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Abstract

Given a quiver with relations (Γ2, ρ2) and its covering quiver (Γ1, ρ1) with respect

to a subgroup H in a group G, we show that, for a �eld K, the path algebra

K[Γ1]/〈ρ1〉 is isomorphic to a twisted tensor product of the path algebra over the

quiver with one vertex for each right coset in G/H and no arrows and the path

algebra K[Γ2]/〈ρ2〉.

1 Introduction

The purpose of this thesis is to elaborate further on the work done in [1] by explaining
central concepts in greater detail and expanding proofs. The main theorem in [1] describes
the path algebra of the covering Γ1 with respect to a subgroup H in a group G of the
quiver Γ2 over a �eld K in terms of the twisted tensor product of Γ2 and a quiver
consisting of vertices corresponding to right cosets in G/H. Our main goal is to extend
this theorem to include quivers with relations. Further, in [3] it is shown that taking
Hochschild cohomology commutes with twisted tensor products of group graded algebras
when only considering certain parts of the algebras. We show that one attempt to make
an analogue better suited to our setting does not hold.

To summarize section by section: in section 2, we de�ne concepts such as the tensor
product and associative algebra and brie�y discuss some basic properties. The tensor
product of two algebras is then made into an algebra by de�ning multiplication using
a twisting map. The rest of the section gives conditions for when this tensor product
algebra is associative.

In Section 3, the twisted tensor product is de�ned for algebras with units and it
is shown that all twisted tensor products have the form of a tensor product of two
algebras. Viewing twisted tensor products in this way is better suited for generalizing to
the de�nition of the twisted tensor product to include algebras without units.

In Section 4, we give a more general de�nition of the twisted tensor product where
algebras are not required to be unital. This de�nition is motivated by considering algebras
with adjoined units. We end the section by comparing our de�nition of the twisted tensor
product to the one used in [3].

Section 5 introduces quivers, path algebras, coverings of quivers and quivers with
relations. We show how covering quivers can be constructed. Necessary preliminary
results are provided in order to prove the main theorem, which states, given a quiver
with relations (Γ2, ρ2), it's covering quiver (Γ1, ρ1) with respect a subgroup H in a group
G and the quiver ΣG/H which has one vertex for each right coset of G/H and no arrows,
then, for a �eld K, the path algebra K[(Γ1, ρ1)] is isomorphic to the twisted tensor
product of the path algebras K[ΣG/H ] and K[(Γ2, ρ2)].

Finally, in section 6, the Hochschild cohomology is introduced and we show how it
can be computed. The purpose the section is to discuss whether or not an analogue of
Theorem (4.7) in [3] more suited to our twisted tensor product is possible. We suggest
an analogue and provide a counterexample to show that this does not hold.
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2 Tensor product algebra

In this section we introduce the tensor product of two algebras and make this into an
algebra by de�ning a twisting map. The rest of the section aims to give conditions for
when the tensor product algebra of two algebras with a twisting map is an associative
algebra. We begin by de�ning the tensor product and give some basic facts which are
needed for later.

De�nition 2.1. Let M and N be a right and a left R-module, respectively, over a ring
R with 1. The tensor product of M and N is an abelian group M ⊗R N together with a
bilinear map φ : M × N → M ⊗R N such that for any abelian group P with a bilinear
map f : M ×N → P , there exist a unique homomorphism f ′ : M ⊗R N → P such that
the following diagram commutes

M ×N
f

$$

φ
��

M ⊗R N
f ′

// P

It can be shown that the tensor product is exactly the quotient group Z(M,N)/Y (M,N),
where Z(M,N) is the free abelian group generated by M ×N , and Y (M,N) is the sub-
group of Z(M,N) generated by elements of the form

(m1 +m2, n)− (m1, n)− (m2, n),

(m,n1 + n2)− (m,n1)− (m,n2),

(mr, n)− (m, rn),

for all m, m1, m2 ∈ M , n, n1, n2 ∈ N , and r ∈ R. We will write m ⊗ n for (m,n) +
Y (M,N). The following are some basic properties of the tensor product

(m1 +m2)⊗ n = m1 ⊗ n+m2 ⊗ n,
m⊗ (n1 + n2) = m⊗ n1 +m⊗ n2,

mr ⊗ n = m⊗ rn,

for all r ∈ R, m, m1, m2 ∈M , and n, n1, n2 ∈ N . We also have for families (Mi)i∈I and
(Nj)j∈J of right and left R-modules, respectively, the isomorphism⊕

i∈I
Mi ⊗R

⊕
j∈J

Nj
∼=

⊕
(i,j)∈I×J

∑
(Mi ⊗R Nj).

Given homomorphisms f : M →M ′ and g : N → N ′ between R-modules M,M ′ and
N,N ′ the tensor product of f and g is de�ned to be a the map f⊗g : M⊗RN →M ′⊗RN ′
given by (f ⊗ g)(m⊗n) = f(m)⊗ g(n). This map is itself a homomorphism. For a more
thorough discussion of the tensor product see [2].

From here on, R will be a commutative ring with 1. An algebra over R is an R-
module A together with a bilinear product A × A → A given by (a, b) 7→ ab satisfying
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r(ab) = (ra)b = a(rb) for all r ∈ R and a, b ∈ A. An algebra is associative if (ab)c = a(bc)
for all a, b, c ∈ A. By algebra we will mean an associative algebra throughout the text.

Let A and B be R-algebras. The tensor product A⊗R B can naturally be made into
a left A-module and a right B-module by de�ning the left action a′ · (a ⊗ b) = a′a ⊗ b
and the right action (a ⊗ b) · b′ = a ⊗ bb′. These actions are well de�ned, and since
a · (x · b) = (a · x) · b, for all a ∈ A, n ∈ B, x ∈ A⊗B, the actions commute, and A⊗R B
become a A-B bimodule.

Let τ : B ⊗R A → A ⊗R B be an R-linear map. In order to make A ⊗R B into an
algebra we de�ne multiplication to be the composition

(A⊗RB)× (A⊗RB)→ A⊗RB⊗R A⊗RB
idA⊗τ⊗idB−−−−−−−→ A⊗R A⊗RB⊗RB → A⊗RB,

which maps (a1 ⊗ b1)× (a2 ⊗ b2) 7→ a1 · τ(b1 ⊗ a2) · b2 for all a1, a2 ∈ A and b1, b2 ∈ B.
The �rst map is de�ned by (x, y) 7→ x ⊗ y for x, y ∈ A ⊗R B, which is clearly bilinear.
The second map is the tensor product of linear maps, and so is itself linear. The third
map is de�ned by a1 ⊗ a2 ⊗ b1 ⊗ b2 7→ a1 · (a2 ⊗ b1) · b2, which is the composition of the
two maps a′ ⊗ a⊗ b⊗ b′ 7→ a′ · (a⊗ b⊗ b′) and a⊗ b⊗ b′ 7→ (a⊗ b) · b′. These are both
the unique homomorphisms from the de�nition of the tensor product with natural maps
and abelian groups, and so are both linear. The composition is thus a multiplication,
which satis�es the distributive laws. Note that since the map is bilinear and τ is linear,
all elements of Y (A,B)×Y (A,B) gets mapped to 0, which makes the multiplication well
de�ned. With this multiplication A⊗RB become a nonassociative algebra which we will
denote by A⊗τ B.

Next, we use τ to de�ne a left and right multiplication maps

B × (A⊗R B)→ A⊗R B and (A⊗R B)×A→ A⊗R B

where the multiplication is denoted by ·τ and is given by b′ ·τ (a ⊗ b) = τ(b′ ⊗ a) · b
and (a⊗ b) ·τ a′ = a · τ(b⊗ a′), respectively. The left multiplication ·τ is de�ned by the
composition

B × (A⊗R B)→ B ⊗R (A⊗R B)
τ⊗idB−−−−→ A⊗R B ⊗R B → A⊗R B,

where the �rst map is de�ned by (b′, a⊗ b) 7→ b′⊗ a⊗ b and is easily seen to be bilinear.
The third map is given by (a ⊗ b ⊗ b′) 7→ (a ⊗ b) · b′, which is the same linear map we
encountered for τ , and so the left multiplication ·τ is a bilinear map, which is also well
de�ned.

Similarly, the right multiplication ·τ is de�ned by the composition

(A⊗R B)×A→ (A⊗R B)⊗R A
idA⊗τ−−−−→ A⊗R A⊗R B → A⊗R B

where the �rst and third maps are given by (a⊗b, a′) 7→ a⊗b⊗a′ and a⊗a′⊗b 7→ a·(a′⊗b).
This map is bilinear and well de�ned by the same reasons as the left multiplication before.

We note that the left multiplication by ·τ and the right scalar multiplication commute
since
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[b1 ·τ (a⊗ b)] · b2 = [τ(b1 ⊗ a) · b] · b2
= τ(b1 ⊗ a) · (bb2)

= b1 ·τ (a⊗ bb2)

= b1 ·τ [(a⊗ b) · b2].

Lemma 2.2. The tensor product A⊗R B is a B-B bimodule with left and right actions

·τ and scalar multiplication, respectively, if the condition

b′ ·τ τ(b⊗ a) = τ(b′b⊗ a) (1a)

holds for all a ∈ A and b, b′ ∈ B. The converse is true if B has a unit.

Proof. We already know that A ⊗R B is a right B-module with scalar multiplication.
To see that A ⊗R B is also a left B-module with multiplication ·τ , let a ∈ A and b, b1,
b2 ∈ B and observe, using the condition (1a), that

(b1b2) ·τ (a⊗ b) = τ(b1b2 ⊗ a) · b
= [b1 ·τ τ(b2 ⊗ a)] · b
= b1 ·τ [τ(b2 ⊗ a) · b]
= b1 ·τ [b2 ·τ (a⊗ b)].

Since ·τ is bilinear, the other conditions for being a left B-module are satis�ed.
Conversely, assume that B has a unit and that A⊗RB is a B-B bimodule and observe

that for all a ∈ A and b, b′ ∈ B

τ(b′b⊗ a) = τ(b′b⊗ a) · 1B
= (b′b) ·τ (a⊗ 1B)

= b′ ·τ [b ·τ (a⊗ 1B)]

= b′ ·τ [τ(b⊗ a) · 1B]

= [b′ ·τ τ(b⊗ a)] · 1B
= b′ ·τ [τ(b⊗ a)].

Naturally, we also have the following result.

Lemma 2.3. The tensor product A⊗RB is an A-A bimodule with left and right actions

scalar multiplication and ·τ , respectively, if the condition

τ(b⊗ a) ·τ a′ = τ(b⊗ aa′) (1b)

holds for all a, a′ ∈ A and b ∈ B. The converse is true if A has a unit.
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Next we want to explore which conditions we can impose on τ in order to make A⊗τB
an associative algebra. We begin by giving some simple identities.

Lemma 2.4. Let x, y ∈ A⊗τ B, a ∈ A and b ∈ B. Then,

(i) (a⊗ b)x = a · (b ·τ x) and x(a⊗ b) = (x ·τ a) · b,

(ii) a · (xy) = (a · x)y and (xy) · b = x(y · b).

Proof. (i) We only argue the �rst equality and note that the second is essentially the
same. Since both multiplication in the algebra and the map ·τ is bilinear, it is su�cient
to prove this for x = a1 ⊗ b1. We get

(a⊗ b)x = (a⊗ b)(a1 ⊗ b1)

= a · τ(b⊗ a1) · b1
= a · [b ·τ (a1 ⊗ b1)]

= a · (b ·τ x).

(ii) Again, it is enough to consider x = a1 ⊗ b1 and y = a2 ⊗ b2. Then, using (i) and the
fact that A⊗τ B is an A-B bimodule with scalar multiplication, we get

a · (xy) = a · [(a1 ⊗ b1)(a2 ⊗ b2)]

= a · [((a1 ⊗ b1) ·τ a2) · b2]

= [a · ((a1 ⊗ b1) ·τ a2)] · b2
= [a · (a1 · τ(b1 ⊗ a2))] · b2
= [(aa1) · τ(b1 ⊗ a2)] · b2
= [((aa1)⊗ b1) ·τ a2] · b2
= (aa1 ⊗ b1)(a2 ⊗ b2)

= [a · (a1 ⊗ b1)](a2 ⊗ b2)

= (a · x)y.

Again, the other equality is shown similarily.

When τ satis�es both conditions (1a) and (1b) we simply say that τ satis�es condition
(1).

Lemma 2.5. If τ satis�es condition (1), then

(x ·τ a)y = x(a · y) and (x · b)y = x(b ·τ y)

for a ∈ A, b ∈ B and x, y ∈ A⊗τ B.
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Proof. It is su�cient to look at x = a1 ⊗ b1 and y = a2 ⊗ b2. Using Lemma 2.4 and the
commutativity of the A-A bimodule and B-B bimodule we get

(x ·τ a)y = [(a1 ⊗ b1) ·τ a](a2 ⊗ b2)

= [a1 · τ(b1 ⊗ a)](a2 ⊗ b2)

= ([a1 · τ(b1 ⊗ a)] ·τ a2) · b2
= (a1 · [τ(b1 ⊗ a) ·τ a2]) · b2
= a1 · τ(b1 ⊗ aa2) · b2
= (a1 ⊗ b1)(aa2 ⊗ b2)

= (a1 ⊗ b1)[a · (a2 ⊗ b2)]

= x(a · y).

The other equality has a similar proof.

We are now equipped to give our �rst condition on τ such that A⊗τB is an associative
algebra.

Theorem 2.6. If τ satis�es (1), then A⊗τ B is an associative algebra.

Proof. It is enough to consider x, y, z ∈ A⊗τB where x = a1⊗b1, y = a2⊗b2, z = a3⊗b3
for a1, a2, a3 ∈ A and b1, b2, b3 ∈ B. Using Lemmas 2.4 and 2.5 it now follows that

(xy)z = [(a1 ⊗ b1)(a2 ⊗ b2)](a3 ⊗ b3)

= [(a1 ⊗ b1) ·τ a2) · b2](a3 ⊗ b3)

= [(a1 ⊗ b1) ·τ a2][b2 ·τ (a3 ⊗ b3)]

= (a1 ⊗ b1)[a2 · (b2 ·τ (a3 ⊗ b3))]

= (a1 ⊗ b1)[(a2 ⊗ b2)(a3 ⊗ b3)]

= x(yz),

so that A⊗τ B is an associative algebra.

While condition (1) consists of two parts the next theorem shows that we are able to
achieve associativity in A⊗τ B with the single symmetric condition

[a′ ·τ (b⊗ a)] ·τ b′ = a′ ·τ [(b⊗ a) ·τ b′], (2)

which will be referred to as condition (2). This is the requirement that the right and left
·τ multiplications commute.

Theorem 2.7. If τ satis�es condition (2), then A ⊗τ B is an associative algebra. The

converse is true when A and B both have units.
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Proof. It su�ces to consider x, y, z ∈ A⊗τ B where x = a1⊗ b1, y = a2⊗ b2, z = a3⊗ b3
for a1, a2, a3 ∈ A and b1, b2, b3 ∈ B. Using Lemma 2.4 we get

(xy)z = [(a1 ⊗ b1)(a2 ⊗ b2)](a3 ⊗ b3)

= [a1 · (b1 ·τ (a2 ⊗ b2))](a3 ⊗ b3)

= ([a1 · (b1 ·τ (a2 ⊗ b2))] ·τ a3) · b3
= (a1 · [(b1 ·τ (a2 ⊗ b2)) ·τ a3]) · b3
= (a1 · [b1 ·τ ((a2 ⊗ b2) ·τ a3)]) · b3
= a1 · ([b1 ·τ ((a2 ⊗ b2) ·τ a3)] · b3)

= a1 · (b1 ·τ [((a2 ⊗ b2) ·τ a3) · b3])

= (a1 ⊗ b1)[((a2 ⊗ b2) ·τ a3) · b3]

= (a1 ⊗ b1)[(a2 ⊗ b2)(a3 ⊗ b3)]

= x(yz).

Thus, A⊗τ B is associative.
Conversely, assume that both A and B both have units and let a, a′ ∈ A, b, b′ ∈ B.

Then, using Lemma 2.4 again, we get

[b′ ·τ (a⊗ b)] ·τ a′ = [τ(b′ ⊗ a) · b] ·τ a′

= [1A · τ(b′ ⊗ a) · b)] ·τ a′

= [(1a ⊗ b′)(a⊗ b)] ·τ a′

= ([(1a ⊗ b′)(a⊗ b)] ·τ a′) · 1B
= [(1a ⊗ b′)(a⊗ b)](a′ ⊗ 1B)

= (1a ⊗ b′)[(a⊗ b)(a′ ⊗ 1B)]

= 1a · (b′ ·τ [(a⊗ b)(a′ ⊗ 1B)])

= b′ ·τ [(a⊗ b)(a′ ⊗ 1B)]

= b′ ·τ [(a · τ(b⊗ a′) · 1B]

= b′ ·τ [(a · τ(b⊗ a′)]
= b′ ·τ [(a⊗ b) ·τ a′],

and so (2) holds.

In the next sections we will see that when both A and B have units and τ satis�es a
much simpler condition, then (1) and (2) are equivalent.

3 Twisted tensor product of algebras with units

We now introduce the twisted tensor product and discuss how it relates to the tensor
product algebra A⊗τ B from the previous section. In this section all algebras have units
and are associative. We begin with a de�nition.
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De�nition 3.1. If A and B are algebras, then their twisted tensor product is an algebra
C along with algebra monomorphisms ψ1 : A ↪→ C and ψ2 : B ↪→ C such that the map
ψ : A⊗R B → C given by ψ(a⊗ b) = ψ1(a)ψ2(b) is a linear isomorphism.

We de�ne the two maps ζA : A → A ⊗τ B and ζB : B → A ⊗τ B by ζA(a) = a ⊗ 1B
and ζB(b) = 1A ⊗ b for all a ∈ A and b ∈ B. Note that while ζA and ζB are both clearly
linear, they are not necessarily injective. To see this, observe that if R = Z, A = Z6 and
B = Z7, then Z6 ⊗Z Z7 = 0 since if we choose integers a, b such that 6a+ 7b = 1, then

x⊗ y = x(6a+ 7b)⊗ y = x6a⊗ y + x7b⊗ y = 0 + xb⊗ 7y = 0,

and so ζA and ζB are not injective. We want to explore when A ⊗τ B along with these
two maps is a twisted tensor product of A and B. We begin with a few preliminary
results.

Lemma 3.2. The algebra A⊗τ B has a unit and ζA, ζB are both algebra homomorphisms

if and only if τ satis�es the condition

τ(b⊗ 1A) = 1A ⊗ b and τ(1B ⊗ a) = a⊗ 1B (3)

for all a ∈ A and b ∈ B.

Proof. Suppose �rst that (3) holds. We observe that 1A⊗1B is the unit for A⊗τ B since

(1A ⊗ 1B)(a⊗ b) = 1A · τ(1B ⊗ a) · b
= (1A ⊗ 1B)(a⊗ b)
= 1A · τ(1B ⊗ a) · b
= 1A · (a⊗ 1B) · b
= 1Aa⊗ 1Bb

= a⊗ b

and (a⊗ b)(1A⊗ 1B) = a⊗ b similarly. Further, we observe that for all a, a′ ∈ A we have

ζA(a)ζA(a′) = (a⊗ 1B)(a′ ⊗ 1B)

= a · τ(1B ⊗ a′) · 1B
= a · (a′ ⊗ 1B)

= aa′ ⊗ 1B

= ζA(aa′)

and similarly ζB(b)ζB(b′) = ζB(bb′) for all b, b′ ∈ B and thus, since both ζA and ζB are
linear, they are also algebra homomorphisms.

Next, suppose that A ⊗τ B has a unit, then τ(b ⊗ 1A) = 1A · τ(b ⊗ 1A) · 1B =
(1A ⊗ b)(1A ⊗ 1B) = 1A ⊗ b. The second equality is shown similarly.
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We will refer to the �rst and second parts of condition (3) as (3a) and (3b), respec-
tively. It turns out that when τ satis�es (3), then conditions (1) and (2) from the previous
section are equivalent. We prove this next.

Lemma 3.3. If τ satis�es (3), then τ satis�es (1) if and only if it satis�es (2).

Proof. Assume �rst that τ satis�es (1). Using Lemma 3.2 and the fact that A ⊗τ B is
associative from Theorem 2.6, we get for all a, a′ ∈ A and all b, b′ ∈ B

[b′ ·τ (a⊗ b)] ·τ a′ = [1A · (b′ ·τ (a⊗ b))] ·τ a′) · 1B
= [(1A ⊗ b′)(a⊗ b)] ·τ a′) · 1B
= [(1A ⊗ b′)(a⊗ b)](a′ ⊗ 1B)

= (1A ⊗ b′)[(a⊗ b)(a′ ⊗ 1B)]

= (1A ⊗ b′)[(a⊗ b) ·τ a′) · 1B]

= 1A · (b′ ·τ [(a⊗ b) ·τ a′)]
= b′ ·τ [(a⊗ b) ·τ a′].

Next we assume that τ satis�es (2), then by Theorem 2.7, A⊗τ B is associative and so

b′ ·τ τ(b⊗ a) = b′ ·τ [1A · τ(b⊗ a)]

= b′ ·τ [(1A ⊗ b) ·τ a]

= [b′ ·τ (1A ⊗ b)] ·τ a
= [τ(b′ ⊗ 1A) · b] ·τ a
= [(1A ⊗ b′) · b] ·τ a
= (1A ⊗ b′b) ·τ a
= 1A · τ(b′b⊗ a)

= τ(b′b⊗ a),

and so τ satis�es (1).

We are now ready to show that as long as τ satis�es conditions (2) and (3) and both
ζA, ζB are both injective, then A⊗τ B is a twisted tensor product of A and B.

Theorem 3.4. Suppose that ζA and ζB are both injective. Then, A ⊗τ B is a twisted

tensor product if and only if τ satis�es condition (2) and (3).

Proof. Suppose �rst that A⊗τB along with ζA and ζB is a twisted tensor product. Then,
since all algebras in this section are unital and associative, we have from Theorem 2.7
that τ satis�es (2). Further, since the de�nition of the twisted tensor product make ζA
and ζB algebra homomorphisms we get that τ satis�es (3) from Lemma 3.2.

Conversely, assume that τ satis�es (2) and (3), then A ⊗τ B has a unit by Lemma
3.2 and is associative by Theorem 2.7. Further, ζA and ζB are assumed to be injective
and so are both algebra monomorphisms by Lemma 3.2. It only remains to show that
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ζ : A⊗R B → A⊗τ B given by ζ(a⊗ b) = ζA(a)ζB(b) is a linear isomorphism. ζ can be
seen to be linear from the de�nition of the tensor product with natural bilinear maps and
abelian groups, where ζ become the unique homomorphism. To see that ζ is one-to-one
and onto, observe that ζ(a⊗ b) = ζA(a)ζB(b) = (a⊗ 1B)(1A ⊗ b) = a · τ(1B ⊗ 1A) · b =
a · (1A ⊗ 1B) · b = a ⊗ b. It follows that A ⊗τ B is the twisted tensor product from the
de�nition.

In fact, all twisted tensor products of A and B are of the form A ⊗τ B, where τ
satis�es (2) and (3), as we now show.

Theorem 3.5. If C is a twisted tensor product of A and B, then C ∼= A⊗τ B for some

τ satisfying (2) and (3).

Proof. We begin by determining τ . Let ψA : A ↪→ C, ψB : B ↪→ C be the inclusion
algebra monomorphisms from A and B, respectively, into C, and let ψ : A ⊗R B → C
be the linear isomorphism from A⊗R B into C given by ψ(a⊗ b) = ψA(a)ψB(b). De�ne
t : B × A → A ⊗ B by t(b, a) = ψ−1[ψA(a)ψB(b)] which is a linear map since ψ, ψA,
ψB are all linear. From the de�nition of the tensor product t determines a linear map
τ : B ⊗R A→ A⊗R B which is given by τ(b⊗ a) = t(b, a).

Next, we show that ψ : A ⊗τ B → C is an algebra isomorphism. We already know
that ψ is a linear isomorphism from the de�nition of the twisted tensor product. Further,
observe that ψ is an A-B bimodule homomorphism since

ψ(a′ · (a⊗ b) · b′) = ψ(a′a⊗ bb′)
= ψA(a′a)ψB(bb′)

= ψA(a′)ψA(a)ψB(b)ψB(b′)

= ψA(a′)ψ(a⊗ b)ψB(b′)

= a′ψ(a⊗ b)b′.

To see that ψ is an algebra homomorphism we observe that

ψ((a⊗ b)(a′ ⊗ b′)) = ψ(a · τ(b⊗ a′) · b′)
= ψA(a)ψ(τ(b⊗ a′))ψB(b′)

= ψA(a)ψ(ψ−1(ψB(b)ψA(a′)))ψB(b′)

= ψA(a)ψB(b)ψA(a′)ψB(b′)

= ψ(a⊗ b)ψ(a′ ⊗ b′).

Since A⊗τ B ∼= C, it follows that A⊗τ B is associative, since all algebras are assumed to
be associative, and so by Theorem 2.7 τ satis�es (2). To see that τ also satis�es (3), we
observe that ψ(τ(b⊗ 1A)) = ψ(ψ−1(ψB(b)ψA(1A))) = ψB(b)ψA(1A) = ψ(1A ⊗ b), which
gives τ(b⊗ 1A) = 1A ⊗ b, and similarly τ(1B ⊗ a) = a⊗ 1B.
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4 General twisted tensor product of algebras

In the previous section we required all algebras to be unital. In this section we want
to expand the de�nition of the twisted tensor product to a more general setting, where
algebras do not necessarily have units. We begin by studying what can be learnt by
adjoining units. If A is an algebra over a ring R, then the algebra with unit adjoined,
denoted by Â, is Â = R ⊕ A. Note that Â is an R-module, since it is the direct sum of
R-modules and that Â contains A as a submodule. In order to make Â into an algebra
we de�ne multiplication to be (r1 + a1)(r2 + a2) = r1r2 + r1a2 + a1r2 + a1a2. The unit
in Â coincides with the unit in R, and so, if A is unitary, then the units of A and Â are
not the same.

If A and B are R-algebras and τ : B⊗A→ A⊗B is a R-linear map, then we want to
make an extension τ̂ : B̂⊗RÂ→ Â⊗RB̂ of τ that satis�es condition (3) from the previous
section. Since Â⊗R B̂ = (R⊕A)⊗R(R⊕B) = (R⊗RR)⊕(R⊗RB)⊕(A⊗RR)⊕(A⊗RB)
we observe that is there is a natural way to do this. It is clear that τ̂ satis�es (3) if and
only if

τ̂(1R ⊗ 1R) = 1R ⊗ 1R,

τ̂(1R ⊗ a) = a⊗ 1R,

τ̂(b⊗ 1R) = 1R ⊗ b,

and because τ̂ is to be an extension of τ , we want it to be R-linear as well as satisfy
τ̂(a⊗ b) = τ(a⊗ b) for a ∈ A and b ∈ B. We get

τ̂((r2 + b)⊗ (r1 + a)) = τ̂((r2 ⊗ r1) + (r2 ⊗ a) + (b⊗ r1) + (b⊗ a))

= τ̂(r2 ⊗ r1) + τ̂(r2 ⊗ a) + τ̂(b⊗ r1) + τ̂(b⊗ a)

= r2 · τ̂(1R ⊗ 1R) · r1 + r2 · τ̂(1R ⊗ a) + τ̂(b⊗ 1R) · r1 + τ(b⊗ a)

= r2 · (1R ⊗ 1R) · r1 + r2 · (a⊗ 1R) + (1R ⊗ b) · r1 + τ(b⊗ a)

= r21R ⊗ 1Rr1 + r2a⊗ 1R + 1R ⊗ br1 + τ(b⊗ a)

= r1 ⊗ r2 + a⊗ r2 + r1 ⊗ b+ τ(b⊗ a).

We observe that τ̂ satis�es (3a) since

τ̂((r + b⊗ 1Â) = τ̂(r ⊗ 1R) + τ̂(b⊗ 1R)

= 1R ⊗ r + 1R ⊗ b
= 1R ⊗ (r + b)

= 1Â ⊗ (r + b).

Similarly (3b) is satis�ed.
From Â ⊗R B̂ = (R ⊗R R) ⊕ (R ⊗R B) ⊕ (A ⊗R R) ⊕ (A ⊗R B) and the fact that

A⊗R B is a direct summand, it follows that it is a subalgebra of Â⊗R B̂.
Next, we want to explore if and when τ̂ satis�es conditions (1) and (2). We begin by

observing that τ̂ �ts well with (1). For this we need the following simple identity.
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Lemma 4.1. x ·τ̂ r = rx for r ∈ R and x ∈ Â⊗R B̂.

Proof. It is enough to consider x = (r1⊗ r2) + (r1⊗ b) + (a⊗ r2) + (a⊗ b) for r1, r2 ∈ R,
a ∈ A and b ∈ B. We get

x ·τ̂ r = ((r1 ⊗ r2) + (r1 ⊗ b) + (a⊗ r2) + (a⊗ b)) ·τ̂ r
= r1 · τ̂(r2 ⊗ r) + r1 · τ̂(b⊗ r) + a · τ̂(r2 ⊗ r) + a · τ̂(b⊗ r)
= r1 · (r ⊗ r2) + r1 · (r ⊗ b) + a · (r ⊗ r2) + a · (r ⊗ b)
= r · (r1 ⊗ r2) + r · (r1 ⊗ b) + r · (a⊗ r2) + r · (a⊗ b)
= rx

It follows that the identity holds.

Using this we are now able to prove the following theorem.

Theorem 4.2. The linear map τ̂ satis�es (1) if and only if τ satis�es (1).

Proof. Firstly, assume τ̂ satis�es (1), then as τ̂ is just an extension of τ we get τ(b⊗a) ·τ
a′ = τ̂(b⊗ a) ·τ̂ a′ = τ̂(b⊗ aa′) = τ(b⊗ aa′), so that τ satis�es (1a). Similarly, τ satis�es
(1b).

Conversely, if τ satis�es (1), then using Lemma 4.1 we can see that

τ̂ [(s+ b)⊗ (r + a)] ·τ̂ (r′ + a′) = τ̂ [(s+ b)⊗ (r + a)] ·τ r′ + τ̂ [(s+ b)⊗ (r + a)] ·τ̂ a′

= r′τ̂ [(s+ b)⊗ (r + a)] + τ̂(s⊗ r + s⊗ a+ b⊗ r + b⊗ a) ·τ̂ a′

= r′τ̂ [(s+ b)⊗ (r + a)] + (r ⊗ s+ a⊗ s+ r ⊗ b+ τ(b⊗ a)) ·τ̂ a′

= r′τ̂ [(s+ b)⊗ (r + a)] + rτ̂(s⊗ a′) + aτ̂(s⊗ a′) + rτ(b⊗ a′)
+ τ(b⊗ a) ·τ̂ a′

= r′τ̂ [(s+ b)⊗ (r + a)] + ra′ ⊗ s+ aa′ ⊗ s+ τ(b⊗ ra′) + τ(b⊗ aa′)
= r′τ̂ [(s+ b)⊗ (r + a)] + (ra′ + aa′)⊗ s+ τ(b⊗ ra′ + aa′)

= r′τ̂ [(s+ b)⊗ (r + a)] + τ̂(s⊗ (ra′ + aa′)) + τ̂(b⊗ ra′ + aa′)

= τ̂ [(s+ b)⊗ (r′r + r′a)] + τ̂((s+ b)⊗ (ra′ + aa′))

= τ̂ [(s+ b)⊗ (r′r + r′a+ ra′ + aa′)]

= τ̂ [(s+ b)⊗ (r′ + a)(r + a′)],

so τ̂ satis�es (1a). In a similar manner τ̂ also satis�es (1b).

From this theorem we get the following facts about τ .

Corollary 4.3. If τ satis�es (1), then it also satis�es (2).

Proof. Since τ satis�es (1), then by the previous theorem τ̂ satis�es (1), and since τ̂ also
satis�es (3), we get from Lemma 3.3 that τ̂ satis�es (2). Since τ̂ is an extension of τ ,
then if we restrict to τ , we get that τ satis�es (2).
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Corollary 4.4. τ satis�es (1) if and only if τ̂ satis�es (2).

Proof. By Lemma 3.3 conditions (1) and (2) are equivalent for τ̂ , and so, if τ satis�es
(1), then the result follows from Theorem 4.2.

If either A or B already has a unit, then we may restrict τ̂ to the maps τ̂1 : B̂⊗A→
A⊗ B̂ and τ̂2 : B⊗ Â→ Â⊗B, respectively. We observe that τ̂1 satis�es (3) if and only
if τ satis�es (3a), since τ̂1((r+ b)⊗ 1A) = 1A⊗ r+ τ(b⊗ 1A) and likewise τ̂2 satis�es (3)
if and only if τ satis�es (3b). Further, since τ̂1 and τ̂2 are extensions of τ and restrictions
of τ̂ , we immediately get the following result from Theorem 4.2.

Corollary 4.5. Either all of τ , τ̂1, τ̂2, τ̂ satisfy (1) or none of them do.

Also, the same argument used in Corollary 4.4 applies to τ̂1 and τ̂2 as well.

Corollary 4.6. τ satis�es (1) if and only if τ̂1 satis�es (2).

Corollary 4.7. τ satis�es (1) if and only if τ̂2 satis�es (2).

If A and B are algebras, let A1 be Â if A does not have a unit and A otherwise, and
de�ne B1 similarly. Next, let σ : B1 ⊗R A1 → A1 ⊗R B1 be the appropriate linear map
among τ , τ̂1, τ̂2, τ̂ . From Theorem 3.5 in the previous section we know that all twisted
tensor products of A1 and B1 are of the form A1 ⊗σ B1 where σ satis�es (1) and (3).
Using Corollaries 4.4, 4.5, 4.6 and 4.7 we are able to express this condition in terms of τ .

Corollary 4.8. σ satis�es conditions (2) and (3) if and only if τ satis�es the conditions:

(1) τ satis�es (1);

(3a) If A has a unit, then τ satis�es (3a);

(3b) If B has a unit, then τ satis�es (3b).

Since A⊗τ B is a subalgebra of A1⊗σB1, this corollary is our justi�cation for making
the following de�nition of the twisted tensor product to include algebras without units.

De�nition 4.9. Let A and B be R-algebras. A linear map τ : B ⊗R A → A ⊗R B is a
twisting map if it satis�es conditions (1), (3a) and (3b). A twisted tensor product of A
and B is an algebra of the form A⊗τ B where τ is a twisting map.

In [3] Bergh and Oppermann de�ne a twisted tensor product for graded algebras. We
will brie�y discuss how their de�nition compares to the one we gave in De�nition 4.9,
but �rst we de�ne what is means for an algebra to be graded (by an abelian group).

De�nition 4.10. Let A be an abelian group and Λ an associative k-algebra. We say
that Λ is an A-graded algebra if Λ =

⊕
a∈A

Λa as k-modules and Λa · Λa′ ⊆ Λa+a′ . An

element λ in the factor Λa is called a homogeneous elements of degree a, and we denote
the degree of λ by |λ|.
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Note that if the A-graded algebra Λ has a unit, then |1Λ| = 1A = 0 since for all
λ ∈ Λa we have 1Λ · λ ∈ Λa.

De�nition 4.11. Let A and B be abelian groups, Λ an A-graded algebra and Γ a B-
graded algebra. If k× denotes the multiplicative group of nonzero elements in k, let
t : A⊗Z B → k× be a homomorphism of abelian groups. We write t(a⊗ b) = t〈a|b〉. The
twisted tensor product of Λ and Γ, denoted by Λ⊗tΓ, is the tensor product algebra with
multiplication

(λ⊗ γ)(λ′ ⊗ γ′) = t〈|λ
′|||γ|〉λλ′ ⊗ γγ′

for all λ, λ′ ∈ Λ, γ, γ′ ∈ Γ.

Clearly, as this twisted tensor product is de�ned on graded algebras only, the twisted
tensor product from De�nition 4.9 does not in general satisfy the conditions of being a
twisted tensor product in De�nition 4.11. However, the opposite is true, as we now show.

For abelian groups A and B, let Λ be an A-graded algebra and Γ a B-graded algebra.
It is clear that Λ⊗τΓ and Λ⊗tΓ are isomorphic as k-vector spaces with linear isomorphism
φ : Λ ⊗τ Γ → Λ ⊗t Γ de�ned by φ(λ ⊗ γ) = λ ⊗ γ. To avoid confusion we will denote
multiplication in Λ⊗τ Γ by ·τ (not to be confused with ·τ ) and multiplication in Λ⊗t Γ
by ·t. If the twisted tensor products are to be isomorphic as algebras, then we must have

φ((λ⊗ γ) ·τ (λ′ ⊗ γ′)) = φ(λ⊗ γ) ·t φ(λ′ ⊗ γ′)
= (λ⊗ γ) ·t (λ′ ⊗ γ′)
= t〈|λ

′|||γ|〉λλ′ ⊗ γγ′

= λ(t〈|λ
′|||γ|〉λ′ ⊗ γ)γ′,

and since

φ((λ⊗ γ) ·τ (λ′ ⊗ γ′)) = φ(λτ(γ ⊗ λ′)γ′)
= λτ(γ ⊗ λ′)γ′

for all λ, λ′ ∈ Λ and γ, γ′ ∈ Γ, we have that

τ(γ ⊗ λ) = t〈|λ|||γ|〉λ⊗ γ.

We need to show that τ satis�es conditions (1), (3a) and (3b) from De�nition 4.9.
Suppose Λ has a unit, then, since t is a homomorphism of abelian groups, we get

τ(γ ⊗ 1Λ) = t〈|1Λ|||γ|〉1Λ ⊗ γ
= t(|1Λ| ⊗ |γ|)1Λ ⊗ γ
= t(0⊗ |γ|)1Λ ⊗ γ
= 1Λ ⊗ γ

and so τ satis�es (3a). Similarly, τ satis�es (3b) when Γ has a unit.
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Before we show that τ also satis�es (1), observe that for λ, λ′ such that |λ| = a and
|λ′| = a′ we have, since t is a homomorphism of abelian groups, that

t〈|λ|||γ|〉t〈|λ
′|||γ|〉 = t(|λ| ⊗ |γ|)t(|λ′| ⊗ |γ|)

= t(|λ| ⊗ |γ|+ |λ′| ⊗ |γ|)
= t((|λ|+ |λ′|)⊗ |γ|)
= t〈a+a′||γ|〉

= t〈|λλ
′|||γ|〉.

Using this identity we get

τ(γ ⊗ λ) ·τ λ′ = t〈|λ|||γ|〉(λ⊗ γ) ·τ λ′

= t〈|λ|||γ|〉λτ(γ ⊗ λ′)
= t〈|λ|||γ|〉t〈|λ

′|||γ|〉λλ′ ⊗ γ
= t〈|λλ

′|||γ|〉λλ′ ⊗ γ
= τ(γ ⊗ λλ′),

and so τ satis�es (1).
In what follows we will use the twisted tensor product of De�nition 4.9.

5 Quiver algebras and coverings

In this section we introduce quivers, path algebras and covering quivers. Our goal is to
relate the structure of the path algebra of a quiver to the path algebra of it's covering
quiver. We begin this section by giving some basic de�nitions. In what follows the ground
ring will be a �eld, which we denote by K.

De�nition 5.1. A quiver Γ = (V (Γ), E(Γ)) is a directed graph, where V (Γ) is a set
of vertices and E(Γ) is a set of arrows between the vertices. Associated to the quiver
are two functions s, t : E(Γ)→ V (Γ), called the source and target function, respectively,
which for an arrow e : i → j going from the vertex i to the vertex j, give s(e) = i and
t(e) = j.

A path γ in Γ is a sequence of arrows γ = e1e2 · · · en where s(ei+1) = t(ei) for
1 ≤ i < n. The length of a path is de�ned to be the number of arrows in the sequence.
The source and target functions are naturally extended to paths by s(γ) = s(e1) and
t(γ) = t(en). We associate with each vertex v ∈ V (Γ) a trivial path of length 0, denoted
by εv, for which s(εv) = t(εv) = v. A map of quivers f : Γ1 → Γ2 is two maps, both
denoted by f , f : V (Γ1) → V (Γ2) and f : E(Γ1) → E(Γ2) which preserve sources and
targets, that is, s(f(e)) = f(s(e)) and t(f(e)) = f(t(e)) for all e ∈ E(Γ1). We say that
a quiver is connected if for any two vertices u, v ∈ V (Γ) there is a path of undirected
arrows going from u to v of �nite length. In what follows, given a quiver that is not
connected it would su�ce to look at each component separately and so we will assume
that all quivers are connected.
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De�nition 5.2. The path algebra of Γ over the �eldK, denoted byK[Γ], is theK-algebra
which has a basis consisting of all paths in Γ. For two paths p, q ∈ Γ multiplication pq is
de�ned to be composition of paths if s(q) = t(s) and 0 otherwise.

K[Γ] has identity if and only if V (Γ) is �nite, in which case 1K[Γ] =
∑

v∈V (Γ) εv. Note

also that the trivial paths are de�ned to be idempotents, that is ε2v = εv for all v ∈ V (Γ).
For a quiver Γ1 and a vertex v ∈ V (Γ1), the link of v, denoted by Lv, is the disjoint

union of all arrows with source v and all arrows with target v, that is,

Lv = {e ∈ E(Γ) : s(e) = v} t {e ∈ E(Γ) : t(e) = v}.

This means that if Γ has an edge that is a loop, that is s(e) = t(e), then this edge
contributes two elements to Lv. A covering map f : Γ1 → Γ2 is a map of quivers that
maps the elements of Lv bijectively onto Lf(v) for all v ∈ V (Γ1). We say that Γ1 is a
covering of Γ2.

We now introduce a simple way of constructing covering quivers. Given a quiver
Γ2 and a group G, let λ : E(Γ) → G be an arrow labelling function which associates
with each arrow in E(Γ) an element g ∈ G. The map λ extends naturally to paths
γ = e1e2 · · · en by letting λ(γ) = λ(e1)λ(e2) · · ·λ(en). Further, we de�ne λ in such a way
that λ(εv) = 1G for all v ∈ V (Γ). For a subgroup H of G let G/H be the right cosets
of H in G, and let Γ1 be the quiver with vertex set V (Γ1) = V (Γ2) × G/H, and arrow
set E(Γ1) = E(Γ2)×G/H with s(e,Hg) = (s(e), Hg) and t(e,Hg) = (t(e), Hgλ(e)) for
all e ∈ Γ2. The covering map f : Γ1 → Γ2 is de�ned to be the functions f(e,Hg) = e
for all e ∈ E(Γ2) and f(v,Hg) = v for all v ∈ V (Γ2). To see that this is in fact a
covering map, let v ∈ V (Γ2) and g ∈ G and look at the two sets A = {(e,Hg) | e ∈
E(Γ2), s(e) = v} and B = {e | e ∈ E(Γ2), s(e) = v}. For any e ∈ B, (e,Hg) ∈ A is
such that f(e,Hg) = e, and given (e1, Hg), (e2, Hg) ∈ A where e1 6= e2, then clearly
f(e1, Hg) = e1 6= e2 = f(e2, Hg). So f maps A bijectively onto B. The same is easily
seen to be true for the sets {(e,Hg) | e ∈ E(Γ2), t(e) = v} and {e | e ∈ E(Γ2), t(e) = v},
and so f is a covering map.

Example 5.3. Let Γ1 be the quiver 1
α

��

β

��

2

γ
��

3

δ
��

4

, G = Z with subgroup H = 3Z

where λ(α) = 3, λ(β) = 17, λ(γ) = 103 and λ(δ) = 58. The constructed covering quiver
is
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(3, 1)

(δ,1)

uu

(2, 2)

(γ,2)

��

(3, 2)

(δ,2)

xx

(4, 0) (4, 1)

(4, 2)

A fundamental property of covering quivers is unique path lifting, which is stated
and proved in the following lemma.

Lemma 5.4. Let f : Γ1 → Γ2 be a covering map of quivers. Given a path p in Γ2

and g ∈ G, there exists a unique path p̃Hg ∈ Γ1 with s(p̃Hg) = (s(p), Hg) such that

f(p̃Hg) = p. Furthermore, t(p̃Hg) = (t(p), Hgλ(p)).

Proof. The proof is by induction on the length of the path p. If p is a trivial path, the
result is clear. Assume the property holds for paths up to length k and let p be a path of
length k+1. Then p = p′e for some path p′ ∈ Γ1 of length k and e ∈ E(Γ1). If g ∈ G, then
by the induction hypothesis p′ has a unique lift p̃′Hg with target t(p̃

′
Hg) = (t(p′), Hgλ(p′)).

Further, since the length of e is 1, the element ẽHgλ(p′) is the unique lift of e starting at the

target of p̃′Hg with t(ẽHgλ(p′)) = (t(e), Hgλ(p′)λ(e)) = (t(e), Hgλ(p)). Then p̃′ẽ is a path

in Γ1 with the desired source and target. Furthermore, since f(p̃′ẽ) = f(p̃′)f(ẽ) = p′e = p
it is a lift, and since f is a covering map, the choice of e is unique making the lift unique
also.

We de�ne L : Γ2 ×G→ Γ1 to be the lift function which for a path p ∈ Γ2 and g ∈ G
gives L(p, g) = p̃Hg. We naturally extend L to k-linear sums of paths t =

∑n
i=1 kipi for

ki ∈ K and pi ∈ Γ2 by L(t, g) =
∑n

i=1 kiL(pi, g). Note further that for any path p = q2q1

the lift function has the property L(p, g) = L(q2, gλ(q1))L(q1, g), as can easily be seen
by looking at p as a sequence of arrows.

Next we introduce quivers with relations and extend the notion of coverings to these.
A relation ρ on a quiver Γ over K is a K-linear combination of paths in Γ, ρ =

∑n
i=1 kipi

for ki ∈ K and pi ∈ Γ, with s(p1) = s(p2) = · · · = s(pn) and t(p1) = t(p2) = · · · = t(pn).
We denote the quiver Γ with relation ρ as (Γ, ρ) and the path algebra of (Γ, ρ) is de�ned
to be K[(Γ, ρ)] = K[Γ]/〈ρ〉 where 〈ρ〉 is the ideal in K[Γ] generated by ρ. If t =

∑n
i=1 kipi
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is a k-linear combination of paths in Γ we de�ne the (u, v)-component, denoted by cu,v,
for vertices u, v ∈ Γ to be the sum cu,v =

∑m
i=1 kipi where {pi}mi=1 is the set of paths pi

in the sum with source u and target v.
If (Γ1, ρ1) and (Γ2, ρ2) are two quivers with relations we de�ne f : (Γ1, ρ1)→ (Γ2, ρ2)

to be a morphism of quivers with relations if f : Γ1 → Γ2 is a regular covering map
and ρ1 = {L(t, g) | g ∈ G and t ∈ ρ2} and for all s ∈ ρ1 and u, v ∈ V (Γ2) there exist
u′, v′ ∈ V (Γ1) such that f(cu′,v′(s)) = cu,v(f(s)). We note that for ρ1 to be a relation,
we require that given any s ∈ ρ1 all its paths must have the same source and the same
target. For this to be true for arbitrary quivers we need to impose a condition on the
weights of arrows in Γ2 as we show next.

Lemma 5.5. Given a set of relations ρ2 on Γ2, there exists a unique set of relations

ρ1 on Γ1 such that f is a morphism of quivers with relations if and only if for any

t =
∑n

i=1 kipi ∈ ρ2 we have λ(p1) = λ(p2) = · · · = λ(pn).

Proof. First observe that if f is to be a morphism of quivers with relations, then ρ1

is completely determined by ρ2, since by the de�nition, ρ1 is just all possible lifts of
t ∈ ρ2. Further, let σ ∈ ρ1 and observe that the source of any paths in σ are equal,
since σ = L(t,Hg) =

∑n
i=1 kiL(pi, Hg) for some t =

∑n
i=1 kipi ∈ ρ2, and s(L(pi, Hg)) =

(s(pi), Hg) for all 1 ≤ i ≤ n. Next, if pi = e1e2 · · · em is any path in t, then

L(pi, Hg) = L(e1e2 · · · em, Hg)

= L(e1, Hg)L(e2, Hgλ(e1)) · · ·L(em, Hg
m−1∏
k=1

λ(ek)),

and so t(L(pi, Hg)) = (t(pi), Hg
∏m
k=1 λ(ek)). It is now clear that if for any t =

∑n
i=1 kipi

we have λ(p1) = λ(p2) = · · · = λ(pn), then ρ1 is a relation. Conversely, if ρ1 is a relation
and pi, pj are any two paths in t, then λ(pi) = λ(pj) so that their targets coincide. For
any σ ∈ ρ1 with t = f(σ) =

∑n
i=1 kipi the second condition is trivially satis�ed with

u′ = (u,Hg) and v′ = (v,Hgλ(pi)) for any summand pi in t.

Before we continue it is useful to note that all elements in 〈ρ1〉 are sums of lifts of
elements in 〈ρ2〉 since L(p, g)L(p′, g′) = L(pp′, g) when Hgλ(p) = Hg′ and 0 otherwise,
we have

n∑
i=1

kiq
′
isiq

′′
i =

n∑
i=1

kiL(p′i, g
′
i)L(ti, gi)L(q′′i , g

′′
i ) =

n∑
i=1

kjL(p′jtjp
′′
j , g
′
j)

for paths q′i, q
′′
i ∈ Γ1, p

′
i, p
′′
i ∈ Γ2, si ∈ ρ1, ti ∈ ρ2, ki ∈ K, 1 ≤ i ≤ n and 1 ≤ j ≤ m.

Next we show that lifts in K[Γ2]/〈ρ2〉 are still unique.

Lemma 5.6. For paths p, p′ ∈ K[Γ2]/〈ρ2〉 and g, g′ ∈ G we have

(a) p̃Hg = p̃
′
Hg′ = 0 in K[Γ1]/〈ρ1〉 if and only if p = p′ = 0;

(b) p̃Hg = p̃
′
Hg′ 6= 0 in K[Γ1]/〈ρ1〉 if and only if Hg = Hg′ and p = p′.
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Proof. Since elements of 〈ρ1〉 are just sums of lifts of elements in 〈ρ2〉 it is clear that (a)
holds. To see that (b) holds, �rst note that if Hg 6= Hg′, then s(p̃Hg) 6= s(p̃′Hg′) and so

clearly p̃Hg 6= p̃
′
Hg′ . Next, observe that p̃Hg− p̃′Hg = L(p, g)−L(p′, g) = L(p− p′, g), and

so it is clear that if p = p′ then p̃Hg = p̃
′
Hg and conversely if p 6= p′ then p̃Hg 6= p̃

′
Hg.

For the main theorem we introduce the quiver ΣG/H with vertex set V (ΣG/H) = {Hg |
g ∈ G} and no arrows. The algebra K[ΣG/H ] consists only of trivial paths εHg which are
all orthogonal idempotents. We de�ne a right G-action on K[ΣG/H ] by εHgg

′ = εHgg′

and note the following simple fact.

Lemma 5.7. For all εHg1, εHg2 ∈ K[ΣG/H ] with g1, g2 ∈ G and all g ∈ G, we have

(εHg1εHg2)g = (εHg1g)(εHg2g).

Proof. If Hg1 6= Hg2, then (εHg1εHg2)g = 0 = εHg1gεHg2g. Assume Hg1 = Hg2, then
Hg1g = Hg2g and so (εHg1εHg2)g = (εHg1)g = εHg1g = (εHg1gεHg2g) = (εHg1g)(εHg2g).

For the main theorem we need to apply the arrow labelling function to basis ele-
ments of the path algebra K[Γ2]/〈ρ2〉 and so we de�ne λ∗ : K[Γ2]/〈ρ2〉 → G by λ∗(p) ={
λ(p) if p 6= 0
1G if p = 0

. To see that this is well de�ned, let p, q ∈ Γ2 be such that p = q,

then p − q ∈ 〈ρ2〉 and so p − q =
∑n

i=1 kiγitiγ
′
i for ti ∈ ρ2, γi, γ

′
i ∈ Γ2, ki ∈ K and

1 ≤ i ≤ n. For p = q 6= 0, we know that no subpaths p′ of p or q′ of q are in ρ2. If
any one of γitiγ

′
i contains both p and q as summands, then λ(p) = λ(q), and so con-

sider only the case where this does not occur. De�ne the three sets A = {kiγitiγ′i |
kiγitiγ

′
i contains p as a summand}, B = {kiγitiγ′i | kiγitiγ′i contains q as a summand}

and C = {kiγitiγ′i | kiγitiγ′i does not contain p or q among it's summands}. If any kiγitiγ′i ∈
C shares a summand with both an element of A and B, then λ(p) = λ(q) so suppose
this is not the case. Go through all elements of C and if they share a summand with an
element in A or B, then remove it from C and add it to A or B, respectively. Repeat
this process until either one element of C shares a summand with both an element of
A and B, in which case λ(p) = λ(q), or no element of C shares a summand with any
element of A and B. The latter case cannot occur, since then all elements of A and B
would sum to p and q, respectively, so that p = q = 0.

Finally, our main theorem.

Theorem 5.8. There is an isomorphism of algebrasK[Γ1]/〈ρ1〉 ∼= K[ΣG/H ]⊗τK[Γ2]/〈ρ2〉
where τ : K[Γ2]/〈ρ2〉⊗K[ΣG/H ]→ K[ΣG/H ]⊗K[Γ2]/〈ρ2〉 is the twisting map de�ned on

the basis elements by τ(p⊗ εHg) = εHgλ(p)−1 ⊗ p for all p ∈ Γ2 and εHg ∈ ΣHg.

Proof. Let us begin by checking that τ is in fact a twisting map by verifying the de�ning
conditions from De�nition 4.9. As K is a �eld and τ is de�ned on the basis elements, we
know that it is linear and so it is su�cient to verify for the basis elements only.
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If K[Γ2]/〈ρ2〉 has a unit, then V (Γ2) is �nite and 1K[Γ2]/〈ρ2〉 =
∑

v∈V (K[Γ2]/〈ρ2〉) εv so
that

τ(
∑

εv ⊗ εHg) =
∑

τ(εv ⊗ εHg)

=
∑

(εHgλ∗(εv)−1 ⊗ εv)

=
∑

(εHg1G ⊗ εv)

= εHg ⊗
∑

εv

= εHg ⊗ 1K[Γ2]/〈ρ2〉.

This veri�es (3a).
If K[ΣG/H ] has a unit, then V (ΣG/H) is �nite and 1K[ΣG/H ] =

∑
Hg∈G/H εHg and so

τ(p⊗
∑

εHg) =
∑

τ(p⊗ εHg)

=
∑

(εHgλ∗(p)−1 ⊗ p)

=
∑

εHgλ∗(p)−1 ⊗ p
= 1K[ΣG/H ] ⊗ p.

This veri�es (3b).
For condition (1a), using Lemma 5.7, we get

τ(p⊗ εHg) ·τ εHg′ = (εHgλ∗(p)−1 ⊗ p) ·τ εHg′
= εHgλ∗(p)−1 · τ(p⊗ εHg′)
= εHgλ∗(p)−1εHg′λ∗(p)−1 ⊗ p
= (εHgεHg′) · λ∗(p)−1 ⊗ p
= τ(p⊗ εHgεHg′).

And �nally, we verify condition (1b). In the following we will use the identity λ∗(p)λ∗(p′) =
λ∗(pp′) to show that εHgλ∗(p)−1λ∗(p′)−1 ⊗ p′p = εHg(λ∗(p′p))−1 ⊗ p′p. This identity has not
been proved. Since the identity holds for λ, the only potential problem occurs when
p 6= 0 and p′ 6= 0 while pp′ = 0, but we note that in this case, since pp′ = 0, the equality
holds even if λ∗(p)λ∗(p′) 6= λ∗(pp′). We get

p′ ·τ τ(p⊗ εHg) = p′ ·τ (εHgλ∗(p)−1 ⊗ p)
= τ(p′ ⊗ εHgλ∗(p)−1)p

= (εHgλ∗(p)−1λ∗(p′)−1 ⊗ p′)p
= εHg(λ∗(p′p))−1 ⊗ p′p
= τ(p′p⊗ εHg).

This con�rms that τ is a twisting map.
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Next, let φ : K[ΣG/H ]⊗τ K[Γ2]/〈ρ2〉 → K[Γ1]/〈ρ1〉 be the map de�ned on the basis

elements by φ(εHg ⊗ p) = p̃Hg. We want to show that this is our isomorphism and begin
by showing it is an algebra homomorphism. Since K is a �eld and the map is de�ned on
the basis elements it is linear, and from Lemma 5.6 we immediately get that it is well
de�ned. Further, we have

φ[(εHg ⊗ p)(εHg′ ⊗ p′)] = φ[εHg · τ(p⊗ εHg′) · p′]
= φ[εHg · (εHg′λ∗(p)−1 ⊗ p) · p′]
= φ[εHgεHg′λ∗(p)−1 ⊗ pp′].

This is 0 unless Hg = Hg′λ∗(p̄)−1, pp′ /∈ 〈ρ2〉 and t(p) = s(p′), otherwise it is the unique

lift p̃p′Hg. On the other hand, φ(εHg ⊗ p)φ(εHg′ ⊗ p′) = p̃Hgp̃′Hg′ which again is 0 unless

Hgλ∗(p̄) = Hg′, pp′ /∈ 〈ρ2〉 and t(p) = s(p′), otherwise it is p̃p′Hg by the unique path lift
property. It follows that φ is an algebra homomorphism.

To show that φ is bijective, we verify that the linear map ψ : K[Γ1]/〈ρ1〉 → K[ΣG/H ]⊗τ
K[Γ2]/〈ρ2〉 de�ned on paths by ψ(q) = εHg ⊗ p where q = L(p, g), is an inverse. First
we show that it is an algebra homomorphism. The map ψ is well de�ned by Lemma 5.6.
Further, we have for paths q1,q2 ∈ K[Γ1]/〈ρ1〉 where q1 = L(p1, g) and q2 = L(p2, g′)
that ψ(q1q2) = εHg ⊗ p1p2 and

ψ(q1)ψ(q2) = (εHg ⊗ p1)(εHg′ ⊗ p2)

= εHg · τ(p1 ⊗ εHg′) · p2

= εHgεHg′λ∗(p1)−1 ⊗ p1p2

= εHg ⊗ p1p2.

The last equality follows from the fact that unless q1q2 = 0 (in which case equality
holds trivially) we have s(q2) = (s(p2), Hg′) = t(q1) = (t(p1), Hgλ∗(p1)) so that Hg =
Hg′λ∗(p1)−1.

Finally, to see that ψ is an inverse of φ, observe that an arbitrary basis element
q ∈ K[Γ1]/〈ρ1〉 where q = L(p, g) we have φψ(q) = φ(εHg ⊗ p) = p̃Hg = q and for any

basis element of K[ΣG/H ] ⊗τ K[Γ2]/〈ρ2〉 we have ψφ(εHg ⊗ p) = ψ(L(p, g)) = εHg ⊗ p.
This shows that φ is a bijection.

We illustrate this theorem with an example.

Example 5.9. Let Γ2 be the quiver 1α 99 βee with relations ρ2 = {α2, αβ+βα, β2}.
The basis of the path algebra K[Γ2]/〈ρ2〉 consists of the paths {e1, α, β, αβ}. Let G/H =
〈σ〉 where σ is such that σ7 = 1G/H so that G/H ∼= Z7. Further, let λ(α) = σ and λ(β) =
σ2, and note that these weights satisfy the condition in Lemma 5.5. By construction, we
then get the following covering quiver Γ1
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(1, 1G/H)
(α,1G/H)

��

(β,1G/H)

""

(1, σ6)

(α,σ6)

00

(β,σ6) // (1, σ)

(α,σ)

��

(β,σ)



(1, σ5)

(α,σ5)

OO
(β,σ5)

DD

(1, σ2)

(α,σ2)

��

(β,σ2)

ww

(1, σ4)

(α,σ4)

TT
(β,σ4)

WW

(1, σ3)
(α,σ3)

mm

(β,σ3)

kk

with relations ρ1 = {(α, σi)(α, σi+1, (α, σi)(β, σi+1) + (β, σi)(α, σi+2, (β, σi)(β, σi+2) |
for i = 1, 2, ..., 7 }. Theorem 5.8 says that K[Γ1]/〈ρ1〉 ∼= K[ΣZ7 ] ⊗τ K[Γ2]/〈ρ2〉 by the
isomorphism φ : K[ΣZ7 ]⊗τ K[Γ2]/〈ρ2〉 → K[Γ1]/〈ρ1〉 which maps the basis elements by
φ(εσi ⊗ p) = p̃σi .

6 Hochschild cohomology of the twisted tensor product

In this section we will introduce the Hochschild cohomology groups and show how they
can be computed. We then propose an analogue to Theorem (4.7) in [3] better suited to
our setting and show through a counterexample that it does not hold. We begin with
some basic de�nitions and then introduce the Hocschild cohomology.

Let R be a ring. An R-module P is projective if and only if for every epimorphism
f : N → M between R-modules N and M and every homomorphism g : P → M , there
exists a homomorphism h : P → N such that fh = g.

A sequence

M0
f1−→M1

f2−→ · · · fn−→Mn

of R-modules is called an exact sequence if Im(fk) = Ker(fk+1) for k = 1, 2, . . . , n− 1.
A left projective resolution ofM over R is a possibly in�nite exact sequence of projective
left R-modules Pi of the form

· · · f2−→ P2
f1−→ P1

f0−→M → 0.

A complex is a sequence of R-modules · · ·B−1, B0, B1 · · · with maps fn : Bn → Bn+1

such that fn+1 ◦ fn = 0 for all n.
Given a k-algebra A, we de�ne the enveloping algebra, denoted by Ae, as A ⊗k Aop

where Aop is the same algebra as A except that multiplication is reversed. Multiplication
in Ae is given by (a⊗ b)(a′ ⊗ b′) = aa′ ⊗ b′b.

It can be shown that the tensor product A⊗n = A ⊗k · · · ⊗k A, which takes the
tensor product of A with itself n times, is a projective Ae-module and that the map
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bn−1 : A⊗n+1 → A⊗n given by bn−1(a0⊗· · ·⊗an) =
∑n−1

i=0 (−1)iao⊗· · ·⊗aiai+1⊗· · ·⊗an
is a homomorphism of Ae-modules. Further, it is possible to show that the sequence

· · · → A⊗n+1 bn−1−−−→ A⊗n → · · · → A⊗3 b1−→ A⊗2 b0−→ A→ 0,

is a projective resolution of A over Ae, which is known as the Hochschild resolution of A.
Let M be an Ae-module. Consider the sequence

0→ HomAe(A⊗2,M)
−◦b1−−−→ HomAe(A⊗3,M)

−◦b2−−−→ HomAe(A⊗4,M)→ · · · .

Note that HomAe(A,M) is not included. This is no longer an exact sequence, but is
still a complex. Using the isomorphism HomAe(A⊗n,M) ∼= Homk(A

⊗n−2,M) given by
f 7→ f̃ , with f̃ = f(1⊗ x⊗ 1), we get the diagram

0 // HomAe(A⊗2,M)
−◦b1 //

∼=
��

HomAe(A⊗3,M)
−◦b2 //

∼=
��

HomAe(A⊗4,M) //

∼=
��

· · ·

0 //M
d1 // Homk(A,M)

d2 // Homk(A
⊗2,M) // · · ·

.

The two complexes are equivalent if all the squares commute and it can be veri�ed that
the maps dn : Homk(A

⊗n,M)→ Homk(A
⊗n+1,M) given by

(dnf)(a0 ⊗ · · · ⊗ an) = a0f(a1 ⊗ · · · ⊗ an)

+

n−1∑
i=0

(−1)i+1f(a0 ⊗ · · · ⊗ a1ai+1 ⊗ · · · ⊗ an)

+ (−1)n+1f(a0 ⊗ · · · ⊗ an−1)an

accomplishes this.
The Hochschild cohomology of A with coe�cients in M is de�ned as H i(A,M) ∼=

Kerdi/ Imdi−1. We write H i(A) = H i(A,A) for the Hochschild cohomology of A with
coe�cients in A. For the 0-Hochschild cohomology group of A over A we have

H0(A) = Ker(d0) = {a ∈ A : a′a− aa′ = 0,∀a′ ∈ A} = Z(A),

where Z(A) is called the center of A. The next Hochschild cohomology group is given
by H1(A) = Ker(d1)/Im(d0) where

Ker(d1) = {f ∈ Homk(A,A) : af(a′)− f(aa′) + f(a)a′ = 0, ∀a, a′ ∈ A}

and
Im(d0) = {fa ∈ Homk(A,A), a ∈ A : fa(a

′) = a′a− aa′,∀a ∈ A}.

Higher Hochschild cohomology groups become increasingly more di�cult to compute.
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Theorem (4.7) in [3] show that taking Hochschild cohomology commutes with twisted
tensor products of graded algebras when only considering the graded parts corresponding
to subgroups ∩b∈B Kert〈−|b〉 ≤ A and ∩a∈A Kert〈a|−〉 ≤ B. We will illustrate that the
more general claim, that is, for algebras A and B and twisted tensor product in the sense
of De�nition 4.9, the isomorphism

n⊕
i=0

H i(A)⊗k Hn−i(B) ∼= Hn(A⊗τ B), (1)

does not hold in general. We do this with an example.

Example 6.1. Let Q be the quiver 1α 99 βee with relations ρ = {α2, αβ + βα, β2}.
Further, for σ such that σ7 = 1G/H , let G/H = 〈σ〉 ∼= Z7. We denote k[Q]/〈ρ〉 by Λ, and
similarly, k[ΣG/H ] by ΣG/H . We want to calculate the �rst two Hochschild cohomology
groups for the two path algebras Λ and ΣG/H .

The algebra Λ has basis {e1, α, β, αβ} where we note that only e1 and αβ commute
with all the basis elements, and so H0(Λ) = Z(Λ) = {k1e1 + k2αβ | k1, k2 ∈ k}. To
calculate H1(Λ) =Kerd1/Imd0 we note that Λ as a k-module is a 4-dimensional vector
space so that Homk(Λ,Λ) = M4x4(k). We will use vector notation for elements in Λ
and write k1e1 + k2α+ k3β + k4αβ = [k1, k2, k3, k4]T . In order to �nd Kerd1 we need to
determine which A ∈ M4x4(k) satisfy (Aλ) · λ′ = (Aλ) · λ′ + λ · (Aλ′) for all λ, λ′ ∈ Λ.
Solving the equation for each of the basis elements give

Ker(d1) = {


0 0 0 0
0 a b 0
0 c d 0
0 e f a+ d

 | a, b, c, d, e, f ∈ k}.
Similarly, to calculate Im(d0) we need to determine which A ∈ M4x4(k) satisfy Aλ =
λ · λ′ − λ′ · λ for all λ ∈ Λ. Solving this using the basis elements yield

Im(d0) = {


0 0 0 0
0 0 0 0
0 0 0 0
0 a b 0

 | a, b ∈ k}.
We now have dimkH

0(Λ) = 2 and dimkH
1(Λ) = 4.

Next, consider ΣG/H which has basis {e1, e2, e3, e4, e5, e6, e7}. This is a commutative
algebra, and so H0(ΣG/H) = Z(ΣG/H) = ΣG/H . Performing the same kind of calculation
on A(σ · σ′) = (Aσ) · σ′ + σ · (Aσ′) for all σ, σ′ ∈ ΣG/H give that Ker(d1) = 0 and so
H1(ΣG/H) = 0.

With this we have

dimk(H
1(Λ)⊗H0(ΣG/H)⊕H0(Λ)⊗H1(ΣG/H)) = 28.

Lastly, we want to calculate H1(Λ⊗τ ΣG/H). As this algebra has 28 basis elements,
solving the linear equation A((λ⊗σ)·(λ′⊗σ′)) = (A(λ⊗σ))·(λ′⊗σ′)+(λ⊗σ)·(A(λ′⊗σ′))
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by hand is not an option. Instead, we use the GAP package QPA [4] to calculate and
get dimkH

1(Λ⊗τ ΣG/H) = 2. The code is included in Appendix A. It is now clear that
(1) does not hold in general.
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A Code for calculation used in Example 6.1

Q := Quiver (7 , [ [ 1 , 2 , " a1 " ] , [ 2 , 3 , " a2 " ] , [ 3 , 4 , " a3 " ] , [ 4 , 5 , " a4 " ] ,
[ 5 , 6 , " a5 " ] , [ 6 , 7 , " a6 " ] , [ 7 , 1 , " a7 " ] , [ 1 , 3 , " b1 " ] , [ 3 , 5 , " b3 " ] ,
[ 5 , 7 , " b5 " ] , [ 7 , 2 , " b7 " ] , [ 2 , 4 , " b2 " ] , [ 4 , 6 , " b4 " ] , [ 6 , 1 , " b6 " ] ] ) ;
KQ := PathAlgebra ( Rat ionals , Q) ;
Ass ignGeneratorVar iab le s (KQ) ;
r e l a t i o n s := [ a1∗a2 , a2∗a3 , a3∗a4 , a4∗a5 , a5∗a6 , a6∗a7 , a7∗a1 ,

b1∗b3 , b3∗b5 , b5∗b7 , b7∗b2 , b2∗b4 , b4∗b6 , b6∗b1 ,
a1∗b2 + b1∗a3 , a2∗b3 + b2∗a4 , a3∗b4 + b3∗a5 ,
a4∗b5 + b4∗a6 , a5∗b6 + b5∗a7 , a6∗b7 + b6∗a1 ,
a7∗b1 + b7∗a2 ] ;

A := KQ/ r e l a t i o n s ;
B := AlgebraAsModuleOverEnvelopingAlgebra (A) ;
ExtOverAlgebra (B) ;

ExtOverAlgebra(B); returns three elements where the second is the basis vectors for
the Hochschild cohomology.

26


