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Problem description

This thesis aims to analyse how electricity sourcing affects the operation and value of an aluminium

smelter. The smelter can be shut down temporarily and permanently. Electricity procurement may

vary with respect to electricity price, contract length and contract currency. There is uncertainty in

exchange rates, metal prices and electricity prices, and these factors are modelled.
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Abstract

Electricity prices vary across different geographic locations and affect the relative cost position of

individual aluminium producers. Understanding the scope of electricity price risk is thus of high

importance to industry players. We propose a sequential valuation and optimisation approach for

investigating the relationship between operating policy, electricity sourcing and smelter value. The

hybrid optimisation approach determines a heuristic operating policy with the least squares Monte

Carlo (LSM) method and uses portfolio optimisation to find a corresponding electricity procurement

scheme. We find that the resulting procurement scheme reduces the risk of shutdowns without com-

promising smelter value. In addition, the procurement scheme obtained when using demand derived

from the heuristic operating policy outperforms the one found when treating demand as constant.

Our findings show that there is substantial value in operational flexibility and suggest that decisions

on electricity sourcing should be coupled with the operating policy. This could motivate the indus-

try to adapt a valuation approach that captures the full value of operational flexibility and yields a

corresponding operating policy.





Sammendrag

Prisen på elektrisitet kan variere i stor grad mellom geografiske områder, og påvirker konkurranseev-

nen til lokale aluminiumsprodusenter relativt til globale aktører. Det er derfor viktig at en alu-

miniumsprodusent har innsikt i omfanget av risikoen som er knyttet til elektrisitetsprisen. I denne

oppgaven foreslår vi en sekvensiell verdsettelses- og optimeringsmetode for å undersøke forholdet

mellom driftsstrategi, elektrisitetskjøp og verdi til et smelteverk. Den hybride optimeringstilnærmin-

gen finner en heuristisk driftsstrategi for smelteren ved å benytte least squares Monte Carlo-metoden,

for så å bruke porteføljeoptimering til å finne en tilhørende innkjøpsplan for elektrisitet. Resultatene

tilsier at denne innkjøpsplanen reduserer risikoen for nedstengelser uten å gå på bekostning av ver-

dien av smelteverket. Videre så gjør den resulterende innkjøpsplanen det bedre enn innkjøpsplanen

generert når etterspørsel etter strøm antas å være konstant. Våre funn viser at det er betydelig verdi

i operasjonell fleksibilitet hvilket impliserer at avgjørelser om elektrisitetskjøp burde tas basert på

driftsstrategien. Dette kan motivere aluminiumsprodusenter til å ta i bruk en verdsettelsesmetode

som fanger den fulle verdien av operasjonell fleksibilitet og som samtidig utarbeider en tilhørende

driftsstrategi.
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Chapter 1

Introduction

Following the recent financial crisis, the aluminium industry has suffered from tight market condi-

tions. Since it is a global industry, the relative cost positions of local producers are put under pressure

by highly varying local electricity prices and fluctuating foreign exchange rates. In strive for com-

petitive edge producers are thus focusing their efforts towards cost reductions and risk management.

The main research question addressed in this thesis is:

How does electricity sourcing affect the operation and value of a generic smelter with operational

flexibility? Three sub-questions follow:

1. What heuristic operating policy maximises the value of the smelter in an environment with

uncertain aluminium prices, electricity prices and exchange rates?

2. Given an optimal policy, how should electricity be sourced to reduce cost and at the same time

be aligned with management’s appetite for risk?

3. How do different electricity procurement schemes perform when compared in terms of shut-

down risk and smelter value?

The main contribution of this thesis is an article, "Operation, Valuation and Electricity Sourcing

for a Generic Aluminium Smelter", addressing issues regarding operations and electricity sourcing

for an aluminium smelter. The article [3] introduces a sequential valuation and optimisation ap-

proach for evaluating a smelter with operational flexibility and deriving a risk minimising electricity

procurement scheme. The first step is to find a heuristic operating policy that maximises the ex-

pected payoff from the smelter. Due to the complexity of the problem we apply a numerical method

to obtain a heuristic policy and an approximation of the smelter value. The approach used is the least

squares Monte Carlo (LSM) method [18]. In the next step this policy is used as input to a two-stage

stochastic program to find an optimal procurement scheme for electricity. The impact on shutdown

risk and smelter value from the procurement scheme is finally evaluated by re-solving the first step of

the solution approach, assuming that electricity is procured accordingly. At this final step the scheme

is also compared to a range of benchmarks.



2 Introduction

The thesis is organised as follows. Chapter 2 offers an introduction to the value chain of alu-

minium production and market insight for the aluminium, Nordic electricity and foreign exchange

markets. Chapter 3 discusses the dynamics of the main risk factors in aluminium production. The

LSM method and two-stage stochastic program are briefly presented in Chapter 4. Summary and

contributions are provided in Chapter 5. In Chapter 6 we discuss limitations of our approach and

make suggestions for further research. Finally, the article considered as the main contribution of this

thesis is attached.



Chapter 2

Market and Institutional Context

The following sections provide a description of the value chain in aluminium production and offer a

brief introduction to the aluminium, electricity and foreign exchange markets.

2.1 Aluminium Production

The production process of aluminium goes as follows. In a metal plant alumina is processed into

aluminium using the Hall-Héroult process. Alumina is dissolved into molten cryolite and undergoes

an electrolytic reduction to obtain aluminium. The process is extremely energy intensive, as a direct

current of 150 to 250 kA is necessary to obtain the electrolytic reduction [14]. The process takes

place in a bath of hot cryolite (around 960◦C), hence access to reliable power sources is a necessity to

ensure a high temperature in the bath at all times [10]. After the molten aluminium is extracted from

the smelter, it is placed in large furnaces before being casted into other products. In the furnaces, the

pure aluminium holds a temperature higher than 700◦C while it is alloyed by adding other elements

to further strengthen the material. The metal is then casted into different products specified by the end

user. This final step is done in a casthouse. Producing aluminium is considered continuous, meaning

that once the smelter is operating, it must continue to operate at all times in order to maintain a high

temperature in the electrolytic baths. Short interruptions in the production process could potentially

damage and reduce the lifetime of the pots due to cooling cracks in the cathode [41]. Aluminium

producers do, however, have the optionality to shut down the smelter for longer time periods when

facing unfavourable market conditions, but restarting the smelter entails high costs. The production

process described above requires three main inputs; i) alumina, ii) electricity and iii) carbon.

i) Alumina is the direct base for aluminium and is refined from bauxite, a mineral that contains

about 15-25% aluminium [25]. Bauxite is usually found several meters underground in a belt around

the equator. After recovering bauxite the mineral is transported to crushing or washing plants before

it is processed into aluminium oxide, commonly known as alumina. Mining of bauxite has become

a multinational industry, and large aluminium producers tend towards complete vertical integration

by acquiring their own mining facilities or engaging in joint ownerships with mining companies
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[13][23]. Alumina refineries are typically constructed close to and dedicated to specific areas of

bauxite mining, since bauxite is heterogeneous in terms of chemical characteristics based on its origin

and is bulky in nature. The countries with the largest production of bauxite are Australia (30%),

China (18%), Brazil (13%) and Indonesia (12%) [38]. In January 2014, Indonesia banned bauxite

exports in order to motivate investments in domestic aluminium smelters. This could potentially

have some impact on the global market for bauxite, as China is a net importer of bauxite, mainly

from Indonesia. Thus, global prices of bauxite could strengthen somewhat due to lower supply [26].

Alumina prices tend to be closely linked to bauxite and aluminium prices, but industry practice is

now moving in the direction of a separate price index for alumina [39].

ii) Carbon accounts for about 13% of the total production cost of primary aluminium [13], and is

used for the cathodes and anodes in the electrolysis process of aluminium production. It is common

for aluminium producers to own carbon electrode plants close to the smelter. The usage of carbon

electrodes does lead to carbon emissions and certain countries have introduced a tax on carbon

emissions, giving local producers a competitive disadvantage.

iii) Electrical power stands on average for 30% of the production cost of primary aluminium.

Since electricity prices vary strongly across different geographic locations, electricity cost may be a

source of competitive advantage for some producers. The average cost can vary from $400 to $1,000

per metric ton (mt) produced aluminium between industry players [13]. Aluminium producers have

three options for electricity sourcing; they can purchase electricity through short-term or long-term

commitments with electricity producers or invest in power plants. Since electricity is a dominating

cost, several European aluminium producers own power generating assets despite it being considered

a capital intensive strategy. In addition, to soften the effect of electricity price spikes, producers

commonly trade in energy derivatives. Since 1980 there has been a nearly linear decrease in the

average required MWh/mt produced aluminium, from 17 MWh/mt to 14.5 MWh/mt in 2012. Note

that this is an average ratio, and that aluminium producers may lie above or below this ratio. A simple

forecast based on a polynomial regression (see Figure 2.1) indicates that the ratio could converge

towards 13.5 MWh/mt in the long-run if the same pattern continues. Despite increasing energy

efficiency, increased energy costs have the last few years forced several aluminium producers to shut

down their smelters.
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Fig. 2.1 Power consumption per produced mt primary aluminium [MWh/mt]. Source: The Inter-
national Aluminium Institute.

2.2 The Aluminium Market

Aluminium was introduced on the London Metal Exchange (LME) in the end of 1978, whereas the

contract that is traded today was introduced in 1987 [17]. In the period 1978-1996 the global pro-

duction of aluminium experienced a compound annual growth rate (CAGR) of 2.2%. This more than

doubled to 5.3% in the period 1996-2014, mainly driven by a strong increase in Chinese aluminium

production (see Figure 2.2). Demand has, however, not always matched the same growth, especially

the last few years. This has caused challenging market conditions for aluminium producers.

Fig. 2.2 Historical annual aluminium production 1973-
2014. Source: The International Aluminium Institute.

Fig. 2.3 Historical daily spot LME ring trade close aluminium price
1987-2015. Source: Reuters EcoWin Pro.

The LME price per mt aluminium in the time period 1987-2015 is plotted in Figure 2.3. In the

period between 1987 and 1990 there was an extreme peak in the aluminium price, when it doubled

to more than $4,000 /mt before crashing. The rapid price increase was caused by low inventories

and closed overcapacity combined with a strong increase in demand, which in turn resulted in a very

tight supply and demand situation [30]. However, the dissolution of the Soviet Union caused large

amounts of Russian aluminium to enter the market. Combined with heavy speculative trading in

the futures market this caused the price to plunge. Following this volatile period the price fluctu-

ated in the interval $1,300-$1,800 until the pre-financial crisis years. In this time period, increased

period-to-period volatility and a weaker relationship between supply and demand and the price of

the commodity, have been attributed to the financializtion of commodities [6], a phenomenon caused

by increased trading in futures. From 2005 to 2006 the price drastically increased from $1,700 to
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$3,200 before varying between $2,500 and $3,200 until 2008, when the financial crisis struck. In a

matter of few months the price dropped from $3,200 to $1,300 at its lowest. Since the aluminium

price is quoted in U.S. dollars the price itself may be influenced by changes in the U.S. dollar trade

weighted exchange rate, which is plotted in Figure 2.4. The movements in the aluminium price re-

lated to the financial crisis were strongly negatively correlated with this latter ratio. Within a short

time after the price dropped a rebound wave materialized, which slowly died out and we currently

see an aluminium price of around $1,850-$1,900. This decrease can partly be attributed to lower

demand growth from China.

Fig. 2.4 USD nominal trade weighted exchange index
broad, Federal Reserve. January 1997=100. Source:
Reuters EcoWin Pro.

Fig. 2.5 LME stock levels, LME spot aluminium price
and Metal Bulletin Billet Premium Indicator. January
2008=100. Source: Norsk Hydro Q1 Presentation 2015.

The buyer of aluminium often pays a premium on top of the aluminium price quoted at the LME.

Cost of delivery and insurance were originally the factors determining the premium. However, in

recent times analysts argue that the premium to a larger extent reflects market fundamentals [5].

Premiums have become a means for price negotiation and leverage for buyers to convince sellers to

sell the metal instead of storing it. Figure 2.5 shows a positive correlation between storage levels and

premiums the past couple of years. In addition, there seems to be a negative correlation between the

aluminium price and premiums, which further strengthens the argument that premiums partly reflect

market fundamentals. For the reasons mentioned above, premiums have fluctuated strongly the past

few years increasing to high levels in late 2014. Premiums have however dropped drastically through

April 2015, and are expected to drop even further by industry sources.

There is consolidation in the primary aluminium industry. As discussed earlier, the current mar-

ket situation is tight, but the shutdown of capacity has brought some relaxation to a tight supply and

demand situation. From the middle of 2014 demand has exceeded production (excl. China), and

there is a physical market deficit. However, the global aluminium market including China is slightly

oversupplied [27]. The strongest outlooks for demand growth are in the U.S. and in South-East Asia,

while the eurozone is softening. Demand growth in 2014 excl. China was 3%. There have also been

shifts in the end use applications of primary aluminium, which helps relieve the expected decrease

in demand growth from China. New areas of application are e.g. within the automotive industry,

transportation, consumer electronics, solar panelling and wind farms. The end-use areas with the

highest CAGR from 2004-2014 were electronics, construction and transport respectively [28], and

the industry expects a CAGR of 20% in automotive demand the next eight years. Currently transport,
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construction and electronics make up the largest share of demand.

2.3 The Nordic Electricity Market

Nord Pool Spot is Europe’s leading power market, and offers both day-ahead and intraday trading for

physical delivery of electricity. The power market has more than 380 members from 20 countries,

and has a market share of 84% in the Nordic and Baltic region according to the 2013 annual report.

Nord Pool Spot is licensed by the Norwegian Water Resource and Energy Directorate (NVE) to

organise and operate the power market, and by the Norwegian Ministry of Petroleum and Energy to

facilitate the power market with foreign countries [24].

In 2010, Nord Pool’s marketplace for financial electricity contracts was acquired by NASDAQ

OMX and is now known under the trade name NASDAQ OMX Commodities Europe. The most

liquid financial contracts have a time horizon of up to three years and all traded financial contracts

use the Nord Pool Spot system price as a reference price. They are cash settled, meaning that there

is no physical delivery of electricity.

Since we valuate a generic smelter located in the Nordic region, we use the 1-year forward

contract on the Nord Pool Spot system price as a proxy for the price of electricity. We set the prices

in long-term bilateral contracts based on conditional expected prices of the 1-year forward price, a

procedure that is thoroughly explained in Appendix A.3. Figure 2.6 shows a plot of the historical

Nord Pool 1-year forward system price from 2001 to 2015.

Fig. 2.6 Nord Pool 1-year forward system price, quarterly intervals. Source: Reuters EcoWin Pro.

In Figure 2.6 we see that the electricity price increased steadily from 2001 to 2008. From 2008

to 2009 the price fell significantly, but has remained stable thereafter. The system price peaked for

a short period of time prior to the financial crisis in 2008. This was due to a new cap-and-trade

quota system on CO2 emissions launched by the European Union Emissions Trading System for the

period 2008-2012. The quota system put an upward pressure on fossil fuel power plants, thereby

affecting the system price of electricity in the Nordic region. The financial crisis led to a reduction

in global production levels, and as a consequence there was an oversupply of emission quotas. Thus,
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a correction in the system price took place during the first half of 2009, in which it returned to

pre-quota levels [12].

Several factors may influence the Nord Pool Spot system price in the years to come. In an effort

to integrate the transmission system in Europe, two new transmission cables are under construction

from Norway to Germany and Great Britain, a market change that is expected to put an upward

pressure on the system price. Other important factors are the price of CO2 quotas, share of production

capacity from renewable sources and hydro reservoir levels [35].

2.4 The Foreign Exchange Market

Currencies are traded in the the foreign exchange market. It is by far the largest market in the world

in terms of value, and operates continuously during weekdays. Hence, it is characterised as one of

the most efficient markets in the world.

Foreign exchange rates can be fixed or floating. With a fixed exchange rate, one currency is

pegged to another. This implicates that monetary policies are undertaken in order to maintain a

constant exchange rate. The contrary to fixed exchange rates are floating exchange rates. With this

practice, other targets than only the foreign exchange rate determine the monetary policies under-

taken. Hence, exchange rates may fluctuate.

Several factors affect floating exchange rates. They usually fall into three main categories; eco-

nomic factors, political factors and market psychology. Economic factors are mainly fiscal policies

from central banks, government spending, government surplus and deficits, balance of trades and

economic growth. Political stability and anticipations make up the political factors. Political insta-

bility often has negative effects on a nation’s economy, hence negatively impact foreign exchange

rates. On the other hand, a responsible government may have stimulating effects in periods with

financial difficulties. Psychological effects are e.g. speculations and rumors, expectations regarding

long and short-term trends and fear of capital flight.

Since the price of aluminium is denominated in U.S. dollars and parts of the costs are incurred

in local currencies, a local aluminium producer is exposed to fluctuating exchange rates. An appre-

ciation or depreciation of the local currency against the U.S. dollar will only impact the relative cost

position of the local producer and not competitors. In this thesis we consider a smelter located in the

Nordics, hence we will focus on the U.S. dollar/Euro (USD/EUR) and U.S dollar/Norwegian krone

(USD/NOK) floating exchange rates.

The euro currency was first introduced in January 1999, thus we use an approximated exchange

rate from Reuters EcoWin Pro to extend the length of the time series. We observe in Figure 2.7 that

the USD/EUR exchange seems to be mean reverting around a stationary level of approximately 1.2,

however there are longer time periods where the exchange rate deviates from this level. During the

recession in the early 1980s, when financial instability hit most industrial countries, we observe an

appreciation of the U.S. dollar to the approximated euro. We also observe unusually high short-term



2.4 The Foreign Exchange Market 9

volatility during the currency crisis in 1992 and financial crisis in 2008.

Fig. 2.7 USD/EUR exchange rate, quarterly intervals. Source: Reuters EcoWin Pro.

Figure 2.8 shows historical data for the USD/NOK exchange rate. The exchange rate seems to

be mean reverting around a stationary level of approximately 0.15. Comparing historical data of the

USD/EUR and USD/NOK exchange rates in Figure 2.7 and Figure 2.8 the exchange rates seem to

follow a somewhat similar pattern, which indicates a possible positive correlation between these.

Fig. 2.8 USD/NOK exchange rate, quarterly intervals. Source: Reuters EcoWin Pro.





Chapter 3

Dynamics of Risk Factors

3.1 Aluminium Price

[9] suggest the use of a mean reverting process for modelling the stochastic behaviour of commodity

prices. The intuition behind mean reversion in commodity prices comes from basic microeconomic

theory. This states that when prices increase, high cost producers will enter the market, which in

turn will increase the supply and push down the price. Conversely, when prices are low, high cost

producers will leave the market, which will decrease the supply and increase prices. Purchasing of

commodities often has a time aspect to it, since immediate delivery is usually not possible. The value

of having the commodity now as opposed to in the future is captured by the convenience yield and

can be positive or negative. Convenience yield is normally subtracted from the drift of the stochastic

process used to describe the dynamics of the commodity. One basic single-factor mean reverting

process is the Ornstein-Uhlenbeck process as described in e.g. [9]. Jumps have also been added

to form a mean reverting process with jump diffusions, which has been popular for capturing the

short-term dynamics of the electricity price, also seen in [9]. Despite a strong position in existing

literature, reversion to a constant mean in commodity prices is an increasingly discussed topic. [36]

summarises some of the literature that document the non-presence of mean reversion in commodity

prices. There are arguments that the standard supply and demand relationship from microeconomics

no longer holds in many commodity markets due to the financialization of commodities, which

makes the pricing mechanisms in the markets much more complex. Alternative proposed processes

are random walk or geometric Brownian motion (GBM), the latter much used in real options due to

its mathematical convenience.

The processes discussed above are single-factor processes that mainly originate from pre-1990.

The superiority of multi-factor models over a single-factor model for commodities, is discussed by

among other [7],[15], [29] and [31]. Two such models are the two-factor model and three-factor

extension presented in [32] and [33]. They claim that the spot price of oil is determined by two

different factors, namely short-term deviations and a fluctuating equilibrium price. Short-term de-

viations are caused by factors such as changes in inventory levels and seasonality, while changes in
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the long-term level are determined by macroeconomic factors such as technology and the geopolit-

ical environment. This approach captures the mean reverting behaviour of commodity prices, but

allows for uncertainty in the equilibrium level to which prices revert. Dynamics in simulations are

thus enriched as opposed to with a single-factor process. The popularity of futures trading further

emphasizes the interest in understanding the long-term dynamics. [33] and [32] have been devoted

much attention (see [1], [8] and [36]), and their results have been applied in a range of real options

problems. Calibration of the three-factor extension can be done by using the Kalman Filter. Refer to

Appendix A.1 for details of the calibration procedure.

To evaluate the presence of mean reversion in the aluminium price it is relevant to conduct sta-

tistical hypothesis testing of stationarity. In order to test whether a time series has a stationary

mean level to which it reverts one can among other conduct an augmented Dickey-Fuller (ADF)

test, Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test and variance ratio (VR) test. A high-level

overview of how to interpret the results from these tests can be found in Table 3.1. Results from the

tests applied on historical monthly, quarterly and yearly spot LME aluminium prices are shown in

Table 3.2.

TABLE 3.1 INTERPRETATION OF RESULTS FROM STATISTICAL TESTS
Statistical test Hypotheses Conclusion

ADF H0 : Series contains a unit-root False= Cannot reject hypothesis of unit-root. Not stationary
H1 : Series does not contain a unit-root True= Can reject hypothesis of unit-root. Stationary.

KPSS H0 : Series is trend or level stationary False= Cannot reject hypothesis of trend-stationarity.
H1 : Series is not trend or level stationary True= Can reject hypothesis of trend-stationarity.

VR H0 : Series is a random walk. False= Cannot reject hypothesis of a random walk. Not stationary.
H1 : Series is not a random walk True= Can reject hypothesis of a random walk. Stationary.

TABLE 3.2 STATISTICAL HYPOTHESIS TESTING OF STATIONARITY
Period ADF1 ADF2 ADF3 KPSS1 KPSS2 KPSS3 VR

1987-2015 FALSE FALSE FALSE TRUE TRUE TRUE FALSE
1987-2007 FALSE FALSE FALSE TRUE TRUE TRUE FALSE
2009-2015 FALSE FALSE FALSE TRUE TRUE TRUE FALSE

(a) Results from statistical hypothesis testing
monthly time series

Period ADF1 ADF2 ADF3 KPSS1 KPSS2 KPSS3 VR
1987-2015 FALSE FALSE FALSE TRUE TRUE TRUE FALSE
1987-2007 FALSE FALSE FALSE TRUE TRUE TRUE FALSE
2009-2015 FALSE FALSE FALSE TRUE TRUE TRUE FALSE

(b) Results from statistical hypothesis testing log of
monthly time series

Period ADF1 ADF2 ADF3 KPSS1 KPSS2 KPSS3 VR
1987-2015 FALSE FALSE TRUE TRUE TRUE TRUE FALSE
1987-2007 FALSE FALSE FALSE TRUE TRUE TRUE FALSE
2009-2015 FALSE FALSE FALSE TRUE TRUE TRUE FALSE

(c) Results from statistical hypothesis testing quar-
terly time series

Period ADF1 ADF2 ADF3 KPSS1 KPSS2 KPSS3 VR
1987-2015 FALSE FALSE TRUE TRUE TRUE TRUE FALSE
1987-2007 FALSE FALSE FALSE TRUE TRUE TRUE FALSE
2009-2015 FALSE FALSE FALSE TRUE TRUE TRUE FALSE

(d) Results from statistical hypothesis testing log of
quarterly time series

Period ADF1 ADF2 ADF3 KPSS1 KPSS2 KPSS3 VR
1987-2015 FALSE TRUE FALSE TRUE FALSE FALSE FALSE

(e) Results from statistical hypothesis testing yearly
time series

Period ADF1 ADF2 ADF3 KPSS1 KPSS2 KPSS3 VR
1987-2015 FALSE TRUE FALSE TRUE FALSE FALSE FALSE

(f) Results from statistical hypothesis testing log of
yearly time series

We see from Table 3.2 that there is some evidence of stationarity for low granularity time series.

However, for high granularity levels and according to the VR test there is no evidence of stationarity.

In addition, there are two potential issues posed by the small time frame of the historical data. First,
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the Augmented Dickey-Fuller test often fails to reject a unit-root for short time series [2]. Secondly,

it is difficult to distinguish between mean reversion and random walk for data within a small time

frame. Finally, it can be argued that a sample set of only 27 observations is not sufficiently large to

capture long-term dynamics with a single-factor process.

Due to the issues discussed above regarding proving a stationary mean level for the aluminium or

log aluminium price, a single-factor mean reverting process for the aluminium price seems inapplica-

ble. Recent literature suggests the use of a multi-factor model to capture the dynamics of commodity

prices. One such process that is widely accepted in the literature is the three-factor extension in [32].

Therefore, we use this in the article [3] to capture the dynamics of the aluminium price.

3.2 Electricity Price

Certain characteristic properties of electricity affect the dynamics of the electricity price. Most im-

portantly, electricity cannot be stored. Hence, it is subject to real-time consumption and relies on

prices to balance supply and demand. Furthermore, electricity is dependent on a transmission sys-

tem to be transported from the producer to the consumer. Therefore, constraints on the transmission

capacity between regions contribute to differences in the electricity price across geographic locations.

Electricity prices are highly cyclical due to rapid changes in supply and demand, and fluctuations are

often daily, weekly and yearly. There exists extensive literature on how to capture the dynamics of

hourly and weekly movements in the electricity price, and price processes often include combina-

tions of autoregressive components, GARCH models and jump diffusion components, e.g. refer to

[34].

The purpose of this thesis is to evaluate strategic decisions made on a yearly basis. It is thus of

less relevance to adapt a process that mainly focuses on capturing the short-term dynamics of the

electricity price. As opposed to for short-term prices, the literature on long-term electricity price

trends is limited. [19] argue that the dynamics of electricity prices can be captured with a two-factor

model that takes both short-term and long-term fluctuations into account. Long-term dynamics of

the price are calibrated from historical forward curves. However, there is limited historical data

on Nordic electricity forward curves. On the grounds of this and the fact that rapid short-term

fluctuations in the electricity price are irrelevant from a lower granularity point of view, we argue that

the long-term dynamics of the electricity price needed for our purpose can successfully be captured

with a single-factor autoregressive process.

3.3 Exchange Rates

[22] argue that forecasting nominal exchange rates using empirical macroeconomic processes is close

to impossible, since most time series processes fail to beat the random walk.

Recent research, such as [11] and [37], conclude that even though exchange rates seem to move
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randomly in the short-run, the medium and long-term behaviour of real exchange rates should be

forecasted based on the theory of purchasing power parity (PPP). The International Monetary Fund

defines this as: "The rate at which the currency of one country would have to be converted into

that of another country to buy the same amount of goods and services in each country". In other

words, a basket of goods in two different countries should have the same price when expressed in

the same currency. [40] use this theory to argue that in the long-run, exchange rates revert back to a

stationary mean level. They compare processes based on PPP to the random walk, and conclude that

the random walk performs just as well as processes based on PPP in the short-run, but to accurately

forecast long-term effects of real exchange rates mean reversion is required.

In this thesis we are interested in the long-term dynamics of exchange rates, since the time

frame considered for the aluminium smelter is 40 years. It follows from the arguments mentioned

above that a random walk or other non-stationary processes for foreign exchange rates may yield

unrealistic extreme values in long-term simulations. Therefore, we adapt a process for exchange

rates that reverts to a stationary mean level in the long-run.

A fitted process can be evaluated with Q-Q plots of residuals and plots of historical volatility.

A Q-Q plot illustrates to what extent the residuals from the fitted process resemble the residuals

drawn from a normal distribution. Further on, extreme deviations are easily identified and can be

investigated. These may in fact often be explained by extraordinary events. Volatility plots are used

to check for constant volatility, and should show no signs of volatility clustering. Volatility should

therefore be the same for both high and low values of the studied real exchange rate.



Chapter 4

Methodology

4.1 Operating Policies and Smelter Valuation

Finding a heuristic operating policy and an approximation of the smelter value make up the first step

of the sequential solution approach to the combined problem. We formulate a stochastic dynamic

program (SDP) that must be solved numerically due to its complexity. For this purpose we use

the least squares Monte Carlo (LSM) method. [18] are the pioneers of LSM, which is a scenario-

based approach for solving American type claims, and it has been widely applied within the fields of

financial and real options. In short terms, it enables the use of Monte Carlo simulations for unbiased

value approximations by avoiding perfect foresight. The decision to exercise American options are

based on comparing the value of keeping the option alive for one more period (the continuation value)

with exercising now. The main idea of the LSM method is to approximate these continuation values

by regressing the next period continuation values on the current values of the explanatory variables,

which is the equivalent of a conditional expectation function. In the specific problem studied in this

thesis, the aluminium smelter receives a cash flow at each stage from the corresponding operating

state. Cash flows are the basis of the valuation, and depend on the risk factors. The optimal operating

state at a certain stage in a certain scenario is the one with the highest sum of cash flow and expected

continuation value. The different operating states of the smelter are described in Table 4.1.

Choosing the functional form of the regression in the LSM method is challenging as the function

should resemble the shape of the value function, but is simplified by the fact that the LSM algorithm

only depends on the fitted value of the regression, and not on the correlation between the independent

variables. Possible choices for a regression basis mentioned by [18] are Laguerre, Hermite and Jacobi

polynomials as well as only simple powers of the state variables.

In this thesis, backwards dynamic programming and least squares multivariate regression are ap-

plied iteratively to estimate the value of the aluminium smelter at each time step from maturity to

now. The discounted expected continuation values of keeping the smelter operating or mothballed at

a certain stage and scenario are easily calculated by multiplying the regression basis for the values

of the state variables with the derived regression coefficients for that time step. Actually, two re-
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TABLE 4.1 DESCRIPTION OF OPERATING STATES

Operating state Description

Operating
Smelter is operating and owners receive the net cash flow from production and sale of
aluminium.

Mothballed

Smelter is temporarily shut down. Owners receive the net cash flow from sale of pre-
ordered electricity in the spot market and may have to pay some operating expenses.
The work force has been laid-off and production may restart if favourable market con-
ditions occur. It is assumed that the smelter can be in this state for a maximum of three
consecutive years1.

Closed

Owners have shut down the smelter permanently and there is no optionality to restart
operations. Smelter will not generate any future cash flows. Upon closure a closure cost
is paid and remaining amount of pre-ordered electricity is sold. Value of the latter may
be positive or negative and stems from differences between conditional expected prices
at the contract order date and at the time of closure.

gressions are carried out at each time step. The first regression is performed in order to approximate

the continuation value of an operating smelter, and the second regression is performed in order to

approximate the continuation value of a mothballed smelter. To avoid a biased approximation of

the continuation values, we generate two sets of scenarios. First, an in-sample set of scenarios for

the state variables is generated to calculate regression coefficients for each time step. Secondly, an

out-of-sample set of scenarios for the state variables is used to approximate continuation values. We

use 10,000 correlated scenarios for both sets (refer to Appendix A.2 for details on correlated random

draws). The conditional expected continuation values of keeping the smelter operating or mothballed

are then calculated by multiplying the coefficients generated from the in-sample set with the regres-

sion basis for the values of the state variables from the out-of-sample set. By repeating the above

procedure at every time step, an operating policy for the smelter is derived for each scenario. Finally,

the approximated smelter value is found by applying the heuristic operating policy, calculating the

net present value of the resulting cash flows and averaging over all scenarios. In this first step of

the sequential solution approach, electricity is assumed to be procured only through 1-year forward

contracts. MATLAB® [21] has been used to implement the LSM method in the attached article [3].

4.2 Portfolio Optimisation

The second step of the solution approach to the combined problem is to use the results from solving

the SDP with the LSM method, as input in an optimisation routine that finds an optimal electricity

procurement scheme. The heuristic operating policy is used as basis to determine the demand for

electricity at each time step in each scenario, whereas the cash flows are used to determine the risk

of the procurement scheme.

We assume that the producer can reduce electricity price risk, by procuring electricity through

long-term bilateral contracts. The contracts can have a duration of 5, 10 or 20 years, and can be

1Cost of reactivating the smelter furnaces will with time increase to the point where reopening the smelter will no
longer be an option [4]. Assumption of maximum three years based on input from industry sources.
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denominated in USD, EUR or NOK. The prices used in long-term contracts are calculated based

on conditional expected electricity prices and exchange rates at the time of contract entry. Refer to

Appendix A.3 for pricing details. Since the smelter is valuated on a USD per produced mt aluminium

basis, entering into a long-term USD contract implicates hedging both electricity price and exchange

rate risk. Management can also hedge electricity price risk by entering into long-term EUR and NOK

contracts, but will then be exposed to exchange rate risks upon delivery.

In order to find an optimal portfolio of electricity contracts we construct a two-stage stochastic

program that minimises a relationship between electricity cost and risk of low cash flows. Optimal

portfolio strategies with risk measures were first introduced by [20]. The idea is to maximise the

return of a portfolio with an upper bound on variance. Since variance is a quadratic risk measure,

efforts have been made to find a linear risk measure. The two-stage stochastic program we have for-

mulated in [3] uses Conditional Value-at-Risk (CVaR) as risk measure. This risk measure is linear

and coherent, hence we are able to solve the portfolio optimisation problem using linear program-

ming. Note that CVaR is a tail statistic and is therefore fragile towards estimation errors in risk

factors. A large number of observations is necessary in order to accurately estimate the parameters

of the risk factors. Otherwise, CVaR might be ineffective in capturing the underlying risk of the

portfolio.

The optimisation routine works as follows. First, the heuristic operating policy from the previous

step of the sequential solution approach is used to determine the demand for electricity at each time

step in each scenario, hence treating demand as stochastic. In addition, the simulated cash flows,

electricity prices and exchange rates from the previous step are taken as input. Next, the optimi-

sation routine determines an electricity procurement scheme in the form of a portfolio with 1-year

forwards and long-term bilateral contracts that matches the derived demand and risk preferences.

Note that the amount of electricity procured through long-term contracts is the same across all sce-

narios. However, in some scenarios the smelter may be in a mothballed state at the time of delivery

of pre-ordered electricity. In those cases, we allow for pre-ordered electricity to be sold in the spot

market. Correspondingly, if the amount of pre-ordered electricity does not fulfill the demand at a

certain point in time in a scenario, the remaining demand is procured through 1-year forwards.

A resulting procurement scheme is finally evaluated by repeating the first step of the solution

approach, assuming electricity is procured accordingly. We use two benchmarks to evaluate the result

of the optimal scheme. The first is a series of static procurement schemes. Secondly, we perform

the optimisation without using the heuristic operating policy from the LSM method as input, hence

treating demand as constant. The second benchmark gives us an estimate of the additional value

gained from first determining an operating policy before finding a procurement scheme.

The resulting procurement scheme implicates lower downside cash flow risk than when electric-

ity is procured only through 1-year forward contracts. Hence, assuming that electricity is procured

according to the resulting procurement scheme when determining a heuristic operating policy for

the smelter could yield a different heuristic operating policy than before, e.g. an operating policy
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with fewer mothballs or closures. This implicates that the procurement scheme could potentially be

further improved by repeating the steps of our solution approach in an iterative manner. In the article

[3] we only consider one iteration.

In summary our sequential solution approach is as follows. We first use the LSM method to deter-

mine a heuristic operating policy and simulations of risk factors and cash flows, assuming electricity

is only procured through 1-year forward contracts. This is used as input to the two-stage stochastic

program to find an electricity procurement scheme that matches risk preferences. The procurement

scheme is then fed back into the first step to evaluate its effect on mothballs and closure risk, as well

as smelter value.

The two-stage stochastic program was solved using Mosel programming language and the soft-

ware Xpress-Optimiser version 26.01.04.



Chapter 5

Summary and Contributions

Existing literature has only to some extent studied the operation of an aluminium smelter. Electricity

procurement strategies for large consumers is a more studied field, but to our knowledge existing

literature has not considered the combined problem of operation, valuation and electricity sourcing

for an aluminium smelter. We contribute to existing literature by introducing a sequential solution

approach to this combined problem. The analyses yield insight into how electricity sourcing deci-

sions impact shutdown risk and smelter value, and could improve industry players’ understanding of

the scope of electricity price risk.
Research question 1 was addressed by formulating a stochastic dynamic program (SDP). This

was solved numerically using the least squares Monte Carlo (LSM) method. We found the LSM

method to be an attractive approach for determining a heuristic operating policy that maximises the

approximated smelter value. The risk of mothballs and closures is then easily assessed by analysing

the resulting heuristic operating policy. In addition, we found that introducing the flexibility of

mothballs when already having closure flexibility is of noticeable value.
To answer research question 2, we used the demand for electricity derived from the heuristic

operating policy as input to an optimisation routine that finds an electricity procurement scheme

based on a trade-off between CVaR of cash flows and total electricity cost. Somewhat surprisingly,

we found the optimal procurement scheme to be a mix of 1-year forwards and medium-term bilateral

contracts.
Finally, research question 3 was addressed by determining operating strategies and value approx-

imations of the smelter with different electricity procurement schemes. We found that optimising

electricity procurement reduces the risk of mothballs, without compromising on closure risk and

smelter value. The sequential approach is favoured by the observation that the electricity procure-

ment scheme derived from using the heuristic operating policy as basis for demand, outperforms the

scheme found when assuming constant demand. Approximated smelter value is higher and shut-

down risks lower. Furthermore, the electricity procurement scheme also outperforms more generic

procurement schemes as e.g. only very long-term contracts. Long-term contracts were found to in-

crease closure risk and reduce the risk of mothballs, but yielded a substantial lower smelter value

than the scheme found with the sequential solution approach.





Chapter 6

Further Research

The two-stage solution approach is an initial step in the direction of solving the combined problem

of operation, valuation and electricity sourcing for an aluminium smelter. Our work shows that there

are clear benefits of an approach that takes all the latter elements into account, as opposed to treating

them as strictly independent. The analyses shed light on interesting findings that could be basis for

further research.

Industry players such as Norsk Hydro ASA and Alcoa Inc. are concerned with electricity sourc-

ing. They look at the opportunity to buy own power assets and usually enter into long-term bilateral

agreements for electricity sourcing with large utility companies. However, we find that it would be

more beneficial with a greater exposure towards short-term electricity prices. Our solution approach

includes high uncertainty in several risk factors other than electricity, which could overshadow the

isolated electricity price risk, and thus yield different electricity procurement schemes than if elec-

tricity price risk was to be treated in a more isolated way. Still, a question that arises is whether

industry players overestimate the significance of electricity sourcing or if isolating the electricity

price risk would yield findings more in-line with what is observed in practice? In addition, are there

potentially other elements than only price risk, e.g. reliability, that motivate industry players to enter

into long-term agreements with utility companies? Addressing these questions in further research

would be an interesting extension of our work and could potentially have an impact on current in-

dustry practice.

Portfolio optimisation has some fallacies that are important to be aware of. For risk-minimising

portfolio optimisation to yield fully correct results, a very large number of observations is needed.

When using a risk measure such as CVaR, estimation errors may be significant, namely because

CVaR measures tail risk. As extreme events occur with low probability, a large number of obser-

vations would be needed to accurately estimate the distribution of such events in the underlying

population and to avoid overfitting. This is further emphasised by [16]. Having the required number

of observations to make CVaR risk estimates fully accurate is rarely the case, hence it is important

to be aware of this limitation when assessing the implications of the results.

The current sequential solution approach could potentially be approved in further research with
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some alterations to underlying assumptions of electricity price dynamics. The approach is sensitive

to the enrichment of the underlying electricity price and exchange rate processes, which currently

are assumed to be single-factor processes. Electricity procurement schemes are tightly dependent

on the process used to describe the dynamics of the electricity price. Introducing state of the art

multi-factor and forward curve models would enrich the forecasted dynamics of the electricity price

and introduce more risk factors. Intuitively, one would expect that introducing more risk factors in

the electricity price would shift the electricity procurement scheme towards long-term contracts. It

would be interesting to analyse whether this is the case.

Finally, the aluminium producer can potentially earn profits when selling pre-ordered electricity

in the spot market. The aspect of whether to include potential speculative gains from electricity price

trading in the operating decisions is easily changed in our solution approach. Analyses moving in

the direction of comparing pure financial and social considerations would be an interesting extension

of the current work and could be applicable for both aluminium producers and social planners.
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Appendix A

Mathematical Elaborations

Note that the notations used in the following subsections are intended only for the definitions and

derivations given, thus the same notation may be used with different meaning between the respective

subsections.

A.1 Calibrating Parameters of the Three-factor Extension

The expected values and covariance of the three factors in [32] are defined by (A.1)-(A.8).

E∗[(χt ,ξt ,µt)] =[e−κt
χ0 − (1− e−κt)

λχ

κ
,ξ0 +(µ̄∗−λξ )t +(µ0 − µ̄∗)

(1− e−ηt)

η
,

µ0 − (µ0 − µ̄∗)(1− e−ηt)]

(A.1)

Cov∗[(χt ,ξt ,µt)] =

σ11(t) σ12(t) σ13(t)

σ12(t) σ22(t) σ23(t)

σ13(t) σ23(t) σ33(t)

 (A.2)

σ11(t) =(1− e−2κt)
σ2

χ

2κ
(A.3)

σ12(t) =(1− e−κt)
ρχξ σχσξ

κ
+

ρχµσχσµ

η

(
(1− e−κt)

κ
− (1− e−(κ+η)t)

(κ +η)

)
(A.4)

σ13(t) =ρχµσχσµ

(1− e−(κ+η)t)

(κ +η)
(A.5)

σ22(t) =σ
2
ξ
t +

ρξ µσξ σµ

η

(
t − (1− e−ηt)

η

)
+

σ2
µ

η2

(
t −2

(1− e−ηt)

η
+

(1− e−2ηt)

2η

) (A.6)

σ23(t) =ρξ µσξ σµ

(1− e−ηt)

η
+

σ2
µ

η

(
(1− e−ηt)

η
+

(1− e−2ηt)

2η

)
(A.7)

σ33(t) =σ
2
µ

(1− e−2ηt)

2η
(A.8)
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Applying the Kalman Filter entails formulating a transition equation and measurement equation

and calibrating these by the means of maximising a log-likelihood function. From (A.1)-(A.2) the

two former may be formulated as (A.9) and (A.10) and the latter as (A.11).

xt =c+Qxt−1 +ηt (A.9)

yt =dt +Ztxt + εt (A.10)

⇒ xt = c+Qxt−1︸ ︷︷ ︸
One-period ahead state variable estimates

+Kt (yt −dt −Zt(c+Qxt−1)︸ ︷︷ ︸
Difference between predicted and observed price

where:

xt ≡[χt ,ξt ,µt ]
′, a 3×1 vector of state variables

c ≡[0,0,ηµ̄∆t]′, a 3×1 vector

dt ≡[B(Ti)]
′, a n×1 vector

Q ≡

e−κ∆t 0 0

0 1 ∆t

0 0 e−η∆t

 , a 3×3 matrix

ηt is a 3×1 vector of disturbances

∆t =time step length

nT =number of observations

yt ≡[lnFTi ]
′, a n×1 vector of observed futures prices

Zt ≡[e−κTi ,1,e−ηTi ], a n×3 matrix

Kt is a correction factor

εt , a n×1 vector of disturbances

n =number of maturities for observed futures

i =1...n

B(Ti) =− (1− e−κTi)
λχ

κ
+(µ̄∗−λξ )Ti +

1
2
(σ11(Ti)+σ22(Ti)+2σ12(Ti))

max
{θ}

lnL =
nT

∑
t=1

(
− n

2
ln(2π)− 1

2
ln|Qt|t−1|−

1
2

v′tQ
−1
t|t−1vt

)
(A.11)

θ is the set of parameters

vt are errors between observed and predicted prices

Qt|t−1 is the covariance matrix at time t
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A.2 Correlated Random Draws

The main part of the scenario generation is to generate random draws, L(T ′, I)=


ε1,1 · · · ε1,I

...
. . .

...

εT ′,1 · · · εT ′,I


where εt,i ∼ N(0,∑). Note that since we are generating scenarios for correlated processes, the ep-

silons should be correlated. To do this, we first generate random variables that are normally dis-

tributed with zero mean and variance 1. This yields for each t: Lt,i ∼ N(0,1). Thus c1Lt,1...ciLt,I ∼
N(0,σ2) where σ2 = c2

1 + ...+ c2
I . Then CL ∼ N(0,CT C), which reduces our problem to finding

C such that CT C = ∑. The matrix C is commonly referred to as the Cholesky-decomposition of

∑. From linear algebra we know that a symmetric positive-definite matrix K can be expressed as

K = UT DU where U is an upper-triangular matrix and D a diagonal matrix with non-negative el-

ements. In our problem we have that ∑ = UT DU, which yields the result C =
√

DU.1 Thus, the

correlated random draws εt,i are calculated by ε(T ′, I) = CL. The matrix ε(T ′, I) now represents

correlated random price movements.

A.3 Calculating Expected Electricity Prices

Following is a description of how the conditional expected electricity prices used in the long-term

contracts are calculated.

We assume that the log electricity price follows an AR(1) process, which is just a discretised

version of the Ornstein-Uhlenbeck (OU) diffusion process. The OU-process is defined as:

dXt = κ(θ −Xt)dt +σdWt (A.12)

where xt is the log electricity price, κ measures the speed of mean reversion, θ is the long-term
mean level of the log electricity price and σ is the variance of the process. We have that κ > 0,θ > 0

and σ > 0. To derive an expression for the conditional expectation of the process we must solve

the stochastic differential equation (A.12). This requires a few steps of stochastic calculus. If we let

Ft = f (t,Xt), then Ito’s lemma is given by:

dFt =
∂ f
∂ t

(t,Xt)dt +
∂ f
∂x

(t,Xt)dXt +
1
2

∂ 2 f
∂x2 (t,Xt)(dXt)

2 (A.13)

1If the covariance matrix is not positive definite it can be transformed through regularization, which works if the
negative eigenvalue is close to zero.
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We define Ft = f (t,Xt) = eκtXt . Then we have that:

∂ f
∂ t

(t,Xt) = κeκtXt + eκtdXt

∂ f
∂x

(t,Xt) = eκt

∂ 2 f
∂x2 (t,Xt) = 0

Substituting this into (A.13) yields:

dFt = (κeκtXt + eκtdXt)dt + eκtdXt

By using the fact that dXt × dt = 0 and substituting in the expression of an OU-process (A.12) for
dXt we get:

dFt = κeκtXtdt + eκt(
κ(θ −Xt)dt +σdWt

)
⇒ dFt = d(eκtXt) = κθeκtdt + eκt

σdWt

Integrating both sides from 0 to t gives the following expression:
t∫

0

d(eκsXs) =

t∫
0

κθeκsdS+
t∫

0

σeκsdWs

⇒
[

eκsXs

]t

0
= κθ

[
1
k

eκs
]t

0
+σ

∫ t

0
eκsdWs

⇒ eκtXt −X0 = θeκt −θ +σ

∫ t

0
eκsdWs

Multiplying both sides with eκt we get the expression for Xt :

Xt = X0e−κt +θ −θe−κt + e−κt
σ

t∫
0

eκsdWs

The conditional expectation of the log electricity price is:

E[Xt |X0] =E

[
X0e−κt +θ −θe−κt + e−κt

σ

t∫
0

eκsdWs

]

=X0e−κt +θ −θe−κt , since E

[
e−κt

σ

t∫
0

eκsdWs

]
= 0 (A.14)
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The conditional variance of the log electricity price is:

Var[Xt |X0] =Var

(
e−κt

σ

t∫
0

eκsdWs

)

= σ
2e−2κtE

[( t∫
0

eκsdWs

)2
]

= σ
2e−2κt

t∫
0

e2κsds, (by Iso’s isometry)

=
σ2

2κ

(
1− e−2κt) (A.15)

Finally, let St denote the nominal electricity price. It is lognormally distributed. Using the formula

for the expectation of a lognormally distributed variable, eµ+ 1
2 σ2

, we get that the expected value of

St conditional on the current price St∗ is given by:

E[St |St∗ ] = e

[
Xt∗eκ−(t−t∗)+θ−θeκ−(t−t∗)+ 1

2
σ2
2κ

(
1−e−2κ(t−t∗)

)]
(A.16)

Equation (A.16) is used for calculating the expected prices used in long-term bilateral contracts.

Note that the electricity price is modelled on a quarterly basis, which means that to calculate the

expected electricity one year ahead we must use t − t∗ = 4. To calculate expected electricity prices

in terms of USD we must multiply with the conditional expected USD/EUR exchange rates. These

are easily calculated with (A.14).
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Operation, Valuation and Electricity Sourcing for a
Generic Aluminium Smelter

Sven Henrik Andresen and Eivind Fossan Aas

Abstract—An aluminium producer is concerned with operating
a smelter in a manner that maximises value and minimises shut-
down risk. Operational flexibility is available through mothballs
or closure, whereas procurement of electricity, a dominating
input cost, may be conducted through 1-year forwards or long-
term bilateral contracts. We present a sequential valuation and
optimisation approach for evaluating a smelter and deriving a risk
minimising electricity procurement scheme. Multiple risk factors
are considered. An operating policy that maximises smelter value
is found by solving a stochastic dynamic program with the least
squares Monte Carlo (LSM) method. Electricity procurement is
investigated using a two-stage stochastic program that minimises
a trade-off between electricity cost and Conditional Value-at-
Risk. The paper combines the two methods by using the heuristic
operating policy found by the LSM method as input in the latter.
We find that an aluminium producer can reduce the risk of
mothballs, without compromising smelter value or closure risk,
by procuring electricity according the scheme obtained with our
solution approach. The scheme derived from using the heuristic
operating policy as basis for demand outperforms the one found
when assuming constant demand.

Keywords—Least squares Monte Carlo, real options, portfolio
optimisation, stochastic dynamic programming, electricity sourcing,
Ornstein-Uhlenbeck, three-factor commodity process, Conditional
Value-at-Risk (CVaR)

I. INTRODUCTION

Aluminium production is a classic industrial process, in
which a smelter transforms alumina and carbon into aluminium
through a power intensive electrolysis process. Electricity is
a dominating production cost, and access to power is thus
a critical aspect in deciding where to locate an aluminium
smelter [1]. Smelters are typically constructed close to reliable
and cheap power sources, such as next to dams in mountain-
ous regions, in order to benefit from cheap hydroelectricity.
Furthermore, they often take the role of being cornerstone
businesses in their respective districts due to labour demands.
A proper valuation of an aluminium smelter to be used as
basis for decision-making is therefore of high importance in
both business and social terms. Management of an aluminium
smelter are concerned with operating the smelter in a way
that maximises shareholder value, and has the flexibility to
temporary shut down or abandon the smelter. The value of
such flexibility can be captured through biased heuristics by
the DCF capital budgeting approach, whereas it is rigorously
captured by the real options approach (ROA). Through the

S.H. Andresen and E.F. Aas are with the Department of Industrial Eco-
nomics and Technology Management, Norwegian University of Science and
Technology, Trondheim, 7491 Norway. E-mail: svenhea@stud.ntnu.no, eiv-
inaas@stud.ntnu.no

latter a heuristic operating policy can be determined together
with the net present value of cash flows from operating the
smelter. Finally, management may also choose to purchase
electricity through a set of different contract types. Thus, there
is a trade-off between total electricity cost and risk, as different
contract portfolios yield different risk exposure.

Optimising the processes in aluminium production is a well-
studied problem (see [2], [3], [4]), but existing literature has
only to a limited extent studied aluminium smelters from a
strategic management point of view.

[5] study the effects of operational flexibility for the specific
case of an aluminium smelter. They find significant value in
the flexibility to temporarily shut down the smelter. Electricity
is assumed to be procured through long-term contracts at a
fixed price, thus there is no uncertainty in electricity costs. The
aluminium price is modelled with a single-factor geometric
mean reverting process.

[6] study a related problem, however not for an aluminium
smelter. They look at the extraction of a natural resource
through an example of a copper mine with flexibility to
temporary shut down or abandon operations. The problem
is solved with a real options approach and their solution
yields an optimal extraction policy for the mine. The output
price is modelled stochastically as a geometric Brownian
motion (GBM), whereas extraction costs are assumed constant.
They apply stochastic control and continuous time arbitrage
to derive an analytical solution when considering an infinite
time horizon, whereas finite difference approximations of the
valuation PDEs under no-arbitrage conditions are applied in
their finite time horizon example.

[7] study the electricity procurement problem faced by
a large consumer. They assume that three different sources
of electricity are available to the consumer; limited self-
production, spot market purchases and long-term contracts.
The goal is to determine an optimal electricity procurement
scheme with respect to Conditional Value-at-Risk (CVaR).
Prices are treated as stochastic, whereas demand is assumed
to be constant each period.

The combined problem of determining an operating policy
and optimising electricity procurement has not been studied,
and is a problem faced by a multinational smelting company
that we have worked with.

Optimising the operating policy of a smelter leads to a real
options problem that is typically formulated as an optimal
control problem with multiple risk factors. This type of prob-
lem can be solved by PDE approaches [8] [9], approximate
linear programming [10], stochastic programming [11] [12]
and the least squares Monte Carlo (LSM) method [13] [14]
[15]. LSM is the most popular approach for real options
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problems due to its simplicity compared to other alternatives.
It works as follows. [13], inspired by [14], suggest to ap-
proximate continuation values of American options by least
squares regression based on Monte Carlo simulations of the
state variables. Values of the state variables at the current
time step are used as explanatory variables in the regression,
and the continuation values of the different operating states
are regressed on these. The described procedure is known
as the regress-now variant. [16], [17] and [18] analyse the
applicability of the LSM approach for general real options
problems. Based on numerical results from comparisons with
other methods, they all conclude that the LSM approach may
be successfully used for multidimensional problems.

Our problem has multiple risk factors, which makes it hard
to derive a closed-form expression for the valuation PDEs.
Thus, the finite difference method used in [6] cannot be
applied. The problem in [5] is the most similar to ours, but we
assume stochastic electricity costs and that parts of the costs
are incurred in local currency, thus adding exchange rate risk.
We also argue that the LSM approach is a better alternative
for approximating continuation values, rather than working
directly with expectations of the stochastic variables. This is
because the LSM approach assumes no knowledge about the
expectations of underlying stochastic processes.

[18] have extended the work in [6]. They consider optimal
control of a copper mine using the LSM approach and a three-
factor model for copper prices. Their extension implicates that
the real options approach suggested in the latter successfully
can be used for multidimensional problems. They also argue,
with references to [19], that the dynamics of commodity
prices are better captured with multi-factor models. Their
solution method is general and could easily be extended to
include the relevant risk factors and be used to determine a
heuristic operating policy for the aluminium smelter. However,
it cannot be applied to the combined problem of determining
an operating policy and optimising electricity procurement.

Choosing different portfolios of long-term electricity con-
tracts may reduce the level of risk. [20] introduced the concept
of portfolio optimisation with variance as risk measure. Subse-
quent portfolio optimisation problems focus on Value-at-Risk
(VaR) as the risk measure (discussed by [21] and [22]). VaR
measures the loss in market value over a time horizon that is
exceeded by a given probability. Although its popularity, VaR
has certain characteristics which are undesirable, such as lack
of convexity and subadditivity. [23] therefore discuss the use
of CVaR, the expected loss if VaR is exceeded. CVaR is a
coherent risk measure, and suitable in this problem due to its
linearity and consistency towards rational views on risk.

Since electricity sourcing is important for both electricity
retailers and large consumers, efforts have been made in
the past decade to approach this optimally. [24], [25] and
[7] present stochastic simulation-based methods to optimally
solve procurement problems. The two latter solve electricity
procurement using CVaR as risk measure. [25] also include
uncertainty in electricity demand from an electricity retailer’s
point of view, with demand treated as an independent stochas-
tic process.

We do not find existing solution approaches to be directly

applicable to our combined problem. Therefore, we propose a
sequential solution approach that uses the regress-now LSM
to determine a heuristic operating policy and stochastic pro-
gramming to find a favourable electricity procurement scheme.
Contrary to existing literature on procurement optimisation,
we propose to use the demand derived from the operating
policy found with the LSM method as input in the portfolio
optimisation problem, as an alternative to treating demand as
an independent stochastic process. We argue that this way
of treating demand is better anchored in reality compared to
treating it as an independent stochastic process. This yields a
hybrid optimisation approach that combines the LSM method
and stochastic programming.

We contribute to existing literature by combining the LSM
method with risk-minimising electricity portfolio optimisation.
Contributions are; (1) evaluation of an aluminium smelter
using the LSM method and a three-factor model for the
aluminium price and (2) use of demand from optimal control
problem as input in a portfolio optimisation problem as op-
posed to treating demand as an independent stochastic process.

The paper is organised as follows. Section II gives a short
description of the business problem faced by an aluminium
producer. In Section III we conduct an empirical analysis of
the risk factors, whereas section IV in detail describes how the
LSM method and electricity portfolio optimisation are used
in a sequential solution approach. Results from the previous
sections are presented, discussed and interpreted in Section V.
Finally, we draw our conclusions in Section VI.

II. BUSINESS PROBLEM

Management of an aluminium smelter faces a range of
problems due to volatile input and output prices, as well as
exchange rates. The most important risk factors on the input
side are the electricity price and exchange rates, whereas the
aluminium price is the main source of risk on the output side.

Electricity and alumina each represents approximately 30%
of total costs. Management is mainly concerned with hedg-
ing the highly volatile electricity cost, as energy cost is a
major determinant of international differences in aluminium
production. Conversely, the market for alumina is globalised
and changes in these prices will affect all market participants.
In addition, aluminium producers are often vertically integrated
with their own mineral extraction, and are thus less exposed
to fluctuations in alumina prices. Changes in electricity prices,
on the other hand, might affect only one producer and alter the
relative cost position of the firm. The producer must therefore
determine a trade-off between risk and total electricity cost,
and can purchase electricity through 1-year forwards or long-
term bilateral contracts. With short-term exposure the producer
may benefit from periods with low prices, but at the same
time faces greater risk of high prices compared to with long-
term exposure. Finally, risk from fluctuating exchange rates
impact the spread between local electricity costs and the
aluminium price, denominated in U.S. dollars (USD), as well
as processing costs incurred in local currencies.

The aluminium price quoted on the London Metal Exchange
(LME) has a major impact on the revenues of an aluminium
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producer. On top of this, the producer often receives a premium
that takes into account elements such as cost of delivery
and insurance. Short-term aluminium price risk is typically
mitigated by hedging, but the producer stays exposed to long-
term price risk. The rationale behind this can be understood
by investigating other commodity markets. [26] study the
hedging activities of oil and gas producers. They argue that
hedging output prices does not increase market value, since a
shareholder takes a position in a company precisely to increase
risk exposure to the market in which the company operates.
Therefore, hedging long-term aluminium prices should not be
beneficial, since it implicates hedging the very market risk
shareholders seek exposure to.

Management is concerned with operating the smelter in a
value-maximising manner. The smelter can be in three different
states; operating, mothballed or closed. When the smelter
is operating, management receives the net cash flows from
producing and selling aluminium. In a mothballed state, low
or no operating costs are incurred and pre-ordered electricity
is sold in the spot market each period the smelter stays
mothballed. The cost of reactivating the smelter furnaces will
with time increase to the point where reopening the smelter
will no longer be an option [5]. Therefore, the smelter can
only stay mothballed for a limited number of consecutive time
periods. A closed smelter receives no cash flows, and upon
closure all pre-ordered electricity is sold at once. Value of the
latter may be positive or negative, and stems from differences
between conditional expected prices at the contract order date
and time of closure.

Once operating, a smelter is assumed to have a very long
lifetime, thus a planning horizon of 20-40 years is typically
considered by industry players. Furthermore, aluminium pro-
ducers are concerned with relative cost positions. As output
prices are denominated in USD and parts of the costs are
incurred in local currencies, it is reasonable to valuate the
smelter in USD to emphasise the relative cost position. Since
we make no assumptions about economies of scale, we valuate
the smelter on a USD per produced metric ton basis.

Motivated by the above, we seek to determine how to
operate the smelter, then given the resulting electricity demand
identify and evaluate a favourable procurement scheme. The
solution approach should take the most important risk factors
into account, namely electricity price, aluminium price and
exchange rate risk. We consider a time horizon of 40 years.

III. DYNAMICS OF RISK FACTORS

A. Aluminium prices
[27] and [28] suggest the use of a mean reverting process

to forecast the behaviour of commodity prices. The intuition
behind mean reversion in commodity prices comes from basic
microeconomic theory. This states that when prices increase,
high cost producers will enter the market, which in turn will
increase the supply and push down the price. Conversely, when
prices are low, high cost producers will leave the market, which
will decrease the supply and drive up the price. One basic
mean reverting process is the Ornstein-Uhlenbeck process, as
described in among other [19] and [27]. Statistical hypothesis

testing1 of stationarity in the monthly, quarterly and yearly
aluminium price time series and log of the aluminium price
time series do however not provide strong evidence of a
stationary mean level (refer to Table I and Table II for test
results from monthly time series data).

TABLE I. RESULTS FROM STATISTICAL HYPOTHESIS TESTING OF
STATIONARITY IN MONTHLY TIME SERIES. FALSE: DO NOT REJECT H0 ,

TRUE: REJECT H0

Period ADF1 ADF2 ADF3 KPSS1 KPSS2 KPSS3 VR
1987-2015 False False False True True True False
1987-2007 False False False True True True False
2009-2015 False False False True True True False

TABLE II. RESULTS FROM STATISTICAL HYPOTHESIS TESTING OF
STATIONARITY IN LOG OF MONTHLY TIME SERIES. FALSE: DO NOT REJECT

H0 , TRUE: REJECT H0

Period ADF1 ADF2 ADF3 KPSS1 KPSS2 KPSS3 VR
1987-2015 False False False True True True False
1987-2007 False False False True True True False
2009-2015 False False False True True True False

Economic intuition induces that aluminium prices are mean
reverting, but lack of statistical evidence for a stationary mean
level motivates the use of an alternative approach to capture
the dynamics of the aluminium price, that still takes into
account the mean reverting nature of commodity prices. The
superiority of multi-factor models over a single-factor model
for commodities is discussed by among other [18], [19], [29]
and [30]. Two such models are the two-factor model and three-
factor extension presented in [31] and [32]. The two-factor
model allows for mean reversion in prices, but uncertainty in
the equilibrium level to which prices revert. The three-factor
extension allows for the growth rate of the equilibrium level to
be modelled stochastically. On basis of the discussion above
and wide acceptance of the latter model in the literature, we
therefore choose to use the three-factor extension to capture
the dynamics of the aluminium price. Following the notation
in [32] it is formulated in its risk-neutral form as:

dχ∗t = (−κχ∗t − λχ)dt+ σχdZ
∗
χ (1)

dξ∗t = (µ∗t − λξ)dt+ σξdZ
∗
ξ (2)

dµ∗t = (−η(µ∗t − µ̄)− λµ)dt+ σµdZ
∗
µ (3)

SA∗t = ln(χ∗t + ξ∗t ) (4)

At time t, χ∗t is the short-term deviation from the equilib-
rium price, ξ∗t is the equilibrium price and µ∗t is the growth
rate of the equilibrium price. dZ∗χ, dZ∗ξ and dZ∗µ are correlated
Brownian motions, λχ, λξ and λµ are risk premiums of the
respective processes, κ and η are mean reversion parameters
and µ̄ is the unadjusted mean level of the growth rate. The
parameters of (1)-(3) are calibrated by applying the Kalman
Filter [33] on the log of historical monthly spot and futures

1ADFX= augmented Dickey-Fuller test on X lags. H0: Series contains a
unit-root. KPSSX= Kwiatkowski-Phillips-Schmidt-Shin test on X lags. H0:
Series is trend or level stationary. VR= variance ratio test. H0: Series is a
random walk.
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prices by maximising the log-likelihood function. Historical
monthly data on LME futures prices is collected from Reuters
to calibrate the processes. Calibration is done on monthly
data as satisfactory forward data only is available from 2009,
and lower granularity yields too few data points. Parameters
are however easily transformed to be expressed in terms of
years. [32] and [34] point out challenges in obtaining reliable
estimates of risk premiums that are significantly different from
zero, especially for small data sets. This implies that estimates
of λχ, λξ and λµ are not likely to be reliable and thus there will
be difficulties when simulating futures prices, as risk premiums
are key for risk-neutral pricing of futures contracts. However,
the aluminium smelter in this paper does not rely on futures
contracts for aluminium, thus only simulations of the spot price
are needed. To avoid further issues with risk premiums, the
risk premiums are set to zero in the simulations, effectively
not using the risk-neutral form of the process. Equations (1)-
(3) are discretised in order to conduct Monte Carlo simulations
of quarterly prices for the time horizon considered.

B. Electricity prices
Historically, electricity prices have been characterised as

highly volatile due to certain unique properties of electricity
with significant impact on the price dynamics, e.g. the com-
modity is non-storable and highly demand-driven in the short-
run. The short-term effects may be daily, weekly or yearly,
and is modelled by [35]. In the long-run, the effects of the
short-term spikes in electricity prices diminish. [36] argue that
electricity prices follow a two-factor model, where the process
depends on a stochastic long-term equilibrium component
and a short-term mean reverting component. To avoid being
affected by short-term price movements, we consider quarterly
quoted electricity prices using historical data on the 1-year
forward Nord Pool (NP) system price, later referred to as
1-year or 1-y forward price. Historical quarterly prices are
collected from Reuters. Since long-term forward prices are
only available from 2009 and onwards, we have few data points
on which to calibrate the long-term equilibrium component in
the two-factor model. Hence, it is less applicable compared to
alternative stochastic models.

Fig. 1. Quarterly 1-y forward
log price.

Fig. 2. Q-Q plot of residuals 1-y
forward log electricity price.

Figure 1 shows a plot of historical log prices and volatility
for the 1-year forward price. We can see from the figure that,
disregarding the financial crisis, the volatility is constant during
the selected time period. The high volatility observed during
the financial crisis was due to the extraordinary event of new
CO2 quotas entering the market. Figure 2 shows a quantile-
quantile (Q-Q) plot of an autoregressive process of order one

(AR(1)) fitted to the quarterly log electricity price. We choose
to fit the log price in order to normalise the residuals from the
process. Except for two extreme points observed during the
entry of new CO2 quotas, the figure shows that the residuals
from the fitted process are normally distributed. On the basis
of constant volatility and normally distributed residuals, we
argue that the dynamics of the quarterly 1-year forward log
price can be captured with an AR(1) process, described in (5).

ln(Set ) = αSe + βSe ln(Set−1) + εSe (5)

C. Exchange rates
According to [37], predicting foreign exchange rates using

a random walk process performs as well as several other time
series processes, e.g. autoregressive processes, when consid-
ering a one to twelve month horizon. However, simulating a
random walk over 40 years could potentially yield scenarios
with highly unrealistic exchange rates, which motivates the use
of an alternative process.

Figures 3-6 show the same analysis as in Figures 1-2 for
a fitted AR(1) process on both USD/EUR and USD/NOK
exchange rates in quarterly intervals using data from Reuters.
Figures 3 and 5 show that the two exchange rates have approx-
imately constant volatility throughout the selected time period.
As we can see from the Q-Q plots, the residuals from the fitted
USD/EUR exchange rate process are normally distributed.
The residuals from the fitted USD/NOK process have some
deviations from a normal distribution due to financial crises,
actions from central banks and other extraordinary events.

Fig. 3. Quarterly USD/EUR
exchange rate.

Fig. 4. Q-Q plot of USD/EUR
residuals.

Fig. 5. Quarterly USD/NOK
exchange rate.

Fig. 6. Q-Q plot of USD/NOK
residuals.

[38] argue that even though real exchange rates seem to
move randomly in the short-run, there is empirical evidence
that exchange rates move towards a long-term purchasing
power parity. This implicates that a mean reverting process
is necessary in order to capture long-term movements of real
exchange rates. We adapt an AR(1) process fitted on real values
as described by (6) and (7).
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Ekrt = αEkr + βEkr (E
kr
t−1) + εEkr (6)

Eet = αEe + βEe(E
e
t−1) + εEe (7)

IV. SOLUTION APPROACH

In order to evaluate operation and electricity sourcing for the
aluminium smelter we use the LSM method and a two-stage
stochastic program in a sequential approach. First, we evaluate
the operation of the smelter with the LSM method assuming
electricity is procured through 1-year forward contracts. The
heuristic operating policy derived in the previous step is
then used as input to the optimisation routine to investigate
different electricity procurement schemes. We then select a
favourable scheme and re-evaluate the smelter with the LSM
method assuming electricity is procured accordingly, in order
to investigate its effect on shutdown risk and smelter value. The
information flow between the different steps of the sequence
is illustrated in Figure 7.

Fig. 7. Illustration of sequential solution approach.

A. Aluminium smelter operating policy
This section outlines the details of Step 2 in Figure 7. In

order to find the net present value (NPV) of a smelter with
operational flexibility one must also determine the optimal
operating mode at any given time. As the complexity of
the problem prevents us from deriving an analytical solution,
a numerical method must be applied to obtain a heuristic
operating policy and a lower bound on the smelter value. We
use the regress-now variant of LSM for this purpose.

Every year the aluminium producer decides whether to
operate the smelter for one more year, mothball or close.
At the end of the planning horizon of T years, the smelter
must either be closed or is assumed to operate in perpetuity.
The value of the latter is approximated as the perpetuity
of the cash flow in year T . The time required for state
transitions is typically much shorter than a year. Therefore,
we assume that transitions between states are immediate. We
denote the aluminium and electricity price as SA and Se. The
USD/NOK and USD/EUR exchange rates are denoted by Ekr
and Ee. Let ΠP (SA, Se, Ekr, Ee) and ΠM (Se, Ee) denote the
respective cash flows of the producing and mothballs states. To
streamline our presentation, we provide precise definitions of

these cash flows in Appendix A. Switching from producing to
mothballed or closed incur costs KPM and KPC respectively.
A transition from mothballs to closed has a cost of KMC and
a transition from mothballs to producing incurs cost KMP . In
all transitions to the closed state the producer receives the net
value of pre-ordered electricity, denoted by IR(Se, Ee) (see
Appendix A for detailed definition).

The following is a formulation of the aluminium producer’s
problem formulated as a stochastic dynamic program (SDP).
We let T = {0, ..., T} denote the decision stages. The
smelter’s operating status is represented by an endogenous
component, whereas the aluminium price, electricity price and
exchange rates make up the exogenous component. We let P
denote the producing state, M the mothballed state and C
the closed state. Furthermore, since we limit the number of
consecutive stages in which the smelter can stay mothballed
to three, we let M2 and M3 denote a smelter in mothballs for
two and three consecutive stages respectively. The endogenous
set of states can then be defined as X = {P,M,C,M2,M3}.
We assume that the aluminium smelter is producing at stage
i = 0. At stage i the exogenous set is denoted by the vector
zi = {SAi , Sei , Ekr, Ee}. Thus, at stage i the state space is
X × R4. We denote the decision to continue at the current
state as dN . Likewise, dM , dC and dO represent the decisions
to mothball, close and restart operations respectively. The set
of decisions at endogenous state x ∈ X is defined by set

D(x) =


{dN , dM , dC}, if x = P

{dN , dC , dO}, if x ∈ {M,M2}
{dC , dO}, if x = M3

{dN}, if x = C

The aluminium producer’s decision results in an immediate
cash flow. We define these cash flows using the function

ri(x, zi,d)=



ΠP (zi), if (x, d) = (P, dN )

ΠM(zi)−KPM, if (x, d) = (P, dM )

IR(zi)−KPC, if (x, d) = (P, dC)

ΠP(zi)−KMP, if x∈{M,M2,M3} and d=dO
IR(zi)−KMC, if x∈{M,M2,M3} and d=dC
ΠM (zi), if x∈{M,M2} and d = dN
0, if (x, d) = (C, dN )

The function f(x, d) defines the state transitions illustrated
in Figure 8 (refer to Appendix A for a formal definition). The
exogenous factors evolve according to the diffusion processes
in Section III. Let ρ denote the discrete discount rate. In order
to find an optimal operating policy the following stochastic
dynamic program must be solved:

Vi(x, zi)= max
d∈D(x)

r(x, zi, d)+
1

1+ρ
E[Vi+1(f(x, d), zi+1)|zi]

,∀(i, x, zi) ∈ T × X × R4 (8)

where Vi(x, zi) is the value function at stage i and state (x, zi).
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Fig. 8. State transitions.

LSM approximates the continuation function
Wi(x, zi) := 1

1+ρE[Vi+1(x, zi+1)|zi] using basis functions in
set Φi,x = {φi,x,b, b = 1, ...Bi} where Bi is the number of
basis functions at stage i and endogenous state x. Each φi,x,b
is a function of zi. The continuation function approximation

at (x, zi) is defined as (Φi, βi)(x, zi) :=
B∑
b=1

φi,x,b(zi)βi,x,b

where βi,x,b is the coefficient in front of basis function b at
time stage i and endogenous state x. The steps of the LSM
procedure are as follows.

First we conduct Monte Carlo simulations of the exogenous
information. We let ẑi(ω) represent the stage i exogenous
factor on sample path ω. The terminal values v̂T (x, ẑT (ω))
are calculated as in (9)-(11).

v̂T (P, ẑT (ω))= max{r(P, ẑT (ω), dN )+
ΠP (ẑT (ω))

ρ
,

r(P,ẑT (ω), dC)}
(9)

v̂T (M, ẑT )(ω)= max{r(M, ẑT (ω), dO)+
ΠP (ẑT (ω))

ρ
,

r(M,ẑT (ω),dC)}
(10)

v̂T (C, ẑT (ω)) = 0 (11)

Moving backwards from stage T − 1 to stage 0, at each stage
i ∈ {T − 1, ..., 0} we (i) compute the value estimates along
each sample path ω using the stage i+1 continuation function
approximation:

vi(x, ẑi(ω)) =
1

1 + ρ
max

di+1∈D(x)
ri+1(x, ẑi+1(ω), di+1)

+ (Φi+1, βi+1)(f(x, di+1), ẑi+1(ω))

and (ii) for each x ∈ X , we compute the coefficients βi,x,b,∀b
by performing a least squares regression on the estimates
vi(x, ẑi(ω)),∀ω.

Having found the regression coefficients we can compute a
feasible decision di(x, zi) at a given stage i and state (x, zi)
by solving the following optimisation problem:

di
(
x, zi

)
∈ arg max

di
ri
(
x, zi, di

)
+
(
Φi, βi

)(
f(x, di), zi

)
Therefore, LSM implicitly defines a heuristic operating policy.
We simulate a separate set of sample paths of the exogenous
information and simulate this operating policy to obtain a
lower bound estimate on the smelter value.

A functional form for the regression basis φi,x,b ∈ Φi,x
must be chosen. [13] use weighted Laguerre polynomials in
their original paper, but [39], [40], [41] and [42] argue that
regressing on simple powers of the explanatory variables and
cross products also provide fairly accurate numerical results
compared to other forms of the explanatory variables. We
choose to use the first four Laguerre polynomials as it is
straightforward to implement and [40] show that this functional
form provides fairly accurate results. These are defined as:

Φi,x,0(ẑi) = 1

Φi,x,1(ẑi) = 1− ẑi

Φi,x,2(ẑi) =
1

2

(
ẑ2
i − 4ẑi + 2

)
Φi,x,3(ẑi) =

1

6

(
− ẑ3

i + 9ẑ2
i − 18ẑi + 6

)
Solving the problem described in this section yields a

heuristic operating policy as well as an unbiased approximation
of the smelter value.

B. Electricity sourcing
Optimising electricity procurement is Step 3 in Figure 7.

Electricity can be procured through both long- and short-term
contracts. Typically, short-term contracts have lower expected
cost, but are more volatile. The challenge for a producer is
to find a procurement scheme that minimises electricity costs,
and at the same time limits the risk of incurring mothballs
or closure in unfavourable market conditions. In this section
we present a two-stage stochastic program that minimises a
trade-off between the net present value of electricity costs and
downside risk in cash flows from volatile electricity prices. We
use CVaR as risk measure. Table III introduces the notation
used, and the two-stage stochastic program is defined by (12)-
(27).
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TABLE III. DECLARATION OF TWO-STAGE STOCHASTIC PROGRAM TO
SOLVE THE ELECTRICITY PROCUREMENT PROBLEM

Sets
N = Time stages [1...Tmax]
L = Scenarios [1...Lmax]
B = Contract lengths [5, 10, 20]
C = Currencies [USD,EUR,NOK]

Indices
n ∈ N time
m ∈ N time
l ∈ L scenario
b ∈ B contract length
c ∈ C contract currency

Variables
qn,m,b,c planned quantity of electricity delivered at time n originating

from contract length b in currency c procured at time m
rln amount of electricity purchased in the 1-year forward market at

time n in scenario l
yln total electricity cost in period n from previously ordered bilateral

contracts in scenario l
xln loss over α-VaR at time n in scenario l
cln total electricity cost at time n in scenario l
ζ α-VaR for every stage
δn largest α-CVaR at time step n

Parameters
Tmax number of stages (years) in the planning period
Lmax number of scenarios
Dmax maximum possible electricity demand in a period
Bmax number of contract lengths
Cmax number of contract currencies
ρ per stage discount factor
α probability level VaR
pl probability of scenario l
sln 1-year forward electricity price at time n in scenario l denoted

in EUR/MWh
f ln,m,c expected forward price at time n conditional on electricity price

at time m quoted in currency c in scenario l
Dln electricity demand incurred from optimal operating policy at time

n in scenario l
θln USD/EUR exchange rate at time n in scenario l
λ factor weight on CVaR versus minimising total electricity costs
CF ln cash flow from aluminium smelter at time n in scenario l
ν tax rate
u factor to equalise the magnitude of CVaR and electricity cost in

the objective function

min
q,r,ζ,δ

(1− λ)
1

Tmax

Tmax∑
n=2

δn

+
λ

u

Lmax∑
l=1

pl
Tmax∑
n=2

1

(1 + ρ)n−1
cln

(12)

s.t. rln+

Cmax∑
c=1

Bmax∑
b=1

Tmax∑
m=1

qn,m,b,c=Dl
n, n∈N, l∈L (13)

Cmax∑
c=1

Bmax∑
b=1

Tmax∑
m=1

qn,m,b,c ≤ Dmax, n ∈ N (14)

Cmax∑
c=1

Bmax∑
b=1

Tmax∑
m=1

qn,m,b,cf
l
n,m,c=yln, n∈N, l∈L (15)

qn,m,b,c = qm+1,m,b,c, m ∈ N, b ∈ B,
c ∈ C, n ∈ [m+ 2...m+ b]

(16)

qn,m,b,c = 0, m ∈ N, b ∈ B, c ∈ C,
n ∈ [1...m] ∪ [m+ b+ 1...N ]

(17)

slnθ
l
nr
l
n + yln = cln, n ∈ N, l ∈ L (18)

ζ +

Lmax∑
l=1

plxln

1− α
≤ δn, n ∈ N (19)

− CF ln − slnθlnDl
n(1− ν) + cln(1− ν)

− ζ ≤ xln, n ∈ N, l ∈ L
(20)

xln ≥ 0, n ∈ N, l ∈ L (21)
qn,m,b,c ≥ 0, n ∈ N,m ∈ N, b ∈ B, c ∈ C (22)
δn ≥ 0, n ∈ N (23)
yln ≥ 0, n ∈ N, l ∈ L (24)
ζ ≥ 0 (25)
rln is free, n ∈ N, l ∈ L (26)
cln is free, n ∈ N, l ∈ L (27)

The portfolio optimisation takes the scenarios for exchange
rates and electricity prices from Step 1 in Figure 7 as input.
Demand, Dl

n, is derived from the heuristic operating policy
found with the LSM method in Step 2 of the solution approach,
e.g. when the smelter is mothballed there is no demand for
electricity. Finally the cash flows, CF ln, calculated in Step 2
are used to calculate CVaR.

The objective function (12) is a trade-off between min-
imising CVaR and the NPV of electricity purchases, and is
tractable by varying the parameter λ. Constraint (13) ensures
that the demand at time n in scenario l is satisfied. If the
smelter is closed and demand equals zero we allow for sale
of pre-ordered electricity to the spot price, hence rln is a free
variable. Constraint (14) prevents pure speculation in long-
term contracts by limiting the amount of electricity that can be
purchased through these. Equation (15) calculates the realised
electricity cost for delivery at time n from long-term contracts
in scenario l. Note that (15) is not a constraint as yln is a
derived variable to ease the readability and hence does not
increase the number of fundamental variables in the problem
since it is substituted out by the solver. The prices of the long-
term contracts are determined by f ln,m,c. Constraints (16)-(17)
ensure consistency between the decision variables qn,m,b,c.
When entering a long-term contract at time m, qn,m,b,c stores
the volume of this contract. Constraint (16) ensures that the
volume of electricity is constant for each year of the contract’s
tenor. Constraint (17) ensures that qn,m,b,c cannot have value if
it represents an infeasible contract, e.g. if n is smaller than m.
Equation (18) is the total realised electricity cost at time n from
purchasing electricity in the 1-year forward market and through
long-term contracts. Note that cln is also a derived variable in
order to ease the readability. Constraint (19) corresponds to
the CVaR constraint and (20) is the associated loss function.
A loss at time n in scenario l is defined as a cash flow that
is more negative than the α-VaR level. Finally, (21)-(27) are
boundary constraints for the decision variables.
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The two-stage stochastic program in (12)-(27) is solved
with the software Xpress-Optimiser version 26.01.042. Using
10,000 scenarios, 40 time steps, three currencies and three
possible long-term contract lengths we experienced a run time
of 15-35 minutes for each value of λ.

The main output from the portfolio optimisation is the
procurement scheme for long-term contracts, stored in qn,m,b,c,
along with 1-year forward purchases, stored in rln.

C. Evaluation of procurement scheme
A favourable procurement scheme is chosen based on the

relationship between total electricity cost and CVaR. Next, the
scheme is evaluated by investigating its effect on shutdown risk
and smelter value, and is compared to benchmark procurement
schemes. This corresponds to Step 4 and Step 5 in Figure 7.

V. RESULTS

A. Calibrated parameters of risk factor processes
1) Aluminium price: The parameters of the three-factor

extension for the aluminium price are calibrated from historical
closing prices of monthly quoted futures3 at the London
Metal Exchange (LME) in the period November 2009 to
January 2015. This period has been carefully chosen in order
to mitigate the effects of the financial crisis in 2007-2008.
Calibrated parameter values are given in yearly terms in Table
IV and the fit of the three-factor extension is illustrated in
Figure 9.

TABLE IV. CALIBRATED PARAMETER VALUES THREE-FACTOR
EXTENSION

Parameter Estimate Standard Error
κ 0.0415 0.0074
σχ 0.1966 0.0304
λχ 0.1295 0.0204
σξ 0.1615 0.0158
η 2.8238 0.1710
µ̄ -0.0571 0.0079
µ̄∗ 0.0500 1.0000
(µ̄∗ − λξ) 0.1165 0.0208
σµ 0.0530 0.0098
ρχξ -0.3827 0.1952
ρχµ 0.2577 0.1444
ρξµ -0.5172 0.1543

Parameter estimates for µ̄∗, ρχξ, ρχµ and ρξµ have unde-
sirably high standard errors. Interpretations and conclusions
based on these estimates must thus be done with special
care. Table IV does not include estimates of λξ or λµ. Point
estimates of the latter parameters can be obtained by using
(µ̄∗ − λξ) together with differences in estimated long-term
futures prices. Following the discussion in Section III-A we
do not calculate these point estimates since λχ, λξ and λµ
are all set to zero in the simulations of (1)-(3). This means
that we do not risk adjust the cash flows, but rather work
under the real probability measure. Issues related to a high
standard error for the estimate of µ̄∗ are thus also avoided.

2Part of the FICO Xpress Optimisation Suite 7.7.
3Futures considered are 3, 6, 9, 12, 24, 48, 72, 96 and 120 month tenors.

Fig. 9. Time series of the calibrated three-factor extension, with observed
prices included.

The estimated value of κ corresponds to a half-life of 17 years
for short-term deviations, which intuitively is unrealistically
high. We argue that short-term deviations in the aluminium
price are caused by events such as changes in storage levels,
the market’s perception of short-term scarcity and monetary
disturbances such as a temporary increase in real interest
rates [43], which cease within a year or two. A half-life of
six months could therefore be realistic. Therefore, we set
κ = 1.174. Simulating scenarios for quarterly prices over
40 years entails a few challenges when using the calibrated
parameters from monthly time series data. A random walk for
the equilibrium price yields unlikely values in some scenarios
as the process may explode within the long time horizon that
is simulated. This issue is pointed out by [44] who analyses
simulation of the two-factor model. He argues that when used
in long-term simulations, the equilibrium price should have a
stationary mean. Therefore, we enforce a weak mean reversion
to the equilibrium price when doing simulations by adjusting
the discretised version of (2). We set the coefficient in front of
ξt−1 to 0.95 and add a constant term of 0.382386, the latter
in order to match the average of the log spot price in the
calibration period. In addition we assume that the mean growth
rate µ̄ in (3) is zero.

2) Electricity price: The parameters of (7) are calibrated
using Reuters data on 1-year forward NP system prices quoted
in quarterly intervals. The time series starts in 2001 when the
Nordic power market became fully integrated.

TABLE V. CALIBRATED PARAMETER VALUES FOR THE LOG
ELECTRICITY PRICE DYNAMICS

Parameter Estimate Standard Error
αSe 0.471 0.203
βSe 0.870 0.057
σSe 0.118

The calibrated parameters of the log price process are given
in quarterly terms in Table V, and correspond to a long-term

4This is actually very similar to the κ estimate for crude oil obtained by
[32].
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mean level of 38.475 EUR/MWh and a half-life of 1.25 years.
3) Exchange rates: The parameters of (6) and (7) are cali-

brated using historical data from Reuters EcoWin Pro quoted in
quarterly intervals from 1974 to 2014. The EUR currency was
first introduced in January 1999, but to increase the size of the
data set we have used an extended time series approximated
by Reuters to estimate parameters.

TABLE VI. CALIBRATED PARAMETER VALUES FOR THE USD/EUR
EXCHANGE RATE

Parameter Estimate Standard Error
αEe 0.077 0.034
βEe 0.935 0.028
σEe 0.040

TABLE VII. CALIBRATED PARAMETER VALUES FOR THE USD/NOK
EXCHANGE RATE

Parameter Estimate Standard Error
α
Ekr

0.010 0.004
β
Ekr

0.933 0.028
σ
Ekr

0.001

The calibrated parameters are given in quarterly terms in
Tables VI and VII. For the USD/EUR exchange rate the pa-
rameters correspond to a long-term mean of 1.183 USD/EUR
and a half-life of 2.57 years. The USD/NOK exchange rate
has an estimated long-term mean of 0.152 USD/NOK and a
half-life of 2.51 years.

4) Simulations: We perform Monte Carlo simulations of the
discretised price processes to generate sample paths. Correla-
tions between the processes are captured through Cholesky
decomposition of the covariance matrix.

B. Evaluating smelter operation when sourcing electricity
from 1-year forward contracts

The parameters used for deriving the aluminium smelter
cash flows are listed in Table VIII. Note that we use a
real discount rate, hence all inputs are in real values. The
problem was solved under the assumption that all electricity
is purchased through 1-year forward contracts.

The smelter value approximations for different multiples of
the actual volatilities of the aluminium and electricity price
processes are shown in Table IX. It is evident that an increase
in electricity price volatility has a negative impact on the

5We have used the following. Log electricity price, denoted by X̂ , follows
an Ornstein-Uhlenbeck (OU) process. Then dX̂t=κ∗(θ∗−X̂t)dt+σSedWt.
Discretisation yields M t= 1, κ∗=

1−βSe
4t and θ∗=

αSe
κ∗Mt . θ∗ is the long-

term expected value of an OU process. The conditional variance when t goes

towards infinity is by Ito’s isometry given as limt→∞ V ar[X̂t|X̂0]=
σ2
Se

2κ∗ .
Using this variance together with θ∗ in the formula for the expected value of a
lognormally distributed variable, the expected long-term real electricity price

when substituting for κ∗andθ∗ is given by S̄e= e

[
αSe

(1−βSe )
+ 1

2

( σ2
Se

2(1−βSe )

)]
.

6Parts of the costs in the electrolysis step are incurred in local currency,
there is thus some exchange rate risk related to this part of total electrolysis
cost.

TABLE VIII. PARAMETER VALUES

Parameter Parameter description Parameter value
Ca Carbon cost per mt aluminium 400 USD/mt
A Alumina cost per mt aluminium 758 USD/mt
ρ WACC (real) 5%
ν Company tax rate 27%

BL Electrolysis cost local currency6 3, 173 NOK/mt
BU Electrolysis cost USD 163 USD/mt
CL Casthouse cost local currency 1, 692 NOK/mt
CU Casthouse income USD 425 USD/mt
M∗ El. consumption rate per mt aluminium 14 MWh/mt
OM Annual operating cost for a mothballed smelter 0 USD/mt
KPC After-tax switching cost operating to closed 2, 000 USD/mt
KPM After-tax switching cost operating to mothballed 1, 000 USD/mt
KMC After-tax switching cost mothballed to closed 1, 000 USD/mt
KMP After-tax switching cost mothballed to operating 1, 000 USD/mt
T temp Max number of consecutive years mothballed 3 years
SAP Premium in percentage of aluminium price 10%

TABLE IX. SENSITIVITY TABLE OF SMELTER VALUE WITH FULL
OPERATIONAL FLEXIBILITY

σel

0.5x 0.75x 1.0x 1.25x 1.5x

σ
a
lu

0.5x 854 807 748 649 566
0.75x 1, 213 1, 151 1, 140 1, 020 986
1.0x 1, 794 1, 698 1, 602 1, 575 1, 517
1.25x 2, 384 2, 353 2, 334 2, 235 2, 112
1.5x 3, 158 3, 091 2, 979 2, 944 2, 813

TABLE X. VALUE INCREASE OF ADDING FULL OPERATIONAL
FLEXIBILITY

σel

0.5x 0.75x 1.0x 1.25x 1.5x

σ
a
lu

0.5x 100 129 159 180 224
0.75x 194 199 218 269 321
1.0x 289 312 321 366 426
1.25x 403 432 436 477 510
1.5x 498 504 535 571 607

TABLE XI. VALUE INCREASE OF ADDING MOTHBALLS ON TOP OF
CLOSURE OPTIONALITY

σel

0.5x 0.75x 1.0x 1.25x 1.5x

σ
a
lu

0.5x 2 9 19 25 40
0.75x 15 27 38 55 82
1.0x 43 55 57 94 113
1.25x 77 83 96 124 143
1.5x 142 143 149 178 185

smelter value, a result that may be counter intuitive. Increased
volatility yields larger random terms. Since we simulate log
prices the simulated state space of real prices is lognormally
distributed. Hence, positive random terms have a greater effect
on the real price than negative random terms. As electricity is a
cost, higher volatility will thus have a net negative effect on the
smelter value. Increased volatility in the electricity price will
also trigger more mothballs and closures, thus accumulated
shutdown costs increase. Conversely, higher volatility in the
aluminium price has a positive effect on the smelter value, as
a higher aluminium price has a positive cash flow effect.

Table X shows the value increase from adding both closure
and mothballs optionality compared to having no closure
optionality, while Table XI shows the additional value gained
by adding mothballs optionality when already having closure
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optionality. In the base case the value increase of having full
operational flexibility compared to no flexibility is $321/mt,
which represents an increase of 25%. Somewhat surprisingly
there is a noticeable increase in value attributed to introducing
the option to mothball when already having the option to close.
The increase in value is $57/mt, or 4% in relative terms, but
when electricity price volatility is high, the value increases
with up to 8%. Increased volatility in the aluminium price
and/or the electricity price increase(s) the value of both closure
and mothballs. This is an expected result since operational
flexibility is of higher value in more uncertain times. For
instance, when having operational flexibility, periods with high
electricity prices may be hedged by the means of mothballs or
closure, which increases the smelter value.

This observation is also emphasised by Figure 10, which
plots the percentage of scenarios with closures, mothballs
and no shutdowns respectively as function of electricity price
volatility. It is evident that higher electricity price volatility
yields an increased probability of closures and/or mothballs.
The same pattern materialises for the aluminium price and is
illustrated in Figure 11. Hedging aluminium price risk is how-
ever beyond the scope of this paper, but we consider hedging
the electricity price risk. Optimising electricity procurement
with respect to some risk measure is, based on the above
rationale, a potential means for reducing closure and mothballs
risk, an issue that is further discussed in Section V-D.

Fig. 10. Shutdown risk at different volatility levels for the electricity price.

Fig. 11. Shutdown risk at different volatility levels for the aluminium price.

A final remark is that the smelter value estimates, when
repeating the LSM procedure on new simulation sets for risk
factors, converge with an increasing number of scenarios being
used in the simulations. Figure 12 illustrates this feature. We

use 10,000 simulated scenarios when determining an operating
policy and approximating the smelter value.

Fig. 12. Convergence of results, as function of the number of in- and out-
of sample scenarios. For illustrative reasons, only 10 example runs for each
number of scenarios are plotted.

C. Results from optimising electricity sourcing
Using the operating policy, cash flows and underlying risk

factor simulations as input to the problem in (12)-(27), we are
able to investigate different electricity procurement schemes.
Figure 13 illustrates the relationship between total electricity
cost and average CVaR over all operating years for different
values of λ. For low values of λ we have risk aversion, whereas
higher values of λ yield higher risk tolerance. We observe a
high total electricity cost and low CVaR when λ is small.
As λ increases the producer becomes more risk tolerant with
respect to electricity price volatility and more emphasis is put
on minimising the total electricity cost. Hence, riskier contracts
are selected, electricity cost is reduced and average CVaR
increases. An interesting observation is that real changes to
the CVaR in Figure 13 are relatively small. This is due to the
fact that the loss function in (20) includes not only risk from
high electricity prices, but also risk from low aluminium prices.
The implication of this is that when management is risk averse,
CVaR will still be relatively large due to aluminium price risk.
The latter is dominating and reducing electricity price risk
has only a limited impact on total system risk compared to
reducing aluminium price risk, which can be observed when
comparing Figure 10 and Figure 11. This argument is also
supported by Figure 14, which displays the same analysis as
in Figure 13, but where the volatility of the aluminium price
process is halved. We can observe that CVaR is reduced as
a result of lower total risk, and the difference between the
highest and the lowest CVaR is larger in magnitude. This is
because a greater part of the system risk now originates from
electricity prices.

In Figure 15 we can see how the average electricity portfolio
mix over all simulated years varies with different values of λ.
As expected, when management is risk averse the portfolio
consists of a combination of 1-year forwards and long-term
contracts. When λ increases and thus risk tolerance increases,
a larger share of the portfolio is comprised of 1-year forward
contracts. An interesting observation from Figure 15(a) is the
large share of 1-year forward contracts when minimising CVaR
alone. As the 1-year forward contracts are the most volatile
contracts, this result might be counterintuitive. It appears
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Fig. 13. CVaR and electricity cost against λ, σalu = 1.0x base case.

Fig. 14. CVaR and electricity cost against λ, σalu = 0.5x base case.

because the CVaR is calculated using smelter cash flows, hence
incorporates aluminium price risk. At a certain CVaR level, all
risk originates from low aluminium prices, hence procuring
a larger share of forward contracts will not reduce the risk
of losses. For the same reason the longest contracts with
duration of 20 years are never purchased. Since aluminium
price risk becomes more dominating for low values of λ,
20-year contracts will not contribute to reducing CVaR. We
confirmed this by reducing the volatility of the aluminium price
process by 50%. We found that 20-year contracts now to a
much larger extent were procured in order to reduce risk. For λ
equal to zero, that is maximum risk aversion, we observed that
the procurement scheme only included long-term contracts.

Another observation when studying the derived procurement
scheme is that, even though it is possible to enter into contracts
denominated in three different currencies, the portfolio optimi-
sation always finds the USD currency to be most favourable.
This result is unexpected, and may occur due to the risk
measure used in the two-stage stochastic program. Since the
smelter is valuated on a USD per produced mt aluminium ba-
sis, entering into a long-term USD contract implicates hedging
both electricity price and exchange rate risk. Since CVaR is a
tail statistic, it will penalise the EUR and NOK contracts for
being exposed to fluctuations in foreign exchange rates. Hence,
when minimising risk the two-stage stochastic program will
favour USD contracts over other currencies.

To evaluate the stability of the solution, Step 1 through 3
in Figure 7 were repeated ten times and the different resulting
procurement schemes were compared. The results are analysed
in Figure 16, which shows the average volume of each contract
together with the maximum and minimum volume observed for

(a) λ = 0.0. (b) λ = 0.3.

(c) λ = 0.6. (d) λ = 1.0.

Fig. 15. Average contract mix for different values of λ.

each year in the ten schemes when λ equals 0.6. We observe
that the portfolio optimisation yields fairly stable solutions.
Figure 16(a) shows that the volume of 1-year forwards is
relatively stable compared to the long-term contracts in 16(b)
and 16(c). An explanation for this can be found in Figure
17, where we see evidence that the volume of the 10-year
contract ordered in year 8 substitutes the volume of 5-year
contracts. Exposure to the 1-year forward contract thus remains
stable. Note that we assume that the smelter does not hold
any contracts in the beginning of the period. Therefore, we
argue that the procurement schemes in years 11-34 represent
a steady-state, with minimal start-of and end-of-period effects.

Utilising insights from the portfolio optimisation solution
we are able to find electricity sourcing schemes that reduce
the risk of losses from volatile electricity prices. Figure 13
illustrates that for λ ∈ [0.3, 0.6], cost has decreased noticeably
without compromising CVaR too much. We therefore consider
the procurement schemes in this interval as favourable. In the
following section we therefore use the scheme derived when
λ = 0.6 as input in Step 4 and Step 5 (refer to Figure 7) in the
sequential solution approach to investigate possible benefits.

D. Results from the integrated problem
The procurement scheme in Figure 17 was evaluated by

using it as input and re-solving the problem in Section
IV-A. Table XII summarises key findings where the selected
procurement scheme, called portfolio, is compared against
static long-term schemes, a 1-year forward scheme and a two-
stage benchmark portfolio, named constant demand. A static
long-term procurement scheme assumes that demand is to be
fulfilled only from one type of contract. E.g. with a 20-USD
scheme electricity is purchased through a 20-year contract
ordered the first year and another 20-year contract ordered in
year 21, both denominated in USD. The two-stage benchmark
is derived by solving the portfolio optimisation without the
operating policy derived with the LSM method as input, thus
treating demand as constant. The impact on smelter value and
shutdown risk is shown in Figure 18 and Table XII.
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(a) Share of electricity from 1-year forwards.

(b) Share of electricity from 5-year contracts.

(c) Share of electricity from 10-year contracts.

Fig. 16. Average result and high-low lines of ten electricity procurement
schemes for λ = 0.6.

Fig. 17. Electricity procurement scheme for λ = 0.6.

In Table XII, the two first columns show the share of
scenarios where closures and mothballs have occurred respec-
tively. Since multiple mothballs can occur in one scenario, the
third column calculates the average number of mothballs per
scenario. The fourth column shows the percentage of scenarios

Fig. 18. Comparison of portfolio and 1-y forward shutdown risk at different
volatility levels for the aluminium price.

TABLE XII. PERFORMANCE OF PORTFOLIO AGAINST STATIC
CONTRACTS AND CONSTANT DEMAND OPTIMISATION, λ = 0.6

Contract type Closures Mothballs # mothb.
/scenario

No
shutdows

Value
[USD/mt]

Portfolio 17 % 38 % 1.0 60 % 1,593
20-Nok 17 % 34 % 0.9 63 % 1,449
20-Eur 18 % 36 % 0.9 61 % 1,450
20-Usd 21 % 37 % 0.9 59 % 1,414
10-Nok 17 % 35 % 0.9 63 % 1,450
10-Eur 18 % 37 % 0.9 61 % 1,449
10-Usd 20 % 37 % 0.9 59 % 1,417
5-Nok 17 % 36 % 0.9 62 % 1,453
5-Eur 18 % 37 % 1.0 61 % 1,455
5-Usd 19 % 37 % 1.0 60 % 1,431
1-y forward 17 % 41 % 1.1 58 % 1,602
Const. demand 18 % 39 % 1.0 59 % 1,582

where no closures or mothballs are undertaken, whereas the
last column gives us the approximated value of the smelter.

Relative to the 1-year forward case, the portfolio has fewer
scenarios with mothballs, a lower average number of mothballs
per scenario and an increase in the number of scenarios where
the smelter operates with no shutdowns. Furthermore, there is a
marginal decrease in smelter value when procuring electricity
according to the portfolio compared to only 1-year forward
contracts. In Table XII we also observe that the static 20-
NOK scheme seems to be the most favourable procurement
scheme in terms of shutdown risk. However, the smelter value
is approximated to be 10% higher with the portfolio compared
to the 20-NOK scheme. We argue that the considerable com-
promise in smelter value with the 20-NOK scheme is negative
from a shareholder’s point of view, which favours the portfolio.
Finally, we observe that the portfolio outperforms the constant
demand benchmark on most metrics. Hence, it is value adding
to solve the optimisation problem with demand derived from
the heuristic operating policy determined in Step 2. Overall,
the results show that the portfolio reduces the risk of mothballs
without compromising the value of the smelter significantly.

Since the portfolio is a mix of 1-year forward and long-
term contracts, we would expect the closure risk to fall in the
interval between what is observed for the 1-year and long-term
electricity procurement schemes. A somewhat surprising ob-
servation is that there is an equal probability of shutting down
the smelter permanently with the portfolio mix compared to
the 1-year forward case, which favours the portfolio. We argue
that closures have more negative impacts for stakeholders than
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mothballs. Thus, it is desirable with an electricity procurement
scheme that does not compromise on closure risk. Being able
to reduce mothballs risk without increasing the closure risk is
therefore an attractive feature with our findings.

In Figure 19 we further evaluate how the portfolio performs
against static contracts for different values of λ. The line is a
plot of electricity cost and CVaR from the optimal portfolio
for different values of λ, and represents an efficient frontier.
Portfolios that lie to the upper right of this frontier are sub-
optimal, since they do not provide a lower electricity cost for
the given level of risk. As expected, the figure illustrates that
the static contracts perform worse in terms of CVaR and total
electricity cost. We see that the difference in total electricity
cost between the efficient frontier and static contracts is large
for all contracts, and roughly similar to the difference in
smelter value observed in Table XII.

Fig. 19. Efficient frontier of portfolio compared to static contracts.

The insights and solution approach presented in the lat-
ter sections make up a valuable decision-making basis for
management when planning long-term schemes for electricity
procurement and for assessing the implications of the current
market conditions on the robustness of smelters.

VI. CONCLUSION

We have shown how the least squares Monte Carlo (LSM)
method can be used to produce unbiased value estimations
of an aluminium smelter with mothballs and closure op-
tionality. There is substantial value in operational flexibility,
and adding the flexibility of mothballs when already having
closure flexibility surprisingly yields a noticeable increase in
smelter value. We argue that capturing the dynamics of the
aluminium price, the most important risk factor, should be
done according to recent literature which states that a single-
factor mean reverting process is not well anchored in reality
and that a more sophisticated approach should be used. The
Schwartz-Smith three-factor extension in [32] is applied. We
also developed a two-stage stochastic program that optimises
the electricity procurement scheme with respect to a trade-off
between Conditional Value-at-Risk (CVaR) and total electricity
cost, using the heuristic operating policy derived with the
LSM method and simulated state space of the risk factors as

input. The solution from the optimisation routine proved to be
fairly stable. Re-evaluating the aluminium smelter using the
optimal electricity procurement scheme yielded a reduction in
the probability of mothballs, an increase in the probability of
operating without shutdowns and no difference in closure risk.
This without compromising smelter value. We also found that
using the demand derived from the heuristic operating policy
as input to the two-stage stochastic program as opposed to
assuming constant demand resulted in a higher smelter value
and lower risk of closures and mothballs. Using the sequential
solution approach in an iterative manner could potentially yield
a procurement scheme that further decreases shutdown risk. It
may also be used for rolling simulations and rebalancing of
bilateral electricity contract portfolios.

APPENDIX A
SUPPLEMENTARY DETAILS STOCHASTIC DYNAMIC

PROGRAM

Smelter cash flows depend on the elements listed in Table
XIII, all expressed in per mt produced aluminium terms unless
otherwise stated.

TABLE XIII. CASH FLOW ELEMENTS

Element Description
SA Aluminium price
Se Electricity price
Ekr USD/NOK exchange rate
Ee USD/EUR exchange rate
Ca Carbon cost
A Alumina cost
ν Company tax rate
BL Electrolysis cost local currency NOK per mt aluminium
BU Electrolysis cost USD
CL Casthouse cost local currency NOK per mt aluminium
CU Casthouse income USD. Casthouse is considered as an own

factory with costs in NOK and revenues in USD
M∗ El. consumption rate MWh per mt aluminium
OM Annual operating cost for a mothballed smelter
Se Electricity price
SA Aluminium price
F e Average price of pre-ordered electricity contracts with de-

livery the current period, quoted in USD
Ekr Exchange rate USD/NOK
Ee Exchange rate USD/EUR
Q Amount of pre-ordered electricity for the current period
SAP Premium in percentage of aluminium price

ΠP and ΠM are the cash flows of an operating and moth-
balled smelter respectively, and are defined as follows.

ΠP =
(
SA(1 + SAP )−A− Ca−BLEkr −BU

− CLEkr+ CU− SeEe(M∗−Q)−FEQ
)(

1−ν
)

ΠM =
(
Q(SeEe − F e)−OM

)(
1− ν

)
IR is the net present value of all pre-ordered electricity

with delivery after the closure time. When procuring electricity
through 1-year forwards this is just the difference between the
price paid with the 1-year forward and the spot electricity price
at closure time, all multiplied with the amount of purchased
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electricity. The value of pre-ordered electricity with delivery
at a date t∗ > t, where t is the closure time, is the difference
between F e at t∗ and the expected electricity price at time
t∗ conditional on the current electricity price. Then IR is
the discounted value of these differences adjusted for tax
and multiplied with the respective amounts of pre-ordered
electricity.

Figure 8 illustrates the transitions given (x, di). The formal
definition of the transition function f(x, d) is:

f(x, d) =



x, if x ∈ {P,C} and d = dN
M, if x = P and d = dM
M2, if x = M and d = dN
M3, if x = M2 and d = dN
C, if x ∈ {P,M,M2,M3} and d = dC
P, if x ∈ {M,M2,M3} and d = dO
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