation’s ability to give a satisfying representation
of the portfolio value in the entire state space, while the CVA notional represents an
improvement as it is less sensitive to the proxy quality. This is achieved by a rewriting
of the CVA expression, which also leads to a beneficial decoupling of the portfolio value
and the cash flows generated by the portfolio contracts. By only relying on the regression
proxy to denote whether the portfolio is positive or negative, and subsequently valuing
the potential loss (given counterparty default and a positive portfolio value) by using
simulated cash flows, the CVA notional yields more precise calculations. The di↵erence is
particularly prominent when considering non-linear portfolios. By being less dependent
on the proxy, one can use fewer basis functions and less simulations in the regression and
still calculate the CVA precisely when compared to the brute force benchmark.

Furthermore we demonstrate the benefits of a four-factor Cheyette model in governing
the dynamics of interest rate derivatives. We see how the four stochastic factors yields
a desirable flexibility in replicating the nature of the modelled yield curve, and how
its Markov properties makes it a suitable choice as it reduces computational e↵ort in a
simulation framework.



Sammendrag

I denne Masteravhandlingen vil vi betrakte to ulike alternativer til Brute Force for utreg-
ninger av credit value adjustment (CVA) for rentederivater. B̊ade Proxy metoden og CVA
Notional bruker Least Squares Monte-Carlo algoritmen for å konstruere en regresjonsba-
sert approksimasjon for porteføljeverdien. Vi oppdager at velegenheten til Proxy metoden
er direkte avhengig av approksimasjonens evne til å korrekt representere porteføljeverdien
i hele utfallsrommet. CVA Notional representerer imidlertid en forbedring ettersom den
er mindre sensitiv for kvaliteten p̊a regresjonen. Dette oppn̊as ved en omskrivning av
CVA-utrykket, som ogs̊a fører til en fordelaktig frikobling av porteføljeverdien og kon-
tantstrømmene som dets kontrakter utgjør. Ved å kun avhenge av approksimasjonen til
å bestemme hvorvidt porteføljeverdien er positiv eller negativ, og videre finne det sam-
lede tapet (gitt motpartskonkurs og positiv porteføljeverdi) ved å bruke de simulerte
kontantstrømmene fra kontraktene, oppn̊ar vi mer presise beregninger ved CVA Notio-
nal. Forskjellen er spesielt fremtredende ved ikke-lineære porteføljer. Ved å være mindre
avhengig av approksimasjonen kan man benytte seg av færre basis funksjoner og færre
simuleringer i regresjonen men fortsatt oppn̊a nøyaktige CVA tall n̊ar man sammenligner
med Brute Force metoden.

Videre demonstrerer vi fordelene ved en fire-faktor Cheyette modell som styrende for
dynamikken til rentederivatene. Vi ser hvordan fire stokastiske faktorer gir en ønsket
fleksibilitet i å replisere egenskapene til den modellerte rentekurven, samt hvordan Markov
egenskapene fører til redusert kjøretid som en følge av færre simuleringer.
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Chapter 1

Introduction

The financial crisis of 2007-08 highlighted the importance of measuring and controlling
counterparty credit risk (CCR). The crisis revealed that counterparties previously re-
garded as being more or less risk free, should also be considered defaultable. This was
demonstrated by the fall of major triple-A entities and large investment banks such as
Lehman Brothers, and the following European sovereign-debt crisis showed that even
sovereigns were prone to severe counterparty risk1. In turn, this made the concept of
credit value adjustment (CVA) highly relevant. Prior, the standard practice in the indus-
try was to value portfolios of derivatives mark to market (MtM) without including any
measure related to counterparty credit risk. Thus, this value could almost be seen as risk
free2. Post-crisis however, the risk related to CCR and the creditworthiness of counter-
parties gained increased attention among practitioners as well as regulators. In fact, the
Basel Committee on Banking Supervision states that about two-thirds of the CCR losses
during the financial crisis were due to CVA losses following falling credit quality, and only
one-third due to actual defaults [3]. Practitioners realized the importance of including
CVA when valuing their positions in order to incorporate the default risk of their coun-
terparties, while regulators introduced a new CVA capital charge in the Basel III accord
[2]. As we will see, the former can be seen as the market price of risk, while the CVA
capital charge is a requirement meant to cover for the potential losses due to changes in
this market price caused by a downgrade in the credit rating of the given counterparty.

During the last decades there has been a substantial growth in the volume of OTC trades.
According to a published survey from the International Swaps and Derivatives Association
(ISDA) [5], the volume of cleared transactions at the end of 2012 reached $346.4 trillion.
By comparison, the amount was $866 billion in 1987. As the volume of OTC trades has
increased, counterparty exposure and potential losses driven by OTC trades has grown
correspondingly. In turn this has made the trading parties more prone to CCR risk,
and stressed the importance of precise calculations of relevant measures such as the CVA.
Furhtermore, our comparison and discussion regarding CVA calculations will be performed
in the environment of interest rate derivatives. This is motivated by their significant role
in the OTC market, which is the marketplace where counterparty credit risk is relevant

1Greece, Ireland, Portugal and Cyprus all su↵ered from di�culty or inability to repay their govern-
mental debt and received bailout support during 2010-12.

2The chosen discounting curve did incorporate some of the present credit risk embedded in market
risk, counterparty risk was however not included.
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[34]. Moreover, we consider portfolios consisting of interest rate swaps. This choice is
mainly motivated by their large trading volume in OTC markets. In fact, interest rate
swaps counted for 60% of the total interest rate derivatives turnover in the OTC market
in 2013, with the daily trading volume of reaching $1, 415 billion in 2013 [4]. Interest rate
swaps therefore span a substantial part of what is actually traded in OTC markets, and
is thus a key driver of CVA for many banks and institutions trading derivatives OTC.

Furthermore, CVA calculations are relevant only at counterparty level, and has to be
computed considering the entire portfolio of contracts with a given counterparty. In fact,
since CVA represents the adjustment in order to incorporate the market price of risk for
financial contracts, it can be thought of as an exotic option with the entire portfolio of
derivatives as the underlying (more on this later). For banks trading derivatives over-the-
counter (OTC) this imposes a challenge as their portfolios can be very large, but most
of all because the portfolios are likely to span across several asset classes. Thus, a bank
having separate desks for the asset classes they trade, each with their own modelling
framework and computational methodology to value its positions, will struggle to price
CVA for all products in a consistent manner. Consistency is important since default will
a↵ect the entire exposure towards the given counterparty, which may span various asset
classes. In other words, banks should seek to build a system enabling a counterparty
view. Bearing this in mind, we will in this thesis try to demonstrate how this can be
done in practice. Although we present a simplistic case, we believe the demonstrated
techniques for pricing CVA in combination with the stochastic model does indeed represent
a consistent framework for CCR calculations.

More specifically, we will in this thesis outline and compare two di↵erent approaches
to calculating CVA and one of its key constituents; counterparty exposure. The two
methods, the Proxy approach and CVA Notional, are closely related and both rely on
an approximation3 for the portfolio value obtained by applying the least squares Monte-
Carlo algorithm (LSM)4. The Proxy approach use this proxy to represent the true portfolio
value and is used directly in the expressions for exposure and CVA calculations. Using a
regression-based proxy in this setting was first described by Cesari et al. [27]. However, as
there will always be uncertainty related to an approximation, the CVA Notional benefits
from being less dependent on the quality of the regression proxy. This is obtained by
reducing the use of the proxy to simply determining whether the portfolio value is positive
or not, i.e. to determine whether there is a risk of losing money if the counterparty
defaults. To determine exposure and CVA, it can instead rely on the simulated cash flows
from the di↵erent contracts which will be more accurate than an approximation. As we
will see, the CVA Notional yields an improvement as it can relieve the computational
burden of creating a proxy which must be accurate for all portfolio values. To the best
of our knowledge, CVA Notional has not yet been described in the literature, but rather
been suggested as an improved method by practitioners [8].

The main motivation behind both these methods is the drawbacks of the traditional
3To not confuse the reader we underline that the term Proxy approach is used for a method of

calculating exposure and CVA, while proxy is used for the regression-based approximation of the portfolio
value which both the Proxy approach and the CVA Notional apply.

4The LSM algorithm was originally developed by Longsta↵ and Schwartz [50] with the purpose of
valuing American options.
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way of performing these calculations, namely the Brute Force approach. In the well-
established framework, future market scenarios are simulated and each contract in the
portfolio is valued separately in each path and at every time step. As we will see, this
approach is not suitable for evaluating the CVA of real-world portfolios for banks due to
the limitations appearing as soon as exotic contracts are included. We will however apply
the Brute Force framework in this thesis as a benchmark for further CVA calculations
when using the regression proxy.

In the context of pricing interest rate derivatives, the consideration of a suitable term-
structure model to govern the underlying dynamics is important. We have chosen to
implement a four-factor Cheyette model proposed by Andersen and Piterbarg [7], which
is an extension of the original formulation proposed by Cheyette [28]. The Cheyette
model belongs to the Heath–Jarrow–Morton (HJM) framework for interest rate modelling
and is specified by a certain specification of the volatility structure of the instantaneous
forward rates. As we will see, this leads to desirable Markov properties, which reduces
computational e↵ort significantly in a simulation framework. The four stochastic factors
provide desirable flexibility in replicating the nature of the yield curve we seek to model.
Furthermore, the Cheyette model o↵ers fast and accurate calibration, and can incorporate
stochastic volatility, which provides more flexibility in the generation of volatility smiles
and skews for a wide range of market conditions [10]. The latter feature is not implemented
in our model and somewhat reduces the explanatory power of the model in terms of
volatility skew, but it does not impose any crucial limitations for the purpose of this
thesis. Furthermore, in the aftermath of the 2007 financial crisis it became apparent
that the standard single-curve no-arbitrage relations were no longer valid. Thus, we have
incorporated a two curve setup, in order to ensure proper discounting.

The outline of this master thesis is as follows. The first chapter contains an introduction
to the field of counterparty credit risk and a more thorough presentation of the CVA. This
is followed by an introduction to interest rates and derivatives, before we review various
types of interest rate models. In chapter 5 we describe and discuss the implementation of
the Cheytte interest rate model, which includes a verification of our setup. We then look
further into CVA and explain three di↵erent methods for calculating the CVA. Emphasis
is put on using the Proxy approach and the CVA Notional method respectively. In chapter
7 we present our results for the CVA calculations, which are further discussed in chapter
8. Finally we conclude and suggest possible extensions of our work.



Chapter 2

Introduction to Counterparty Credit
Risk

We will begin this chapter by giving a general introduction to counterparty credit risk
(CCR). The field of CCR is broad and complex, and it is not our ambition to cover the
topic in its entirety. For readers not familiar with this field, [24], [34], [26] and [60] serve
as good introductions. These are also our main references throughout this section. We
will proceed with a few key definitions, before we discuss two main ways of mitigating
CCR, namely netting and collateral posting. We then introduce the concept of the credit
value adjustment. This is an alternative way of handling CCR, as it is based on actually
including CCR when pricing and valuing transactions. Besides stating a few definitions
and CVA equations, the nature of this chapter is somewhat qualitative, and a more
technical and quantitative description of methods to calculate CVA is saved for chapter
6.

2.1 Defining Counterparty Credit Risk

Counterparty credit risk is defined as the risk taken on by a party entering a financial
contract where there is a non-zero probability that the counterparty will default prior to
the maturity of the contract. If default occurs, the counterparty will not be able to fulfill
its current and/or future payment obligations and by that imposing a loss on the other
party.

There are mainly two properties of CCR which sets it aside from traditional credit risk
(or lending risk). Firstly, if payments are made in both directions CCR is bilateral. This
means that the contract value can be both positive and negative for both parties, so
that each party experience a financial risk of their counterparty defaulting. Credit risk
however, will normally only apply to the one party which is lending money to the other.
The borrower does not face any loss if the lending party defaults as they have already
received the notional amount. Secondly, exposure (see definition 2.1 below) towards a
given counterparty will be uncertain as it stems from various derivatives contracts which
have an unknown future value. In the case credit risk however, the exposure of the
lending part is equal to the notional amount and is in general known with a higher degree
of certainty.
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In general there are two areas where the evaluation of CCR is important, namely in
risk-adjusted pricing of financial contracts and for risk management purposes. For the
former case CCR mainly arise from OTC trades [34]. The reason is that, in contrast to
exchange traded derivatives where the exchange guarantees for the cash flows promised by
the contract, cash flows from OTC derivative contracts are in most cases not guaranteed
by any entity1. Whilst CCR for exchange traded contracts thus reduces to the solvency
risk of the exchange itself, the losses for OTC-traded contracts might be substantial
and should therefore be handled and mitigated. For risk management purposes on the
other hand, CCR is related to how financial institutions mitigate the risk of default of
their counterparties. This can be done by assessing the potential future exposure (see
Definition 2.1) for a given counterparty, and making sure that this does not exceed a
certain threshold at a given confidence interval, known as credit limits.

1It is worth to mention that CCR can in fact be reduced also for OTC transactions by transferring
to a clearing house providing risk reduction by the means of netting, collateral and monitoring of credit
worhiness of the trading parties.
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2.2 Definition of Exposure

Counterparty exposure, or just exposure, is a key element for quantifying CCR, and to
describe it we consider a contractual relationship between part A and part B. If part B
defaults, the outstanding contract between the two will either be a negative or positive
value from part A’s point of view. In the former case, part A will be in debt to the
defaulting B and the event of default does not change this. Part A must meet their
obligations to B regardless and thus A neither loses or gains from the default of B.
However, if the value is positive for A, the event of default will yield them a loss equal to
the contract value at the time. This yields the following definition of exposure2

Definition 2.1: Metrics for Exposure

1. Counterparty exposure (Ex) is defined as the maximum of zero and the mark-
to-market (MtM) value of the portfolio, and represents the loss given counter-
party default. If we let V(t) denote the portfolio value given the filtration Ft,
we can define Ex(t) as

Ex(t) = max
�
V (t), 0

�
= V +(t)

2. The expected exposure (EE) is the discounted average of all exposure values
over the set of possible scenarios at a given time in the future.

EE(t) = EQ [Ex(t)|Ft] = EQ
t [Ex(t)]

where Ft is the filtration containing information available at time t.

3. An exposure profile is the curve representing the discounted expected exposure
over time. Note that the exposure profile will be dependent on the probability
measure Q under which the expectation EQ is taken.

4. The Potential Future Exposure (PFE) is the maximum amount of exposure
expected to occur on a future date with a given confidence level ↵. PFE is thus
more of a risk management measure than used for pricing CCR. For instance,
the 95% PFE denotes the level of future exposure that will not be exceeded
with 95% probability

PFE(t)↵ = inf{x : P(V +(t)  x) � ↵} (2.1)

2.3 Mitigating Counterparty Credit Risk

There are various means to mitigate counterparty credit risk, such as diversification,
hedging, close-outs and the use of credit triggers. The two most common tools are however
netting and collateral agreements, which will be elaborated in this section. The interested
reader will find more on CCR mitigation in Gregory [34].

2Some of the measures related to exposure might be defined di↵erently elsewhere, but we rely on the
definitions from [1] which are restated by Gregory [34].
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Netting

A netting agreement between two parties is a part of the ISDA Master Agreement3, which
is an established framework for governing OTC transactions between counterparties. Net-
ting, or more specific closeout netting, is a key way of mitigating counterparty credit risk
and is simply an o↵setting of positive and negative cash flows. In the case where no
netting agreement is in place, the potential loss of the surviving party will be the sum of
counterparty exposure towards the defaulting counterparty. This sum will be posted as
a claim in the bankruptcy process alongside the claims from other creditors, and will be
recovered depending on the value of the remaining assets of the defaulting party. The sur-
viving party would further have to fulfill all its financial obligations towards the defaulting
party, and is una↵ected by the default of the counterparty. However, when there is a net-
ting agreement in place, positive and negative cash flows towards the given counterparty
will o↵set each other, causing the two payments to be reduced into one net payment. In
the event of default, netting is beneficial for the surviving party as it potentially lets them
retrieve (parts of) their outstanding value of the assets. If the net payment is negative for
the counterparty, the event of default will not cause the surviving party any additional
losses.

T

No netting

Positive cash flows

Negative cash flows

With netting

Cash flow

+50 +110 +60 +70 +110 +70 +50

-70 -90 -70

+50 +40 +60 -20 +110 0 +50

Figure 2.1: Netting concept

Collateral

Furthermore the ISDA Master Agreement might be supported by a Credit Support Annex
(CSA). This is related to posting of collateral (margining) and/or an independent amount.
The former is most used, but they are both further ways of reducing counterparty credit
risk. The CSA can for instance say that collateral have to be posted once the entire
portfolio exposure with a given counterparty reaches a pre-determined threshold. If this
threshold is set to zero, collateral has to be posted by the counterparty as soon as the
exposure turns positive. If an independent amount is posted, the exposure will be limited

3The ISDA Master Agreement is published by the International Swaps and Derivatives Association
and outlines the terms applied to a derivatives transaction between two parties.
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to the level above this amount. The CSA will further normally include aspects related
to the timing and frequency of collateral postings, as well as what kind of collateral is to
be posted. Preferred collateral is typically cash or liquid securities such as government
bonds.

Any exposure below the threshold specified in the CSA is not collateralized and is thus
at risk in the case of counterparty default. Exposure above is collateralized and does
therefore not face the same risk. In the event of default the surviving party will claim the
collateral posted, and if this is enough to cover the entire positive exposure after netting,
the net loss is zero. Additionally, there might be a time-lag between the last collateral
posting and the time of default. During this time increment, the value of the portfolio
might change. This is called gap risk. If the market moves a lot between the last collateral
posting and default of the counterpart, this could lead to a substantial loss.

With the introduction of collateral, independent amount and threshold in place, we can
expand definition 2.1 to also include these mitigation tools

Definition 2.2: Counterparty Exposure (Ex)

In the case of collateral postings over the threshold H, we can define Ex(t) as

Ex(t) = max (min (H, V (t)) , 0)

When the contract includes a threshold H and independent amount IA in addition
to the collateral posted above the threshold H, the exposure is

Ex(t) = max (V (t)� IA, 0)

2.4 Credit Value Adjustment (CVA)

A basic and traditional way of handling counterparty credit risk is the use of credit
limits, and making sure that the PFE of a given counterparty is not exceeding the set
limit. The choice of the credit limit may vary according to the counterparty in question
and risk preference, and it might also be time-dependent. The idea is that trades that
will make the PFE breach the credit limit will typically not be accepted. However, using
credit limits as a deciding measure whether the risk towards a counterparty is too high
or not, is a rather static form of counterparty risk management. It does not incorporate
any dynamical decision-making related to the probability and correlation of counterparty
default, recovery rate or likelihood of credit downgrade. As these factors are likely to
influence the determination of the credit limit in one way or another, a more general and
dynamic approach for appraising the price of counterparty risk is likely to yield a better
way of handling CCR.

The solution to these issues is the credit value adjustment. CVA is the measure of includ-
ing the monetary value of CCR when pricing contracts. For the contract value to reflect
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its true value, it must include the probability and following consequences of the counter-
party defaulting. This adjustment of the risk-free contract value is the CVA. Since the
CVA is the di↵erence between the risk-free and risky value of a contract, it can intuitively
be thought of as the market price of counterparty credit risk.

CVA = Risk-free value - Risky value

CVA moves beyond the binary world of credit limits, where the decision to accept a trade
is determined according to whether the credit limit for the given counterparty is breached
or not. By actually pricing in the risk and consequences of default via the CVA, the
decision whether to include the trade or not is determined whether the profit of the trade
covers the additional CVA from the trade.

In practice, many adjustments can be made to the risk-free value of a contract in addition
to CVA. Examples are debit (DVA), funding (FVA), liquidity (LVA) and margin (MVA)
value adjustments. These are all abbreviated by the term xVA. We will however limit our
focus to the credit value adjustment in this thesis. We will further assume that the party
we are considering (typically a bank) is default-free. This means that we are considering
unilateral CVA. The alternative approach is bilateral CVA where the party itself has a
non-zero default probability. A further discussion of this is provided by Gregory [34].

CVA Formulation

Unilateral CVA is the risk-neutral expectation of the discounted loss incurred if the coun-
terparty defaults at some future time between today and a time horizon T .

Definition 2.3: Credit Value Adjustment

CV A(t = 0) = CV A(0) = (1�R)N(0)

Z T

0

EN
t


V +(t)

N(t)

���✏ = t

�
dPD(0, t)

Here R is the recovery rate, given as the percentage of the outstanding value with the
counterparty that is expected to be recovered in the case of the counterparty defaulting.
(1-R) is consequently the loss given default, the amount assumed to be lost in the default
event. Furthermore, EN

t [. . . |✏ = t] is the time-t expectation conditional on default time
✏ = t under the probability measure N corresponding to the numeraire N(t). The CVA is
independent of the probability measure N as it is a price adjustment. V +(t) is the coun-
terparty exposure as defined in 2.1 and PD(s, t) denotes the probability of counterparty
default between two times s and t. As we will see in section 6.1 this can be found by
using market quoted credit spreads.

If we further assume that there is independence between the exposure towards a coun-
terparty and the credit quality of the counterparty (no wrong-way risk, see below), the
expression above simplifies. In the expectation we do no longer need to condition on
default time, thus the

CV A(0) = (1�R)N(0)

Z T

0

EN
t


V +(t)

N(t)

�
dPD(0, t) (2.2)
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The standard discretization of (2.2) given in Gregory [34] is stated below.

CV A(0) ⇡ (1� R)
mX

i=1

DF (ti)EE (ti)PD (ti�1 , ti) (2.3)

in which DF is the relevant discount factor used to discount the future cash flows.

CVA as an Option

Given the definitions above, we return to our statement in the introduction claiming
that the CVA can in fact be regarded as an option itself with the portfolio of trades as
the underlying. The reason is simply that in case of counterpary default, the financial
consequences (i.e. the option payo↵) will depend on the portfolio value to the surviving
party. If this value is positive, the surviving party will only recover a fraction R of the
outstanding value. If the value is negative however, they must fulfill all their monetary
obligations to the defaulting party. It is precisely this asymmetry that gives rise to CVA
and pricing it as an option. The option is American since default can happen at any time,
and of the same reason the maturity of this option will be unknown. Looking at CVA this
way, it is clear that it must also be priced the way one would price a ”normal” derivative
contract.

Wrong Way Risk (WWR)

An important assumption we make in this thesis is that the counterparty�s probability
of default is independent from the level of the exposure towards the counterparty. The
situation where there is a positive correlation between the two, i.e. the probability of
default increase when the exposure increase and vice versa, is called wrong-way risk
(WWR). The opposite case where probability of default is low when exposure is high
(and vice versa) is called right-way risk (RWR). Various attempts have been made to
correct quantify and incorporate WWR in CVA calculations, including the works of Hull
and White [40], Böcker and Brunnbauer [21] and Rosen and Saunders [58]. However,
there is still no standard approach that is widely accepted by the industry, and WWR
will not be included in our CVA calculations.



Chapter 3

Introduction to Interest Rates and
Derivatives

This chapter is intended for readers without prior experience to interest rates and interest
rate derivatives. We start with a section on interest rate and interest rate derivatives
basics under the traditional singe yield-curve setup, before we introduce the post-crisis
two-curve setup which we implement in our Cheyette model.

3.1 Interest Rate Basics

This section contains a basic introduction to discount factors, forward rates and xIBOR
rates under a single-curve setup. We start by defining basic financial assets such as zero
coupon bonds (ZCB) and show how they represent the building blocks of interest rate
modelling.

3.1.1 No-Arbitrage Pricing and Numeraires

A complete presentation of the building blocks of the theory of arbitrage free pricing is
not in the scope of this thesis. For a thorough discussion on self-financing portfolios,
absence of arbitrage, probability measures and martingales we refer the reader to Björk
[17] and Cont and Tankov [30] which also serves as our main sources for this part.

We consider an asset which is driven by a price process ⌘(t). In the theory of no-arbitrage
pricing the time-t value of this asset ⇧(t) = ⇧(t, T, ⌘(t)), can be obtained by the use of
numeraires. Roughly speaking we say that a numeraire N(t) is a positively priced asset
which denominate other assets and facilitate comparison of the relative value of di↵erent
assets. The time-t value of the asset is given by an expectation under an equivalent
martingale measure N conditional on the filtration Ft, or the information available at
time t. Hence, we have that ⇧(t) is defined by the expression

⇧(t) = N(t)EN
t


⇧(T )

N(T )

�
(3.1)

For example if the numeraire is selected to be the money market account B(t), the price
of the contingent claim is given by
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⇧(t) = EQB

t


B(t)

⇧(T )

B(T )

�
(3.2)

Here QB denotes the equivalent martingale measure such that ⇧(t)
B(t) is a martingale.

In many areas of pricing it is often assumed that the instantaneous rate or short-rate r(t),
at which the risk-free money-market account accrues, is a constant or a deterministic
function of time. In the standard Black and Scholes option pricing formula one assumes
that the short-rate is constant, as the main driver of the option price will be the movements
of the underlying. However, in the context of pricing products where the main variability
stems from the movements of interest rates, the probabilistic nature of the interest rates
themselves is what matters the most. It is therefore necessary to consider a stochastic
setup for the evolution of r(t).

Definition 3.1: Money Market Account

The stochastic money market account B(t) at time t is given by

B(t) = exp
⇣Z t

0

r(s)ds
⌘

(3.3)

Let P (t, T ) denote the price at time t of a risk free contract which pays its face value of 1
at maturity at T , such that P (T, T ) = 1 with certainty. The contract, also known as a zero
coupon bond, does not involve any periodic coupon payments. Thus, the arbitrage-free
price of this contract is only the time-t expectation of the stochastic discount factor.

P (t, T ) = EQB

t


B(t)

B(T )

�
= EQB

t


exp

⇣
�
Z T

t

r(s)ds
⌘�

(3.4)

Furthermore, as we assume that the contract is risk-free (no default) the price of a ZCB
can be viewed as a measure of the value of a future unit payment. ZCBs can therefore
be scaled to fit the value of any future cash flow and the price P (t, T ) is therefore often
referred to as a discount factor between a given time t and future time T . If we assume
that the price process ⌘(t) is independent of the short-rate r(t), which is often assumed
for equity prices, we see that equation (3.2) is just

⇧(t) = EQB

t


exp

✓
�
Z T

t

r(s)ds

◆
⇧(T )

�
= P (t, T )EQB

t

⇥
⇧(T )|Ft

⇤
(3.5)

However, when dealing with interest rate derivatives we cannot assume independence
and we can therefore not separate the expectation1. Thus, in the case of a interest rate
dependent derivative the expression (3.6) becomes di�cult to evaluate as it involves two
terms that both depend on the value of the underlying price process. This can be solved
through what is known as the change of numeraire technique. We are allowed to change
the numeraire N(t) ! N 0(t), but this also involves a change of probability measure. The
Girsanov theorem [32] implies that there exists a martingale measure N0 such that

1If two stochastic variables X and Y are independent. The expectation E[XY ] is given by E[X]E[Y ].
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⇧(t) = N 0(t)EN0

t


⇧(T )

N 0(T )

�
(3.6)

Where N0 is the probability measure making ⇧(t)
N 0(t) a martingale. Using the bond price

P (t, T ) as our numeraire corresponds to the T -forward measure QT . Since P(T,T) = 1,
we have that

⇧(t) = P (t, T )EQT

t


⇧(T )

P (T, T )

�
(3.7)

The Girsanov theorem states that changing measure involves a drift adjustment of the
stochastic process driving P (t, T ). We will later elaborate on how the drift adjustment is
actually done.

3.1.2 Zero Coupon Term Structure

With the time-0 forward bond price denoted P0(T1, T2), with the special case of Pt(t, T )
= P (t, T ), we can through a simple no-arbitrage argument show that

P (0, T ) = P (0, t)P0(T1, T2) ) P0(T1, T2) =
P (0, T )

P (0, t)
(3.8)

Thus, given that we can observe the market price of P (0, t) for di↵erent times t, we
can easily calculate the forward price P0(T1, T2). Another interesting quantity is the
continuously-compounded spot interest rate R(t, T ) which is the constant rate at which an
investment of P (t, T ) at time t accrues continuously to pay a unit amount at maturity T .

P (t, T ) = exp(�R(t, T )(T � t)) ) R(t, T ) = � lnP (t, T )

T � t
(3.9)

Knowing the current market price of P (0, T ) for di↵erent maturities T the mapping of
ZCB to the corresponding interest rates T ! R(t, T ), is known as a the zero-coupon curve
or a zero coupon term structure.

3.1.3 Forward Rates

Roughly speaking we can say that a forward rate reflects the price of a loan between two
future dates. Forward rates are interest rates that can be locked in today for a certain
future time period. Forward rates are characterized by three di↵erent points in time; the
current time t at which the forward rate is considered, its expiry T1 and maturity T2 for
which t  T1  T2. The simply compounded forward rate is given by the relation

F (t;T1, T2) = � 1

(T2 � T1)

✓
P (t, T1)

P (t, T2)
� 1

◆
(3.10)

By letting T2 ! T1 we obtain the instantaneous forward rate at time t for the maturity
T1 as

f (t, T1) = �@ ln (P (t, T1))

@T1
(3.11)
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Instantaneous forward rates are fundamental quantities in interest rate modelling. Later
we will see that one of the most flexible frameworks for interest rate modelling rely on the
modelling of instantaneous forward rates. By reintegrating we see that we alternatively
can express the ZCB prices as a functional of the instantaneous forward rate.

P (t, T1) = exp�
Z T

1

t

f (t, u) du (3.12)

The information embedded in forward rates is exactly the same as in the prices of ZCB,
as knowledge of ZCB prices implies what the forward rates are and vice versa. The
instantaneous short rate at time t is also related to the instantaneous forward rate through

r(t) = f(t, t) (3.13)

3.1.4 xIBOR Rates and Day-count Conventions

The xIBOR rate is an o�cial benchmark rate which is a reference for the average rate
banks o↵er to lend unsecured funds to other banks. xIBOR is an abbreviation for the x
Interbank O↵ered Rate, where the x usually refers to the first letter of the capital of the
country or just just the first letter of the country in which the entity that fixes the rate
resides. Examples are LIBOR, EURIBOR and NIBOR which are fixed by the British
Bankes Association, The European Central Bank and the Oslo Bors Stock Exchange,
respectively. Most interest rate derivatives are written on these o�cial floating interest
rates with varying maturity, e.g. EURIBOR3M is fixed for every third month. The
maturity or tenor of these benchmark rates can range from a single day up to 12 months.

EURIBOR rates are simply-compounded rates, typically linked to ZCB prices through
a given day-count convention. For practitioners it is important to note that day-count
conventions and market practice can vary between countries and contracts. As a complete
description of di↵erent day-count conventions is not in the scope of this thesis, we will
limit ourselves by just describing our chosen day-count fraction2 for this thesis, which is
the 30e/360 convention. In this convention, also called the Eurobond basis, a year is
assumed to be 360 days long, and a month is always assumed to have 30 days. If either
the first or second date falls on the 31st, it is changed to 30.

The EURIBOR rate can be defined as either a spot or a forward interest rate. The simply
compounded spot EURIBOR rate at time t is defined as

L (t, T ) =
1� P (t, T )

⌧(t, T )P (t, T )
for 0  t  T (3.14)

Here ⌧(t, T ) is the year-fraction between time t and time T in the day-count convention
used. Whereas the the simply compounded forward EURIBOR rate is defined by

F (t;T1, T2) =
1

⌧(T1, T2)

✓
P (t, T1)

P (t, T2)
� 1

◆
for 0  t  T1  T2 (3.15)

2A brief discussion of di↵erent day-count conventions is given by Brigo and Mercurio [23]
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3.2 Interest Rate Derivatives

In the following we will give a brief description of the dynamics and cash flows related to
fixed and floating rate bonds, interest rate swaps, interest rate caps and swaptions. The
main source of this section is Brigo and Mercurio [23].

3.2.1 Fixed Rate Bond

A fixed rate bond is an instrument which at each time Ti pays a coupon given by a fixed
rate ⇡ of a notional amount A, and at maturity Tm = T̄ also pays the notional itself. We
denote ⌧i = Ti � Ti�1 and obtain the payments

Zfixed(Ti) =

(
⌧iA⇡ i 2 1, 2, . . . ,m� 1

⌧mA⇡ + A i = m

Thus the time t  T̄ value of the fixed rate bond is given by the following expectation
under the T̄ -forward measure.

V fixed(t) = P (t, T̄ )EQ ¯T

t

 mX

i=1

Zfixed(Ti)

P (Ti, T̄ )

�

3.2.2 Floating Rate Bond

A floating rate bond di↵ers from the fixed rate bond in that the coupon payments are
determined by a floating rate, for instance the EURIBOR rate L(Ti�1, Ti) instead of a
fixed rate ⇡.

V floating
i (Ti) =

(
A⌧iL(Ti�1, Ti) i 2 1, 2, . . . ,m� 1

A⌧mL(Tm�1, Tm) + A i = m

Similarly to above, we can derive the time t value of these payments.

V floating(t) = P (t, T̄ )EQ ¯T

t

 mX

i=1

Zfloating(Ti)

P (Ti, T̄ )

�

3.2.3 Plain Vanilla Interest Rate Swap (IRS)

A plain vanilla interest rate swap is an agreement where two parties agree to exchange a
fixed flow (fixed leg) of interest payments against a floating flow (floating leg) of interest
payments. The payments exchanged are interest on a notional amount A. When both legs
are in the same currency, the notional is itself usually not exchanged, only the accrued
interest. The payments are exchanged on predetermined dates in a predetermined time
period, specified in the IRS contract. The party paying the fixed leg is said to have
entered a payer swap while the party paying the floating leg and receiving the fixed leg
have entered a receiver swap.

In a swap agreement, the floating leg is typically linked to some benchmark rate, like
LIBOR or EURIBOR. In addition there might be a spread on top, such that the floating
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leg could be quoted in the format of LIBOR + 50 basis points. The floating rate is set at
some time (the reset date) before the actual payments are exchanged (settlement date).
At every reset date throughout the life of the swap, a new floating rate becomes e↵ective.
The value of the floating rate at the reset date then determines the size of the floating leg
for the following accrual period.

To find the value of the receiver and payer swap payments, as well as the par swap rate
S, we replicate the position by noting that the cash flows can be replicated by the use of
fixed and floating rate bonds respectively.

We first look at the payer swap, where the holder of the contract pays the fixed rate ⇡
and receives the floating rate. This position is equivalent to paying a fixed rate bond
and receiving a floating rate bond. Assuming that the floating-leg rate reset at dates
T↵, T↵+1, . . . , T��1 and the float payments are made at T↵+1, T↵+2, . . . , T� the value of a
payer swap is given by

V payer(t) = P (t, T↵)A� P (t, T�)A�
�X

i=↵+1

⇡P (t, Ti)A⌧i (3.16)

where ⌧ is the year fraction according to the relevant day-count convention.

The value of the receiver swap is derived in a similar way, only now the position is equal
to paying a floating rate bond and receiving the fixed bond

V receiver(t) = P (t, T�)A� P (t, T↵)A+
mX

i=↵+1

⇡P (t, Ti)A⌧i (3.17)

Knowing the expression of both the fixed and floating leg of the swap, we can find the
par swap rate S making the value of the fixed and floating payments equal such that the
swap value zero.

S(t, T0, TM) =
P (t, T↵)� P (t, T�)

�P
i=↵+1

P (t, Ti)⌧i

(3.18)

3.2.4 Interest Rate Cap/Floor

An interest rate caplet/floorlet is a derivative in which the payo↵ is specified by a bench-
mark rate and a strikeK. The payo↵ equals the di↵erence between the strike and the level
of the benchmark if positive, and zero otherwise. The payo↵ is in other words equivalent
to a European call/put option on the benchmark rate, i.e.

XCaplet
Ti

= max (L(Ti, Ti�1)�K, 0)A⌧i (3.19)

XF loorlet
Ti

= min (L(Ti, Ti�1)�K, 0)A⌧i (3.20)

where A is the notional amount and ⌧i = Ti � Ti�1. Moreover, an interest rate cap/floor
is a stream of interest rate caplets/floorlets. Caps are frequently used by borrowers to
hedge the risk of increasing interest rates. If rates increase above K, the received payo↵
from the contract will compensate for the increased interest the buyer/borrower has to
pay. It thus places a roof for the floating interest payment.
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3.2.5 Capped Swap

An interest rate swap is combined with an interest rate cap is known as a capped swap.
The representation of a capped swap is similar to the plain vanilla swap, but the floating
leg is capped to a certain predetermined level(s), such that the capped leg payments are
given by

V capped
i (Ti) = max (L(Ti, Ti�1), K(Ti))A⌧i

One will often adjust the fixed rate of the capped swap to include the premium such that
the swap is traded at-the-money. The value of the capped swap can be found a replicating
portfolio consisting of a long position in a corresponding vanilla swap and short position
in an interest rate cap.

3.2.6 Swaption

In a plain vanilla swaption, the holder has the right to enter a swap contract with prede-
termined specifications at the swaption maturity. The entered swap can be either a payer
swap or a receiver swap, and the corresponding option is thus either a payer swaption or
a receiver swaption. As the equivalent call option, the swaption can be of the European,
Bermudan or American type. In the European case, the holder of the payer swaption will
exercise the swaption at maturity if the value of the underlying swap is positive. We will
elaborate more on the swaption payo↵ definition and swaption valuation in section 5.5
regarding verification of our stochastic interest rate model.

3.3 Two-Curve Setup

In the pre-2008 financial environment, one would say that the probability of a EURIBOR-
rated bank to lose its rating was practically equal to zero. This would implicate that
the yield of a 12-month bond would be the same as entering a 6-month contract and
subsequently another 6-month, e↵ectively P (0, 12M) = P (0, 6M)P (6M, 12M), in line
with the no-arbritrage argument we saw in equation (3.8). The post-crisis market assess
this di↵erently, as discussed in Bianchetti [15] and Mercurio [52]. As a EURIBOR-rated
bank may very well lose its rating after 6 months, the 12-month contract is traded at a
higher yield than a contract entering the 6-month spot rate and the 6-month-to-6-month
forward rate (the forward contract ensures the EURIBOR rate). Consequently, there
is in a simulation based setup a need for separate curves for risk-free discounting and
EURIBOR fixings, as opposed to the traditional single-curve setup. A common practice
in the euro interest rate derivatives market today is to utilize two separate yield curves;
one derived from overnight index swap (OIS) quotes used for discounting, and one derived
from the euro-swap quotes for EURIBOR fixings.

3.3.1 Overnight Index Swap (OIS)

An overnight index swap (OIS) is an interest rate swap where the floating leg is tied to
some overnight rate index. An example of such an index rate is the Federal Funds Rate,
which is the rate for overnight unsecured lending between banks in US dollars and serves
as an important benchmark rate. According to Hull and White [41] the OIS rate currently
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serves as the best proxy for the risk-free rate when valuing derivatives, rather than the
LIBOR rate which has been market standard prior to the financial crisis of 2007-08. The
rates derived from the OIS curve can therefore be used to compute risk free discount
factors.

3.3.2 Building an EURIBOR Bond Curve

The EURIBOR swap rate in the two-curve setup at time t can be expressed as

S(t, T0, Tm) =
PV float(t)

BpV fixed(t)
(3.21)

in which T0 and Tm are the start time and the maturity of the swap contract, respectively.
PV float(t) is the present value at time t of the floating leg, and BpV fixed(t) is the basis
point value of the fixed leg at the same time. In this setting we define

PV float(t) =
m�1X

i=0

⌧ floati FEur(t, Ti, Ti+1)POIS(t, Ti+1)

BpV fixed(t) =
m�1X

i=0

⌧ fixedi POIS(t, Ti+1)

(3.22)

where ⌧ floati = T float
i+1 � T float

i and ⌧ fixedi = T fixed
i+1 � T fixed

i . POIS(t, Ti) is taken to be
the appropriate discount factor at time t for the maturity Ti, and is computed based on
OIS quotes. Since the initial discount factor curve, POIS(0, Ti) used in this thesis were
provided by Danske Bank, we will not go further into detail on how to extract the OIS
discount factors from the OIS quotes. FEur(t, Ti, Ti+1) denotes the arbitrage-free EURI-
BOR forward rates at time t, hence the variable that gives the payo↵ L(Ti,Ti+1

)�F (t,Ti,Ti+1

)
⌧i

zero market value.

Furthermore, when we have a set of euro swap quotes and a set of risk-neutral discount
factors, we can compute FEur(t, Ti, Ti+1). Having computed the forward rates, we can
obtain the appropriate EURIBOR bond prices derived from the forwards by the following
relation

FEur(t, Ti, Ti+1) =
PEur(t, Ti)� PEur(t, Ti+1)

⌧iPEur(t, Ti+1)
(3.23)

in which PEur(t, T ) is taken to be the bond price based on the EURIBOR spot rate with
the given maturity. We can then solve for PEur(t, Ti+1) to get

PEur(t, Ti+1) =
PEur(t, Ti)

1 + ⌧iFEur(t, Ti, Ti+1)
(3.24)

which can solved iteratively as we know that P (t, t) = 1 and that initially the forward
rate is equal to the spot EURIBOR rate, i.e. FEur(t, t, T1) = LEur(t, T1).



Chapter 4

Interest Rate Models

In general terms, an interest rate model can be said to be a probabilistic description of
future evolution of interest rates, characterizing the uncertainty of future interest rates
based on information available today. As most financial instruments have interest rate
sensitive cash flows, the valuation of these derivatives will involve application of interest
rate models. The selection and calibration of interest rate models, as well as the use of
these models, are therefore important aspects for any trader, investor or portfolio manager
in fixed-income markets.

In the literature as well as in the practitioners world, there is a large variety of mod-
els available, each with their advantages and disadvantages. A tremendous amount of
research has been done within the field of interest rate modelling and the literature con-
tains a large set of di↵erent models. Trying to summarize this would be an immense task,
but we will in the following give a brief review of the main lines. This review is mainly
inspired by the presentation of interest rate models by Brigo and Mercurio [23].

Furthermore, the field of applications is broad. There is however no general agreement
regarding which approach that yields the best results in any given market situation and
for all applications. Nevertheless there exists a few common requirements which should
be met for a practitioner to be able to rely on a given model. A discussion of these
requirements, as well as a justification of our choice of the Cheyette model for this thesis
is provided in section 4.4.

Classification of Models

Various attempts to model the evolution of interest rates can in general be classified into
three di↵erent approaches; endogenous and exogenous short-rate models, models within
the HJM-framework1 and market models. In particular we will focus on a separable HJM
formulation presented in the pioneering work by Cheyette [28], Ritchken and Sankarasub-
rahmanyam [56], Babbs [13] and Jamshidian [42] known as Cheyette models.

1Although virtually any exogenous interest rate model can be derived within the HJM-framework, we
have decided to keep this classification of models due to clarity of presentation and their chronological
appearance in the literature.
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4.1 Endogenous and Exogenous Short-Rate Models

The earliest models for evolution of interest rates are the so called short-rate models.
They all have in common that they model the dynamics of the instantaneous spot rate
process of r(t) as defined in section 3.1. Modelling this spot rate, which is a non-observable
variable, is very convenient as fundamental quantities such as rates and bonds are through
no-arbitrage assumptions defined as expectations of functions depending on r(t). Defining
the dynamics of r(t) and its distributional properties will characterize the entire zero-
coupon curve through equation (3.4) and thus also any rate. In addition, short-rate
models inhabit Markov properties. This is a desired property as it reduces the valuation
problem for many instruments to solving a partial di↵erential equation (PDE) for which
there exists analytical and numerical solving techniques.

The selection of the driving process for the spot rate give rise to di↵erent versions of
short-rate models. As an example, it was suggested in the seminal work by Vasicek [59]
that the dynamics of r(t) could be governed by a mean-reverting Ornstein–Uhlenbeck
process. Under the risk-neutral measure the dynamics of the spot rate under the Vasicek
model is written as

dr (t) = k[✓ � r (t)]dt + �dW (t) , r(0) = r0 (4.1)

Where r(0), k, ✓ and � are all positive constants. As the stochastic di↵erential equation
(4.1) is linear and the short-rate is Gaussian, we can solve it explicitly and find an analyt-
ical expression for the ZCB-price P (t, T ; k, ✓, �, r(t)) (see [23] for more on this). However,
a considerable disadvantage of such models is their endogenous nature. If we have an
initial zero-coupon bond curve available from the market PMrkt(0, T ), we ideally want
our model to incorporate this curve. This e↵ectively results in an optimization problem,
where we seek to find the value of the model parameters such that the di↵erence between
the model and market data is minimized. However, one will have di�culties with repro-
ducing a given term structure satisfyingly even though PMrkt(0, T ) is only observed for a
finite number of maturities. The inability to successfully fit an initial yield curve makes
these models less attractive, but in order to improve on this problem a basic strategy is
to transform an endogenous model into an exogenous model. This is done by inclusion of
a time-varying parameter, and was first proposed by Ho and Lee [37]. In the case of the
Vasicek model this can be done in the following way

dr (t) = k[✓ � r (t)]dt + �dW (t) �! dr (t) = k[ (t)� r (t)]dt + �dW (t) (4.2)

 (t) is chosen based on the market curve PMrkt(0, T ) such that the model reproduces
exactly the current term structure of rates. The SDE in (4.2) is in fact a formulation of
the well known Hull-White extended Vasicek model [39] (usually shortened to the Hull-
White model). Other models of this type is the Black-Derman-Toy (BDK) [20] and the
Black-Karasinski (BK) [19] models. Furthermore there exists multi-factor extensions of
many short-rate models in order to accommodate a better fit to market data. However,
this comes at the cost of less mathematical tractability and can also result in reduced
stability of calibrated parameters. A general discussion of extensions to multi-factor
models is provided in section 4.4.2 below.

Using short-rate models to describe the evolution of interest rates have many advantages
in terms of the large availability of di↵erent dynamics of the short-rate, as well as the
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Markov properties. Furthermore, the short-rate models are tractable and fairly easy
to understand and implement. However, when valuing assets requiring information of
longer rates this will be di�cult for generic short-rate models like the BDT or BK. As
stated by Cheyette [29] these models do not posses the desirable property that the entire
forward curve can be expressed through fairly simple analytical formulas. Thus, a clear
understanding of the covariance structure of the di↵erent forwards rates is di�cult to
achieve. This means that when valuing the individual contracts in a portfolio of interest
rate derivatives, whose values depend on various forward rates, one cannot expect to use
the same interest rate model in each valuation. It is however possible to show that the only
exogenous short-rate models where one can obtain the entire forward curve analytically
belongs to a class that includes models with the following short-rate volatility [44]

�(r, t) =
p

a(t)r(t) + b(t)

where a(t) and b(t) are two deterministic, time-dependent functions. The Hull-White
model [39] is special case of models in this class.

4.2 The Heath-Jarrow-Morton Framework

Another approach to modelling the evolution of interest rates is to define the dynamics
of the entire yield curve. This is a significant advantage compared to just modelling the
short-rate. In contrast to the short-rate models, models belonging to the framework put
forth by the authors Heath, Jarrow and Morton (HJM) [36] are based on modelling the
dynamics of the instantaneous forward rate rather than the short-rate and are sometimes
referred to as whole-yield models. We emphasize that HJM should be thought of as a
framework for interest rate models, rather than a specific model itself.

Under the HJM-framework, the instantaneous forward rate is assumed to evolve according
to the following di↵usion process

df (t, T ) = ↵ (t, T ) dt + � (t, T )> dW (t)

f(0, T ) = fMrkt(0, T )
(4.3)

W (t) = (W1(t), . . . ,WM(t)) is here a vector of Brownian motions of size M , where
M is the number of stochastic factors included. The di↵usion coe�cient �(t, T ) =
(�1(t, T ), . . . , �M(t, T )) is an M-dimensional vector consisting of adapted processes. fMrkt

is the market yield curve observed at t = 0. We will see next that the adapted process
↵(t, T ) is determined through the specification of the di↵usion coe�cient �(t, T ), as the
dynamics described in (4.3) are not necessarily arbitrage-free. In order for a equivalent
martingale measure to exist, certain restrictions apply to the forward rate drift ↵(t, T ).
The relationship between the drift ↵(t, T ) and the volatility �(t, T ) is in fact the central
insight of the HJM-models. Specifically, under the risk-neutral measure, the drift must
have the following structure

↵(t, T ) = �(t, T )

Z T

t

�(t, s)ds =
MX

k=1

�k(t, T )

Z T

t

�k(t, s)ds (4.4)
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This yields the following dynamics of the instantaneous forward rate f(t, T ) under this
measure

f(t, T ) = f(0, T ) +

Z t

0

�(u, T )

Z T

u

�(u, s)dsdu+

Z t

0

�(s, T )dW (s)

= f(0, T ) +
MX

k=1

Z t

0

�k(u, T )

Z T

u

�k(u, s)dsdu+
MX

k=1

Z t

0

�k(s, T )dWk(t)

(4.5)

This expression tells us that the forward rates dynamics are entirely specified by its
volatility structure �(t, T ). Thus, choosing a particular model from the HJM-framework
reduces to the choice of volatility structure for the forward rate (in addition to the initial
yield curve f(0, T )). This is in contrast to the short-rate models where one can choose
both the drift and volatility structures freely. The ability to specify di↵erent volatility
structures for di↵erent maturities is also a key source of popularity for the HJM-models.

From (3.13) the short-rate r(t) in the HJM-framework is defined as

r(t) = f(t, t) = f(0, t) +

Z t

0

�f (u, t)
>
Z t

u

�f (u, s)dsdu+

Z t

0

�f (u, t)dW (u) (4.6)

It is worth noticing that this short-rate process is not a Markov process. This precludes
using PDE’s to value interest rate derivatives under the HJM-framework, and one has
instead to rely on time-consuming simulations where the entire history of the interest
rate evolution has to be dragged along. Since each forward rate of fixed maturity evolves
separately, this leads to a high-dimensional stochastic process of the underlying. However,
we will later discuss specifications of the di↵usion coe�cient �(t, T ) such that the short-
rate process in the HJM-framework indeed becomes a Markov process.

4.3 Market Models

The third class of interest rate models we will present is the so-called LIBOR market
model framework. They are called market models because of their compatibility with
popular, fundamental market-formulas for two of the most traded interest-rate deriva-
tives, namely caps and swaptions. The log-normal forward-LIBOR model (LFM) prices
caps with Black’s cap formula and the log normal forward-swap model (LSM) prices swap-
tions with Black’s swaption formula respectively [18]. Besides this desirable convenience,
market models have gained popularity as working directly with quantities that are actu-
ally quoted in the market and appear in derivatives payo↵ descriptions are more intuitive
and natural than dealing with the instantaneous short-rate or the forward rate.

The LFM approach first described by Brace et al. [22], Jamshidian [43] and Miltersen
et al. [53] suggests the direct modelling of a finite set of simply compounded forward
LIBOR rates. Under a given probability measure the forward LIBOR rate is in the LFM
modelled as a driftless Brownian motion, whereas in the LSM it is the forward swap rate
that is modelled as a driftless Brownian motion. Thus, dealing with models of this type
will involve familiar Gaussian calculus. We will refer the interested reader to Brigo and
Mercurio [23] for a more detailed description of the model dynamics.
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However, the non-Markovian nature of these models represents some implementation is-
sues. There exists satisfying Markovian approximations, but the usual way of dealing
with this is some rather computationally intensive Monte-Carlo simulations, as was the
case for (most) models under the HJM-framework. Using these approximations one will
have to deal with the estimation of complicated conditional expectations. Additionally,
the inconsistency between the LFM and the LSM model is another drawback with this
framework. It can be shown that the modelling of forward LIBOR rates as lognormal does
not comply with the forward swap rate being lognormal in the LFM model [23]. Empirical
evidence suggests that the forwards swap rates are not far from being lognormal, but the
problem remains of choosing either of the two models for the entire market.

4.4 Choosing an Interest Rate Model

Given the large variety in ways of modelling the term structure of interest rates, the choice
of which model to employ is not trivial. As stated in the beginning of this chapter, there is
no general consensus amongst practitioners nor academics on a unified approach suitable
for all applications. As of today, the market models mentioned above might be closest
to achieving such a position. Despite their recent popularity however, we saw above that
they still exhibit drawbacks that prevent them from being the preferred model for all
cases, such as their non-Markovian nature. Models with a various degree of complexity
are still being used for various purposes, and although interest rate models tend to get
more and more complex, simpler models are still used for certain applications.

From a practitioners view in particular there are certain requirements that should be
fulfilled for a given interest rate model to be preferred, as mentioned in the introduction
of this chapter. There is a rich discussion about this in the literature, including the works
of Rogers [57] and Cheyette [29]. First of all the model should be flexible enough to
fit market quotes of fundamental assets when calibrating in various market states. A
flexible model is also more likely to give a satisfying volatility smile fitting, which is a
desired property for an interest rate model. The interest rate model must furthermore
be simple enough to provide e�cient valuation algorithms for relevant financial contracts
so that prices can be computed within reasonable time. Interest rate modelling is often
performed by simulating a large number of scenarios, and the time horizon can be long.
An e�cient implementation is therefore important in order to keep the computational
time within an acceptable range. Moreover, by having analytical valuation expressions
available, calibration of the model is easier which is a significant advantage. In addition
the model should be well specified such that the required parameters and inputs can
either be observed directly or at least estimated in a reasonable manner. Finally the term
structure must be realistic in the way that it is able to generate a realistic evolution of
the yield curve. Again, this is especially important for interest rate modelling as one is
often encountering long time horizons, which in turns leads to a large set of outcomes for
the future market states.

4.4.1 The Cheyette Model

Given our purpose of computing CVA calculations on a portfolio of interest rate deriva-
tives, we will naturally seek an interest rate model that complies with the above-described
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requirements. A specific model that we find suitable is the Cheyette model [28]. The model
has its origins from the HJM-framework discussed above, and is specified by restricting
the volatility structure �(t, T ) of the forward rates to be separable into time and maturity
dependant functions2. This allows for a desirable Markov representation of the yield curve
dynamics, which we will be elaborated below.

A key reason for choosing the Cheyette model is the mentioned possibility of specifying
it as a Markov process. By imposing the separable condition on the volatility, the model
is Markovian in a finite number of state variables, as opposed to what is the case if the
volatility structure is arbitrary specified[14]. This yields extensive benefits when applying
valuation methods such as Monte-Carlo methods and valuation via partial di↵erential
equations. As we mentioned in the previous section, one has to carry the entire history of
simulated state variables to obtain the yield curve at a current point when using Monte-
Carlo in a non-Markovian structure. This path dependency increases the computational
complexity considerably, which is not desirable when performing CVA calculations.

Although calibration is not in the main scope of this thesis, the quick and accurate cali-
bration of the Cheyette model also make it a preferable choice for interest rate modelling
[45]. The model yields satisfying results when calibrated to both swaptions and caps. An
important reason for this e�cient calibration is the availability of closed-form pricing of
caps and swaptions given by the Cheyette model. Furthermore, Hoorens [38] shows how
a displaced di↵usion stochastic volatility (DDSV) formulation of the Cheyette model can
e�ciently be calibrated to the swaption market. Calibration of the Cheyette model is
also discussed in Beyna [14] who implements several minimization algorithms in order to
develop his calibration method3.

Furthermore, the Cheyette model is also popular because of its ability to incorporate
stochastic volatility in a satisfying way. By including stochastic volatility, the model is able
to match the market observed volatility smiles to a greater extent. According to Jesper
Andreasen [45] the often preferred SABR-model [35] for stochastic volatility is di�cult to
handle when applied to full yield curve models. Instead they use the approach outlined by
Andreasen and Andersen [10] to include stochastic volatility in the Cheyette model. This
yields good results in terms of fitting the model to observed prices for swaption and caps.
Although the benefits of including stochastic volatility is not exploited and implemented
in this thesis, the Cheyette model’s compatibility of doing so makes it an attractive model
choice.

Finally, the strength of the Cheytte model is confirmed by its endorsement from practi-
tioners Jesper Andreasen [45] as well as Andersen and Piterbarg [7]. They state that this
class of models is among the best models for its purpose in their opinion. This is due to
their ease of calibration, flexibility of volatility smile specification and the possibility of
e�cient numerical implementation.

2The same model specification was also proposed by Babbs [13], Ritchken and Sankarasubrahmanyam
[56] and Jamshidian [42].

3Beyna uses a slightly di↵erent formulation of the Cheyette model than we implement by imposing a
parametric restriction of the functional form of the volatility.
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4.4.2 Choosing Factors

An important aspect of choosing a term-structure model is the number of stochastic
factors to incorporate. Choosing factors represents a trade-o↵ between model flexibility
and computational e�ciency. The simplest case with one factor o↵ers a very simple model
with good tractability, but will only be able to produce yield curves with deterministic,
time-dependent shapes. With only one stochastic factor driving the entire yield curve,
the interest rate for all maturities will be perfectly correlated. This means in turn that
a shock to the interest rate at a given time will be transmitted equally to all maturities,
moving the entire curve in the given direction. The fact that one-factor models only allows
for time-dependent parallel shifts of the yield curve will impose a significant limitation
for valuation cases that are dependent on multiple rates on the curve. For some products
however, the value only depends on one point on the curve and a one factor model can
produce satisfying results4.

In most cases however, the chosen interest rate model should allow for a more realistic
correlation structure between forward rates, and thus a multi-factor model is required.
When discussing the shape of the yield curve, it is important to distinguish between
deterministic contributions (from the time-dependent functions) and the stochastic con-
tributions generated by the underlying factors. We can think of the stochastic factors in
the model as interpolation points on the curve, which means that an increased number of
factors will generate increased flexibility in the stochastically induced shape of the curve.
In general, we can see that a two-factor model will be able to generate a stochastic shift
in the slope of the curve, but not a stochastic concave or convex shape. This feature
is however possible in a three-factor setup. By assuming a multi-factor term-structure
model driving the movements of the various forward rates, Litterman and Scheinkman
[49] performed a principal component analysis (PCA) on the US treasury yield curve and
found three components that explained up to 97 % of all variance in the forward rates.
These factors are connected to the level, slope and curvature of the curve, and later stud-
ies have further confirmed their findings [48]. However, all the mentioned studies came
from periods when negative interest rates did not exist. This questions the relevance of
the findings in the market conditions today, and motivates the need for an even more
flexible setup. For instance, we can see that using a three-factor model would not be able
to generate a curve like the OIS yield curve we experience today forward in time, which
has a wave-like shape (see the curve for t = 0 in figure 4.1 below), unless the input curve
inhabits the same kind of shape. A four-factor model, is however able to capture these
kinds of shapes nicely, and is therefore the chosen number of factors in this thesis.

In the following figures, we have plotted a set of Monte-Carlo based realizations forward in
time of the yield curve for the four-factor Cheyette model and for the Hull-White model5.
Time to maturity has been chosen to lie between 1 month and 14 years, and the time
points in question are the initial time up to five years with one year increments.

We can see that the Hull-White yield curve dynamics are restricted to time-dependent
parallel shifts, and the Cheyette model spans a larger space of possible market states than

4According to Rebonato and Cooper [55] the only examples are caps and some cases of knock-outs.
5If choosing M = 1, the Cheyette formulation can be reduced to the Hull-White extended Vasicek

model we saw in equation (4.2) in the previous section.
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the Hull-White. This underlines the benefits of a mulit-factor model.
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Figure 4.1: Realizations of the future yield curve generated by the Cheyette model
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Figure 4.2: Realizations of the future yield curve generated by the Hull-White model



Chapter 5

The Cheyette Model

In this chapter we will present derivations of the Cheyette model which we have imple-
mented. After revealing the Markov properties of the Cheytte model, we derive the orig-
inal Cheyette model proposed by Cheyette [28]. The model utilize a separable volatility
structure of the underlying dynamics to formulate a term-structure model in the HJM-
framework with the desired Markovian properties. Subsequently we extend the derivations
to an alternative model specification put forth by Andersen and Piterbarg [7], namely the
Quasi-Gaussian formulation, and finally we present our implemented model setup.

Investigating Markov properties

As we saw in section 4.2 the dynamics of the instantaneous forward rate under the risk-
neutral measure in the HJM-framework can be written as

df(t, T ) = �f (t, T )
>
Z T

t

�f (t, u)dudt+ �f (t, T )
>dW (t) (5.1)

and a short-rate on the form

r(t) = f(t, t) = f(0, t) +

Z t

0

�f (u, t)
>
Z t

u

�f (u, s)dsdu+

Z t

0

�f (u, t)dW (u) (5.2)

We can see that the expression contains an infinite number of state variables and is not
Markovian in general. For a Markov process we have

P (X(s) 2 B|Ft) = P (X(s) 2 B|X(t)) t  s (5.3)

where B is the set of possible outcomes for X. Hence, the future value of X depends only
on the value at time t, and not on the entire history Ft. We denote

D(t) =

Z t

0

�f (u, t)
>dW (u)

D(T ) = D(t) +

Z T

t

�f (u, T )
>dW (u)

(5.4)

Since an incremental shift in the variable t will a↵ect the whole path of the function
�f (u, t) and not only over the incremental time step, the expressions are non-Markovian,
i.e.
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E(D(T )|D(t)) 6= E(D(T )|Ft) (5.5)

Now, we choose a separable form of the volatility function

�f (t, T ) = g(t)h(T ) (5.6)

and the short-rate can be rewritten as

r(t) = f(0, t) + h(t)

Z t

0

g(u)>g(u)
⇣Z t

u

h(s)ds
⌘
du+ h(t)

Z t

0

g(u)>dW (u) (5.7)

D(T ) now only depends on D(t) and information arriving after t

D(T ) = h(T )

Z T

0

g(u)>dW (u) =
h(T )

h(t)
D(t) + h(T )

Z T

t

g(u)>dW (u) (5.8)

We can thereby see that with the given volatility specification, the dynamics in equation
(5.1) inhabits Markov properties.

5.1 Original Cheyette Formulation

In this section we present the novel formulation of the Cheyette model presented by
Cheyette [28] in order to obtain a starting point and motivation for the subsequent,
implemented formulation.

5.1.1 Instantaneous forward rate dynamics

The instantaneous forward rate, f(t, T ), can be represented in the general M -factor HJM-
framework as

df(t, T ) =
MX

k=1

⇥
�k(t, T )

Z T

t

�k(t, s)ds
⇤
dt+

MX

k=1

�k(t, T )dWk(t) (5.9)

where W (t) denotes an M -dimensional Brownian motion under the risk-neutral measure.
The model is entirely specified by the choice of volatility-structure {�(t, T )}T�t. The
volatility-function takes the form of an M -dimensional vector

�(t, T ) =

0

B@
�1(t, T )

...
�M(t, T )

1

CA (5.10)

The volatility function of each factor is defined as

�k(t, T ) =
NkX

i=1

↵(k)
i (T )

↵(k)
i (t)

�(k)
i , k = 1, . . . ,M (5.11)

where Nk denotes the number of volatility summands of factor k. With the given volatility
structure, the forward rate can be formulated as
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f(t, T ) = f(0, T ) +
MX

k=1

 NkX

j=1

↵(k)
j (T )

↵(k)
j (t)

✓
X(k)

j (t) +
NkX

i=1

A(k)
i (T )� A(k)

i (t)

↵(k)
i (t)

V (k)
ij (t)

◆�
(5.12)

where the state variables are given as

X(k)
i (t) =

Z t

0

↵(k)
i (t)

↵(k)
i (s)

�(k)
i (s)dWk(s) +

Z t

0

↵(k)
i (t)�(k)

i (s)

↵(k)
i (s)

 NkX

j=1

A(k)
j (t)� A(k)

j (s)

↵(k)
j (s)

�(k)
j (s)

�
ds

(5.13)
Furthermore, the deterministic time-functions are defined as

V (k)
ij = V (k)

ji =

Z t

0

↵(k)
i (t)↵(k)

j (t)

↵(k)
i (s)↵(k)

j (s)
�(k)
i (s)�(k)

j (s)ds

A(k)
i (t) =

Z t

0

↵(k)
i (s)ds

(5.14)

for k = 1, . . . ,M and i, j = 1, . . . , Nk. The dynamics of the forward rate are in turn
determined by the state variables X(k)

i (t), which are formulated as independent Markov
processes by

dX(k)
i (t) =

✓
X(k)

i (t)
�

�t

⇣
log
⇥
↵(k)
i (t)

⇤⌘
+

NkX

j=1

V (k)
ij (t)

◆
dt+ �(k)

i (t)dWk(t) (5.15)

i.e. we assume that

hdWk, dWli = 0, k, l = 1, . . . ,M

5.1.2 Volatility specification

In this section we examine the volatility specification of the originally formulated Cheyette
model. As discussed in section 4.2, the dynamics of the instantaneous forward rate can
be determined entirely by the volatility structure, given by equations (5.9) and (5.10).
Beyna [14] proposes the following parametric form of the volatility structure

�i(t, T ) = P(i)
m exp

�
� �i(T � t)

�
i = 1, . . . ,M. (5.16)

in which P(i)
m = a(i)m tm+a(i)m�1t

m�1+ . . .+a0. This volatility specification is consistent with
the original Cheyette form where

↵(1)
i (t) = exp(��(1)t), �(1)

i (t) = P(i)
m (t) (5.17)

According to Beyna [14], one way to increase the accuracy of the model calibration would
be to incorporate a constant term such that the volatility function will converge toward
this value in the limit T ! 1. In particular, it is shown that the calibration to short
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maturities improve significantly with this approach. A multi-factor Cheyette model on
this form gives a better fit to volatility skews and smile than for instance the Hull-White
model, and will also in some cases provide analytical solutions to the SDE’s driving
the processes. However, the model is restricted by the form of the volatility function,
in addition to relying on the questionable assumption that the stochastic factors are
independent, which ultimately reduces the flexibility of the model.

5.2 Quasi-Gaussian Cheyette formulation

Following Andersen and Piterbarg [7], we present an alternative formulation of the Cheyette
model with no restriction of the functional form of the volatility, hereby denoted as the
Quasi-Gaussian formulation. The extension comes at additional computational cost, as
extra state variables are required to preserve the no-arbitrage condition of the model. The
Quasi-Gaussian formulation combines the flexibility of volatility smile and skew specifi-
cation with relative ease of calibration and e�cient numerical implementation. In this
setting volatility skew referes to market conditions where the implied volatility is either
higher or lower for out-of-the-money options than in-the-money options. Consistent with
the original Cheyette formulation, the Quasi-Gaussian is obtained by imposing a separa-
bility condition on the volatility structure of an HJM-model, although non-parametric.
The section will start with a derivation of the one-factor model followed by a multi-factor
extension.

5.2.1 One-factor Model

By choosing the following separable form of the volatility function, �(t,!, T ) = g(t,!)h(T ),
where g(t,!) is a one-dimensional stochastic process and h(T ) is a deterministic function,
we can formulate the instantaneous forward rate by the following SDE

df(t, T ) = h(T )>g(t,!)>g(t,!)
⇣Z >

t

h(u)du
⌘
dt+ h(T )>g(t,!)>dW (t) (5.18)

Now, we define the state variables x(t) and y(t) as

dx(t) =
⇣h0(t)

h(t)
x(t) + y(t)

⌘
dt+ h(t)g(t)dW (t), x(0) = 0

dy(t) =
⇣
[h(t)g(t)]2 + 2

h0(t)

h(t)
y(t)

⌘
dt, y(0) = 0

(5.19)

Given the substitution of variables, x(t) and y(t), we can write the instantaneous forward
rate as the solution to the SDE in (5.18)

f(t, T ) = f(0, T ) +
h(T )

h(t)

 
x(t) +

y(t)

h(t)

Z T

t

h(s)ds

!
(5.20)

Here, f(0, T ) = fmrkt(0, T ), hence taken to be the spot rate for various maturities. If we
further introduce
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�r(t,!) = �r(t, x(t), y(t)) ⌘ h(t)g(t, x(t), y(t))

(t) ⌘ �h0(t)

h(t)

(5.21)

we get the following dynamics

dx(t) =
�
y(t)� (t)x(t))dt+ �r(t)dW (t)

dy(t) =
�
�r(t)

2 � 2(t)y(t)
�
dt

(5.22)

y(t) is a locally deterministic, auxiliary variable upholding the no-arbitrage condition. By
formulating the short-rate as r(t) = f(t, t), can see that x(t) perturbates the short-rate

r(t) ⌘ f(t, t) = f(0, t) + x(t) (5.23)

5.2.2 Multi-factor Cheyette model

Consider the instantaneous forward rate process

df(t, T ) = �f (t, T,!)
>

 hZ T

t

�f (t, u,!)du
i
dt+ dW (t)

!
(5.24)

where �f (t, T,!) is a d-dimensional stochastic process, and W (t) a d-dimensional Brow-
nian motion under the risk-neutral measure. As for the one-factor case, we assume that
�f (t, T,!) is separable, so that we can rewrite it as

�f (t, T,!) = g(t,!)h(T ) (5.25)

in which g(t,!) is a d ⇥ d stochastic matrix-valued process and h(t) is a d-dimensional
deterministic vector-valued function of time. Now let

H(t) = diag(h(t)) =

0

BBB@

h1(t) 0 · · · 0
0 h2(t) · · · 0
...

...
. . . 0

0 0 0 hd(t)

1

CCCA
(5.26)

We further assume that hi(t) 6= 0, i = 1, . . . , d, which means that H(t) is invertible and
we can define the diagonal matrix (t) by

(t) = �dH(t)

dt
H(t)�1 (5.27)

Furthermore, we define

G(t, T ) =

Z T

t

H(u)H(t)�11du, �r(t,!) = g(t,!)H(t) (5.28)

where 1 = (1, 1, . . . , 1)>. Now, consider the processes x(t) and y(t) defined by
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x(t) = H(t)

Z t

0

g(s,!)>g(s,!)

Z t

s

h(u)duds+H(t)w(t)

y(t) = H(t)
⇣Z t

0

g(s,!)>g(s,!)ds
⌘
H(t)

(5.29)

where w(t) is a random d-dimensional vector satisfying

dw(t) = g(t,!)>dW (t), w(0) = 0 (5.30)

We can see that y(t) solves the system of ODE’s below

dy(t)

dt
= H(t)g(t,!)>H(t)� (t)y(t)� y(t)(t) (5.31)

The state variables can thus be formulated as

dx(t) = (y(t)1� (t))dt+ �r(t)
>dW (t), x(0) = 0

dy(t) = (�r(t)
>�r(t)� y(t)� y(t)), y(0) = 0

(5.32)

The instantaneous forward rate is thereby given by

f(t, T, x(t), y(t)) = f(0, T ) + 1>H(T )H(t)�1
�
x(t) + y(t)G(t, T )

�
(5.33)

As in the one-factor case, f(0, T ) is taken to be the spot rate. The short rate is given as

r(t) = f(t, t) = f(0, t) + 1>x(t) (5.34)

Volatility specification

In this section, we will present the general volatility structure in the Quasi-Gaussian
formulation, with both a locally deterministic and a stochastic component. We start by
defining a one-dimensional process z(t) by

dz(t) = ✓(z0 � z(t))dt+ ⌘(t)dZ(t), z(0) = z0 = 1; (5.35)

with hdZ(t), dW (t)i = 0. We would like to specify a model with the following volatility
specification

�r(t,!)
> =

p
z(t)�x(t, x(t), y(t))

> (5.36)

in which �x(t, x(t), y(t)) is a multi-dimensional local volatility function responsible for
inducing the skews in volatility smiles for swaptions. It is, however, not obvious how
to parametrize �f (t, x, y) sensibly, as the volatility function is not only responsible for
skews, but also for the general volatility structure of the model (including volatilities and
correlations of all the rates). Defining d benchmark tenors �1 < . . . < �d and subsequently
the instantaneous forward rates fi(t) = f(t, t + �i), i = 1, . . . , d, a beneficial way to
formulate the dynamics would be on an a�ne form in the forward rates
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dfi(t) =
p

z(t)�i(t)
⇣
↵i(t) + bi(t)fi(t)

⌘
dUi +O(dt), i = 1, . . . , d (5.37)

where {Ui(t)}di=1 is a d-dimensional vector of Brownian motions with the correlation ma-
trix Xf (t) = {�i,j(t)},�i(t) is a volatility calibration parameter, and ↵i(t) and bi(t) are
parameters related to the volatility skews observed in the swaptions-markets. Now, let us
define the following d⇥ d process

Hf (t) =

0

B@
h(t+ �1)>

...
h(t+ �d)>

1

CA (5.38)

and �f (t, f(t)) by

�f (t, f(t)) = diag
⇣�
�1(t)(↵1(t) + b1(t)f1(t)), . . . ,�d(t)(↵d(t) + bd(t)fd(t))

�>⌘
(5.39)

where f(t) = (f1(t), . . . , fd(t))>. We further specify a structure of �r(t,!)> as

�r(t,!)
> =

p
z(t)�x(t, x(t), y(t))

>

�x(t, x(t), y(t))
> = H(t)Hf (t)�1�f (t, f(t))Df (t)>

(5.40)

Df (t) is given by the Cholesky-decomposition of the matrix Xf (t) = Df (t)>Df (t). Xf (t)
is taken to be the correlation matrix of the benchmark tenors, and the �i(t)-parameters
are specified for all benchmark tenors, which means that we can distribute volatilities out
on factors.
The bond reconstruction formula can in turn be written as

P (t, T, x(t), y(t)) =
P (0, T )

P (0, t)
exp

⇣
�G(t, T )>x(t)� 1

2
G(t, T )>y(t)G(t, T )

⌘
(5.41)

Proof of bond reconstruction formula

Defining M(t, T ) = H(T )H(t)�11, we can formulate the bond price as

P (t, T ) = exp

 
�
Z T

t

f(t, u)du

!

= exp
⇣
�
Z T

t

f(0, u)du�
⇣Z T

t

M(t, u)>du
⌘
x(t)�

Z T

t

M(t, u)>y(t)

Z u

t

M(t, s)dsdu
⌘

=
P (0, T )

P (0, t)
exp

⇣
G(t, T )>x(t)�

Z T

t

M(t, u)>y(t)

Z u

t

M(t, s)dsdu
⌘

We identify that

Z T

t

M(t, u)>y(t)

Z u

t

M(t, s)dsdu =

Z T

t

@G(t, u)

@u

>

y(t)G(t, u)du
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y(t) is symmetric, and matrix calculus shows that

@

@x

�
G(t, u)>y(t)G(t, u)

�
=
@G(t, u)

@u

>

y(t)G(t, u) +G(t, u)y(t)
@G(t, u)

@u

= 2
@G(t, u)>

@u
y(t)G(t, u)

Finally, we have that

Z T

t

@G(t, u)

@u

>

y(t)G(t, u) =
1

2

Z T

t

@

@x

�
G(t, u)>y(t)G(t, u)

�
du

=
1

2
G(t, T )>y(t)G(t, T )

Calibration and Specification of Parameters

The calibration of the model is linked to a set of swaption-quotes with various expiry and
maturity. The �i(t)’s are chosen so that the computed model volatility for the swaption-
contracts match with the implied volatility from Blacks formula quoted in the market.
The maturities are chosen to coincide with the chosen benchmark rate tenors. The time-
evolution of the �i(t)’s are computed based on the di↵erent expiries of the swaption-
contracts, and each expiry constitutes a data point in time of the �f (t)’s. We will not
further go into detail of the calibration process, as calibration is not within the scope of
this thesis. The remaining parameters are not computed from markets quotes, but simply
given based on general assumptions of the market dynamics.

5.3 The Displaced Four-Factor Cheyette Model

The given formulation of the Cheyette model has utilized inspiration from the LIBOR
Market Model. The LMM models each simply compounded forward rate simultaneously.
The interpretation of the volatility is therefore intuitive, and is related to how much each
factor in the model contributes to the forward rate’s volatility. One specific version of
the multi-factor Quasi-Gaussian formulation is the four-factor case. Stochastic factors are
chosen to span the term structure of interest rates, in which we have chosen the 6 months
(6M), 2 years (2Y), 10 years (10Y) and 30 years (30Y) tenors.

5.3.1 Volatility structure

For the formulation stated above we end up with the following volatility structure

�r(t) =

0

BB@

h1(�1) h2(�1) h3(�1) h4(�1)
h1(�2) h2(�2) h3(�2) h4(�2)
h1(�3) h2(�3) h3(�3) h4(�3)
h1(�4) h2(�4) h3(�4) h4(�4)

1

CCA

�10

BB@

�f
1 (t) 0 0 0
0 �f

2 (t) 0 0
0 0 �f

3 (t) 0
0 0 0 �f

4 (t)

1

CCAD> (5.42)
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D is the Cholesky-decomposition of the correlation matrix X of the benchmark rates, and
we choose hi(t) = exp(�it) to obtain the state variables on the familiar mean-reverting
form, in which the 4⇥ 4 matrix (t) is given by

(t) =  =

0

BB@

1 0 0 0
0 2 0 0
0 0 3 0
0 0 0 4

1

CCA (5.43)

The parameters in equation (5.39) are chosen to be

bi(t) = b

↵i(t) = (1� b)f(0, t+ �i)
(5.44)

for i = 1, . . . , 4, where the constant b denotes the volatility skew parameter. In order to
handle negative realizations of the instantaneous forward rate and keep the local volatil-
ity function positive, we incorporate a displacement parameter ⇣. The displaced, local
volatility function is therefore stated as

�f (t) =
p

z(t)�f (bf + (1� b)f0 � ⇣) (5.45)

where �f ⌘ �f (t, �), f ⌘ f(t, t + �) and f0 ⌘ f(0, t + �). The variable z(t) is a one-
dimensional process governed by

dz(t) = ✓(1� z(t))dt+ ⌘(t)
p

z(t)dZ(t) (5.46)

in which dZ(t) is a standard Wiener process, and the local volatility is thereby stochastic.
This means that the volatility itself can experience shocks independent of shocks in the
instantaneous forward rate, and e↵ectively yields flexibility in yet an additional stochastic
dimension. However, we will proceed with ⌘(t) = 0, i.e. with a locally deterministic
volatility structure.

Recall the definition of G(t, T ) in equation (5.28), and the specification of the mean-
reversion parameters

hi(t) = e�it i = 1, . . . , 4 (5.47)

G(t, T ) is therefore stated as a 4-dimensional vector on the form

G(t, T ) =


1� e�

1

(T�t)

1
,
1� e�

2

(T�t)

2
,
1� e�

3

(T�t)

3
,
1� e�

4

(T�t)

4

�>
(5.48)

5.3.2 Two-Curve Setup and Change of Measure

In the presentation of the four-factor Cheyette model above we have represented the
dynamics of the model under the risk-neutral measureQB, with the money market account
B(t) as our numeraire. Under this measure we model the OIS discount factors given by
the bond reconstruction formula (5.41) as
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POIS(t, T, x(t), y(t)) =
POIS(0, T )

POIS(0, t)
exp

⇣
�G(t, T )>x(t)� 1

2
G(t, T )>y(t)G(t, T )

⌘
(5.49)

in which POIS(0, t) and POIS(0, T ) denote the initial OIS discount factors for maturi-
ties t and T . Hence the initial OIS bond curve deduced from the OIS swap quotes,
constitutes the input curve to the model. As we have a closed form expression for the
POIS(t, T, x(t), y(t)) it would be convenient to use this as our appropriate discount fac-
tor, instead of having to evaluate the integral in (3.5). In the risk-neutral measure, the
stochastic discount factor is given by

D(t, T ) =
B(t)

B(T )
= exp

⇣
�
Z T

t

r(s)ds
⌘

(5.50)

We can see, in particular that given (5.49)

POIS(t, T, x(t), y(t)) 6= exp
⇣
�
Z T

t

r(s)ds
⌘

(5.51)

Using POIS(t, T, x(t), y(t)) as the appropriate discount factor requires to change measure
of the dynamics to the T -forward measure QT .

This is done by utilizing the Radon-Nikodym [23] derivative given the filtration Ft, de-
noted as

�0,T
t =

dQT

dQ0

����
Ft

(5.52)

For this case, we get

�0,T
t =

B(0)
B(t)

P (0,T )
P (t,T )

(5.53)

in which its di↵erential in this case is given as

d�0,T
t = ��0,T

t �r(t)G(t, T )dW 0(t) (5.54)

The solution of this SDE is taken to be

�t = exp
⇣
� 1

2

Z t

0

�r(s)G(s, T )ds�
Z t

0

�r(s)G(s, T )dW (s)
⌘

(5.55)

Identifying �r(t)G(t, T ) as the Girsanov kernel and defining

dW T (t) := dWB(t) + �r(t)G(t, T )dt (5.56)

we can see from Girsanov’s theorem, that W T (t) is a standard Brownian motion under
QT . The drift corrected dynamics under the T -forward measure then becomes

dx̃(t) =
⇣
y(t)1� x̃(t)� �r(t)

>�r(t)G(t, T )
⌘
dt+ �r(t)

>dW T (t) (5.57)

which result in the following expression for the OIS discount factors
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POIS(t, T, x̃(t), y(t)) =
POIS(0, T )

POIS(0, t)
exp

⇣
�G(t, T )>x̃(t)� 1

2
G(t, T )>y(t)G(t, T )

⌘
(5.58)

It is important to notify that in the two-curve setup, the drift correction only applies to
the OIS discount curve. When computing simulated EURIBOR bond prices, the state
variables should therefore not be adjusted, as that would indicate that we are under-
estimating the drift of the actual payo↵s (since the rates are proportional to the state
variables) from the derivative in question, which in turn gives a lower value than the true
value of the derivative.

The spread between the EURIBOR and OIS curves is assumed to be deterministic, and
is computed based on the spot curves at time zero. Denoted on discount factor form, it
is called basis, B(0, t), and can be computed by the following relation

PEUR(0, t) = POIS(0, t)B(0, t) (5.59)

where P (0, t) is the discount factor over the time frame [0, t] provided by the EURIBOR
curve, and POIS(0, t) is the discount factor from the OIS curve. When computing the
simulated EURIBOR bond price, PEUR(t, T ), we evaluate the bond reconstruction formula
with the risk-neutral stochastic state variables with the appropriate scaling, i.e.

PEUR(t, T, x(t), y(t)) =
POIS(0, T )B(0, T )

POIS(0, t)B(0, t)
exp

⇣
�G(t, T )>x(t)� 1

2
G(t, T )>y(t)G(t, T )

⌘

(5.60)

Numeraire Test

Under the given probability measure, given the relation in (3.6), we should be able to
reproduce the set of initial discount factors, POIS(0, Ti) for all maturities Ti, by specifying a
unit payment at Ti, which is discounted back to time zero using the appropriate numeraire,
hence

POIS(0, Ti) = N(0)EN
0


1

N(Ti)

�

Using POIS(t, T̄ , x̃(t), y(t)) as our numeraire N(t), we should be able to check if the nu-
meraire have been constructed properly by using the fact that the ratio (5.61) should
equate to one under the T̄ -forward measure. Here T̄ is a horizon time chosen big enough
to cover all cashflows relevant for the eventual pricing under consideration.

POIS(0, Ti)

N(0)ET̄
t

⇥
N(Ti)�1

⇤ = 1 (5.61)

In the following plot, we can see the results from testing the accuracy of the discount
factors under the two di↵erent measures described above. We have compared the results
of using the simulated OIS bond prices directly as discount factors under the risk-neutral
measure, with the drift adjusted OIS bond prices under the rward measure. Particularly,
we can conclude that the bond price, POIS(t, T, x(t), y(t)), cannot be used as a discount
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factor under the risk-neutral measure, as pointed out in equation (5.51). This would
generate arbitrage opportunities relative to the initial discount factor over certain time
periods, which is a violation with the no-arbitrage assumptions made in section 3.1.1.
Furthermore, we see that the drift-adjusted OIS bond prices under the T -forward measure
give substantially higher accuracy, although still with an observable error. This will be
further discussed in section 5.5.
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Figure 5.1: Testing the simulated numeraire undter T̄ -forward measure dynamics

5.3.3 Interpretation of the Stochastic Factors

In the four-factor case, the local volatility function related to each factor is given as

�f
i (t) =

p
z(t)�f (bfi + (1� b)f0i � ⇣) i = 1, . . . , 4

The volatility structure of the stochastic factors is thereby dependent on the realizations
of the benchmark rates. From the bond reconstruction formula in equation (5.41), we
can see that the vector of weights, G(t, T )>, determines how much weight each stochastic
factor constitutes in the bond price for a given (t, T ). Looking at the particular case
of bond prices P (t, t + �i) for i = 1, . . . , 4, where G(t, t + �i) = G(�i), the dependency
structure to the stochastic factors become quite apparent. For instance, when computing
P (t, t+2Y ), the weighting of x2Y (t) is higher than in the P (t, t+6M), which corresponds
to the intuition behind the the factors. This relation is consistent throughout the tenors,
as for instance the weighting of x30Y (t) is higher for P (t, t+30Y ) than for the P (t, t+10Y )
and P (t, t+2Y ) bonds. In terms of bond-price calculations, we can think of the stochastic
factors as separate building blocks of the bond price. The magnitude of each factor-weight
will therefore increase as the tenor increases. This is why x6M(t) has a higher weight (in
absolute terms) in P (t, t+ 30Y ) than P (t, t+ 6M).
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5.4 Presentation of the Data

In this section, we will present the input data used in the displaced four-factor Cheyette
model, and discuss some practical issues regarding the implementation. The data was
retrieved on March 31 2015, and provided by Nicki Rasmussen from the Counterparty
Credit and Funding Risk desk at Danske Bank in Copenhagen.

5.4.1 Parameters

As briefly discussed in section 5.2.2, the �-parameters are bootstrapped to a set of market-
quoted swaption-premiums. By calibrating to the set of swaption-contracts ranging from
one year to 20 years expiry and maturities consistent with the 6M, 2Y, 10Y and 30Y
tenors, the time-evolution of �i are given by

�i(t) 6M 2Y 10Y 30Y

31.mar.16 0.277088665 0.375262617 0.419681129 0.593531387
31.mar.17 0.432663473 0.370208663 0.443347904 0.478331979
31.mar.18 0.478775455 0.387325279 0.398787776 0.419899231
31.mar.19 0.526043695 0.351438297 0.368574909 0.286642116
31.mar.20 0.569190886 0.302125887 0.382206147 0.230694637
31.mar.22 0.423348024 0.330169421 0.348373918 0.143252904
31.mar.25 0.61470724 0.317216441 0.383723704 0.06417227
31.mar.27 0.419315568 0.344957612 0.486732797 0.441485524
31.mar.30 0.36633221 0.157625833 0.317706939 0.05
31.mar.35 0.538352429 0.19809944 0.404493446 0.05

Table 5.1: Calibrated �(t) parameters

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

t

λ
(t

)

 

 

6M tenor
2Y tenor
10Y tenor
30Y tenor

Figure 5.2: Plotted �-parameters for the 6M, 2Y, 10Y and 30Y tenors
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The remaining input parameters to the model are based on general assumptions of the
market. The correlation between the benchmark rates are assumed stationary, and intu-
itively range from high to low correlation as the di↵erence in tenor length increases.

Rate Correlation Xf (t)

6M 2Y 10Y 30Y
6M 1.00 0.60 0.30 0.00
2Y 0.60 1.00 0.60 0.30
10Y 0.30 0.60 1.00 0.60
30Y 0.00 0.30 0.60 1.00

Table 5.2: Correlation between benchmark rates

It is natural to assume that interest rates will be more mean-reverting in the long term
than in the short term, and for the mean-reversion parameters in table 5.3 we see that for
instance the 6M-tenor inhabits a mean-reversion parameter equal to zero. The displace-
ment parameter is chosen su�ciently high to o↵set the maximum negative instantaneous
forward rate, in order to keep the local volatility functions positive. The volatility skew
parameter, b, is set to give the best possible fit to swaption premiums.

1 2 3 4 ⇣ b

0.0 0.1 0.3 1.0 -0.01 0.2

Table 5.3: Mean-reversion parameters, displacement and volatility skew parameter

5.4.2 Input Yield Curves

As discussed in section 5.3.2, the given Cheyette formulation utilizes the two-curve setup
outlined in section 3.3.2. As of March 31 2015, the initial risk-free yield and EURIBOR
yield curves are plottet below (EURIBOR forward rates and OIS discount factors are
given in Appendix A).
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Figure 5.3: Initial EURIBOR and risk-free OIS yield curves

5.4.3 Discretization

In the simulations, we have utilized an Euler-Maruyama discretization for the state vari-
ables on the form

xi+1 = xi +
�
yi1� xi

�
�t+ �r(ti)

>�Wi

yi+1 = yi +
�
�r(ti)

>�r(ti))� y(ti)� y(ti)
�
�t

(5.62)

where �Wi = Wti+1

�Wti and 1 = (1, 1, 1, 1)>.

To evaluate the function �r(ti) at the correct point in the discretized time grid, we have
chosen to utilize a linear interpolation method. This has also been done for the bond-value
computations in (5.49) and (5.60), in which we need the proper values for POIS(0, t). A
linear method leads to a higher degree of interpolation error than for instance a spline-
method, but has proven to be satisfactory for the purposes of this thesis as the time
increment in the simulations has been chosen su�ciently small. According to Jesper
Andreasen [45] using a monthly time grid should yield satisfying results.

5.4.4 Simulated Dynamics

In the following plots, the dependency structure between the stochastic state variables, the
benchmark rates and the local volatility functions is visualized for a given realization of the
Monte-Carlo simulated dynamics. The time variable t is quoted in years. Investigating the
simulated state variables, we can clearly see the di↵erences in the level of mean reversion
among the stochastic factors. We can observe mean reversion among the factors x2Y (t),
x10Y (t) and x30Y (t), and in particular we see that x30Y (t) reverts faster towards its mean
than the other factors, as indicated by the chosen -parameters. Furthermore we see
that the x6M(t) factor exhibit substantially lower variability than the other factors. This
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comes as an e↵ect of the parameter 1 set to zero and the chosen model volatility structure
outlined in section 5.3.1.

0 2 4 6 8 10 12 14 16 18 20
−0,25

−0,2

−0,15

−0,1

−0,05

0

0,05

0,1

0,15

0,2

t

x(
t)

 

 

x
6M

(t)

x
2Y

(t)

x
10Y

(t)

x
30Y

(t)

Figure 5.4: Realization of the simulated state variables x(t)

Investigating the latter part of the simulation period, the overall density mass of the
stochastic factors increases above zero, giving rise to increasing benchmark rates for the
time-period considered. Furthermore, we can see that the simulated benchmark rates
appears to be correlated.
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Figure 5.5: Realization of the simulated benchmark rates fi(t)

Considering the local volatility functions for the stochastic factors, we can see that the
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local volatility of the di↵erent factors behaves quite di↵erently over time. For the x30Y (t)-
factor, the volatility closely follows the evolution of its corresponding �-parameter, and
hence the scaling factor (bf30Y + (1� b)f0 � ⇣) appears to be relatively stable over time.
The volatility function exhibits in turn low variability. For the x10Y (t)-factor, we observe
an entirely di↵erent local volatility evolution. Its �-parameter is quite stable over time,
but the respective local volatility function is pushed upwards by the end of the time period
by a rapid increase in the benchmark rate f10Y (t), and inhabits in general .
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Figure 5.6: Realizations of the local volatility functions �f (t, f(t))
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5.5 Swaption Valuation and Model Verification

In this section, we present results from a Monte-Carlo based valuation of payer EURIBOR-
swaptions with the purpose of verifying our Cheyette model setup. The parameters are
as stated earlier calibrated by Danske Bank to match the market-quoted premiums of
the given swaption-contracts. With the swap-rate in the two-curve setup formulated in
section 3.3.2, we have chosen to value the simplest form of the swaption, namely the
”xY6M”-contracts. These contracts inhabit the nice feature that the underlying swap-
contract only has one fixed and floating payment, and the payment dates of these coincide.
In this setting, x denotes the expiry of the swaption contract and 6M denotes a six month
maturity of the underlying swap. Expiries chosen are the 1Y, 5Y, 10Y and 15Y. In order
to investigate the model ability to describe market implied volatility skews, we have done
valuations of at-the-money(ATM)-, ATM+1%- and ATM-1%-contracts.

Expiry Mat Expiry From To Tenor CCY Notional

1Y 6M 31.mar.16 04.apr.16 04.oct.16 6M EUR 100 000 000
5Y 6M 31.mar.20 02.apr.20 02.oct.20 6M EUR 100 000 000
10Y 6M 31.mar.25 02.apr.25 02.oct.25 6M EUR 100 000 000
15Y 6M 29.mar.30 02.apr.30 02.oct.30 6M EUR 100 000 000

Table 5.4: Swaption-contract specification

5.5.1 Pricing Setup

Given equation (3.21) and a 6M swap-contract, we can formulate the corresponding swap-
rate at the start date T0 (with the payment date denoted Tm) as

S(T0, T0, Tm) =
PV float(T0)

BpV fixed(T0)
(5.63)

Since the payment dates coincide, i.e. ⌧ floati = ⌧ fixedi , the swap-rate reduces to

S(T0, T0, Tn) = F (T0, T0, Tn) = L(T0, Tn) (5.64)

where L(T0, Tn) denotes the floating rate set at T0. The swaptions under consideration
are all cash settled, and since both the floating rate and the strike are given on an annual
basis, the swaption payo↵ at time T0 becomes

V (T0) = ⌧(T0, Tn)
⇣
L(T0, Tn)�K

⌘+
(5.65)

The value of the swaption at time zero, under the T -forward measure, can be formulated
as

Vswaption(0) = N(0)ET
0

"
�(T0, Tn)

�
L(T0, Tn)�K

�+

N(T0)

#
(5.66)

in which N(0) and N(T0) denotes the numeraires valued at the given time points. Under
the T -forward measure, these corresponds to the OIS discount factors.
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5.5.2 Results

To reach a desired accuracy in the computations, the number of simulations have been
chosen to be 200 000 on a weekly time grid. Comparing the simulated premiums with the
market quotes, we can see that the simulated results in certain cases show error relative
to the market quotes.

Expiry Strike Premium Black Vol MC Sim CI- CI+ Error

1Y 0.0705 % 49 047 22.98 % 46 697 46249.5 47144.7 4.79 %
5Y 0.6372 % 257 868 36.38 % 199 318 197157 201479 22.71 %
10Y 1.0598 % 439 316 37.06 % 377 924 373820 382028 13.97 %
15Y 1.0429 % 498 347 37.17 % 495 708 490858 500557 0.53 %

Table 5.5: Comparison of ATM swaption premiums

Expiry Strike Premium Black Vol MC Sim CI- CI+ Error

1Y -0.9295 % 500 482 38.97 % 491 308 490458 492159 1.83 %
5Y -0.3628 % 540 113 43.83 % 528 482 525354 531609 2.15 %
10Y 0.0598 % 666 416 44.62 % 671 634 666519 676748 -0.78 %
15Y 0.0429 % 662 360 40.38 % 761 502 755872 767132 -14.97 %

Table 5.6: Comparison of ATM-1% swaption premiums

Expiry Strike Premium Black Vol MC Sim CI- CI+ Error

1Y 1.0705 % 5149 38.67 % 6.18 1.94372 10.4258 99.88 %
5Y 1.6372 % 103168 31.26 % 53 065 51895.8 54233.7 48.56 %
10Y 2.0598 % 267703 31.86 % 197 468 194337 200599 26.24 %
15Y 2.0429 % 369287 34.22 % 307 293 303323 311263 16.79 %

Table 5.7: Comparison of ATM+1% swaption premiums
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An interesting pattern arises when we investigate the simulated results for di↵erent strikes.
The model setup generates more accurate premiums for swaptions with low strikes (in-
the-money) than swaptions with high strikes (out-of-the-money). In the way we see it,
there could be three possible explanations to this phenomenon.

As the discount factors are simulated under the T -forward measure, there could be a
systematic inaccuracy in the corresponding drift correction in the SDE governing the
state variables from equation (5.57). The out-of-the-money swaptions will in turn be
particularly sensitive to this inaccuracy. In terms of swaption premiums, the inaccuracy
will, quite intuitively, decrease when the spread between the swap-rate and the strike
increases. We can see in particular for the ATM strike, that the error is largest for the
5Y and the 10Y contracts, which corresponds to time points in simulation where the
drift-correction error is significant.

The second explanation is related to how the model handles the volatility skew. As the
level of pricing inconsistency changes for a change in the strike, the inconsistency could in
general be related to the skew parameter. Considering the out-of-the-money swaptions,
however, the error is highest for the 1Y contract, and decreasing for longer expiries. This
finding somewhat violates this hypothesis, as a potential skew inaccuracy would probably
be relatively consistent for all expiries of the ATM+1% contracts.

The last possible explanation relates to the error in the Euler-discretization and the linear
interpolation scheme in the model implementation. By the same argument as the first
alternative, the ATM+1%-contracts could also be particularly sensitive to the purely
numerical error. After running simulations with daily grid resolution and experiencing
the same phenomenon, we are led to believe that the inaccuracy in the simulated results
for the ATM+1%-case are caused by the seemingly systematic error in the drift correction.
This error is believed to occur as a result of the displacement parameter ⇣, but further
research has to be done in order to conclude on the matter. However, for the purpose of
comparing the di↵erent approaches of CVA calculations in this thesis, there will be no
loss of generality by using the drift adjusted model in the following numerical results.



Chapter 6

Credit Value Adjustment (CVA)

In this chapter we will further look into counterparty exposure and the credit value ad-
justment, and discuss how it can be calculated. As mentioned in the introduction, we will
in this thesis compare two di↵erent approaches of performing these calculations, namely
the proxy approach and CVA Notional approach. As we will see in this section, they both
rely on an approximation for the portfolio value which is obtained by use of the least
squares Monte Carlo algorithm (LSM) put forward by Longsta↵ and Schwartz [50]. In
addition we will present the Brute Force approach and discuss its drawbacks which make
it less suitable for all but very simple portfolio compositions.

We will however begin the chapter by demonstrating how we obtain the default proba-
bilities. As we saw in section 2.4 this is a constituent in the standard equation for CVA.
We will proceed with a brief description of least squares regression, providing a necessary
theoretical background for the LSM-based proxies we present in section 6.3. Finally we
show how CVA is calculated for portfolios of interest rate derivatives.

6.1 Default Probability

To model the default probability of the given counterparty we use an approach outlined
by Brigo et al. [24]. It is an intensity model where default is modelled by a Poisson
process with deterministic time-dependent hazard rate h(t). The method relies on CDS-
quotes from the market, which is the recommended measure of default risk from the
Basel 3 accord [2]. For this to be a good approach, one is thus reliant on the CDS for the
given entity indeed is quoted in the market and is liquid enough to give a good sense of
the actual default risk. If the CDS spread is not available for the given entity, one can
use approximations by considering credit rating, industry, region etc of the counterparty.
Naturally, there exist other methods to calculate default probabilities, a wider discussion
of these is however not within the scope of this thesis, but interested readers will find
alternative approaches in Brigo et al. [24].

Credit Default Swap (CDS)

A credit default swap is a credit derivative which provides the buyer, called Protection
Buyer, insurance against the default of a given entity or asset. The counterpart is the
Protection Seller. In case of default, the protection seller compensates the protection
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buyer up to a predetermined value which is called the notional amount. In return the
protection buyer has to pay the seller a premium. The value of a CDS is thus not directly
linked to the evolvement of a specific interest rate, but rather to the risk of a credit event
occurring.

The premium paid by the protection buyer is typically made each quarter and is called
the CDS spread and is usually expressed as a percentage of the notional amount. As CDS
spreads are the price of insurance, they represent the markets view of the creditworthiness
and default risk of the entity or asset and can thus be used to derive default probabilities.

6.1.1 Intensity Model

As mentioned above we use an intensity based model for modelling default probabilities.
We assume default to be driven by a Poisson process with the following cumulative default
probability for a future period t

F (t) = 1� exp

✓
�
Z t

0

h(✏)d✏

◆
(6.1)

where h(t) is the hazard rate of default, which is assumed to be deterministic but time
dependent.

Thus, we need to obtain the hazard rate h(t), which is done by deriving an expression for
the par CDS spread, here denoted ⇡⇤. We do this by considering the value of the pay-
ment received when defaulting (protection leg) and the cost of paying for this protection
(premium leg).

The present value of the protection leg for a contract with maturity tm can be expressed
as the following

PV protection =
m�1X

i=1

A(1�R)P (t, Ti+1) [F (Ti+1)� F (Ti)] (6.2)

whilst the present value of the premium leg is given by

PV premium = ⇡
m�1X

i=1

P (t, Ti+1)F (Ti+1)A (6.3)

In these expressions, ⇡ is the premium leg paid at determined time steps and A is the
notional amount, i.e. the value that is at default risk and S is the par CDS spread. R is
the recovery rate and we use P (t, Ti+1) as numeraire.

The spread is quoted as a percentage of the contracts notional value, and we assume it
is paid discretely. We find the par spread of the CDS by equating the two present values
above and solving for ⇡⇤

�⇤ =

(1�R)
m�1P
i=1

P (t, Ti+1) [F (Ti+1)� F (Ti)]

m�1P
i=1

P (t, Ti+1)F (Ti)

(6.4)
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This tells us that the CDS spread is driven by two factors, namely the default probability
and the recovery rate. In this thesis we will assume the recovery rate R to be 40%. This
point estimate stem from Altman and Kishore [6] and is still widely used and remains as
academia and market standard. By observing CDS spreads in the market, we can solve
for the default probabilities F (t) and subsequently use in the CVA expression.

Definitions

Finally, we need a set of definitions related to default probability in order to derive CVA
expressions in section 6.3

Definition 6.1: Probability of Default

S(t, T ) = 1� Et

✓Z T

t

�(✏� t)du

◆
and

PD(ti) = S(ti+1)� S(ti)

S denotes the survival probability between time t and T . PD(ti) is the probability
of default at time t between two future times ti and ti+1. � is the dirac delta function
such that

R T

0 �(✏� t)dt = 1 if ✏ 2 [0, T ]

6.2 Linear Least Squares Regression

Linear least squares regression is a commonly used method of describing the relationship
between dependent and independent variables1. It is assumed that the relationship can
be described by a function f , such that

y ⇡ f(x;�) = E(y|x) (6.5)

where y is the dependent variable one is trying to approximate by a functional of the
regression variables x. The aim of the regression is to determine the function f , which
is in a finite dimensional space of functions spanned by a linear combination of the given
basis functions. We have that the optimization problem in (6.5) consist of finding a set of
suitable basis functions determining the design matrix X and estimating the coe�cients
� that give the best fit to the observed values of y.

f(x;�) = �

>
X (6.6)

Basis Functions

Choosing the basis function matrix is a key step when performing regression, and it must
be determined before we can proceed to estimate the coe�cient matrix �. The general
objective is to find a set of functions that gives a good fit to the true nature of the
dependent variable one is modelling. To a large extent the choice is however decided as a
trade-o↵ between simplicity in modelling and the quality of the regression.

1For more on least square regression, see Lawson and Hanson [47] or Björck [16]
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There are several ways to choose basis functions, and the simplest case is to use a linear
basis, such that

�n(xk) =
nX

i=1

xk (6.7)

Here n denotes the number of elements in the basis, while k refers to a specific independent
variable. More advanced basis functions are the Laguerre polynomials which is demon-
strated in the original paper by Longsta↵ and Schwartz [50]. The Laguerre polynomials
are given by the sum

�n(xk) =
nX

i=0

(�1)i

i!

✓
n

i

◆
xi
k (6.8)

Other choices for basis functions include trigonometric and Fourier series, as well orthogo-
nal polynomials like Hermite, Legendre, Chebyshev, Gegenbauer and Jacobi polynomials.
We will not elaborate more on this, but further discussion on the choice of basis func-
tions as well as orthogonal polynomials is given in [46] and [54]. However, Longsta↵ and
Schwartz [50] argue that their method is robust to the choice of basis functions, and that
using simple polynomial functions of the form

�n(xk) =
nX

i=0

xn
k = 1 + xk + x2

k + · · ·+ xn
k (6.9)

yields satisfying results.

Solving the Least Squares Problem

To solve the linear least squares problem we must as mentioned obtain the regression
coe�cients � that minimize the squared di↵erence of the observed values and the modelled
values.

min
�

||y � �

>
X||2 (6.10)

There are several ways of solving equation (6.10). We will not go in depth of the technical
details of the various methods, as the topic is covered widely in the literature (see i.e.
[16] or [47]). We will restrict ourselves to a short description of three various methods for
solving the least squares problem. The most usual way to solve this minimization problem
is by computing the normal equation set. From these equations there are to commonly
used methods to obtaining the coe�cient matrix �. One alternative is through Cholesky
decomposition [54], and another way is QR decompisiton [54] which deals directly with
the design matrix X rather than (X>

X)�1 from the normal equations. It is shown that
this leads to better performance in terms of numerical stability, as one is more likely
to run into singularity problems when using the Choelsky decomposition [31]. Cholesky
decomposition is also more prone to rounding errors than QR decomposition. The third
and final approach, which is also our preferred method of choice, is the singular value
decomposition (SVD). The SVD is a robust method which is a preferred method of choice
for ”all but easy least-squares problems” according to Press et al. [54]. This is the most
computational expensive method, but yields more stable results and one does not risk
singularity problems. The latter is also the main reason why we choose the SVD for our
purpose. Some basis functions will in fact be highly correlated with each other, such that
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the columns of X are highly correlated resulting in X

>
X being close to singular [50]. We

will not elaborate on the technical aspects of SVD here, but instead refer the interested
reader to Press et al. [54] and Mandel [51].

6.3 Calculating CVA

In this section we present three methods of calculating CVA. We will start by demon-
strating how CVA calculations can be performed in its traditional way, namely by what
we denote the Brute Force approach, before we continue with the Proxy approach. Lastly
we will introduce the CVA Notional approach. As we can see from equation (2.2) and
definition 2.1, the distribution of the portfolio value V (t) is a key quantity required to cal-
culate exposure and CVA. This will therefore be the main focus of this section. All three
methods will be further described in the sections below and also provide the theoretical
basis for the forthcoming results and discussion.

6.3.1 Brute Force

The traditional method outlined by Zhu and Pykhtin [60] for calculating exposure and
CVA is based on simulations of the underlying risk factors and corresponding valuation
of the portfolio for all paths and at each time step. The value of the portfolio is in turn
obtained by individual pricing of each separate contract, which is done by applying closed-
form solutions or fast numerical approximations. Once the portfolio value is at hand, this
yields the expected exposure according to definition 2.2.

As an illustrative example we can consider the simplistic case of a portfolio consisting of
a single equity call option where the underlying stock is assumed to follow a Geometric
Brownian Motion. In this case one would use the Black-Scholes formula (BS) to value the
option for every simulated market scenario at given times in the future until maturity of
the contract. This would in turn yield the counterparty exposure, and one could easily
obtain other exposure measures such as the expected exposure (EE) and potential future
exposure (PFE) which we defined in 2.1. With the availability of the BS-formula the
Brute Force framework would be an acceptable choice of approach.

Limitations of the Brute Force Approach

The Brute Force approach is to a large extent dependent on the availability of quick
pricing formulas for the portfolio contracts. Consider a bank wanting to calculate its
exposure towards 100 di↵erent counterparties, each with a portfolio of 100 contracts over
200 time steps. This will give the following case:

• 100 counterparties

• 100 contracts

• 10 000 scenario generations

• 200 simulation dates
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which would require as much as 20 billion valuations. Clearly this approach requires
e�cient valuations.

If analytical formulas for the value of the underlying(s) is available, the case above could
successfully be solved using the brute fore approach. However, for the (more realistic) case
where analytical valuation expressions for all contracts are not available, the situation is
di↵erent. This is often the case for more complex contracts with exotic features or for
certain interest rate derivatives. In these cases one has to rely on alternative, numerical
valuation methods, such as PDE-pricing or Monte Carlo based methods. This might
however not be a trivial task and might require the time consuming development of a
specific tailored valuation scheme, or the price might not even be available in an e�cient
manner at all. If PDE-pricing is applied, one will also run into dimensionality problems
as soon as the number of state variables increase. If simulation based pricing is applied,
one has to use a nested MC approach by using simulations to generate scenarios as well
as the actual pricing. This increases computational e↵ort considerably, as separate MC-
valuations are needed in each scenario for each time step of the ”outer” MC-simluation.
Though usable for verification and benchmark purposes, the Brute Force framework’s
disability to price complex portfolios in an e�cient manner makes the approach less
attractive, and in many cases even unfeasible. The fact that the approach works well only
for simple portfolio compositions, is a severe limitation for the Brute Force approach.

Another disadvantage of the Brute Force approach is its lack of generality. Since the
method is dependent on a separate valuation to price each contract of the portfolio, quick
algorithms needs to be developed every time a new type of product is added to the
portfolio or if new risk factors should be incorporated in the pricing 2. This generates
a need for extra maintenance. As we saw above, valuation of more exotic contracts is
not necessarily straightforward. Thus, the Brute Force approach quickly loses popularity
when the portfolio composition is frequently modified and new products are added and
subtracted on a regular basis.

These drawback calls for alternative ways of calculating exposure and CVA in order to
be able to manage the counterparty credit risk for portfolios consisting of more than just
vanilla products. In the following we will therefore present two such alternative methods,
namely the proxy approach and the CVA Notional.

6.3.2 Proxy Approach

A more flexible and generic approach can be found by using a proxy for the portfolio value.
This approach was proposed by Cesari et al. [27] and has subsequently been implemented
by industry actors such as Barclays, Bank of America Merrill Lynch, Nordea etc. [8].
Antonov et al. [11] further outlines a similar approach used by Numerix. As we will see
in the following, we use the Least Squares Monte Carlo algorithm (LSMC) to obtain an
approximation, Ṽ (t) for the portfolio value. Using the LSMC algorithm3 for this purpose

2An example would be the case of an FX-portfolio where one decides to include the correlations with
a non-incorporated currency.

3We underline that the algorithm discussed here is not exactly like the original LSMC as we are not
valuing early-exercise options and thus do not require any optimal exercise strategy. We are merely using
the LSMC to obtain an expression for the portfolio value at each time step.
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was first suggested by Cesari et al. [27] and is inspired by the original article by Longsta↵
and Schwartz [50] on the valuation of American style options, and is also adopted by the
above-mentioned industry actors as the preferred way of creating an approximation of
the portfolio value. We will in the forthcoming sections denote this method as the LSMC
proxy approach.

The first assumption made in the proxy approach is that all information regarding the
portfolio value at time point ti will be embedded in the value of a set of state variables4

x(t) obtained at some time t  ti5, such that

V (t) ⌘ V (x(t)) (6.11)

The key idea is to try to find a functional expression that can approximate the value of
the portfolio V (t) conditional on the value of the state variables x, as we are assuming
that we are not able to derive this expression analytically6.

We assume that we have generated a set of forward simulated discretized paths k 2 N on a
strictly increasing time grid T = {t0, t1, . . . , ti, ti+1 . . . , tm} containing all event dates. As
these paths contain the information of the value of the regression variables as well as the
realized cash flows, ck(ti), from the derivatives in the portfolio, we are able to determine
the portfolio value through backward induction. Letting ⌫k(ti) denote the value of the
portfolio at time point ti along path k we have

⌫k(ti) = Nk(ti)

✓
⌫k(ti+1)

Nk(ti+1)
+

ck(ti+1)

Nk(ti+1)

◆
(6.12)

Here ck(t) is the cash flow received at time t along path k, whileNk(t) is just the numeraire
along path k. Note that there is no expectation involved in this expression as we are only
talking about the realized values of stochastic variables along a single path. The backward
induction starts at the horizon time tT where we know with certainty that the portfolio
value is zero as there are no more cash flows to be received.

The second assumption we make in the Least Squares Monte Carlo proxy algorithm is
that the conditional expectation

Vti(x(ti)) = N(ti)EN
ti


V (ti+1)

N(ti+1)
+

c(ti+1)

N(ti+1)

����x(ti) = x

�
(6.13)

for each backward step can be estimated by regressing the values for ⌫

k(ti) in each of
the k 2 N paths against the values of the state variables x(ti) in each path. Along the
lines of equation (6.6) we are in other words trying to find a function f encapsulating the
entire relationship between x(ti) and the conditional expectation in (6.13).

Vti(x(ti)) ⇡ fti(x(ti)) = �

>
ti
�(x(ti)) (6.14)

Where the �ti-coe�cients are obtained through SVD as described in 6.2.

4The reader should note that the state variables discussed in this section are not identical to the state
variables discussed in relation to the Cheyette model in chapter 5

5An example of state variables could be the spot EURIBOR rates.
6If this was the case we would not have needed the LSM algorithm.
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The advantage of this method lies in using the realized discounted cash flows to represent
the portfolio value, making the method suitable for most derivative products. This will
be elaborated on in the discussion 8.

Estimation Bias

The third assumption we make is that the estimation of the �ti coe�cients can be made
on a finite sample set. This will however lead to an estimation error as the sample set of
realized simulation paths used to determine the coe�cients �ti does not include all possible
outcomes. Intuitively the estimates of the regression coe�cients will converge towards
the ”true” values as the number of sample paths increases. However, the applicability
of the method is reduced as the number of sample paths required to achieve satisfactory
regression coe�cients increase because of the corresponding higher computational e↵ort.
Futhermore, using the same set of simulated sample paths for estimating the conditional
expectation function (6.13) as well as computing the resulting portfolio value conditional
on the state variables will lead to an upward bias, as discussed by Broadie and Glasserman
[25]. Hence one will first have to conduct a pre-simulation to determine the regression
functions. Thereafter the approximated portfolio values Ṽ (t) = ft(x(t)) is computed on
a new set of realized paths for the state variables, in a so-called out-of-sample simulation
which we denote the main simulation.

The regression coe�cients is determined by minimizing the sum of squared errors (6.10) in
the pre-simulation, but there is no guarantee that the estimated coe�cients will result in
the minimized sum of squares for the out-of-sample simulations. Thus, the approximation
for the portfolio value may yield faulty results if the set of simulated paths in the main
simulation contains outcomes which were not ”accounted” for in the pre-simulations.
Thus, a ”stray” path could ruin the approximation of the portfolio value. Additionally,
the approximation is prone to the selection of basis functions. If the functional of the state
variables does not capture the underlying behaviour of the derivatives in the portfolio,
this will likely lead to poor performance.

In the following plot, we have illustrated this phenomenon. Pre-simulation samples are
marked in black and main-simulation samples in red. The pre-simulation paths only covers
a sample space illustrated by the shaded grey area. Thus, the regression coe�cients will
only minimize the sum of squared errors for outcomes lying in this region. Consequently
will the approximated portfolio value likely result in a poor estimate compared to the true
value when the portfolio value along the outlier path in the main simulation is computed.
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Vti(x(ti)) ⇡ fti(x(ti))

ti

Figure 6.1: Simplistic illustration of outlier path.

CVA formula

By starting with CVA expression (2.2) we present the CVA expression when a regression
proxy Ṽ (t) is used. The recovery rate R is excluded for simplicity. The derivation assumes
independence between portfolio value and probability of default so that the expectation
operator can be split into two expressions.

CV A(t = 0) = N(0)EN
0

Z T

0

�
N(t)�1V (t)+�(✏� t)

�
dt

�

= N(0)

Z T

0

�
EN

0

⇥
N(t)�1V (t)+

⇤
EN

0 [�(✏� t)]
�
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⇡ N(0)

Z T

0

⇣
EN

0

h
N(t)�1Ṽ (t)+

i
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0 [�(✏� t)]
⌘
dt

These equations can be discretized in a similar way as

CV A(t = 0) ⇡
mX

i=1

EN
0

h
N(ti)

�1Ṽ (ti)
+
i
EN

0

Z ti

ti�1

�(✏� t)dt

�
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mX
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EN
0

h
N(ti)

�1Ṽ (ti)
+
i
(S(ti�1)� S(ti) )

=
mX

i=1

EE(ti)PD(ti)

(6.16)

Algorithm 1 Least Square Monte Carlo Proxy

1: Pre-simulation: Simulate N1 sample paths of the state variables xk(ti) and generate
the realized cash flows ck(ti) along each path k 2 N1 and each time point ti 2 T .

2: Backward induction: Compute ⌫k(ti). Regress ⌫k(ti) on x

k(ti) to obtain �ti .
3: Main simulation: Simulate N2 sample paths of the state variables xk(ti). Evaluate

�

>
ti
�(x(ti)) along each path k 2 N2 and time point ti 2 T to obtain the approximation

of the exposure max(Vti(x(ti)), 0).
4: CVA:Evaluate (6.16) to get CVA
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6.3.3 CVA Notional

The third method we describe for CVA calculations is the CVA Notional. It is related to
the Proxy approach we outlined above, as it also make use of a regression proxy for the
portfolio value. The CVA Notional method is developed by practitioners in Danske Bank
[8], and has to our knowledge not been described in the literature before. As pointed
out in the previous section, creating a satisfying approximation of the portfolio value
requires e↵ort related to choosing suitable basis functions as well as computational e↵ort
in performing a su�cient number of simulations to determine the regression coe�cients. It
will therefore be beneficial to reduce the dependency the regression-based approximation
described in the Proxy approach, and this is also the motivation behind the CVA Notional
method.

Reformulation of CVA

In order to highlight the di↵erences between the CVA Notional and the Proxy approach
in an understandable way, we will present the adjustments in a stepwise manner. We
start with the standard CVA formula presented in equation 2.2. Again we exclude the
recovery rate R for simplicity, and also here the derivation assumes independence between
portfolio value and probability of default.

CV A = N(0)EN
0

Z T

0

N(t)�1V (t)+�(✏� t)dt

�

⇡ N(0)EN
0

Z T

0

N(t)�1V (t) Ṽ (t)>0�(✏� t)dt

� (6.17)

The key adjustment in this step from the Proxy approach is that the approximation Ṽ (t)
is now only used to determine whether the portfolio value is positive or negative.

Ṽ (t) ! Ṽ (t)>0 =

(
1 if Ṽ (t) > 0

0 otherwise

This should e↵ectively lower the dependency on the proxy, from the whole set of possible
values to the set of values around zero. In turn this should reduce the accuracy requirement
in the regression proxy. Intuitively, there will be less inaccuracy embedded in the sign of
the approximation compared to the approximation itself, and we can put less e↵ort into
creating a stable and precise regression.

Having reduced the use of Ṽ (t) to only determine the sign of the portfolio value, we exploit
the fact that the portfolio value can be given by the discounted cash flows produced by the
derivative contracts in the portfolio. Instead of valuing the CVA as a derivative paying
the present value of the portfolio at default time, we can now look at a derivative paying
the future cash flows in case of default. Economically there is no di↵erence, but one
can now incorporate the realized cash flows from the simulations. This creates a more
robust method as there is less inaccuracy related to these compared to the portfolio value
approximation. Continuing from (6.17) we then get
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CV A(0) ⇡ N(0)EN
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Z T

0
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� (6.18)

Since the expectation is a linear operator we can remove the inner expectation, leaving
us with a CVA expression depending on the cash flows from the portfolio.

Finally, by assuming that the integrand is integrable and making use of Fubinis Theorem
we are allowed to change the order of integration, such that we arrive at the following
final expression for the CVA

CV A(0) ⇡ N(0)EN
0

Z T

0

✓Z u

0
Ṽ (t)>0�(✏� t)dt

◆
N(u)�1c(u)du

�

= N(0)EN
0

Z T

0

CV Antl(u)N(u)�1c(u)du

� (6.19)

where CV Antl(u) is expressed as

CV Antl(u) =

Z u

0
Ṽ (t)>0�(✏� t)dt (6.20)

The discretized version of equation 6.19 is given as

CV A(0) ⇡ N(0)EN
0

"
mX

j=1

⇣ jX

i=1

Ṽ (ti)>0PD(ti)
⌘
N(tj)

�1c(tj)

#
(6.21)

Algorithm 2 CVA Notional

1: Pre-simulation: Simulate N1 sample paths of the state variables xk(ti) and generate
the realized cash flows ck(ti) along each path k 2 N1 and each time point ti 2 T .

2: Backward induction: Compute ⌫k(ti). Regress ⌫k(ti) on x

k(ti) to obtain �ti .
3: Main simulation: Simulate N2 sample paths of the state variables xk(ti). Generate

the realized cash flows ck(ti) along each path k 2 N2 and time point ti 2 T and
evaluate �

>
ti
�(x(ti)) to obtain the indicator, Ṽ (t)>0.

4: Compute CVAntl: Calculate CV Antl(ti) for paths k 2 N2 and time points ti 2 T
5: CVA: Evaluate N(0)

Pm
j=1 CV Antl(tj)ck(tj)Nk(tj)�1 for all paths k 2 N2. Average

to obtain CVA

Unless the approximated portfolio value, Ṽ (t), is a perfect replication of the true portfolio
value, V (t), the indicator function will contain inaccuracy to a certain extent, and on
average include some negative contributions of the portfolio values. The corresponding
CVA calculation based on the indicator will therefore be a lower bound of the true CVA
calculations. If Ṽ (t) ! V (t), the CVA calculations will be equal, which easily can be
verified for this case, as we see that
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We can therefore conclude that
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Changing Order of Integration

Considering the discretized version of the CVA expression the advantage of changing the
order of integration becomes more apparent. Without changing the order of integration
we have the following discretized expression

CV A(0) ⇡ N(0)EN
0

"
mX

i=1

⇣ mX

j=i

N(tj)
�1c(tj)

⌘
Ṽ (ti)>0PD(ti)

#

We see that for every i = 1, . . . ,m, we need to recompute the whole sum
Pm

j=i N(tj)�1c(tj).
However, if we change the order of integration, i.e.

CV A(0) ⇡ N(0)EN
0

"
mX

j=1

⇣ jX

i=1

Ṽ (ti)>0PD(ti)
⌘
N(tj)

�1c(tj)

#

and denote CV Antl(tj) =
Pj

i=1 Ṽ (t)>0PD(ti), we can easily see by induction that

CV Antl(tj+1) = CV Antl(tj) + Ṽ (tj+1

)>0PD(tj+1) (6.22)

which constitutes a significant improvement in computational e�ciency.

Furthermore, by changing the integration order we can provide some more intuition about
the CVA Notional. The reformulation leads to a more tractable expression for the CVA,
where the CV Antl(u) can be thought of as a cash flow loss ratio function. The function is
strictly increasing in time as the likelihood of default increases when time passes, but will
only increase if there is something to lose in the event of default i.e. that the indicator

Ṽ (t)>0 is equal to one. This is illustrated in figure 6.2 below.
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Figure 6.2: CVA Notional as a cash flow loss ratio function



Chapter 7

Results

In this chapter we present the results following our comparison of CVA calculations be-
tween the Proxy approach and the CVA Notional, using the Brute Force approach as a
benchmark. The results will be presented in the form of exposure profiles and numbers
for the CVA and its corresponding standard error (S.E.) and a 95% confidence interval.
For the sake of simplicity the portfolios we consider are only made up of a single interest
rate derivative, namely an interest rate swap and a capped interest rate swap. However
our implementation allows for increasing the portfolio size to contain multiple derivatives
of the aforementioned types.

The interest rate dynamics are governed by our implemented Cheyette model described
in chapter 5. The time grid 0 = t0 < t1 · · · < tm = T̄ have been created using a monthly
step length, but the inclusion of event dates such as index fixings and payment dates
make the grid non-uniform. The evolution of the stochastic variables are computed using
the Euler-Maruyama discretization in (5.62). The default probabilities are calculated by
the methods described in section 6.1 and using data obtained from Danske Bank (see
Appendix A).

Our implementation of the Cheyette model as well as the CVA calculations have been
performed in C++. We have benefited from using QuantLib1, an open-source C++ library
for quantitative finance. By utilizing design patterns of object-oriented programming, the
Quantlib environment provides a wide range of functionality and class-structures relevant
for the implementation issues of this thesis.

7.1 Linear Portfolio

The first case we consider is a portfolio consisting of a single payer 6M EURIBOR IRS with
10 year maturity (see Appendix B for a further descriptions of the portfolio). We compare
the Proxy approach and CVA Notional by creating five di↵erent regression functions with
a linear basis function to approximate the portfolio value V (t). As suggested by Cesari
et al. [27] the four first proxies in 7.1 apply spot EURIBOR rates, LM(t), with varying
tenors M as regression variables. Proxy 5 use the par swap rate, S(t), for reasons we

1See http://quantlib.org/docs.shtml for documentation.
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will elaborate more on later. In the regressions we have used 1024 simulations in the
pre-simulation and 4096 simulations in the main simulation2.

Regression proxy 1: Ṽ (t) = �1(t)L6M(t)
Regression proxy 2: Ṽ (t) = �1(t)L5Y )(t)
Regression proxy 3: Ṽ (t) = �1(t)L5Y (t) + �2(t)L10Y (t)
Regression proxy 4: Ṽ (t) = �0(t) + �1(t)L10Y (t)
Regression proxy 5: Ṽ (t) = �0(t) + �1(t)S(t)

Table 7.1: Description of the alternative regression proxies

For each of the five proxies we create exposure profiles and evaluate the CVA expression
for the Proxy approach and CVA Notional approaches according to the setup discussed in
section 6.3.2 and 6.3.3, respectively. We can then benchmark the performance of the two
methods by comparing with the exposure profiles and CVA numbers produced from the
Brute Force. The Brute Force method is just based on computing the net present value
of the swap in accordance with (3.16) for each path and time point.

We first consider the performance of the Proxy approach compared to the Brute Force,
which acts as a verification of the quality of the regression proxy Ṽ (t). When considering
the regressions (1-3) it appears that the 6M spot rate, i.e. proxy 1, yields the best fit
when comparing the exposure profile with the Brute Force benchmark. We however see
that the proxy undervalues the portfolio in the earlier time steps of the period, which is
seen as a gap in figure 7.1. As the 6M spot rate may only be able to encapsulate the value
of the cash flows in the short term, proxy 1 encounters di�culties in this time period
as the longer-dated cash flows constitute a significant proportion of the portfolio value.
This means that the true portfolio value will also be dependent on longer-dated rates,
which is not included in proxy 1. The fit of the proxy improves as time evolves towards
maturity, since the portfolio value will then only be sensitive to the short rates, such as
the 6M rate. Following the same logic, it is also intuitive that proxy 2 and 3 both perform
better than proxy 1 in the early life of the swap, as we observe in figure 7.4 and 7.3. This
is because they both exclusively rely on longer-dated rates and thus the portfolio values
are best matched when most of the longer-dated cash flows remains to be paid. When
time evolves, proxy 2 and 3 diverge from the Brute Force value because of their lack of
explaining the shorter-dated rate-dependency. Finally the proxy values are all forced to
zero as ti ! T , as the number of the remaining cash flows will decrease to zero.

2See Appendix C for random number generation.
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Figure 7.1: Exposure Profiles EE(ti) in AC - Proxy 1
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Figure 7.2: Exposure Profiles EE(ti) in AC - Proxy 2
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Figure 7.3: Exposure Profiles EE(ti) in AC - Proxy 3

When introducing a constant �0 in regression 4 and 5 we immediately observe an improve-
ment, and these regressions are the only ones to fall within the 95% confidence interval
from the Brute Force CVA results. This is not surprising as the value of an interest rate
swap can be viewed as a coe�cient inversely proportional to the basis point value of the
fixed leg multiplied with the par swap rate and a constant term reflecting the present value
of the fixed leg. Thus, a linear regression would incorporate the underlying relationship
of an IRS very well.

V (t)swap =
S(t, T0, Tn)

BpV fixed(t)
+ V (t)fixed (7.1)

Proxy 5 make use of this relationship and yield the best overall fit according to figure 7.5.
Additionally we can see from the scatter plot in 7.6 that the regression yields an almost
perfect fit. We saw above that regression 2 and 3 containing longer dated rates gave a
less good fit in the earlier time steps of the period. The reason that regression 4 yields
such good results despite only relying on the 10Y rate, is likely because the constant term
contains more information than just the value of the fixed leg, and is thus able to create
a better overall fit. The added term makes the proxy more flexible by also being able to
change the level in addition to the slope of the fitted curve.
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Figure 7.4: Exposure Profiles EE(ti) in AC - Proxy 4
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Figure 7.5: Exposure Profiles EE(ti) in AC - Proxy 5
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Figure 7.6: Proxy 5 values vs. Realized portfolio values (AC) at t70, S(t70) on x-axis

Furthermore, to compare the Proxy approach and the CVA Notional we look at the di↵er-
ence in exposure profile and CVA numbers from the two methods. By looking at figures
7.1-7.3, we see that the exposure profiles from the CVA Notional lie closer to the Brute
Force benchmark than the Proxy approach. It is thus able to give a better approximation
of the exposure than the Proxy approach, despite the fact that both approaches rely on
the same regression proxy, Ṽ (t). This is confirmed when looking at the CVA numbers in
table 7.2 - 7.4. The CVA numbers from the CVA Notional are more stable and lie closer
to the benchmark than the numbers from the Proxy approach.

By looking at both the exposure profiles and the CVA numbers it is clear for proxies
1-3 that the Proxy approach overestimates the CVA while the CVA Notional consistently
underestimates the CVA. This is in accordance with that we saw in chapter 6, namely
that the CVA Notional creates a lower bound for the CVA. As noted above, the estimation
improves over time as the regression proxy gets better and the CVA Notional is less likely
to include negative cash flows, which is the reason for the underestimation in the first
place.

An interesting overall observation in these results, is the comparison of the standard error
in the simulations. We can see that for all proxies considered, the CVA Notional approach
yields MC-results with roughly twice the standard error of the Proxy approach. As the
portfolio value in the CVA Notional is based on the actual simulated cash flows, it will
contain larger variability than a linear proxy. Thus, one may say that using a regression
proxy will have a variance reducing e↵ect.
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Proxy approach
Proxy CVA S.E CI- CI+

1 AC 740 032.77 AC 10 469.81 AC 719 511.94 AC 760 553.60
2 AC 954 502.92 AC 13 278.22 AC 928 477.61 AC 980 528.23
3 AC 988 251.08 AC 13 751.55 AC 961 298.04 AC 1 015 204.12
4 AC 749 957.35 AC 15 392.15 AC 719 788.75 AC 780 125.96
5 AC 797 736.74 AC 16 178.22 AC 766 027.43 AC 829 446.05

Table 7.2: CVA calculations - Proxy approach - Proxy 1-5

CVA Notional
Proxy CVA S.E CI- CI+

1 AC 646 293.37 AC 22 257.20 AC 602 669.26 AC 689 917.48
2 AC 698 141.54 AC 23 628.20 AC 651 830.27 AC 744 452.81
3 AC 661 982.99 AC 24 812.67 AC 613 350.16 AC 710 615.82
4 AC 766 568.95 AC 21 093.13 AC 725 226.42 AC 807 911.48
5 AC 795 539.12 AC 22 105.49 AC 752 212.36 AC 838 865.88

Table 7.3: CVA calculations - CVA Notional - Proxy 1-5

CVA S.E. CI- CI+
Brute Force AC 787 658.00 AC 14 544.50 AC 759 150.78 AC 816 165.22

Table 7.4: CVA calculations - Brute force

7.2 Non-linear Portfolio

In the second case we consider a portfolio consisting of a single payer 6M EURIBOR
capped IRS with 10 year maturity (See Appendix B). We regress on the 6M spot EURIBOR-
rate, but since we are now considering a non-linear instrument, we expand our regression
proxies to include terms of higher orders to provide a better fit to the underlying value.
We have used 256 simulations in the pre-simulation and 4096 in the main simulation. We
reduce the number of simulations in the pre-simulation to see how the regression proxy
is a↵ected. The purpose of this case is to illustrate how varying the basis functions by
including higher order polynomials a↵ect the exposure profiles and CVA numbers from
the Proxy Approach and CVA Notional respectively.

Proxy 6: Ṽ (t) = �0(t) + �1(t)L6M(t)
Proxy 7: Ṽ (t) = �0(t) + �1(t)L6M(t) + �2L2

6M(t)
Proxy 8: Ṽ (t) = �0(t) + �1(t)L6M(t) + �2L2

6M(t) + �3L3
6M(t)

Table 7.5: Description of the regression proxies

Since there exist no closed-form valuation expression for a capped IRS under the Cheyette
model, we do not have a Brute Force benchmark as we had above. This would require a
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non-trivial implementation of a interest rate cap pricer or a highly time-consuming nested
MC pricer. However, having verified our model setup from the results above, the observed
convergence of the Proxy approach and CVA Notional in figure 7.11 may itself constitute
a reference for the other calculations.

Starting with proxy 6 in figure 7.7 we see that the Proxy approach gives an overestimation
of the exposure compared with the profiles in figure 7.11. By looking at figure 7.8 we
quickly see that the overestimation is due to the fact that proxy 6 is a linear expression
fitted to a concave value-function which will not yield a good fit of obvious reasons. The
CVA Notional however, is closer to the converged result, as observed from both the figures
as well as in table 7.7. This demonstrates that the method yields satisfying results despite
that the portfolio value proxy does not provide a very good fit to the simulated portfolio
value.
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Figure 7.7: Exposure Profiles EE(ti) in AC - Proxy 6
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Figure 7.8: Proxy 6 values vs. Realized portfolio values (AC) at t70, L6M(t70) on x-axis

To further investigate the relative performance of the Proxy approach and CVA Notional
we add a second-order term in the regression for proxy 7. The corresponding results are
observable in figure 7.9 and 7.10 as well as in table 7.6 and 7.7. We see that the exposure
profile from the Proxy approach has shifted downwards towards the profile we observe in
figure 7.11 (the constituted benchmark). The reason is easily seen in figure 7.10, by adding
a second-order term the regression proxy 7 will fit the portfolio value to a better extent
and is no longer overestimating the portfolio value. In turn this implies that the Proxy
approach will yield better results. The CVA Notional behaves relatively stable compared
to proxy 6, which again underlines its reduced sensitivity to the regression quality. We
observe some deviations in the beginning of the time period, but as maturity approaches
the two methods converge due to the fact that less cash flows remains.



7.2. NON-LINEAR PORTFOLIO 73

0 20 40 60 80 100 120 140 160
0

100 000

200 000

300 000

400 000

500 000

600 000

700 000

 

 
Proxy Approach
CVA Notional

Figure 7.9: Exposure Profiles EE(ti) in AC - Proxy 7
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Figure 7.10: Proxy 7 values vs. Realized portfolio values (AC) at t70, L6M(t70) on x-axis

Finally we add a third-order term and compare the results. In figure 7.11 we see that
the exposure profiles from the Proxy approach and CVA Notional have nearly converged,
giving rise to using this as a benchmark as stated above. The convergence is confirmed
when looking at the CVA numbers in table 7.6 and 7.7. We see from figure 7.11 and 7.12
that the third-order term is able to explain even more of the portfolio value.
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Figure 7.11: Exposure Profiles EE(ti) in AC - Proxy 8
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Figure 7.12: Proxy 8 values vs. Realized portfolio values (AC) at t70, L6M(t70) on x-axis

When considering the standard errors in table 7.6 and 7.7 respectively, we observe that
for proxy 6 the standard error is lower for the CVA Notional than for the Proxy approach,
as opposed to all other proxies. We believe this is due to the fact that proxy 6 is a linear
expression trying to represent a concave function, which leads to an overestimation of
the portfolio value which we discussed above. The standard error is proportional to the
average of the simulated values, and an overestimated CVA will therefore lead to higher
standard error. When the proxy is non-linear, for proxies 7 and 8, the Proxy approach
gives a better fit and we consequently observe that the standard error is higher for the
CVA Notional, which is consistent with the finding in the previous section.
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Proxy approach
Proxy CVA S.E CI- CI+

6 AC 130 800.00 AC 3 584.95 AC 123 773.50 AC 137 826.50
7 AC 112 458.00 AC 1 920.52 AC 108 693.78 AC 116 222.22
8 AC 104 332.00 AC 1 818.90 AC 100 766.96 AC 107 897.04

Table 7.6: CVA calculations - Proxy approach - Proxy 6-8

CVA Notional
Proxy CVA S.E CI- CI+

6 AC 93 401.70 AC 2 696.79 AC 88 115.99 AC 98 687.41
7 AC 105 667.00 AC 3 194.12 AC 99 406.52 AC 111 927.48
8 AC 107 600.00 AC 3 187.87 AC 101 351.77 AC 113 848.23

Table 7.7: CVA calculations - CVA Notional - Proxy 6-8

Finally we plot the exposure profile from the two approaches for the three proxies and see
how the profiles vary according to the di↵erent proxies applied. Again, it appears evident
that the CVA Notional yields more stable results compared to the Proxy approach. The
exposure profiles generated from the Proxy approach are gradually shifting downwards
toward the CVA Notional as more polynomials are added to the regression, while the CVA
Notional remains relatively stable. This underlines the Proxy approach’s dependence on
the regression quality, and consequently the reduced sensitivity for CVA Notional.
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Figure 7.13: Comparison of exposure profiles - Proxy approach
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Figure 7.14: Comparison of exposure profiles - CVA Notional



Chapter 8

Discussion

In section 6.3.1 we elaborated on the limitations and drawbacks associated with the Brute
Force approach, primarily related to its lack of handling contracts with exotic features
in an e�cient manner. However, by introducing an approximation Ṽ (t) for the portfolio
value we bypass this disadvantage by not relying on analytical (or e�cient numerical
approximations) valuations for the specific portfolio contracts. Instead the simulated
cash flows are used to create a regression-based proxy, giving rise to the Proxy approach
and to the CVA Notional. Either used directly for the portfolio value as in the former
method, or just to determine the sign of the portfolio value as in the CVA Notional,
the introduction of the proxy in this context yields a highly generic approach for CVA
calculations.

The key advantage of both described methods is precisely this generic nature. They are
more flexible than the Brute Force approach as they rely on describing the value of the
derivatives in the portfolio through the actual cash flows. The regression used to obtain
the proxy Ṽ (t) does in fact not require any explicit knowledge of each contract beside its
cash flows generated throughout its lifetime. Thus we are considering the features of the
portfolio contracts, rather than their specific definitions and characteristics. This yields
a framework where new contract types can be added in an e�cient and straightforward
way, regardless of their design and without having to change the entire original setup
according to adjustments in the portfolio composition. This is a significant advantage
compared to the Brute Force approach, as we can enjoy the convenience of not having to
obtain separate valuation methods for each contract and rewriting the model every time
a new product is included in the portfolio. This saves development and maintenance time
related to modelling, which in turn also leads to a reduction of resources related to such
systems.

An important aspect of this thesis is the comparison between the Proxy approach and
CVA Notional. From the first part of our results where we consider a linear portfolio,
we see that CVA Notional generally performs better for the first three proxies, but the
di↵erence is close to negligible when an intercept is included in the regression as well as for
the regression based on the swap rate. The results thus indicate that it will be su�cient
to model the portfolio value with a simple linear regression, given an appropriate choice
of regression variables and the inclusion of an intercept. This will in turn yield good
results for both the Proxy approach and CVA Notional. The di↵erence between the two
is however more evident when considering a non-linear portfolio, such as the capped IRS
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we study in section 7.2. The results are clearly illustrated in figure 7.13 and 7.14 where
we see how CVA Notional yields more stable and accurate exposure profiles for all proxies
used. The equivalent profiles from the Proxy approach exhibit more deviations, indicating
the methods absolute dependency on the regression proxy. As we know, the quality of
the regression proxy is to a large extent determined by the basis functions ability to
capture the nature of the portfolio value, and for the Proxy approach to yield satisfying
results we must add higher order polynomials. The CVA Notional on the other hand, is
less dependent on the ”underlying” regression for Ṽ (t), and is able to generate satisfying
results despite using a regression proxy with less explanatory power.

The reduced dependency of the CVA Notional towards the regression proxy compared
to the Proxy approach is a direct consequence of the fact that the methods apply the
approximation di↵erently, as we saw in chapter 6. While the CVA Notional only use
the proxy to determine the sign of the portfolio value and then use simulated cash flows
to determine the exposure, the approximated portfolio value is applied directly in the
calculations for the Proxy approach. In order to yield accurate CVA calculations, the
proxy therefore needs to be accurate in the entire state space of the portfolio value. For
the CVA Notional however, the proxy only needs to be a good fit to portfolio values close
to zero. This is a substantial advantage, as we do not su↵er any reduction of precision
in the CVA calculations if the regression is a poor fit in the tails of the approximation.
This phenomenon is clearly evident in the results observed in section 7.2, where a linear
regression is fitted to a non-linear instrument. The Proxy approach overestimates the
CVA, while the CVA Notional generates a value significantly closer to the true value. The
insight that the linear proxy will overestimate the value of the capped-swap can intuitively
be justified by looking at figure 7.8, as the linear regression is not able to describe the
capped feature of the rates, and will thereby generate higher portfolio values in the upper
regions of the rates than what is indeed the reality.

Furthermore there will be a bias associated with both the Proxy approach and the CVA
Notional. For the Proxy approach the bias stem from the assumption made in section
6.3.2, where we approximated the conditional expectation function in (6.13) by regression.
As discussed in the same section, this will create a statistical bias as we cannot be sure
that the approximation in fact will reflect the true portfolio value. We are unable to tell
anything about whether the bias is positive or negative. For the CVA Notional however,
we saw in section 6.3.3 that the method systematically will have a negative bias and
represents a lower bound for CVA. Despite yielding more precise CVA calculations as the
dependence on the regression approximation is reduced, one may consider the negative bias
as a drawback. The negative bias will consistently lead banks and financial institutions
to charge too low CVA towards counterparties. In turn this implies that risk-free value
has not been adjusted ”enough”, and will thus yield a somewhat too optimistic picture
of the true value of the portfolio when counterparty credit risk is accounted for. As we
know the direction of the bias, a possible solution might be to charge a higher CVA than
what is actually calculated. This will however impose a risk of the client declining on the
proposed price, as the added CVA might have been to high.

As pointed out in 6.3.3 the CVA Notional function CV Antl(u) can be regarded as a cash
flow loss ratio. Furthermore, we can look upon the expression as a cumulative distribution
conditioned on the portfolio value being positive. The probability function PD(tj) gives
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the probability of the counterparty defaulting over the time period tj�1 to tj, and as a
loss in this setting only can occur when the portfolio value is positive, the corresponding
cumulative loss probability is approximately equal to the CVA Notional function. A
period with negative portfolio value will not constitute a loss over the time period, and
the cumulative probability will therefore not increase in this period. This is illustrated in
figure 6.2. If the opposite is true, the loss probability will be incremented with the default
probability for the given time period. The CVA Notional function can be looked upon as
the proportion of all the positive cash flows to be received over a time period that can
be expected to be lost by the event of default. Therefore, we can see the CVA Notional
function as a weighting of the contribution each portfolio cash flow add to the total CVA.
The weighting is determined by the likelihood of default and the value of the indicator
function (deciding whether default actually incur a loss or not).

In the perspective of a bank CVA calculations have gained increased importance in the
aftermath of the 2008 financial melt-down, as mentioned in the introduction. This has
in turned generated incentives for fast and accurate calculations, and consequently the
capability to assess counterparty credit risk of various trades real-time. In a realistic case,
for a portfolio consisting of several contracts (potentially with exotic features) ranging
over multiple asset classes, the CVA calculations using the Proxy approach are particularly
prone to inaccuracy in the portfolio approximation. Given the complexity and magnitude
of the portfolio, one might encounter di�culties in finding a satisfactory regression to
estimate the true portfolio value. Increased complexity will in need more basis functions
in order to span the variability and dynamics of the portfolio. The inclusion of more
basis functions will in turn require more simulations in the pre-simulation in order to
obtain a satisfying proxy. This however comes at the cost of increased computational
time, which all together reduces the e�ciency. Calculations with this approach can be
so time-consuming that the advantage of dynamical decision-making based on CVA, as
pointed out in section 2.4, will be substantially reduced. Having a quick and accurate
setup in place will lead practitioners to make more use of the systems which in turn is
likely to yield a more correct overall CVA assessment.

The displaced four-factor Cheyette model has proven to be a suitable term-structure model
for the purposes of CVA calculations related to interest rate derivatives. The model dy-
namics inhabits Markov properties, in addition to being flexible enough to su�ciently
match and reflect current market conditions. We have seen that when generating real-
izations of future yield curves from the Cheyette dynamics, the outcome spans a wide
range of possible market scenarios forward in time. We are satisfied with the flexibility
in the functional form of the yield curve, and we consider the given model setup to be a
particularly satisfactory trade-o↵ between explanatory power and complexity. In terms
of the stochastic factors, we can relate each stochastic state variable to a benchmark for-
ward rate, which increases the understanding of the dynamics and gives a more intuitive
distribution of the volatility out on factors. From the swaption results in section 5.5.2,
we saw that the model was able to reproduce the observed implied volatility skews to
a su�cient degree of accuracy in the upper regions of the strike, i.e. for the ATM and
ATM-1% contracts. This finding was relatively consistent for all expiries considered. For
the out-of-the-money swaptions, however, the model exhibited more inaccuracy relative to
the market quotes. In this case, the simulated premiums were consistently lower than the
market quotes, although with decreasing inaccuracy for increasing expiries. After more
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careful investigation of the change of measure in the model setup, there seems to be a
systematic inaccuracy in the time-evolution of the stochastic numeraires. This inaccuracy
will obviously amplify for the case with out-of-the-money swaptions, as these premiums
are more sensitive to an error in the numeraires than the swaption premiums with lower
strikes.

Another advantage of the Cheyette model on the Quasi-Gaussian form is its suitability to
model and to incorporate other asset classes [9]. This feature makes the model a so-called
hybrid model, i.e. a model that in principle, in addition to its application on interest
rate modelling, can for example cover the modelling of FX, cross currency basis, equities,
commodities and inflation. This attribute is particularly beneficial in the environment
of an investment bank, which consists of several trading desks covering di↵erent asset
classes. For a bank to successfully incorporate a desirable counterparty view in its CVA
assessment, the need for consistency in the calculations across all asset class dynamics is
crucial. In a hybrid-model framework, all parameters could be calibrated simultaneously,
which indicates that the corresponding CVA calculations will be consistent. Considering
the contrary, in which di↵erent models govern di↵erent assets, infinitesimal time-lags in
the calibration procedure for the various assets might create significant deviations in the
portfolio valuation, and in theory arbitrage-opportunities.



Chapter 9

Concluding Remarks

The results obtained in this thesis clearly demonstrate the advantages of using an ap-
proximation for the portfolio value when calculating CVA in portfolios of interest rate
derivatives. Both the Proxy approach as well as the CVA Notional outperforms the Brute
Force approach when it comes to CVA calculations for all but very simple portfolios.
While the traditional Brute Force method is highly dependent on the availability of an-
alytical (or quick and accurate numerical approximations) valuation methods for each
portfolio constituent, the Proxy approach and the CVA Notional does not need to impose
any such restrictions. In particular we have seen the advantages of the CVA National
related to its ability to price CVA precise and e�cient, without being as sensitive to the
quality of the portfolio value approximation as the Proxy approach.

Moreover, we see increased benefits when combining the generic features of the CVA No-
tional with a hybrid stochastic model such as the implemented Cheyette model. This
will create a unified methodology where one has the possibility to price CVA in a accu-
rate and consistent manner across several asset classes and thus fully acknowledging the
counterparty view of CVA.

We have demonstrated the strengths of the CVA Notional and the Cheytte model in a
rather simple setting, by looking at a portfolio constituted of single vanilla interest rate
swaps and capped interest rate swaps. We have proven its advantages, but we believe
even larger benefits will be revealed when the method is applied in a more complex and
varied portfolio.

We believe there are several exciting extensions and areas for further work within the
area of CCR assessment. Extending to include more of the xVA’s, such as the debt value
adjustment, will be an obvious extension, leading to a more correct counterparty risk
judgement. Another extension would be to include more exotic derivatives, such as multi-
callable products. Antonov et al. [12] demonstrates that the framework presented in this
thesis can incorporate portfolios consisting exotics such as Bermudans. Finally there can
be done more research into modelling the dependence structure between credit quality
and exposure levels, giving rise to wrong-way risk. This is a important aspect for banks
charging CVA as it can lead to severe losses if not accounted for.



Appendix A

Input Data

EURIBOR Forward Rates and OIS Discount Factors

Starts Ends Cvg FwdStarts FwdEnds fwdCvg Notional Forward Float Payment DiscFactor PayTime

02.apr.15 02.okt.15 0.5083 02.apr.15 02.okt.15 0.5083 1.00 0.0870% 0.00044 1.0006 02.okt.15

02.okt.15 04.apr.16 0.5139 02.okt.15 04.apr.16 0.5139 1.00 0.0727% 0.00037 1.0013 04.apr.16

04.apr.16 03.okt.16 0.5056 04.apr.16 04.okt.16 0.5083 1.00 0.0693% 0.00035 1.0021 03.okt.16

03.okt.16 03.apr.17 0.5056 03.okt.16 03.apr.17 0.5056 1.00 0.0965% 0.00049 1.0029 03.apr.17

03.apr.17 02.okt.17 0.5056 03.apr.17 03.okt.17 0.5083 1.00 0.1636% 0.00083 1.0034 02.okt.17

02.okt.17 03.apr.18 0.5083 02.okt.17 03.apr.18 0.5083 1.00 0.2353% 0.00120 1.0035 03.apr.18

03.apr.18 02.okt.18 0.5056 03.apr.18 03.okt.18 0.5083 1.00 0.3171% 0.00160 1.0034 02.okt.18

02.okt.18 02.apr.19 0.5056 02.okt.18 02.apr.19 0.5056 1.00 0.3904% 0.00197 1.0028 02.apr.19

02.apr.19 02.okt.19 0.5083 02.apr.19 02.okt.19 0.5083 1.00 0.4680% 0.00238 1.0019 02.okt.19

02.okt.19 02.apr.20 0.5083 02.okt.19 02.apr.20 0.5083 1.00 0.5492% 0.00279 1.0005 02.apr.20

02.apr.20 02.okt.20 0.5083 02.apr.20 02.okt.20 0.5083 1.00 0.6268% 0.00319 0.9987 02.okt.20

02.okt.20 06.apr.21 0.5167 02.okt.20 06.apr.21 0.5167 1.00 0.6991% 0.00361 0.9965 06.apr.21

06.apr.21 04.okt.21 0.5028 06.apr.21 06.okt.21 0.5083 1.00 0.7677% 0.00386 0.9940 04.okt.21

04.okt.21 04.apr.22 0.5056 04.okt.21 04.apr.22 0.5056 1.00 0.8285% 0.00419 0.9912 04.apr.22

04.apr.22 03.okt.22 0.5056 04.apr.22 04.okt.22 0.5083 1.00 0.8795% 0.00445 0.9881 03.okt.22

03.okt.22 03.apr.23 0.5056 03.okt.22 03.apr.23 0.5056 1.00 0.9201% 0.00465 0.9847 03.apr.23

03.apr.23 02.okt.23 0.5056 03.apr.23 03.okt.23 0.5083 1.00 0.9525% 0.00482 0.9812 02.okt.23

02.okt.23 02.apr.24 0.5083 02.okt.23 02.apr.24 0.5083 1.00 0.9804% 0.00498 0.9775 02.apr.24

02.apr.24 02.okt.24 0.5083 02.apr.24 02.okt.24 0.5083 1.00 1.0047% 0.00511 0.9737 02.okt.24

02.okt.24 02.apr.25 0.5056 02.okt.24 02.apr.25 0.5056 1.00 1.0253% 0.00518 0.9698 02.apr.25

02.apr.25 02.okt.25 0.5083 02.apr.25 02.okt.25 0.5083 1.00 1.0424% 0.00530 0.9658 02.okt.25

02.okt.25 02.apr.26 0.5056 02.okt.25 02.apr.26 0.5056 1.00 1.0556% 0.00534 0.9617 02.apr.26

02.apr.26 02.okt.26 0.5083 02.apr.26 02.okt.26 0.5083 1.00 1.0647% 0.00541 0.9575 02.okt.26

02.okt.26 02.apr.27 0.5056 02.okt.26 02.apr.27 0.5056 1.00 1.0703% 0.00541 0.9534 02.apr.27

02.apr.27 04.okt.27 0.5139 02.apr.27 04.okt.27 0.5139 1.00 1.0724% 0.00551 0.9491 04.okt.27

04.okt.27 03.apr.28 0.5056 04.okt.27 04.apr.28 0.5083 1.00 1.0708% 0.00541 0.9449 03.apr.28

03.apr.28 02.okt.28 0.5056 03.apr.28 03.okt.28 0.5083 1.00 1.0663% 0.00539 0.9408 02.okt.28

02.okt.28 03.apr.29 0.5083 02.okt.28 03.apr.29 0.5083 1.00 1.0592% 0.00538 0.9366 03.apr.29

03.apr.29 02.okt.29 0.5056 03.apr.29 03.okt.29 0.5083 1.00 1.0498% 0.00531 0.9325 02.okt.29

02.okt.29 02.apr.30 0.5056 02.okt.29 02.apr.30 0.5056 1.00 1.0386% 0.00525 0.9284 02.apr.30

02.apr.30 02.okt.30 0.5083 02.apr.30 02.okt.30 0.5083 1.00 1.0258% 0.00521 0.9243 02.okt.30

02.okt.30 02.apr.31 0.5056 02.okt.30 02.apr.31 0.5056 1.00 1.0118% 0.00512 0.9203 02.apr.31

02.apr.31 02.okt.31 0.5083 02.apr.31 02.okt.31 0.5083 1.00 0.9974% 0.00507 0.9164 02.okt.31

02.okt.31 02.apr.32 0.5083 02.okt.31 02.apr.32 0.5083 1.00 0.9825% 0.00499 0.9125 02.apr.32

02.apr.32 04.okt.32 0.5139 02.apr.32 04.okt.32 0.5139 1.00 0.9675% 0.00497 0.9086 04.okt.32

04.okt.32 04.apr.33 0.5056 04.okt.32 04.apr.33 0.5056 1.00 0.9527% 0.00482 0.9048 04.apr.33

04.apr.33 03.okt.33 0.5056 04.apr.33 04.okt.33 0.5083 1.00 0.9384% 0.00474 0.9011 03.okt.33

03.okt.33 03.apr.34 0.5056 03.okt.33 03.apr.34 0.5056 1.00 0.9248% 0.00468 0.8974 03.apr.34

03.apr.34 02.okt.34 0.5056 03.apr.34 03.okt.34 0.5083 1.00 0.9122% 0.00461 0.8938 02.okt.34

02.okt.34 02.apr.35 0.5056 02.okt.34 02.apr.35 0.5056 1.00 0.9007% 0.00455 0.8902 02.apr.35

02.apr.35 02.okt.35 0.5083 02.apr.35 02.okt.35 0.5083 1.00 0.8905% 0.00453 0.8866 02.okt.35

02.okt.35 02.apr.36 0.5083 02.okt.35 02.apr.36 0.5083 1.00 0.8808% 0.00448 0.8830 02.apr.36

02.apr.36 02.okt.36 0.5083 02.apr.36 02.okt.36 0.5083 1.00 0.8716% 0.00443 0.8795 02.okt.36

02.okt.36 02.apr.37 0.5056 02.okt.36 02.apr.37 0.5056 1.00 0.8631% 0.00436 0.8760 02.apr.37

02.apr.37 02.okt.37 0.5083 02.apr.37 02.okt.37 0.5083 1.00 0.8554% 0.00435 0.8725 02.okt.37

02.okt.37 02.apr.38 0.5056 02.okt.37 02.apr.38 0.5056 1.00 0.8485% 0.00429 0.8690 02.apr.38

02.apr.38 04.okt.38 0.5139 02.apr.38 04.okt.38 0.5139 1.00 0.8428% 0.00433 0.8656 04.okt.38

82
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Starts Ends Cvg FwdStarts FwdEnds fwdCvg Notional Forward Float Payment DiscFactor PayTime

04.okt.38 04.apr.39 0.5056 04.okt.38 04.apr.39 0.5056 1.00 0.8382% 0.00424 0.8622 04.apr.39

04.apr.39 03.okt.39 0.5056 04.apr.39 04.okt.39 0.5083 1.00 0.8350% 0.00422 0.8588 03.okt.39

03.okt.39 03.apr.40 0.5083 03.okt.39 03.apr.40 0.5083 1.00 0.8332% 0.00424 0.8555 03.apr.40

03.apr.40 02.okt.40 0.5056 03.apr.40 03.okt.40 0.5083 1.00 0.8328% 0.00421 0.8521 02.okt.40

02.okt.40 02.apr.41 0.5056 02.okt.40 02.apr.41 0.5056 1.00 0.8327% 0.00421 0.8488 02.apr.41

02.apr.41 02.okt.41 0.5083 02.apr.41 02.okt.41 0.5083 1.00 0.8326% 0.00423 0.8455 02.okt.41

02.okt.41 02.apr.42 0.5056 02.okt.41 02.apr.42 0.5056 1.00 0.8324% 0.00421 0.8423 02.apr.42

02.apr.42 02.okt.42 0.5083 02.apr.42 02.okt.42 0.5083 1.00 0.8323% 0.00423 0.8390 02.okt.42

02.okt.42 02.apr.43 0.5056 02.okt.42 02.apr.43 0.5056 1.00 0.8320% 0.00421 0.8358 02.apr.43

02.apr.43 02.okt.43 0.5083 02.apr.43 02.okt.43 0.5083 1.00 0.8316% 0.00423 0.8326 02.okt.43

02.okt.43 04.apr.44 0.5139 02.okt.43 04.apr.44 0.5139 1.00 0.8311% 0.00427 0.8294 04.apr.44

04.apr.44 03.okt.44 0.5056 04.apr.44 04.okt.44 0.5083 1.00 0.8304% 0.00420 0.8262 03.okt.44

03.okt.44 03.apr.45 0.5056 03.okt.44 03.apr.45 0.5056 1.00 0.8296% 0.00419 0.8231 03.apr.45

03.apr.45 02.okt.45 0.5056 03.apr.45 03.okt.45 0.5083 1.00 0.8286% 0.00419 0.8200 02.okt.45

02.okt.45 02.apr.46 0.5056 02.okt.45 02.apr.46 0.5056 1.00 0.8273% 0.00418 0.8168 02.apr.46

02.apr.46 02.okt.46 0.5083 02.apr.46 02.okt.46 0.5083 1.00 0.8258% 0.00420 0.8137 02.okt.46

02.okt.46 02.apr.47 0.5056 02.okt.46 02.apr.47 0.5056 1.00 0.8240% 0.00417 0.8107 02.apr.47

02.apr.47 02.okt.47 0.5083 02.apr.47 02.okt.47 0.5083 1.00 0.8218% 0.00418 0.8076 02.okt.47

02.okt.47 02.apr.48 0.5083 02.okt.47 02.apr.48 0.5083 1.00 0.8193% 0.00416 0.8045 02.apr.48

02.apr.48 02.okt.48 0.5083 02.apr.48 02.okt.48 0.5083 1.00 0.8163% 0.00415 0.8015 02.okt.48

02.okt.48 02.apr.49 0.5056 02.okt.48 02.apr.49 0.5056 1.00 0.8129% 0.00411 0.7985 02.apr.49

02.apr.49 04.okt.49 0.5139 02.apr.49 04.okt.49 0.5139 1.00 0.8091% 0.00416 0.7954 04.okt.49

04.okt.49 04.apr.50 0.5056 04.okt.49 04.apr.50 0.5056 1.00 0.8046% 0.00407 0.7924 04.apr.50

04.apr.50 03.okt.50 0.5056 04.apr.50 04.okt.50 0.5083 1.00 0.7995% 0.00404 0.7895 03.okt.50

03.okt.50 04.apr.51 0.5083 03.okt.50 04.apr.51 0.5083 1.00 0.7929% 0.00403 0.7865 04.apr.51

04.apr.51 02.okt.51 0.5028 04.apr.51 04.okt.51 0.5083 1.00 0.7847% 0.00395 0.7836 02.okt.51

02.okt.51 02.apr.52 0.5083 02.okt.51 02.apr.52 0.5083 1.00 0.7753% 0.00394 0.7807 02.apr.52

02.apr.52 02.okt.52 0.5083 02.apr.52 02.okt.52 0.5083 1.00 0.7644% 0.00389 0.7778 02.okt.52

02.okt.52 02.apr.53 0.5056 02.okt.52 02.apr.53 0.5056 1.00 0.7522% 0.00380 0.7750 02.apr.53

02.apr.53 02.okt.53 0.5083 02.apr.53 02.okt.53 0.5083 1.00 0.7388% 0.00376 0.7723 02.okt.53

02.okt.53 02.apr.54 0.5056 02.okt.53 02.apr.54 0.5056 1.00 0.7242% 0.00366 0.7696 02.apr.54

02.apr.54 02.okt.54 0.5083 02.apr.54 02.okt.54 0.5083 1.00 0.7085% 0.00360 0.7669 02.okt.54

02.okt.54 02.apr.55 0.5056 02.okt.54 02.apr.55 0.5056 1.00 0.6917% 0.00350 0.7644 02.apr.55

02.apr.55 04.okt.55 0.5139 02.apr.55 04.okt.55 0.5139 1.00 0.6742% 0.00346 0.7619 04.okt.55

04.okt.55 04.apr.56 0.5083 04.okt.55 04.apr.56 0.5083 1.00 0.6565% 0.00334 0.7594 04.apr.56

04.apr.56 02.okt.56 0.5028 04.apr.56 04.okt.56 0.5083 1.00 0.6393% 0.00321 0.7571 02.okt.56

02.okt.56 02.apr.57 0.5056 02.okt.56 02.apr.57 0.5056 1.00 0.6227% 0.00315 0.7549 02.apr.57

02.apr.57 02.okt.57 0.5083 02.apr.57 02.okt.57 0.5083 1.00 0.6064% 0.00308 0.7527 02.okt.57

02.okt.57 02.apr.58 0.5056 02.okt.57 02.apr.58 0.5056 1.00 0.5905% 0.00299 0.7506 02.apr.58

02.apr.58 02.okt.58 0.5083 02.apr.58 02.okt.58 0.5083 1.00 0.5751% 0.00292 0.7485 02.okt.58

02.okt.58 02.apr.59 0.5056 02.okt.58 02.apr.59 0.5056 1.00 0.5603% 0.00283 0.7465 02.apr.59

02.apr.59 02.okt.59 0.5083 02.apr.59 02.okt.59 0.5083 1.00 0.5460% 0.00278 0.7446 02.okt.59

02.okt.59 02.apr.60 0.5083 02.okt.59 02.apr.60 0.5083 1.00 0.5323% 0.00271 0.7427 02.apr.60

02.apr.60 04.okt.60 0.5139 02.apr.60 04.okt.60 0.5139 1.00 0.5191% 0.00267 0.7409 04.okt.60

04.okt.60 04.apr.61 0.5056 04.okt.60 04.apr.61 0.5056 1.00 0.5066% 0.00256 0.7391 04.apr.61

04.apr.61 03.okt.61 0.5056 04.apr.61 04.okt.61 0.5083 1.00 0.4948% 0.00250 0.7374 03.okt.61

03.okt.61 03.apr.62 0.5056 03.okt.61 03.apr.62 0.5056 1.00 0.4838% 0.00245 0.7358 03.apr.62

03.apr.62 02.okt.62 0.5056 03.apr.62 03.okt.62 0.5083 1.00 0.4735% 0.00239 0.7342 02.okt.62

02.okt.62 02.apr.63 0.5056 02.okt.62 02.apr.63 0.5056 1.00 0.4640% 0.00235 0.7326 02.apr.63

02.apr.63 02.okt.63 0.5083 02.apr.63 02.okt.63 0.5083 1.00 0.4552% 0.00231 0.7311 02.okt.63

02.okt.63 02.apr.64 0.5083 02.okt.63 02.apr.64 0.5083 1.00 0.4473% 0.00227 0.7295 02.apr.64

02.apr.64 02.okt.64 0.5083 02.apr.64 02.okt.64 0.5083 1.00 0.4401% 0.00224 0.7281 02.okt.64

02.okt.64 02.apr.65 0.5056 02.okt.64 02.apr.65 0.5056 1.00 0.4339% 0.00219 0.7266 02.apr.65

Table A.1: EURIBOR Forward Rates and OIS Discount Factors
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Credit Default Spreads

Date Recovery
31.mar.15 40 %

Instrument Quote Maturity Hazard-Rate
CDS 6M CP 0.120% 02.okt.15 0.203%
CDS 1Y CP 0.147% 02.apr.16 0.250%
CDS 2Y CP 0.233% 02.apr.17 0.393%
CDS 3Y CP 0.371% 02.apr.18 0.627%
CDS 4Y CP 0.444% 02.apr.19 0.750%
CDS 5Y CP 0.564% 02.apr.20 0.955%
CDS 7Y CP 0.730% 02.apr.22 1.243%
CDS 10Y CP 0.859% 02.apr.25 1.466%
CDS 15Y CP 0.896% 02.apr.30 1.526%
CDS 20Y CP 0.915% 02.apr.35 1.556%
CDS 30Y CP 0.927% 02.apr.45 1.574%

Table A.2: Credit Default Spreads



Appendix B

Portfolio Description

When describing the portfolios we consider we use the following notation

• Product is the type of derivative

• CCY is the currency of the underlying

• Index is the benchmark rate determining the floating leg

• Spread is an optional input, as the floating leg sometimes is quoted as the bench-
mark rate + a given spread

• Start is the time of contract initiation

• Maturity is the time of maturity of the contract

• Notional is the notional amount of the IRS which the interest payments are derived
from

• FR is the fixed rate of the IRS. If it is set at at the money (ATM) the fixed rate
equals the par swap rate

• Cap denotes the level of the strike for a capped IRS

• P. freq. is the payment frequency of the payer of the fixed leg in an IRS (A: annual,
S: semi-annual)

• R. freq. is the payment frequency of the payer of the floating leg in an IRS (A:
annual, S: semi-annual)
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Appendix C

Random Number Generation

The sequence of random numbers constituting the basis for a Monte-Carlo path, is gener-
ated by either a pseudo-random (standard) or a quasi-random algorithm 1. Both methods
are based on a deterministic sample of uniform random variables, but a quasi-random al-
gorithm is designed to distribute the realization of ”random” numbers more evenly on the
unit cube. The quasi-random method is designed to minimize the discrepancy between
the sample points, and is therefore called a low-discrepancy sequence. Ultimately, it will
result in a faster convergence of the Monte-Carlo simulation for a lower number of paths
than its pseudo-random counterpart[33]. The results in this thesis have been obtained by
sampling sequences of Sobol numbers.

1Excluding true random numbers
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Appendix D

C++ Implementation

D.1 Cheyette 4F Process Class Declaration

1

2 #ifndef quantlib cheyette 4F process hpp
3 #define quantlib cheyette 4F process hpp
4

5 #include <ql/stochasticprocess.hpp>
6 #include <ql/processes/eulerdiscretization.hpp>
7

8 namespace QuantLib {
9

10

11 class Cheyette4Fprocess : public StochasticProcess {
12 public:
13 Cheyette4Fprocess(Matrix corr, Real k1, Real k2, Real k3, ...

Real k4, Real theta,
14 Real b, std::vector<Time> time, std::vector<Time> dt, ...

std::vector<Date> dategrid,
15 boost::shared ptr<InterpolatedDiscountCurve<Linear>> disc,
16 boost::shared ptr<InterpolatedDiscountCurve<Linear>> euribor,
17 std::vector<LinearInterpolation>& lambda, DayCounter DC);
18

19 ////Displaced four factor Cheyette model
20 ////@{
21 Size size() const;
22 Disposable<Array> initialValues() const;
23 Disposable<Array> drift(Time t, const Array& x) const;
24 Disposable<Matrix> computeM(Time tenor) const;
25 Disposable<Matrix> computeG(Time t, Time T) const;
26 Disposable<Matrix> computeMint(Time tenor) const;
27 Disposable<Matrix> computeHf(Time t) const;
28 Disposable<Matrix> computeH(Time t) const;
29 std::vector<std::vector<Real>> computeCurves(Matrix& x, Time& ...

t, Matrix& xu) const;
30 Disposable<Matrix> computef(Matrix& f0, Matrix& xval, Matrix& ...

y) const;
31 Disposable<Matrix> diffusion(Time t, const Array& x) const;
32

89
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33 std::vector<std::vector<Real>> getDiscountSurface() {return ...
discountSurface ;};

34 std::vector<std::vector<Real>> getBondSurface() {return ...
bondSurface ;};

35 std::vector<Real> getInitialDiscountCurve() {return ...
initialDiscountCurve ;}

36

37 void interpolateLambda(std::vector<LinearInterpolation>& lambda);
38 void createInitialDiscountCurve
39 (boost::shared ptr<InterpolatedDiscountCurve<Linear>> ...

euribor,
40 boost::shared ptr<InterpolatedDiscountCurve<Linear>> disc);
41 //@}
42

43

44 private:
45 Real x01 ,x02 ,x03 ,x04 , k1 , k2 , k3 , k4 , theta , b ;
46 std::vector<Real> lambda1 , lambda2 , lambda3 , lambda4 ;
47 std::vector<Real> initialDiscountCurve , basis ;
48 Time timeSteps , T ; std::vector<Time> timegrid , dt ;
49 Matrix HHf , dec , Mint1 , Mint2 , Mint3 , Mint4 ;
50 mutable Size timeCounter;
51 mutable Matrix sigma , y ;
52 mutable std::vector<std::vector<Real>> bondSurface ;
53 mutable std::vector<std::vector<Real>> discountSurface ;
54 mutable Matrix x u;mutable Matrix sumDriftCorr;
55 boost::shared ptr<InterpolatedDiscountCurve<Linear>> disc ;
56 std::vector<Date> dateGrid;
57 DayCounter DC ;
58 };
59

60 }
61

62

63 #endif
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D.2 Cheyette 4F Process Class Implementation

1 #include <ql/processes/cheyette4Fprocess.hpp>
2 #include <ql/stochasticprocess.hpp>
3 #include <ql/processes/eulerdiscretization.hpp>
4

5 namespace QuantLib {
6

7

8 Cheyette4Fprocess::Cheyette4Fprocess( Matrix corr, Real k1,
9 Real k2, Real k3, Real k4, Real theta, Real b,

10 std::vector<Time> time,std::vector<Time> dt,
11 std::vector<Date> dategrid,
12 boost::shared ptr<InterpolatedDiscountCurve<Linear>> disc,
13 boost::shared ptr<InterpolatedDiscountCurve<Linear>> euribor,
14 std::vector<LinearInterpolation>& lambda, DayCounter DC)
15 : StochasticProcess(boost::shared ptr<discretization>(new
16 EulerDiscretization))
17 {x01 =0.0;x02 =0.0;x03 =0.0;x04 =0.0;Matrix tempX(4,1,0.0);
18 x u=tempX;sumDriftCorr=tempX;disc =disc;dateGrid=dategrid;
19 k1 =k1;k2 =k2;k3 =k3;k4 =k4;
20 theta =theta;b =b;Matrix tmp(4,4,0.0);y =tmp;
21 Matrix tmp2(4,4,0.0);sigma =tmp2;timeCounter=0;
22 dec =CholeskyDecomposition(corr,false);
23 HHf =inverse(computeHf(0.0));Mint1 =computeMint(0.5);
24 Mint2 =computeMint(2);Mint3 =computeMint(10);
25 Mint4 =computeMint(30);timegrid =time;
26 timeSteps =time.size();dt =dt;interpolateLambda(lambda);
27 createInitialDiscountCurve(euribor,disc);
28 T =time[time.size()-1];DC =DC;}
29

30 Size Cheyette4Fprocess::size() const {
31 return 4;
32 }
33

34 Disposable<Array> Cheyette4Fprocess::initialValues() const {
35 Array tmp(4,0.0);
36 return tmp;
37 }
38

39 void Cheyette4Fprocess::interpolateLambda
40 (std::vector<LinearInterpolation>& lambda) {
41

42 lambda1 .push back(lambda[0](0.0));
43 lambda2 .push back(lambda[1](0.0));
44 lambda3 .push back(lambda[2](0.0));
45 lambda4 .push back(lambda[3](0.0));
46

47 for (Size i = 0;i < timeSteps ;++i){
48 lambda1 .push back(lambda[0](timegrid [i]));
49 lambda2 .push back(lambda[1](timegrid [i]));
50 lambda3 .push back(lambda[2](timegrid [i]));
51 lambda4 .push back(lambda[3](timegrid [i]));
52 }
53
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54 }
55

56 void Cheyette4Fprocess::createInitialDiscountCurve
57 (boost::shared ptr<InterpolatedDiscountCurve<Linear>> euribor,
58 boost::shared ptr<InterpolatedDiscountCurve<Linear>> disc) {
59 boost::shared ptr<InterpolatedDiscountCurve<Linear>> eurptr = ...

euribor;
60

61 initialDiscountCurve .push back(1.0);
62 for (Size i = 0;i < timeSteps ;++i){
63 Real D = disc->discount(dateGrid[i+1]);
64 Real P = eurptr->discount(dateGrid[i+1]);
65 initialDiscountCurve .push back(D);
66 basis .push back(P/D);
67 }
68

69 }
70

71 Disposable<Array> Cheyette4Fprocess::drift(Time t, const Array& x)
72 const {
73 Array output(4);Matrix y = y ;
74 Matrix ones(4,1,1.0);
75

76 Matrix xval(4,1);
77 xval[0][0]=x[0];xval[1][0]=x[1];xval[2][0]=x[2];xval[3][0]=x[3];
78

79 Matrix kappa(4,4,0.0);
80 kappa[0][0] = k1 ;kappa[1][1] = k2 ;
81 kappa[2][2] = k3 ;kappa[3][3] = k4 ;
82

83 //Drift correction
84 Matrix XX = transpose(sigma )*sigma *computeG(t,T );
85

86 //Computing the drift term
87 Matrix temp = y*ones - kappa*xval - XX;
88

89 x u = xval + sumDriftCorr;
90 Matrix tempCorr = sumDriftCorr;
91 sumDriftCorr = tempCorr + XX*dt [timeCounter];
92

93 output[0] = temp[0][0];output[1] = temp[1][0];
94 output[2] = temp[2][0];output[3] = temp[3][0];
95

96 //Updating y
97 y = y + dt [timeCounter]*
98 (transpose(sigma )*sigma - kappa*y - y*kappa);
99

100 //Computing Euribor curve and discount curve
101 std::vector<std::vector<Real>> tempo = ...

computeCurves(xval,t,x u);//
102 discountSurface .push back(tempo[0]);
103 bondSurface .push back(tempo[1]);
104

105 timeCounter++;
106

107 if (timeCounter � timeSteps ){
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108 std::vector<Real> endBond;endBond.push back(1.0);
109 bondSurface .push back(endBond);
110 discountSurface .push back(endBond);
111

112 }
113

114 return output;
115 }
116

117 Disposable<Matrix> Cheyette4Fprocess::computeM(Time tenor) const {
118 Matrix M(4,1);
119 M[0][0] = exp(-k1 *tenor);M[1][0] = exp(-k2 *tenor);
120 M[2][0] = exp(-k3 *tenor);M[3][0] = exp(-k4 *tenor);
121

122 return M;
123 }
124

125 Disposable<Matrix> Cheyette4Fprocess::computeG(Time t, Time T) ...
const {

126 Matrix G(4,1);
127 G[0][0] = (T-t);G[1][0] = (1 - exp(-k2 *(T-t)))/k2 ;
128 G[2][0] = (1 - exp(-k3 *(T-t)))/k3 ;G[3][0] = (1 - ...

exp(-k4 *(T-t)))/k4 ;
129

130 return G;
131 }
132

133 Disposable<Matrix> Cheyette4Fprocess::computeMint(Time tenor) ...
const {

134 Matrix Mint(4,1);
135 Mint[0][0] = tenor;Mint[1][0] = (1 - exp(-k2 *tenor))/k2 ;
136 Mint[2][0] = (1 - exp(-k3 *tenor))/k3 ;Mint[3][0] = (1 - ...

exp(-k4 *tenor))/k4 ;
137

138 return Mint;
139 }
140

141 Disposable<Matrix> Cheyette4Fprocess::computeHf(Time t) const {
142 Matrix tmp(4,4);
143 tmp[0][0] = exp(-k1 *(0.5+t));tmp[0][1] = exp(-k2 *(0.5+t));
144 tmp[0][2] = exp(-k3 *(0.5+t));tmp[0][3] = exp(-k4 *(0.5+t));
145 tmp[1][0] = exp(-k1 *(2+t));tmp[1][1] = exp(-k2 *(2+t));
146 tmp[1][2] = exp(-k3 *(2+t));tmp[1][3] = exp(-k4 *(2+t));
147 tmp[2][0] = exp(-k1 *(10+t));tmp[2][1] = exp(-k2 *(10+t));
148 tmp[2][2] = exp(-k3 *(10+t));tmp[2][3] = exp(-k4 *(10+t));
149 tmp[3][0] = exp(-k1 *(30+t));tmp[3][1] = exp(-k2 *(30+t));
150 tmp[3][2] = exp(-k3 *(30+t));tmp[3][3] = exp(-k4 *(30+t));
151

152 return tmp;
153 }
154

155 Disposable<Matrix> Cheyette4Fprocess::computeH(Time t) const {
156 Matrix H(4,4,0.0);
157 H[0][0]=exp(-k1 *t);H[1][1]=exp(-k2 *t);
158 H[2][2]=exp(-k3 *t);H[3][3]=exp(-k4 *t);
159
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160 return H;
161 }
162

163 std::vector<std::vector<Real>> Cheyette4Fprocess::computeCurves
164 (Matrix& x, Time& t, Matrix& xu) const {
165 std::vector<Real> P;std::vector<Real> D;
166 std::vector<std::vector<Real>> output;
167

168 P.push back(1.0);D.push back(1.0);
169 for (Size i=timeCounter;i<timeSteps ;++i){
170 Matrix G = computeG(t,timegrid [i]);
171 Matrix tempDisc = transpose(G)*x + 0.5*transpose(G)*y *G;
172 Matrix tempBond = transpose(G)*xu + 0.5*transpose(G)*y *G;
173 //Computing the OIS bond price
174 Real OISbond = initialDiscountCurve [i+1]/
175 initialDiscountCurve [timeCounter]*exp(-tempDisc[0][0]);
176 //Computing the EURIBOR bond pirce
177 Real EURbond = initialDiscountCurve [i+1]/
178 initialDiscountCurve [timeCounter]*exp(-tempBond[0][0]);
179 D.push back(OISbond);
180 P.push back(EURbond*basis [i-timeCounter]);
181 }
182 output.push back(D);output.push back(P);
183

184 return output;
185 }
186

187 Disposable<Matrix> Cheyette4Fprocess::computef
188 (Matrix& f0, Matrix& xval, Matrix& y) const {
189 Matrix f(4,1);
190

191 ////Computing f(t,t+6M)
192 Time tenor1 = 0.5;
193 Matrix M1 = computeM(tenor1);
194

195 Matrix g1 = transpose(M1)*(xval + y*Mint1 );
196 f[0][0] = f0[0][0] + g1[0][0];
197

198 //Computing f(t,t+2Y)
199 Time tenor2 = 2.0;
200 Matrix M2 = computeM(tenor2);
201

202 Matrix g2 = transpose(M2)*(xval + y*Mint2 );
203 f[1][0] = f0[1][0] + g2[0][0];
204

205 //Computing f(t,t+10Y)
206 Time tenor3 = 10.0;
207 Matrix M3 = computeM(tenor3);
208

209 Matrix g3 = transpose(M3)*(xval + y*Mint3 );
210 f[2][0] = f0[2][0] + g3[0][0];
211

212 //Computing f(t,t+30Y)
213 Time tenor4 = 30.0;
214 Matrix M4 = computeM(tenor4);
215
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216 Matrix g4 = transpose(M4)*(xval + y*Mint4 );
217 f[3][0] = f0[3][0] + g4[0][0];
218

219 return f;
220

221 }
222

223 Disposable<Matrix> Cheyette4Fprocess::diffusion
224 (Time t, const Array& x) const {
225

226 //Resetting when a new simulation is starting
227 if (timeCounter � timeSteps ){
228 timeCounter = 0;
229 bondSurface .clear();
230 discountSurface .clear();Matrix tempo(4,1,0.0);
231 sumDriftCorr=tempo;x u=tempo;
232 Matrix tmp(4,4,0.0);y =tmp;
233 }
234

235 Matrix xval(4,1);Matrix y = y ;
236 xval[0][0] = x[0];xval[1][0] = x[1];xval[2][0] = ...

x[2];xval[3][0] = x[3];
237

238 //Picking the f(0,t+d i) from the interpolated input yield curve
239 Matrix f0(4,1);
240 f0[0][0]=disc ->
241 zeroRate(dateGrid[timeCounter]+Period(6,Months),DC ,Simple);
242 f0[1][0]=disc ->
243 zeroRate(dateGrid[timeCounter]+Period(2,Years),DC ,Simple);
244 f0[2][0]=disc ->
245 zeroRate(dateGrid[timeCounter]+Period(10,Years),DC ,Simple);
246 f0[3][0]=disc ->
247 zeroRate(dateGrid[timeCounter]+Period(30,Years),DC ,Simple);
248

249 //Computing the instantaneous forward rate vector [f i(t,t+d i)]
250 Matrix f = computef(f0,xval,y);
251

252 //Local volatility function sigma f for each state variable
253 Matrix sig(4,4,0.0);
254 Real sig1 = lambda1 [timeCounter]*
255 (b *f[0][0] + (1-b )*f0[0][0] + 0.01);
256 Real sig2 = lambda2 [timeCounter]*
257 (b *f[1][0] + (1-b )*f0[1][0] + 0.01);
258 Real sig3 = lambda3 [timeCounter]*
259 (b *f[2][0] + (1-b )*f0[2][0] + 0.01);
260 Real sig4 = lambda4 [timeCounter]*
261 (b *f[3][0] + (1-b )*f0[3][0] + 0.01);
262 sig[0][0] = sig1;sig[1][1] = sig2;
263 sig[2][2] = sig3;sig[3][3] = sig4;
264

265 //Computing the volatility structure sigma r(t)
266 sigma = transpose(HHf *sig*dec );
267 Matrix sigmaT = transpose(sigma );
268

269 return sigmaT;
270 }
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271

272 }
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D.3 CVA Calculation function - Proxy approach

1 std::vector<Real> cvaCalc(const std::vector<std::vector<Real>> &value,
2 const Real &recovery,Date &valuationDate,
3 const std::vector<Time>& time grid,
4 const DayCounter &DC,
5 const int& N,
6 const std::vector<std::vector<Real>>& numeraire){
7

8 ///////////////Probability of Defaults/////////////////////////////
9

10 std::vector<Rate> hazardRates;
11 std::vector<Date> hazDates;
12

13 hazardRates.push back(0.041666667);
14 hazardRates.push back(0.066666667);
15 hazardRates.push back(0.083333333);
16 hazardRates.push back(0.1000000);
17 hazardRates.push back(0.116666667);
18

19 hazDates.push back(valuationDate+Period(1,Years));
20 hazDates.push back(valuationDate+Period(3,Years));
21 hazDates.push back(valuationDate+Period(5,Years));
22 hazDates.push back(valuationDate+Period(7,Years));
23 hazDates.push back(valuationDate+Period(10,Years));
24

25 InterpolatedHazardRateCurve<Cubic> ...
HazardRateCurve(hazDates,hazardRates, DC);

26

27 std::vector<Probability> PD;
28

29 for(int t =1; t<time grid.size();++t){
30 PD.push back(HazardRateCurve.defaultProbability(time grid[t-1],
31 time grid[t],true));
32 }
33

34

35 //////////////Calculating CVA and standard error////////////////////
36 std::vector<Real> CVA;
37 Real mean = 0;
38 Real CVAsum;
39

40

41 for( int p = 0; p<N;++p){
42 CVAsum =0.0;
43 for(int t = 1;t<time grid.size()-1;++t){
44

45 if(value[p][t]>0){
46 CVAsum +=PD[t]*value[p][t]/numeraire[p][t];}
47 }
48 CVAsum = CVAsum*numeraire[0][0]*(1-recovery);
49 CVA.push back(CVAsum);
50 mean += CVAsum;
51 }
52
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53 mean =mean/N;
54

55

56 Real stdev =0;
57 for(int p =0; p<N;++p){
58 stdev += (CVA[p]-mean)*(CVA[p]-mean);
59 }
60 stdev = stdev/N;
61 Real se = std::sqrt(stdev/N);
62

63

64

65 std::vector<Real> results;
66 results.push back(mean);
67 results.push back(se);
68 results.push back(mean-1.96*se);
69 results.push back(mean+1.96*se);
70 return results;
71 };
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D.4 CVA Calculation function - CVA Notional

1 std::vector<Real> CVAntl calc(const std::vector<std::vector<int>> ...
&indicator,

2 const Real &recovery,Date &valuationDate,
3 const std::vector<Time>& time grid,
4 const DayCounter &DC,
5 const std::vector<std::vector<boost::shared ptr<CashFlow>>>& CF cube,
6 const std::vector<std::vector<Real>> &numeraire,
7 const int& N){
8

9 ///////////////Probability of Defaults/////////////////////////////
10

11 std::vector<Rate> hazardRates;
12 std::vector<Date> hazDates;
13

14 hazardRates.push back(0.041666667);
15 hazardRates.push back(0.066666667);
16 hazardRates.push back(0.083333333);
17 hazardRates.push back(0.1000000);
18 hazardRates.push back(0.116666667);
19

20 hazDates.push back(valuationDate+Period(1,Years));
21 hazDates.push back(valuationDate+Period(3,Years));
22 hazDates.push back(valuationDate+Period(5,Years));
23 hazDates.push back(valuationDate+Period(7,Years));
24 hazDates.push back(valuationDate+Period(10,Years));
25

26

27

28 InterpolatedHazardRateCurve<Cubic> ...
HazardRateCurve(hazDates,hazardRates, DC);

29 std::vector<Probability> PD;
30

31 for(int t =1; t<time grid.size();++t){
32 PD.push back(HazardRateCurve.defaultProbability(time grid[t-1],
33 time grid[t],true));
34 }
35

36

37 ///////////////Calculating CVA and standard error////////////////////
38 Real CVAsum;
39 Real mean;
40

41 std::vector<Real> CVA;
42 std::vector<Real> CVAntl;
43 CVAntl.resize(time grid.size());
44 CVAntl[0] = 0.0;
45

46 for( int p= 0;p<N;++p){
47 CVAsum =0.0;
48

49 for(int i=1;i<time grid.size()-1;++i){
50 CVAntl[i]=CVAntl[i-1] +indicator[i][p]*PD[i];
51 out<<CVAntl[i]<<",";}
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52

53

54 for( int t =1;t<time grid.size()-1;++t){
55 CVAsum +=(CVAntl[t]*CF cube[p][t]->amount())/numeraire[p][t];
56 }
57

58 CVAsum = CVAsum*numeraire[0][0]*(1-recovery);
59 CVA.push back(CVAsum);
60 mean += CVAsum;
61

62 }
63

64

65 mean = mean/N;
66 Real stdev =0;
67

68

69 for(int p =0; p<N;++p){
70 stdev += (CVA[p]-mean)*(CVA[p]-mean);
71 }
72 stdev = stdev/N;
73

74 Real se = std::sqrt(stdev/N);
75

76 std::vector<Real> results;
77 results.push back(mean);
78 results.push back(se);
79 results.push back(mean-1.96*se);
80 results.push back(mean+1.96*se);
81

82

83

84

85 return results;
86 };
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