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Problem description from the master’s thesis agreement

This thesis will study a problem that is faced by fleet deployment planners every day

due to the uncertainty involved in shipping, namely disruption management. Disruption

management is the problem of finding the best possible solution to a situation that has

occurred as a result of disruptions somewhere in the supply chain. This disruption forces

the planners to modify an initial tactical plan, and the possible actions taken to do this

may for instance be speeding up a vessel, chartering in a vessel (hire a vessel for a short

time period), re-scheduling the vessel to other cargo assignments etc.

The project’s objective is two-fold. The first objective is to develop a mathematical model,

and e�cient heuristic solution methods, to create fleet deployment plans for a Roll-on

Roll-o↵ liner shipping company. The second objective is to study how it is possible to

reduce the e↵ect of disruptions that occur during the execution of these plans. This may

include both proactive and reactive approaches to disruption management. To evaluate

the e↵ect of these approaches it may be necessary to develop a simulation model for the

shipping operations.
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Abstract

This master thesis consists of two parts. In Part I, the maritime fleet deployment problem

for a major Roll-on Roll-o↵ shipping case company is studied. The objective of the fleet

deployment problem is to assign vessels in the company’s fleet to voyages that must

be sailed within given time windows and to cover monthly demand. In this thesis we

introduce an approach where demand is modeled as actual cargoes, and di↵erent speeds

can be assigned to both voyage and ballast sailings. In addition to a mixed-integer

program, two heuristics are developed; an adaptive large neighbourhood search and a

rolling horizon heuristic. These may help find satisfactory solutions within an appropriate

amount of time.

The models are applied to realistic problem instances varying both in size and complexity.

Results show that the mixed-integer programming model is not able to solve the largest

and most complex instances within a time frame of 10,000 seconds. The rolling horizon

heuristic performed excellent for most of the instances both in terms of solution time and

quality, and can be used as a decision support tool for the case company when planning

the fleet deployment.

In Part II, we study disruption management in Roll-on Roll-o↵ liner shipping. We in-

troduce uncertainty to the fleet deployment problem by adding disruptive events in a

simulation framework. First, we identify possible events and their associated impacts.

Then we propose several robustness strategies which may be used in planning. These are

considered as proactive ways of handling disruptions.

The basic model and the robustness strategies are in a computational study evaluated in

a simulation-optimization framework, where a re-planning recovery procedure serves as

real-time disruption management. The presented results show that by adding robustness

to deployment plans, the incurred operating costs and delays are significantly lower. The

re-planning procedure further reduces delays and costs, although by performing many

alterations to the plans during operation.
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Sammendrag

Denne masteroppgaven best̊ar av to deler. I del I studeres fl̊atedisponeringsproblemet

for et større Roll-on Roll-o↵ shippingselskap. Fl̊atedisponeringsproblemet best̊ar av å

tilordne skipene i selskapets fl̊ate til seilaser med gitte tidsvinduer og å dekke månedlig

etterspørsel. I denne oppgaven introduserer vi en tilnærming hvor etterspørsel modelleres

som faktiske laster, og forskjellige seilehastigheter kan tilegnes til seilaser og seilinger

mellom disse. I tillegg til et blandet heltallsprogram presenter vi to heuristikker: Et

adaptivt nabolagssøk og en rullende horisont-heuristikk. Disse kan bidra til å finne gode

løsninger til problemet innen rimelig tid.

Modellene er anvendt p̊a realistiske probleminstanser som varierer i størrelse og komplek-

sitet. Resultatene v̊are viser at heltallsprogrammet ikke klarer å løse de større og mer

komplekse instansene innen en tidsramme p̊a 10 000 sekunder. Den rullende horisont-

heuristikken gjør det bra b̊ade n̊ar det gjelder tid og løsningskvalitet p̊a de fleste in-

stansene, og kan med fordel brukes som et beslutningsstøtteverktøy for selskapet i plan-

legging av fl̊atedisponering.

I del II av oppgaven studerer vi avviksh̊andtering i Roll-on Roll-o↵ skipslinjefart. Vi in-

troduserer usikkerhet til fl̊atedisponeringsproblemet ved å legge til forstyrrende hendelser

i et simuleringsrammeverk. Først identifiserer vi mulige hendelser og deres tilhørende

innvirkninger, før vi foresl̊ar flere robusthetsstrategier som kan brukes i planleggingen.

Vi ser p̊a disse som forebyggende tiltak mot fremtidige mulige avvik.

Den grunnleggende modellen og robusthetsstrategiene er i en numerisk studie evaluert i

simuleringsrammeverket. En replanleggingsprosedyre er her brukt til avviksh̊andtering i

sanntid gjennom simuleringene. Denne prosedyren har som mål å minimere kostnadene

n̊ar et p̊aført avvik skal h̊andteres. De presenterte resultatene viser at ved å legge til

forebyggende tiltak og øke robustheten i initielle planer blir de p̊aførte operasjonelle kost-

nadene og forsinkelsene vesentlig lavere. Replanleggingsprosedyren reduserer ytterligere

forsinkelser og kostnader, p̊a bekostning av å p̊aføre mange endringer til planene.
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Chapter 1

Introduction

Maritime transportation is the main network of distribution for international trade (Chris-

tiansen et al., 2007) and is recognized as a crucial facilitator in the expansion of the global

economy. According to UNCTAD (2013), more than 80 % of the world trade measured

by volume is carried by seagoing vessels. There has been a systematic growth of mar-

itime freight transportation in the later years. For example, during the first decade of

the new millennium, the total container ship capacity went up by 164 % (Christiansen

et al., 2013). Rodrigue et al. (2013) points out globalization, technical improvements and

economies of scale as causes for this significant growth. During the same period there has

also been a substantial improvement in the utilization of the world fleet, in terms of tons

carried per deadweight ton and ton-miles performed per deadweight ton (Christiansen

et al., 2007). Figure 1.1 shows how seaborne trade historically has exceeded the growth in

GDP, and there is no indication of any turn of this trend in the near future. However, the

competition in the transportation industry has increased and the maritime transportation

industry is no exception. In addition to strong competition, climate change and other

environmental concerns have become important drivers towards more e�cient and robust

transportation (Ho↵ et al., 2010). Shipping involves major capital investments and the

daily operating costs of a ship can be tens of thousands of dollars. Better fleet utilization

can therefore give significant bottom line improvements.
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CHAPTER 1. INTRODUCTION

Figure 1.1 – The OECD industrial production index and indices for world gross domestic product,

merchandise trade and seaborne shipments (1975–2013),(1990=100). Source: UNCTAD (2013)

Comparison to other freight transportation modes

When it comes to transporting large volumes of cargo among continents, there is no direct

substitute for maritime transportation. Christiansen et al. (2007) mention pipelines as a

possible substitute to parts of the shipping industry. However, limited to only being able

to move fluids over fixed routes, pipelines is not a realistic alternative. In Christiansen

et al. (2007), maritime transportation is compared to other modes of transportation like

aircraft, truck and train, and the di↵erences can easily be identified. Greater variety of

vessel types, longer trip length of voyages and greater uncertainty are some of the most

important characteristics that di↵ers in maritime transportation from the other modes

of freight transportation.

Maritime transportation has until recently been devoted little research attention com-

pared to for example aircraft and road transportation. Christiansen et al. (2007) identify

low visibility, high uncertainty, high variety of problems and a conservative industry as

four reasons that can explain the low attention of research. In our search for relevant

literature we observed an increase in publications when it comes to operations research

applied in the shipping industry since Christiansen et al. (2007) was published.
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1.1. SHIPPING SEGMENTS

1.1 Shipping Segments

Lawrence (1972) introduces three segments of maritime transportation: industrial, tramp

and liner shipping. In industrial shipping, the vessels are controlled by cargo owners

who aim to minimize the costs of shipping their cargoes. In tramp shipping, the ship

scheduling is made with a mix of mandatory and optional cargoes available, while liners

operate according to a published vessel route schedule. These three segments can be

illustrated through a practical example. The industrial shipping can be seen as trucks that

transport goods for an owner, tramp shipping are taxis that transport customers exactly

where they want to go, and liner vessels are buses operating the public transportation

network (Ronen, 1983). According to World Shipping Council (2009), the liner shipping

segment transported around 60 % of the total value of global seaborne trade in 2007.

Within the three categories of shipping operations, Christiansen et al. (2004) focus on

decisions made on the strategic, tactical and operational planning levels. On the strategic

planning level, long term decisions like determining the market and trade selection, ship

design, network and transportation system, fleet size and mix, and the port location,

size, and design are made. The tactical problems include fleet deployment, ship routing

and scheduling, inventory ship routing, ship management, and distribution of empty

containers. On the operational planning level the day-to-day decisions are made, like

determining the speed of the vessels, the ship loading, and the environmental routing

(Christiansen et al., 2007).

Christiansen et al. (2004) emphasize that the main objective for all shipping companies,

although the basic conditions such as fleet size and mix may di↵er, is to utilize their

fleets optimally. The decisions, however, may be di↵erent. For industrial shipping and

tramp shipping, the major decisions include route and schedule design, fleet size and

mix, optimal assignment of cargoes to each ship, and the ship routing and scheduling.

In liner shipping, decisions include route and schedule design, fleet size and mix, fleet

deployment, and cargo booking. Within liner shipping, the first two aforementioned

decisions are made on a strategic planning level, while the latter two will be made on

a tactical and operational planning level, respectively. A decision on the operational

planning level that is both frequent and of great importance for all shipping segments is

what method to use in real-time disruption handling. These methods are called recovery

strategies and will be explained in greater detail in Section 1.3.
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1.2 The Fleet Deployment Problem & Roll-on Roll-

o↵ Shipping

The fleet deployment problem (FDP) is a well-studied problem, and is defined as a tactical

problem within the liner shipping segment by Christiansen et al. (2004). Consider a

provider of liner shipping services with a fleet of vessels at its disposal; the problem deals

with optimally assigning these individual vessels to trade route voyages in the planning

horizon. A trade route consists of a number of port calls in sequence serviced by a vessel.

According to monthly demand and contractual agreements, each trade route has to be

serviced with a certain frequency. A vessel completing one instance of a trade route once

is denoted as a voyage. Trade routes are usually long distance maritime shipping routes,

and are determined by liner shipping companies by analyzing demand. The planning

horizon for FDP is typically from a few months and up to a year.

As presented earlier, liner companies operate schedules similar to public bus services.

When announcing its trade routes and entering contractual agreements, the company

commits to a supply of transportation services. This supply needs to satisfy voyage

frequency and capacity requirements. In other words, the shipping company needs to

provide a certain number of voyages with su�cient capacities on a monthly basis. Due to

global trade imbalances, a ship may have to sail ballast to the start of its next assigned

voyage. If the shipping company does not have su�cient fleet capacity, there are in some

markets possible to charter spot vessels to perform certain voyages. Figure 1.2 illustrates

trade routes, voyages and ballast sailing in between voyages.

An optimal fleet deployment can normally be seen as either (1) maximizing profit or

(2) minimizing costs. This depends on the basic business structure of the company,

especially contractual issues and the access to spot markets. Usually, shipping companies

solve the fleet deployment problem manually, with only the aid of comprehensive planning

experience and simple spreadsheets in the process (Fagerholt et al., 2009). For larger

fleets and longer planning horizons, this is obviously a very di�cult task, and finding the

optimal solution is almost impossible without adapting some form of decision support

system.

The case company in this thesis is a major player in the Roll-on Roll-o↵ (RoRo) vehicle

transport services segment of liner shipping. RoRo vessels constitute a significant share

of the company’s fleet, and these vessels are designed to allow cars, trucks and trains

to be driven directly on board. Originally appearing as ferries, these vessels are used
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1.3. DISRUPTION MANAGEMENT IN LINER SHIPPING

Figure 1.2 – Illustration of two successive voyages on two di↵erent trade routes, and with a ballast

sailing in-between. Source: Andersson et al. (2014)

on deep-sea trade routes between continents and are much larger than a typical ferry.

Their capacity is measured in the amount of parking space they are able to o↵er to the

vehicles they carry, i.e. in lane meters. The data presented in Lindstad et al. (2012) shows

that the RoRo segment in liner shipping is relatively small compared to the container

shipping industry. This may explain why this segment has been devoted less attention in

operations research, and the potential for substantial savings with better decision support

may be present. In terms of revenues, the RoRo segment is indeed significant.

The design of RoRo vessels are rather complex. While containers can be stacked by

cranes, vehicles must be driven aboard on decks inside the vessel. RoRo vessels usually

have built-in ramps to e�ciently allow cargoes to drive in and out while in port. Also, in

contrast to containers with standardized dimensions, vehicles and equipment on wheels

may come in all sizes and weights. This means that RoRo vessels must have a variety of

decks available in order to carry di↵erent types of cargo. Therefore, special requirements

to deck heights and carrying capacities are needed. Examples of products carried by

RoRo vessels are regular cars, SUVs, trucks, farming equipment and military equipment.

1.3 Disruption Management In Liner Shipping

The fleet deployment problem is usually presented as a deterministic problem in the

academic literature, i.e. parameter values are assumed known with certainty. However,
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Figure 1.3 – Illustration of the loading/unloading of a RoRo vessel. Source: International

Cargo/Export Shipping Co. (2014)

in reality maritime transportation operates in an environment that is highly uncertain

and constantly changing. Hence, the execution of a predetermined fleet deployment plan

are often subject to changes or disruptions. Disruptions are caused by some unforeseen

event. Brouer et al. (2013) state that common events leading to disruptions in maritime

transportation are strikes in ports, bad weather, congestion in passageways and mechan-

ical failures. Other, but less frequent events include piracy and crew strikes on vessels.

All types of events may lead to disruptions, such as delays or even infeasibility of the

original plan. The occurrence of disruptions are common in a global shipping network.

According to Notteboom (2006) only 20 % to 30 % of the global shipping lines showed

schedule reliability. In other words, 70 % to 80 % of the lines were disrupted in some

way. Even though most of the disruptive events only lead to minor delays, some events

may have severe impacts on the shipping companies’ operations. In January 2015, BBC

(2015) reported that the car carrier Höegh Osaka developed a severe heeling shortly after

sailing from Southampton. This forced the crew to beach the vessel on a bank nearby,

which left the vessel out of service for an indefinite period of time, as shown in Figure

1.4.

Disruptions which cause vessels to deviate from the original plan could impose several

costs for shipping companies (Brouer et al., 2013). First, voyage delays may incur addi-
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1.3. DISRUPTION MANAGEMENT IN LINER SHIPPING

Figure 1.4 – Picture of the car carrier Hoegh Osaka beached at a sandbank outside Southampton,

Hampshire. Source: GettyImages

tional fees. Second, to minimize delays, shipping companies may speed up vessels, which

significantly increases bunker consumption and thereby the operating costs. In addition,

companies may rearrange vessel schedules, if possible, and accept its associated costs.

We must also consider delays from a customer’s perspective, i.e. demand for a reliable

service and expectation of delivery on time. The costs of loss in credibility are di�cult

to measure, but they might be substantial in a competitive market. The handling of

disruptions is therefore a major concern for shipping companies.

In the following section we introduce three important aspects when handling disruptions.

First, the process of identifying di↵erent types of events is described. Then we explain the

basics of pro-actively mitigating disruptions. Finally, we introduce concepts of real-time

disruption management.

Identifying possible types of events

In order to e�ciently handle disruptions, it is essential to identify the di↵erent types

of events which may occur during shipping operations. Every event will have a unique

impact and must be handled accordingly. The probability of di↵erent types of events

varies and needs to be taken into account. Modeling the uncertainty requires insight in

(1) the types of events, (2) the impact of types of events, and (3) a realistic probability

for the occurrence of di↵erent events.
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A robust fleet deployment model

The goal of robust planning is to make the vessel schedules less sensitive to disruptions.

The main idea is to incorporate ways of handling disruptions in the original plan. Hence,

robustness can be seen as a pro-active way of handling disruptions.

Clausen et al. (2010) divide robustness into two categories. The first category is ab-

sorption robustness. The aim of absorption robustness is to ensure plans remain feasible

and that knock-on e↵ects to the network is avoided. The most apparent way of adding

absorption robustness when planning is to include time bu↵ers in the vessel schedules.

However, Clausen et al. (2010) point out that incorporating bu↵ers leads to a trade-o↵

between costs and robustness: Larger bu↵ers will make a schedule more robust, but will

initially appear more costly. In addition to the optimal trade-o↵ between robustness and

costs, (1) where to place the bu↵ers and (2) the optimal amount of bu↵er time must be

determined.

Absorption robustness may not be su�cient when major disruptions occur. In order

to restore operations in these situations, recovery robustness, which is the other type

of robustness, must be considered (Clausen et al., 2010). Here, the purpose is to design

plans that fit well with existing recovery strategies. Recovery strategies are sets of actions

shipping companies may use to recover from disruptions. These actions can be speeding

up vessels, swapping voyage assignments or reallocating cargo, for instance, and are

further described in the next subsection. A plan designed with emphasis on recovery

robustness will more likely be able to make use of recovery actions to mitigate the impacts

of events. These plans are still more expensive than cost-optimal plans. Again, we have

a trade-o↵ between costs and robustness.

Recovery strategies

Clausen et al. (2010) define recovery strategies as methods to generate recovery plans

in the event of disruptions. These strategies are used when the original plans are found

infeasible or apparently of poor quality. The generation of recovery plans is a complex

operation, since a small alteration of the plan usually will lead to a re-planning of other

larger parts of the plan. In the event of a disruption, it is common to solve the re-

planning problem in a prioritized sequence with respect to the problem components.

First, infeasibility in the vessel schedules are resolved. Then, the solution is improved

with respect to costs.
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As stated in Clausen et al. (2001), disruptions may lead to severe delays in the ongoing

operations. Since delays are costly, the recovery problem needs to be solved as quickly

as possible. This means that it is essential to develop recovery strategies that find good

solutions to the recovery problems in a short amount of time. Regardless, it is apparent

that the more time that is given to solve the recovery problems, the better are the

resulting solutions. Hence, there is a trade-o↵ between finding good solutions and solving

the problem quickly.

1.4 Scope and Area of Studies

This master thesis consists of two parts. In Part I, a mathematical formulation to the

FDP for RoRo shipping companies is presented. In order to find good solutions within

a reasonable amount of time, two heuristic approaches are presented and compared to

the use of a commercial solver on a Mixed-Integer Programming (MIP) model. In Part

II we introduce uncertainty to the FDP by adding disruptive events and simulate over

the planning horizon. First, we present several robustness strategies with the purpose of

creating more robust plans. Then, we describe how the developed simulation framework

may introduce disruptive events, and how we test and compare plans generated with

alternative robustness strategies. We also show how recovery strategies could improve

the performance of plans.

The following sections will briefly introduce Part I and Part II and set the scope of the

studies.

Part I: The Fleet Deployment Problem in Roll-on Roll-o↵ Liner Shipping

The objective of this part is to solve the RoRo liner shipping fleet deployment problem

described in Section 1.2. In this part the parameters of the problem are considered

known through the entire planning period and the operations are not subject to any kind

of disruptions.

The mathematical model given in Chapter 4 is designed to find the optimal fleet de-

ployment plan when minimizing costs. Through the decision variables presented, the

model will allocate the vessels to voyages on the trade routes predefined by the shipping

company. To make the model more realistic we integrate separate speed variables for

the voyage and ballast sailings, as opposed to what is done in previous literature. This
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provides more flexibility when solving the problem, and thus may reduce the operating

costs. In addition, to capture the variety of products and deck capacities on vessels in

the RoRo segment, the cargoes and di↵erent deck types are segmented and specifically

formulated.

When expanding the model to handle RoRo cargo and speeds as realistic as possible,

the number of variables grows significantly. Even though new restrictions are needed,

the solution space still becomes too large to find optimal solutions within a reasonable

amount of time with commercial optimization software. In other words, implementing

a realistic mathematical model that solves to optimum has no or little practical value

for the case company due to the computational time required. However, solving large

instances of the FDP through the use of heuristics may be possible. The results obtained

by Andersson et al. (2014) suggest this, as the authors point out the need for an heuristic

approach for longer planning horizons. Because the mathematical formulation presented

in this thesis is even more complicated, it is reasonable to assume the same results. The

presented adaptive large neighborhood search and rolling horizon heuristics can help to

find good solutions to the problem in considerably shorter computing time.

In Part I of this thesis, Chapter 2 present a more thorough problem description to the

FDP for RoRo liner shipping companies. In Chapter 3, previous relevant literature for

this problem are reviewed. In Chapter 4 we present a mathematical formulation to the

problem which forms the basis of the developed MIP. In Chapters 5 and 6, an adaptive

large neighborhood search (ALNS) and a rolling horizon heuristic (RHH) are presented.

With both these heuristics we aim to solve the FDP within considerable shorter time

than the MIP, and thereby they may serve as more applicable decision support tools.

A computational study of applying the MIP, ALNS and RHH on five di↵erent problem

instances is given in Chapter 7. Finally, in Chapter 8, the main results are summarized

and briefly discussed, and future areas of study are suggested.

Part II: Disruption Management in Roll-on Roll-o↵ Liner Shipping

In this part we introduce uncertainty to the parameters in the problem presented in Part

I. This is done by simulating the planning horizon and adding event scenarios which

may a↵ect the performance of the plan. The aim behind this procedure is to mimic the

execution of real life shipping operations, and test actions to mitigate disruptions on both

the tactical and operational level of the problem.
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On the tactical level, we develop a set of robustness strategies which may help plans to be

better prepared for future disruptions. The robustness strategies are variations of adding

absorption robustness, recovery robustness and combinations of these, when generating

initial plans. We evaluate the di↵erent robustness strategies in a simulation framework

in terms of planned costs, incurred costs and delays.

On the operational level, we evaluate how the use of recovery strategies can help mitigate

the impact of disruptions. When simulating initial plans in the developed framework, we

evaluate (1) when recovery actions should be triggered, (2) what degree of actions which

is the most e�cient and (3) how they perform together with di↵erent initial solutions,

i.e. fleet deployment plans generated without or with various robustness strategies. The

recovery strategies consist of recovery actions which are designed to find new, less costly

plans and to make a plan feasible again. Since the recovery procedure is used to resolve

the problem during the execution of the shipping operations, the problem must be solved

in a short amount of time.

In Part II, Chapter 9 gives a problem description of disruption management in RoRo liner

shipping. Then we review relevant literature in Chapter 10. In Chapter 11, we identify

events and their possible impacts on the shipping operations, and classify them as (1)

sailing events and (2) port events. In Chapter 12, several strategies of adding robustness

to fleet deployment plans are presented. How we allow for recovery actions and the

simulation-optimization framework we use to evaluate solutions, robustness strategies

and recovery strategies are described in Chapter 13. Then, we present a computational

study based on this simulation-optimization framework in Chapter 14. Here, we evaluate

which combination of robustness measures and recovery actions that produce the most

cost-e�cient and reliable solutions. In Chapter 15, our conclusions are summarized and

possible future areas of studies are suggested.
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Chapter 2

Problem Description I

Part I of this thesis deals with solving the Fleet Deployment Problem (FDP) for a liner

shipping company operating in the Roll-on Roll-o↵ (RoRo) cargo segment. When RoRo

liner shipping companies face the FDP, multiple decisions have to be made. These de-

cisions vary in scope and importance, and below we describe each of these decisions

and other considerations a RoRo liner shipping company must take into account when

deploying their fleet with respect to minimizing costs.

Fleet Deployment Problem

The case company has a number of contracted trade routes that must be serviced a

certain number of times each month. Trade routes consist of loading and discharging

ports in di↵erent geographical areas. We denote one individual sailing of a trade route

as a voyage. An illustration of trade routes and voyages is given in Figure 1.2. To meet

demand and contractual obligations, a certain amount of voyages have to be carried out

on the trade routes within each month.

In this thesis we assume there are two ways to cover contracted voyages: (1) either by

using the shipping company’s own vessels, or (2) by hiring vessels from external shipping

companies. In reality, the option of hiring vessels from a spot market does not exist or

is not su�ciently large in the RoRo segment to be a realistic alternative for the case

company. However, to ensure feasibility of the model, the alternative of not servicing

voyages is enabled. We denote voyages not serviced by vessels in the case company’s fleet

as unserviced voyages. As described further in Chapter 4, this option is associated with

a substantial cost.
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The contracted voyages have defined time windows in which the voyage must be started

by a vessel. If a voyage is started later than the end of its time window, a delay cost is

imposed. However, there is no preferences within the time window, meaning that there is

no extra cost of starting a voyage in the later part instead of starting in the beginning of

the time window. During the planning period, a vessel may have to sail several voyages,

and a voyage does not necessarily start in the same port as where its preceding voyage

ends. This may impose the vessel to reposition itself without any cargo before taking on

its next voyage. We denote this as sailing ballast, and this should be held to a minimum.

There are no ballast sailings associated with unserviced voyages.

The shipping company controls a heterogeneous fleet of vessels with di↵erent cargo capac-

ities, sailing speed options and bunker consumption profiles. Since the vessels first have

to finish any possible on-going voyages, they are available for new voyages at di↵erent

times and in di↵erent ports. Due to port and passageway restrictions, among others, not

all vessels are able to serve every voyage. In addition, as a requirement from the case

company, some of the vessels may need to be dry-docked for repairs and maintenance

during the planning period. This will keep the vessels out of service for a given period

of time. These conditions confine which vessels that are suitable for taking on which

voyages, particularly in the beginning of the planning horizon.

Further, the vessels have di↵erent deck setups and deck capacities (see Figure 4.3). The

vessels’ decks may take one or several types of cargo, and for each voyage we must decide

which cargo to be placed on what deck. This may also a↵ect which vessel we assign to

voyages. For instance, for some trade routes the demand for one type of cargo might

be severe, which requires a vessel with a large capacity of the deck(s) able to carry the

given type of cargo. If the vessels sailing the voyages are not able to transport the total

monthly cargo demand, the company has the option of hiring capacity at other liner

shipping companies. We denote this as space chartering cargo. Unlike the non-existing

spot market of vessels to cover voyages, the option of space chartering cargo is a realistic

option to our case company and has a corresponding cost per m3 of cargo transported.

When solving the fleet deployment problem in this thesis, we integrate the tactical plan-

ning, i.e. assigning vessels to voyages in the planning horizon, with speed optimization

of the vessels. This means we assign speeds to vessels while considering the resulting

operating cost and voyage duration. The speeds for sailing voyages and ballast sailing

are considered separately.
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Summary

The FDP entail a wide scope of costs that may occur when operating a large fleet of

vessels in the RoRo liner segment. Operating costs depend on distance, speeds and other

vessel characteristics. The objective when solving the FDP is to find the optimal fleet

deployment with respect to minimizing costs. We can sum this up to deciding (1) which

voyages and ballast sailings to be sailed by which vessel, (2) at what speed, (3) at what

time, (4) and in which sequence. Also, decisions related to (5) cargo placement, (6) space

charter and (7) unserviced voyages, if any, must be made. When making decisions, we

must make sure voyages are serviced within their respective time limits, and that the

monthly demand on the trade routes is met.
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Literature Review I

In this chapter we provide a thorough review of the relevant literature published within

the field of operations research and maritime transportation. In Section 3.1 we present the

development of studies on the FDP, before specifically addressing the relevant publications

within the RoRo liner shipping segment in Section 3.2. This literature review was first

conducted as a part of Fischer, Nokhart, and Olsen (2014), and is revisited here.

3.1 Fleet Deployment in Liner Shipping

The term fleet deployment is defined by Perakis and Jaramillo (1991, p.187) as the “...al-

location of ships to routes, their general scheduling, and the chartering of vessels, if any,

to complement the owned fleet in the fulfillment of the transportation missions”. The

same authors emphasize in their following paper, Jaramillo and Perakis (1991), that the

FDP focuses on the tactical planning assuming that the strategic decisions have been

made. In other words, decisions related to the fleet size and mix and the sequence of

ports that forms each route are made at the strategic level and outside the scope of fleet

deployment. Fagerholt et al. (2009) describes the FDP as determining an optimal way of

servicing voyages defined for the planning horizon with the shipping company’s fleet of

vessels. Here, an optimal deployment is seen with respect to minimizing the costs. These

costs typically consist of operating costs, voyage costs, maintenance costs and capital

costs (Stopford, 2009). Further, Powell and Perakis (1997) studied the liner shipping

industry and presented an integer programming (IP) model that is used to optimize the

fleet deployment for a liner shipping company. The focus of the model is to minimize
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the operating costs for an existing fleet, given routing, ship availability, and service con-

straints. The results presented by the authors from applying the model were rather

positive, which is shown in their comparison of their IP model against the original fleet

deployment of the liner shipping company. The example shows a potential cost reduction

of 1.5 %. When applying their IP optimization model in the fleet deployment for a liner

shipping company, substantial savings were achieved.

Container shipping is a major segment of liner shipping, and a great deal of literature has

been published in the recent decade to address the FDP faced by container liner shipping

companies. Gelareh and Meng (2010) present a nonlinear mathematical model with speed

optimization, which is linearized as a mixed integer linear programming model and solved

for randomly generated numerical instances. The program suggests the optimal frequency

pattern for each route operated by the liner company. In Meng and Wang (2010), the

authors present a chance constrained programming model to solve the short-term liner

ship fleet planning problem with cargo demand uncertainty for a liner container company.

The demand uncertainty is modeled with a normal distribution, and for each liner route

operated by the company, the chance constraints ensure that a minimum level of service

is associated with each route. Wang et al. (2013) revisit the problem discussed in Meng

and Wang (2010), but suggest that (1) an independent normal distribution of demand

for each port pair, and (2) that all ships have to be empty at the start of a voyage, are

not necessarily realistic modeling. Therefore, Wang et al. (2013) propose a joint chance

constrained programming model, and show that the service level provided has significant

e↵ect on the total cost. Liu et al. (2011) formulate a joint optimization model for the

container flow and fleet deployment problems. Finally, Wang and Meng (2012) present

a cost minimization model for the FDP with container transshipment operations. The

model allows containers to be delivered from its origin port to its destination port by the

use of more than one single vessel.

3.2 Addressing the Roll-on Roll-o↵ Segment

Andersson et al. (2014) point out that models presented by most of the aforementioned

literature regarding liner container shipping is based on two assumptions: (1) a vessel that

is allocated to a trade will operate on that trade during the whole planning horizon, and

(2) each vessel is not treated individually, since a number of each vessel type is allocated.

When considering fleet deployment within container liner shipping, these assumptions
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are generally applicable. For other important liner segments, such as RoRo vehicle trans-

portation services, these assumptions can be too limiting. Fagerholt et al. (2009) suggest

a new mathematical formulation for the FDP which do not rely on these assumptions.

In addition, the authors present a multi-start local search heuristic approach to solve the

FDP. Applying the model to an instance based on a RoRo case company gave results

that indicated 2 - 10 % improvements compared to the solutions obtained from manual

planning. Speed optimization is not considered in the model.

Unlike Fagerholt et al. (2009), integrated speed optimization and fleet deployment is

studied in Andersson et al. (2014). Normally, a given service speed is assumed for each

vessel when the planning is performed, while the speed optimization of the actual sailing

speeds is made along the routes during operation. Andersson et al. (2014) emphasize that

integrating speed decisions have been done in the industrial and tramp shipping modes,

but there is a lack of literature within this field in liner shipping. Subsequently, the

authors propose an integrated speed optimization and fleet deployment approach, and

present a computational study on a real deployment problem in RoRo shipping. With

this formulation, it is possible to determine the optimal speed for sailing a voyage and the

subsequent ballast sailing to the next voyage. The formulation is simplified by having

one common speed weight variable for these two speed decisions. They also present

a rolling horizon heuristic for solving the problem, as the mixed-integer programming

model is observed to only be solvable within a reasonable time for real instances with

short planning horizons (Andersson et al., 2014).

The RoRo segment of liner shipping is small compared to container shipping, which

may imply why the literature has been focusing on the latter. The total market size

di↵erence provides container shipping companies with a competitive advantage in terms

of economies of scale and other synergy e↵ects. However, even though some vehicles may

be transported in containers as a substitute, the majority of vehicles shipped overseas is

done through RoRo shipping (Øvstebø et al., 2011). Further on, Øvstebø et al. (2011)

highlight how this part of the shipping industry must continuously improve in order to

maintain its position, and present an optimization model for stowage planning for RoRo

vessels at the operational level. The model provides great insight in how di↵erent cargoes

in the RoRo segment di↵er in height, length, width and weight compared to standardized

container dimensions in container shipping, and how cargoes carefully must be stowed at

the di↵erent decks of the vessels. Even though this model deals with cargo stowage at

the operational level, which is outside the scope of the FDP, it shows that demand and

capacity issues in the RoRo segment must be modeled specifically in order for decision
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support tools to provide feasible solutions. However, this has not been included in the

fleet deployment models presented by Fagerholt et al. (2009) and Andersson et al. (2014).

We have not been able to find any literature that solves the FDP for RoRo shipping

companies where demand is modeled as actual cargoes and vessel capacity is segmented

into deck capacities.
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Mathematical Model

In this chapter we present a mixed-integer program to solve the fleet deployment problem

stated in Chapter 2. In Section 4.1, the mathematical model is thoroughly described.

Then, the formulations forming the MIP is given in Section 4.2, before giving a few

formulation remarks in Section 4.3

4.1 Model Description

Let V be the set of vessels in the company’s heterogeneous fleet, indexed by v. Each

vessel has a set of discrete sailing speed options, S
v

, which it can choose from when

sailing. Any convex combination of the speed options s 2 S
v

may be chosen for vessel v

on a given leg, and the respective bunker consumption will be an overestimation of the

actual consumption. This has been proven by Andersson et al. (2014) and is illustrated

in Figure 4.1, where the piecewise linearizations at all times is above the consumption

profile curve.

The set R consists of the trade routes operated by the company, and are indexed by

r. The set of months in the planning horizon, M, are indexed by m. I
rm

=
�
n
r,(m�1)

+ 1, n
r,(m�1) + 2, ..., n

r,(m�1) + n
rm

} denote the set of voyages on trade route r 2 R
starting in month m, and are indexed by i. Here, n

rm

is the number of contracted voyages

on trade route r in month m. Because the planning horizon starts at m = 1, we must

define n
r,0 = 0, 8r 2 R.

This implies that a specific voyage is identified by its relevant trade route r and the voyage

number i on this trade route. This can be interpreted as a node in a network consisting of
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Figure 4.1 – Illustration of how the piecewice linearization of the fuel consumption is an overesti-

mation of the actual consumption. Source: Andersson et al. (2014)

possible voyages. Every node in the model is associated with a combination of (r, i). Let

N be the set of nodes. Each vessel in the fleet will start in an individual origin node that

represents the position the vessel is available from. In order for a vessel to sail a voyage,

it must first sail ballast from its origin node to the start port of the voyage. Each vessel

will also sail to a destination node at the end of the planning period. This will mark when

the vessel’s sailing is terminated for the planning period. The artificial destination, as its

name implies, does not exist physically, and will in reality be the same position as the

final port of the last voyage sailed. In addition to voyages, N includes the origin node for

each vessel, the artificial destination node for each vessel and maintenance nodes. The set

NC is a subset of N and contains the contracted voyages. N
v

is also a subset of N , and

corresponds to the set of voyages that vessel v can service. Let o(v) 2 N
v

and d(v) 2 N
v

be the origin and destination nodes, respectively, for each vessel v 2 V . For d(v), the

distance from any node in N
v

to d(v) is zero. Just as the voyages, the maintenance nodes

have two indices (r, i), and the set NM

v

is the set of required maintenance nodes for vessel

v. For all but the vessels which are due for dry dock maintenance, the set NM

v

will be

empty.
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In addition to a network of nodes, we need to define a set of arcs to connect the nodes.

Let an arc ((r, i), (q, j)) 2 A represent sailing ballast after visiting voyage or maintenance

node (r, i) to the start of voyage or maintenance node (q, j). The set A also includes the

arcs from the origin nodes to voyage and maintenance nodes, (o(v), (r, i)) and the arcs

from the voyage and maintenance nodes to the ending positions, ((r, i), d(v)). Similar to

the node subset, we can define A
v

as the subset of arcs that vessel v can traverse. By

using this definition of arcs and nodes, the problem can be seen as defined on a graph

G(N ,A). Figure 4.2 illustrates how arcs and nodes are connected in the model.

Figure 4.2 – Illustration of nodes and arcs in the model. Each circle is a node, each line is an arc.

Dashes are used to illustrate how the origin, voyage and destination nodes are di↵erent in nature.

The cargoes loaded on a vessel will be transported along the trade route that is predefined

by the shipping company. Each trade route consists of several legs, or sequential sailings,

between port visits. Depending on the origin and destination port of the cargo, it will

be stored on deck during one or several of these legs. To keep track of cargoes on a

vessel, the term balance categories is introduced. Let B be the set of balance categories,

indexed by b. Balance categories group volumes of di↵erent customers with respect to

their starting- and the ending point. For one stretch of a trade route, i.e. when a vessel

servicing the trade route Europe-US-East Asia sails from a port in Europe to a port in

the US, the vessel may be loaded with balance categories that is (1) shipped from Europe

to the US and balance categories that is (2) shipped from Europe to East Asia. In other

words, each route can service a predefined subset of balance categories, B
r

, where B
r

✓ B.
Balance categories are illustrated in Figure 4.4.

Unlike container shipping, where containers have more or less standardized dimensions,

there are a greater variety in the dimensions of the products transported in the RoRo
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segment. The cargoes are transported on wheels and can vary from small cars to large

break bulk cargo. In the mathematical model this is handled by introducing a set of

cargo segments, P . A cargo segment p 2 P may, for example, refer to small cars. The

subset P
b

contains the cargo segments associated with balance category b. A product

is fully defined through its cargo segment p and balance category b. For each month

m 2 M, a demand D
bpm

is to be transported. This demand must either be covered with

the company’s vessels or by space chartering. The cost of space chartering is CSC

bpm

per

unit. The upper monthly space chartering limit is Q
SC

bpm

.

Each vessel has a range of decks where the cargo can be stored during transportation.

The decks have di↵erent capacities and properties related to the dimension and weight

of the goods. Let K be the set of capacity classes, or deck types. Each capacity class

k points to a certain deck type. Further, the sets K
p

✓ K contain the set of capacity

classes that can carry a cargo segment p. The default setup for each vessel on trade route

r varies. Let Q
vrk

be the capacity in each capacity class k when vessel v services trade

route r. Figure 4.3 illustrates the connection between decks and capacity classes.

Figure 4.3 – Illustration of capacity classes. Source: WWLBreakbulk (2010)

To keep control of the total volumes of cargo segments loaded on the decks of a vessel on

the di↵erent stretches of a voyage, a set of capacity groups ⌅ indexed by ⇠ is introduced. A

capacity group ⇠ contains the balance categories associated with one stretch of a voyage.

Let this set be denoted by B
⇠

, and for each capacity group the sum of loads of products

(b, p), where b 2 B
⇠

, should be within the capacity of the vessel. The connection between

balance categories and capacity groups is illustrated in Figure 4.4.

To make sure the voyage and maintenance nodes are serviced in time, time variables

need to be introduced. Let t
o(v) be the starting time for vessel v from its initial position

o(v), and t
ri

be the start time of voyage (r, i). TB

o(v)ris is the time it takes for vessel v

to sail ballast from its origin to the start of voyage (r, i) at speed s, and CB

o(v)ris is the
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Figure 4.4 – Illustration of two stretches within a voyage and the corresponding balance categories

and capacity groups.

corresponding cost. Let T
vris

denote the time it takes vessel v to sail voyage (r, i) at

speed s. The associated cost with this sailing is C
vris

. Similarly, TB

vriqjs

is the time it

takes vessel v to sail arc ((r, i), (q, j)) at speed s with a corresponding cost of CB

vriqjs

.

Finally, in case of delays, CP is the penalty cost incurred per day the start of a voyage is

delayed.

Let y
o(v)ri be 1 if vessel v sails directly from its initial position o(v) to voyage (r, i), and

0 otherwise. xB

o(v)ris is the weight of speed alternative s for vessel v sailing from its initial

position o(v) to voyage (r, i). Similarly, let y
vriqj

be 1 if vessel v sails voyage (r, i) and

then sails ballast to voyage (q, j) directly afterwards, and 0 otherwise. x
vris

is the weight

of speed alternative s for vessel v sailing voyage (r, i), and xB

vriqjs

is the weight of speed

alternative s for the ballast sailing between voyage (r, i) and voyage (q, j) by vessel v.

Because the distance from any node to the artificial destination node is zero and there

will be no cost related to this sailing, we only need y
rid(v) = 1 if vessel v sails voyage (r, i)

as the last voyage, and 0 otherwise.

Let y
o(v)d(v) be 1 if vessel v is not used for any voyages in the planning period and sails

directly from its origin to its destination with the corresponding cost C
o(v)d(v). Because
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vessels can be servicing voyages or undergoing maintenance at the start of the planning

period, the parameter E
o(v) denotes the earliest availability of vessel v. Let E

ri

and L
ri

be

the earliest and latest allowed time starts of voyage (r, i). Any start after L
ri

is penalized.

Let d
ri

denote the number of days voyage (r, i) is delayed. The delay tolerance for the

model is denoted by the parameter DMAX .

Servicing every contracted voyage in the planning period may in some cases not be

possible by only using the set of vessels the company has at its disposal. In order to ensure

feasibility, the binary variable yS
ri

is introduced. This variable denotes if a contracted

voyage is not serviced by the company’s fleet. Assigning a value to yS
ri

will be penalized

with a high cost, CS, to make the alternative unfavourable. When using this option, it

is assumed that the voyage is covered by other transportation options or companies. For

these cases, a corresponding capacity for each capacity class is denoted as QS

k

, which for

simplicity is calculated as

QS

k

= max
v2V,r2R

Q
vrk

, 8k 2 K.

Finally, the variables l
ribpk

are introduced. They describe the loaded volumes of product

(b, p) on capacity class k on voyage (r, i). The volume of product (b, p) covered with space

charter in month m is denoted by z
bpm

.

4.2 Mathematical Formulation

Objective function

min z =
X

v2V

X

(r,i)2Nv

X

s2Sv

C
vris

x
vris

+
X

v2V

X

((r,i),(q,j))2Av

X

s2Sv

CB

vriqjs

xB

vriqjs

+

X

v2V

X

(r,i)2Nv

X

s2Sv

CB

o(v)risx
B

o(v)ris +
X

v2V
C

o(v)d(v)yo(v)d(v)+

X

(r,i)2N
CPd

ri

+
X

b2B

X

p2P

X

m2M
CSC

bpm

z
bpm

+
X

(r,i)2N
CSyS

ri

(4.1)

The objective function (4.1) minimizes costs related to operating the fleet of vessels

and fulfilling the constraints below. The costs of sailing voyages and ballast between
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voyages with the speed profile determined by x
vris

and xB

vriqjs

are included in the two

first expressions. The third expression addresses costs for the ballast sailing between

the origin and the first voyage for each vessel, and the cost of not using a vessel in the

planning period is given in the fourth expression. The last line includes the costs for delay

in servicing voyage (r, i), costs related to chartering space and the cost of not servicing

voyage (r, i) with a vessel from the company’s fleet.

Constraints

y
o(v)ri �

X

s2Sv

xB

o(v)ris = 0, v 2 V , (r, i) 2 N
v

, (4.2)

y
vri

�
X

s2Sv

x
vris

= 0, v 2 V , (r, i) 2 N
v

, (4.3)

y
vriqj

�
X

s2Sv

xB

vriqjs

= 0, v 2 V , ((r, i), (q, j)) 2 A
v

. (4.4)

Constraints (4.2)-(4.4) connect the speed and flow variables.

X

v2V
y
vri

+ yS
ri

= 1, (r, i) 2 N C. (4.5)

Constraints (4.5) ensure that all contracted voyages are serviced.

y
vri

= 1, v 2 V , (r, i) 2 NM

v

. (4.6)

Constraints (4.6) make sure that vessel v visits a maintenance node if the set NM

v

is

non-empty.

X

(r,i)2Nv

y
o(v)ri = 1� y

o(v)d(v), v 2 V , (4.7)

X

(r,i)2Nv

y
rid(v) = 1� y

o(v)d(v), v 2 V , (4.8)

y
vri

� y
o(v)ri �

X

(q,j)2Nv

y
vqjri

= 0, v 2 V , (r, i) 2 N
v

, (4.9)

y
vri

� y
rid(v) �

X

(q,j)2Nv

y
vriqj

= 0, v 2 V , (r, i) 2 N
v

. (4.10)
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Constraints (4.7)-(4.10) are flow constraints for each vessel.

y
o(v)ri(to(v) � t

ri

+
X

s2Sv

TB

o(v)risx
B

o(v)ris)  0, v 2 V , (r, i) 2 N
v

, (4.11)

y
vriqj

(t
ri

� t
qj

+
X

s2Sv

(TB

vriqjs

xB

vriqjs

+ T
vris

x
vris

))  0, v 2 V , ((r, i), (q, j)) 2 A
v

.

(4.12)

Constraints (4.11) make sure that the start time of the next voyage is greater than or

equal to the starting time of the initial position plus the time spent ballast sailing from

this position. Constraints (4.12) make sure that the start time of the next voyage is

greater than or equal to the start time of the previous voyage plus the time spent sailing

it and the ballast sailing between the voyages. In order to implement these constraints in

a commercial optimization solver, they need to be linearized. This is shown in Appendix

A.2.

d
ri

� t
ri

� L
ri

, (r, i) 2 N . (4.13)

Constraints (4.13) count the number of days a voyage is delayed.

X

r2R

X

i2Irm

X

k2Kp

l
ribpk

+ z
bpm

= D
bpm

, m 2 M, b 2 B, p 2 P
b

. (4.14)

Constraints (4.14) ensure that the volume transported or space chartered is equal to the

monthly demand.

z
bpm

 Q
SC

bpm

, b 2 B, p 2 P
b

,m 2 M. (4.15)

Constraints (4.15) limit the space chartered volume to be lower than or equal to the

maximum allowed monthly volume.
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X

b2B⇠

X

p2Pb

l
ribpk

�
 
X

v2V
Q

vrk

y
vri

+QS

k

yS
ri

!
 0, (r, i) 2 N , k 2 K, ⇠ 2 ⌅. (4.16)

Constraints (4.16) limit the total flow of cargoes in a capacity group on a voyage to be

within the capacity of the vessel sailing it.

y
o(v)ri 2 {0, 1} , v 2 V , (r, i) 2 N

v

, (4.17)

y
vri

2 {0, 1} , v 2 V , (r, i) 2 N
v

, (4.18)

y
vriqj

2 {0, 1} , v 2 V , ((r, i), (q, j)) 2 A
v

, s 2 S
v

, (4.19)

y
vrid(v) 2 {0, 1} , v 2 V , (r, i) 2 N

v

, (4.20)

y
o(v)d(v) 2 {0, 1} , v 2 V , ((r, i), (q, j)) 2 A

v

, s 2 S
v

, (4.21)

yS
ri

2 {0, 1} , (r, i) 2 N
v

, (4.22)

xB

o(v)ris � 0, v 2 V , (r, i) 2 N
v

, s 2 S
v

, (4.23)

x
vris

� 0, v 2 V , ((r, i), (q, j)) 2 A
v

, s 2 S
v

, (4.24)

xB

vriqjs

� 0, v 2 V , ((r, i), (q, j)) 2 A
v

, s 2 S
v

, (4.25)

t
o(v) � E

o(v), v 2 V , (4.26)

t
ri

� E
ri

, (r, i) 2 N , (4.27)

l
ribpk

� 0, (r, i) 2 N
v

, b 2 B
r

, p 2 P
b

, k 2 K, (4.28)

z
bpm

� 0, b 2 B, p 2 P ,m 2 M, (4.29)

0  d
ri

 DMAX , (r, i) 2 N . (4.30)

Constraints (4.17)-(4.30) are constraints defining the bounds of the variables.

4.3 Formulation Remarks

The model presented has been developed with the purpose of being as general as possible.

Some parts of the model may need to be explained in greater detail.

First, the variables yS
ri

are presented as an alternative to the case company’s vessels

in order to service all voyages in the planning period. In the absence of a spot vessel

market, the variables yS
ri

can be heavily penalized in the objective function (4.1) with
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the parameter CS. In case of a spot market, it is natural to apply (r, i) as indexes

to CS to cope with varying voyage spot charter costs. This means that routing parts

of the model can easily be adapted to other liner shipping segments. However, some

characteristics of other liner shipping segments, such as cargo transshipment, is omitted

from the formulation due to not being common in RoRo shipping.

There are two variables, x
vris

and xB

vriqjs

, that determine the speed when sailing a voyage

and sailing ballast to the next voyage respectively. By having separate variables for these

two cases, several advantages are obtained. First, it will be possible to exploit di↵erent

fuel consumption profiles for the two types of sailings. With higher fuel consumption

and corresponding cost for sailing the voyage, it may be more cost-e�cient to choose a

lower speed profile for sailing the voyage and then choose a higher speed profile for the

subsequent ballast sailing in order to start the next voyage within its time window. With

two separate speed variables, the model is also prepared for an extension where voyage

completion deadlines are added. In this case it would be possible to speed up vessels

when sailing voyages in order to be in time for the deadline, and then lower the speed

when sailing ballast to the next voyage.
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Adaptive Large Neighborhood

Search

The framework of large neighborhood search (LNS) heuristics was initially proposed by

Shaw (1997), where the heuristic search procedure was tested on vehicle routing problems

with promising results. In Section 5.1 we introduce the mechanisms of large neighbor-

hood searches. Then, we show how an LNS may become more e�cient by providing it

with elements of adaptability. These heuristics are called adaptive large neighbourhood

searches (ALNS), and was introduced by Ropke and Pisinger (2006). Finally, in Section

5.2 a developed ALNS heuristic for solving the fleet deployment problem is presented.

5.1 The Large Neighborhood Search Mechanisms

The LNS metaheuristic takes in an initial, feasible solution to a problem, and progressively

improves the solution by alternately destroying and repairing it through a number of

iterations. Unlike other neighborhood search algorithms, where it is normal to perform

many small changes to the current solution, the LNS will implement greater changes and

be able to explore larger areas of the solution space. By only performing small changes

to the solution, such as in local search heuristics, a great number of solutions will be

investigated in a short amount of time. However, Ropke and Pisinger (2006) point out

the risk of not being able to move from one promising area of the solution space to

another.

In the LNS metaheuristic, the neighborhoods are defined by destroy and repair operators.
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The LNS heuristic will typically alternate between an infeasible and a feasible solution.

The destroy operation creates the infeasible solution, while the repair operation restores

a feasible solution. The design of these operators will determine the performance of the

heuristic.

To be able to apply destroy and repair operations, one needs an initial feasible solution to

the problem. This can be found in numerous ways. In Korsvik et al. (2011), a tramp ship

routing and scheduling problem with split-loads is examined and solved by using a large

neighborhood search. Here, the initial solution is obtained by randomly assigning cargoes

to feasible vessel schedules. Ropke and Pisinger (2006) suggest that simple construction

insertion heuristics may be appropriate. It may also be beneficial to call local search

heuristics on the initial solution and/or feasible solutions obtained throughout the search

in between the destruction and repair operations, such as in Korsvik et al. (2011). Here,

a descent local search consisting of several improvement heuristics is called on the initial

solution until a local optimum is reached. This is also done after the repair and destroy

sequence is performed in each iteration.

After a solution is repaired, it may be accepted and used in the following iteration,

or rejected and the algorithm returns to a previously obtained solution as a basis for

future iterations. Several metaheuristic master frameworks may be used for evaluating

a solution, such as using tabu criterias or by using simulated annealing. The latter was

successfully implemented by Ribeiro and Laporte (2012) for evaluating solutions in an

LNS for solving a vehicle routing problem. Simulated annealing may help a heuristic

escape local optimums. Initially, an inferior move is accepted with a high probability.

As the search proceeds, this probability is lowered in each iteration by a cooling factor.

Towards the end of the search, the system is given time to search nearby neighborhoods

for better solutions and only accepts inferior moves with a very low probability.

The Destroy Operators

In each iteration of the search, the destroy operators will remove parts of the solution.

Which parts of the solution that are removed is an important decision that has to be made

when designing the LNS. With an element of randomness in the destroy operators, there

is a higher probability of exploring a di↵erent part of the solution in each invocation

of the method. Depending on the type of problem and the current solution, di↵erent

destroy operators could be appropriate. For instance, if only a small part of the solution
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is destroyed, then the repair heuristics will have di�culties using their full potential to

search through the di↵erent parts of the solution space. On the other hand, if a very

large part of the solution is destroyed, then the repair operation would have to nearly

rebuild the solution from scratch and not use the benefits of the heuristic method to the

fullest. Finding the right balance of the degree of destruction as described above is one of

several decisions that must be considered regarding the destroy operators when designing

an LNS.

Several destroy operators have been tested and used in the literature. In Korsvik et al.

(2011), an operator that removes � random assigned cargoes from the solution is used.

In addition to random removals, Pisinger and Ropke (2007), Ribeiro and Laporte (2012),

and Ropke and Pisinger (2006) use a worst removal operator and a set of related nodes

removal operators for large neighborhood searches on vehicle routing problems. Nodes

can be related in several ways, such as in time and distance.

The Repair Operators

After a solution has been destroyed, the objective of the repair operators is to find back

to a good, feasible solution. Repair operators can be designed to find an optimal solution

given a partial fixed solution, or finding good solutions using heuristics. If the repair

operator use an exact solving method, it will take more time to find a solution, but it will

be of higher quality. A repair operator based on a heuristic will not necessarily give the

same quality as the previous mentioned method, but will be able to resolve the problem

much faster.

A few repair operators have commonly been used for solving similar problems. Ropke

and Pisinger (2006), Pisinger and Ropke (2007) and Ribeiro and Laporte (2012) use basic

greedy insertion and regret-k heuristics. Korsvik et al. (2011) use a constructive insertion

heuristic.

Local Search Heuristics

By successively destroying and repairing a solution with various neighborhood operators,

the risk of being trapped in a local optimum is significantly reduced in an LNS. Due to

their e�ciency, local search heuristics have been awarded a great deal of attention as

heuristic solution methods in the literature. The nature of large neighborhood searches
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suggests that local search heuristics can be included and play an important role in the

framework, since other operations can help the search escape local optimums. In Korsvik

et al. (2011), a descent local search is called in each iteration until a local optimum

is found. A set of four local search operators is used in the study: (1) reassign, (2)

interchange, (3) 1-split or merge and (4) 2-split or merge.

Adaptive Large Neighborhood Search

When solving problems using an LNS metaheuristic framework, one or several destroy

and repair operators can be chosen. A significant benefit of including multiple destroy

and repair operators is greater search diversification, making the search able to explore

further neighborhoods of the solution. However, some operators may not be as e�cient

as others, or may be more time-consuming. An Adaptive Large Neighborhood Search

heuristic extends the LNS framework by allowing multiple destroy and repair operators

to be used within the same search, and the frequency of the di↵erent destroy and repair

operator calls during the search is determined by a weight on each of the operators. The

weights will adapt to the instance and be adjusted dynamically throughout the iterations

depending on the operator performance (Pisinger and Ropke, 2010). In other words, the

heuristic learns what works well, and adapts its search to previous successful iterations

with certain destroy and repair operators. The adaptive weight adjustment will ensure

that operators seldom are used on instances where they are ine↵ective. Also, a weight

adjustment will reflect that some operators may be highly e↵ective in the beginning of

the search, but less e↵ective compared to other operators towards the end of the search.

In Pisinger and Ropke (2007), a roulette wheel selection-based method for choosing the

destroy and repair neighborhood in each iteration is presented. Here, all operators are

given a performance score based on past iterations. In the selection process, a higher

score implies a higher probability of being chosen. If a past weighted score of an operator

i is set as w
i

, and there are k operators or neighborhoods, an operator j is chosen with

probability

w
j

kP
i=1

w
i

(5.1)

The roulette wheel selection presented by Pisinger and Ropke (2007) selects the repair

36



5.2. ADAPTIVE LARGE NEIGHBORHOOD SEARCH APPLIED TO THE FLEET
DEPLOYMENT PROBLEM

and destroy operators independently, i.e. two separate selections are performed in each

iteration. In some problems, however, certain sets of repair and destroy operators might

work well together. Then it may be advisable to rather measure the performance of pairs

of operators, and subsequently select them in pairs in a roulette wheel selection. In addi-

tion to sheer performance, the time consumption of the operators should be considered.

There are also several other advantageous properties associated with the ALNS frame-

work. Pisinger and Ropke (2007) point out that there already exist many well-performing

heuristics which can be included as operators in the search. These operators enable the

search to structurally explore its neighborhoods. Because of its diversity and capability

of dynamically adapting to its own performance, an ALNS will seldom find itself trapped

in a local optimum (Pisinger and Ropke, 2007). For the ALNS, opposed to other local

search heuristics, instead of choosing from a set of operators one may include all in the

search framework, as the search will downgrade not well-working operators. As proposed

by Pisinger and Ropke (2007), the more reasonable operators included, the better it per-

forms. Further on, an ALNS may especially work well on tightly constrained problems,

where many variables need to be altered in order to find new feasible solutions and also

escape local optimums.

5.2 Adaptive Large Neighborhood Search Applied to

the Fleet Deployment Problem

In this section we present an ALNS for solving the fleet deployment problem. All decisions

made regarding (1) the master level framework, (2) finding an initial solution, (3) selecting

destroy operators, (4) selecting repair operators, (5) selecting local search operators and

(6) the operator selection procedure are discussed.

Master Level Framework

A pseudo code to illustrate the mechanisms in the developed ALNS is presented in Al-

gorithm 5.1. Here, the lines 7-30 define the iterative search loop. The stopping criteria

is based on simulated annealing. In line 8, a destroy and repair operator pair (d, r) from

the set of destroy and repair operators O is selected. This selection is based on weighted

scores w
drj

from the previous segment j of M iterations in the set of segments J . A
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repair operator r in the set of repair operators O+ is applied to the destroyed solution

d(y) in line 10, where d is a destroy operator in the set of destroy operators O� and

y is a feasible solution. Also, a randomly selected local search operator l is applied to

the solution obtained by r(d(y)). In lines 11-21, the new solution is accepted or denied

depending on its quality. In line 22, scores based on the quality of yk is awarded. Then,

we check if we have reached a new segment, and if weights should be reset or updated

according to Equation (5.8). Finally, the timer t, the temperature T emp

k

and the iteration

counter k are updated. When the search has been terminated by one of its stopping

criteria, the best solution is returned.

To evaluate solutions, we use a methodology where solutions with the fewest unserviced

voyages are considered best. Comprehensive testing showed that this procedure gave

the most promising results in terms of sheer performance and computational e�ciency.

When solutions are compared, we check their number of fewest unserviced voyages (see

line 11 in Algorithm 5.1). For this evaluation we use the function f , which takes in

a solution or a list of solutions and returns the number of unserviced voyages. If two

solutions include an equal amount of unserviced voyages, we check if their individual

vessel schedules are equal. All solutions with unique vessel schedules and the fewest

number of unserviced voyages so far obtained are stored in a list of best solutions ( #»y b).

In case a new solution with fewer unserviced voyages is found, the list is reset and only

include this new, superior solution. If a solution with a new, unique vessel routing and

the same number of unserviced voyages is found, it is added to the list of best solutions.

When the search has been terminated, we evaluate all unique solutions in the list and

return the one with the lowest operating cost.

On the master level, the acceptance criteria defined by simulated annealing is used in

the presented ALNS (see line 17 in Algorithm 5.1). This is chosen because it allows

the algorithm to execute inferior moves and thereby may prevent the search from being

trapped in a local optimum. With simulated annealing, a solution yk in an iteration is

accepted with probability

e(��/T ) (5.2)

Here, � denotes the di↵erence in the number of unserviced voyages between the solution

yk obtained in the current iteration and solutions in the list of best solutions #»y b. In

mathematical terms, � = f(yk)� f( #»y b). However, in the presented algorithm, a relative
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Algorithm 5.1. Pseudo Code for Adaptive Large Neighborhood Search

1: Input: an initial, feasible solution y;

2: #»y b = (yb) = (y);w
dr,0 =

1
|O�||O+| ;

3: Set max iterations = K, start counter k = 0;

4: Set max time = TMAX seconds, start counter t = 0;

5: Set segment size = M , set reset parameter = M0, start segment counter j = 0;

6: Start simulated annealing, T emp

k

= T emp

start

, c = cooling factor;

7: while (k < K and t < TMAX) do

8: Select destroy and repair pair (d, r) 2 O using w
drj

according to Equation (5.7);

9: Randomly select local search operator l;

10: yk = l(r(d(y)));

11: if f(yk) < f( #»y b) then

12: #»y b = (yk);

13: y = yk;

14: else if f(yk) == f( #»y b) and yk is a new schedule then

15: Add yk to list of best solutions #»y b;

16: y = yk;

17: else if accept (yk, y) according to probability given by Equation (5.2) then

18: y = yk;

19: else

20: Return to a random solution in #»y b;

21: end if

22: Award scores �1, �2, �3;

23: if (k % M == 0) then

24: Update segment j = j + 1;

25: if (k % M0 == 0) then

26: Reset weights w
drj

= 1
|O�||O+| ;

27: else

28: Update weights w
drj

according to Equation (5.8);

29: end if

30: end if

31: update t, T emp

k+1 = c · T emp

k

;

32: k = k + 1;

33: end while

34: return Best solution in #»y b;
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di↵erence is chosen implemented, i.e. � is divided by the number of unserviced voyages

in the current best solutions. The temperature T emp

k

of the search in iteration k starts at

T emp

start

and is decreased in every iteration according to a cooling rate 0 < c < 1. The new

temperature in iteration k + 1 is calculated as T emp

k+1 = c · T emp

k

. Improving solutions or

solutions with new, unique vessel schedules are always accepted.

There are a few things one must consider when setting T emp

start

and c. A too high start

temperature will ensure early diversification, but may seize unnecessary amounts of time.

The cooling factor must not cool down the solution too slow, as inferior moves will be

accepted too often and not give the search enough time to work with good solutions. On

the other hand, it must not cool down the solution too fast, which increases the risk of

being trapped in a local optimum.

Finding an Initial Solution

An initial, feasible solution for the presented ALNS is found by using a regret-k repair

operator as a construction heuristic. This was successfully implemented by Andersen

(2010) in an ALNS for solving a network transition problem in liner shipping. In contrast

to the results obtained by Andersen (2010), where k = 2 performed best, initial testing

showed that a degree of k = 4 gave the best results for the problem studied in this thesis.

The regret-k repair operator is also used in the repair phase of the search and is presented

in further detail below.

Selecting Destroy Operators

The developed ALNS for the FDP uses five di↵erent destroy operators. These operators

take in a solution where all voyages are assigned, and returns an infeasible solution where

some voyages are marked as unassigned. To limit the number of removal requests in the

largest test instances, an upper removal limit, �, is imposed on each destroy operator.

This parameter denotes the maximum size of the list of unassigned voyages. If � is too

low, Ropke and Pisinger (2006) point out that the heuristic will not be able to move

much around in each iteration, and may become trapped in a local optimum despite

acceptance frameworks such as simulated annealing. On the other hand, a too high level

of destruction is undesirable, as it will require the repair operator to rebuild large parts of

the solution. Ropke and Pisinger (2006) show that insertion heuristics perform poorly for

this purpose. Similarly, let ↵ be a parameter denoting the maximum number of voyages
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which is allowed removed as a percentage of the total number of voyages. The random

removal destroy operator uses ↵ as the probability of removing an assigned voyage from

the current solution when looping through all assignments.

Trade Route Removal

The Trade Route Removal operator removes voyages, either unserviced or serviced by

vessels, belonging to a specific trade route r randomly selected from the set of trade

routes R. This operator is motivated by the possibility the repair operators now have to

reallocate voyages related in terms of geography.

Month Removal

Similar to Trade Route Removal, the Month Removal operator removes all assigned or

unserviced voyages with their target start date in a specific month m or in its following

month m+1, where m is randomly selected from the set of months M\{|M |}. The idea
behind this operator is that the voyages removed are related through their placement in

time. Figures 5.1 and 5.2 show how a solution is a↵ected by applying the Month Removal

destroy operator.

Figure 5.1 – Feasible solution before Month

Removal
Figure 5.2 – Solution after Month Removal

Vessels Removal

The Vessels Removal operator removes all assigned voyages belonging to three vessels

v1, v2 and v3 randomly selected from the set of vessels V . To be as general as possible,
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restrictions have been made in case there are fewer than three vessels. By leaving three

vessels with no schedule, any unassigned voyages may be reassigned in a more cost-

e�cient way. A pseudo code for the Vessels Removal operator is presented in Algorithm

5.2.

Algorithm 5.2. Pseudo Code for Vessels Removal Destroy Operator

1: Function DestroyThreeVessels(y 2{solutions}, v 2 V , (r, i) 2 N );

2: vessel: v = a randomly selected vessel from V
3: set of vessels randomly selected: VU ✓ V
4: set of unassigned voyages: N U ⇢ N
5: set of voyages not serviced: N S ✓ N
6: for all (v 2 VU) do

7: Remove all voyages (r, i) assigned to v and add them to N U ;

8: end for

9: while (|N U | < �) and (|N U | < ↵ · |N |) and (|N S| > 0) do

10: Remove voyages (r, i) 2 N S and add them to N U ;

11: Update |N U | and |N S|;
12: end while

13: return destroyed solution d(y);

Random Removal

The Random Removal operator is the simplest of the five proposed destroy operation

heuristics, and removes a random set of assigned voyages while iterating through the

solution. A random assigned voyage is removed with probability ↵ up to the maximum

total amount �. This operator is important because it adds diversification in the search

process.

Port Removal

The Port Removal operator removes all inbound and outbound voyages of a randomly

selected port over a given time period from a solution. Just as the Trade Route Removal

operator, the motivation behind this operator is the possibility to swap voyages related

in geography and time.
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Selecting Repair Operators

A few di↵erent well-working repair operators from the literature have been reviewed

previously, and are used as inspiration when determining what might work when applied

to the FDP. In this section we present four repair operators that repair destroyed solutions

in di↵erent ways.

Greedy Insertion Heuristic

One of the repair operators used is a basic insertion heuristic. The heuristic iterates over

all unassigned voyages and attempts to place them in open time windows in the prelim-

inary vessel schedules. For each unassigned voyage (r, i), all vessels v 2 V are examined

according to their current voyage assignments. The unassigned voyage is assigned to the

vessel where the cheapest insertion possibility is found. For simplicity, all insertion possi-

bilities are evaluated given that all vessels sail at their given maximum service speeds. All

unassigned voyages are shu✏ed before the heuristic is initiated to ensure diversification.

Mathematically, let �Z
vri

denote the cost added to the objective function Z of inserting

voyage (r, i) from the set of unassigned voyages N U at the cheapest possible insertion in

the schedule of vessel v. If no possible insertion is found in the schedule of vessel v, then

set �Z
vri

= 1. After looping through all vessels, the following calculation is executed:

(v) := argmin
v2V

�Z
vri

8(r, i) 2 N U . (5.3)

Following this calculation, voyage (r, i) is assigned to vessel v where the cheapest possible

insertion is found, and the voyage start time t
ri

is determined by its own time window

and by the time window available at vessel v. Assigning this start time is important for

the remaining iterations of unassigned voyages. Lastly, if no feasible insertion is found,

the voyage is set as unserviced. A pseudo code for the Greedy Insertion Heuristic is

presented in Algorithm 5.3.
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Algorithm 5.3. Pseudo Code for Greedy Insertion Heuristic

1: Function GreedyInsertion(d(y))

2: set of unassigned voyages: N U = N \ d(y);
3: for all ((r, i) 2 N U) do

4: least costly assignment �Z
vri

= 1, 8v 2 V ;
5: for all (v 2 V) do
6: if cost of possible insertion < �Z

vri

then

7: v0 = v;

8: �Z
v

0
ri

= cost of insertion;

9: end if

10: end for

11: if �Z
vri

< 1 then

12: insert (r, i) according to Equation (5.3);

13: else

14: assign (r, i) to yS
ri

;

15: end if

16: end for

17: clear list of unassigned voyages NU ;

18: return repaired solution r(d(y))

Deep Greedy Insertion Heuristic

Similarly to the Greedy Insertion Heuristic, the Deep Greedy Insertion Heuristic iterates

over all unassigned voyages and attempts to place them in open time windows in the vessel

schedules. However, while the former places the unassigned voyages on the go, the Deep

Greedy Insertion Heuristic evaluates the cost of all possible insertions, i.e. it loops over

all unassigned voyages and vessel schedules before making any insertion decisions. After

an unserviced voyage has been assigned to a vessel, all remaining unassigned voyages

are iterated again to find the second cheapest insertion. Despite being significantly more

computationally challenging, better decisions are likely to be made as the search is deeper.

If the iteration procedure reveals that an unassigned voyage has no possible insertions, it

is set as unserviced.

For the Deep Greedy Insertion Heuristic, let �Z
vri

denote the cost added to the objective

function Z of inserting voyage (r, i) from the set of unassigned voyagesN U at the cheapest

possibility in the schedule of vessel v. If no insertion possibility is found in vessel v, then
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set �Z
vri

= 1. After looping through all vessels and unassigned voyages, the following

calculation is executed:

(v, r, i) := argmin
v2V,(r,i)2NU

�Z
vri

(5.4)

Regret-k heuristics

The Greedy Insertion and Deep Greedy Insertion heuristics calculate and insert the cheap-

est requests first, which means that di�cult requests are postponed until the end of the

iterations. However, at this point, most of the schedules have started to fill up and

possible voyage-vessel combinations are unlikely. Regret heuristics attempt to solve this

problem by considering the e↵ect of not inserting a request at the cheapest possible

placement.

Let�Zk

ri

denote the change in the objective value by inserting the unassigned voyage (r, i)

at its kth cheapest possible insertion in the vessel schedules. This means that, e.g., �Z2
ri

refers to the second cheapest possible insertion of voyage (r, i). If no possible insertions

are found, let �Zk

ri

= 1. In this example, k = 2, and the request chosen to be inserted

by the regret heuristic is decided according to

(r, i) := argmax
(r,i)2NU

�
�Z2

ri

��Z1
ri

�
. (5.5)

In Equation (5.5), the di↵erence between inserting the unassigned voyage at the second

cheapest and the cheapest possible placement in the vessel schedules are calculated, and

the voyage with the greatest di↵erence is chosen to be inserted. In other words, the

heuristic evaluates the consequence of not inserting a voyage at its cheapest possible

insertion. For some voyages, which are flexible and have many possible insertions, the

di↵erence may be small. For other voyages, there may only be one single possible insertion

in the current set of vessel schedules, making the di↵erence large.

The heuristic can be extended to be as general as possible and consider the k cheapest

possible insertions of voyage (r, i), as shown by Equation (5.6):

(r, i) := argmax
(r,i)2NU

 
kX

h=2

�Zh

ri

��Z1
ri

!
. (5.6)
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Compared to a regret heuristic with k = 2, regret-k heuristics are more likely able to

detect when the possibilities of inserting an unassigned voyage becomes limited in the

future and may make more considered decisions. On the other hand, including too

much information may cause the heuristic to perform too conservative insertions and the

optimal insertion may be overlooked.

Partial Fixed MIP Repairing

Here, a destroyed solution is sent to the mathematical program defined in Section 4.1 as a

partial fixed MIP problem. The variables fixed are y
vri

and yS
ri

, i.e. the decisions regard-

ing which voyage to be sailed by which vessel or marked as unserviced. The unassigned

voyages remain unfixed and are optimized in the solver. Although more time-consuming

than the heuristic methods presented earlier, this repair operator attempts to find the

optimum solution given any fixed variables. It is important to ensure that enough vari-

ables are fixed in the solution sent to the solver, so that the optimization process does

not become too slow and fails to find good solutions within a time limit TMIP . The

parameters ↵ and � help limit the degree of destruction.

Local Search Heuristics

Inspired by Korsvik et al. (2011), the ALNS was extended with a few local search op-

erators which where found e↵ective in initial testing. Several others were also tested,

but these were found computationally challenging and ine↵ective on larger and realistic

instances.

Reassign

The Reassign local search operator attempts to reallocate any unserviced voyages to vessel

schedules, no matter the cost of these individual insertions. This operator can also adjust

vessel sailing times and the start times of assigned voyages, in order to service unserviced

voyages.
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1-Interchange

The 1-Interchange local search operator iterates all vessel schedules and unserviced voy-

ages, and attempts to reallocate a serviced voyage from one vessel to another, i.e. an

interchange. An interchange is performed if it makes room for an unserviced voyage in

the new vessel schedules.

Destroy and Repair Operator Selection

An alternation between the di↵erent destroy and repair operators may provide the search

with a wide specter of neighborhoods to explore. For selecting an operator pair in each it-

eration, a roulette wheel selection such as defined by Equation (5.1) suggested by Pisinger

and Ropke (2007) is used. Equation (5.7) below is a revised version of Equation (5.1)

with the needed notation to formulate the selection of destroy and repair operators in

pairs and separate weights in segments of iterations. Let w
d

0
r

0
j

be the weight of operator

pair (d0, r0) in segment j 2 J . The probability of selecting this operator pair during the

iterations in segment j is calculated as

w
d

0
r

0
jP

(d,r)2O
w

drj

8j 2 J . (5.7)

How the weights w
drj

are assigned to the di↵erent pairs of repair and destroy operators

is presented in the following section.

Adaptive Weight Adjustment

The score of an operator pair is recorded when a solution is evaluated, and represents a

measure of how well the heuristic performed in this iteration. Consequently, a high score

means that the heuristic has been performing successfully. To give the di↵erent operators

su�cient opportunities to ”prove their worth”, the search is divided into segments of

iterations. A segment corresponds to a number of iterations M in the ALNS heuristic

loop. In the reviewed literature, the suggested segment size M is between 50 and 100

iterations. For every M iterations, the scores are reset and the weights w
drj

are updated.

The new weights are updated according to the scores in the past iterations as well as

the weights used in the past segment. Let w
drj

denote the weight of heuristic (d, r) used
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in segment j. When deciding the weights to be used in iterations belonging to segment

j + 1, the following formula presented by Pisinger and Ropke (2007) is used:

w
dr,(j+1) = w

drj

(1� ⇢) + ⇢
⇡
drj

a
drj

(5.8)

Here, ⇡
drj

is the normalized score and a
drj

is the number of calls of heuristics (d, r)

in the past segment j. The reaction factor ⇢ is introduced to adjust how rapid the

weights change from segment to segment according to their e↵ectiveness. The score ⇡
drj

of operator pairs in a segment is incremented by the score adjustment parameters �1, �2,

�3 or zero in an iteration, depending on the recorded performance. Before awarded to an

operator pair, the score is normalized with respect to the computational time consumed

by the operator pair. The score parameters are explained more in detail in Table 5.1.

Their values are given so that �1 > �2 > �3 > 0. The final weights w
dr,(j+1) obtained are

used to select operator pairs in each iteration in the next segment according to Equation

(5.7). For every M0 iterations, the weight values are reset to the weights initially defined

by w
dr,0. This is done to ensure that operators which may perform ine↵ective in early

parts of the search does not have an unreasonable small probability of being selected later

on, when they may perform better.

Table 5.1 – Score adjustment parameters

Score parameter Description

�1 The iteration resulted in a new global best solution where

fewer voyages are unserviced.

�2 The iteration resulted in a new, unique vessel schedule with

the same number of unserviced voyages, i.e. the vessel routing

is altered.

�3 The iteration resulted in a worse solution, but it was accepted

as a part of simulated annealing.

0 Neither of the above.

Figure 5.3 presents an example of how weights develop during a search. The weight

reset mechanism can be observed every 20th segment. Because of simulated annealing

and because it is harder to find good moves towards higher iteration numbers, the given

scores and thereby the weights are evenly decreasing throughout the search.
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Figure 5.3 – Illustration of how weights of operators develop during a search. The weights in the

example are from an execution of the ALNS heuristic on S24 V222 T9 M2. The weight developments

shown are from combinations of the Trade Route removal heuristic and all the repair operators. Here,

each segment consists of 50 iterations.
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Chapter 6

Rolling Horizon Heuristics

An increasingly popular approach for solving hard planning problems with long plan-

ning horizons is rolling horizon heuristics (RHH). As stated in Section 1.4, this heuristic

approach was successfully implemented by Andersson et al. (2014) in order to solve the

FDP over the desired 6-10 months planning period. Due to the problem similarities,

it is reasonable to believe that a rolling horizon heuristic has the potential of being an

excellent solving method for the problem studied in this thesis.

In Section 6.1, an overview and the general mechanisms of an RHH is presented. Then, a

description of how we applied the heuristic to solve the FDP is proposed in Section 6.2.

6.1 The Rolling Horizon Heuristic Mechanisms

The main idea behind rolling horizon heuristics is to solve the problem over a rolling

horizon. This means to solve parts of the problem iteratively over the whole planning

period. For each iteration, a sub-problem for each sub-horizon is solved. The sub-horizon

includes a primary period and a forecasting period. When solving the problem in each

sub-horizon, the properties of the original problem are kept intact in the primary period,

while properties in the forecasting period are somehow simplified. This simplification

can, for example, be a relaxation of integer variables. The decisions made in the primary

period are partly or fully fixed in the next iteration. This iterative process continues until

decisions for the whole planning horizon have been made. The rolling horizon approach

divides the problem into smaller parts which makes it easier to solve.

The method of rolling horizon heuristics has long been in use for solving problems within
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production planning. In Baker (1977), the e↵ectiveness of rolling schedules for produc-

tion planning is investigated. The authors present findings that demonstrate how rolling

schedules produce good results, usually within 10 % of optimality. A general framework

for analyzing rolling schedules were proposed by Baker and Peterson (1979), with partic-

ular focus on the e↵ects of factors such as the length of the planning horizon. The authors

examine a cost model for production planning, and discover that performance improves

monotonically as the planning horizon is extended. Stau↵er and Liebling (1997) present

a rolling horizon algorithm for an aluminum production plant. Here, the job portfolio

for the plant is only certain for a limited period, and future orders are continuously re-

ceived. A tabu search-based heuristic solves the sub-problem in each iteration. Mercé

and Fontan (2003) use a MIP-based algorithm with a rolling horizon framework to solve

the multi-item capacitated lotsizing problem. For each iteration, a size-reduced MIP for

the current sub-horizon is solved. In the paper, Mercé and Fontan (2003) suggest two

di↵erent strategies when it comes to fixing variables in each sub-horizon. The first strat-

egy is to fix all decisions made in the previous primary section, while the second strategy

is to fix only production decisions. Other variables, such as production quantities, may

be adjusted later in the algorithm. Mercé and Fontan (2003) found the best results by

using the second strategy. Dellaert and Jeunet (2003) address the multi-level lotsizing

problem, and show that the performance of fixed-horizon methods can be greatly im-

proved in a rolling horizon environment. Bredström et al. (2013) demonstrate a method

to solve LP problems with uncertain right-hand sides by applying it to planning problems

where rolling horizons are used. In order to simplify and reduce the computational load

of the forecasting section in each sub-horizon, Bredström et al. (2013) successfully relaxes

binary variables in the forecasting section.

In addition to Andersson et al. (2014), there exist a few other publications were RHH have

been used for maritime planning problems. Sherali et al. (1999) propose a MIP model

for routing and scheduling ships in a maritime transportation system. For the specific

problem studied in the paper, a typical planning horizon is 300 days, and the related

scenario consists of 25,920,029 variables and 5,058,360 constraints in total. This complex

problem were successfully solved by using a rolling horizon approach. Bredström and

Rönnqvist (2006) solve a combined supply chain and ship routing problem over a 40-day

period by using a heuristic method based on a rolling time horizon. In their heuristic,

Bredström and Rönnqvist (2006) relax binary variables denoting combinations of vessels

and routes in the forecasting section of each sub-horizon. Computational experiments

from applying the heuristic on real world instances suggest that the solution method in
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many cases can be very e�cient. Finally, Rakke et al. (2011) present an RHH for a

large scale ship routing and inventory management problem. Here, the authors suggest

that binary variables in the forecasting section should be made continuous, and that the

length of the forecasting section should be twice as long as the primary section. The

computational study shows that the algorithm returns good solutions to real world data

instances within a relatively short amount of time.

It is natural to elaborate on the RHH proposed in Andersson et al. (2014), considering

the similarity to our problem. In the study, many of the techniques previously presented

are used, such as (1) relaxing the binary variables as a simplification strategy in the

forecasting section, and (2) fixing binary variables related to servicing voyages. Time and

vessel speed variables may be adjusted later in the algorithm. Andersson et al. (2014)

show that the RHH obtained good solutions within reasonable times and performed much

better for all realistic instances than a MIP model.

The Rolling Horizon Algorithm

Figure 6.1 illustrates the mechanism of a rolling horizon heuristic, and is inspired by

similar figures in Mercé and Fontan (2003), Rakke et al. (2011), and Andersson et al.

(2014). Each sub-horizon consists of a primary period and a forecasting period. For

each iteration, the current sub-problem for the corresponding sub-horizon is solved. Let

us denote K as the number of iterations to be performed. At iteration k, the sub-

problem for the sub-horizonH
k

is solved. Further more, S
P

(H
k

) and S
F

(H
k

) describes the

primary period S
P

and forecasting period S
F

in sub-horizon H
k

, respectively. When the

computation in each iteration has been done, the solutions in S
P

(H
k

) are fixed according

to the predefined fixing strategy, and the primary and forecasting periods are updated to

S
P

(H
k+1) and S

F

(H
k+1). Also, the new sub-horizon is chosen by moving forward a given

number of time units. Now, the sub-problem H
k+1 is solved. In the last period of the

horizon, no forecasting section is used, and all decisions made are final.

6.2 Rolling Horizon Heuristics Applied to the Fleet

Deployment Problem

Algorithm 6.1 shows the pseudo code for the implemented RHH. The primary period

S
P

(H
k

) contains the same properties and constraints as the exact problem. Determining
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Figure 6.1 – The rolling horizon heuristics mechanism.

the length of the primary period is a decision that must be made when designing the RHH.

Andersson et al. (2014) address that a trade-o↵ between solution quality and computation

time has to be made when deciding the length of the primary period, as it is reasonable

to assume that a longer primary period will provide better solutions. A primary period

of one month was chosen in the presented RHH. Decisions regarding the variables y
o(v)ri,

y
vri

and y
vriqj

are fixed after each primary period has been solved. This means that

variables related to speed, load, start times, a vessel’s final destination and unserviced

voyages may be adjusted later on.

Algorithm 6.1. Pseudo Code for Rolling Horizon Heuristic

1: Input: length of primary periods T
SP ; length of forecasting periods T

SF ; number of

sub-horizons K;

2: set k = 1;

3: while k < K do

4: define H
k

from T
SP and T

SF ;

5: solve the model for S
P

(H
k

) and S
F

(H
k

);

6: fix flow variables y
o(v)ri, yvri and y

vriqj

in S
P

(H
k

);

7: k = k + 1;

8: end while

9: solve the model for the final sub-horizon S
P

(H
K

);

10: return solution;

In order to take future events into consideration, a forecasting period S
F

(H
k

) is included

in each sub-horizon. This will a↵ect the decisions made in the primary period, and
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likely construct a more holistic solution. Baker and Peterson (1979) propose that longer

forecasting periods will provide better solutions, but at the cost of longer computing

times. Therefore, we face a trade-o↵ between length and solution quality. When testing

the e↵ect of di↵erent lengths of primary and forecasting periods in Andersson et al. (2014),

it was pointed out that the increased quality of the solution was not significant, and with

a much higher solution time. This was also tested in Fischer, Nokhart, and Olsen (2014),

where it was concluded that the RHH with a forecasting period of two months produced

equal or better solutions within a much shorter amount of time, compared to the RHH

with a forecasting period set as the rest of the planning period. Based on these findings,

we have decided to set the length of the forecasting period to two months. The sub-

horizon in the developed RHH thereby consists of a primary period of one month, and a

forecasting period of two months ahead.

For the forecasting period, a simplification strategy can be made. Several publications

have successfully relaxed binary variables (e.g. Bredström and Rönnqvist (2006), Ander-

sson et al. (2014)), which lowers the computational load of solving the problem. However,

less information is used than in the original formulation. Again, we have a trade-o↵ be-

tween maintaining information and keeping the problem smaller and less complex. The

presented RHH relaxes all binary variables related to routing in the forecasting period.
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Chapter 7

Computational Study I

In this chapter the implementation and a computational study of the presented models

are described and discussed. The MIP, ALNS and RHH models were coded in Java and

run in the Eclipse Luna integrated development environment for Java Developers Release

1 (4.4.1) programming interface. The MIP, the fixed LP-problem related to the Partial

Fixed MIP repair operator and the sub-problem in each sub-horizon in the RHH were

solved by using Gurobi Optimizer version 6.0 (Gurobi Optimization, 2014) in the Java

interface. All of the models were run on a cluster of computers with HP DL165 G6, 2 x

AMD Opteron 2431 2.4 GHz, 24 GB of RAM, and 164 GB SAS 15000rpm.

In Section 7.1 we provide a description of the various problem instances used in this

computational study. Then, the computational performances of the MIP, ALNS and

RHH are presented and thoroughly discussed in Sections 7.2, 7.3 and 7.4, respectively.

Finally, a comparison of the di↵erent solving methods is presented in Section 7.5. Here

we also examine the e↵ect of di↵erent time window widths and separate speed variables.

7.1 Description of Problem Instances

The data used for the models are provided by the case company in Microsoft Excel

format, and is collected directly by the Java models from the spreadsheets. However,

values for some of the parameters in the model are not included in the provided data.

First, the cost of not servicing a voyage is not given. As explained in Section 4.1, this

cost must be set very high to heavily penalize this option. If the cost of not servicing

a voyage is not su�ciently high, we risk that this option is cheaper than using the case
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company’s vessels to cover the voyage. However, setting the cost too high will increase

the numerical objective value significantly. In solutions where unserviced voyages must

be present to ensure feasibility, the resulting high objective value will overshadow the

operating costs. Initial testing of di↵erent costs for not servicing voyages showed that

the quality of solutions increased with a lower cost, but it also increased the solution

time of the models. The main objective of the models are to provide useful and quality

solutions to the case company. Reducing the solution time is only useful if the outcome

of the models is of high quality. Based on these considerations, the cost of not servicing

voyages, CS, was set to the value that provided the highest solution quality, $100 millions.

In the mathematical formulation, vessels can sail directly from their origin to their arti-

ficial destination, i.e. they may not be used in the planning period. Not using a vessel

could simply be considered as a fixed cost for the company, but also as an opportunity to

charter out the vessel to other companies and provide an income. However, we have not

included this opportunity and the cost of not using vessels during the planning period,

C
o(v)d(v), is therefore set to zero.

As presented in Section 4.1, the tolerance for starting a voyage after the time window is

denoted with the parameter DMAX and any delay is penalized with the cost CP . The

possibility of starting a voyage later than the time window will give more flexibility to

the model, as discussed in Section 4.3. However, for this part of the thesis we choose to

leave the delay feature out by setting the parameter DMAX to zero. The delay penalty

cost is thereby not relevant, but a value of $200,000 for the parameter CP is suggested by

the case company. A summary of the parameters discussed and the corresponding values

can be seen in Table 7.1.

Table 7.1 – Summary of assumed parameter values

Parameter Description Value

CS Cost of not servicing voyages 1.00E+8
C

o(v)d(v) Cost of not using vessels 0
DMAX Days of tolerated delay 0
CP Daily delay penalty cost $200,000

Problem instances and modifications

The test data consists of five di↵erent problem instances from the case company, with

di↵erent size and complexity. The simplest and smallest problem instance contains two
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vessels and five voyages to be serviced over a planning period of three months, while the

largest and most complex problem instance has 24 vessels, 222 voyages and a planning

period of nine months. A summary of the characteristics of the di↵erent problem instances

is presented in Table 7.2. The problem instances are named so that, e.g., an instance

called ”S5 V52 T7” has five ships, 52 voyages and a planning period of seven months. In

addition to the number of vessels, voyages and length of the planning period, the width

of the time windows for the voyages determine the problem complexity.

Table 7.2 – Problem instances characteristics

Instance Vessels Voyages Months Speed profiles Cargo segments

S2 V5 T3 2 5 3 1 1
S5 V52 T7 5 52 7 3 4
S5 V77 T8 5 77 8 2 4
S16 V109 T9 16 109 9 3 4
S24 V222 T9 24 222 9 3 4

None of the presented problem instances contain any maintenance nodes, meaning that

all vessels are available for servicing voyages during the whole planning period. As can be

seen in Table 7.2, the problem instances also have di↵erent characteristics for the number

of speed profiles available and cargo segments considered. Additional speed profiles and

cargo segments increase the problem size and complexity even further.

As is discussed in Section 7.5, the width of the time windows has a great impact on

the complexity of the problems. Extending the time period when a voyage can start

increases the number of possible combinations each vessel can sail, thus increasing the

solution space. To be able to discuss the impact of the time windows’ width, new modified

problem instances are generated. Each voyage has one target day that will remain the

same, while the earliest and latest start dates on each side of the target day is modified as

described below. The width of the time windows are set depending on when a voyage is

scheduled to start. It is assumed that the voyages in the first months have less flexibility

than the voyages in the later months of the planning period. Therefore, the first months

consistently have tighter time windows in all modifications.

Modification 1 (M1) For all the months in the planning period, the earliest and latest

start of the voyages are the target day ± 1 day, resulting in a time window of three

days.

Modification 2 (M2) For the two first months in the planning period, the earliest and

59



CHAPTER 7. COMPUTATIONAL STUDY I

latest start dates of the voyages are the target day ± 1 day, resulting in a time

window of three days. For the rest of the months in the planning period, the

earliest and latest start dates of the voyages are the target day ± 2 days, resulting

in a time window of five days.

Modification 3 (M3) For the two first months in the planning period, the earliest and

latest start dates of the voyages are the target day ± 1 day, resulting in a time

window of three days. For the two subsequent months the earliest and latest start

dates of the voyages are the target day ± 2 days, resulting in a time window of five

days. For the rest of the planning period the earliest and latest start dates of the

voyages are the target day ± 3 days, resulting in a time window of seven days.

Depending on the modification, M1, M2 or M3 is added to the problem instances’ label.

The complete label for a problem instance is then SXS V XV TXT MXM . Here, XS is

the number of ships, XV is the number of voyages, XT is the number of periods, and XM

is the modification ID.

With all modifications and the original versions, there are in total 20 problem instances

with di↵erent characteristics. However, some of the original problem instances have time

window widths of over 60 days. In this thesis we decide to only focus on the more realistic

time windows resulting from the modifications M1, M2 and M3. There are no preferences

for when a voyage should be started within its time window, meaning that all of the days

in the time window are equally valid start times.

7.2 Mixed-Integer Program - Implementation and

Results

In this section we first describe how the mathematical formulation given by (4.1)-(4.30)

was implemented as a MIP in commercial optimization software and the considerations

that followed in the process. Then, the results from solving the FDPs defined by the

problem instances are presented and discussed.

Tuning the model

During the implementation of the mathematical model in Java, several decisions were

made when tuning the model in order to make it solve e�ciently. When solving mixed-
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integer linear programming problems, the Gurobi Solver generally uses a LP-based branch-

and-bound algorithm. To get what Lundgren et al. (2010) describe as a better balance

in the search tree, it will be branched on the sum of variables. Prioritizing variables

that have high objective function coe�cients or high impact on the objective function

will provoke a better shape of the search tree and result in a more e�cient search. In

the mathematical model there are especially two variables that have great impact on the

objective function: (1) yS
ri

denoting if voyage (r, i) is not serviced, and (2) y
vri

denoting

which vessel that will visit voyage (r, i). The binary constraints for these variables are

prioritized in anticipation of a more e�cient search tree.

The high complexity of some problem instances require the MIP model to run for a long

period of time in order to find optimal solutions. A maximum running time of 10,000

seconds is set for the MIP-model. If optimality is not found within this time, the best

feasible solution is reported, together with the gap from the bound.

Results and discussion

The results from solving the problem instances with the MIP model using Gurobi are

presented in Table 7.3. The operating costs reported are the objective value minus the

costs of any unserviced voyages in the solution. The gap presented in the table is defined

as

Gap(%) =
Best integer solution� Best bound

Best bound

As can be seen from Table 7.3, the MIP model is able to find near optimal solutions in

four of the five problem instances for all modifications. For the first two modifications of

problem instance S16 V109 T9, it can be seen that the model is still running after 10,000

seconds while their best solutions have a gap that are below 0.1 and 1.0 %, respectively.

In these cases, the model is able to find good solutions but solutions that are not proven

to be optimal, which explains why the model continues until the termination time of

10,000 seconds. In Section 7.5 this observation is further elaborated and the solution

times for when good-quality solutions are reported.

For the largest problem instance, S24 V222 T9, the solver was not able to find any optimal

solutions within the available time for neither of the modifications. With the increased

solution space that arises with the wider time windows, it is clear that the problem
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Table 7.3 – Results from solving problem instances with MIP

Instance OC1 Gap (%) UV2 ST3

S2 V5 T3 M1 1.05500E+5 0.00 0 0.14
S5 V52 T7 M1 3.15082E+8 0.00 0 17
S5 V77 T8 M1 1.52057E+8 0.00 3 29
S16 V109 T9 M1 2.57669E+8 0.07 4 10,000
S24 V222 T9 M1 2.07788E+8 101 15 10,000

S2 V5 T3 M2 1.05500E+5 0.00 0 0.01
S5 V52 T7 M2 3.17940E+8 0.00 0 352
S5 V77 T8 M2 1.51577E+8 0.38 3 10,000
S16 V109 T9 M2 2.51344E+8 0.88 3 10,000
S24 V222 T9 M2 1.65835E+8 940 61 10,000

S2 V5 T3 M3 1.05500E+5 0.00 0 0.01
S5 V52 T7 M3 3.17737E+8 0.01 0 1,145
S5 V77 T8 M3 1.51464E+8 0.67 3 10,000
S16 V109 T9 M3 2.51776E+8 1.9 3 10,000
S24 V222 T9 M3 1.43754E+8 1,413 89 10,000

1 OC = Operating cost
2 UV = Number of unserviced voyages
3 ST = Solution time in seconds

becomes more complex to solve. This can especially be seen by observing the number

of unserviced voyages for the largest problem instance. We conclude that the presented

MIP model is not able to solve problems of this complexity within the available time of

10,000 seconds.

For the problem instances S5 V52 T7 M1 and S5 V77 T8 M1, the program is able to

return the optimal solution within a short amount of time. However, for modifications 2

and 3, where the solution space is increased, also the smaller problem instances require

significant more time to be solved. These results show that the solution time for the

MIP model increases significantly with complexity of problem instances. It also indicates

that heuristic approaches are needed to solve realistic fleet deployment planning problems

within a reasonable amount of time.

The vessel schedules obtained when solving problem instance S2 V5 T3 M1 is presented

in Figure 7.1.
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Figure 7.1 – Schedule for problem instance S2 V5 T3 M1. The empty slots between voyage sailings

are time allocated to either sailing ballast or waiting for the time window of the next voyage to start.

7.3 Adaptive Large Neighborhood Search - Imple-

mentation and Results

In this section we present the results obtained by solving the problem instances with

the developed ALNS. First, a description of the determined parameter values are given.

Then, the results are presented and discussed.

Parameter settings

There are many parameters associated with the ALNS which need to be determined

prior to applying the heuristic to the FDP, as presented in Section 5.2. Regarding the

removal heuristics, an upper limit of � element removals must be imposed. Important

circumstances around this parameter is discussed in depth in Section 5.2. The values

of � is set according to suggested values in the reviewed literature (Ropke and Pisinger,

2006, Ribeiro and Laporte, 2012), and was thereafter slightly modified given the results

of initial testing. In addition to �, the parameter ↵ denotes the upper limit on removal

requests as a percentage of the total number of voyages. This parameter is also set

according to values in the reviewed literature. In addition to being an upper limit, ↵ is

used by the random removal destroy operator as the probability of removing an assigned

voyage from the current solution.

An issue encountered during the initial testing was whether to automatically treat un-

serviced voyages as unassigned requests or not in each iteration. On one hand, these
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assignments are very unfavorable and should be included in a vessel schedule as quickly

as possible. Therefore, the repair operators should be given the opportunity to try and

find possible insertions for these. On the other hand, removing all unserviced voyages

from solutions may initially result in many unassigned requests (especially for the larger

problem instances), which greatly increases the computational time of the repair oper-

ators. Therefore, an upper limit of �/2 was imposed on the destruction of unserviced

voyages before further requests specified by the current removal operator were removed.

The mechanisms of the local search heuristics may help eliminate the majority of unser-

viced voyages promptly.

The Partial Fixed MIP repair operator presented in Section 5.2 sends a destroyed solution

to a solver as a partially fixed linear problem. To give this repair operator enough time

to find optimal or near-optimal solutions, but not become too time consuming, an upper

time limit TMIP is imposed on the program, and as soon as the gap is below 1.00 %, the

solution is accepted.

As presented in Section 5.2, the scores �1, �2, �3 and 0 are used to adjust the weights

w
drj

after every M iterations. In Equation (5.8), ⇡
drj

is the sum of the scores given to

destroy-repair operator pair (d, r) 2 O obtained through the M iterations in segment j,

normalized with respect to time consumption, ⇢ is the reaction factor to previous weights,

and a
drj

is the number of calls of the destroy-repair operators in segment j. The initial

values of the weights, w
dr,0, are equal and sum up to 1. Every M0 iterations, the weights

are reset to the values given initially by w
dr,0.

w
dr,(j+1) = w

drj

(1� ⇢) + ⇢
⇡
drj

a
drj

(5.8 revisited)

At the master level search framework, simulated annealing is used to control the accep-

tance criteria. Here, the start temperature T emp

start

of the solution and the cooling factor c

through the search are parameter values that must be specified. Figure 7.2 is produced

from the output of an initial test run of the ALNS on S16 V109 T9 M3, and shows how

the number of voyages not serviced in the current solution and in the best solution are

functions of the current iteration. The characteristics of Figure 7.2 illustrates the mecha-

nisms in a simulated annealing framework. In the beginning of the search, inferior moves

are accepted more often and the graph is clearly volatile. However, as the temperature

cools down, only less dramatic inferior moves are accepted, and such moves are accepted

less frequently.
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Figure 7.2 – Number of unserviced voyages as a function of the iteration count. The upper graph

shows accepted solutions with more unserviced voyages as a part of simulated annealing, while the

lower bound represents the currently best known solution with fewest unserviced voyages. The graph

is produced from the data of every fifth iteration from the output of an initial test run of the ALNS

on problem instance S16 V109 T9 M3.

Table 7.4 shows the final parameter values used when solving the problem instances with

the ALNS in this computational study. All selected parameter values are a combination

of the suggested values in Ribeiro and Laporte (2012) and Ropke and Pisinger (2006), and

problem-specific experience obtained through the initial testing process of the algorithm.

Results and discussion

The results from solving all problem instances with the ALNS are summarized in Table

7.5. All of the problem instances were solved five times and were terminated either by

the time limit of 10,000 seconds or by reaching the maximum count of 25,000 iterations.

Columns 2-4 report the best solution found for each problem instance throughout the

runs. The solution time denotes the search time elapsed before the best reported solution

was found. In columns 5-7, the average of the obtained solutions are presented. Similarly,

the solution time denotes the average time elapsed in each run before the best reported

solution was found. Finally, the operating cost is the objective value minus the cost of

unserviced voyages for both the best solution and the average solution.

Table 7.5 shows that the presented ALNS is capable of finding good solutions for most

of the problem instances within reasonable computation times. For all instances but
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Table 7.4 – Values of ALNS parameters

Parameter Description Value

� Upper limit of assigned voyages removed in each iteration. 30
TMIP The maximum time the Partial Fixed MIP repair operator is

allowed to work when called, in seconds.

30

↵ Upper limit of assigned voyages removed in each iteration, as

a percentage of number of voyages.

30 %

�1 Score given when last removal heuristic resulted in a new

schedule where fewer voyages are not serviced.

35

�2 Score given when last removal heuristic resulted in a new

schedule with the same number of unserviced voyages, i.e. dif-

ferent vessel routing.

15

�3 Score given when last removal heuristic resulted in a worse

solution, but it was accepted as a part of simulated annealing.

5

M The size of each search segment, in number of iterations. 50
M0 Number of iterations before weights are reset. 1000
⇢ The reaction factor used in calculating operator weights. 0.1
w

dr,0 Initial destroy-repair operator pair weights. Here, |O| is the

number of destroy and repair operator pairs.

1/(|O|)

T emp

start

The start temperature in simulated annealing. 1.000
c The cooling factor in simulated annealing. 0.99975

the two largest, the search finds optimal or near-optimal solutions. The solution for

S16 V109 T9 M1 is not good, but for the two last modifications the quality of the so-

lutions is significantly better with gaps below 3 %. This e↵ect may be caused by the

di↵erence in time windows, which is further elaborated in Section 7.5. For the largest

instance, S24 V222 T9, better solutions are frequently found during the search until the

time limit is reached. This means that the provided time is not su�cient for the ALNS

to find good solutions to the largest problem instances.

Observations made by monitoring the search indicate that the time consumption related

to the repair operation in each iteration grows significantly with the problem size. Figure

7.3 shows the number of iterations per time unit for all instances except S2 V5 T3, and

illustrates how each iteration becomes very time-consuming for larger instances. For

example, for instances S24 V222 T9, the search performs down to only 0.3 iterations

per second, while for instances S16 V109 T9, the search performs 1.1-1.5 iterations per

second.
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Table 7.5 – The results from solving the problem instances with the ALNS.

Instance
Best Solutions Average Solutions

OC1 UV2 Gap(%) ST3 Gap(%) UV2 ST3

S2 V5 T3 M1 1.05500E+5 0 0.00 0.00 0.00 0 0.00
S5 V52 T7 M1 3.15143E+8 0 0.02 3.9 0.08 0 1,403
S5 V77 T8 M1 1.52057E+8 3 0.00 117 0.06 3 918
S16 V109 T9 M1 2.45389E+8 5 13 4,650 17 5 4,356
S24 V222 T9 M1 2.02422E+8 18 136 9,760 166 21 6,967

S2 V5 T3 M2 1.05500E+5 0 0.00 0.00 0.09 0 0.00
S5 V52 T7 M2 3.18721E+8 0 0.25 16 0.35 0 16
S5 V77 T8 M2 1.52541E+8 3 0.60 64 0.77 3 81
S16 V109 T9 M2 2.58493E+8 3 2.2 8,097 9.4 3 4,740
S24 V222 T9 M2 2.08937E+8 15 184 5,292 200 16 6,582

S2 V5 T3 M3 1.05500E+5 0 0.00 0.00 0.00 0 0.00
S5 V52 T7 M3 3.18367E+8 0 0.21 18 0.46 0 37
S5 V77 T8 M3 1.52502E+8 3 0.90 130 1.2 3 178
S16 V109 T9 M3 2.56661E+8 3 2.8 2,156 3.2 3 4,597
S24 V222 T9 M3 2.20193E+9 11 121 9,703 157 13 8,351

1 OC = Operating cost
2 UV = Number of unserviced voyages
3 ST = Solution time in seconds

Figure 7.3 – Number of iterations per time unit for various problem instances.
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7.4 Rolling Horizon Heuristic - Implementation and

Results

In this section, the implementation of and the results obtained by applying the RHH to

the FDP are presented. First we describe the tuning of the model, before discussing the

results obtained by solving the problem instances with the RHH.

Tuning of the model

When implementing the RHH model in Java, some considerations were made to make

the model run as intended. To be able to compare the performance of the RHH with the

MIP model, the maximum running time should be set to the same as for the MIP model.

However, setting a total time limit for the model is not su�cient, as we have to ensure

that every sub-problem is allocated time to find a solution. Therefore, each sub-problem

is limited to 10,000 seconds divided by the number of sub-horizons. The number of sub-

horizons equals the number of months in the planning period. This means that for the

largest problem instances with a planning period of nine months, the available time for

each iteration becomes 10,000/9 = 1,111 seconds.

The RHH is based on dividing the planning period into di↵erent sub-horizons, and where

each voyage will be assigned in one, and only one, sub-horizon. This was done in the

implementation by only considering voyages with the latest start time, L
ri

, included in

the current sub-horizon. We also use the latest start time for a voyage to connect variables

with the respective bounds in the sub-horizon. The variable y
vri

, denoting if vessel v sails

voyage (r, i), will be relaxed to be continuous if the latest start time of voyage (r, i) is

in the forecasting part of the sub-horizon, and it will likewise have binary conditions if

the the latest start time is in the primary period of the current sub-horizon. Using latest

start times as reference times ensure that no variables are fixed until all voyages that

could possibly be connected are considered. This means that the variable y
vriqj

, denoting

if vessel v sails voyage (r, i) and then ballast to (q, j), will only be fixed when a voyage

(q, j) has its latest start time in the currently considered primary period.
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Results and discussion

The results for the RHH are presented in Table 7.6. The operating cost reported is the

objective value deducted the cost of any unserviced voyages. The gap is calculated in the

same way as for the MIP, i.e. as the objective value minus the best bound divided by the

best bound in percentage value. The best bound is obtained from the MIP.

Table 7.6 – Results from solving the problem instances with the RHH

Instance OC1 Gap (%) UV2 ST3

S2 V5 T3 M1 1.05500E+5 0.00 0 0.01
S5 V52 T7 M1 3.15149E+8 0.02 0 6.8
S5 V77 T8 M1 1.52502E+8 0.10 3 15
S16 V109 T9 M1 2.62067E+8 0.74 4 66
S24 V222 T9 M1 2.16095E+8 20 8 1,828

S2 V5 T3 M2 1.05500E+5 0.00 0 0.00
S5 V52 T7 M2 3.18215E+8 0.09 0 36
S5 V77 T8 M2 1.51637E+8 45 5 75
S16 V109 T9 M2 2.55004E+8 1.6 3 121
S24 V222 T9 M2 2.28334E+8 4.3 4 3,420

S2 V5 T3 M3 1.05500E+5 0.00 0 0.00
S5 V52 T7 M3 3.17889E+8 0.06 0 40
S5 V77 T8 M3 1.51695E+8 0.72 3 86
S16 V109 T9 M3 2.53730E+8 2.3 3 210
S24 V222 T9 M3 2.26286E+8 4.8 4 5,520

1 OC = Operating cost
2 UV = Unserviced voyages
3 ST = Solution time in seconds

The results in Table 7.6 show that the RHH is capable of solving all problem instances

within a reasonable amount of time. Only for solving the largest problem instances, the

method requires a significant amount of time. Despite the trade-o↵ between quality and

solution time in heuristics pointed out in the relevant literature, the results show an

excellent solution quality for most of the problem instances. The solutions with a gap

below 1 % are considered as very good, while the solutions with a gap below 5 % are

considered as acceptable. Here, 9 out of 15 of the solutions are good, and 13 out of 15

qualify as acceptable solutions.

It was only two of the problem instances that reported a gap above 5 %. This could

either be because the MIP model was not able to report a best bound close to the

optimal solution, or that the solutions obtained by the RHH is of poor quality. The

latter may have occurred due to several reasons. For the first modification of the largest
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problem instance, the model was not able to service all voyages with the company’s

fleet, which is penalized and results in a high objective value. As can be seen for the

modifications with broader time windows for the same problem instance, fewer unserviced

voyages are reported. The same occurs for problem instance S5 V77 T8 M2, where the

solution obtained includes more unserviced voyages than in the two other modifications.

A reasonable explanation for the high gap in both cases is that the current modification

causes voyages to have their upper time window limit, L
ri

, in the first day of a month.

This could complicate the fixing of the variables when the month is shifted from being

a forecasting period to becoming a primary period. If the LP-relaxed binary variable

that determines to sail the voyage, y
vri

, has a value close to zero, it may not be feasible

according to the fixed plan from the previous period to change the value to 1. Two

suggestions to prevent this problem are discussed in Chapter 8.

Aside from these two particular cases, the results clearly show that the RHH is performing

very well by o↵ering quality solutions within a short amount of time.

7.5 Comparing the Solving Methods and General Re-

marks

In this section, the presented MIP, ALNS and RHH results are compared and briefly

discussed. The time each solving method needs to find quality solutions, the e↵ect of

speed optimization and the e↵ect of wider time windows are also analyzed.

The main results of the three di↵erent solving methods are summarized in Table 7.7.

For the smaller problem instances, up to S5 V77 T8, the MIP model is able to prove

optimality faster than or near equally fast as the other solving methods. When the

complexity increases, as for modifications 2 and 3 and the larger problem instances, the

RHH is the superior solving method, and is capable of finding optimal or near-optimal

solutions within the time limits specified. The average gap column in Table 7.7 illustrates

this. The RHH is best or equally best for all but three problem instances, and it is also

the fastest solving method in all these cases.

The ALNS appears less e↵ective than the RHH. Even though it is capable of finding

optimal solutions to nine of the fifteen problem instances, it is only the fastest solving

method for two of them. However, these two are smaller instances where the solution

times for the di↵erent solving methods are fairly similar. For the larger instances it does
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Table 7.7 – MIP, ALNS & RHH results

MIP ALNS RHH

Instance UV1 Gap(%) ST2 UV1 Gap(%) ST2 UV1 Gap(%) ST2

S2 V5 T3 M1 0 0.00 0.14 0 0.00 0.00 0 0.00 0.01

S5 V52 T7 M1 0 0.00 17 0 0.02 3.9 0 0.02 6.8

S5 V77 T8 M1 3 0.00 29 3 0.00 117 3 0.10 15

S16 V109 T9 M1 4 0.07 10,000 5 13 4,650 4 0.74 66

S24 V222 T9 M1 15 101 10,000 18 136 9,760 8 20 1,828

S2 V5 T3 M2 0 0.00 0.01 0 0.00 0.00 0 0.00 0.00

S5 V52 T7 M2 0 0.00 352 0 0.25 16 0 0.09 36

S5 V77 T8 M2 3 0.38 10,000 3 0.60 64 5 45 75

S16 V109 T9 M2 3 0.88 10,000 3 2.2 8,097 3 1.55 121

S24 V222 T9 M2 61 940 10,000 15 184 5,292 4 4.27 3,420

S2 V5 T3 M3 0 0.00 0.01 0 0.00 0.00 0 0.00 0.00

S5 V52 T7 M3 0 0.01 1,145 0 0.21 18 0 0.06 40

S5 V77 T8 M3 3 0.67 10,000 3 0.90 130 3 0.72 86

S16 V109 T9 M3 3 1.9 10,000 3 2.8 2,156 3 2.3 210

S24 V222 T9 M3 89 1,413 10,000 11 121 9,703 4 4.8 5,520

1 UV = Number of unserviced voyages
2 ST = Solution time in seconds

find better solutions than the MIP, but it is still inferior to the solutions provided by the

RHH.

Overall, the RHH appears as an excellent method for solving the FDP. Despite its sim-

plicity, the method is capable of finding optimal or near-optimal solutions within the

given time limits for large problem instances where the MIP does not provide su�cient

results. When planning the fleet deployment for longer horizons, the RHH may serve as a

great decision-support tool for shipping companies, especially if a good solution is quickly

required. This could occur in several real life situations, e.g., when plans may need to

be adjusted, optional voyages are on the table and should be accepted or rejected, or for

budgeting purposes.
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The time until quality and good solutions are found

As stated in Nygreen et al. (1998), three important keywords in an e�cient operations

research modeling process are (1) reality representation, (2) ease of communication and

(3) solution speed. The classic trade-o↵ is presented as reality representation and solution

speed, where an increase of the reality representation will usually lead to a decrease in

solution speed. The results presented in the previous sections are based on methods that

aim to solve a very realistic representation of the problem, and finding optimal solutions.

However, as previously stated, the MIP did in some cases find good solutions with a low

gap, but because they are not proven optimal, the model will not terminate until the time

limit of 10,000 seconds is reached. This motivated us to examine when the models find

solutions that are of high quality. When setting the acceptance criteria for the high quality

solutions, the high cost of not servicing voyages in the objective value must be taken into

account. For the three largest problem instances, the best bound from the MIP includes

several voyages that could not be serviced, which results in a high numeric value of the

best bound. In previous literature high quality solutions are assumed to be solutions

with objective values below a given threshold, e.g. 1 %, of the best bound. However,

due to the high cost of unserviced voyages, a low threshold value does not guarantee

good operating costs. For the problem instances with unserviced voyages in their best

bound, the numeric objective value accepted will be very high, with high corresponding

operating costs. Because of the high cost of unserviced voyages, we were able to identify

the number of unserviced voyages in the best bound and subtract this cost in order to

find the best bound for the operating cost. To find when the solutions have an operating

cost with high quality, we calculate new termination gaps for the problem instances based

on Equation (7.1). These are gaps for the objective value that corresponds to operating

costs with a gap below 1 % and 5 % respectively.

GapT =
(1 +GapS)(BBMIP � UV BB · CS)� BBMIP

BBMIP

(7.1)

GapT is the termination gap for the objective value, GapS is the accepted gap for the

operating costs, BBMIP is the best bound found when solving MIP to optimality, UV BB

is the number of unserviced voyages in the best bound and CS is the cost of unserviced

voyages. The new termination gaps corresponding to the quality schedule solutions are

presented in column 2 and 5 in Table 7.8, together with the time each solving method

needed to find a solution within this gap.
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Table 7.8 – The time in seconds until good and quality solutions are found. The gaps in columns

2 and 6, which are calculated with Equation (7.1), are used as objective value termination criteria

that corresponds to a 1 % and 5 % gap of the operating cost of the schedule, respectively. A dash

means that no solution satisfying the termination criterion was found within 10,000 seconds.

Termination gap of OC1 = 1 % Termination gap of OC1 = 5 %

Instance Gap (%) MIP ALNS RHH Gap (%) MIP ALNS RHH

S2 V5 T3 M1 1.00 0.14 0.01 0.01 5.00 0.14 0.01 0.01
S5 V52 T7 M1 1.00 4.2 6.6 6.8 5.00 2.1 6.6 6.8
S5 V77 T8 M1 0.34 25 - 15 1.68 8.2 - 15
S16 V109 T9 M1 0.39 3,569 - - 1.96 203 - 66
S24 V222 T9 M1 0.29 - - - 1.46 - - -

S2 V5 T3 M2 1.00 0.01 0.00 0.00 5.00 0.01 0.00 0.00
S5 V52 T7 M2 1.00 215 15 36 5.00 64 15 36
S5 V77 T8 M2 0.33 - - - 1.67 139 - -
S16 V109 T9 M2 0.45 - - - 2.26 4,951 - 121
S24 V222 T9 M2 0.37 - - - 1.68 - - -

S2 V5 T3 M3 1.00 0.01 0.00 0.00 5.00 0.01 0.00 0.00
S5 V52 T7 M3 1.00 228 16 40 5.00 48 16 40
S5 V77 T8 M3 0.33 - - - 1.63 120 - 86
S16 V109 T9 M3 0.45 - - - 2.23 7,056 - -
S24 V222 T9 M3 0.33 - - - 1.66 - - -

1 OC = Operating costs

For the RHH, setting a termination gap will terminate every sub-problem at the given

gap. This means that the model could accept a solution with a 1 % or 5 % gap in the

early sub-problems, and it may not be possible to continue the solution process and retain

the low gap. However, as was showed when solving to optimality in Section 7.4, the RHH

model is able to find good solutions within a reasonable amount of time. Therefore, the

RHH results when solving to optimality are reported in Table 7.8 and are compared with

the time the MIP and ALNS need to find good solutions.

The results in Table 7.8 show several interesting findings. First, as was suspected from the

analysis of the original MIP results, the MIP is able to find a good solution for problem

instance S16 V109 T9 in a much shorter amount of time than when solving to optimality.

With the first modification it is able to find a solution with an operating cost gap of 5 %

and 1 % within 203 and 3,569 seconds, respectively. Also, for the two other modifications

of problem instance S16 V109 T9, the MIP model is able to find good solutions with an

operating cost gap below 5 % within a much shorter amount of time than the 10,000

seconds available.

73



CHAPTER 7. COMPUTATIONAL STUDY I

Second, the results in Table 7.8 show that the ALNS model is only capable of finding good

solutions for the two smallest problem instances. The RHH is able to find more good solu-

tions than the ALNS, but it is actually the MIP that manages to find the largest number

of good solutions. However, when the MIP is the only model that manages to find good

solutions, it requires 3,569 and 7,056 seconds for problem instance S16 V109 T9 M1 and

S24 V222 T9 M3, respectively. This is considered as a significant amount of time and the

solution speed is thus not su�ciently low for the MIP to be considered as an e�cient oper-

ations research modeling process. In comparison, for problem instance S16 V109 T9 M2

the RHH is able to find a good solution with a gap for the operating cost below 5 % in

only 121 seconds compared to the MIP’s 4,951 seconds. This again illustrates that the

RHH is superior when it comes to solution speed and quality.

The e↵ect of speed optimization

One of the properties that distinguishes the work presented in this thesis from most

relevant previous work is the inclusion of speed optimization. By adding the variables

x
vris

and xB

vriqjs

, the model will also find the optimal speed profile for sailing voyage and

sailing ballast in between voyages. In this section the e↵ect of speed optimization is

discussed, as well as the extension made in the presented formulation that enables speed

optimization for the ballast sailing separately.

Sequential routing and speed optimization

As described in Section 4.1, speed variables are included in the formulation to make the

model as realistic as possible. However, an increase in the number of variables increases

the problem complexity. Motivated by the work done in Norstad et al. (2011), we look at

how integrated speed optimization increases the solution time of the model. We modify

the model to sequentially solve the routing part of the FDP with only the highest speed

profile available, and afterwards we perform the speed optimization with all speed profiles

included. A flowchart of these processes is presented in Figure 7.4.

To illustrate how the sequential routing and speed optimization performs, the least com-

plex modification of the problem instances was chosen and the results are reported in

Table 7.9. In columns 4-6 the operating cost, number of unserviced voyages and the

solution time of solving the routing problem with the highest speed profile are reported.

In the last three columns, we report the same results when speed-optimizing the route
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obtained with all speed profiles available. For comparison reasons the MIP results are also

presented. Problem instance S2 V5 T3 only contains one speed profile, and is therefore

not included in these results.

Figure 7.4 – Flowchart of how problem instances are sequentially solved with only the highest

speed profile available before speed optimizing the resulting deployment plan

Table 7.9 – Comparison of original MIP with sequential routing and speed optimization. The gap

reported for the routing solution and the solution from routing and speed optimization is based on

the best bound from the original MIP when solving to optimality. Since the speed optimization is

performed on the schedules already found, the number of unserviced voyages will be the same in the

solution for routing and speed optimization and for routing with highest speed profile.

Routing with

Highest Speed

Profile

Routing and

Speed

Optimization

MIP results

Instance Gap(%) UV1 ST2 Gap(%) ST2 Gap(%) UV1 ST2

S5 V52 T7 M1 1.4 0 1.6 0.01 1.7 0.00 0 17
S5 V77 T8 M1 1.1 3 6.3 0.03 6.5 0.00 3 29
S16 V109 T9 M1 3.1 4 234 0.41 235 0.07 4 10,000
S24 V222 T9 M1 12 7 4,201 8.6 4,204 101 15 10,000

1 UV = Unserviced voyages
2 ST = Solution time in seconds

The results from the routing part of the solving method, which are reported in column

2-4 in Table 7.9, show that good vessel routing solutions are found within a significant

lower solution time compared to the original MIP results. When speed optimizing the

routes, the model is able to further improve the quality of the solutions within a short

amount of time. The results indicate that by integrating speed optimization in the FDP,

the complexity of the model increases and a longer solution time is experienced. This

can especially be seen for the largest problem instance, where the original MIP model is

not able to find good solutions within the time available. By sequentially routing and
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speed optimizing the same problem instance, a better solution is found within only 4,204

seconds.

The great impact on the solution time of the largest problem instances shows how speed

optimization adds complexity to the problem. When comparing the final solution time

in Table 7.9 it shows that the speed optimization only requires a maximum of 3 seconds

for the largest problem instance in order to speed optimize the routing. The routing part

of the problem requires significant more time than the speed optimization part and is for

the largest problem instance considered as too long to be used as en e�cient OR-model.

Based on these findings, we developed a sequential routing and speed optimization model

using the RHH for the routing part and then speed optimize the routing by using the

MIP model. Only the highest speed profile was used when routing, and the results are

compared with the results from Table 7.9 and the results from the original RHH.

Table 7.10 – Sequential routing with highest speed profiles using RHH and speed optimizing with

MIP compared with sequential routing with highest speed profile and speed optimization using MIP

and original RHH results

Routing using

RHH and speed

optimization

using MIP

Routing and

speed

optimization

using MIP

RHH results

Instance Gap(%) UV1 STRASO
2 Gap(%) UV1 STRASO

2 Gap(%) UV1 ST3

S5 V52 T7 M1 0.01 0 1.6 0.01 0 1.7 0.00 0 6.8
S5 V77 T8 M1 0.10 3 5 0.03 3 6.5 0.00 3 15
S16 V109 T9 M1 1.2 4 41 0.41 4 235 0.07 4 66
S24 V222 T9 M1 31 9 562 8.6 7 4204 101 8 1828

1 UV = Unserviced voyages
2 STRASO = Total time for routing and speed optimizing in seconds
3 ST = Solution time in seconds

The results in Table 7.10 show that solving the routing problem with only the highest

speed profile available by using the RHH is significant faster than by using the MIP.

However, the quality of the solutions are not the same. Here, the sequential routing

and speed optimization using MIP performs better. If we compare with the original

RHH results, we see that it is only for the largest problem instance that solving the

routing with highest speed profile and speed optimize afterwards o↵er a better solution,

however, at the cost of a much longer solution time. Again, we use the modification with

the smallest time windows when testing the model. Because of the simplicity of these

problem instances, the RHH is not utilized to its full potential, and solving the routing
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part of the problem with the MIP results in a lower amount of unserviced voyages for

the largest problem instance. With increased complexity with modification 2 and 3, the

MIP would assumable not be able to solve the routing part of the problem within the

time limit. Since the results from using modification 1 illustrates how speed optimization

adds complexity to the problem, we have not elaborated further on modification 2 and 3

in this thesis.

The e↵ect of having separate speed variables

When reviewing previous work on similar types of problems, formulations with a separate

speed variable for the ballast sailing were not found. A joint speed variable for the voyage

and the following ballast sailing was presented in Andersson et al. (2014) and inspired

us to extend our formulation to include a separate variable for the ballast sailing. To

see the e↵ect of having separate speed variables, the model was modified to have a joint

speed variable in the comparison. The MIP model for all problem instances for the first

modification was used and the comparison is presented in Table 7.11.

Table 7.11 – Comparison to a modified model with joint speed variables. The gaps reported for

the modified model with joint speed variables are calculated using the best bound from the MIP

Joint speed variables Original MIP formulation

Instance OC1 Gap(%) UV2 ST3 OC1 Gap(%) UV2 ST3

S2 V5 T3 M1 1.05500E+5 0.00 0 0.14 1.05500E+5 0.00 0 0.14

S5 V52 T7 M1 3.15082E+8 0.00 0 80 3.15082E+8 0.00 0 17

S5 V77 T8 M1 1.52109E+8 0.01 3 445 1.52057E+8 0.00 3 29

S16 V109 T9 M1 2.58164E+8 0.14 4 10,000 2.57669E+8 0.07 4 10,000

S24 V222 T9 M1 1.52184E+8 673 64 10,000 2.07788E+8 101 15 10,000

1 OC = Operating costs
2 UV = Unserviced voyages
3 ST = Solution time

The quality of the solutions seem very similar, with only a minor di↵erence in the gaps.

Here, the gaps are based on the objective value and the best bound of the MIP. However,

when focusing on the operating cost, we see that the di↵erences for the problem instances

with the same amount of unserviced voyages are significant. For S5 V77 T8 M1, which
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is solved to optimality for both formulations, the di↵erence is

1.52109 · 108 � 1.52057 · 108 = $51, 954

which equals to a di↵erence in percentage of:

1.52109 · 108 � 1.52057 · 108
1.52057 · 108 = 0.0003 = 0.03%

This means that the formulation with separate speed formulations slightly improves the

solution. We also observe a large di↵erence in operating costs for the problem instance

S16 V109 T9 M1, but because the model is still running after 10,000 seconds, the solution

could still be improved and the results are thus not further elaborated.

For the largest problem instance the operating cost decreases significantly because of the

high number of unserviced voyages in the formulation with joint speed profiles, and is

therefore not appropriate to compare with the original MIP formulation.

The extension of having separate speed variables gave equal or better solution quality

within a shorter amount of time compared to having a joint speed variable. We also

believe that if the model was extended to include completion deadlines for each voyage,

the use of separate speed variables could be utilized to a greater extent. I.e., a vessel

could sail with a high speed profile on the voyage in order to complete the voyage sailing

within the time limit, and then choose a lower speed profile to save costs when sailing

ballast to the next voyage.

The e↵ect of wider time windows

In reality, shipping companies may operate with wide time windows for the contracted

service of a voyage. This section examines the e↵ect of time window widths. For this

purpose, the results from the RHH are revisited and sorted according to the problem

instances and the modifications in Table 7.12.

Table 7.12 illustrates that wider time windows lowers the total cost, although it increases

the solution time significantly. The quality of the solutions are observed to be decreasing

when focusing on the gap for the solutions. This is explained by the increased solution

space when the time windows are expanded, and the RHH is not able to prove optimal

operating costs within the time limit. The cost reduction occurs because voyages may
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Table 7.12 – Results from RHH revisited and sorted by each problem instance in order to show

the e↵ect of time windows. The smallest problem instance is due to its simplicity omitted from this

study.

Instance OC1 Gap (%) UV2 ST3

S5 V52 T7 M1 3.15149E+8 0.02 0 6.8
S5 V52 T7 M2 3.18215E+8 0.09 0 36
S5 V52 T7 M3 3.17889E+8 0.06 0 40

S5 V77 T8 M1 4.52502E+8 0.10 3 15
S5 V77 T8 M2 6.51637E+8 45 5 75
S5 V77 T8 M3 4.51695E+8 0.72 3 86

S16 V109 T9 M1 6.62067E+8 0.74 4 66
S16 V109 T9 M2 5.55004E+8 1.6 3 121
S16 V109 T9 M3 5.53730E+8 2.3 3 210

S25 V222 T9 M1 1.01610E+9 20 8 1,828
S25 V222 T9 M2 6.28334E+8 4.3 4 3,420
S25 V222 T9 M3 6.26286E+8 4.8 4 5,520

1 OC = Operating cost
2 UV = Unserviced voyages
3 ST = Solution time (s)

be started earlier and can be sailed with a lower speed profile. The servicing vessel does

not need to wait for the target date to start sailing the voyage, and utilizes the previous

waiting by sailing with a lower speed profile.

For problem instance S16 V109 T9, it can be seen that the RHH has found good quality

solutions for all modifications and that the first modification contains one more unserviced

voyage in the best bound. This shows how wider time windows could make it possible

to service additional voyages. This analysis shows that shipping companies may reduce

costs by negotiating wider time windows for its contracted voyages. For example, for

the largest problem instance that nearly was solved to optimality for all modifications,

S5 V77 T8 the cost reduction is

1.52057 · 108 � 1.51464 · 108
1.51464 · 108 = 0.0039 = 0.39%

and does not impact the solution much in terms of absolute savings. However, notice-

able cost reductions are achieved if this reduction may be applied permanently to the

company’s total operating costs. Also, by examining Tables 7.6 and 7.5 more closely,

we observe that wider time windows lead to fewer unserviced voyages. More flexibility
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results in a better utilization of the fleet and lower operating costs, and improves the

company’s accommodation of obligations, i.e. its contracted voyages.
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Chapter 8

Concluding Remarks I

In Part I of this thesis we have formulated a mixed-integer program (MIP), an adaptive

large neighborhood search (ALNS) and a rolling horizon heuristic (RHH) to solve the

fleet deployment problem (FDP) for a Roll-on Roll-o↵ (RoRo) liner shipping company.

The FDP consists of assigning vessels to voyages with given time windows and to cover

monthly demands. Similarly as in Andersson et al. (2014), speed optimization is inte-

grated in the fleet deployment. Unlike container shipping, cargo segments and deck types

are segmented and specifically formulated. The objective when solving the FDP is to

minimize costs.

Reviewing previous literature led to the hypothesis that the MIP alone is not capable

of solving larger, realistic instances of the FDP within practical time frames due to its

complexity. Therefore, two heuristic solving methods were developed. The ALNS uses

destroy and repair operators to explore the solution space in order to find good solutions

to the problem. The RHH iterates through the planning horizon and solves the problem

by dividing it into sub-horizons and sub-problems. A forecasting period is used to take

future decisions into account.

A computational study showed that the MIP was able to solve smaller problem instances

to optimum within reasonable computing times, but it was not able to find good solutions

within 10,000 seconds to larger instances. The ALNS found better solutions than the MIP

for the larger instances, but these were not as good or found as fast as for the RHH. The

RHH proved superior, both in terms of quality and solution time, in finding solutions to

these instances. Wider time windows and multiple speed profile options increase problem

complexity, but facilitates more cost-e�cient solutions. Our proposed formulation with

two separate speed variables for sailing voyages and sailing ballast provided solutions

81



CHAPTER 8. CONCLUDING REMARKS I

of equal or better quality than having a joint speed variable as used in previous litera-

ture. The presented models may be used as a decision support tool for RoRo shipping

companies when planning their fleet deployment, and can also be adapted to other liner

shipping segments.

Future work

During the work on this thesis we have identified several possible improvements to the

models. In this section we address potential areas of future work.

The mathematical model can be extended to include more realistic features. Similar to

how time windows define when vessels can start a voyage, a deadline can also be set

for the completion of each voyage. This extension may increase the complexity of the

problem, but also o↵er more options and information that could be utilized by planners.

Another interesting extension is to include variables that describe when vessels are idle.

This could help incorporate more realistic costs in the model, as well as the possibility of

reducing operating costs and chartering out vessels for longer idle periods.

Several possible improvements were identified while designing and implementing the pre-

sented ALNS. First, the simulated annealing framework should be further analyzed. Re-

heating could be introduced to diverse the search at larger iteration levels. Second, loads

and demands may be given further attention and used to a↵ect the assignment of voyages.

Similar to how contracts and remaining monthly demands are ranked in St̊alhane et al.

(2012), it could be possible to rank voyages according to their balance categories and

corresponding accommodated demands. This may help assign voyages more e�ciently

and reduce the need for space chartering.

As described in Section 7.4, the RHH could in some cases provide undesirable results

when a voyage has its upper time window limit in one of the first days of the month. A

simple suggestion to prevent this from happening would be to modify the instances and

move the latest start date of a voyage away from the first few days of a month. This could

be done by either increase or reduce the width of the time windows. Another suggested

improvement to the RHH to prevent this issue from occurring is to solve the model several

times with di↵erent days that define the length of the primary and forecasting periods. As

the di↵erent modifications of problem instance S5 V77 T8 illustrated, moving the time

windows by only one day could have an impact on the solution. Several RHH models with
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di↵erent primary and forecasting period configurations should be run simultaneously to

ensure that a potentially higher solution quality is not achieved at the expense of longer

solution time.

The presented FDP is solved as a deterministic model with no uncertainty associated

with the parameters. Maritime transportation operates in an unstable environment,

where planners face uncertainty on a daily basis. Extending the model to include a form

of disruption management would provide a more comprehensive decision support. Part

II of this thesis is dedicated to this important area.
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Chapter 9

Problem Description II

This chapter gives an introduction to the challenges that arises when considering fleet

deployment in an uncertain environment. First, we discuss how events and uncertainties

a↵ect operations in the Roll-on Roll-o↵ (RoRo) segment of liner shipping. Then we dis-

cuss how robust planning may better prepare the fleet deployment for disruptive events

during the planning horizon. Finally, the possibility of including real-time re-planning for

recovering from disruptions is considered. By identifying events, introduce robust plan-

ning and incorporate real-time re-planning we aim to present a disruption management

decision support model for the case company.

Events and uncertainties in RoRo liner shipping

In Part I, the fleet deployment problem (FDP) for a RoRo liner shipping company is

presented and solved by using di↵erent solving methods. At this point, all parameters

are assumed to have a known value, i.e. the problem can be solved deterministically.

However, maritime transportation is constantly a↵ected by events which could a↵ect

the underlying parameter values and any ongoing operations. Identifying these types of

events and their likeliness of occurring is the first step in building a more realistic and

applicable model.

A deterministic approach to solve the FDP would base its parameters on one specific

scenario, a set of expected values made from historical data, or another parameter value

generation technique used by the company. However, in order to make the model as

realistic as possible, the underlying uncertainty in the parameter values must be captured.

We must determine how to test the performance of the models with randomly distributed
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disruptive events occurring during the planning horizon. In this evaluation framework,

events will change the values of the input parameters, and it must be determined how

the changes will impact the ongoing operation of the fleet.

Adding robustness

Making the model more robust will allow events to occur during the planning period

and change any parameter values without having a severe impact on the original plan.

There are several ways of making models more robust, but the common consequence

is increased cost of the original plan. By for example adding bu↵er time between two

subsequent voyages, the vessel will have to sail at a higher speed, resulting in higher

planned costs. This is the cost of making the model more robust, and may pay o↵ if an

event occurs and a longer sailing duration of a voyage is experienced. Ideally, a robust

model could prevent higher costs when disruptive events occur, but it is necessary to

determine the wanted degree of robustness. If the in-advance planning accounts for a

large number of events and overestimates their impacts, the plan will most likely be

very costly. Hence, it is important to find the optimal degree of robustness in the fleet

deployment.

To make a fleet deployment plan more robust, we need to develop a set of robustness mea-

sures and include them when solving the models presented in Part I. A literature review

may reveal several ways of adding robustness when planning, which may serve as an in-

spiration when considering robustness strategies for the FDP. It must also be determined

how to weight the di↵erent strategies if several methods are chosen simultaneously.

Real time re-planning

A di↵erent approach of handling disruptions is to alter the original plan in cases when

disruptions occur. A new plan that aims to recover the operations and minimize the

impact of disruptions will have to be developed. Finding this so-called recovery plan is a

similar problem to the original FDP, where the objective is to minimize costs. However,

the new parameter values caused by disruptive events must be considered. Also, the

recovery plan must find a new solution within a reasonable amount of time to be useful

for the case company. The solution found needs to be applicable for the case company

in terms of implementation. Making many changes to the plan may be expensive or

not desirable for other reasons. Therefore, a trade-o↵ between the number of changes
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resulting from the recovery plan and minimizing costs must be considered.

Summary

In Part II we aim to integrate disruption management in the fleet deployment decision

support model presented in Part I for a RoRo liner shipping case company. The FDP

consists of assigning vessels to voyages with given time windows and to cover monthly

demands. In reality, we must also consider the possibility of disruptive events that could

a↵ect the parameter values during the execution of the plan. To include disruption

management in the decision support model, we must (1) identify a set of key events and

their associated impacts, (2) determine ways of adding robustness when planning, and

(3) facilitate the use of recovery strategies when re-planning is found necessary during

the execution of plans.
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Chapter 10

Literature Review II

In this chapter we review relevant literature in the field of disruption management. First,

in Section 10.1 a set of fundamental publications and studies on disruption management

is presented. This may help us understand the need for disruption management, its tra-

ditional framework, and the previous areas where it has been applied. The presented

literature is both shipping-specific and from other relevant fields of research. Then, in

Sections 10.2 and 10.3 we review two di↵erent approaches of dealing with uncertainties,

robust planning and recovery strategies. Relevant publications on disruption management

in the airline industry is also presented, due to similarities and considerably larger atten-

tion given in the literature. Finally, a summary stating the lack of research on robust fleet

deployment and recovery strategies in the RoRo shipping segment concludes the chapter

and provide motivation for the problem studied in part two of this thesis.

10.1 Introduction to Disruption Management

The term disruption is used when unforeseen events cause a deviation from an original

plan. The performance of the plan may severely be a↵ected by the changes made to

the system by the occurred event. Events and their subsequent disruptions are caused

by internal as well as external factors. Yu and Qi (2004) present a general framework

of disruption management, and structure various sources of disruptions into categories.

Amongst these are changes in system environment, unpredictable events, changes in

system parameters, changes in availability of resources, new restrictions, uncertainties in

system performance and new considerations. Rough weather conditions, union strikes,
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delivery times, new industry regulations, uncertain time of completion for an important

project and new customer priorities are examples from these categories, respectively. In

addition, some events which have the potential of causing major disruptions are very

di�cult or even impossible to anticipate, such as piracy or terrorist attacks.

In the context of liner shipping, Christiansen et al. (2004) state that maritime operations

have large operational uncertainty that could cause unforeseen events. Further on, some

common events causing disruptions are mentioned, such as port congestion, bad weather

at sea, labor strikes, mechanical failures and tidal windows. Notteboom (2006) explores

the relative importance of sources of schedule reliability in the liner service schedules,

and reveals that port congestion and lower-than-expected port productivity account for

a majority of the schedule unreliability on the East Asia-Europe route. See Figure 10.1

below for a more detailed breakdown from the survey conducted by the author. Due to

the nature of liner shipping networks, a disruption will cascade through the network and

may have consequences for other vessels and future port calls (Notteboom and Rodrigue,

2008). For instance, Notteboom (2006) points out that it may take days or even weeks

for terminals in Europe and on the US east coast to recover from major disruptions

due to bad weather conditions in the Atlantic Ocean. A disturbance of port operations

may have consequences for vessels with upcoming calls at the a↵ected ports. Paul and

Maloni (2010) provide a decision support system to help port networks analyze disruption

scenarios, where an algorithm routes arriving vessels to ports in order to optimize the use

of network capacity.

There are significant economic impacts associated with disruptions in liner shipping, and

Kjeldsen et al. (2011) highlight that this has an e↵ect on two fronts. First, there are costs

to the shipping company such as increased bunker cost, increased port costs, charter costs

of extra ships and cargo space, and intangible costs (e.g., goodwill, loss of customers).

As illustrated in Figure 4.1, an increase in service speed results in a substantial increase

of fuel consumption. Kjeldsen et al. (2011) exemplify this by showing that increasing

the service speed of an 6,600 TEU container vessel from 18 to 24 knots may increase

fuel consumption by up to 130 tons per day. With the fuel prices of USD 650 per ton

at the time the research was conducted, the higher speed costs USD 84,500 extra for

each day it has to be maintained. Secondly, in addition to the cost to the liner shipping

company, there are significant costs associated for the customers whose cargo are onboard

the vessels subject to disruption. Estimations done by Notteboom (2006) show that a

vessel carrying 4,000 TEUs travelling from the Far East to Belgium may lead to extra

costs for its customers of at least EUR 57,000 per day it is delayed.
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Figure 10.1 – Sources of schedule unreliability on the East Asia–Europe liner shipping route for

the fourth quarter of 2004. Source: Notteboom (2006)

Moreover, Yu and Qi (2004) highlight that great e↵orts have been made in the past sev-

eral decades to deal with uncertainties through di↵erent approaches. The authors classify

these approaches into two stages: in-advance planning and real-time re-planning. The

purpose of in-advance planning is to find an optimal plan while taking future uncertainties

into account. This may be referred to as robust planning or robust optimization. Here,

future uncertainties can be modeled by a set of scenarios, and the goal of robust optimiza-

tion is to generate a plan that is ”good” for many of the possible future outcomes (Yu

and Qi, 2004). Real-time re-planning aims to revise the original plan previously found

whenever needed during the period of execution. This may be when an event occurs and

leads to a disruption which causes the original plan to be undesirable.

Uncertainties may arise from various sources, and can be characterized by having di↵erent

forms, frequencies and degrees of significance. Qi (2015) considers two categories of

uncertainties, which are based on the factors of (1) frequency of occurrence and (2)

familiarity, and name them recurring and regular uncertainties, and rare and irregular

uncertainties. For the former category, historical data can be utilized to establish models

to predict uncertainties. This type of uncertainties rarely causes major implications

for an on going plan, because, due to their regularity, their impacts can be proactively

incorporated. For the latter category of rare and irregular uncertainties, it is likely
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that they will occur from time to time. However, they are impossible to quantify from

historical data or predict in any way.

To illustrate this, Qi (2015) uses a simple example from reality. If you drive to work in

the morning by car, it is natural to plan some extra time in case of tra�c jam. However,

it is hard (and to a certain point superfluous) to account for the possibility that one day

the car may break down. Hence, we must from a certain point rely on real-time decisions,

recovery strategies, when a disruption occurs. In this example, we may rather take a taxi

or the bus, depending on the importance of being on time that morning.

From this, we conclude that a disruption management system for liner shipping should

include robustness in the in-advance planning process to account for recurring and regular

uncertainties, and a set of recovery strategies for dealing with rare and irregular uncer-

tainties during the execution of the plan. The two following sections will explore relevant

literature published regarding robust planning and recovery strategies, respectively.

10.2 Robust Planning

According to Yu and Qi (2004), a robust planning process consists of the following steps:

1. Identifying a set of potential disruptive scenarios

2. Choosing a robustness criterion appropriate for the decision maker

3. Incorporate the above information and measure in planning to generate a robust

plan

4. Carry out the plan without change no matter what may happen in the future

In practice, these steps have various degrees of di�culty. For step 1, shipping companies

may use historical data to identify relevant disruptive scenarios. However, defining a

robustness criterion as stated by step 2 might not be straightforward. For example, Kou-

velis and Yu (1997) define one robustness criterion as minimizing the maximum deviation

from optimality. Many studies, where only a few concern maritime transportation, have

tested a set of di↵erent robustness criteria and will be reviewed below.

Further on, Yu and Qi (2004) highlight that if a ”good” robust solution is chosen, this

plan will not cause any extreme inferior results when executed. However, the other way

around is not necessarily true. If no changes are needed during execution, the plan may

have been too conservative and likely very costly for the company. Due to this, it is not
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always wise to follow step 4, and a robust plan may in practice indeed be subject to

changes throughout its horizon.

When exploring ways to incorporate uncertainty in the in-advance planning process, it is

natural to come across stochastic optimization. However, as pointed out by Bertsimas and

Sim (2003), there are two main di�culties associated with this approach: (1) Creating

scenarios that capture the uncertainty distribution, and (2) the size of the resulting

stochastic optimization model and the associated computational challenges. As we have

observed in Part I of this paper, the fleet deployment problem already is computationally

challenging as a deterministic problem. Therefore, robust planning appears as an excellent

alternative to stochastic optimization in creating robust fleet deployment plans.

As mentioned above, a set of publications have used various criteria in the making of

robust in-advance plans. Christiansen and Fagerholt (2002) present a ship scheduling

problem concerned with the pickup and delivery of bulk cargoes within given time win-

dows. Here, ports are closed at night and during weekends, and loading/discharging may

take several days. In other words, ships will spend a lot of time idle in port, and the

total time depends on the ships’ arrival times. The paper’s objective is to make robust

schedules that are less likely to result in ships staying in ports over the weekend, with

weather and port service times treated as uncertain. The problem is solved by imposing

penalty costs for arrivals at ”risky” times, i.e. close to weekends. Robust schedules are

achieved at the sacrifice of an increase in planned transportation costs, though hopefully

decreasing the expected cost of performing the plan.

In Halvorsen-Weare and Fagerholt (2011), robust solutions to a supply vessel planning

problem are created. The model is based on a previous study, Halvorsen-Weare et al.

(2012), which resulted in substantial savings for the case company. However, due to

disruptions, the planners experienced that the deterministic plans presented often were

di�cult to execute in real life. Robust solutions to the problem may help avoid un-

planned and costly means of satisfying critical demand. In order to make schedules

robust, Halvorsen-Weare and Fagerholt (2011) suggest three di↵erent ways of adding

slack to the voyages and vessel schedules: (1) Reward each day a vessel is idle, (2) reward

each vessel that has at least an idle day each week, and (3) reward vessels that sail no

more than two voyages each week. A computational study is conducted to evaluate which

criteria that are creating the best robust solutions in a simulation framework. A strategy

combining various robustness measures is found most e↵ective.
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The same authors also study vessel routing and scheduling under uncertainty in the LNG

business in Halvorsen-Weare et al. (2013). In the considered real-life problem, an LNG

producer is responsible for transportation from production sites to customers all over the

world. The aim is to create vessel schedules that are more robust against uncertainty

in sailing times due to changing weather. Four robustness strategies are proposed: (1)

Adding extra sailing time, i.e. for a trip that usually takes 30 days, it can be planned to

take 32 days, (2) target inventory level in storage tanks at ports, (3) target accumulated

berth use and (4) combined strategies of these. The robustness strategies are evaluated in

a simulation-optimization framework. Here, a re-route optimization procedure are called

whenever plans are needed to be adjusted (i.e., whenever a customer cargo cannot be

picked up on the planned day). The re-optimized plan is used in the remaining schedule,

and does not include any robustness strategies. The findings were that the combined

robustness strategy gave the best results, and that there is a significant improvement

potential by adding the proposed robustness approaches.

In Sokol et al. (2015), a robust maritime inventory routing problem with time windows

and stochastic travel times are studied. The authors propose a two-phase solution ap-

proach that considers a sample set of major disruptions and associated recovery solutions.

In the first phase, two planning strategies to generate robust routes are proposed: (1)

Evenly allocate idle time, and (2) separate deliveries with a minimum time requirement.

A multi-scenario construction heuristic is used in the second phase to obtain good feasible

solutions. The computational results presented reveal that the solution procedure leads

to robust solutions with lower expected costs.

There are a few additional articles that considers robustness in maritime planning prob-

lems, such as List et al. (2003), Zeng et al. (2010), Kjeldsen et al. (2011) and Alvarez et al.

(2011). It is worth noticing that Kjeldsen et al. (2011), which mainly consider reschedul-

ing, mention that a bu↵er in order to secure schedule reliability in liner shipping can be

included in two di↵erent ways. First, it can be included as an extension of the port call,

i.e. a scheduled port call is longer than what would normally be required. This is mostly

relevant for unreliable ports, in terms of variability and congestion. Second, a bu↵er can

also be included by increasing sailing times.

Also, several studies of similar robustness problems are relevant, such as from the fields of

production scheduling and the airline industry. Sitompul and Aghezzaf (2008) focuse on

safety stock in a production scheduling problem, and propose and discuss an alternative

model for aggregate production planning when periodic demands are uncertain. Clausen
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et al. (2010), Ehrgott and Ryan (2002), Barnhart (2009) and Smith and Johnson (2006)

are some examples from research done in the airline industry which focuses on robustness

in crew and aircraft schedules. Bu↵er time and station purity are two common robustness

strategies within this field. For further in-depth studies, the reader is referred to these

presented articles.

10.3 Recovery Strategies

Due to the degree of uncertainty in maritime operations, shipping companies will sooner

or later experience the occurrence of disruptive events. Despite having a robust initial

plan, the updated system parameters may cause it to be infeasible or very undesirable

from an economic perspective. In these situations, it is necessary to have a set of recovery

strategies in order to minimize the impact of the disruption on the remaining horizon of

the plan.

In addition, revising a plan is associated with some deviation costs (Yu and Qi, 2004).

These costs could be sunk fees, waste of raw material, hiring or using expensive personnel

or, perhaps more importantly in certain regions, the loss of customers’ goodwill for waiting

and delay. It is important to take these deviation costs into account when generating

the new plan. Without considering these, Yu and Qi (2004) emphasize that the recovery

solution may include too many unwanted or unrealistic changes to the plan, making it

di�cult to implement.

In Andersen (2010), the network transition problem in container liner shipping is stud-

ied, i.e. the process of moving assets operating in an existing network to a new one.

An adaptive large neighborhood search is developed and shown to produce competitive

solutions. Andersen (2010) points out that network transition and disruption recovery

share a common structure, and that the concept of network transition faces the same

challenges as a recovery scenario. The only di↵erence is the time horizon and the number

of assets involved. Therefore, the solution approach is proposed to be equally capable

of addressing disruption recovery problems. However, Andersen (2010) highlights that

the recovery problem will typically be smaller and have more restrictive requirements to

computation times. A similar problem, the liner shipping fleet repositioning problem (LS-

FRP), is studied in Tierney and Jensen (2012) and extended with cargo flows in Tierney

et al. (2014). Tierney and Jensen (2012) point out that the network transition problem

studied by Andersen (2010) lacks cost saving activities like Sail-On-Service opportunities,
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empty equipment flows and slow steaming. A mixed-integer program including the two

first activities is presented and found e↵ective on a set of smaller real world problem

instances.

Kjeldsen et al. (2011) highlight that the developed solution method in Andersen (2010)

is only capable of addressing the rescheduling problem if the disruption has already

happened. Further, a mathematical model for simultaneous rescheduling of vessels and

cargo in container liner shipping in the event of past, present, and future disruptions is

presented. Given the list of disruptions, the planning period and the involved vessels

and ports, the objective of the model is to construct a set of vessel schedules and cargo

routings that allow resumption of the scheduled service at the end of the planning period

while minimizing costs (Kjeldsen et al., 2011). In order to solve the problem, a large

neighborhood search is developed and found computationally e↵ective. A set of recovery

strategies are also rendered from Notteboom (2006), namely reshu✏ing port calls, cancel

port calls, ’cut and run’, deploy other vessels to take over, and increase speed to catch

up. A cut-and-run strategy means to depart before all (un-)loading moves have been

performed. Deploying other vessels can be illustrated through chartering a ship merely

for the purpose of recovering from a major disruption (Notteboom, 2006).

In Brouer et al. (2013), the vessel schedule recovery problem (VSRP) for container liner

shipping is studied. The publication, which is based on work done in the master the-

sis of Dirksen (2011), presents a MIP model for handling disruptions in liner shipping.

The VSRP evaluates a current disruption scenario and selects the action that balances

increased bunker consumption, impact on cargo and customer service level by using multi-

criteria optimization in the objective function as presented in Ehrgott (2006). A compu-

tational study conducted on four real-life cases reveal potential cost savings of up to 58

% compared to real-time solution chosen by the case company.

Further, Qi (2015) takes the ideas of Brouer et al. (2013) and develop a model that handles

recovery of multiple vessels in a network after a major disruption. Two di↵erent decisions

are handled by the model: vessel routing and speeding decisions, and the container flow.

The model extends the work done by Brouer et al. (2013), which assume that containers

will be transported by their original vessels in the event of a disruption, by including

the container rerouting. The presented formulation in Qi (2015) includes two inter-

correlated multi-commodity network flow problems, and the author points out that this

may be hard to solve for large-scale problems. No application or computational study of

the mathematical model is presented.
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The literature presented above represent the few research papers concerning disruption

recovery in maritime transportation and liner shipping we were able to find. In addition

to these, several articles dealing with similar problems in the airline industry were found

relevant. Set against the liner shipping industry, a significant deal of research have

been done on disruption management within the airline industry. As early as in 1984,

Teodorović and Guberinić (1984) presented a problem where the objective is to minimize

the total passenger delay if one or more aircraft become unavailable. Since then, numerous

publications have been done. Clausen et al. (2010) perform a general survey of the

field, and divides the conducted research into three main areas: Aircraft recovery, crew

recovery and integrated flight and passenger recovery. Kjeldsen et al. (2011) point out that

integrated recovery of passengers and flights are similar to the problem of rescheduling

ships and cargo in liner shipping. In the following paragraph, a few articles from the

airline industry concerning this problem are reviewed.

In Barnhart (2009), a set of regular actions performed by airline controllers when a dis-

ruption occurs are listed. Amongst these are delaying flight departures, cancelling flight

legs, rerouting or swapping aircraft, and re-accommodating disrupted passengers. Dienst

et al. (2012) present and compare two models for the aircraft recovery problem. When

solving the models for real life problems, it is natural to believe that an unlimited num-

ber of changes to the schedule cannot be implemented last minute. Therefore, the paper

uses two di↵erent mechanisms for reducing the number of changes done when recovering.

These are (1) a unit penalty cost for each change, and (2) introducing protection arcs in

the model, i.e. arcs associated with a certain ”bonus”. Both were found e↵ective, but

(2) was found to be computationally faster. In Sinclair et al. (2014), a large neighbor-

hood search heuristic to solve the integrated aircraft and passenger recovery problem is

presented.

10.4 Summary

The increasing amount of work done within the field of disruption management illustrates

the importance of dealing with uncertainties. Initially lagging behind the airline industry,

it is clear that the liner shipping industry has been given more attention in the later

years, e.g. Andersen (2010), Kjeldsen et al. (2011) and Brouer et al. (2013). However,

what has been done in the airline industry and partly the containerized network liner

shipping business cannot be directly applied to the RoRo segment in liner shipping.
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The reviewed literature shows that there is a lack of research within this field. With a

tough competitive environment, substantial customer expectations and a high degree of

uncertainty in operations, a need for disruption management system, both in-advance

planning and recovery planning, for RoRo shipping is apparent.
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Chapter 11

Events and Disruptions in Liner

Shipping

As presented in Section 1.3 and suggested in Chapter 9, identifying possible events and

disruptions is the first of three important aspects when handling uncertainties. In this

chapter we elaborate on the possible events and consecutive disruptions that may occur

during the operation of a RoRo liner shipping fleet. Informal talks with representatives

from the case company enlightened the daily operations and where disruptions usually

occur. We have also studied relevant literature to get a comprehensive overview of disrup-

tive events in the RoRo liner shipping segment. In this chapter we first present common

events and their potential consequences for the case company, before describing how these

events are simplified and included in our models.

In Chapters 1 and 10, some events are mentioned as possible reasons for disruptions.

Here we present a set of events that could occur for the case company in di↵erent stages

of the operations. For the purpose of this thesis, these events are simplified and divided

into happening (1) in ports, and (2) when sailing voyages or sailing ballast. This seg-

mentation complies with the findings of Notteboom (2006), where schedule unreliability

in liner shipping is studied (see Figure 10.1 and Section 10.1). Port and sailing events

are presented in Sections 11.1 and 11.2, respectively. Finally, in Section 11.3 we describe

how these events are considered in our model.
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11.1 Ports

As presented in Notteboom (2006), port and terminal congestion alone stand for over 65

% of schedule unreliability on the studied shipping route in the fourth quarter of 2004.

The case company’s vessels visit several ports during the planning period when servicing

voyages. A voyage consists of two or more port calls, where the vessels refuel, load and

discharge their cargo, and may undergo basic maintenance. During these activities, it is

according to the case company not unusual that disruptive events occur. Some of these

identified events are presented below.

Bunkering

Usually, it is the local port workers that conduct the work of rebunkering the vessels

during port visits. The case company has experienced several incidents where port work-

ers claim they have bunkered the vessel with more fuel than what it is indicated on the

vessel’s instruments. Due to the large volumes of fuel being bunkered to these types of

vessels, even small deviations will have severe associated costs. Disagreements related to

the amount of bunkered fuel have previously lead to tiresome negotiations and caused

vessels to wait until a resolution is found between the parties. This often requires a

third party, called a surveyor, to enter the negotiations and find a reasonable agreement.

Waiting for the parties to find a resolution may cause delays from a couple of hours and

up to as much as several days.

Congestion

As presented in Chapter 1, the volume transported by the maritime sector has signif-

icantly increased in the later years. This requires a higher cargo handling capacity in

ports. According to Vernimmen et al. (2007), the increase in port capacity has not been

su�cient to match this cargo volume development. Hua (2013) discusses how the fast

growth in vehicle flows has imposed China to license more ports for import and how port

space issues cause problems for shipping companies. Due to RoRo cargo being space-

intensive, it requires a lot of time and e↵ort to relocate the cargo if needed. Figure 11.1

shows the RoRo terminal facilities in Le Havre, France, and illustrates the substantial

space-intensity of RoRo cargo. If the port has a tight schedule and a vessel is delayed, it

could a↵ect other port calls and disrupt port operations. With an increasing transporta-
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tion demand and insu�cient expansion of port capacity, these situations are more likely

to occur. Notteboom (2006) states that the rising port volumes and capacity constraints

in many ports around the world mean that berth availability on arrival in a port is not

always guaranteed when an allocated time slot has been missed. If a vessel misses its slot,

it will have to wait until a slot is open, and this could take up to weeks in the busiest

ports.

Figure 11.1 – RoRo terminal facilities in Le Havre, France. Source: Grand Port Maritime du

Havre

Strike

The maritime industry is, as every other industry, at risk of having disagreements with

its employers. In major cases this could lead to work stoppage in the form of labor

strikes in ports. A potential consequence of this is limited operation or even a shutdown

of the port, which may cause delays for shipping companies’ operations. According to

representatives from the case company, the impact will typically vary between two to

four days if the port is open with limited activity, and could be significantly longer if the

port is shut down completely. For instance, in February 2015, the ports of Los Angeles

and Long Beach faced a huge backlog after a long dispute between port workers and their

employers. The leader of the Port of Los Angeles suggested it would take as much as

three months ”to get back a sense of normalcy” (NBC News, 2015). Figure 11.2 shows

how vessels were piling up as the strike haltered the US West Coast port operations in

the winter of 2015.
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Figure 11.2 – Vessels waiting outside US West Coast ports during the labor strike in February,

2015. Source: VR WORLD

11.2 Sailing

Sailing in open water includes dealing with the elemental forces and their associated

uncertainties. In addition, some routes involve passageways, rivers and tidal windows the

vessels have to use in order to reach certain ports. Figure 11.3 shows how sailing times

between Rome, Italy, and Bergen, Norway, for di↵erent types of vessels are distributed.

It is clear that, even for this relatively short route, sailing times are widely spread out. In

this section we present some disruptive events the case company’s vessels may face when

sailing voyages or sailing ballast.

Rough weather conditions

Sailing voyages in open water and on transatlantic routes includes the risk of being hit by

bad weather. Certain areas have seasons with rough conditions, for instance the typhoon

season in Asia and the hurricane season in North America. Bad weather may result in

vessels moving slower than planned, which may cause delays. In Halvorsen-Weare and

Fagerholt (2011), the weather impact for supply vessels is considered. The significant

wave height in rough weather is highlighted in the study as the critical factor that limits

the operation of the supply vessels. Although the RoRo vessels studied in this thesis are

larger than the supply vessels in the study, the impact of the wave height in rough weather

is also considered as applicable to the RoRo vessels. Table 11.1 shows how di↵erent wave

heights impact the speed for the supply vessels in Halvorsen-Weare and Fagerholt (2011).
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11.2. SAILING

Figure 11.3 – Probability distributions for sailing times between Rome (Italy) and Bergen (Norway)

for gas tankers, RoRo vessels and container ships. Source: Kauczynski (1994).

Rough weather may also cause vessels to wait near a port before starting a voyage. At

some ports, e.g. the port of Cape Town, it is according to Vernimmen et al. (2007) not

unusual that vessels become delayed for several days while waiting for the weather to

improve. Vessels waiting near ports are not considered in Table 11.1, but the impact of

increased voyage duration for shipping companies is assumed to be similar.

Strong current in rivers and tidal windows

Some of the ports operated by the case company are located in river deltas, where local

tides cause the water current to vary. If the vessels are to sail counter-current, the sailing

duration may increase and possibly cause delays. Also, Notteboom (2006) mentions

that the largest vessels need to take into account tidal window restrictions in the access

channels of some ports. Although a series of deepening programs have substantially

widened these windows, ports like Antwerp, Hamburg and Bremerhaven have areas with
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Table 11.1 – The impact of rough weather on sailing speed of supply vessels. Source: Halvorsen-

Weare and Fagerholt (2011).

Weather state Wave height [m] Reduced sailing speed [kn]

1 < 2.5 0
2 2.5 < 3.5 0
3 3.5 < 4.5 - 2
4 � 4.5 - 3

shallow waters that may complicate the design of a liner service schedule and could lead

to changes in the order of port calls.

Breakdowns

Vessel breakdowns may happen due to many di↵erent reasons, for example mechanical

failure or bad fuel quality. According to representatives from the case company, break-

downs are regular events, especially for older vessels, and these events could result in

reduced speeds and longer sailing times. Depending on the extent of a breakdown, con-

sequential delays could be between a couple of hours to several weeks.

Congestion in passageways

Sailing maritime passages like the Suez Canal and the Panama Canal are for some of the

voyages vital in order to be able to sail the voyage within the planned duration. Some

passageways and canals are very busy and could impose the vessels to wait in turn before

sailing through. When passing through the canals, vessels sail in convoys and the vessels

need to book their place in one of these convoys in advance. If a vessel arrives late at the

entrance of the canal and misses its convoy, an additional waiting time of up to 12 hours

may occur (Notteboom, 2006).

11.3 Integrating Events into our Model

The disruptive events presented above are all regular threats to the original plan for

the case company. When integrating disruption management into our model, we base

the possible disruptive events on the ones that are described in the previous sections.
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Di↵erences in probabilities and impacts make it appropriate to divide the disruptive

events into the two categories suggested: Port events and sailing events. In each of these

categories, all the respective events presented above are merged. However, each of the

categories have di↵erent degrees of disruption and will therefore have several possible

impacts. As a simplification we have only considered disruptions of voyage sailings and

not the ballast sailings between the voyages.

Port disruption

The probability for a port disruption to happen for each port call is based on estimates

made by representatives from the case company. As presented in the previous section, a

port disruption could cause a delay between a couple of hours and up to several weeks.

In our model we have decided that each port disruption will lead to ⌥P days of waiting

time before the next voyage can start. A vessel is a↵ected by the port disruption if it is

currently sailing a voyage with the disrupted port as the end port.

Constraints (4.12) are the only constraints involving the relationship between the end

time of a voyage and the start time of the next voyage. To incorporate the e↵ects of port

disruptions into the mathematical model, the parameter ⌥P is added to these constraints.

The resulting constraints are shown below in 11.1.
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(11.1)

The port disruption parameter ⌥P represents the extra waiting time caused by a port

disruption. The set of arcs that are a↵ected by port disruptions for a vessel v is repre-

sented by AP

v

. The set of disrupted arcs is defined by connecting the nodes in the set of

port disrupted voyages (r, i) 2 N P

v

and the set of all voyages (q, j) 2 N
v

. The constraints

(11.1) are linearized as before as shown in Appendix A.2, and are used in the same way

as originally in the mathematical formulation given by (4.1)-(4.30).

Sailing disruption

The sailing disruptions are included in a similar way as the port disruptions. The proba-

bility for a disruptive event happening during sailing is also based on considerations made
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by representatives for the case company. Because the duration of the voyages will vary,

the degree of impact of the disruptions are modeled by multiplying the sailing duration

with the parameter ⌥S

ri

. We consider the remaining sailing time of the voyage when

adding ⌥S

ri

. This calculation is shown in Algorithm 11.1.

Constraints (4.12) are the only constraints involving voyage sailing times. These con-

straints are modified for the voyages a↵ected by sailing disruption as shown below.
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(11.2)

The sailing disruption parameter ⌥S

ri

represents the additional sailing time, in percentage,

of the a↵ected arcs AS

v

. As for port disruptions, the set of arcs disrupted by sailing

disruption consists of the arcs connecting the nodes in the set of sailing disrupted voyages

(r, i) 2 N S

v

and the set of all voyages (q, j) 2 N
v

. The parameter ⌥S

ri

is determined

by the remaining length of the voyage and a parameter for the maximum impact of a

sailing disruption ⌥S,MAX . Since the time of sailing the disrupted voyages increase, the

costs of sailing these voyages need to be increased equivalently. This is incorporated

by multiplying C
vris

in the objective function with ⌥S

ri

. The constraints are linearized

as before as shown in Appendix A.2 and used in the same way as originally in the

mathematical formulation given by (4.1)-(4.30).

Algorithm 11.1. Pseudo Code for Calculating the Sailing Disruption Parameter ⌥S

ri

1: Input: disrupted voyage (r, i); vessel v sailing voyage (r, i); maximum impact of

sailing disruption ⌥S,MAX ; current day n in the planning period; start time of the

voyage t
ri

; sailing speed profile values of the voyage x
vris

;

2: Set duration of voyage ⌧
ri

= 0;

3: Set remaining voyage duration ratio �
ri

= 0;

4: for all (s 2 S
v

) do

5: ⌧
ri

= ⌧
ri

+ T
vris

x
vris

6: end for

7: Calculate �
ri

= ((t
ri

� n) + ⌧
ri

)/⌧
ri

);

8: Set ⌥S

ri

= 1 + ⌥S,MAX�
ri

;

9: return ⌥S

ri

Figure 11.4 shows the e↵ect of a sailing disruption on voyage (r, i), here illustrated by the

108



11.3. INTEGRATING EVENTS INTO OUR MODEL

event of bad weather. The sailing time of this voyage is extended in accordance with the

resulting sailing disruption parameter ⌥S

ri

. This results in a delay before the next voyage

(q, j) can be started, showed by the shift in the start time of voyage (q, j).

Figure 11.4 – The consequences for a vessel’s schedule in the event of a sailing disruption. The

resulting extra sailing time of voyage (r, i) causes a shift in the start time of the subsequent voyage

(q, j).

Simultaneous sailing and port disruptions

It is possible that a voyage may be simultaneously a↵ected by a sailing disruption and a

port disruption. The way of incorporating sailing and port disruptions into the program

are then combined. As a simplification, a voyage may only be a↵ected by at most one

sailing disruption and one port disruption.
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Chapter 12

Robust Fleet Deployment

In this chapter we propose measures of incorporating robustness, robustness strategies,

when generating fleet deployment plans for the RoRo liner shipping case company. We

first state and illustrate the motivation behind the suggested measures in Section 12.1.

Then, the additional mathematical implications of the measures for the model are pre-

sented in Sections 12.2 - 12.5. Finally, in Section 12.6 we suggest and draw an outline of

a simulation framework for evaluating the proposed measures of adding robustness.

12.1 Adding Robustness

The MIP model defined by the mathematical formulation (4.1)-(4.30) in Section 4.2 is

capable of solving smaller real-life instances of the FDP for the RoRo liner shipping case

company, while heuristics have been shown e↵ective for solving larger problem instances

in Chapter 7. However, the solutions obtained so far by using these solving methods may

become di�cult to execute in practice, as they do not take uncertainties in the param-

eter values into consideration. In this chapter we propose a set of robustness strategies

to make deployment plans better prepared for disruptions. The suggested robustness

strategies include the following measures, that work as extensions to the mathematical

model presented in Section 4.2:

1. Adding extra sailing time

2. Reward early arrivals

3. Penalizing risky start times

111
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The idea behind these extensions is to create more robust solutions when regarding the

possible events described in Chapter 11. The presented measures are motivated by sim-

ilar ways of adding robustness suggested and shown successful in the reviewed relevant

literature in Section 10.2.

It is important to remember that despite any changes made to the mathematical formula-

tion by adding these measures, they are merely artificial and may help a solution method

to consider more robust solutions. The extra long sailing times introduced in Section

12.2 prepare the vessel schedules for potentially longer sailing durations in practice. The

rewards and penalties included in Sections 12.3 and 12.4 give incentives to make vessels

arrive before the start of voyage time windows and avoid late starts, respectively. We

must remember that in reality the shipping company is never paid or charged for any rev-

enues or costs associated with these measures. Therefore, the objective values obtained

when solving these models are mutually non-comparable. To evaluate the performance of

a robust model, other comparison methods must be applied. A simulation framework for

evaluating the quality and robustness of solutions obtained with the di↵erent robustness

measures is suggested in Section 12.6 and thoroughly described in Chapter 13.

12.2 Adding Extra Sailing Time

As presented in Halvorsen-Weare et al. (2013), planning some extra sailing time for each

voyage is a straight-forward way of introducing slack in the vessel schedules. This can,

for example, imply that a voyage that usually takes 20 days at cruising speed is planned

to take 22 days. This means that tight vessel schedules will be found infeasible if they do

not tolerate this extra sailing time, and another deployment setup will be chosen. When

considering the planned extra sailing times against the actual sailing times of the voyages,

the result is that we have introduced slack in the vessel schedules. This is illustrated in

Figure 12.1. For the solutions with added sailing time (Figure 12.1b), the di↵erence

between planned and actual sailing times ensures that there will always be added slack

to the solutions. However, this can result in a vessel not being able to service the same

sequence of voyages as in the original solution. This can be observed from Figure 12.1b,

where the extra sailing time of voyage 2 limits the vessel from taking voyage 3 as in Figure

12.1a.

As pointed out by Halvorsen-Weare et al. (2013), it is important to notice that this

robustness strategy may cause problems when the fleet of vessels is close to or is being
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12.2. ADDING EXTRA SAILING TIME

Figure 12.1 – Illustration of a vessel schedule without (a) and with (b) added extra sailing time.

In solution (a), the vessel sails voyages 1-2-3, while in (b) the vessel sails voyages 1-2-4. The extra

sailing time in (b) ensures slack in the solution, but renders the original schedule infeasible. Source:

Halvorsen-Weare et al. (2013).

fully utilized, i.e. the schedules obtained by using original sailing times have little or

no slack. By adding extra sailing times to these instances, some voyages will be set

as unserviced despite originally being able to cover all voyages with vessels from the

company’s own fleet. This implies that the robustness strategy of adjusting sailing times

must be used with caution, and that the obtained solutions should be compared with

the ones obtained by using original sailing times. In cases where additional unserviced

voyages are found, the adjusted sailing times should be reduced until these unserviced

voyages are eliminated.

Mathematical implications

Constraints (4.11) and (4.12) are the only constraints involving sailing times. These are

revisited below.

y
o(v)ri(to(v) � t

ri

+
X

s2Sv

TB

o(v)risx
B

o(v)ris)  0, v 2 V , (r, i) 2 N
v

, (4.11 revisited)

y
vriqj

(t
ri

� t
qj

+
X

s2Sv

(TB

vriqjs

xB

vriqjs

+ T
vris

x
vris

))  0, v 2 V , ((r, i), (q, j)) 2 A
v

.
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In order to add robustness, we adjust the sailing times TB

vriqjs

, TB

o(v)ris and T
vris

by multi-

plying them by a robustness parameter ⌦. An ⌦ greater than 1 will increase the sailing

times. The resulting constraints are linearized as before as shown in Appendix A.2 and

used in the same way as originally in the mathematical model given by (4.1)-(4.30).

12.3 Rewarding Early Arrivals

Rewarding properties that introduce slack in solutions have commonly been used in the

reviewed literature. For example, Halvorsen-Weare and Fagerholt (2011) present several

possible ways of favoring robustness in a solution by adding a robustness profit in the

objective function. Here, the proposed properties subject to rewards are (1) each day a

vessel is idle, (2) each vessel that has one idle day during the week, or (3) each vessel

that sails no more than two voyages during the week. In this section we suggest a similar

approach: Rewarding when a vessel arrives before the start of the time window, E
ri

, of

the next assigned voyage.

Mathematical implications

To extend the mathematical formulation (4.1)-(4.30) to reward early arrivals, we need

to introduce a few additional variables and parameters. Now, let tR
ri

be the number of

days rewarded for early arrival before starting voyage (r, i). It is likely that a few days

of slack spread out are significantly more valuable than a large period before a single

voyage. To avoid this, we propose an upper limit of rewarded days, RMAX , for each early

arrival. Further on, let �R
ri

be 1 if an arrival at voyage (r, i) qualifies for a reward, and 0

otherwise. The reward given per time unit of early arrival is denoted as ⇤R. Because we

are cost-minimizing, this parameter takes on negative values.

Figure 12.2 illustrates how rewarding early arrivals work in practice. If a vessel arrives at

the start of voyage (r, i) before the start of the time window E
ri

, any slack up to RMAX

days will be awarded with a factor of ⇤R (see scenario (a)). Any arrivals after E
ri

, shown

by scenario (b), do not qualify for any rewards.

Now, let us formulate the additional constraints we need to model the rewards of early

arrivals:
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Constraints (12.1) and (12.2) trigger the amount of time rewarded for each voyage. These

expressions are non-linear and are linearized in (12.6) and (12.7) .

tR
ri

 RMAX�R
ri

, (r, i) 2 N . (12.3)

Constraints (12.3) limit tR
ri

from exceeding the maximum number of days that are re-

warded. The number of rewarded days is set to zero if �
ri

is set to zero by (12.1) or

(12.2).

Figure 12.2 – Illustration of (a) rewarding and (b) not rewarding an early arrival. In scenario (a),

the vessel arrives at the start of voyage (r, i) tRri days before the time window starts, which results

in a reward of ⇤R · tRri. In scenario (b), the vessel arrives late in the time window and no reward is

given.
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tR
ri

� 0, (r, i) 2 N . (12.4)

Constraints (12.4) ensure tR
ri

is non-negative. However, in practice this will never happen

as it will result in a penalty rather than a reward.
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With constraints (12.5) we avoid that rewards for early arrival at voyage (r, i) are given

if the voyage is unserviced.

Linearizing constraints (12.1) and (12.2) respectively, we get:
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Su�ciently large values of MR

1 to MR

4 are calculated in Appendix A.3.

To allocate the appropriate reward, the objective function (4.1) is extended with the

additional term (12.8):

X

(r,i)2N
⇤RtR

ri

(12.8)

Because ⇤R is negative, any positive values of tR
ri

will reduce overall costs.
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12.4 Penalizing Risky Voyage Start Times

A similar approach to rewarding particular system properties that provides robustness

as in Section 12.3 is, on the other hand, to penalize characteristics of a solution that

reduce robustness. This method can be e↵ective if certain solutions are significantly

more exposed to changes if an event occurs than others. For example, in Christiansen

and Fagerholt (2002), where a pickup and delivery ship scheduling problem with multiple

time windows is studied, robust solutions are created by penalizing risky arrivals. Here,

risky arrivals are considered as arrivals that are close to the end of harbor opening hours,

i.e. close to nights and weekends, because it may result in a ship staying idle much longer

than necessary. In the studied problem, Christiansen and Fagerholt (2002) consider

weather and service times in ports as uncertain. In this section we suggest a similar

approach for creating robust fleet deployment for the RoRo liner case company.

Due to possible events in ports and at sea, sailing times are uncertain. This means that it

is not always possible to comply with planned start times. If an event causes a significant

delay for a vessel v at a voyage (r, i), the vessel’s schedule is already tight, and the next

voyage (q, j) has a planned start time t
qj

close to the end of its time window L
qj

, a delay

d
qj

is likely to occur. To avoid these situations we can penalize start times close to the

end of time windows. This will alter vessel schedules or increase planned sailing speeds,

which both are measures to increase slack in the solution and thereby its robustness.

Mathematical implications

To extend the mathematical formulation (4.1)-(4.30) to penalize risky start times, we

need to introduce additional variables and parameters. Now, let tP
ri

be the number of

days penalized for risky start time of voyage (r, i). For each voyage we apply an upper

limit PMAX

ri

to the number of days penalized, which is the smaller of a global upper limit

PMAX and the width of the voyage’s time window |L
ri

� E
ri

|. The penalty given per

time unit of risky start time is denoted as ⇤P .

Figure 12.3 illustrates how risky start times are penalized. If a vessel plans to start a

voyage at the time given by (a), no penalty is given. However, if (b) is the planned start

time, this is within the later part of the time window. We classify this as a risky start

time, and a penalty with a factor of ⇤P is su↵ered.

When calculating PMAX

ri

, we use the following expression:
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Figure 12.3 – Illustration of not (a) penalizing and (b) penalizing the start time of a voyage. In

scenario (a), the vessel is planned to start voyage (r, i) more than PMAX days before the end of

the time window. This start time is not considered risky and is therefore not penalized. In scenario

(b), the start time of voyage (r, i) is tPri days into the risky area of start times for the voyage, which

results in a penalty of ⇤P · tPri.
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To model the penalizing of risky start times, the original model defined by (4.1)-(4.30) is

extended by adding the following constraints.

t
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Constraints (12.10) set the number of days penalized for risky start time of voyage (r, i)

to be greater than or equal to the start time of the voyage minus the time when penalties

start occurring. We also subtract any delay associated with voyage (r, i).

0  tP
ri

 PMAX

ri

, (r, i) 2 N . (12.11)

Constraints (12.11) set the appropriate range of tP
ri

.

Also, to allocate penalties, the objective function (4.1) is extended with an additional

term (12.12):
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12.5 Combining Robustness Measures

In Halvorsen-Weare et al. (2013), a combined strategy of robustness measures were found

the most e↵ective in producing quality solutions for an LNG ship routing and scheduling

problem. It is possible that a combination of the measures presented in Sections 12.2,

12.3 and 12.4 may produce solutions of better quality than the individual measures on

their own for the FDP as well.

The proposed combined strategy is a combination of all the three robustness measures

presented. This means that the constraints (12.3)-(12.7) and (12.9)-(12.11) are all added

to the model formulation from Section 4.2, together with adjusting the sailing times by

⌦. The objective function (4.1) is extended with the additional terms:
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12.6 Evaluation of Robustness in Deployment Plans

To evaluate the presented robustness strategies, a simulation framework is proposed. This

framework must be able to simulate the planning horizon of fleet deployment instances,

and randomly apply realistic events causing disruptions in the plan. The robustness

measures may help the initial fleet deployment to be better prepared for these types of

unforeseen events. A set of possible events is presented in Chapter 11, and the simulation

framework used in evaluating the quality of solutions is described in depth in Chapter

13.

As presented in Clausen et al. (2010), robustness can be divided into (1) absorption

robustness and (2) recovery robustness. We evaluate absorption robustness of solutions

by testing how slack in the schedules absorb the e↵ect of disruptive events. This means

that no recovery actions should be enabled. However, we consider this as an unrealistic

scenario, for two particular reasons. First, it is unlikely that a shipping company simply
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will stand and watch its vessels become majorly delayed. Second, slow-steaming, i.e.

sailing at low speeds, can be considered as a form of slack, because vessels may speed up to

recover from disruptions. By not allowing recovery actions, including speed adjustments,

this slack is not appreciated. Therefore, we also test a combination of absorption and

recovery robustness of the various strategies by allowing speed adjustments as recovery

actions when simulating.

A plan designed with an emphasis on recovery robustness will more likely be able to

make use of recovery actions to mitigate the e↵ects of disruptive events. We evaluate

recovery robustness of solutions by calling a re-optimization recovery procedure described

in Section 13.2 every time a certain triggering condition is met. This procedure may utilize

speed adjustments, start time adjustments, cargo reallocation and even voyage swaps to

recover from a disruption.

In order to evaluate solutions, we must determine a set of evaluation criteria to consider.

Conservativeness, risk profile, flexibility and di↵erent customer bases and their associated

preferences may a↵ect what companies consider as a quality solution. Some companies

may accept less robust solutions with a lower expected cost, despite high probabilities of

delays. Other companies may value costlier but more robust solutions to reduce potential

delays as much as possible and satisfy challenging customers. In Chapter 14, we compare

di↵erent types of solutions under various measures.
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Chapter 13

A Simulation-Optimization

Framework for Evaluating Solutions

In this chapter we propose a simulation-optimization framework to (1) evaluate solutions

obtained by applying alternative robustness strategies and (2) evaluate the e↵ectiveness

of recovery actions. The framework simulates over the planning horizon of the FDP and

introduces uncertainty by randomly adding events. These events may a↵ect the sailing

times of voyages and the port times for vessels. The framework combines simulation with

optimization by calling a re-planning recovery procedure when certain conditions during

the simulation are met. In Section 13.1 we give an overview of the program. Then, a

presentation of the re-planning recovery procedure follows in Section 13.2.

13.1 The Simulation Program

The purpose behind the presented simulation-optimization framework is to evaluate a so-

lution in an environment where uncertainties may impact the original plan. The solutions

we evaluate can be obtained by solving an FDP instance with the deterministic mathe-

matical model presented in Chapter 4, or with the addition of the robustness strategies

presented in Chapter 12. We define a solution as the decisions made by solving the FDP,

i.e. (1) which voyages to be sailed by which vessel, (2) at what speed, (3) at what time,

(4) in which sequence, (5) the cargo placement at vessel decks, (6) how much cargo to

space charter to complement the shipping company fleet, and (7) voyages which cannot

be sailed by the company’s own fleet, if any.
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Simulation programs have to some extent been used in previous relevant literature to eval-

uate the robustness and quality of solutions. An optimization and simulation framework

is used to generate robust schedules in a supply vessel planning problem in Halvorsen-

Weare and Fagerholt (2011). The solution method consists of three steps, where (1) all

candidate voyages the vessels may sail are generated, (2) candidate voyages are simu-

lated and assigned a robustness measure, and (3) a voyage based model is solved with

these robustness measures assigned to voyages. Di↵erent probabilities define the weather

states, where each state has a di↵erent e↵ect on the sailing speed of vessels. Further, in

Halvorsen-Weare et al. (2013) LNG vessel routing and scheduling under uncertainty is

studied. A simulation model with a recourse action procedure is used to evaluate di↵erent

robust solutions. The latter study and the simulation framework it presents has been an

important inspiration to the program we have developed.

The simulation program we propose introduces uncertainty to the fleet deployment by

randomly adding events during the planning horizon. The type of events that can be

added and how they a↵ect vessel schedules are described in Chapter 11. For each problem

instance we use a set of predefined events, scenarios, generated in advance. Together with

a solution, these act as an input to the simulation program.

In addition to randomly imposed events, the simulation program features a re-planning

procedure. This feature allows for recovery actions, i.e. the possibility of adjusting the

plan. These types of actions may help mitigate the e↵ect of events. Whenever triggered,

the fleet deployment plan is re-optimized with respect to future schedules, and this new

plan is used in the remaining days of the current simulation or until the recovery procedure

is triggered again. The trigger for calling the procedure could, for instance, be defined as

(1) whenever an event occurs, (2) when delays are anticipated by following the current

plan, or (3) when a certain amount of delay is experienced. The selection of trigger for

the re-optimization procedure is further studied in Section 14.3. In reality, it is natural

to continuously consider alterations to the plan as events appear. The key factor for the

case company is to meet its obligations, i.e. service its contracted voyages on time, and

not which vessel that sails them.

When considering recovery actions, we must keep in mind that the extent of changes

made to the plan may not be desirable from the company’s perspective. A slightly more

costly plan may involve significantly fewer changes and may hence be more desirable.

Therefore, we track the number of changes to the original plan resulting from recovery

actions during a simulation. The particular changes we track are voyage swaps between
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vessels. These types of plan alterations are undesirable because vessels may have di↵erent

setups and crew requirements. Any voyage swaps imply that new arrangements must be

made by the case company. Therefore, we track planned changes and not only incurred

changes. Voyage swaps are recorded when a new plan generated by the re-planning

recovery procedure includes vessel schedules were voyages have been altered.

A flow chart for the developed simulation program is presented in Figure 13.1. The

solution we send as an input to the simulation is obtained by solving the FDP for a given

problem instance. We also predefine the event scenario, i.e. the course of events to be

added during the simulation. A simulation starts on day t = 0, and we iterate through

each day t in the planning horizon to see if an event happens at that day. If an event

occurs on day t, we update vessel schedules with any impacts of the disruptive event. This

means that sailing parameters are adjusted if any voyage or ballast sailings are a↵ected,

and extra port time is added in case some vessels are on their way to the relevant port(s).

These new schedules are then evaluated, and the re-planning procedure is called if the

new schedules satisfy a certain criteria. The re-planning procedure treats all parts of the

schedules up to day t as fixed, and tries to mitigate any occurred disruptions as e↵ectively

as possible. This is done by performing a set of appropriate recovery actions, such as

speeding up vessels, swapping voyages between vessel schedules, or reallocate loads. After

re-optimizing, the vessel schedules are updated with the e↵ects of the recovery actions.

Then, we check if there are more days left in the planning period. If there are, we update

t = t+1 and move on to the next day. If this is the last day, we terminate the simulation.

Finally, the resulting solution and a set of simulation statistics are collected as outputs

from the simulation.

After a simulation has ended, we use the output to calculate the planned versus incurred

costs of the resulting vessel schedules, the total voyage delays and the number of recovery

actions performed. These measures are used to assess the input solution of the simulation

with respect to robustness and quality. After simulating a set of di↵erent solutions,

e.g. obtained from using various robustness strategies, through a set of di↵erent event

scenarios, we can calculate average values and standard deviations, and evaluate the

quality of the input solutions. Depending on its preferences, the company can decide

which solutions that meet their interests in the best way. For some companies, incurred

costs are the obvious most important measure. For others, where client relationships

are crucial, the voyage delays must be minimized to keep clients happy. The simulation

results may show that one robustness strategy is e↵ective in meeting one company’s

criteria, while another strategy excels in meeting di↵erent criteria.
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Figure 13.1 – Flow chart for the simulation program.

13.2 The Re-planning Recovery Procedure

The re-planning recovery procedure allows for recovery actions to mitigate the impacts of

disruptions as e↵ectively as possible. This is a re-optimization procedure triggered every

time the current vessel schedules satisfy a given condition. We include the possibility

of recovery actions in the simulation program in order to mimic the real-life planning

process as accurately as possible. However, the most e↵ective actions are very hard to

identify in a realistic planning environment, especially with many vessels and voyages to

consider and limited time available for actions. The presented re-planning procedure may

serve as a decision support tool for planners in such situations.

The re-planning recovery procedure consists of solving a constrained version of the math-

ematical program defined in Section 4.2. The objective is to create a new solution of

vessel schedules that minimizes the costs given the updated conditions set by occurred

events. This means that vessel speeds can be adjusted, cargo can be reassigned and

voyages can be altered between vessels. The need for re-planning appears in real life
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situations when an event has caused significant disruptions, and immediate actions must

be initiated. Therefore, the recovery strategy selected for the procedure must be able to

find good solutions quickly. The problem to be solved when the procedure is called is a

constrained version of the original program since we only consider the remaining part of

the planning horizon. This is given by the day t the re-planning procedure is called.

When solving the recovery re-optimization program, we also include any robustness mea-

sures that were used to generate the simulated solution. This is done for two particular

reasons. First, it is assumable that additional future contracted voyages have been con-

firmed and should be added to the problem at the time the recovery procedure is called.

We should also include robustness in the schedules when planning for these. Second, if

we do not consider the initial robustness measure used to generate the plan, we may loose

the benefits it previously provided. Any slack in the vessel schedules may disappear by,

e.g., allowing vessels to sail at lower speeds. Without the original slack, upcoming events

may cause significant delays.

Algorithm 13.1 shows the pseudo code for the re-planning recovery procedure. Let us

assume the re-planning procedure is called on day t. The input to the procedure are the

previous solution and all of its contents yp. Now, all variables associated with commenced

voyages up to day t are fixed in the program. This restricts vessels from adjusting their

past actions. Next, we solve the remaining partly fixed MIP defined by (4.1)-(4.30), the

fixing of variables and any updated parameter values resulting from events. The obtained

solution yt contains the new vessel schedules we use in the continuation of the simulation

program.
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Algorithm 13.1. Pseudo Code for the Re-planning Recovery Procedure

1: Input: previous solution yp, current day in simulation program t;

2: Set of voyages N ;

3: Voyage start time in previous solution yp, t
ri

;

4: for all voyages (r, i) 2 N do

5: if voyage start time t
ri

 t then

6: Fix assigned vessel, start time, speed and cargo load of voyage (r, i) given in

yp;

7: end if

8: for all voyages (q, j) 2 N do

9: if ballast sailing ((r, i), (q, j)) has been initiated then

10: Fix ballast sailing;

11: end if

12: end for

13: end for

14: Solve the optimization program defined by (4.1)-(4.30), the current robustness strat-

egy, the fixed variables and any updated parameters;

15: Set solution obtained = yt;

16: return yt;
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Computational Study II

In this chapter we present a computational study where the robustness strategies given

in Chapter 12 are tested in the simulation framework presented in Chapter 13. The

strategies are tested both with and without recovery actions. First, in Section 14.1, we

provide a schematic overview of the testing procedure and a description of the selected

problem instances, test settings and parameter values. Then, in Section 14.2 we compare

the results of simulating solutions obtained by applying robustness strategies to the plan-

ning procedure. Further, in Section 14.3 we test how di↵erent conditions for triggering

the recovery re-optimization procedure a↵ect the performance of solutions. Finally, in

Section 14.4 we test what combination of robustness and recovery actions that performs

best overall, and thoroughly discuss these results.

14.1 Test Settings and Schematic Overview

In this section we describe the selected problem instance and test settings, provide a

schematic overview of the testing procedure and state the chosen parameter values.

Problem instance and test settings

We solve problem instance S24 V222 T9 M2 in all testing and simulations performed in

this chapter. This problem instance was first introduced in Section 7.1, and is considered

as the most realistic, both in terms of size and time window widths, of the problem

instances available. S24 V222 T9 M2 consists of 24 vessel, 222 voyages and a time horizon
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of nine months. A summary of the problem instance characteristics is given in Figure

14.1.

Table 14.1 – Problem instance characteristics

Instance Vessels Voyages Months Speed profiles Cargo segments

S24 V222 T9 M2 24 222 9 3 4

The simulation program and the model for creating initial solutions were coded in Java

and run in the Eclipse Luna integrated development environment for Java Developers

Release 1 (4.4.1) programming interface. All optimization problems, i.e. the generation

of initial plans and in the re-planning recovery procedure, were solved using Gurobi

Optimizer version 6.0 (Gurobi Optimization, 2014) in the Java interface. All of the

models were run on a cluster of computers with HP DL165 G6, 2 x AMD Opteron 2431

2.4 GHz, 24 GB of RAM, and 164 GB SAS 15000rpm.

Schematic overview and parameter values

A schematic overview of the testing procedure is presented in Figure 14.1. In Step 1 we

generate a set of scenarios to be used in the simulations. A scenario includes information

about when events are happening, the type of events (sailing or port), and where they

take place. If we simulate solutions on randomized scenarios, we cannot compare the

performance of these solutions directly. The number of events, where they occur and the

magnitude of the impact may vary for each simulation and will result in di↵erent operating

costs and variations in incurred delays. Therefore, we generate a set of scenarios prior

to the simulations and use these as an input when simulating the solutions. This means

that events are randomly generated beforehand and not during the simulation program.

This allows us to compare how di↵erent initial plans perform on the same scenario of

events.

Table 14.2 shows the probabilities of an event occurring at a given sailing or port on

a given day, and the impact of the event. Sailing and port events, their associated

implications and the parameters ⌥P , ⌥S

ri

and ⌥S,MAX are further described in Section

11.3.

Table 14.3 shows the average number of sailing and port events that is scheduled to occur

during the planning horizon in the scenarios used in the simulations. The corresponding
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Figure 14.1 – Schematic overview of the evaluation procedure.

Table 14.2 – Events probabilities and impacts

Event Probability Parameter Impact

Port 1.00 % ⌥P 2 [days]

Voyage sailing 2.00 % ⌥S,MAX 1.10 [ - ]

standard deviation is also given. These numbers do not define how many events that a↵ect

vessel schedules, as zero, one or several voyages may be traversing the same trade route

or towards the same port simultaneously. Consequently, no, one or several disruptions

are recorded.

Table 14.3 – Event scenarios characteristics

Event Average number of events Standard deviation (%)

Port 25.3 14.32

Trade route 49.7 12.00

Further, in Step 2 initial fleet deployment solutions to the problem instance are created.

Based on the findings in Part I we use the RHH presented in Chapter 6 to create the

initial solutions. Di↵erent deployment plans for the planning horizon may be obtained

by using various robustness strategies.

In Step 3 we simulate the initial solutions created in Step 2 through the planning horizon.

For each simulation we add a predefined scenario of events. When simulating solutions,

we iterate through each day in the planning horizon and check the current scenario if

an event happens at that day. The re-planning recovery procedure may or may not

be activated, depending on what we aim to evaluate. Initial testing showed that ten
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simulations on di↵erent event scenarios were su�cient to prove statistical significance

with a 95 % confidence level for most combinations of robustness strategies and simulation

settings. This is further elaborated in Appendix B.1.

Finally, in Step 4 the performance of solutions are evaluated. In this step we examine how

di↵erent robustness strategies perform in terms of solution robustness and quality, and

how calling the re-planning recovery procedure a↵ects the performance and outcome of

initial plans. When evaluating solutions we primarily consider planned costs, simulated

costs, total days of delay and voyage swaps.

14.2 Evaluating Robustness Strategies

Four di↵erent robustness strategies for creating solutions to the FDP are presented in

Chapter 12. Together with applying no robustness measure at all, i.e. solving the model

as it is presented in Section 4.2, five di↵erent approaches are evaluated in the developed

simulation-optimization framework. Table 14.4 gives a description of these approaches

and how they are denoted in the remaining of this computational study.

Table 14.4 – List of evaluated robustness strategies

Robustness strategy Description

BASIC Mathematical model as presented in Section 4.2

AST BASIC with adjusted sailing times

REA BASIC with rewarding early arrivals

PRST BASIC with penalizing risky start times

COMBINED A combination of AST, REA and PRST

When generating initial solutions with the given robustness strategies, we must ensure

that the solutions obtain the same number of unserviced voyages to be comparable. Due

to the added complexity of robustness measures, the RHH may require extra time to

find solutions satisfying this premise. We use the following criteria when creating initial

solutions with the RHH for the BASIC, AST, REA, PRST and COMBINED strategies:

1. Optimal solution.

2. Best solution found after 10,000 seconds.

3. First solution found with the lower bound of unserviced voyages.
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Table 14.5 shows the parameter settings for the robustness strategies which were found

e↵ective during initial testing. These settings are used when creating all initial solutions

in this computational study. The sailing time adjustment parameter ⌦ was originally

intended to have a higher value, but testing showed that even a slight value increase

would increment the number of unserviced voyages and render solutions inferior. Further,

similarly to when solving the deterministic model in Part I, we do not allow to plan for

any voyage delays, i.e. DMAX remains zero. When simulating, however, delays may

occur. As in Section 4.1, the cost of delays are denoted as CP , and this penalty cost is

set according to suggested values from the case company. In addition to presenting the

robustness parameter settings, DMAX and CP are revisited in Table 14.5.

Table 14.5 – Robustness parameter values

Parameter Description Value

⌦ Sailing time adjustment 1.02

RMAX The maximum number of days rewarded for early arrival 2

⇤R Reward given per day of early arrival -$150,000

PMAX The maximum number of days penalized for risky arrival 2

⇤P Penalty su↵ered per day of risky arrival $100,000

DMAX Number of days a voyage can be planned to be delayed 0

CP Daily delay penalty cost $200,000

For the COMBINED robustness strategy we slightly scale down the presented parameter

values to incorporate a weighting e↵ect. This was found to be working well during the

initial testing. The revised parameter values for the COMBINED strategy is presented

in Table 14.6.

Table 14.6 – Revised parameter values for COMBINED robustness strategy

Parameter Description Value

⌦ Sailing time adjustment 1.01

⇤R Reward given per day of early arrival -$50,000

⇤P Penalty su↵ered per day of risky arrival $50,000

131



CHAPTER 14. COMPUTATIONAL STUDY II

Numerical results

Table 14.7 shows the planned operating costs of solutions obtained by the di↵erent ro-

bustness strategies as a percentage of the BASIC planned operating cost. These costs

are calculated as the costs of the solutions given by the objective function (4.1) when

the costs of any unserviced voyages have been deducted. Also, any costs or revenues

associated with robustness rewards or penalties are excluded in the planned operating

costs.

The results in Table 14.7 shows that the solution based on the REA robustness strategy

has the largest planned operating costs. This strategy rewards early arrivals, which en-

courage the solver to speed up the vessels to collect rewards. When the reward itself is

deducted, the planned high speeds result in higher operating costs. Similarly, by increas-

ing the sailing time of the voyages, the AST solution makes it necessary to speed up the

vessels to complete voyages before the end of the time windows of the subsequent voy-

age. Further, as the PRST robustness strategy penalizes late starts in the time window,

previous voyages are given more time to be completed before they are a↵ected by the

robustness measure compared to the REA strategy. Thus, the PRST strategy encourages

vessels to operate at lower sailing speeds than the REA strategy. This might explain why

the PRST solution has the lowest planned operating costs of the considered robustness

strategies. Finally, the COMBINED solution is a combination of the previous methods,

and gives, understandably, a planned operating cost in the middle of these. The over-

all increase in costs for the robustness strategies shows the initial costs of incorporating

robustness.

Table 14.7 – Average planned costs for di↵erent robustness strategies over ten simulations. The

planned costs of solutions obtained with the robustness strategies AST, REA, PRST and COM-

BINED are expressed as % of the BASIC planned costs

BASIC AST REA PRST COMBINED

Plan. cost (%) 100.00 102.84 105.00 101.42 103.67

Table 14.8 shows the average simulated costs and average total days of delay for solutions

based on the strategies BASIC, AST, REA, PRST and COMBINED. The simulations of

initial solutions are conducted with two di↵erent settings. For the simulations denoted by

NN, we do not allow speed adjustments or any other recovery actions. This setting makes

it possible to observe how slack in the solutions can absorb the impact of disruptions

directly. For the simulations denoted by ON, we allow speed adjustments to mitigate
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the impacts of disruptive events. These speed adjustments may be conducted every day

when simulating. The intention behind this setting is to mimic how we assume shipping

companies respond to events in reality. Further, this ensures any robustness that comes

with sailing voyages at low speeds are appropriately considered. This mix of absorption

and recovery robustness is further discussed in Section 12.6. The re-planning recovery

procedure is not enabled when simulating with the NN or the ON settings. The results

are based on ten simulations with the same event scenarios, and the resulting t-values

and corresponding confidence levels are presented in Appendix B.1.

The simulated costs in Table 14.8 are all given as a percentage of the planned cost for the

initial BASIC solution. Compared to the planned costs in Table 14.7, the simulated costs

capture the consequential costs of uncertainties, i.e. the impacts on the vessel schedules of

adding disruptive events. These impacts potentially include longer sailing times, higher

speeds, extra space chartering of cargoes and, perhaps most importantly, the costs of

voyage delays.

Table 14.8 – Average simulated cost and total days of delay for the di↵erent robustness strategies.

The simulated costs are expressed as % of the planned costs for the BASIC initial solution.

BASIC AST REA PRST COMBINED

SC1(%) D2 SC2(%) D2 SC2(%) D2 SC2(%) D2 SC2(%) D2

NN3 155.02 604 133.72 329 117.06 113 143.38 454 116.15 118

ON4 121.50 197 118.93 142 114.86 82 115.40 112 113.41 77

1 Simulated cost in percent of planned cost for the BASIC initial solution.
2 Total days of delay.
3 No speed adjustments or any other recovery actions are allowed.
4 Speeds may be adjusted every day during the simulation. Other types of recovery actions are not

allowed.

From the results in Table 14.8 we observe that the simulated costs are higher than the

planned costs, meaning that disruptive events have occurred during the planning period

and caused extra costs. Also, the results show that the simulated costs when speed ad-

justments are allowed are substantially lower than when no recovery actions are enabled.

By allowing speed adjustments, delays can to some extent be mitigated. This means that

there are some slack included in the solutions by having vessels sailing at lower speeds.

By incorporating robustness strategies when planning, we observe a significant improve-

ment in performance in terms of simulated costs and amount of delays. Despite higher
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planned costs than the BASIC solution, as presented in Table 14.7, all of the robust-

ness solutions have lower average simulated costs. It is also worth noticing that the

two solutions with the highest planned costs, COMBINED and REA, are the solutions

that provide the lowest simulated costs, both when simulating with the NN and the ON

settings.

Further, the simulated costs with the NN setting show a greater variety compared to the

ON setting, and could imply that the robustness strategies that performed worse with the

NN setting are able to better exploit the opportunity to adjust speeds. This is especially

noticeable for the PRST solution, that has the highest simulated costs and amount of

delays of the robustness strategies with the NN setting, but it is able to perform nearly

equally as well as the solutions based on the REA and COMBINED strategies with the

ON setting. A possible explanation is that the PRST strategy only encourages small

slacks in the vessel schedules. When allowing speed adjustments the PRST strategy is

able to utilize the option of increasing the speed of the vessels sailing the disrupted voyages

during the simulation to avoid delays. The small di↵erences in simulated costs and delays

for the REA solution can be explained similarly. Here, the solver is motivated to increase

sailing speeds in order to make the vessels arrive in advance of succeeding voyages to

collect rewards. Thus, the vessels might be sailing close to or on the maximum speed

limit on several voyages and hence not have the ability to utilize the benefit of the ON

setting.

The AST solution has the second highest and highest simulated costs with the NN and

ON setting, respectively. On one hand, this may imply that it is more e↵ective to rather

reward or penalize certain characteristics in a solution, such as with the REA and PRST

strategies, than restricting the solution space. On the other hand, as given in Table

14.5, the sailing time adjustment parameter ⌦ was only set to 2.00 %. If it was possible

to increase the value of this parameter without incrementing the number of unserviced

voyages, additional slack could have been added to the solution and the strategy may

have performed better.

For both the NN and ON settings, the COMBINED strategy performs slightly better

than all of the other robustness strategies. We see that the total delay can be reduced

to as little as 77 days in total, or in average 0.347 days per voyage, by applying the

COMBINED strategy when planning the fleet deployment. We see that the COMBINED

strategy achieves low simulated costs for the NN setting, and yet is able to reduce the

total delay from 118 to 77 days when allowing speed adjustments. It is reasonable to
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believe that the COMBINED strategy is able to balance the use of the REA and PRST

strategies to both be able to create a robust plan that performs well with the NN setting,

and a plan that is able to utilize the advantage of adjusting sailing speeds during the

operation.

14.3 Evaluating the Re-planning Recovery Procedure

In this section we enable the re-planning recovery procedure in the simulation framework

and examine di↵erent strategies of triggering this procedure during simulations. The

functionality of the procedure is thoroughly presented in Section 13.2. In this section,

we first describe the selection of an appropriate recovery strategy to be used in the re-

planning recovery procedure. Then, di↵erent conditions for triggering the procedure are

evaluated and discussed.

Selecting a recovery strategy

As concluded in Andersson et al. (2014) and in the computational study performed in

Chapter 7, large problem instances of the FDP cannot be solved by a MIP within a

reasonable amount of time. If the recovery procedure is called early in the planning

horizon, only a few decisions have been made final. Now, if we use the MIP based on the

mathematical formulation in Section 4.2 to solve the remaining parts of the problem, we

are likely left with a time-consuming mathematical program. This is assumed to have

little or no practical value for the case company. However, the RHH was found e↵ective

on larger problem instances and provided good solutions within a shorter amount of

time. Therefore, we have selected the RHH as the recovery strategy to be used in the

re-planning recovery procedure.

A characteristic of real-life planning that favors the use of the RHH is how the prob-

lem continuously grows. When additional future contracted voyages are confirmed, they

should be included in the problem. This means that when the re-planning procedure is

triggered, several additional voyages may have appeared and been added to the planning

horizon. Even though the MIP may be e�cient for smaller problem instances, realis-

tic problems are large and remains, due to this characteristic, large despite fixing any

previous actions.
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When solving the re-planning problem with the RHH, we also include the same robustness

measure(s) that were used to generate the initial solution, as described in Section 13.2.

We use the following stopping criteria for the program:

1. Optimal solution.

2. Best solution after 10,000 seconds (which are equally distributed to each primary

period)

Conditions for triggering the re-planning recovery procedure

When including the re-planning procedure in the program, we must determine when it

should be called. As liner shipping companies have di↵erent preferences, this choice may

di↵er from company to company. For instance, one company may accept some delays to

maintain its cost-e�cient plan. Other companies, however, aim to reduce delays as much

as possible to keep highly demanding customers satisfied. We have tested three di↵erent

trigger strategies for calling the re-planning recovery procedure. These trigger strategies

are to call the procedure when:

1. at least one day delay for a voyage is anticipated with the current plan

2. at least three days delay for a voyage is anticipated with the current plan

3. at least five days delay for a voyage is anticipated with the current plan

The di↵erent trigger conditions proposed above were applied to the simulation-optimization

program and tested by simulating initial plans created with the BASIC and COMBINED

robustness strategies. These two strategies were chosen primarily because we wanted to

examine if di↵erent trigger strategies were e↵ective for recovering initial solutions gener-

ated with di↵erent robustness considerations.

Table 14.9 shows the results obtained by simulating BASIC and COMBINED initial

solutions when the re-planning recovery procedure is activated. All the reported results

are average numbers, and are due to time limitations only based on five simulations for

each combination of trigger and robustness strategy. Each row contains the results for the

three di↵erent trigger strategies previously proposed. The simulated costs of the solutions

are reported as a percentage of the BASIC planned costs. The other three columns for

each strategy report the average total delay incurred, number of times the re-planning

recovery procedure is called and the number of voyage swaps performed, respectively.
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Table 14.9 – Average simulated costs, total days of delay, number of times the recovery procedure

is called and performed voyage swaps for di↵erent trigger conditions on BASIC and COMBINED

solutions. Simulated costs of solutions are expressed as % of the BASIC planned costs.

BASIC COMBINED

SC1(%) D2 RP3 VS4 SC1(%) D2 RP3 VS4

1-day5 116.35 134 27 602 111.45 55 14 379

3-day6 116.11 133 11 418 111.96 60 5 293

5-day7 116.83 143 5 270 112.61 66 2 266

1 Percent of planned cost.
2 Total days of delay.
3 Number of times the recovery re-planning procedure is called.
4 Number of voyage swaps.
5 Re-planning procedure triggered when a voyage is scheduled to be more than one day delayed.
6 Re-planning procedure triggered when a voyage is scheduled to be more than three days delayed.
7 Re-planning procedure triggered when a voyage is scheduled to be more than five days delayed.

We first observe that by including the re-planning recovery procedure in the simulation

framework, significant costs savings can be achieved. For the BASIC solution, the simu-

lated costs are, for all triggers, just above 16 % of the planned costs, compared to roughly

21 % when only speed adjustments are allowed (see Table 14.8). Cost savings are also

obtained for the COMBINED solution. Second, we see that the lower threshold we use

as a trigger, the more often the recovery procedure is called, as could be expected. When

simulating COMBINED solutions with a 5-day voyage delay trigger, the procedure is on

average only called twice. The re-planning recovery procedure is further called approx-

imately twice as often in the BASIC simulations than in the COMBINED simulations.

This illustrates that the initial COMBINED solutions are considerably more robust to

disruptive events and are able to mitigate most of the impacts of the incurred disruptions

with their incorporated slack.

Next, we observe how little the incurred total delay varies between the di↵erent trigger

strategies. For the BASIC simulations, we observe that a 3-day trigger actually seem to

perform slightly better than calling the procedure every time a voyage is anticipated to

experience only one day of delay or more, both in terms of delays and costs. However,

the results do not indicate the same for COMBINED solutions. We suggest that this

di↵erence is due to the recovery procedure for BASIC solutions does not have the same

robustness incentives as when called on COMBINED solutions. Due to the fewer number
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of simulations, this should be tested further to give any final conclusions.

Naturally, the more often the recovery procedure is called, the more voyage swaps are

recorded. This relationship can also be seen by comparing the number of changes of

the simulated BASIC and COMBINED solutions, as both the number of changes and

the number of recovery procedure calls are significantly lower for COMBINED solutions

than for the BASIC solutions. A scatter plot of the BASIC and COMBINED simulated

costs and number of voyage swaps resulting from the re-planning procedure with di↵erent

trigger conditions is presented in Figure 14.2.

Figure 14.2 – Simulated costs and number of voyage swaps when simulating BASIC and COM-

BINED solutions with di↵erent trigger conditions. T1, T3 and T5 denote triggering the re-planning

recovery procedure when a voyage is scheduled to be one, three or five days delayed, respectively.

By considering the aforementioned observations, we suggest that including the re-planning

recovery procedure in the simulation framework has the potential of better mitigating the

impacts of disruptive events than by not considering recovery actions. Despite slightly

lower inflicted costs, easily triggering the re-planning recovery procedure leads to many

alterations to the operations. Even though voyage swaps may only be planned changes

and do not actually incur due to additional events, these are still considered as changes

and must be facilitated by the case company. The results suggest that if a price for

performing changes was considered, triggering the recovery procedure less often may be

desirable. Di↵erent companies have their own individual preferences in the trade-o↵ be-

tween the extent of changes, expected costs and expected delays, and therefore we do not

give a final suggestion of the optimal trigger strategy.
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14.4 Combining Robustness Strategies and

Re-planning Recovery

In this section we present and discuss the results from simulating solutions generated by

the di↵erent robustness strategies when including the re-planning recovery procedure in

the simulation framework. First, we provide the numerical results from the conducted

simulations. Then, a discussion of how the combination of robustness strategies and

re-planning recovery performs compared to results in Section 14.2 is given. Finally, we

elaborate on the trade-o↵ between operating costs, delays and the number of changes,

and follow the development of di↵erent initial solutions through a simulation.

Numerical results

Table 14.10 shows the simulated costs of the solutions obtained by the di↵erent robustness

strategies combined with re-planning recovery as a percentage of the BASIC planned

operating costs. For the purpose of comparing the performance of combined robustness

strategies and re-planning recovery, the recovery procedure is triggered when the expected

delay of any voyage exceeds three days. We also revisit the results from Table 14.8 for

easier comparison.

Table 14.10 – Average simulated costs and total days of delay for the di↵erent robustness strategies

combined with re-planning recovery. The simulated costs are expressed as % of the planned costs

for the BASIC solution.

BASIC AST REA PRST COMBINED

SC1(%) D2 SC1(%) D2 SC1(%) D2 SC1(%) D2 SC1(%) D2

NN3 155.02 604 133.72 329 117.06 113 143.38 454 116.15 118

ON3 121.50 197 118.93 142 114.86 82 115.40 112 113.41 77

OR4 117.31 143 116.55 116 114.48 81 113.10 84 112.83 67

1 Simulated costs in % of planned cost for the BASIC solution.
2 Total days of delay.
3 Speeds may be adjusted every day during the simulation. Other recovery actions are not allowed.
4 Speeds are open and may be adjusted every day during the simulation. Re-planning recovery are called

when the delay exceeds three days on any voyage after a disruption.

The results in Table 14.10 show that by enabling re-planning recovery in the simula-

tions, denoted by OR, further cost and delay reductions are achieved for all robustness
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strategies. As for the NN and the ON settings, the BASIC solution has the poorest per-

formance in both delay and simulated costs compared to the robust solutions. Despite

the relatively high simulated costs of the BASIC solution with re-planning enabled, it is

evident that including re-planning recovery could result in considerable savings. The sav-

ings obtained by including re-planning for the BASIC solution compared to only allowing

speed adjustments is 4.19 %, or $9,566,853 in absolute costs for this problem instance.

Of the robustness strategies, the solution based on the AST strategy has the largest

simulated costs and highest amount of delay. As suggested in Section 14.2, the poor

performance of the AST solution may be a consequence of the restricted solution space

or the fact that the sailing adjustment parameter value is not su�ciently high.

For the REA and PRST solutions we observe an alteration in performance. When in-

cluding re-planning recovery, the PRST solution achieve a lower simulated cost than the

REA solution, while the amount of days delayed for the REA solution remains the lowest

between the two. The higher costs of the REA solution might be explained by the di↵er-

ences in the robustness measures. The REA strategy and PRST strategy both encourage

the solver to add slack prior to the latest start time of a subsequent voyage. Unlike the

PRST strategy, however, the REA strategy also motivates the solver to make the vessels

arrive earlier than the time window of the succeeding voyage. If no disruptions occur,

a vessel will in cases when it arrives before the time window of the next voyage have

to wait before starting the voyage. Instead, it could have sailed at a lower speed and

consequently reduced the operating costs, but still been able to sail the upcoming voy-

age at the planned start time. These situations will not happen for the PRST strategy,

as the robustness measure only will encourage vessels to avoid starting voyages in the

latest part of the time window. I.e., it will not risk to impose idle vessel time outside

of time windows. Hence, when including re-planning, the results show that encouraging

slacks prior to the end of time windows gives lower total costs than motivating arrivals

in advance of voyage time windows.

The solution based on the COMBINED strategy results in the lowest simulated costs and

number of days delayed when enabling re-planning recovery. If the case company were to

implement fleet deployment plans obtained by the RHH without considering uncertainties

and disruption management, and adjusted speeds on a day-to-day basis, the simulated

costs would be reflected by the BASIC ON setting. Compared to the COMBINED

solution with re-planning enabled, substantial savings of up to 8.67 % could be made.

For the simulated problem instance this implies savings of $19,795,851 in absolute costs.
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All numerical results presented in this section is based on the average of ten simulations

with predefined event scenarios. A scatter plot of the average simulated costs and the

average total delay for solutions based on the robustness strategies is presented in Figure

14.3. The confidence level that the simulated costs obtained with re-planning recovery

for the robust solutions are lower than the simulated costs of the BASIC solution with

adjustable speeds is over 99.27 %. This, together with relevant confidence levels of other

comparisons in this section, are given in Appendix B.1.

Figure 14.3 – Simulated costs and delays for each strategy with re-planning recovery enabled, with

95 % confidence intervals.

Recovery actions and extent of changes

With di↵erent robustness strategies, the number of recovery procedures called during the

simulation of the planning period will vary. When the re-planning recovery procedure is

called, changes to the previous plans may have been suggested. Table 14.11 shows the

average number of recovery actions performed on each robust solution, and the resulting

total voyage swaps from these new plans.

From Table 14.11 we can see that the plans based on the robustness strategies BASIC

and AST, that gives the highest amount of delay with the ON setting, requires most

141



CHAPTER 14. COMPUTATIONAL STUDY II

Table 14.11 – Average number of re-planning recovery procedure calls and voyage swaps when

simulating solutions generated with the di↵erent robustness strategies with the re-planning recovery

procedure enabled.

BASIC AST REA PRST COMBINED

Recovery procedure calls 12 11 9 8 7

Voyage swaps 409 300 283 196 260

recovery actions to be performed during the simulation. The robustness strategies with a

lower total delay will have fewer voyages with delays of over three days, and thus trigger

fewer recovery actions. However, we see that the simulations of the PRST solution only

trigger eight recovery procedures compared to nine for the REA solution, despite having

a 112 days of delay compared to REA’s 82 days of delay when simulating the solutions

with adjustable speeds. This again implies that using the PRST strategy results in plans

where the disruptive events will cause many smaller delays, while the REA strategy gives

vessel schedules that will have fewer voyages that are delayed, but of greater magnitude.

Further, we observe that solutions generated with the PRST robustness strategy are on

average subject to the least amount of voyage swaps. This can also be explained by

how the PRST robustness strategy evenly distributes slack to vessels. Considering that

COMBINED solutions are generated by using a combination of the robustness strategies,

the amount of voyage swaps lies somewhere in between. However, the re-planning recovery

procedure is only called seven times.

By comparing PRST and COMBINED, we can see that by selecting PRST and accepting

operating costs that are only 0.27 % higher, considerably fewer changes are needed to be

done to the deployment plan during operation. Further, if we compare the COMBINED

solution with the re-planning procedure enabled to when only speed adjustments are

allowed, it can be seen that zero changes to the plan can be achieved by accepting only

0.38 % higher costs. This corresponds to $867,638 in absolute for this problem instance.

Figure 14.4 illustrates how the di↵erent robustness strategies perform given the trade-

o↵ between number of changes to the plan and operating costs, with 95 % confidence

intervals.

Figure 14.5 illustrates how the simulated total costs and total delay for the di↵erent ro-

bust solutions vary through the planning period when re-planning recovery is enabled.

The figure is based on simulations using one of the predefined scenarios and will thus
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Figure 14.4 – Simulated costs and voyage swaps for each strategy with recovery re-planning enabled,

with confidence 95 % intervals.

di↵er from the previous presented average values. The increase in total costs and delays

at certain days shows the impacts of disruptions to the fleet deployment plans. The large

increases in both delay and costs in the beginning of the planning period clearly display

the knock-on e↵ects of disruptions, i.e when a voyage is disrupted all the subsequent

voyages are also a↵ected. The drops in both simulated costs and delays reveal the conse-

quences of calling re-planning recovery procedures. Also, the figure shows the large cost

and delay reductions by mitigating knock-on e↵ects when re-planning is performed in the

beginning of the planning period. Further, the time between the large increases in total

costs and delays, as a result of disruptions, and the drops in simulated costs and delays

illustrates how the triggering mechanism for the re-planning recovery procedure works.

Even though the first disruptive events lead to extensive increases in both total costs and

delays, none of the voyages experience delays exceeding three days and the re-planning

recovery procedure is not called. It is first when one or more voyages are expected to be

more than three days delayed that re-planning is called and the simulated costs and delays

143



CHAPTER 14. COMPUTATIONAL STUDY II

are reduced. Finally, if we compare the BASIC and COMBINED solutions, we see how

the COMBINED solution initially has a much larger planned cost, but the consequential

costs of disruptions are significantly less and the total cost ends up much lower.

A similar comparison for solutions simulated with the ON setting is given in Appendix

B.2.

Figure 14.5 – Development of simulated costs and delay in the planning period as a result of a

predetermined scenario
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Chapter 15

Concluding Remarks II

In Part II of this thesis we have considered the fleet deployment problem (FDP) for a

Roll-on Roll-o↵ (RoRo) liner shipping company under uncertainty. First, we identified

possible events which may a↵ect the company’s operations. Then, four di↵erent robust-

ness strategies that can be applied when planning the fleet deployment were proposed:

(1) adjust sailing times, (2) reward early arrivals, (3) penalize risky start times and (4) a

combination of the three aforementioned strategies. With these four strategies we aimed

to produce more robust solutions, i.e. vessel schedules less vulnerable to the impacts of

disruptive events. The robustness strategies were evaluated in a developed simulation

framework that randomly adds events during the planning horizon. We also presented

a re-planning recovery procedure to be included in the framework. When triggered dur-

ing the simulations, this procedure allows for re-planning of the remaining part of the

planning horizon in order to mitigate the impacts of an occurred event. The rolling hori-

zon heuristic found e↵ective in Part I was selected as the recovery strategy used in the

re-planning procedure.

In a computational study we simulated initial fleet deployment plans obtained with and

without robustness strategies through the planning horizon. The results show that when

considering uncertainties during operation, robustness measures can with great advan-

tage be included in the planning process. We found that a combination of the suggested

robustness strategies performs best overall. The presented results also indicate that in-

cluding the re-planning recovery procedure may further decrease operating costs and

delays, but at the cost of many voyage swaps. Compared to plans created without con-

sidering uncertainty, that was studied in Part I, robust plans and re-planning recovery

may reduce incurred operating costs by up to 8.67 %. The combination robustness strat-
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egy performed nearly as good without the re-planning procedure as with, making it an

excellent choice if changes during operation are undesirable. We suggest that robustness

strategies and the re-planning recovery procedure based on the rolling horizon heuristic

may serve as disruption management decision support tools for the case company.

Future work

During the work with Part II of this thesis, several possible future areas of research have

been identified. Below we suggest what parts of our work that require further testing,

how the evaluation framework can be made more realistic and how RoRo liner shipping

companies can incorporate the presented work as decision support tools for disruption

management.

First, due to the time limitations of this work not all aspects of the presented robustness

strategies were subject to testing. A thorough review may find more e↵ective parame-

ter values for the given robustness strategies, or reveal additional robustness measures

e↵ective in creating robust solutions to the FDP. For instance, a plan based on the REA

strategy will with our parameters and formulation encourage vessels to arrive at ports

up to two days before the the start of the time window for the next voyage. To create

this bu↵er time, extra costs related to higher speeds when sailing will be added to the

operating costs. However, if no disruptive events impose delay on the vessel schedules,

the two days, originally intended as bu↵er time for the vessels to get back on schedule

in case of disruptions, will not be used. Finding other ways to reward early arrivals is

therefore suggested as possible future work. In addition, time limitations restricted the

number of simulations conducted in the computational study. More simulations could

have improved the confidence of our results.

The simulation framework used in the computational study can, with more input from

the case company and with results from further testing, be adjusted to be more realistic

in terms of event probabilities and impacts. This may, e.g., highlight if the probabilities

of disruptive events should be increased on certain routes during certain time periods of

the year, such as during the typhoon season in Asia and the hurricane season in North

America. The uncertainty in demand and transported cargo may, if further research

reveals this as important, also be added to the simulation framework.

Finally, given the findings of this thesis, the case company should consider incorporat-
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ing robustness strategies in fleet deployment planning to potentially mitigate e↵ects of

disruptive events during operations. Before implementing, further studies in closer collab-

oration with the case company should be conducted. These studies may reveal company

preferences regarding number of changes, delays and expected costs, and decision support

and disruption management tools can be tailored to the case company’s needs.
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Bredström, D. and Rönnqvist, M. Supply chain optimization in pulp distribution using

a rolling horizon solution approach. NHH Dept. of Finance & Management Science

Discussion Paper, (2006/17), 2006.

149

http://www.bbc.com/news/uk-england-hampshire-30670746
http://www.bbc.com/news/uk-england-hampshire-30670746


BIBLIOGRAPHY

Bredström, D.; Flisberg, P., and Rönnqvist, M. A new method for robustness in rolling

horizon planning. International Journal of Production Economics, 143(1):41–52, 2013.

Brouer, B. D.; Dirksen, J.; Pisinger, D.; Plum, C. E. M., and Vaaben, B. The Vessel

Schedule Recovery Problem (VSRP) – a MIP model for handling disruptions in liner

shipping. European Journal of Operational Research, 224(2):362 – 374, 2013.

Christiansen, M. and Fagerholt, K. Robust ship scheduling with multiple time windows.

Naval Research Logistics (NRL), 49(6):611–625, 2002.

Christiansen, M.; Fagerholt, K., and Ronen, D. Ship routing and scheduling: Status and

perspectives. Transportation Science, 38(1):1–18, 2004.

Christiansen, M.; Fagerholt, K.; Nygreen, B., and Ronen, D. Maritime transportation.

Transportation, 14:189–284, 2007.

Christiansen, M.; Fagerholt, K.; Nygreen, B., and Ronen, D. Ship routing and scheduling

in the new millennium. European Journal of Operational Research, 228(3):467–483,

2013.

Clausen, J.; Larsen, J.; Larsen, A., and Hansen, J. Disruption management-operations

research between planning and execution. Technical report, 2001.

Clausen, J.; Larsen, A.; Larsen, J., and Rezanova, N. J. Disruption management in the

airline industry—concepts, models and methods. Computers Operations Research, 37

(5):809 – 821, 2010.

Dellaert, N. and Jeunet, J. Controlling multi-level production in a rolling-schedule envi-

ronment. International Journal of Production Economics, 85(1):113 – 121, 2003.

Dienst, D.; Røpke, S., and Vaaben, B. Realistic models and computational results for

disruption management in the airline industry. Technical report, Technical University

of Denmark, 2012.

Dirksen, J. Disruption management in liner shipping: Introducing the vessel schedule

recovery problem. Master’s thesis, Technical University of Denmark, 2011.

Ehrgott, M. Multicriteria optimization. Springer Science & Business Media, 2006.

Ehrgott, M. and Ryan, D. M. Constructing robust crew schedules with bicriteria opti-

mization. Journal of Multicriteria Decision Analysis, 11(3):139, May 2002.

150



BIBLIOGRAPHY

Fagerholt, K.; Johnsen, T. A., and Lindstad, H. Fleet deployment in liner shipping: A

case study. Maritime Policy & Management, 36(5):397–409, 2009.

Fischer, A. S.; Nokhart, H. S., and Olsen, H. A. The fleet deployment problem in RoRo

shipping. Project Thesis TIØ4500, Fall, 2014.

Gelareh, S. and Meng, Q. A novel modeling approach for the fleet deployment problem

within a short-term planning horizon. Transportation Research Part E: Logistics and

Transportation Review, 46(1):76–89, 2010.
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Appendix A

A.1 Mathematical Model

In this section, a compact version of the mathematical formulation presented in Chapter

4 is provided.

Summary of Notation

Sets

V - Vessels, indexed by v

S
v

- Discrete speed options for vessel v, indexed by s

R - Standard routes, indexed by r

P - Cargo segments, indexed by p

P
b

- Set of all products associated with b, indexed by p

B - Balance categories, indexed by b

B
r

- Balance categories serviced by r, indexed by b

B
⇠

- Balance categories in capacity group ⇠, indexed by b

M - Set of months, indexed by m

K - Set of capacity classes, indexed by k

K
p

- Set of capacity classes that can carry cargo segment p, indexed by k

⌅ - Set of capacity groups, indexed by ⇠

N - Set of nodes, indexed by (r, i)

NC - Set of nodes that are contracted voyages, indexed by (r, i)

N
v

- Set of nodes that v can service, indexed by (r, i)

NM

v

- Set of nodes corresponding to required dock maintenance visits for vessel

v, indexed by (r, i)
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I
rm

- Set of voyages on trade route r in month m, indexed by i

A - Set of arcs, indexed by ((r, i), (q, j))

A
v

- Set of arcs that ship v can sail, indexed by ((r, i), (q, j))

Parameters

D
bpm

- Demand in month m for product (b, p)

Q
SC

bpm

- Maximum allowed space chartering volume of product (p, b)

in month m

Q
vrk

- Default capacity for vessel v on route r per capacity class k

QMAX

k

- Maximum capacity of capacity class k in the fleet

QS

k

- Capacity for the spot vessels per capacity class k

T
vris

- The time it takes ship v to sail voyage (r, i) at speed s

TB

vriqjs

- The time it takes ship v to sail ballast between voyage

(r, i) and (q, j) at speed s

TB

o(v)ris - The time of vessel v sailing ballast from its origin to the start of

voyage (r, i) at speed s

C
vris

- The cost of vessel v sailing voyage (r, i) at speed s

CB

vriqjs

- The cost of vessel v sailing ballast from the end of voyage (r, i)

to the start of voyage (q, j) at speed s

CB

o(v)ris - The cost of vessel v sailing ballast from its origin to the start

of voyage (r, i) at speed s

C
o(v)d(v) - The cost of vessel v sailing directly from its origin to its

destination, i.e. not using vessel v for any voyages in the

planning horizon

CSC

bpm

- Cost per unit shipped with space chartering

CP - Penalty cost per day the start of a voyage is delayed

CS - The cost of not servicing a voyage

E
o(v) - Earliest availability of ship v

E
ri

- Time window start of voyage (r, i)

L
ri

- Time window end of voyage (r, i)

DMAX - The maximum days of delay allowed for starting a voyage after L
ri
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Variables

y
o(v)ri - 1 if vessel v sails directly from its initial position o(v) to the starting

point of voyage (r, i), 0 otherwise

y
vri

- 1 if vessel v sails voyage (r, i), 0 otherwise

y
vriqj

- 1 if vessel v sails ballast from voyage (r, i) to voyage (q, j), 0 otherwise

y
rid(v) - 1 if vessel v sails voyage (r, i) as the last voyage, 0 otherwise

y
o(v)d(v) - 1 if vessel v sails directly from its origin to the artificial destination

and is not used during the planning period

yS
ri

- 1 if the voyage (r, i) is not serviced

x
vris

- the weight of speed alternative s for sailing voyage (r, i) by vessel v

xB

o(v)ris - the weight of speed alternative s for the sailing from the initial position

o(v) of ship v to the first port of voyage (r, i)

xB

vriqjs

- the weight of speed alternative s for sailing ballast between voyage

(r, i) and voyage (q, j) by ship v

t
o(v) - the starting time for vessel v from initial position o(v)

t
ri

- the start time of voyage (r, i)

d
ri

- number of days voyage (r, i) is delayed

l
ribpk

- the loaded volume of product (b, p) on capacity class k on voyage (r, i)

z
bpm

- the volume of product (b, p) covered with space charter in month m

Objective function

min z =
X

v2V

X

(r,i)2Nv

X

s2Sv

C
vris

x
vris

+
X

v2V

X

((r,i),(q,j))2Av

X

s2Sv

CB

vriqjs

xB

vriqjs

+

X

v2V

X

(r,i)2Nv

X

s2Sv

CB

o(v)risx
B

o(v)ris +
X

v2V
C

o(v)d(v)yo(v)d(v)+

X

(r,i)2N
CPd

ri

+
X

b2B

X

p2P

X

m2M
CSC

bpm

z
bpm

+
X

(r,i)2N
CSyS

ri

(A.1)

The objective function (A.1) minimizes costs related to operating the fleet of vessels

and fulfilling the constraints below. The cost of sailing voyages and ballast between

voyages with the speed profile determined by x
vris

and xB

vriqjs

is included in the two first

expressions. The third expression addresses costs for the ballast sailing between origin

and the first voyage for each vessel, and the cost of not using a vessel in the planning

period included in the fourth expression. The last line includes the costs for delay in
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servicing voyage (r, i), costs related to chartering space and the cost for not servicing

voyage (r, i) by the company’s fleet.

Constraints

y
o(v)ri �

X

s2Sv

xB

o(v)ris = 0, v 2 V , (r, i) 2 N
v

, (A.2)

y
vri

�
X

s2Sv

x
vris

= 0, v 2 V , (r, i) 2 N
v

, (A.3)

y
vriqj

�
X

s2Sv

xB

vriqjs

= 0, v 2 V , ((r, i), (q, j)) 2 A
v

. (A.4)

Constraints (A.2)-(A.4) connect the speed and flow variables.

X

v2V
y
vri

+ yS
ri

= 1, (r, i) 2 N C. (A.5)

Constraints (A.5) ensure that all contracted voyages are served.

y
vri

= 1, v 2 V , (r, i) 2 NM

v

. (A.6)

Constraints (A.6) make sure that vessel v visits a maintenance node if the set NM

v

is

non-empty.

X

(r,i)2Nv

y
o(v)ri = 1� y

o(v)d(v), v 2 V , (A.7)

X

(r,i)2Nv

y
rid(v) = 1� y

o(v)d(v), v 2 V , (A.8)

y
vri

� y
o(v)ri �

X

(q,j)2Nv

y
vqjri

= 0, v 2 V , (r, i) 2 N
v

, (A.9)

y
vri

� y
rid(v) �

X

(q,j)2Nv

y
vriqj

= 0, v 2 V , (r, i) 2 N
v

. (A.10)

Constraints (A.7)-(A.10) are flow variables for each vessel.
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y
o(v)ri(to(v) � t

ri

+
X

s2Sv

TB

o(v)risx
B

o(v)ris)  0, v 2 V , (r, i) 2 N
v

, (A.11)

y
vriqj

(t
ri

� t
qj

+
X

s2Sv

(TB

vriqjs

xB

vriqjs

+ T
vris

x
vris

)  0, v 2 V , ((r, i), (q, j)) 2 A
v

.

(A.12)

Constraints (A.11) make sure that the starting time of the next voyage is greater than or

equal to the starting time of the initial position plus the time spent ballast sailing from

this position, while constraints (A.12) make sure that the starting of the next voyage is

greater than or equal to the starting time of the previous voyage plus the time spent sailing

it and the ballast sailing between the voyages. In order to implement these constraints in

a commercial optimization solver, they need to be linearized. This is shown in Appendix

A.2.

d
ri

� t
ri

� L
ri

, (r, i) 2 N . (A.13)

Constraints (A.13) count the number of days a voyage is delayed.

X

r2R

X

i2Irm

X

k2K
l
ribpk

+ z
bpm

= D
bpm

, m 2 M, b 2 B, p 2 P
b

. (A.14)

Constraints (A.14) ensure that the volume transported or space chartered is equal to the

monthly demand.

z
bpm

 Q
SC

bpm

, b 2 B, p 2 P
b

,m 2 M. (A.15)

Constraints (A.15) limit the space chartered volume to be lower than or equal to the

maximum monthly volume allowed.

X

b2B⇠

X

p2Pb

l
ribpk

�
 
X

v2V
Q

vrk

y
vri

+QS

k

yS
ri

!
 0, (r, i) 2 N , k 2 K

p

, ⇠ 2 ⌅. (A.16)
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Constraints (A.16) limits the total flow of cargoes in a capacity group on a voyage to be

within the capacity of the vessel sailing it. This vessel could either be one from the case

company’s fleet or a spot vessel.

y
o(v)ri 2 {0, 1} , v 2 V , (r, i) 2 N

v

, (A.17)

y
vri

2 {0, 1} , v 2 V , (r, i) 2 N
v

, (A.18)

y
vriqj

2 {0, 1} , v 2 V , ((r, i), (q, j)) 2 A
v

, s 2 S
v

, (A.19)

y
vrid(v) 2 {0, 1} , v 2 V , (r, i) 2 N

v

, (A.20)

y
o(v)d(v) 2 {0, 1} , v 2 V , ((r, i), (q, j)) 2 A

v

, s 2 S
v

, (A.21)

yS
ri

2 {0, 1} , (r, i) 2 N
v

, (A.22)

xB

o(v)ris � 0, v 2 V , (r, i) 2 N
v

, s 2 S
v

, (A.23)

x
vris

� 0, v 2 V , ((r, i), (q, j)) 2 A
v

, s 2 S
v

, (A.24)

xB

vriqjs

� 0, v 2 V , ((r, i), (q, j)) 2 A
v

, s 2 S
v

, (A.25)

t
o(v) � E

o(v), v 2 V , (A.26)

t
ri

� E
ri

, (r, i) 2 N , (A.27)

l
ribpk

� 0, (r, i) 2 N
v

, b 2 B
r

, p 2 P
b

, k 2 K, (A.28)

z
bpm

� 0, b 2 B, p 2 P ,m 2 M, (A.29)

0  d
ri

 DMAX , (r, i) 2 N . (A.30)

Constraints (A.17)-(A.30) are constraints defining the variables.

A.2 Linearizing the Time Constraints

In section (4.1), we presented the time constraints (4.11) and (4.12). Constraints (4.11)

make sure that the starting time of the next voyage is greater than or equal to the starting

time of the initial position plus the time spent ballast sailing from this position, while

constraints (4.12) make sure that the starting of the next voyage is greater than or equal

to the starting time of the previous voyage plus the time spent actually sailing it and

following the ballast sailing between the voyages. For the purposes of this section, let us

label the constraints (4.11) and (4.12) for (A.31) and (A.32):
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y
o(v)ri(to(v) � t

ri

+
X

s2Sv

TB

o(v)risx
B

o(v)ris)  0, v 2 V , (r, i) 2 N
v

(A.31)

y
vriqj

(t
ri

� t
qj

+
X

s2Sv

(T
vris

x
vris

+ TB

vriqjs

xB

vriqjs

))  0, v 2 V , ((r, i), (q, j)) 2 A
v

(A.32)

In order to implement these constraints into commercial optimization software, they need

to be linearized. This is done by using the big-M method. From this, constraints (A.33)

and (A.34) are obtained:

t
ri

� t
o(v) +

X

s2Sv

TB

o(v)risx
B

o(v)ris �M1(1� y
o(v)ri), v 2 V , (r, i) 2 N

v

(A.33)

t
qj

� t
ri

+
X

s2Sv

TB

vriqjs

xB

vriqjs

+
X

s2Sv

T
vris

x
vris

�M2(1� y
vriqj

), v 2 V , ((r, i), (q, j)) 2 A
v

(A.34)

The necessary values for M1 and M2 to make these constraints behave as intended are

calculated in the next subsection.

A.3 Calculating Su�ciently Large Big-M’s

In this section we calculate su�ciently large values for the big-M’s used in the linearized

time constraints (A.33) and (A.34), and in the constraints used for creating robust solu-

tions (12.6) and (12.7).

The Big-M’s in the time constraints

Let us first calculate M1 and M2. The constraints (A.33) and (A.34) are revisited below:

t
ri

� t
o(v) +

X

s2Sv

TB

o(v)risx
B

o(v)ris �M1(1� y
o(v)ri), v 2 V , (r, i) 2 N

v

(A.33 revisited)
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t
qj

� t
ri

+
X

s2Sv

TB

vriqjs

xB

vriqjs

+
X

s2Sv

T
vris

x
vris

�M2(1� y
vriqj

), v 2 V , ((r, i), (q, j)) 2 A
v

(A.34 revisited)

Let us first consider constraints (A.33). When y
o(v)ri = 1, the magnitude of M1 does

not matter as it will be multiplied by zero. This means that vessel v sails voyage (r, i)

directly from its initial position. The remaining expression describes how the starting

time of voyage (r, i) must be greater than or equal to the starting time from the initial

position plus the time spent sailing to the first voyage. When y
o(v)ri = 0, all associated

xB

o(v)ris are also equal to 0, and the constraint should be redundant. Because the greatest

possible value of t
o(v) and t

ri

is the duration of the planning horizon plus any delay

allowed, we can set

M1 = total days in the planning horizon + days of delay allowed. (A.35)

Determining M2 in constraints (A.34) becomes more complex due to the combination of

the variables xB

vriqjs

and x
vris

. When y
vriqj

is 1, both of the speed variables will have

values, and the start time of voyage (q, j) has to be greater than the start time of voyage

(r, i) plus the time it takes to sail the voyage and the ballast between. However, when

y
vriqj

is zero, only xB

vriqj

has to be zero. Even if the vessel is not sailing directly to

(q, j), the vessel can still sail voyage (r, i) and x
vris

will thus have values. To prevent the

constraints from being restrictive for a voyage not being sailed by the vessel, M2 is set

to the sum of the duration of the planning period, the number of days allowed of delay,

and the duration of the longest voyage.

M2 = total days in the planning horizon + days of delay allowed

+ duration of longest voyage. (A.36)

The Big-M’s in the reward constraints

In this section we calculate the values of MR1-MR4 found in constraints (12.6) and (12.7),

which are used to model the reward of early arrivals in Section 12.3. The linearized

counterparts of the constraints are revisited below.
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MR

3 (1� �R
qj

) � tR
qj

+ t
ri

+
X

s2Sv

(TB

vriqjs

xB

vriqjs

+ T
vris

x
vris

)

� E
qj

�R
qj

�MR

1 (1� y
vriqj

), v 2 V , ((r, i), (q, j)) 2 A
v

. (12.6 revisited)

MR

4 (1� �R
ri

) � tR
ri

+ t
o(v) +

X

s2Sv

TB

o(v)risx
B

o(v)ris

� E
ri

�R
ri

�MR

2 (1� y
o(v)ri), v 2 V , (r, i) 2 N

v

. (12.7 revisited)

Let us first inspect constraints (12.6). Due to the two di↵erent binary variables controlling

the presence of MR

1 and MR

3 , we must consider 22 = 4 four possible combinations of big-

M’s. These combinations are:

1. �R
qj

= 1, y
vriqj

= 1

2. �R
qj

= 0, y
vriqj

= 1

3. �R
qj

= 1, y
vriqj

= 0

4. �R
qj

= 0, y
vriqj

= 0

Let us now examine the di↵erent scenarios that may arise as the binary variables take on

these values:

1. When �R
qj

= 1, y
vriqj

= 1, both MR

1 and MR

3 lapse as both parameters are multiplied

by zero.

2. When �R
qj

= 0, y
vriqj

= 1, MR

1 is insignificant due to being multiplied with zero. The

remaining of the constraints are then

MR

3 � t
ri

+
X

s2Sv

(TB

vriqjs

xB

vriqjs

+ T
vris

x
vris

), v 2 V , ((r, i), (q, j)) 2 A
v

.

From this we see that

MR

3 � total days in the planning horizon

+ days of delay allowed + duration of longest voyage.
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3. When �R
qj

= 1, y
vriqj

= 0, MR

3 is insignificant due to being multiplied with zero. The

remaining of then constraints are then

MR

1 � tR
qj

+ t
ri

+
X

s2Sv

T
vris

x
vris

� E
qj

�R
qj

, v 2 V , ((r, i), (q, j)) 2 A
v

.

(12.6 revisited)

Similarly as in (2), from this we see that

MR

1 � total days in the planning horizon

+ days of delay allowed + duration of longest voyage.

4. When �R
qj

= 0, y
vriqj

= 0, we are left with the equations

MR

3 +MR

1 � t
ri

+
X

s2Sv

(TB

vriqjs

xB

vriqjs

+ T
vris

x
vris

), v 2 V , ((r, i), (q, j)) 2 A
v

.

Given the results from (2) and (3), this expression in (4) is redundant and we can

set

MR

1 = MR

3 = M2 = total days in the planning horizon

+ days of delay allowed + duration of longest voyage.

By following the same procedure for constraints (12.7), we obtain identical results for

MR

2 and MR

4 . I.e., we also get

MR

2 = MR

4 = M2 = total days in the planning horizon

+ days of delay allowed + duration of longest voyage.
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B.1 Confidence Levels

The numerical results presented in Chapter 14 are all based on the average of ten sim-

ulations. In this section we present the resulting confidence levels obtained from the

simulations, and although ten simulations can not guarantee a certain confidence level,

we see that most of the results presented in Chapter 14 has a very high statistical proba-

bility. The confidence levels was found using the Students T-Tests introduced by William

Sealy Gosset in 1908. The null hypothesis for all the t-tests performed below is: The

average simulated costs of the There is no di↵erence between the two tested means, i.e.

µ1µ2. Ten simulations performed for each strategy gives a degree of freedom of 18 for all

the tests.

In Table B.1 we present the t-values and levels of confidence to reject the null hypothesis

stated above and accepting the tested research hypothesis: The simulated costs obtained

by the robust solutions with the NN setting are lower than the simulated costs obtained

from the BASIC solution with the NN setting, i.e. µ1 < µ2.

Table B.1 – The t-values and confidence levels when testing that robust solutions provide costs

that are lower than the BASIC strategy with the NN setting, i.e. µ1 < µ2. µ1 is equal to average

simulated costs obtained from the robust solutions with the NN setting. µ2 is equal to the simulated

costs obtained from the same BASIC solution with the NN setting.

µ1 µ2 t-value Confidence Level

AST NN BASIC NN -4.0513 99.96%

REA NN BASIC NN -8.7126 100.00%

PRST NN BASIC NN -2.1116 97.55%

COMBINED NN BASIC NN -8.8083 100.00%
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Table B.2 presents the t-values and confidence levels to reject the null hypothesis pre-

sented above when testing the following research hypothesis: The simulated costs ob-

tained by the robust solutions with adjustable speeds are lower than the simulated costs

obtained from the same robust solutions with the NN setting, i.e. µ1 < µ2.

Table B.2 – The t-values and confidence levels when testing that robust solutions with adjustable

speed results in lower costs than with the NN setting, i.e. µ1 < µ2. µ1 is equal to average simulated

costs obtained from the robust solutions with adjustable speeds. µ2 is equal to the simulated costs

obtained from the same robust solution but without adjustable speeds.

µ1 µ2 t-value Confidence Level

BASIC ON BASIC NN -7.7699 100.00%

AST ON AST NN -4.1244 99.97%

REA ON REA NN -1.1434 86.61%

PRST ON PRST NN -7.3172 100.00%

COMBINED ON COMBINED NN -1.2754 89.08%

In Table B.3 we present the t-values and confidence levels to reject the null hypothesis

presented above when testing the research hypothesis: The simulated costs obtained by

the robust solutions with adjustable speeds are lower than the simulation costs obtained

from the BASIC solution, also with adjustable speeds.

Table B.3 – The t-values and confidence levels when testing that robust solutions with adjustable

speeds provide lower simulated costs than the BASIC strategy with adjustable speeds, i.e. µ1 < µ2.

µ1 is equal to average simulated costs obtained from the robust solutions with adjustable speeds.

µ2 is equal to the simulated costs obtained from the BASIC solution with adjustable speeds

µ1 µ2 t-value Confidence Level

AST ON BASIC ON -1.1795 87.32%

REA ON BASIC ON -3.6233 99.90%

PRST ON BASIC ON -3.0432 99.65%

COMBINED ON BASIC ON -4.1336 99.97%

In Table B.4 we present the t-values and confidence levels to reject the null hypothesis

presented above when testing the research hypothesis: The simulated costs obtained by

the robust solutions with re-planning recovery procedures enabled are lower than the

simulation costs obtained from the BASIC solution with the ON setting.

Due to the small di↵erences in the simulated costs with the ON and OR setting for

the solutions of REA and COMBINED strategies, we see in Table B.4 that the level of
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Table B.4 – The t-values and confidence levels when testing that robust solutions with adjustable

speeds provide lower simulated costs than the BASIC strategy with adjustable speeds, i.e. µ1 < µ2.

µ1 is equal to average simulated costs obtained from the robust solutions with adjustable speeds.

µ2 is equal to the simulated costs obtained from the BASIC solution with adjustable speeds

µ1 µ2 t-value Confidence level

BASIC OR BASIC ON -2.3456 98.47%

AST OR AST ON -1.2935 89.39%

REA OR REA ON -0.3182 62.30%

PRST OR PRST ON -1.5101 92.58%

COMBINED OR COMBINED ON -0.4205 66.04%

confidence for these two cases are only 62.30 % and 66.04 % respectively. This implies

that a more thorough testing with a greater number of simulations would be required to

state the research hypothesis with a greater statistical significance.

In Table B.5 we present the t-values and confidence levels to reject the null hypothesis

presented above when testing the research hypothesis: The simulated costs obtained by

the robust solutions with re-planning recovery procedures enabled are lower than the

simulated costs obtained from the BASIC solution with the ON setting.

Table B.5 – The t-values and confidence levels when testing that robust solutions with re-planning

recovery enabled provide simulated costs that are lower than the BASIC solution with adjustable

speeds. µ1 is equal to average simulated costs obtained from robust solutions with re-planning re-

covery enabled. µ2 is equal to the simulated costs obtained from the BASIC solution with adjustable

speeds.

µ1 µ2 t-value Confidence level

AST OR BASIC ON -2.7003 99.27%

REA OR BASIC ON -4.2839 99.98%

PRST OR BASIC ON -4.8873 99.99%

COMBINED OR BASIC ON -5.2528 100.00%

The high confidence levels presented in Table B.5 imply that the null hypothesis can

be rejected with a high degree of confidence with the ten simulations performed. This

means that we can with confidence propose that using robustness strategies when planning

and the re-planning recovery procedure during operation gives lower incurred costs than

not considering uncertainty when planning and only perform speed adjustments during

operation.
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B.2 Development of Costs and Delays With Adjustable

Speeds

Figure B.1 shows the development of incurred costs and delays during one of the per-

formed simulations.

Figure B.1 – Development of simulated costs and delay in the planning period as a result of a

predetermined scenario

B.3 Complete Simulations Statistics

Table B.6 shows all results obtained from the conducted NN-ON-OR simulations. The

percentage values presented in Chapter 14 are calculated based on these values.
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Appendix C

C.1 Attachments

The attached ZIP file contains:

1. Fleet Deployment & Disruption Managment in RoRo liner shipping.pdf

2. Java Files

(a) ALNS

(b) MIP

(c) RHH

(d) Simulation

(e) SRASO

3. Output Files

(a) Part 1

(b) Part 2

4. Predefined Scenarios

5. Problem Instances

6. Summary of Results in Excel
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C.2. HOW TO SET UP AND RUN JAVA FILES

C.2 How to Set Up and Run Java Files

We provide a description of how the reader may access the programmed codes, results,

output files and problem instances presented in this thesis, and how they can be set up

in order to duplicate the results.

To run the models or the simulation program with di↵erent robustness strategies with a

specific scenario, follow the steps below:

1. In the folder Java files, choose the model or simulation to be tested.

2. Select the settings for the specified model and for the simulation, choose which

robustness strategy and predefined scenario to be tested. E.g., to run the AST

strategy with scenario 1 with NN setting, first open the folder called ”AST” and

then open the folder named ”ASTNNSim1”.

3. Import the Java files into the Java workspace and run the program.

4. If the MIP, RHH, ALNS or SRASO is used, the problem instance to be tested

can be selected by removing and adding comment backslashes in the class Test

Instances.

5. Make sure to have Gurobi Optimizer installed and add-ins to ensure compatibility

with Microsoft Excel.

6. The output files are given in the folder called ”output” in the corresponding model

folder.
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