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Problem description

Can real options analysis uncover additional value compared to traditional capital budgeting

methods when evaluating an investment in a post-smolt facility under technology and profit

uncertainty?
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Abstract

The Norwegian salmon farming industry is struggling with sea lice and diseases. This makes

the authorities reluctant to allow an increase in production despite of a growing demand. A

measure which can enable better utilization of the existing production limits is post-smolt

production. Companies are however hesitant to invest, as post-smolt production is on an

early development stage, and there is uncertainty related to the technology and the price

development of post-smolt. When uncertainty is high, empirical research indicates that real

options analysis is more accurate than the traditional DCF method, which is the industry

standard.

In this thesis we examine if multi-factor real options analysis can uncover excess value com-

pared to traditional DCF analysis by evaluating an investment in post-smolt production.

Using dynamic programming we develop two multi-factor models enabling us to isolate and

analyse the e↵ects of two forms of technological uncertainty combined with profit uncer-

tainty. Technological uncertainty is modelled as the arrival of an innovation that either

reduces investment cost or increases production e�ciency. The innovation arrival is de-

scribed by a Poisson process, while profits follow a geometric Brownian motion. To solve

the models we develop numerical procedures based on finite di↵erences and algorithms solv-

ing sets of nonlinear equations.

Our results show that real options valuation uncovers significant excess value compared to

the DCF method, implying that inaccurate valuations could lead salmon farming companies

into rejecting sensible business opportunities such as post-smolt production. Our recom-

mendation is however that real options valuation should be used as a complement to, and

not a substitute for traditional DCF analysis as the real options models require simplifying

assumptions to be mathematically tractable. Additionally we show that the salmon farm-

ing company has stronger incentives to delay investment when the benefits of technological

innovations cannot be gained if they arrive after the investment is undertaken, implying

that investment strategy is greatly influenced by how technological uncertainty is modelled.
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Sammendrag

Den norske laksebransjen sliter med lus og andre sykdommer. Myndighetene er derfor

motvillige til å tillate økt produksjon, til tross for økende etterspørsel. Et tiltak som

gjør det mulig å utnytte de eksisterende produksjonsrammene bedre er postsmoltproduk-

sjon. Likevel er selskapene motvillige til å investere, da postsmoltproduksjon er i en tidlig

utviklingsfase, og det er stor usikkerhet knyttet til teknologien og utviklingen til marked-

sprisen p̊a post-smolt. N̊ar usikkerheten er høy, viser empirisk forskning at verdsettelse

ved bruk av realopsjoner er mer presist enn den tradisjonelle kontantstrømsmetoden som

er bransjestandarden.

I denne oppgaven undersøker vi om flerfaktor realopsjonsanalyse kan avdekke merverdi sam-

menlignet med kontantstrømsmetoden ved å evaluere en investering i postsmoltproduksjon.

Ved hjelp av dynamisk programmering utvikler vi to flerfaktor-modeller som tillater oss å

isolere og analysere e↵ekten av to typer teknologisk usikkerhet kombinert med usikkerhet i

profitt. Teknologisk usikkerhet er modellert som ankomsten av en innovasjon som enten re-

duserer investeringskostnaden eller øker produksjonse↵ektiviteten. Ankomsten av tekniske

innovasjoner er modellert som en Poisson-prosess, mens profitt er modellert som geometrisk

brownske bevegelser. For å løse modellene har vi utviklet numeriske metoder basert p̊a

endelig-di↵eranse-metoden (finite di↵erence method) og algoritmer for å løse systemer av

ikke-lineære ligninger.

Resultatene viser at realopsjonsanalyse avdekker betydelig merverdi sammenlignet med

tradisjonell kontantstrømsanalyse, hvilket i praksis impliserer at unøyaktige verdivurderinger

kan føre til at oppdrettsselskaper avst̊ar fra potensielt fornuftige investeringer som postsmolt-

produksjon. Likevel anbefaler vi å bruke realopsjonsanalyse som et komplement og ikke et

substitutt for kontantstrømsanalyse da realopsjonsmodeller krever forenklende antagelser

for å være matematisk løsbare. I tillegg viser vi at oppdrettsselskapet har sterkere insen-

tiver til å utsette en investering dersom det ikke f̊ar fordelene av teknologiske nyvinninger

som ankommer etter at investeringen er foretatt. Dette tyder p̊a at investeringsstrategien

p̊avirkes av hvordan teknologisk usikkerhet modelleres.
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Chapter 1

Introduction

The salmon farming industry is one of Norway’s largest and most important industries.

Global demand for salmon is increasing, but due to biological challenges, the supply is con-

strained. Farmers struggle with fish diseases and sea lice, resulting in an average annual

mortality rate of up to 20 percent, and at the same time forces companies to spend millions

of NOK on medical treatments every year. The high mortality rate also makes the Norwe-

gian authorities reluctant to allow an increase in the production of salmon. The authorities

control production by awarding companies production licenses. Each license gives the right

to keep a certain maximum volume of fish at sea at all times, referred to as the maximum

allowed biomass (MAB). Companies strive to maximise the utilisation of their MAB, i.e.

the utilisation of available production capacity, as this increases profits. Traditionally the

salmon is slaughtered at an individual weight of 4-6 kg, and the sea cages are refilled with

smolt weighing around 150 grams. To allow the smolt to reach slaughtering weight without

the MAB being exceeded, the number of smolt set out approximately equals the number of

fish slaughtered. As a result, total biomass standing at sea drops and the MAB utilisation

decreases. Given these challenges, the Norwegian industry is desperate for measures that

can enable better fish health and increased production without violating regulations.

One of the measures considered is post-smolt production, which involves growing the salmon

larger in a protected environment, e.g. tanks on-land or in the sea, before moving it into

traditional sea cages. This has two main benefits: First, the fish is more robust when moved

into sea cages, and by shortening the seawater production period, accumulated mortality

and need for expensive medical treatments is reduced. Second, replacing fish at slaughtering

weight by post-smolt increases the MAB utilisation. As post-smolt production can increase

both profits and fish welfare, it is expected to be beneficial from both an economic and

ethical perspective. However, post-smolt technology is still in a development phase, and

1



CHAPTER 1. INTRODUCTION

many of its benefits are expected rather than certain.

Companies are currently debating if an investment is economically justifiable. As post-

smolt production is on an early stage in terms of R&D, there is a high level of uncertainty

related to important factors such as the cost and performance level of the technology. In

addition, there is uncertainty in operating profits. Traditionally, the primary method used

by companies to evaluate investments is discounted cash flow analysis (DCF). However,

empirical research indicates that traditional methods result in inaccurate valuations when

there is high uncertainty related to an investment. Traditional methods only reflect the

downside of uncertainty, while disregarding the upside potential. Consequently, decision

makers risk rejecting sensible business opportunities. A method that allows to account for

the upside potential of uncertainty is real options valuation (ROV), which has its roots in

financial option pricing. As the investment in a post-smolt facility is subject to both price

and technology uncertainty, our hypothesis is that a real options analysis will uncover addi-

tional value compared to traditional capital budgeting methods. This leads to the following

problem definition:

Can real options analysis uncover additional value compared to traditional capital budgeting

methods when evaluating an investment in a post-smolt facility under technology and profit

uncertainty?

We aim to solve this problem by proposing real options models. The intrinsic value of the

option is treated as an approximate to the net present value given by a simplistic DCF

analysis with no explicitly forecast cash flows, and perpetuity growth from year one. We

determine how the combination of technology and profit uncertainty a↵ect the optimal

investment strategy by developing forefront multi-factor models. In addition to a quanti-

tative comparison, we compare DCF and ROV based on existing academic literature. Our

main contribution is threefold: 1) We examine the potential of real options valuation in

salmon farming; 2) We extend the real options theory within the area of theoretical multi-

factor models; 3) We apply real options valuation to a specific post-smolt investment case,

thereby adding to the ongoing discussion of the economic viability of post-smolt production.

First, to the best of our knowledge, we are among the first to examine the potential of
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CHAPTER 1. INTRODUCTION

real options valuation within salmon farming. The majority of academic literature focuses

on the biology rather than the economics of salmon farming. The few available economic

papers are based either on traditional capital budgeting methods or optimisation of opera-

tions (see e.g. Forsberg and Guttormsen (2006); Langan and Toftøy (2011); Hæreid (2011);

Hannevik et al. (2014)). We have contributed to the salmon farming industry by providing

study giving intuition on how uncertainty in technology and profits a↵ects an investment

in post-smolt production.

Second, multi-factor real options models are a recent development in theoretical real op-

tions literature. Hence developing these models further is an important contribution. By

developing two multi-factor real options models, we have captured di↵erent aspects of in-

vesting under technology and profit uncertainty. We adapt the model for investment under

technology and revenue related uncertainty proposed by Murto (2007) to the case of post-

smolt investment. We extend the work by constructing a numerical procedure that allows

us to solve the model. Additionally, we apply real options techniques originally proposed in

papers considering investment in power generation plants under policy uncertainty, to an

investment under technological uncertainty. Adkins and Paxson (2013) and Chronopoulos

et al. (2015) consider an investment in a power generation plant with the possible sudden

provision or retraction of a government subsidy. The subsidy is a cash payment proportional

to the revenues of the firm and is only received if it is introduced before the investment is

made. Adkins and Paxson (2013) consider uncertainty in both price and quantity, whereas

Chronopoulos et al. (2015) only consider price uncertainty while finding optimal quantity.

We find that the sudden provision of a subsidy resembles the arrival of a technological in-

novation, enabling us to adapt and apply the frameworks of Adkins and Paxson (2013) and

Chronopoulos et al. (2015) to an investment under technological uncertainty. One impor-

tant di↵erence between a subsidy and a technological innovation is that the subsidy cannot

be gained after the investment is made. We therefore extend their models so that they fit

our case, where the benefit of a technological innovation is gained also after the investment

is made.

Third, due to the high degree of uncertainty related to post-smolt production technology,

the industry is reluctant to undertake investments. Currently the industry relies on tradi-

tional capital budgeting methods that only treats the downside potential of uncertainty. We
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CHAPTER 1. INTRODUCTION

contribute by proposing multi-factor real options models that also capture the upside poten-

tial of the uncertainty embedded in post-smolt production. As there is little available data

related to post-smolt production and market prices, the models’ underlying assumptions

and parameters have been chosen in close collaboration with both biological researchers

and representatives from the industry majors. Thus, our results represent a serious contri-

bution to further discussions of the economical viability of post-smolt production.

The thesis is organised as follows: In Chapter 2 we present the most important risks and reg-

ulations in traditional salmon farming, and elaborate on the motivation behind post-smolt

production. In Chapter 3 we compare the traditional DCF and the real options approach

based on existing academic literature. Additionally we give a summary of work related to

multi-factor real options modelling and technological uncertainty. In Chapter 4 we present

some of the mathematics that form the basis for the models presented in Chapter 5. In

Chapter 6 we quantify the parameters used in the case study. In Chapter 7 we present a

post-smolt case study, and test the sensitivity of the results to changes in the input param-

eters. In Chapter 8 we discuss our main contributions w.r.t. related literature, as well as

the model assumptions and practical applicability, before we draw conclusions and make

suggestions for further research in Chapter 9.
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Chapter 2

Traditional salmon farming and post-

smolt production

In this chapter we present the most important sources of uncertainty and regulations in

salmon farming, and elaborate on the motivation behind post-smolt production. Addition-

ally we discuss why it is currently not implemented on a large scale by the industry. To

form a basis for the chapter we illustrate the traditional value chain in Figure 2.1 below.

Figure 2.1: Value chain in traditional salmon farming. Source: Marine Harvest Group

(2014)

Post-smolt production reduces the seawater production phase. For extended information

about the traditional value chain, post-smolt production and the salmon market we refer

to Hannevik et al. (2014).
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CHAPTER 2. TRADITIONAL SALMON FARMING AND POST-SMOLT
PRODUCTION

2.1 Risk in traditional salmon farming

To understand the motivation behind post-smolt production it is important to look at the

risk factors inherent in traditional salmon farming. In the following we distinguish between

production risk and price risk. For further elaboration on risk in salmon farming we refer

to Tveteraas (1999).

Production risk

• Sea lice: Sea lice are small parasites that live naturally in the top layer of the sea

water. They stick to the salmon, and feed from its skin and flesh. The wounds may

become infected by bacterias or viruses in the water, or from the lice itself. Salmon

farming companies have di↵erent methods of cleaning the fish for lice, most of which

are costly and involve the use of chemicals that a↵ect the ecosystem around the sea

cages. Extensive use of chemicals has also proven to lead to resistant lice. Handling

sea lice is currently one of the main challenges of the salmon farming industry. It

is subject to substantial investments in R&D with the objective of developing more

e�cient and environment friendly techniques for cleaning the fish. An additional

concern is the spreading of lice to wild salmon in close proximity to facilities.

• Diseases: Diseases that spread via the water or via sea lice pose a big risk to farmers,

and may wipe out large quantities of fish at a time. To reduce the infection risk it is

necessary to control fish density, and keep a safe distance between localities.

• Escapes: Holes in the net pens may cause large quantities of salmon to escape. This

has an impact on profitability in two ways: the farmer loses live stock and thus income,

and additionally is required by the authorities to undertake measures to prevent the

farmed salmon from spreading to the natural habitats of the threatened wild salmon.

• Water temperature: The salmon is a cold-blooded animal, and therefore the growth

rate of the fish is heavily influenced by the water temperature. Temperature can also

a↵ect fish health - disease risk increases with the temperature, and temperatures below

0 �C can cause mass mortality.

• Water quality: The oxygen and salinity levels in the water, as well as numerous

other parameters can impact fish growth. These values may vary along with the
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exchange rate of the water in the sea cage.

Price risk

The price of fresh salmon is determined by a number of di↵erent factors, such as supply and

demand, globalisation of the market, presence of forward contracts reducing the amount of

salmon available on the spot market, and fish quality. Prices are highly volatile, and impose

a high level of uncertainty to all parties involved in the market (Marine Harvest Group,

2014).

Fresh salmon can be bought through both bilateral contracts, or marketplaces such as

the Oslo Stock Exchange owned Fish Pool. Fish Pool was established as late as in 2007,

hence there is not enough historical price data to make accurate predictions of the price

development. Dixit and Pindyck (1994) for example argue that 30-40 years of price data is

required in order to draw conclusions about the structure of the price dynamics.

2.2 Regulations of salmon aquaculture

The farming of fish, shellfish and other seafood is strictly regulated by the authorities, with

the main objective of ensuring sustainable operations. Conditions for obtaining a farming

license and matters related to the use of land and the environment are regulated by the

Aquaculture Act. In addition, the Animal Welfare Act ensures the welfare of the fish. In

this section we focus on the regulations that support the prospect of post-smolt production.

• Farming licenses: The Norwegian Ministry of Trade, Industry and Fisheries awards

licenses to companies allowing them to produce salmon on a commercial scale. The

number of licenses available is limited (959 in 2013 (Marine Harvest Group, 2014)).

Each license gives the right to keep a certain maximum volume of fish at sea at all

times, referred to as the maximum allowed biomass (MAB). Currently the limit is 780

tonnes per license. Production in closed systems currently has no similar regulations.

• Sea lice: In temperatures equal to or above 4 �C, the salmon farmer is legally required

to count the number of sea lice per fish every seven days. Should the number exceed

0.5 adult female lice on average per fish, measures such as chemical treatment, or so-
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called delicing, need to be adopted. At worst the fish would need to be prematurely

harvested.

• Fallowing localities: After each production cycle, every production locality must

be emptied and fallowed for at least two months before starting a new cycle. This is

in order to minimise the infection risk between batches.

For further details on the regulations of salmon farming and aquaculture we refer to the

Aquaculture Act and the Animal Welfare Act.1

2.3 Post-smolt production - the future of salmon farming?

The growth in the production of farmed salmon is diminishing, whereas demand is in-

creasing (Marine Harvest Group, 2014). The market imbalance does not originate from

production reluctance among the farming companies, but is a matter of regulations. Until

recently, post-smolt production was not an option as government regulations stated that

hatchery-reared salmon should not have an individual weight exceeding 250 grams before

being set into traditional sea cages. As of 2012 however, the Ministry of Fisheries can award

holders of hatchery permits licenses to produce smolt with an individual weight of up to

1000 grams in closed or semi-closed tanks on land or in the sea. This makes post-smolt pro-

duction possible, and is by many industry actors and researchers highlighted as a possible

solution to the market imbalance problem.

Post-smolt production has two main benefits: First, the smolt is allowed to grow larger in

a protected environment before being set into traditional sea cages. This is beneficial in

several ways. The time spent in seawater is shortened by approximately six months (from

18 to 12 months) (Berglihn, 2015). This leads to a reduction in the accumulated mortality,

as the seawater is the most lice and disease prone environment in the production cycle. In

traditional salmon farming, as much as 20 percent of the fish die before reaching slaugh-

tering weight. In comparison, industry majors claim to have achieved mortality rates of

1See www.lovdata.no/dokument/NL/lov/2005-06-17-79 and www.lovdata.no/dokument/NL/lov/2009-
06-19-97
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1-2 percent under optimal conditions in post-smolt facilities. Given the regulations on sea

lice (see Section 2.2), the farming companies could expect to save at least one delicing per

production cycle, which according to Norwegian company SalMar can cost around NOK

300,000 per cage. Additionally, more time would be available for fallowing, which means

less risk of vertical transmission of pathogens (Kverneland, 2011). Keeping the fish in a

closed environment also eliminates the risk of escapes during the first phase of the produc-

tion cycle. Finally, a higher growth rate and generally better fish welfare can be achieved

by maintaining an optimal water quality.

Second, in order to maximise production e�ciency and profits, salmon farmers strive to

maximise their MAB utilisation. Currently post-smolt production represents a large po-

tential for improvement of the utilisation. To exemplify this we consider a hypothetical

scenario in which a company has one production license and holds 156,000 salmon at sea

with an individual weight of 5 kg, amounting to a total of 780 tonnes, i.e. the MAB for one

license. When the salmon is slaughtered, it is replaced by 156,000 smolt with an individual

weight of 150 grams. The company’s total biomass standing at sea would then be only

23.4 tonnes, hence there would be a significant decline in the total standing biomass. This

decline would however be necessary to let the smolt reach an individual weight of 5 kg

without the MAB being exceeded. However, by replacing the 5 kg salmon by post-smolt

with an individual weight of e.g. 400 grams instead of the 150 grams smolt, the decline

would be reduced.2 Note again that this is a hypothetical example. In reality the drop is

not as significant, as not all the fish is slaughtered simultaneously. Figure 2.2 illustrates the

potential for better MAB utilisation.

2A discussion of the optimal post-smolt weight will be conducted in Chapter 6
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Figure 2.2: Average MAB utilisation in Norway 2010-2014. The solid line represents the

average biomass standing at sea relative to the MAB. Source: Nordhammer (2015)

Even though there are strong arguments for post-smolt production in terms of reducing

production risk and improving the production e�ciency given by the MAB utilisation, it

still involves a lot of technological uncertainty that is not inherent in traditional salmon

farming. The technology used in post-smolt production is in a development phase, and

many of the benefits are expected rather than certain. The performance and reliability

of the current technology is for instance yet to be proved on a large scale. Additionally

the acquiring cost of the equipment is subject to change. Finally, it is more expensive to

produce salmon in closed systems compared to traditional sea cages.

Currently, there are two competing post-smolt production technologies. After discussing

with industry representatives at the conference ”Smolt production in the future” arranged

by Nofima3 we have the impression that Recirculating Aquaculture Systems (RAS) is the

industry’s preferred technology, as opposed to flow through systems. There are several sup-

pliers of RAS technology, such as AKVA group, Kruger Kaldnes and Billund Aquaculture,

creating high competition for the few available contracts in the market.

3Nofima is one of the largest institutes for applied research within the fields of fisheries, aquaculture and
food research in Europe.
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Recirculating Aquaculture Systems are closed-loop production systems for land-based fish

farming (Figure 2.3 illustrates a typical RAS). The system recycles about 99.5 percent of

the water in the system. This enables large-scale fish farming on land with minimal water

usage. The main advantage is the ability to maintain optimal water quality with less e↵ort

than if the water was not recycled. Ensuring high water quality is beneficial in terms of

increased growth. The main disadvantage is that the technology is fairly new, and yet

to be proven on a commercial scale. Therefore there is high uncertainty related to the

performance of the current technology as well as the introduction of any new and improved

technology.

Figure 2.3: Recirculation Aquaculture System by AKVA group
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Chapter 3

Related literature

In this chapter we compare the traditional DCF and the real options approach based on

relevant academic literature. Additionally we give an overview of work related to multi-

factor real options modelling and technological uncertainty.

3.1 Comparison of valuation methods

In this section we elaborate on the DCF and the real options approach, before comparing

them based on relevant literature.

Discounted cash flow analysis

The traditional tool applied to capital budgeting is the DCF method. The DCF analysis is a

static approach, i.e. the underlying assumption is that the option to invest is a now-or-never

opportunity. The DCF method suggests investing if a project has a positive net present

value (NPV), i.e. if the discounted expected cash flows are larger than the investment cost.

The following formula displays the mathematics of a DCF valuation:

NPV =
T

X

t=1

CF

t

(1 + r)t
�K0,

where CF

t

is the cash flow at time t, r is the discount rate, K0 is the initial investment cost

and T is the time of the final cash flow. The company’s key value drivers, such as price,

quantity and gross profit should be explicitly forecast for all the years the annual cash flows

are projected. However, when exceeding a certain number of years, all estimations of value

drivers become imprecise. Therefore a perpetuity-based formula is applied to determine the
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continuation value of the investment. The continuation value is calculated following the

principles of a geometric series in perpetuity:

Continuation value
T

=
CF

T+1

r � g

,

where g denotes the expected long-term growth rate of the firm’s cash flows. The total

value of the business is then simply the sum of the annual cash flows and the continuation

value discounted to the present:

Value of operations = PV(CF during explicit forecast period) + PV(Continuation Value)

=
T

X

t=1

CF

t

(1 + r)t
+

1

(1 + r)T
CF

T+1

r � g

.

In our case study the intrinsic value of the option is treated as an approximate to the net

present value given by a DCF analysis with no explicitly forecast cash flows. This entails

that we use the continuation value with perpetuity growth from year one. Mun (2006)

summarises the main advantages of the DCF method:

• Clear consistent decision criteria for all projects.

• Same results regardless of risk preferences of investors.

• Simple to explain to management: ”If benefits outweigh the costs, do it!”

Under traditional investment methods such as DCF, uncertainty is treated as a negative

factor (Carayannis and Sipp, 2010). Higher uncertainty leads to a higher discount rate,

which in turn reduces the present value of the investment. In reality most of the projects or

investments corporate managers face are naturally associated with high uncertainty. Yet,

these projects can represent good investment opportunities. This can become more apparent

when the projects are evaluated using the real options approach.
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Real options analysis

A financial option is a contract that gives the buyer the right, but not the obligation, to

buy or sell the underlying asset at a specific price on or before a specific date. Similarly, a

real option is the right, but not the obligation, to undertake a certain investment decision

on or before a specified date (Myers (1977); Bowman and Hurry (1993)). A real option is

therefore not a financial instrument, but an actual option the decision maker faces (Dixit

and Pindyck, 1994). The option to delay or abandon an investment opportunity are exam-

ples of real options. Like its financial counterpart, the main value driver of a real option,

is uncertainty. As opposed to traditional valuation methods where uncertainty is treated

solely as a negative factor, real options valuation captures both the upside and the down-

side potential of uncertainty. The uncertainty is determined by the volatility of the option’s

underlying and the time to maturity. However, unlike for financial options, there is usually

no straightforward options formula one can apply to evaluate real options.

Empirical research indicates that the DCF method result in inaccurate valuations when

there is high uncertainty related to the value of an investment. This inaccuracy can be

reduced by using real options valuation, however critics pose several challenges associated

with its application. In the following we discuss the methods based on relevant literature.

Choosing valuation method

Van Putten and MacMillan (2004) presents the notion of an “option zone” in projects

with uncertainty (see Figure 3.1), which is described as the area where the DCF value is

modestly positive. This ”zone” represents an area where application of real options analysis

is particularly suited to determine whether projects are attractive investment opportunities,

or should be discarded.
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Figure 3.1: The ”option zone”: In time 1 there is high uncertainty, hence the option value

component of Project A dominates. In time 2 there is less uncertainty, hence the DCF value

component dominates.

Figure 3.1 presents the project value as consisting of two parts: an option value component,

and a DCF value component. For a project with even a modest degree of uncertainty, as

much as 50 percent of the total project value can stem from the option value component.

As the salmon farming company in our case is considering an investment under uncertainty

w.r.t. both profits and technology, the Van Putten and MacMillan (2004) model makes

a strong argument for the use of a real options approach. Koller et al. (2010) share this

idea of the “option zone”, by claiming that including flexibility in a project valuation is

most important when the project’s NPV is close to zero. Koller et al. (2010) also choose

to distinguish between the flexibility and uncertainty inherent in a real option. They claim

that in order to exploit the value of uncertainty, one needs managerial flexibility, i.e. ability

to respond to new information. This is illustrated in Figure 8.1
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Figure 3.2: The value of a real option is high when uncertainty is high, and the management

have the ability to respond to new information

We acknowledge that the advocates of real options valuation make compelling arguments

for its use. Not only does it provide more accurate project value than traditional methods

when there is uncertainty, but it also tells managers how to act in the future in response to

new information. But, however much praised by academics, the real options approach has

not had a breakthrough in corporate valuation (Graham and Harvey, 2001). Lander and

Pinches (1998) propose three possible reasons:

1. The required modeling assumptions are often violated in a practical real options ap-

plication,

2. The necessary additional assumptions required for mathematical tractability limit the

scope of applicability,

3. The types of models currently used are not well known or understood by corporate

managers and practitioners.

Van Putten and MacMillan (2004) state several additional challenges for applying current

option valuation models to real projects. One problem is that it is hard to find good proxies

for the input variables the real options models require. One example is the estimation of
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volatility. For financial options it is quite straightforward to calculate volatility using the

historical prices of the underlying assets. For real projects however, data about historical

prices rarely exist, and consequently calculating a realistic volatility is di�cult.

Bodén and Åhlén (2007) perform a study of implementation impediments of ROV through

literature research and interviews. They find that there does not seem to be a common

standard for which assumptions can be made when applying ROV. Moreover, there exists

little knowledge on the accuracy of ROV under di↵erent modeling assumptions. This fact

seem to decrease the willingness of real-world practitioners to adopt the real options frame-

work. Furthermore, Bodén and Åhlén (2007) argue that companies are not searching for

capital budgeting methods that value flexibility to such a large extent as many academics

propose.

In terms of choosing valuation method Van Putten and MacMillan (2004) and Luehrman

(1998) emphasize that DCF and real options analysis are not mutually exclusive approaches

to valuation. They conclude that real options valuation should be used as a complement

to, and not a substitute for DCF analysis. Guthrie (2009) takes a firmer stance than

Luehrman (1998) and Van Putten and MacMillan (2004) by claiming that a real options

approach should replace a static DCF approach fully in cases where the decision-making

process will be carried out over time.

3.2 Technological uncertainty and multi-factor modelling

We consider an investment in a facility where there is uncertainty about the underlying

technology. Hence it is important to understand how technological uncertainty can a↵ect

investment decisions. As we wish to model profit uncertainty in addition to technological

uncertainty, we also need to develop an understanding of multi-factor modelling. In this

section we therefore review literature written on real options analysis under technological

uncertainty and multi-factor modelling.

Farzin et al. (1998) use real options analysis to determine the optimal timing of technology

adoption for a competitive firm which faces a stochastic innovation process with uncertainty

in both the arrival rate and the magnitude of technological innovations. They argue that
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the technology adopter must weigh the cost of investing prematurely given the possible

arrival of further improved technology, against the opportunity cost of foregone cash flows

incurred while waiting for improvements. They show that even in the absence of other

kinds of uncertainty, e.g. uncertainty about market conditions, a firm’s optimal timing of

adoption is greatly influenced by technological uncertainties. This supports the prospect of

including technology as an important source of uncertainty in our real options analysis.

The random arrival of technological innovations has been modelled in di↵erent ways in the

literature. Grenadier and Weiss (1997) assume a variable X(t), denoting the state of tech-

nological process, following a geometric Brownian motion. When this variable rises to an

upper boundary X

h

, the innovation arrives and is ready for adoption. By observing the dif-

ference between the current level of the Brownian motion process and the upper boundary,

the firm has an idea about how long it will be until the new technology arrives. In Huisman

and Kort (2004) the arrival of a new technology is assumed to follow a Poisson process

so that at every point in time the probability that a new technology arrives is the same.

Hence, their approach assumes that the firms have no information about the progress made

within the research and development process of the technology. We adopt this modelling

approach, and thus the assumption that the probability of an arrival is constant throughout

the period considered.

With regards to the impact of technological progress, Doraszelski (2004) introduces a

distinction between innovations and improvements. Innovations are technological break-

throughs, while improvements denote the engineering refinements following an innovation.

He uses three scenarios for the arrival of technological improvements: diminishing, learn-

ing and time invariant. Diminishing describes the situation where improvements arrive at a

higher rate just after an innovation as the easiest fixes are done first. Learning describes the

case where one needs to understand the technology introduced by the innovation, before one

can make improvements to it. In a time invariant scenario the arrival rate of improvements

is not a↵ected by the time since last innovation. As the e↵ect of technological improvements

add up, Doraszelski (2004) find that firms do not necessarily wait for a technological break-

through, but rather have an incentive to delay the adaption of a new technology until it is

su�ciently advanced. We adopt the convention of distinguishing between innovations and

improvements by modelling technological improvement as a steady drift due to ’learning
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by doing’ in the industry, and technological innovation as a time invariant Poisson jump

process.

The development of multi-factor real options models is at an early stage. Therefore the

amount of relevant literature is limited. Bosetti and Tomberlin (2004) present a two-factor

real options model of fishing fleet dynamics, where the sources of uncertainty are salmon

price and quantity of salmon caught. The model extends the work of Tomberlin (2001),

who only considers one stochastic process. The results show that this extension significantly

improves the predictive power of the model. This indicates that including several factors

of uncertainty in real options models contributes to improve the explanatory power of the

models. We contribute to this work by adding technological uncertainty in the form of a

single Poisson arrival, and by improving the solution procedure through the use of similarity

methods.

de Magalhaes Ozorio et al. (2013) consider the issue of choosing stochastic processes in

multi-factor real options models. Since most real options can be exercised like American

options, they claim that multi-factor models have to be solved numerically, e.g. by using

finite di↵erence or tree methods. Furthermore, they state that in the case of models with

more than two factors, one has to resort to special Monte Carlo approaches such as the

least square Monte Carlo method suggested in Longsta↵ and Schwartz (2001). This is the

approach taken by Jafarizadeh et al. (2012) who consider an optimal abandonment of an

oil field, where the oil price follows a two-factor process.

Murto (2007) examines the conjoined e↵ects of technological and revenue uncertainty on

the timing of the investment decision. Technological uncertainty is assumed exogenous to

the firm and is represented by a Poisson process where an arrival is characterised by a

reduction of the investment cost. Revenues are assumed to follow a geometric Brownian

motion. While revenues are subject to both up and down moves, a characteristic feature of

technological progress is that it only moves in one direction. To derive analytical solutions,

Murto (2007) only solves the model for three special cases: (1) Deterministic price process

(� = 0), (2) deterministic technological progress (� ! 1 and � ! 1) and (3) full collapse

of the investment cost (� = 0). Doing so he is able to give some intuition on how revenue

and technology related uncertainty a↵ects the problem, when the relationship between the
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two factors a↵ecting technological uncertainty, arrival rate � and investment cost reduction

factor �, is fixed. However, he is not able to give intuition on the e↵ect of independent

changes in � and �, nor is he able to determine the option value f(p) or the investment

threshold p

⇤ for arbitrary input parameters.

The paper of Himpler and Madlener (2014) is closely based on the work of Murto (2007).

They propose a two-factor model to find the optimal timing of a wind farm repowering.

They consider uncertainty in profit and investment cost, both assumed to follow geomet-

ric Brownian motions. The investment cost is subject to technological uncertainty and is

assumed to have negative drift due to a continuous learning rate of using new equipment.

Himpler and Madlener (2014) make these assumptions in order to achieve mathematical

tractability, as they claim that Murto (2007)’s model cannot be solved analytically. We

extend Himpler and Madlener (2014) and Murto (2007) by providing a general numerical

procedure that allows us to solve the optimal stopping problem for the entire solution space,

where we follow Murto (2007) and Huisman and Kort (2004) by modelling technological

uncertainty as a Poisson jump process. In addition we apply the model to a specific case

study of a post-smolt investment.

Adkins and Paxson (2013) and Chronopoulos et al. (2015) consider investments in power

generation plants under policy uncertainty. More specifically the uncertainty is related to

the possible sudden provision or retraction of a constant government subsidy. Adkins and

Paxson (2013) consider both a subsidy in the form of a cash payment proportional to the

quantity produced and the revenues, whereas Chronopoulos et al. (2015) consider a sub-

sidy in the form of a cash payment proportional to the revenues of the firm. Adkins and

Paxson (2013) assumes that price and quantity follow geometric Brownian motions, while

the introduction of the subsidy follows a Poisson jump process. Chronopoulos et al. (2015)

only consider uncertainty in revenues. Both papers assume that the firm will only get the

benefit of the subsidy if the decision to invest is made after its arrival. However, their

solution procedures di↵er. Adkins and Paxson (2013) solve their model by value matching

and smooth pasting between two value regions, allowing them to derive a fully analyti-

cal solution. Chronopoulos et al. (2015) solve their model by value matching and smooth

pasting between three value regions, thus they can only derive a quasi-analytical solution.

After examining the arguments and mathematics of both papers, we are convinced that
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Chronopoulos et al. (2015) have chosen the appropriate solution approach. Having found

that the sudden provision of a subsidy resembles the arrival of a technological innovation,

we extend Adkins and Paxson (2013) and Chronopoulos et al. (2015) by adapting and ap-

plying their frameworks to the post-smolt facility investment case, allowing for the salmon

farming company to get the benefit of the innovation regardless of when the investment is

made.

We choose not to elaborate on literature treating uncertainty in salmon farming, as the

majority of available papers focus on the biology rather than the economics of salmon

farming. The few available economic papers are based either on traditional capital budgeting

methods or optimisation of operations. For further information we refer to the work of

Forsberg and Guttormsen (2006), Langan and Toftøy (2011), Hæreid (2011) and Hannevik

et al. (2014).
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Chapter 4

Mathematical background

In this chapter we provide a brief explanation of some of the mathematical methods that

form the basis of the models presented in Chapter 5.

4.1 Dynamic programming

There are two main approaches to solving real options problems: Dynamic programming

and contingent claims analysis. The two methods are quite similar, but di↵er in the discount

rates that firms use to value future cash flows. However, Dixit and Pindyck (1994) show that

the methods give the same result. In this thesis we use dynamic programming, which is the

method used in the majority of the academic real options literature. Dynamic programming

breaks a whole series of decisions into two components: the immediate decision, and a val-

uation function that captures the consequence of all subsequent decisions. At each decision

point t, the set of available decisions is denoted by u

t

. A firm should choose u
t

to maximise

the expected value of their investment opportunity F

t

(x
t

). The value of F
t

(x
t

) is equal to

the sum of the immediate profit flow ⇡(x
t

, u,

t

) and the discounted expected value of F (x
t+1)

F

t

(x
t

) = max

ut

⇢

⇡(x
t

, u,

t

) +
1

1 + r

E
t

[F
t+1(xt+1)]

�

The rationale behind this equation is stated in Bellman’s principle of optimality: An optimal

policy has the property that, whatever the initial action, the remaining choices constitutes

an optimal policy with respect to the sub problem starting at the state that results from the

initial actions.

We want to determine the conditions under which an investment in a post-smolt facility
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should be undertaken. In mathematics and real options literature, this is known as an

optimal stopping problem. In any decision point there is a binary choice; invest and receive

the corresponding termination payo↵ (stopping), or defer the investment and face a similar

binary choice at the next decision point (continuing). We let ⌦(x
t

) denote the termination

payo↵, and the Bellman equation becomes:

F

t

(x
t

) = max{⌦(x
t

),⇡(x
t

) +
1

1 + r

E
t

[F
t+1(xt+1)]}

If the investment under consideration has a finite time horizon T , the optimal decision at

each point can be found by starting at the end and working backwards: F

T�1(xt�1) =

max

n

⌦(x
t�1),⇡(xt�1) +

1
1+r

E
T�1[⌦T

(x
T

)]
o

. Else, if the considered investment is a per-

petual option, we do not have a finite time horizon T and a known final value function

from which we can work backwards. Instead we end up with a recursive structure that is

independent of t: F (x) = max

n

⌦(x),⇡(x) + 1
1+r

E [F (x
0
)|x]

o

. Both models presented in

Chapter 5 consider perpetual options.

By arguments of continuity one can impose what is known as a value matching condition.

The value matching condition links the continuation region with the stopping region, and

states that for a certain value x

⇤ we are indi↵erent between taking the termination payo↵

⌦(x) or deferring the investment:

F (x⇤) = ⌦(x⇤)

To find the value of the investment opportunity F (x) along with the optimal investment

threshold x

⇤, we need to introduce a second condition known as the smooth pasting con-

dition. The smooth pasting condition ensures that the continuation and stopping region

meets tangentially in x

⇤:

F

x

(x⇤) = ⌦
x

(x⇤)
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4.2 Itô’s lemma

In order to describe how the value of the investment changes in continuous time, we can

use Itô’s lemma. Itô’s lemma enables integration and di↵erentiation of functions of Itô pro-

cesses. An Itô process is a process where a variable x changes according to the following

expression: dx = a(x, t)dt+ b(x, t)dz, where dz is the increment of a Wiener process. Both

a(x, t) and b(x, t) are known functions. Itô’s lemma is derived through the Taylor expansion

of F (x, t), neglecting higher order terms:

dF =
@F

@t

dt+
@F

@x

dx+
1

2

@

2
F

@x

2
(dx)2

dF =



@F

@t

+ a(x, t)
@F

@x

+
1

2
b(x, t)

@

2
F

@x

2

�

dt+ b(x, t)
@F

@x

dz

In both models presented in Chapter 5 the option value is dependent on two Itô processes,

hence we need to use the multivariate Itô’s lemma. Itô’s lemma can be generalised and ap-

plied to m Itô processes: dx
i

= a

i

(x1, ..., xm, t)dt+b

i

(x1, ..., xm, t)dz
i

, with E [dz
i

dz

j

] = p

ij

dt

dF =
@F

@t

dt+
X

i

@F

@x

i

dx+
1

2

X

i

X

j

@

2
F

@x

i

@x

j

dx

i

dx

j

Substituting for dx
i

, the expanded form becomes

dF =



@F

@t

+
X

i

a

i

(x1, ..., xm, t)
@F

@x

i

+
1

2

X

i

b

2
i

(x1, ..., xm, t)
@

2
F

@x

2
i

+
1

2

X

i 6=j

⇢

ij

b

i

(x1, ..., xm, t)b
j

(x1, ..., xm, t)
@

2
F

@x

2
i

�

dt

+
X

i

b

i

(x1, ..., xm, t)
@F

@x

i

dz

i
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4.3 Optimal investment timing

We now illustrate how to use dynamic programming and Itô’s lemma to find the optimal in-

vestment threshold V

⇤, by considering a simplified investment case with value F (V ) = V �I.

The models presented in Chapter 5 follow the same reasoning and structure, but the under-

lying processes are more complex. V is the project value, i.e. the present value of the future

cash flows, and I is the investment cost, which is assumed to be constant. V is assumed to

evolve according to a geometric Brownian motion (GBM) given by:

dV = ↵V dt+ �V dz,

where ↵ represent the drift term, and � the volatility of the project value. The investment

opportunity can be considered a perpetual American option, i.e it can be exercised at any

point in time. The question which then arises is: When is it optimal to invest? Mathemat-

ically the problem can be formulated as follows:

max

T

E
V0 [(VT

� I)e�rT ],

where r is the discount rate, and T is the time at which the investment is made. V

T

� I

is the intrinsic value of the option at time T , i.e. it represents the net present value of

the project at time T . In Chapter 7 we compare real options value and traditional DCF

value by looking at the di↵erence between the option value F (V ) and the option’s intrinsic

value V (R) � I. We require that r > ↵, otherwise it would always be better to delay the

investment. The investment opportunity F (V ) yields no cash flows before the investment

is undertaken, i.e. ⇡(t < T ) = 0. Hence, the return for holding the investment opportu-

nity rF is equal to its capital appreciation dF . This gives us the following Bellman equation:

rFdt = E [dF ]. (4.1)
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dF can be expanded using Itô’s lemma. As F (V ) is not directly dependent on t, the dt

term vanishes and we get:

E [dF ] = E [F 0(V )dV +
1

2
F

00(V )(dV )2]

= E [↵V F

0(V )dt+ �V F

0(V )dz +
1

2
F

00(V )(↵2
V

2
dt

2 + 2↵�V 2
dzdt+ �

2
V

2
dz

2)].

Using the fact that E(dz) = 0, E(dz2) = dt, and eliminating higher order terms of dt, the

expression for dF can be substituted back into Eq. (4.1):

rFdt = ↵V F

0(V )dt+
1

2
�

2
V

2
F

00(V )dt for V  V

⇤
.

Dividing all terms by dt, and rearranging, we get the following di↵erential equation:

1

2
�

2
V

2
F

00(V ) + ↵V F

0(V )� rF = 0 for V  V

⇤
. (4.2)

This di↵erential equation must satisfy the following boundary conditions

1. F (0) = 0,

2. F (V ⇤) = V

⇤ � I,

3. F

0(V ⇤) = 1.

Condition 1 arises from the fact that V follows a GBM, hence if V = 0, F (V ) will stay

at zero forever. Condition 2 is the value-matching condition. It says that when the firm

chooses to invest, it will receive a payo↵ of V ⇤ � I. Condition 3 is the smooth-pasting con-

dition. It ensures that F (V ) is continuous and smooth at the exercise point V ⇤. Solving the

di↵erential equation with respect to the boundary condition yields the following solution
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(see Dixit and Pindyck (1994) for derivation):

F (V ) = AV

�1
,

V

⇤ =
�1

�1 � 1
I,

A =
V

⇤ � I

(V ⇤)�1
,

�1 =
1

2
� ↵

�

2
+

r

(
↵

�

2
� 1

2
)2 +

2⇢

�

2
> 1.

Unlike Eq. (4.2), not all di↵erential equations can be solved analytically. In the next

two sections, we present numerical solution techniques necessary for solving the models

presented in Chapter 5.

4.4 Solving di↵erential equations numerically

In order to solve the model presented in Section 5.1 we need to solve a di↵erential equa-

tion numerically. To choose an appropriate numerical algorithm for solving a di↵erential

equation, one has to study the characteristics of the equation. One important characteristic

is ”sti↵ness”. For sti↵ equations, implicit methods often provide better algorithm stabil-

ity1 than explicit methods. On the other hand, explicit methods are in general easier to

implement and computationally faster. We illustrate the di↵erence between implicit and

explicit methods by the two versions of the Euler algorithm, where h denotes the step size

and f(x
n

, y

n

) denotes the derivative of the function y(x):

1In a stable algorithm, small changes in initial data cause only small changes in the final result.
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Explicit Euler method: y

n+1 = y

n

+ hf(x
n

, y

n

), (4.3)

Implicit Euler method: y

n+1 = y

n

+ hf(x
n+1, yn+1). (4.4)

In the explicit method given by Eq. (4.3), y
n+1 is computed based on the known values

y

n

and f(x
n

, y

n

). In the implicit Euler method given by Eq. (4.4), the right hand side

takes the unknown derivative f(x
n+1, yn+1) as input. Hence Eq. (4.4) must be solved as

an equation for y

n+1. Euler’s method is a part of a family of numerical methods known

as Finite di↵erence methods. Like Euler’s method they are based upon the principle of

replacing the derivatives in the equation by di↵erential quotients. The di↵erential quotients

are found through Taylor expansion of f(x) at the neighbouring points determined by the

chosen grid spacing h:

f(x+ h) = f(x) + hf

0(x) +
h

2

2
f

00(x) +
h

3

6
f

(3)("). (4.5)

The most common approximations to use are

Forward di↵erence : f 0(x) ⇡ f(x+ h)� f(x)

h

, (4.6)

Backward di↵erence : f 0(x) ⇡ f(x)� f(x� h)

h

, (4.7)

Central di↵erence : f 0(x) ⇡ f(x+ h)� f(x� h)

2h
. (4.8)

4.5 Solving systems of algebraic equations numerically

Calculating investment thresholds by applying value matching and smooth pasting condi-

tions often require finding n unknowns x1, x2, ..., xn, satisfying a set of n nonlinear equations:
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f1(x1, x2, ..., xn) = 0

f2(x1, x2, ..., xn) = 0
...

f

n

(x1, x2, ..., xn) = 0

This is the case for the model presented in Section 5.2. Several mathematical software pack-

ages such as MATLAB have built in support for performing such numerical procedures. In

order to be able to adopt and modify the advanced built in methods, it is important to

understand the basic principles these algorithms are based upon.

To solve an equation of the form f(x) = 0, when there is no formula for the exact solution,

we can employ an approximation method based upon iteration. We start with an initial

guess x0 and compute approximations x1,x2... for the unknown solution iteratively. That is,

we find a sequence of values x1, x2, ..., xn, xn+1, ... such that f(x
n

) gets closer and closer to 0

as n increases. Methods with global convergence will produce the correct solution regardless

of the initial guess x0, while methods with local convergence require an initial guess near

the actual solution to f(x) = 0. Since methods with global convergence tend to have a

faster convergence rate (quadratic or higher) than methods with local convergence, one of-

ten first use a ”global” method to find adequate starting values as input to a ”local” method.

MATLAB’s built-in method for solving systems of equations is fsolve. It is possible to

choose di↵erent underlying algorithms, but by default fsolve is set to use the trust region

dogleg method. As this method has its roots in Newton’s method, we include the simplistic

Newton’s method, which is based upon linearisation around the current guess using Taylor

series:

x

n+1 = x

n

� f(x
n

)

f

0(x
n

)
.

We have now revised many of the fundamental techniques necessary for modelling real

options as continuous time optimal stopping problems. In the next chapter we build on

these techniques and the literature presented in Chapter 3.
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Chapter 5

Model

In this chapter we present two multi-factor models for evaluating optimal investment timing

in a post-smolt production facility, under profit and technology uncertainty, using a real

options approach. Both models consider perpetual options, i.e. options that can be exer-

cised any time from now until infinity. The models are parametrised in Chapter 6 and case

studies based on the parameters are presented in Chapter 7.

We assume that technological evolution is exogenous to the salmon farming company con-

sidered. A technological innovation is assumed to improve the e�ciency of either the pro-

duction processes of the technology suppliers, or the post-smolt production equipment. We

have developed two separate models in order to isolate each of the possible outcomes in

combination with uncertain profits. We assume that per unit profits follow a GBM. A

similar assumption is made by Himpler and Madlener (2014). The models are adapted to

a small company that is assumed to only have the financial power to invest once. Tax is

neglected as it has a similar e↵ect on both net present value and real options value, and

will therefore not a↵ect our ability to compare the values. In both real options models we

assume that profit generation starts instantaneously after investment, i.e. there is no time

lag in setting up the facility (a similar assumption is made by for example Bernanke (1980)

and Cukierman (1980)).

5.1 Multi-factor model with stochastic profit and investment

cost

In this section we present a two-factor model where we isolate the e↵ect of technological

innovations improving the e�ciency of the technology suppliers’ production processes. The
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competition among the suppliers of post-smolt technology is high, which entails pressure on

selling prices. Therefore we assume that a reduction of the suppliers’ production costs, will

lead to a lower investment cost for the salmon farming company. To model this we choose

to adopt the work of Murto (2007) who proposes a model for investment timing subject to

technological and revenue-related uncertainties. In his model the arrival of a technological

innovation is assumed to be Poisson distributed, and to reduce the investment cost. To de-

rive analytical solutions, Murto (2007) only considers three special cases: (1) Deterministic

price process (� = 0), (2) deterministic technological progress (� ! 1 and � ! 1) and

(3) full collapse of the investment cost (� = 0). We extend his work by adapting it to a

post-smolt investment problem, and by proposing a numerical procedure which allows us

to solve the model for the entire solution space.

We consider a risk neutral salmon farming company which is considering to undertake a

single irreversible investment in a post-smolt facility. The time t is continuous and infi-

nite. The value of the investment opportunity F (⇡,K) evolves according to the stochastic

processes of the per unit profits denoted by ⇡, and investment cost denoted by K. The pro-

cesses are assumed to be independent Markov processes that are time-homogeneous. The

time-homogeneity and Markov properties entail that the decision to wait or stop depends

only on the current value of F (⇡,K), not on the historical development of the process or

calendar time. Furthermore, this means that the solution space can be divided into two

regions; the waiting region, where it is optimal to wait, and the stopping region, where it

is optimal to invest.

The unit profit at time t � 0, ⇡
t

, is stochastic and assumed to follow a GBM such that

d⇡ = ↵

⇡

⇡dt+ �

⇡

⇡dZ

⇡

, where E [⇡
t

] = ⇡0e
↵⇡t

.

↵

⇡

represents the drift of ⇡, �
⇡

the volatility and dZ

⇡

the increment of a standard Wiener

process. The total annual profit at time t denoted by R

t

is given by:
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R

t

(⇡
t

) = ⇡

t

Q,

where Q is the annual production quantity, which is assumed to be constant in this model.

This relationship entails that R
t

follows a GBM with the same properties as ⇡
t

, such that:

dR = ↵

R

Rdt+ �

R

RdZ

R

, where E [R
t

] = R0e
↵Rt

,

where ↵
R

= ↵

⇡

, �
R

= �

⇡

and dZ

R

= dZ

⇡

. The expected discounted value of the project at

time t, denoted by V (R
t

), is:

V (R
t

) = E
R

[

Z 1

s=t

(R
s

) e�r(s�t)
ds] ,

V (R
t

) =

Z 1

s=t

⇣

R

t

e

↵R(s�t)
⌘

e

�r(s�t)
ds,

V (R
t

) =
R

t

r � ↵

R

.

The salmon farming company faces an investment cost at time t denoted by K

t

, which is

assumed to be a one-time, sunk cost. The arrival of an innovation reducing K

t

is assumed

to be Poisson distributed and always improve upon the best-available technology. Hence,

K

t

follows a strictly decreasing Poisson jump process given by:

dK

t

= K

t

dq1,

where dq1 is given by:
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dq1 =

8

<

:

0, with probability 1� �dt,

1� �, with probability �dt,

where � 2 [0, 1] is a constant reflecting the size of the investment cost reduction and � is

the Poisson intensity, i.e. the technology innovation arrival rate. � is defined such that a

large value indicates a small innovation, while a small � indicates a large innovation. This

entails that a large arrival rate, �, and a small � constitutes frequent innovations with high

reducing impact on the investment cost and thus, results in the greatest option value. The

investment cost at any time t � 0 is equal to:

K

t

= K0 ⇤ �Nt
, where E [K

t

] = K0e
��t(1��)

.

K0 denotes the investment cost at time t = 0 and N

t

is a Poisson random variable with

mean �t counting the number of innovations.

The problem the salmon farming company faces is to choose the investment timing that

maximises the expected net value of the project V (R
t

) �K

t

, and thereby the value of the

investment opportunity, denoted by F (R
t

,K

t

). This value is given by

F (R
 

,K

 

) = Sup

 

E
R

[e� r(V (R
 

)�K

 

)],

F (R
 

,K

 

) = Sup

 

E
R

[e� r(
R

 

r � ↵

R

�K

 

)], (5.1)

where R
 

and K

 

refer to the total annual profit and the investment cost at a time  which

represents the optimal investment timing. The company’s discount rate is denoted by r.

As V (R
 

) is continuous, the optimal stopping region can be expressed as a closed set ⌦ in

the (R,K)-space. ⌦, i.e. the stopping region, can be entered either by di↵usion of R or by

a sudden jump of K.
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Since the option is perpetual, calendar time does not a↵ect the problem and we omit the sub-

script ”t” from here on. By examining Eq. (5.1) we observe that F (kR, kK) = kF (R,K),

entailing that F is homogeneous of degree one in (R,K). Thus, by setting k = 1/K, we

get F (R,K)/K = F (R/K, 1). The ratio of total annual profits to the investment cost, R

K

,

can be understood as a benefit-cost ratio. Both R and K are subject to stochastic devel-

opment and when their ratio reaches a specified level, investment should be undertaken by

the salmon farming company. We introduce a new variable p, to simplify notation of the

ratio:

p =
R

K

. (5.2)

The option value can then be simplified to:

F (R,K)/K = F (R/K, 1) = F (p, 1) = f(p), (5.3)

+

F (R,K) = Kf(p),

Hence the problem is reduced from two dimensions to one, simplifying the solution pro-

cedure of the model considerably. The new variable p follows the combined GBM jump

process:

dp = pµdt+ p�dz + pdq2,

where dq2 is given by:
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dq2 =

8

<

:

0, with probability 1� �dt,

1
�

� 1, with probability �dt.

The optimal solution to the stopping problem is defined by the threshold level p⇤, which

is the ratio of total annual profits R to the investment cost K signalling an economically

justifiable investment. To determine this threshold, we use the fact that K drops to �K

during the next time period of length dt with probability �dt, and get the following Bellman

equation:

rF (R,K)dt = E [dF (R,K)] + �[F (R,�K)� F (R,K)]dt for (R,K) /2 ⌦.

We apply Itô’s lemma to the first term on the right hand side of the equation, divide by dt

and rearrange terms, ending up with the following partial di↵erential equation (PDE):1

1

2
�

2
R

R

2
F

RR

(R,K) + ↵

R

RF

R

(R,K)� rF (R,K) + �[F (R,�K)� F (R,K)] = 0. (5.4)

Substituting the expressions for p and f(p) found in Eqs. (5.2) and (5.3), we can express

F (R,K), F (R,�K) and the partial derivatives of F (R,K) in one dimension:

F (R,K) = Kf(p),

1See Appendix A for derivation.
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F (R,�K) = �KF (
R

�K

, 1) = �Kf(
R

�K

) = �Kf(
p

�

), (5.5)

F

R

(R,K) = Kf

0(p)
@p

@R

= Kf

0(p)
1

K

= f

0(p), (5.6)

F

RR

(R,K) = f

00(p)
@p

@R

=
f

00(p)

K

. (5.7)

Inserting Eqs. (5.3), (5.5), (5.6) and (5.7) into (5.4) and dividing by K, we obtain the

following ordinary di↵erential equation (ODE):

1

2
�

2
R

p

2
f

00(p) + ↵

R

pf

0(p)� (r + �)f(p) + ��f(
p

�

) = 0 for p  p ⇤ . (5.8)

The value of the investment opportunity is thus a function F (R,K) = Kf(p) such that f(p)

satisfies Eq. (5.8) whenever p is in the continuation region, i.e. lower than the threshold

level, p⇤. At the threshold level F (R,K) must satisfy the following value matching and

smooth pasting conditions:

F (R,K) =
R

r � ↵

R

�K, when
R

K

= p

⇤
,

F

R

(R,K) =
1

r � ↵

R

, when
R

K

= p

⇤
.

These conditions can be rewritten in terms of f and p as:

f(p⇤) =
p

⇤

r � ↵

R

� 1, (5.9)
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f

0(p⇤) =
1

r � ↵

R

. (5.10)

Finally, as p follows a combined GBM-jump process, we know that if p becomes equal to

zero, it will stay at zero forever. Hence, p=0 (R = 0) is an absorbing barrier, which consti-

tutes the initial boundary condition:

f(0) = 0. (5.11)

To arrive at a well-defined problem, we need to determine the expression for the stopping

region, i.e for p > p

⇤. The value of the investment opportunity expressed in terms of f(p)

and p for this region is:

f(p) =
p

r � ↵

R

� 1, 8 p � p

⇤
.

To solve the problem we need to determine the function f(p) and the threshold value p

⇤

such that f(p) satisfies Eq. (5.8) when p < p

⇤. This problem cannot be solved analytically

(Murto, 2007) so we construct a numerical procedure to find the solution. We can use

either an explicit or an implicit method (see Section 4.4). An algorithm based on an explicit

Euler scheme produces correct results, but is highly unstable, indicating that Eq. (5.8) is

a sti↵ equation (see Appendix B for mathematical derivation and algorithm). Therefore

a numerical procedure based on an implicit finite di↵erence scheme was developed.2 A

similar approach is applied by Pinto (2014) to solve an ODE free boundary problem. We

discretise the domain ⌦ = [0, p⇤] by introducing the equidistributed grid points (p
i

)1in

2We thank Espen R. Jakobsen, Professor in Mathematics at NTNU, for guidance on the development of
this method.
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given by p

i

= (i� 1)h, where h is the grid spacing and n is an integer given by n = p

⇤

h

+1.3

The unknowns of the problem are the values f(p1), ..., f(pn) and we introduce the vector

F = [f1, ..., fn]T.4 The following di↵erential quotients are used as approximations for the

derivatives:

f

0(p
i

) ⇡ f

i+1 � f

i

h

, (5.12)

f

00(p
i

) ⇡ f

i+1 � 2f
i

+ f

i�1

h

2
. (5.13)

As Eq. (5.8) is non-local to the point f(p
i

), we have to approximate the value f(pi
�

). We

do this through linear extrapolation, using the fact that Eq. (5.12) approximates f 0(p
i

):

f(
p

i

�

) ⇡ f

i

+ (
p

i

�

� p

i

)
f

i+1 � f

i

h

. (5.14)

We substitute Eqs. (5.12)-(5.14) into Eq. (5.8) and find the following relationship for the

continuation region:

f

i�1

✓

1

2
�

2
R

p

2
i

◆

+ f

i

✓

� �

2
R

p

2
i

+ h

2(��� r � �)� h(↵
R

p

i

+ ��(
p

i

�

� p

i

))

◆

+ f

i+1

✓

1

2
�

2
R

p

2
i

+ h(↵
R

p

i

+ ��(
p

i

�

� p

i

))

◆

= 0 for p

i

 p

⇤
.

(5.15)

As stated in Eq. (5.15), f
i

can be expressed as a function of f
i�1 and f

i+1. We let the

coe�cients of f
i�1, fi and f

i+1 be denoted by a

i

, b

i

and c

i

respectively:

3h is set such that n becomes an integer.
4The first node is i = 1 in order to be compatible with MATLAB arrays which are ”1-indexed”
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a

i

=
1

2
�

2
R

p

2
i

, (5.16)

b

i

= ��2
R

p

2
i

+ h

2(��� r � �)� h(↵
R

p

i

+ ��(
p

i

�

� p

i

)), (5.17)

c

i

=
1

2
�

2
R

p

2
i

+ h(↵
R

p

i

+ ��(
p

i

�

� p

i

)). (5.18)

Using the notation presented in Eqs. (5.16-5.18), Eq. (5.15) becomes:

a

i

f

i�1 + b

i

f

i

+ c

i

f

i+1 = 0 for p

i

 p

⇤
. (5.19)

Combining Eq. (5.19) with the initial condition given by Eq. (5.11) and the boundary

condition given by Eq. (5.9) results in the following set of equations:

2

6

6

6

6

6

6

6

6

4

1 0 0 · · · 0 0 0

a1 b2 c3 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · a

n�2 b

n�1 c

n

0 0 0 · · · 0 0 1

3

7

7

7

7

7

7

7

7

5

2

6

6

6

6

6

6

6

6

4

f1

f2

...

f

n�1

f

n

3

7

7

7

7

7

7

7

7

5

=

2

6

6

6

6

6

6

6

6

4

0

0
...

0
p

⇤

r�↵ � 1

3

7

7

7

7

7

7

7

7

5

(5.20)

This matrix equation can be solved for F = [f1, ..., fn]T in MATLAB. As p⇤ is not known,

we have to make an initial guess. In order to test if we have found the correct threshold p

⇤

we use the smooth pasting condition given by Eq. (5.10) to see if the following relationship

holds:

f

0(p⇤) =
f

n

� f

n�1

h

=
1

r � ↵

R

. (5.21)

If Eq. (5.21) holds, the correct p

⇤ is found. If not, the guess for p

⇤ is updated, and the
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matrix equation (5.20) is solved again. The procedure of solving Eq. (5.20) by guessing p

⇤

is known as a shooting method, and can be performed e�ciently through bisection. This is

conducted iteratively in MATLAB using the code embedded in Appendix C until a solution

is found. For purpose of clarification and illustration we include a graphical description of

the problem in Figure 5.1.

Figure 5.1: Finite di↵erence grid with node spacing h and associated boundary conditions.

A grid point i has an associated function value f
i

. The function value f
i

is computed based

on solving an equation set including the neighbouring points f
i�1 and f

i+1

Error of numerical method

In discretising Eq. (5.8) we incur a truncation error when approximating the derivatives

of f(p) with Taylor expansions. The error is denoted ✏1 and its magnitude is given by the

following expression where C is a constant (Frey, 2008).

✏

f

0(p) =

�

�

�

�

f

i+1 � f

i

h

� f

0(p)

�

�

�

�

 Ch, (5.22)

✏

f

00(p) =

�

�

�

�

f

i+1 � 2f
i

+ f

i�1

h

2
� f

00(p)

�

�

�

�

 Ch

2
. (5.23)
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Eq. (5.22) shows that the error associated with a forward di↵erence approximation to f

0(x),

✏

f

0(p), is proportional to the step size h. Eq. (5.23) shows that the error associated with a

central di↵erence approximation to f

00(x), ✏
f

00(p), is proportional to h

2. We use a step size

of 0  h  1 and thus the total error ✏1 is bounded by the lowest order h-term. Hence, the

error arising from the finite di↵erence approximation is proportional to h. Choosing a low

h will therefore increase accuracy, but at the same increase computational running time.
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5.2 Multi-factor model with stochastic profit and quantity,

and sudden arrival of an innovation

In this section we present a multi-factor model where we isolate the e↵ect of technological

innovations improving the e�ciency of the post-smolt production equipment. According

to industry experts, such an innovation will likely arrive in the form of research describing

best-practice for operating a post-smolt facility. As there is a high degree of cooperation

in the salmon farming industry when it comes to post-smolt R&D, information leading to

significantly more e�cient production will likely be shared between companies. We there-

fore assume that the improvement can be adopted at no cost, and that the benefit is gained

regardless of investment timing. Reduced mortality is found to be the most probable out-

come of improved production processes, and as there is limited potential for improvement

in this area (see Chapter 2), we allow for the arrival of only one innovation. Additionally we

extend Doraszelski (2004) by distinguishing a large innovation from minor improvements.

We incorporate the e↵ect of minor improvements as a steady increase in produced quantity

resulting from continuous ’learning by doing’ in the industry.

Pertinent to our analysis is the work of Adkins and Paxson (2013) and Chronopoulos et al.

(2015), who consider investments in power generation plants under policy uncertainty. More

specifically the uncertainty is related to the possible sudden provision or retraction of a con-

stant government subsidy in the form of a cash payment proportional to the revenues of the

investing firm. In addition to the policy uncertainty, Chronopoulos et al. (2015) consider

uncertainty in price, while Adkins and Paxson (2013) consider uncertainty in both price

and produced quantity. We have found that the sudden provision of a subsidy resembles

the arrival of a technological innovation, enabling us to base our work on their models. To

the best of our knowledge, we are the first to adapt and apply real options techniques orig-

inally proposed in papers considering investment in power generation plants under policy

uncertainty, to an investment under technological uncertainty. One important di↵erence

between a subsidy and a technological innovation is that the subsidy cannot be gained after

the investment is made. We therefore extend their models so that they fit our case, where

the benefit of a technological innovation is gained also after the investment is made.
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As in Model 1 we consider a risk neutral salmon farming company which is considering to

undertake a single irreversible investment in a post-smolt facility. The time t is continuous

and infinite. The value of the investment opportunity F (⇡, Q) evolves according to the

stochastic processes of the per unit profits denoted by ⇡, and annual production volume

denoted by Q. The processes are assumed to be correlated Markov processes that are time-

homogeneous. The time-homogeneity and Markov properties entail that the decision to wait

or stop depends only on the current value of F (⇡, Q), not on the historical development of

the process or calendar time.

The unit profit at time t � 0, ⇡
t

, is stochastic, and assumed to follow a GBM such that:

d⇡ = ↵

⇡

⇡dt+ �

⇡

⇡dZ

⇡

, where E [⇡
t

] = ⇡0e
↵⇡t

.

↵

⇡

represents the drift in ⇡, �
⇡

the volatility and dZ

⇡

the increment of a Wiener process.

In addition we assume that the quantity sold at time t � 0, Q
t

, is stochastic, following a

GBM such that:

dQ = ↵

Q

Qdt+ �

Q

QdZ

Q

, where E [Q
t

] = Q0e
↵Qt

.

The drift term, ↵
Q

, represents small costless technological improvements allowing for a

slight improvement in facility e�ciency. The volatility term, �
Q

, stems from oscillating

mortality rates. Strictly speaking, Q
t

is a discrete variable, but since a facility would pro-

duce at high volumes, we model quantity as a continuous process.

Investment in a post-smolt facility can be made at a fixed, one-time and irreversible cost

K. Note that this assumption is made in order to isolate the e↵ect of a technological inno-

vation improving the e�ciency of the post-smolt production equipment. Holding K fixed

irrespective of technology e�ciency is also assumed by Doraszelski (2004). Since the option

is perpetual, calendar time does not a↵ect the problem and we omit the subscript ”t”. The
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prevailing total annual profit is denoted by T = ⇡Q. The introduction of a technological

innovation will boost the total annual profits by a factor ⌧ � 0, such that the annual profits

will increase from T to T (1 + ⌧).

Let us now look at the value of the investment opportunity, denoted by F (⇡, Q), in two

scenarios. We let the value of the investment opportunity when a technological innovation

has not been introduced, but will be introduced in the next period of length dt with proba-

bility �dt, be denoted by F0. The total annual profit that signals an economically justified

investment is denoted by T

⇤
0 = (⇡0Q0)⇤. When an innovation already has been introduced,

the value of the investment opportunity is denoted by F1. In this scenario the total annual

profit that signals an economically justified investment is denoted by T

⇤
1 = (⇡1Q1)⇤. Both

thresholds are hit either by achieving a high unit profit ⇡, high quantity Q, or both. The

thresholds, T ⇤
0 and T

⇤
1 , being products of two variables, are surfaces in R3.

In mathematical terms the total option value the salmon farming company holds is equal

to the following:

F = F0(1� �) + F1�, (5.24)

where � is a binary variable, i.e.

� =

8

<

:

1, if innovation has arrived

0, otherwise

First we will evaluate the option value in the latter scenario, F1, and find the associated

threshold profit, denoted by T

⇤
1 = (⇡1Q1)⇤. We expect this threshold to be lower than the

threshold in the first scenario denoted by T

⇤
0 = (⇡0Q0)⇤ because of the increase in project

value caused by innovation. Hence, the salmon farming company is expected to have weaker

incentives to postpone an investment after the innovation has arrived.
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Assuming the innovation has arrived (� = 1), the salmon farming company is holding the

option with a value denoted by F1. The option will be exercised at T

⇤
1 , and the Bellman

equation becomes:

rF1dt = E(dF1), (5.25)

which says that the capital appreciation of holding the option over some infinitely small

period of time dt must equal the expected drift in the option value. Expanding the R.H.S.

using multivariate Itô’s lemma gives:
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✓

@F1

@⇡

d⇡ +
@F1

@Q

dQ+
1

2



@

2
F1

@⇡

2
(d⇡)2 + 2

@

2
F1

@⇡@Q

d⇡dQ+
@

2
F1

@Q

2
(dQ)2

�◆

=
@F1

@⇡

↵

⇡

⇡dt+
@F1

@Q

↵

Q

Qdt+
1

2

@

2
F1

@⇡

2
�

2
⇡

⇡

2
dt+

@

2
F1

@⇡@Q

�

⇡

�

Q

⇢⇡Qdt+
1

2

@

2
F1

@Q

2
�

2
Q

Q

2
dt.

⇢ represents the correlation between ⇡ and Q. Substituting this back into the Bellman

equation given by Eq. (5.25) and dividing both sides by dt results in the following PDE:
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Q� rF1 = 0. (5.26)

A popular and powerful technique used to solve nonlinear PDEs such as Eq. (5.26) is sim-

ilarity methods. These methods reduce n dimensional PDEs to n � 1 dimensional PDEs

resulting in less complexity. In our case, the PDE is two dimensional, hence it can be re-

duced to an ODE. This can be done as the transformation of variables leaves the underlying

equation unchanged (see Pandey et al. (2009) and Budd and Piggott (2001)). By making
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the transformation R = ⇡Q (note that R is equivalent to the total annual profit T ), imply-

ing that F1(⇡, Q) = F1(R), and substituting we can reduce the original PDE to an ODE,

without changing the original underlying equation.5 This enables an analytical derivation

of the decision boundary of F1. We end up with the following ODE (a similar method is

applied by Paxson and Pinto (2005)):
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⇢)� rF1(R) = 0, (5.27)

which has a solution of the familiar form:

F1 = A1R
�1 +A2R

�2
, for R  R

⇤
1,

where �1 and �2 are the roots of the following characteristic equation:
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where it can be shown that �1 > 1 and �2 < 0. Because R = 0 is an absorbing barrier,

F1(0) = 0, A2 = 0. The value matching condition is (assuming that R = R

⇤
1 at time t = 0):

A1R
⇤�1
1 = E

Z 1

t=0
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Z 1
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1e
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�K.

5see Appendix D for derivation
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where the growth rate of R, i.e. the combined growth rate of ⇡ and Q, is denoted by µ

⇡Q

:6:

µ

⇡Q

= ↵

⇡

+ ↵

Q

+ ⇢�

⇡

�

Q

. (5.28)

The smooth pasting condition is:

�1A1R
⇤(�1�1)
1 =

(1 + ⌧)

r � µ

⇡Q

,

which by rearranging, and inserting into the value matching condition yields the following

values for the constant A1 and the threshold R

⇤
1:

A1 =
R

⇤(1��1)
1 (1 + ⌧)

�1(r � µ

⇡Q

)
,

R

⇤
1 =

�1

�1 � 1
K

(r � µ

⇡Q

)

(1 + ⌧)
.

Now we look back at the first scenario, i.e. where � = 0. As long as the innovation is not

introduced, the salmon farming company will hold the option denoted by F0. However,

note that the company will still get the benefit of the innovation when it arrives, regardless

of investment timing.

The Bellman equation in this scenario becomes:

6See Appendix E for derivation of µ⇡Q
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rF0dt = E(dF0) + �[F1 � F0]dt,

which says that the capital appreciation of holding the option over some infinitely small

period of time dt must equal the sum of the expected drift in the option value and the

expected gain from receiving the more valuable option F1 in the next period of dt with

probability �dt. Expanding the first term on the R.H.S. using multivariate Itô’s lemma,

and rearranging we get the following nonlinear PDE:
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Like for Eq. (5.26), we solve Eq. (5.2) by using similarity methods. By making the

transformation R = ⇡Q, implying that F0(⇡, Q) = F0(R) and substituting into the original

PDE we leave the original equation unchanged, and get the following ODE:7
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(5.29)

This expression has a solution on the form (for R < R

⇤
1):

F0 = C1R
✓1 + C2R

✓2 +A1R
�1
, (5.30)

where the ✓ parameters are the roots of the following characteristic equation:8

7see Appendix D for derivation of Eq. (5.29)
8see Appendix F for derivation of Eq. (5.31)
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Q2(✓) =
1

2
�

2
⇡

✓(✓ � 1) +
1

2
�

2
Q

✓(✓ � 1) + ⇢�

⇡

�

Q

✓

2 + ↵

⇡

✓ + ↵

Q

✓ � (r + �) = 0, (5.31)

where it can be shown that ✓1 > 1 and ✓2 < 0. Because R = 0 is an absorbing barrier, it

follows that F0(0) = 0, hence C2 = 0.

Looking back at Eq. (5.24), we can define the value of the investment opportunity in three

separate domains depending on the prevailing total profit R:
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where Y is an exponentially distributed variable indicating the time until the Poisson arrival

(i.e. switch from � = 0 to � = 1). This is equal to:9
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9see Appendix G for the derivations

49



CHAPTER 5. MODEL

When R < R

⇤
1 and � = 0, the value of the investment opportunity equals the value of the

option given that the innovation has arrived, A1R
�1 , adjusted by the term C1R

✓1 , where

C1 < 0, which accounts for the fact that an innovation has not yet arrived. As � increases,

C1R
✓1 should converge towards zero, as the salmon farming company is closer to possessing

the option to invest with an innovation.10 At � = 1 the option value immediately switches

to F1 = A1R
�1 .

When R

⇤
1  R < R

⇤
0 and � = 0, the investment will take place immediately should the

innovation arrive. Therefore the first two terms represent the expected value to invest given

that the innovation has arrived at time Y , less the investment cost. The third term D1R
✓1

represents the value of the opportunity to invest at R

⇤
0 and operate the facility until the

arrival of the innovation. The fourth term D2R
✓2 represents the value of getting the in-

vestment opportunity in the region R < R

⇤
1, should the total annual profit fall beneath R

⇤
1.

Therefore D1R
✓1 and D2R

✓2 are respectively increasing and decreasing functions in R.11

As �! 0, the time the facility is likely to be operated without an innovation goes to zero,

hence D1R
✓1 decreases.12 The behaviour of D2R

✓2 for increasing � values is more complex.

When �! 0, D2R
✓2 ! 0 as the value of the investment opportunity in the region R < R

⇤
1

has no value without the prospect of a future innovation. With increasing � values, D2R
✓2

increases, as C1R
✓1 + A1R

�1 increases with higher � values. However, when � ! 1, the

investment option is likely to be exercised in the region R

⇤
1  R < R

⇤
0 and D2R

✓2 decreases.

Hence, the graph of D2R
✓2 plotted against � form a bell curve.13 At � = 1 the option value

switches to A1R
�1 , which is exercised immediately in exchange for the termination value

R(1+⌧)
r�µ⇡Q

�K.

When R � R

⇤
0 the option is exercised regardless of whether an innovation has arrived or

not. The termination value will be the sum of the two integrals in the respective domain

10see Table H.1 in Appendix H for numerical illustration
11see Table H.2 in Appendix H for numerical illustration
12see Table H.3 in Appendix H for numerical illustration
13see Table H.4 in Appendix H for numerical illustration
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presented in (5.33). These represent the present value of the total annual profits without

an innovation from the time of the investment until the innovation arrives, and the total

annual profits after the innovation has arrived.

The endogenous constants C1, D1, D2 and the optimal investment threshold when the inno-

vation has not arrived, R⇤
0, are obtained via value matching and smooth pasting conditions

between the three branches of (5.33).

When R = R

⇤
1 and � = 0, we get the following value matching and smooth pasting condition

(Eqs. (5.34) and (5.35) respectively):
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When R = R

⇤
0, we get the following value matching and smooth pasting condition (Eqs.

(5.36) and (5.37) respectively):
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⇤
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✓1�1 + ✓2D2R

⇤
0
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1

r � µ

⇡Q

+ �

(5.37)

Eqs. (5.34-5.37) gives the following system of nonlinear equations, which is solved in MAT-

LAB using fsolve:
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(5.38)

Error of numerical method

In solving the set of nonlinear equations using fsolve, we incur an error which we denote

✏2. We use standard MATLAB settings with error toleration set to 10�6, and therefore

consider ✏2 to be an insignificant error.

5.3 Simulating expected optimal investment time

Determining optimal investment strategy and investment thresholds is the main focus of

the majority of academic real options literature. The literature gives little attention to

the expected time needed to reach the optimal investment thresholds, even though this is

necessary information in order to express the present value of an investment opportunity.

This point is emphasised by Himpler and Madlener (2014). In simpler models it is possible

to derive the discount factor analytically. However, as our models are multi-factor, estimat-

ing the first passage time and expected stochastic discount factors is mathematically very

complex. This is generally done numerically by simulation methods, such as Monte Carlo

simulation. In the following we elaborate on the simulation procedures we constructed in

order to estimate first passage time for Model 1 and 2.

Model 1: T

⇤
1 denotes the expected time until the first passage of the investment threshold

p

⇤. We simulate the development of the relationship p = R

K

. The arrival of an innovation

is simulated by drawing a random number from a uniform distribution and checking if it

is less than the given � value. In each discrete time step of one year we check if the value

of p has exceeded the investment threshold p

⇤, and if so we save the number of time steps

t

n

in the array T = [t1, ..., tn]. To determine the expected first passage time T

⇤
1 we run

the procedure multiple times in order to achieve convergence in the simulations. We set T ⇤
1
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equal to the median of the array T to filter out extreme values.

Model 2: T

⇤
2 denotes the expected time until the first passage of one of the investment

thresholds R⇤
0 or R⇤

1. We simulate the development of the relationship R = ⇡Q. The arrival

of the innovation is simulated by drawing a random number from a uniform distribution

and checking if it is less than the given � value. Contrary to the Model 1 simulation, we

need to check whether or not the innovation has arrived in order to determine if R⇤
0 or R⇤

1 is

the optimal investment threshold. To arrive at the first passage time T ⇤
2 we follow a similar

procedure as for Model 1.

See Appendix I for MATLAB code of both simulation procedures.
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Chapter 6

Model parametrisation

In this chapter we quantify the input variables used for the case study of an investment

in a post-smolt production facility. A sensitivity analysis is conducted in Chapter 7. We

quantify parameters related to investment cost, discount rate, production capacity, price,

technology, growth rates, volatility and correlation.1 The values have been chosen in close

cooperation with industry experts.

Investment cost, K

The investment cost for the facility considered is set equal to MNOK 50. As stated in the

previous, we perform a case study on a relatively small company, hence the investment

cost reflects a small post-smolt production facility. The number is based on information

received from the Norwegian aquaculture technology provider AKVAGroup and the Norwe-

gian salmon farming company SalMar. SalMar has made several investments in land-based

smolt production facilities based on the RAS technology. It is assumed that no equipment

needs to be renewed during the time period considered. Thus, the investment cost is as-

sumed to occur only at the time of investment. In Model 1, K is a stochastic variable with

the initial value of MNOK 50.

Discount rate, r

The discount rate should reflect the risk embedded in the project. In theory it is calculated

using e.g. the CAPM formula. However, to our knowledge it is not a common procedure in

salmon farming companies to use theoretical models to derive the discount rate for individual

1The values are summarised in a table at the end of the chapter
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projects. It is set by the company board and assumed equal among all projects. However,

we believe it is an oversimplification to use the same discount rate regardless of project risk.

Additionally, the discount rate is company sensitive information. Therefore we rely upon

the advice of one of Norway’s most acclaimed salmon analysts, Kolbjørn Giskeødeg̊ard at

Nordea Markets. According to him the discount rate used in salmon farming companies

normally range from 8 to 10 percent depending on the size of the company. However, given

the risk inherent in the project considered, we follow Giskeødeg̊ard’s advice and set the

discount rate to 12 percent.

Production capacity, Q

In the case study we evaluate a facility with an initial annual production output of 500

metric tons of post-smolt. We set the individual post-smolt weight to 400 grams, which

entails a production output of 1.25 million post-smolt. The specific fish weight is chosen

based on advice from several of the largest salmon farming companies in Norway, including

SalMar and Marine Harvest Group. They argue that the costs of land-based production

increase fairly rapidly when surpassing a production weight of 400 grams.

In Model 2 we assume that there is growth and volatility in the production output. For

this model, the growth rate is set to 1 percent annually. In Model 1 we wish to isolate the

e↵ects of uncertainty in profit development and investment cost. Therefore, the quantity

of post-smolt produced is assumed constant and equal to 500 tons annually throughout the

model.

We assume that the volatility in the production output stems from oscillating mortality

rates. The average mortality rate for traditional salmon farming in Norway was 16 percent

in 2013 (Terjesen and Handeland, 2014). The Norwegian salmon farming company Grieg

Seafood has tested post-smolt production in a RAS facility, and according to Director of

Biological Performance and Planning Frode Mathisen (2014), they have achieved a mortality

rate of 2 percent in their most successful batches. However, as this is not an average and

consistent rate, but merely the best case achieved in small-scale research facilities, this

would be an optimistic number to apply as model input. Therefore, following advice from

Associate Professor Torstein Kristensen at the Faculty of Biosciences and Aquaculture at
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the University of Nordland, we have set the mean annual survival rate to 90 percent, and

the standard deviation of Q to 5 percent.

Unit profit, ⇡

We need to determine three values related to unit profits: (1) initial unit profit, (2) volatil-

ity in unit profits, and (3) drift in unit profits. First, as most salmon farming companies

considering post-smolt production aim to be self-su�cient, the usual method of calculating

the price of the post-smolt is cost-based pricing with no mark-up. However, an investment

in a facility can never be justified when the profit margin is constantly zero. The spot

market for post-smolt exists mainly to serve companies’ urgent demands for specific weight

classes of post-smolt, caused by unexpected incidents of mass mortality. This creates mar-

ket prices that are inelastic and highly volatile. Therefore we can not use spot market

prices to determine initial unit profit. Based on advice from CEO Finn Christian Skjennum

at Tjeldbergodden Settefisk, one of the few companies that specialises in commercialised

post-smolt production, the post-smolt price should be set equal to the total production

cost plus a margin. For the production cost we use a formula that is normally applied

to calculate the price of smolt at a specific weight. This was recommended by Hatchery

Manager in SalMar, Bjørn Hembre. The price is the sum of a fixed cost of NOK 4.5 per

individual and NOK 0.05 per gram of fish. This equates to NOK 61.25 per kg.2 The margin

we use in the model is set to 20 percent on advice from Skjennum, which equates to a sell-

ing price of NOK 73.5 per kg. The unit profit will then be NOK 12.25 per kg in the first year.

Second, as already mentioned, we assume that the per unit profits of post-smolt production

follow a GBM. In determining the volatility of this process we again rely upon the advice

of Skjennum. He believes that the post-smolt price should be correlated with the salmon

price in the long run. Therefore we use a volatility in the model in the same range as

the salmon price volatility. From January 1998 to September 2014, annualised volatility

of weekly salmon spot prices have ranged from about 16 to 35 percent (Skistad, 2014).

2 NOK 4.5+NOK 0.05 per gram ⇥400 grams
0.4 kg

= NOK 61.25 per kg.

56



CHAPTER 6. MODEL PARAMETRISATION

Based on this research, we set volatility of the per unit profits to 25 percent, but perform

a sensitivity analysis to test how a higher (or lower) volatility a↵ects the value of the

investment opportunity. As we consider a perpetual option we cannot assume that the per

unit profits can grow faster than the overall economy in eternity, which grows at around

2-3 percent annually (Koller et al., 2010). Additionally, as commodity prices often show

a mean-reverting behavior in the long run and salmon closely resembles a commodity, the

drift rate of the associated price should not be set too high. Therefore we have set the drift

rate of the GBM representing per unit profits to 2 percent. This applies to both models

presented.

Initial total annual profit, R
DCF

Given that the investment was made today, we assume an initial production volume Q = 500

tons and per unit profit ⇡ = NOK 12.25, hence the total profit in the first year of operation,

denoted by R

DCF

, is equal to MNOK 6.125.

Technology, � and �

After consulting with Hatchery Manager in SalMar, Bjørn Hembre, we set the arrival rate

of innovating technology in post-smolt production to 0.2. This would indicate an expected

arrival every 5 years and applies to both models presented. An innovation is assumed to

reduce investment cost by 5 percent in Model 1 and improve total annual profits by 10

percent in Model 2. The intuition behind using di↵erent innovation factors for the models

is that only one innovation is allowed in Model 2, while there is no limit on the number of

innovations (or Poisson jumps) that can occur in Model 1.

Correlation, ⇢

For Model 2 we assume that the correlation between quantity and unit profits is zero due to

the lack of data. The consequence of this assumption is that the growth rate of the model

becomes the sum of the growth rates of quantity and unit profits, namely equal to 3 percent

(See Eq. (5.28)). In Chapter 7 we test the sensitivity of the results to di↵erent values of ⇢.
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Parameter Symbol Model 1 Model 2

Investment cost K MNOK 50 MNOK 50
Discount rate r 12% 12%

Innovation arrival rate � 0.2 0.2
Investment cost reduction factor � 0.95 -

Profit improvement factor ⌧ - 0.1
Profit volatility �

R

, �
⇡

25% 25%
Profit drift ↵

R

, ↵
⇡

2% 2%
Quantity volatility �

Q

- 5%
Quantity drift ↵

Q

- 1%
Initial total annual profit R

DCF

MNOK 6.125 MNOK 6.125
Correlation ⇢ - 0

Combined growth rate µ

⇡Q

- 3%

Table 6.1: Input parameters for the models summarised
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Chapter 7

Post-smolt case study

In this chapter we present a case study of Model 1 and Model 2 calibrated to an investment

in a post-smolt facility. We present results using the parameter values from the previous

chapter, and conduct sensitivity analyses. We treat the intrinsic value of the option as an

approximate to the NPV given by a simplistic DCF analysis with no explicitly forecast cash

flows, and perpetuity growth from year one. This enables us to make a comparison between

the traditional DCF and the real options approach. The value of being able to wait for the

optimal investment threshold is highlighted in two points; the initial annual profit R

DCF

and the traditional DCF investment threshold R

NPV=0. The objective of the chapter is to

find if real options valuation can uncover additional value compared to DCF analysis, and

to give investment managers intuition on how technology and profit uncertainty a↵ect an

investment in a post-smolt production facility.

7.1 Multi-factor model with stochastic profit and investment

cost

In this section we present the results of Model 1. Unless stated otherwise, we use the fol-

lowing values for the input parameters (see Chapter 6): r = 0.12, � = 0.95, �
R

= 0.25,

↵

R

= 0.02 and � = 0.2 . We will hereby refer to this as the base case for Model 1.
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Figure 7.1: The ratios f(p) = F (R,K)/K, and the intrinsic value line p

r�↵ � 1, under base

case assumptions

Figure 7.1 displays the value of f(p) and the intrinsic value line given by the function
p

r�↵ � 1. Referring to Section 5.1, f(p) = F (R,K)/K, i.e. it represents the ratio of the

value of the investment opportunity to the investment cost. Similarly, the intrinsic value

line given by p

r�↵ � 1 = V (R)�K

K

, i.e. it represents the net present value of the project rel-

ative to the investment cost. The intrinsic value line intersects with the horizontal axis at

pNPV =0 = R/K = 0.1, indicating that the traditional DCF analysis would suggest investing

given that first year total annual profit is at least 10 percent of the investment cost. The

investment threshold p

⇤ = (R/K)⇤ = 0.1945 is where the graph of f(p) and the intrinsic

value line meet tangentially. For p < p

⇤, f(p) is larger than the intrinsic value, and the

di↵erence represents the value of the flexibility to wait for the optimal investment threshold

p

⇤. This observation implies that modelling the investment problem by using a real options

approach can uncover additional value. To quantify the excess value in a specific point, we

evaluate f(p) at R
DCF

= 6.125 and K = MNOK 50. In this point the value of the flexibility

to delay an investment is approximately MNOK 7, an excess value of about 60 percent to
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the net present value.1

Figure 7.2: Value of the flexibility to delay investment, i.e. the di↵erence between the option

value and the intrinsic value, f(p)�
�

p

r�↵ � 1
�

.

Figure 7.2 illustrates the value of the flexibility to delay investment. The value reaches

a maximum of approximately 0.25 when p equals the break even point of the investment,

i.e. where the traditional NPV equals zero. For an investment cost of MNOK 50, this

corresponds to MNOK 12.5. The results shown in the graph is in line with our intuition -

at low values of p, i.e. when K is large relative to R, the flexibility has little value as the

option is unlikely to be exercised, and at high values of p the flexibility to delay investment

also has low value as the option is likely to be exercised in the near future.

1(0.36-0.225) ⇥ MNOK 50 ⇡ MNOK 7
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We will in the following conduct a sensitivity analysis aiming to determine how changes in

the values of the input parameters a↵ect f(p) and the threshold p

⇤.

Sensitivity analysis

Figure 7.3: Value of investment opportunity, f(p), for � = 0.15, � = 0.25 and � = 0.35.

Figure 7.3 shows that a higher level of profit uncertainty, i.e. higher �, increases the value

of f(p). A higher � also leads to a higher p⇤. This in line with classic options theory (see

Dixit and Pindyck (1994)) as more uncertainty, all else held equal, should both increase

the value of the investment opportunity but also make the salmon farming company more

reluctant to invest in the project. The threshold development for increasing volatility is

more directly shown in Figure 7.4 below.
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Figure 7.4: Investment threshold p

⇤ as a function of �

Figure 7.4 shows that the investment threshold, p⇤, increases convexly for higher volatility.

Thus, the salmon farming company is more reluctant to invest when volatility increases,

despite the fact that f(p) also increases.
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Figure 7.5: Value of investment opportunity, f(p), for � = 0, � = 0.2 and � = 1

Figure 7.5 shows that f(p) increases for higher innovation arrival rates �. A higher arrival

rate of innovations reduces the expected investment cost, and thus increases the value of

the investment opportunity. Additionally the investment threshold p

⇤ increases with �, i.e.

the salmon farming company has stronger incentives to delay the investment. We consider

two hypothetical cases to exemplify this: In a case where � = 0, the innovations will never

arrive, and there is no point in waiting for a lower investment cost for the salmon farming

company. However, if � = 1, the salmon farming company receives a reduced investment

cost in the next time period, which gives stronger incentives to wait.
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Figure 7.6: Value of investment opportunity, f(p), for � = 0.8, � = 0.95 and � = 1

Figure 7.6 shows that a lower value of �, i.e. a more significant cost reduction factor

increases f(p) and the investment threshold p

⇤. This result follows the same logic as Figure

7.5 - a more significant investment cost reduction factor lowers the expected investment

cost, and hence the value of the investment opportunity increases. At the same time, the

salmon farming company has stronger incentives to delay investment. In Figure 7.7 below

we illustrate the combined e↵ects of � and � on the investment threshold p

⇤.
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Figure 7.7: Investment threshold p

⇤ as a function of � with di↵erent � values (top graph),

and as a function of � with di↵erent � values (bottom graph)

In the top graph of Figure 7.7 p

⇤ is plotted for � 2 [0, 1] and for di↵erent values of the
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investment cost reduction factor �. When � = 1, there is no investment cost reduction

associated with the innovation, hence p

⇤ is constant for all � values. Conversely, when

� = 0, the innovation will never arrive and p

⇤ is constant for all innovation sizes �. We

observe that the lower the value of �, the steeper the graph is. This is in line with our

intuition, as innovations with large impact on the investment cost and high arrival rate

increase the incentives to wait. More importantly we see from Figures 7.5, 7.6 and Figure

7.7 that � and � have similar e↵ects on f(p) and p

⇤. In other words the expectation of

frequent but small innovations (high � and high �), and few but large innovations (low

� and low �), will have a similar e↵ect on both option value and investment threshold.

Thus the combination of � and � can be interpreted as the total amount of technological

uncertainty inherent in the investment opportunity.

Figure 7.8: Value of investment opportunity, f(p), for ↵ = 0, ↵ = 0.02 and ↵ = 0.04

Figure 7.8 shows that the value of f(p) increases with higher profit growth rates, while

the investment threshold, p⇤ decreases (see Figure 7.8). A higher growth rate increases the

expected value of the project, and incentivises investment. For further elaboration we refer

to classic real options theory such as the work of Dixit and Pindyck (1994).
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Figure 7.9: Value of investment opportunity, f(p), for r = 0.08, r = 0.12 and r = 0.16

A higher discount rate reduces the expected value of the project. This e↵ect is shown in

Figure 7.9, where we see lower values of f(p) and higher thresholds p⇤ for higher discount

rates r. This observation is also in line with classic option theory and again we refer to Dixit

and Pindyck (1994) for elaboration. Figures 7.8 and 7.9 illustrate that both f(p) and p

⇤

are highly sensitive to ↵ and r. Therefore it is important for the salmon farming company

to be precise when quantifying these parameters.

In the following we will perform a similar case study on Model 2.
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7.2 Multi-factor model with stochastic profit and quantity,

and sudden arrival of an innovation

In this section we present the results of Model 2. Unless stated otherwise, we use the

following values for the input parameters (see Chapter 6): r = 0.12, ⌧ = 0.1, K = MNOK

50, �
⇡

= 0.25, �
Q

= 0.05, ↵
⇡

= 0.02, ↵
Q

= 0.01, ⇢ = 0 and � = 0.2. In the following we

will refer to this parametrisation as the base case for Model 2.
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Figure 7.10: Value of investment opportunity, F (R), and intrinsic value of the option,

V (R)�K as a function of R, for Model 2 base case assumptions. The top graph represents

the value when the innovation has not arrived (� = 0). The bottom graph represents the

value when the innovation has arrived (� = 1). R is the prevailing total annual profit in

MNOK
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Figure 7.10 displays the value of the option to invest, F (R), and the intrinsic value of the

option, V (R)�K as functions of the prevailing total annual profit R. The top graph repre-

sents the value when the innovation has not arrived (� = 0). The bottom graph represents

the value when the innovation has arrived (� = 1). Both F (R) and V (R) �K are higher

when the innovation has arrived, as R is increased by (1+ ⌧).2 Initially the salmon farming

company should evaluate the optimal investment strategy based on the graph for � = 0. If

the innovation arrives, the company must instead consider the graph for � = 1.

The two vertical lines marked by R

⇤
1 and R

⇤
0, represent the investment thresholds respec-

tively with and without the presence of the innovation. As described by the value matching

and smooth pasting conditions given by Eqs. (5.34-5.37), F (R) and V (R)�K meet tangen-

tially at the investment thresholds. R

⇤
0 is higher than R

⇤
1, as the salmon farming company

needs a higher total annual profit to be willing to invest without the presence of an inno-

vation. R1,NPV=0 and R0,NPV=0 represent the traditional NPV thresholds, i.e. where the

NPV equals zero. At the initial total annual profit R

DCF

= MNOK 6.125, the di↵erence

between the net present value and the real options value is MNOK 4.6 or approximately

20 percent of the net present value when � = 0. For � = 1 the corresponding numbers are

MNOK 3.5 and 14 percent. This shows that the real options model can uncover additional

value compared to the traditional DCF method.

For the base case we included a separate graph for � = 0 and � = 1 to show that their

behaviour coincides and to highlight the di↵erence in investment value and optimal thresh-

olds. For the remainder of the section we focus on the case where the innovation has not

arrived (� = 0), as this is the most relevant and interesting scenario to study.

2To account for the expected future arrival of the innovation, V (R)�K for � = 0 is given by the expression

R
r�µ⇡Q

✓
1 + �⌧

r�µ⇡Q+�

◆
�K, see Eq. (5.33)
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Figure 7.11: Value of the flexibility to delay investment, i.e. the di↵erence between the

option value and the intrinsic value, F (R)� [V (R)�K].

In Figure 7.11 we have displayed the value of the flexibility to delay the investment. We see

from the graph that the value reaches a maximum of approximately MNOK 14 when R =

MNOK 4.2, i.e. where the traditional NPV equals zero. This is in line with our intuition -

at low values of R the flexibility has little value as the option is unlikely to be exercised, and

at high values of R the flexibility also has low value as the option is likely to be exercised

in the near future.
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Sensitivity analysis

Figure 7.12: Value of investment opportunity, F (R), for �
⇡

= 0.15, �
⇡

= 0.25 and �
⇡

= 0.35

In Figure 7.12 we show the value of the investment opportunity, F (R), for di↵erent values

of the unit profit volatility �

⇡

. The intrinsic value of the real option V (R) � K is also

indicated in the figure. As expected, V (R) �K and all F (R,K) meet tangentially in the

R

⇤
0-thresholds. As changes in both �

⇡

and �

Q

a↵ect the option value in the same way,

we have not included a separate graph for �
Q

. The results show that a higher level of

uncertainty leads to higher option value. However, higher uncertainty also increases the

associated investment thresholds as the salmon farming company is more reluctant to in-

vest in the project when the uncertainty is higher. As long as ⇢ = 0 the intrinsic value line

V (R) �K = R

r�µ⇡Q

✓

1 + �⌧

r�µ⇡Q+�

◆

�K does not vary with di↵erent values of �
⇡

. This is

because µ

⇡Q

is dependent on ⇢. However, each di↵erent value of the parameters �, ⌧, ⇢,↵, r

or K, has its unique intrinsic line. Therefore, to preserve simplicity in the graphs intrinsic

value lines will not be included for the remainder of the sensitivity analysis.
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The threshold development for increasing volatility is more directly shown in Figure 7.13

below. It shows that R⇤
0 and R

⇤
1 are increasing convexly for higher per unit profit volatility.

Figure 7.13: Investment thresholds, R⇤
1 and R

⇤
0, as a function of �

⇡
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Figure 7.14: Value of investment opportunity, F (R), for � = 0, � = 0.2 and � = 1

Figure 7.14 displays the sensitivity of the option value to di↵erent � values, i.e. the arrival

rate of the innovation. The option value is an increasing function in �. A higher � decreases

the expected time to the arrival of the innovation, increasing the expected value of the

investment opportunity. The option value is more sensitive in the �-range [0, 0.2] than in

[0.2, 1]. Figure 7.15 below shows directly how � and ⌧ a↵ect the investment thresholds.
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Figure 7.15: Investment thresholds, R⇤
1 and R

⇤
0, as a function of � for ⌧ = 0, ⌧ = 0.1 and

⌧ = 0.2.

Figure 7.15 shows that R

⇤
0 is a decreasing function in � for ⌧ > 0. The decreasing convex

shape of R⇤
0, is a result of the expected time to arrival of the innovation, E

�

[Y ] = 1
�

, which

is a convex function. When � = 0, the innovation will never arrive and the investment

threshold R

⇤
0 is constant for all ⌧ values. Conversely, when ⌧ = 0, the innovation rate �

is insignificant as there is no real benefit associated with the arrival of the innovation, and

therefore R

⇤
0 = R

⇤
1. For the boundary value � = 1, the innovation will arrive in the next

time period. Hence the investment threshold R

⇤
0, approaches the investment threshold R

⇤
1.

To understand why the threshold R

⇤
0 approaches but does not meet R⇤

1 perfectly at � = 1

(⌧ > 0), it is necessary to consider the integral given by Eq. (7.1) describing the value of

the investment opportunity when R � R

⇤
0 and � = 0

E
R,Y

Z

Y

0

e

�(r�µ⇡Q)t
Rdt+ E

R,Y

Z 1

Y

e

�(r�µ⇡Q)t
R(1 + ⌧)dt�K (7.1)

Y is an exponentially distributed variable describing the time until the Poisson event, in-
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dicating the arrival of a technological innovation. The expected value of Y , E [Y ] = 1 for

� = 1, and therefore the integral is equal to:

E
R

Z 1

0

e

�(r�µ⇡Q)t
Rdt+ E

R

Z 1

1

e

�(r�µ⇡Q)t
R(1 + ⌧)dt�K (7.2)

The value of the investment is therefore close, but not equal to the expected value of the

investment when R = R

⇤
1 and � = 1, expressed as:

E
R

Z 1

0

e

�(r�µ⇡Q)t
R(1 + ⌧)dt�K =

R

⇤
1(1 + ⌧)

r � µ

⇡Q

�K (7.3)

By definition, R⇤
0 describes the investment threshold for investing before the arrival of the

technological innovation. Even if � = 1, the post-smolt facility still has to be operated for

one time period without the extra profits associated with the innovation. As �t ! 0 the

facility will be operated without the innovation for an infinitesimally small period, and R

⇤
0

will converge towards R⇤
1 as �! 1.3

Eq. (7.1) is also key to understanding the threshold behavior in between the two boundary

cases, � = 0 and � = 1. As the salmon farming company gets the benefits of the innovation

at no cost, regardless of investment timing, R⇤
0 must be a strictly decreasing function in

� bounded by R

⇤
0 at ⌧ = 0 and R

⇤
1. The only change incurred by an increasing �, is the

proportion of time operated with and without the increased profits, as illustrated in figure

7.16. This result deviates from the result of Chronopoulos et al. (2015) who model a subsidy

which is not received if introduced after investment is made.

3Solving the value matching and smooth pasting equation set when replacing Eq. (7.1) with Eq. (7.3)
for the domain R � R⇤

0 and � = 0, gives R⇤
1 = R⇤

0.
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Figure 7.16: An increase in � decreases the expected time until the Poisson event, E
�

[Y ].

Hence, the proportion of time the facility is operated with increased profits is larger.

Figure 7.17: Value of investment opportunity, F (R), for ⌧ = 0, ⌧ = 0.1 and ⌧ = 0.4

As illustrated in Figure 7.17, the value of the investment opportunity, F (R), increases and

the investment threshold decreases with the size of the profit improvement factor ⌧ . This
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is in line with our intuition, as a higher ⌧ yields a higher expected value of the project,

making the salmon farming company willing to make the investment at a lower total annual

profit.

Figure 7.18: Investment thresholds, R⇤
1 and R

⇤
0, as a function of ⌧

Figure 7.18 shows that an increase in the innovation size ⌧ lowers both investment thresh-

olds. The decrease is steeper for R⇤
1 than for R⇤

0, as a salmon farming company that invests

at R

⇤
1 enjoys the benefit of the innovation for the whole lifetime of the project, while an

investment made at R⇤
0 implies that the benefit from the innovation is received further out

in time.
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Figure 7.19: Value of investment opportunity, F (R), for ⇢ = �0.5, ⇢ = 0 and ⇢ = 0.5

⇢ denotes the correlation between unit profit ⇡, and annual quantity produced Q. The

response of F (R) to changes in ⇢ is similar to the response to changes in �. A positive

⇢ gives both a higher option value and higher investment thresholds, while a negative ⇢

gives lower option value and lower investment thresholds. The intuition is that positive

correlation increases the uncertainty in the model, as a change in one parameter is likely

to be amplified by a change in the other parameter. For instance, an increase in unit

profit would likely mean an increase in quantity, which would impact R more than if the

correlation was zero. In the case of negative correlation, the impact of a change in unit

profits on R is likely to be dampened by an opposite change in quantity.

80



CHAPTER 7. POST-SMOLT CASE STUDY

Figure 7.20: Investment thresholds, R⇤
1 and R

⇤
0, as a function of ⇢

Figure 7.20 shows that an increase in the correlation of the two underlying stochastic pro-

cesses gives a increase in the investment threshold both with and without the presence of an

innovation. This is in line with our intuition, as an increase in ⇢ increases the uncertainty

in the model.
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Figure 7.21: Value of investment opportunity, F (R), for ↵
⇡

= 0 and ↵
Q

= 0, ↵
⇡

= 0.02 and

↵

Q

= 0.01 and ↵
⇡

= 0.04 and ↵
Q

= 0.02

Figure 7.21 shows that a higher growth rate increases the value of the investment oppor-

tunity and decrease the investment thresholds. The threshold development for increasing

growth rates is more directly shown in Figure 7.22. It shows that R⇤
0 and R

⇤
1 are decreasing

convexly in both higher per unit profit and quantity growth rates.
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Figure 7.22: Investment thresholds, R⇤
1 and R

⇤
0, as a function of ↵

Figure 7.23: Value of investment opportunity, F (R), for r = 0.08, r = 0.12 and r = 0.16
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Figure 7.23 shows how F (R) and the threshold R

⇤
0 vary for di↵erent values of the discount

rate r. An increase in the discount rate leads to a reduced value of the investment oppor-

tunity and higher investment thresholds. As neoclassical investment theory suggests, an

increase in r reflects a more risky investment and leads to higher investment thresholds as

the salmon farming company demands a higher return on its investment. The threshold

development for increasing discount rates is more directly shown in Figure 7.24. It shows

that R⇤
0 and R

⇤
1 are increasing in higher discount rates. As for Model 1, we see that F(R)

and the thresholds are highly sensitive to changes in growth and discount rate.

Figure 7.24: Investment thresholds, R⇤
1 and R

⇤
0, as a function of r
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Figure 7.25: Value of investment opportunity, F (R), for K = 35, K = 50 and K = 65

Figure 7.25 shows that an increase in the investment cost K, gives a lower value of the

investment opportunity F (R), and higher thresholds. At a higher K, the salmon farming

company demands a higher profit level to compensate for the larger investment cost. The

increase of the investment thresholds in K is shown in Figure 7.26.
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Figure 7.26: Investment thresholds, R⇤
1 and R

⇤
0, as a function of K
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Figure 7.27: Investment thresholds, R⇤
1 and R

⇤
0, as a function of ⇡ and Q

So far, we have given the investment thresholds as a function of the total annual profit R.

As stated in Section 5.2, R is equal to the product of the per unit profit ⇡ and the annual

quantity produced Q, i.e. R = ⇡Q. In Figure 7.27 we show how our results coincide with

the original two dimensional problem. The red lines highlight the intersection between the

total profit function and the horizontal threshold planes R

⇤
0 and R

⇤
1. The curved shape

indicates that the thresholds can be reached either by a high Q and low ⇡, low Q and high

⇡ or a combination of both. By mirroring the intersection lines of the profit surface and

the threshold surfaces to the (⇡, Q)-plane, we can read that at a production quantity Q of

520 tons per year, for � = 0, the salmon farming company would demand a per unit profit

⇡ of approximately NOK 17 in order to make the investment, while for Q = 500, � = 0, it

would demand ⇡ ⇡ NOK 17.7.
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7.3 Summary of findings

Our results show that evaluating the specific investment case using real options valuation

uncovers significant excess value compared to a traditional discounted cash flow analysis.

In the traditional DCF investment threshold, i.e. when NPV is zero, the value of being

able to delay the investment, given an investment cost of MNOK 50, exceeds MNOK 12

in both real options models (see Figures 7.2 and 7.11). More specifically, when the DCF

analysis suggests investment, the real options models find that the value of being flexible

to wait for optimal investment condition is almost 30 percent of the initial investment cost.

Given initial conditions (R
DCF

= MNOK 6.125), the intrinsic values in both Model 1 and

2 are positive, meaning that a traditional DCF analysis would suggest immediate invest-

ment. However, both real options analyses suggest waiting for a more beneficial investment

timing. From running the simulation procedures presented in Section 5.3 under base case

assumptions, we find the expected first passage time of the investment thresholds to be 11

and 5 years for Model 1 and Model 2 respectively (see Appendix I for MATLAB code).

In Tables 7.1 and 7.2 below we summarise the main findings of the sensitivity analysis.

The direction of the arrows in the tables indicate the e↵ect of an increase in the specific

input parameter on the value of investment opportunity and the investment threshold. The

tables show that the two real options models generally react similarly to changes in the

input parameters. The exceptions are changes in innovation arrival rate, �. For higher

values of the innovation arrival rate �, the investment threshold in Model 1 rises, while

it decreases in Model 2. By modelling technological uncertainty in two di↵erent ways we

prove that the investment strategy is greatly influenced by whether or not the benefit of

technological progress is gained after the investment is made - the salmon farming com-

pany has weaker incentives to delay investment in the former than in the latter case. The

total amount of technological uncertainty is governed by the relationship between innova-

tion arrival rate and innovation impact. The expectation of frequent but small innovations,

and few but large innovations, have a similar e↵ect on both option value and investment

threshold in each of the models. On a final note we emphasise that the behaviour of our

models coincide with those of classic real options theory (see Dixit and Pindyck (1994))

adding credibility to the study. In the next chapter we discuss our findings w.r.t related

literature, as well as the modelling assumptions and practical applicability of the case study.
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Parameter Symbol f(p) p

⇤

Investment cost K # "
Discount rate r # "

Innovation arrival rate � " "
Investment cost reduction factor � # #

Profit volatility �

R

" "
Profit drift ↵

R

" #

Table 7.1: E↵ect of increase in input parameters on the value of f(p) and on the investment
threshold p

⇤ in Model 1

Parameter Symbol F (R) R

⇤
0, R

⇤
1

Investment cost K # "
Discount rate r # "

Innovation arrival rate � " #
Profit improvement factor ⌧ " #

Profit volatility �

⇡

" "
Profit drift ↵

⇡

" #
Quantity volatility �

Q

" "
Quantity drift ↵

Q

" #

Table 7.2: E↵ect of increase in input parameters on the value of the investment opportunity
F (R) and on the investment thresholds R⇤

0 and R

⇤
1 in Model 2

89



Chapter 8

Discussion

Through forefront multi-factor real options modelling we have managed to uncover addi-

tional value compared to the traditional DCF method. In this chapter we discuss our main

contributions w.r.t. related literature. We also discuss some of the challenges associated

with implementing a real options approach and why it is not currently used by the salmon

farming industry.

Main contributions w.r.t. related literature

In order to consider both the impact of uncertainty in technology and profits, we have ap-

plied forefront multi-factor real options modelling. This allowed us to gain insight in how

technology and profit uncertainty a↵ect the optimal investment strategy, and to derive the

optimal investment timing. Model input parameters have been quantified in close cooper-

ation with industry experts.

We adapt the model for investment under technology and revenue related uncertainty pro-

posed by Murto (2007) to the case of post-smolt investment. To derive analytical solutions,

Murto (2007) only considers three special cases: (1) Deterministic price process (� = 0),

(2) deterministic technological progress (� ! 1 and � ! 1) and (3) full collapse of the

investment cost (� = 0). Doing so he is able to give intuition on how revenue and technol-

ogy related uncertainty a↵ects the investment problem, when the relationship between the

two factors a↵ecting technological uncertainty, arrival rate � and investment cost reduction

factor �, is fixed. However, he is not able to assess the e↵ect of independent changes in �

and �, nor is he able to determine the option value f(p) or the investment threshold p

⇤ for

arbitrary input parameters. Hence, solving the model throughout the entire solution space

adds significant value. Therefore we have extended his work by developing a numerical so-

lutions approach that allows us to solve the model. We are thereby able to give additional

90



CHAPTER 8. DISCUSSION

and more nuanced insight as to how profit and technology uncertainty a↵ect the investment

problem.

Additionally, an important contribution to the existing literature is the application of real

options techniques originally proposed in papers considering investment in power generation

plants under policy uncertainty, to an investment under technological uncertainty. Adkins

and Paxson (2013) and Chronopoulos et al. (2015) consider an investment in a power

generation plant with the possible sudden provision or retraction of a government subsidy.

The subsidy is in the form of a cash payment proportional to the revenues of the firm and

can only be gained if it is introduced before the investment is made. Adkins and Paxson

(2013) consider uncertainty in both price and quantity, whereas Chronopoulos et al. (2015)

only consider price uncertainty while finding optimal quantity. We find that the sudden

provision of a subsidy resembles the arrival of a technological innovation, enabling us to

adapt and apply the frameworks of Adkins and Paxson (2013) and Chronopoulos et al.

(2015) to an investment under technological uncertainty. One important di↵erence between

a subsidy and a technological innovation is that the subsidy cannot be gained after the

investment is made. We have therefore extended their models so that they fit our case,

where the benefit of a technological innovation is gained also after the investment is made.

Our analyses show that the salmon farming company has stronger incentives to invest early

if the benefit of the technological innovation is gained regardless of investment timing. This

insight can be related back to the investment problem considered by Adkins and Paxson

(2013) and Chronopoulos et al. (2015): As the main purpose of a subsidy scheme is to

strengthen incentives to invest sooner rather than later, our analysis indicates that subsidy

schemes should be adapted so that a subsidy can be gained regardless of investment timing.

Modelling assumptions and practical applicability

In the following we discuss how our modelling assumptions limit the practical applicability

of the case study. The discussion is based on Lander and Pinches (1998)’s three proposed

reasons why real options models are not applied more widely in practice:

1. The required modeling assumptions are often violated in a practical real options ap-

plication,
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2. The necessary additional assumptions required for mathematical tractability limit the

scope of applicability,

3. The types of models currently used are not well known or understood by corporate

managers and practitioners.

First, we have assumed that the state variables in the models follow well-defined stochastic

processes. However, it is not clear what is the correct stochastic processes, and our models

may be highly sensitive to how we have modelled the behaviour of the state variables. To

enable a realistic comparison of the traditional net present value and the real options value

we needed to consider variable costs. We did this by assuming that per unit profits follow a

GBM. This is not a common assumption in theoretic real options literature, however a simi-

lar assumption is made by Himpler and Madlener (2014), who also extend Murto (2007). A

more common assumption in real options literature is that there are no variable costs. This

entails that unit price equals unit profit. Making this assumption would however reduce

the realism of our results, as the payback period would be less than one and a half years

given initial parameter values (see Chapter 6).1 Consequently, our results would give a false

impression of how favorable an investment in post-smolt production is.

Second, we have made additional assumptions to enable mathematical tractability. The

investment problem is assumed to only contain one option: invest now, or otherwise wait.

In reality however, there would be several more options embedded in the investment prob-

lem, such as abandonment, mothballing, stepwise investment and stepwise R&D (see Dixit

and Pindyck (1994); Chronopoulos et al. (2015); Bowe and Lee (2004)). By adding flex-

ibility to the investment problem, the real options value would increase and our results

would be more nuanced. However, including these embedded options would increase the

mathematical complexity of the problem significantly. Furthermore, we consider a small

salmon farming company that does not have the same financial flexibility as the industry

majors. Hence, it is not relevant to model embedded options such as stepwise R&D, or

mothballing the facility in the likely scenario of an economic downturn. By extension, one

1Payback period = Investment cost
Volume per year ⇥ unit profit

= MNOK 50
500,000kg per year ⇥NOK 73.5per kg

= 1.36 years
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can argue that it currently makes more sense for the majors to invest in post-smolt. They

have more options embedded, increasing their flexibility and in turn the real options value

of the investment. For the smaller salmon farming companies it is generally better to let

the majors drive the technological innovation, and invest when the technology is su�ciently

mature.

To further allow for mathematical tractability, the investment opportunity is assumed to

be perpetual in both models. This is not necessarily a realistic assumption, as most invest-

ment opportunities have a finite time horizon. Due to the high discount rate of 12 percent

(See Chapter 6), the present value of cash flows far into the future is close to zero, and

has negligible impact on the investment decision. Thus in practice, our models consider a

time-bound investment opportunity.

Similarly to e.g. Bernanke (1980) and Cukierman (1980), we have assumed in both models

that profit generation starts instantaneously after the investment. Implicitly we assume it

takes no time to set up the facility, which we acknowledge as an unrealistic assumption.

However, the time lag a↵ects both the DCF and the real options value similarly, and is

therefore not expected to a↵ect the comparison. In addition, we do not distinguish imple-

mentation from successful implementation. Stenbacka and Tombak (1994) however argue

that the new technology will improve the equilibrium profits of the adopting firm only if it is

successfully implemented. They model uncertainty w.r.t. the time between adoption of the

new technology and successful implementation. The probability of success in a given time

period increases as the firm gains experience using the new technology. Therefore, Sten-

backa and Tombak (1994) present the process of technology adoption as a ”time consuming

activity”. However, as we focused on the uncertainty related to the arrival of technological

innovations, we chose not to consider uncertainty related to implementation.

In Model 1 we have not accounted for a possible correlation between profits and the innova-

tion arrival rate. There are however arguments supporting both a positive and a negative

correlation. If profits in post-smolt production were to rise, it is likely that the market would

become more attractive and as a result grow larger. Consequently the technology suppliers

would likely increase their R&D e↵orts to gain market share, leading to an increase in the

innovation arrival rate. Conversely, in an economic downturn companies would demand
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more cost e↵ective technology, which could also increase innovation arrival rate. Due to the

lack of available empirical data, we are not able to draw conclusions about correlation, and

it is therefore omitted.

Our models do not consider the e↵ect of competition between salmon farming companies.

In reality a company’s choice of technology migration strategy would be conditioned on

its expectations about its rivals migration strategies. This could have been modelled using

a game theoretic real options approach similar to Huisman and Kort (2004). However,

incorporating game theory in the models would entail a significant increase in the complex-

ity and might deprive focus from the main objective of the thesis. Furthermore, we have

previously argued that it makes more sense for a small salmon farming company to be a

second-mover compared to the industry majors in terms of a post-smolt investment. Hence

modelling the game between first- and second-movers is not relevant for our investment case.

In Chapter 7 we show that a higher level of uncertainty increases the real options value of

an investment opportunity. To exploit the additional value, the salmon farming company

must be able to respond to new information about the market conditions. Koller et al.

(2010) illustrate this by Figure 8.1 below:
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Figure 8.1: The value of a real option is high when uncertainty is high, and the management

have the ability to respond to new information.

In large companies an investment decision needs to pass several layers of hierarchy, limiting

their flexibility. This places them in the bottom right corner of Figure 8.1, as they are only

moderately able to exploit the additional value given by a real options analysis. The small

company we consider is however assumed to have a flat structure, which enables a quick

investment decision. This places the company in the top right corner of Figure 8.1, as they

have a high ability to exploit the additional value given by a real options analysis. This

supports our choice of applying a real options approach to the specific investment problem.

Third, considering the mathematical complexity of the real options models, we acknowledge

the fact that they can be di�cult to grasp without a solid understanding of real options

theory. Naturally, the lack of understanding might cause reluctance among investment

managers to rely on the case study results. This poses a serious challenge in terms of

making salmon farming companies confident on the business potential real options analysis

can uncover. Interviewing executives in the salmon farming industry we have found that

they are generally quite satisfied with the traditional capital budgeting methods, and do

not see the need to value uncertainty. Bodén and Åhlén (2007) draw similar conclusions.

A common response among executives when confronted with the possibility of applying
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ROV was: ”What’s in it for me?”. Thus, we conclude that challenging the incumbent DCF

method is going to be a tough and timely task.
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Conclusion

The objective of this thesis has been to solve the following problem:

Can real options analysis uncover additional value compared to traditional capital budgeting

methods when evaluating an investment in a post-smolt facility under technology and profit

uncertainty?

Our main findings show that evaluating the specific investment case by real options val-

uation uncovers significant excess value compared to a traditional discounted cash flow

method. In both real options models, the value of being able to delay the investment in

the traditional DCF investment threshold, i.e. when NPV is zero, is close to 30 percent of

the investment cost (see Figures 7.2 and 7.11). By modelling technological uncertainty in

two di↵erent ways we prove that the investment strategy is greatly influenced by whether

or not the benefit of technological progress is gained after the investment is made - the

salmon farming company has weaker incentives to delay investment in the former than in

the latter case. The total amount of technological uncertainty is governed by the relation-

ship between innovation arrival rate and innovation impact. The expectation of frequent

but small innovations, and few but large innovations, have a similar e↵ect on both option

value and investment threshold in each of the models. In practice our findings implicate

that by relying on traditional capital budgeting methods, the salmon farming companies

can end up rejecting sensible business opportunities within post-smolt production. More

specifically, given the current characteristics of post-smolt production, traditional capital

budgeting methods underestimate its potential, possibly preventing the industry from tak-

ing the next step towards meeting the growing global demand.

In order to consider the impact of uncertainty in technology and profits simultaneously, we
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have applied forefront multi-factor real options modelling. We have also shown how tech-

nology and profit uncertainty a↵ect the optimal investment strategy deriving the optimal

investment timing. Model input parameters have been quantified in close cooperation with

industry experts. In terms of investment strategy, given initial conditions, the intrinsic

values in both Model 1 and 2 are positive, meaning that a traditional DCF analysis would

suggest immediate investment. However, both real options analyses suggest waiting for

more beneficial investment conditions.

Our main contribution has been threefold: 1) We have examined the potential of real op-

tions valuation in salmon farming; 2) We have extended the real options theory within the

area of theoretical multi-factor models; 3) We have applied real options valuation to a spe-

cific post-smolt investment case, thereby adding to the ongoing discussion of the economic

viability of post-smolt production.

First, to the best of our knowledge we are among the first to examine the potential of

real options valuation within salmon farming. The majority of academic literature focuses

on the biology rather than the economics of salmon farming. The few available economic

papers are based either on traditional capital budgeting methods or optimisation of oper-

ations. We have contributed to the salmon farming industry by providing a study giving

intuition on how uncertainty in technology and profits a↵ects an investment in post-smolt

production. The study can improve decision-making under uncertainty and potentially help

the industry to take the next step towards meeting the growing global demand.

Second, multi-factor real options models are a recent development in theoretical real op-

tions literature. Hence, developing these models further is an important contribution. By

developing two multi-factor real options models, we have captured di↵erent aspects of in-

vesting under technology and profit uncertainty. We have adapted the model for investment

under technology and revenue related uncertainty proposed by Murto (2007) to the case of

post-smolt investment, and extended the work by developing a numerical procedure that

allows us to solve the model. Additionally, we have applied real options techniques orig-

inally proposed in papers considering investment in power generation plants under policy

uncertainty, to an investment under technological uncertainty. Adkins and Paxson (2013)

and Chronopoulos et al. (2015) consider an investment in a power generation plant with
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the possible sudden provision or retraction of a government subsidy. The subsidy is in the

form of a cash payment proportional to the revenues of the firm and can only be gained if

it is introduced before the investment is made. Adkins and Paxson (2013) consider uncer-

tainty in both price and quantity, whereas Chronopoulos et al. (2015) only consider price

uncertainty while finding optimal quantity. We have found that the sudden provision of a

subsidy resembles the arrival of a technological innovation, which has enabled us to adapt

and apply the frameworks of Adkins and Paxson (2013) and Chronopoulos et al. (2015) to

investments under technological uncertainty. One important di↵erence between a subsidy

and a technological innovation is that the subsidy cannot be gained after the investment is

made. We have therefore extended their models so that they fit our case, where the benefit

of a technological innovation is gained also after the investment is made. Our analyses

show that the salmon farming company has stronger incentives to invest early if the ben-

efit of the technological innovation is gained regardless of investment timing. This insight

can be related back to the investment problem considered by Adkins and Paxson (2013)

and Chronopoulos et al. (2015): As the main purpose of a subsidy scheme is to strengthen

incentives to invest sooner rather than later, our analysis indicates that subsidy schemes

should be adapted so that a subsidy can be gained regardless of investment timing.

Third, due to the high degree of uncertainty related to post-smolt production technology,

the industry is reluctant to undertake investments. Currently the industry relies on tra-

ditional capital budgeting methods that only treats the downside potential of uncertainty.

We have contributed by proposing multi-factor real options models that also capture the

upside potential of the uncertainty embedded in post-smolt production. As there is little

available data related to post-smolt production and market prices, the models’ underlying

assumptions and parameters have been chosen in close collaboration with both biological

researchers and representatives from the industry majors. Thus, our results represent a se-

rious contribution to further discussions of the economical viability of post-smolt production.

However, regardless of the compelling results, we emphasise the application value of our

models as a study giving intuition on how uncertainty in technology and profits a↵ects the

investment problem. The models are based on several assumptions that limit the applicabil-

ity of the absolute values presented. As Luehrman (1998) and Van Putten and MacMillan

(2004) we conclude that real options valuation should be used as a complement to, and
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not a substitute for traditional DCF analysis. We also emphasise that the two real options

models presented are complements, and not substitutes for each other, as they give insight

on two di↵erent forms of technology and profit uncertainty.

9.1 Further research

This study has o↵ered an economic perspective on post-smolt production, one of the most

promising developments within salmon farming. The scope of the thesis has been to exam-

ine the e↵ects of technology and profit uncertainty on project value and optimal investment

strategy. In the following we suggest five exciting extensions for potential future research:

First, we assumed profit development to follow a GBM. As salmon has many of the charac-

teristics of a commodity, the post-smolt price can be modelled as a mean-reverting process.

Alternatively, more complex price developments such as mean reversion with jumps could

be implemented, to also allow for the post-smolt price to jump as a result of salmon farming

companies having encountered mass mortality and are willing to pay a high price for larger

smolt to recover production. Second, as a post-smolt case study on a larger company would

include more options than just the option to defer investment, our models could be extended

by including embedded options such as stepwise investment, and expansion or abandonment

options. Third, there is uncertainty tied to the future policies set for post-smolt produc-

tion. Currently, salmon produced in closed production facilities is not included in the MAB,

which represents a great advantage for post-smolt production. A possible alteration of the

current policy poses a risk for salmon farming companies, as they might be forced to include

the post-smolt in their MAB. Thus, including policy uncertainty represents another possible

extension of the models presented. Fourth, it could be interesting to view the investment

problem from a game theoretic perspective of a large company. Given the current lack of

commercial suppliers in the post-smolt market, first movers can achieve premium prices. At

the same time the first mover would risk losing terrain to second-movers who have awaited

superior technology. Fifth, our models could be adapted to specific investment cases with

similar properties as post-smolt production. One example is an investment in the devel-

opment of an oil field where the technology is in rapid development, and where there is

uncertainty related to the oil recovery rates and prices.
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To conclude, we have proven that taking a real options approach to an investment un-

der profit and technology uncertainty uncovers excess value compared to a traditional dis-

counted cash flow method. The models developed extend the existing real options literature

on multi-factor and technology uncertainty modelling. The result is a study giving salmon

farming companies intuition on how uncertainty about technology and potential future prof-

its a↵ects an investment in post-smolt production. The insight gained from our thesis can

support post-smolt production in the debate of its economic viability. This can potentially

revolutionise the salmon farming industry, enabling it to meet growing global demand.
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Appendix A

Derivation details of Model 1 PDE

In this appendix we derive Eq. (5.4):

rF (R,K)dt = E [dF (R,K)] + �[F (R,�K)� F (R,K)]dt (A.1)
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R

2
dt+ �[F (R,�K)� F (R,K)]dt

106



APPENDIX A. DERIVATION DETAILS OF MODEL 1 PDE

Reorganising and divinding by dt, we end get the following PDE:

1

2
�

2
R

R

2
F

RR

(R,K) + ↵

R

RF

R

(R,K)� rF (R,K) + �[F (R,�K)� F (R,K)] = 0
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Appendix B

Explicit Euler scheme to solve Model

1

We rewrite the second order ODE (5.8), into a system of two first degree ODEs, in order

to be able to apply Euler’s method:

y1 = y

y2 = y

0

y

0
2 = y

00
=

2[�↵
R

pf

0(p) + (r + �)f(p)� ��f( p
�

)]

�

2
R

p

2

This is implemented in MATLAB by the code displayed in Figure B.1 below:
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Figure B.1: Explicit Euler scheme implemented in MATLAB.
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APPENDIX C. IMPLICIT FINITE DIFFERENCE SCHEME TO SOLVE MODEL 1

Appendix C

Implicit finite di↵erence scheme to

solve Model 1
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Appendix D

Derivation details of Model 2 PDE

Let Eqs. (D.1) and (D.2) represent the value function from Eqs. (5.26) and (5.2) respec-

tively:

1

2

@

2
F1

@⇡

2
�

2
⇡

⇡

2 +
1

2

@

2
F1

@Q

2
�

2
Q

Q

2 +
@

2
F1

@⇡@Q

�

⇡

�

Q

⇢⇡Q+
@F1

@⇡

↵

⇡

⇡ +
@F1

@Q

↵

Q

Q� rF1 = 0. (D.1)

1

2

@

2
F0

@⇡

2
�

2
⇡

⇡

2+
1

2

@

2
F0

@Q

2
�

2
Q

Q

2+
@

2
F0

@⇡@Q

�

⇡

�

Q

⇢⇡Q+
@F0

@⇡

↵

⇡

⇡+
@F0

@Q

↵

Q

Q� (r+�)F0+�F1 = 0.

(D.2)

By using similarity methods, letting R = ⇡Q and using the chain rule we get the following:

F (R) = F (⇡, Q)

@F (⇡, Q)

@Q

=
@F (R)

@R

⇡

@F (⇡, Q)

@⇡

=
@F (R)

@R

Q

@

2
F (⇡, Q)

@

2
Q

=
@

2
F (R)

@R

2
⇡

2

@

2
F (⇡, Q)

@⇡

2
=
@

2
F (R)

@R

2
Q

2
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@F (⇡, Q)

@⇡@Q

=
@

2
F (R)

@R

2
⇡Q+

@F (R)

@R

Substituting into Eq. (D.1) we get the following:

1

2

@

2
F1(R)

@R

2
Q

2
�

2
⇡

⇡

2 +
1

2

@

2
F1(R)

@R

2
⇡

2
�

2
Q

Q

2 +

✓

@

2
F1(R)

@R

2
⇡Q+

@F1(R)

@R

◆

�

⇡

�

Q

⇢⇡Q

+
@F1(R)

@R

Q↵

⇡

⇡ +
@F1(R)

@R

⇡↵

Q

Q� rF1(R) = 0.

+

1

2
F

00
1 (R)R2(�2

⇡

+ �

2
Q

+ 2�
⇡

�

Q

⇢) + F

0
1(R)R(↵

⇡

+ ↵

Q

+ �

⇡

�

Q

⇢)� rF1(R) = 0,

Substituting into Eq. (D.1) we get the following:

1

2

@

2
F0(R)

@R

2
Q

2
�

2
⇡

⇡

2 +
1

2

@

2
F0(R)

@R

2
⇡

2
�

2
Q

Q

2 +

✓

@

2
F0(R)

@R

2
⇡Q+

@F0(R)

@R

◆

�

⇡

�

Q

⇢⇡Q

+
@F0(R)

@R

Q↵

⇡

⇡ +
@F0(R)

@R

⇡↵

Q

Q� (r + �)F0(R) + �F1(R) = 0.

+

1

2
F

00
0 (R)R2(�2

⇡

+ �

2
Q

+2�
⇡

�

Q

⇢) +F

0
0(R)R(�

⇡

�

Q

⇢+↵

⇡

+↵

Q

)� (r+ �)F0(R) + �F1(R) = 0.
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Appendix E

Derivation of combined growth µ⇡Q

The combined growth of ⇡ and Q is denoted by µ

⇡Q

= ↵

⇡

+ ↵

Q

+ ⇢�

⇡

�

Q

, is derived by

applying Ito’s product rule (Joshi, 2003, p. 100) to R = ⇡Q:

E [d(⇡Q)] = E [⇡dQ+Qd⇡ + d⇡dQ]

= ⇡Q↵

Q

dt+ ⇡Q↵

⇡

dt+ ⇡Q�

⇡

�

Q

E(dZ
Q

dZ

⇡

)

= ⇡Q(↵
Q

+ ↵

⇡

+ ⇢�

⇡

�

Q

)dt
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Appendix F

Derivation of characteristic equation

Given the following ODE:

1

2
F

00
0 (R)R2(�2

⇡

+ �

2
Q

+2�
⇡

�

Q

⇢) +F

0
0(R)R(�

⇡

�

Q

⇢+↵

⇡

+↵

Q

)� (r+ �)F0(R) + �F1(R) = 0.

(F.1)

With a solution of the form:

F0 = C1R
✓1 + C2R

✓2 +A1R
�1
,

Letting CR

✓ denote a linear combination of C1R
✓1 + C2R

✓2 ,it can be shown that C2 = 0,

and that the values of the ✓ parameters are the roots of the characteristic equation derived

by implying:

F1 = A1R
�1

F0 = CR

✓ +A1R
�1

F

0
0 = ✓CR

✓�1 + �1A1R
�1�1

F

00
0 = ✓(✓ � 1)CR

✓�2 + �1(�1 � 1)A1R
�1�2

Substituting into Eq. (F.1) yields:
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1

2
(✓(✓ � 1)CR

✓ + �1(�1 � 1)A1R
�1)(�2

⇡

+ �

2
Q

+ 2�
⇡

�

Q

⇢)

+ (✓CR

✓ + �1A1R
�1�1)(�

⇡

�

Q

⇢+ ↵

⇡

+ ↵

Q

)� (r + �)(CR

✓ +A1R
�1) + �A1R

�1 = 0

+

1

2
✓(✓ � 1)CR

✓(�2
⇡

+ �

2
Q

+ 2�
⇡

�

Q

⇢) + ✓CR

✓(�
⇡

�

Q

⇢+ ↵

⇡

+ ↵

Q

)� CR

✓(r + �)

+
1

2
�1(�1 � 1)A1R

�1(�2
⇡

+ �

2
Q

+ 2�
⇡

�

Q

⇢) + �1A1R
�1(�

⇡

�

Q

⇢+ ↵

⇡

+ ↵

Q

)�A1R
�1
r = 0

+

CR

✓

✓

1

2
✓(✓ � 1)(�2

⇡

+ �

2
Q

+ 2�
⇡

�

Q

⇢) + ✓(�
⇡

�

Q

⇢+ ↵

⇡

+ ↵

Q

)� (r + �)

◆

+A1R
�1

✓

1

2
�1(�1 � 1)(�2

⇡

+ �

2
Q

+ 2�
⇡

�

Q

⇢) + �1(�⇡�Q⇢+ ↵

⇡

+ ↵

Q

)� r

◆

= 0

Note that the last part of the expression is the same as the characteristic equation Q1 (Eq.

(5.2)). Since �1 is a root of Q1, �1 has a value making Q1 = 0, hence we can eliminate this

part. Dividing by CR

✓ on both sides we end up with the following characteristic equation:

1

2
✓(✓ � 1)(�2

⇡

+ �

2
Q

+ 2�
⇡

�

Q

⇢) + ✓(�
⇡

�

Q

⇢+ ↵

⇡

+ ↵

Q

)� (r + �) = 0 (F.2)
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Appendix G

Derivation of integrals

In this appendix we will derive one the simplification done to arrive at the range R⇤
1  R <

R

⇤
0 in domain (5.33).

E
R,Y



Z 1

Y

e

�(r�µ⇡Q)t
R(1 + ⌧)dt� e

�rY

K

�

= E
R,Y



� e

�(r�µ⇡Q)t
R(1 + ⌧)

r � µ

⇡Q

�1

Y

� e

�rY

K

�

= E
R,Y



e

�(r�µ⇡Q)Y
R(1 + ⌧)

r � µ

⇡Q

� e

�rY

K

�

=

Z 1

0

e

�(r�µ⇡Q)Y
R(1 + ⌧)�e��Y � e

�rY

K�e

��Y
dY

=



� �e

�(r�µ⇡Q+�)Y
R(1 + ⌧)

r � µ

⇡Q

+ �

+
�e

�(r+�)Y
K

r + �

�1

0

=
�R(1 + ⌧)

r � µ

⇡Q

+ �

+
�K

r + �

Here we used the fact that E [g(X)] =

Z 1

�1
g(x)f(x)dx where f(x) is the probability density

function of g(x). Because time cannot have negative value we integrate from 0 to 1. Note

that Y is exponentially distributed, and hence its density function is �e��x. It should from
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this derivation also be clear to the reader how the last integrals of the domain (5.33) were

simplified.
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Appendix H

Numerical illustrations of Model 2

option value components

� C1 ✓1 R C1R
✓1

0 -0.13840 2.00 8 -8.05
0.2 -0.00316 3.24 8 -2.35
0.4 -0.000300 4.12 8 -1.31
0.6 -0.00004 4.84 8 -0.92
0.8 -0.000018 5.47 8 -0.69
1 0 6.03 8 -0.55

Table H.1: Table displaying the increase in C1R
✓1 as � increases

R D1 ✓1 D2 ✓2 D1R
✓1 D2R

✓2

8.35 0.01 3.18 1075.3 -3.1 8.75 1.49
8.52 0.01 3.18 1075.3 -3.1 9.15 1.43
8.68 0.01 3.18 1075.3 -3.1 9.57 1.37
8.85 0.01 3.18 1075.3 -3.1 10.00 1.31
9.02 0.01 3.18 1075.3 -3.1 10.43 1.26
9.19 0.01 3.18 1075.3 -3.1 10.89 1.21

Table H.2: Table displaying the change in D1R
✓1 and D2R

✓2 as R increases
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APPENDIX H. NUMERICAL ILLUSTRATIONS OF MODEL 2 OPTION VALUE
COMPONENTS

� D1 ✓1 R D1R
✓1

0 0.673693 1.96 8.6 45.76
0.2 0.010331 3.18 8.6 9.61
0.4 0.000823 4.04 8.6 4.89
0.6 0.000117 4.75 8.6 3.19
0.8 0.000023 5.35 8.6 2.34
1 0.000006 5.91 8.6 1.84

Table H.3: Table displaying the decrease in D1R
✓1 as � increases

� D1 ✓1 R D1R
✓1

0 0.00002 -1.88 8.6 0
0.2 1075.311 -3.10 8.6 1.36
0.4 5807.22 -3.96 8.6 1.15
0.6 22016.26 -4.67 8.6 0.96
0.8 69722.75 -5.28 8.6 0.81
1 196415.84 -5.83 8.6 0.70

Table H.4: Table displaying the change in D2R
✓2 as � increases. The change follows a bell

shaped curve

121



122



APPENDIX I. SIMULATION PROCEDURES

Appendix I

Simulation procedures

Figure I.1: Simulation procedure programmed in MATLAB to simulate the expected first

hitting time for Model 1.
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Figure I.2: Simulation procedure programmed in MATLAB to simulate the expected first

hitting time for Model 2.
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