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Abstract

The main goal of the present thesis is an exposition of the Bökstedt-
Madsen theorem ([BM]), which relates the classifying space of the
embedded cobordism category to certain iterated loop spaces of the
Thom space of universal vector bundles. To this end, we first give a
brief exposition of higher category theory with emphasis on the k-fold
categories and a general introduction to cobordism theory and moduli
spaces of manifolds. In the final chapter, we explore the extension of
the theory to accommodate manifolds with Baas-Sullivan singularities.



Sammendrag

Hovedmålet i denne oppgaven er en eksposisjon av Bökstedt-Madsen-
teoremet ([BM]), som relaterer det klassifiserende rommet til den
embeddede kobordismekategorien til visse itererte looprom til Thom-
rommet assosiert til universelle vektorbunter. For dette formålet gir
vi først en kort eksposisjon av høyere kategoriteori med fokus på k-
foldige kategorier og en generell introduksjon til kobordismeteori og
modulirom av mangfoldigheter. I det siste kapittelet utforsker vi en
utvidelse av denne teorien som tar hånd om mangfoldigheter med
Baas-Sullivan-singulariteter.
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Chapter1Higher categories

Category theory has proven itself to be a ubiquitous presence in algebra, geometry
and topology. However, in many situations arising naturally, imposing a category
structure is either insufficient or forces us to make unnatural identifications. Let
us look at an example of both. Let us look at the categories Top of topological
spaces, sSet of simplicial sets , Ch(R) of chain complexes with values in R-modules
for a commutative ring R and QCoh(X) of quasi-coherent sheaves of modules over
a scheme X. In these categories it makes sense and it meaningful to talk about
homotopies between morphisms. In fact, for many naturally arising functors
between these, such as the singular complex functor C•(−) : Top → Ch(R), it
is possible to extend the functor to take homotopies between morphisms in Top
to homotopies between chain complexes in Ch(R), and so on for homotopies of
homotopies, et cetera.

The central idea of higher category theory is that ordinary categories do
not possess enough structure to describe the structures we are interested in. In
particular, in situations where we may have many possible ways of composing a
pair of morphisms, which are all equal up to some equivalence relation; we need
to take equivalence classes to recover the associativity and unitality axioms of a
category. The philosophy of higher category theory is to not quotient out this
failure to satisfy the axioms, but treat it as extra structure. This extra structure
takes the form of "morphisms between morphisms", or 2-morphisms. Iterating,
we get 3-morphisms between 2-morphisms et cetera. We then weaken the notion
of "associative" to mean "associative up to an invertible 2-morphism", where
"invertible 2-morphism" in turn is weakened to "invertible up to an invertible
3-morphism" and so on. A higher category which has morphisms of dimensions
up to some finite number n is called an n-category. There are several technical
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2 1. HIGHER CATEGORIES

obstacles to rigorously defining n-categories. One of which is the problem of
coherence conditions. If we stop adding higher morphisms after dimension n, we
will need to impose some strict notion of associativity and unitality at that level.
The equations encoding which n-morphisms are identified are called coherence
conditions. The problem with coherence conditions is a combinatorial explosion
which occurs as the dimension increases. We will examine this phenomenon
shortly. First, we give some motivating examples of higher categories.

Example 1.1. The standard example is the homotopy groupoid of a topological
space. Recall that given a topological space X, the homotopy groupoid is a
category Π≤1(X) whose objects are the points of X, and a morphism p : x→ y is
a homotopy class of paths p : [0, 1]→ X such that p(0) = x and p(1) = y. The
need to take homotopy classes is immediate; in order to compose paths, we first
need to reparameterize them. Let us fix a homeomorphism

[0, 1]×i0,i1 [0, 1] ≈ [0, 2]

The composition map

Π≤1(X)×s,t Π≤1(X)→ Π≤1(X)

extends through the canonical map of path spaces

HomTop([0, 1], X)×e0,e1 HomTop([0, 1], X)→ HomTop([0, 2], X)

followed by taking the precomposition with a map

f : [0, 1]→ [0, 2]

for which f(0) = 0 and f(1) = 2. The problem is then that there is no canonical
choice for such a map. While a linear map may seem natural, there is, for
the purpose of composing paths, no reason to prefer it over, say, the quadratic
function x 7→ 2x2. However, we are in luck, since the space of these functions
f as above is contractible. Therefore we have a canonical composition, but
only up to homotopy. Still, the need to take homotopy classes does not end at
avoiding arbitrary choices. There is a real issue of associativity and unitality of
the composition operation which necessitates it. Namely, if we fix any such f ,
we can build two canonical maps [0, 1]→ [0, 3] from it. By utilizing our chosen
homeomorphism [0, 1]×i0,i1 [0, 1] ≈ [0, 2], we get the two maps (id× f) ◦ f and
(f × id) ◦ f , and these are never equal. However, they are always homotopic. The
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same argument holds for unitality. Thus we must take homotopy classes in order
to equip Π≤1(X) with the structure of a category.

Now, we might instead retain the structure of the homotopies witnessing the
associativity and unitality. The set of these homotopies, along with rules for
composing them, adds a second layer of structure. Now we are again faced with
the problem of making this into an associative and unital structure, and the
solution is again to take homotopy classes of homotopies. We may again iterate
the procedure, an arbitrary number of times, either indefinitely or up to a certain
finite number, say n layers of structure. In this case we obtain what is called the
fundamental n-groupoid of X, denoted Πn(X). As the name suggests, this is one
of the "tests" a definition of n-categories must pass - it must include Πn(X) as an
example of an n-groupoid.

Example 1.2. Let M and N be n-manifolds with boundary, such that ∂M
and ∂N have a common union of components P . Then we can glue M and N
along P , obtaining the pushout W = M tP N . W is uniquely determined up to
isomorphism, but to construct it requires one to choose smooth collars around P
in M and N .

More generally, assume we are given an n-manifold Vn and a 0 ≤ k ≤ n. Let
Vn−1 be an (n− 1)-dimensional submanifold of ∂Vn. Continuing downward until
we reach Vn−k, we reach a hierarchy of manifolds of increasing dimension which
we want to realize as a geometric k-category.
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Vn n-manifold k-morphism
Vn−1 ⊂ ∂Vn (k − 1)-morphism
Vn−2 ⊂ ∂Vn−1 (k − 1)-morphism
...

...
Vn−k ⊂ ∂Vn−k+1 0-morphism

In this way a decomposition of the boundary of successively lower dimensional
manifolds can give rise to a higher categorical structure. The nature of this
structure will naturally depend on how we deal with this decomposition. In this
thesis, we will focus on the decomposed manifolds of [Baa73], also called 〈k〉-
manifolds in [Lau00], which naturally gives rise to a k-fold categorical structure.

Further structure imposed on the boundary decomposition can give rise to
more exotic generalized manifolds, for example manifolds with Baas-Sullivan
singularities, which we explore in Chapter 4.

1.1 Strict n-categories

By far the easiest to handle flavours of higher categories are the so-called strict
n-categories. The reason for this is that all the coherence relations are trivial.

Definition 1.1.1. We define a strict n-category inductively as follows.

– The category of strict 0-categories is just Set.

– For n ≥ 1, the category nStrCat of strict n-categories is the category
(n− 1)StrCat-Cat of categories enriched in strict (n− 1)-categories.
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Remark 1.1.2. Unravelling the definition, we see that a strict n-category has n
layers of morphisms, where k-morphisms go between (k − 1)-morphisms whose
sources and targets agree. This is an example of a globular notion of higher
categories. Furthermore, there is defined a notion of composition at each layer
which is associative and unital. Morphisms in different dimensions are usually
represented by extending the usual commutative diagrams into higher-dimensional
cell complexes. I.e. a k-morphism for k = 0, 1, 2, ... is represented as follows:

Example 1.3. The prototypical example of a strict (n + 1)-category is the
category of strict n-categories. Here the objects are given by the strict n-categories
and the morphisms by enriched functors between these. Unravelling the definition
of a functor F : C → D between strict n-categories, we see that it consists of an
(n+ 1)-tuple of functions Fk : Ck → Dk taking k-morphisms to k-morphisms for
0 ≤ k ≤ n, such that these are compatible with respect to all structure maps.

1.2 Coherence conditions

Let us illustrate how coherence conditions come into play, and how the com-
binatorial explosion occurs as the dimension increases. We will work out the
2-dimensional case explicitly, building upon the definition of strict 2-categories in
the previous section.

Definition 1.2.1. A weak 2-category C, also called a bicategory, is the data of
a set of objects C0, and for each pair a, b ∈ C0, a category C(a, b), the objects of
which are called 1-morphisms from a to b, and for two 1-morphisms f, g : a→ b,
a morphism α : f ⇒ g is called a 2-morphism from f to g.

This data is equipped with a composition and unit structure maps. The former
is given by, for each triple a, b, c ∈ C0, a specified functor



6 1. HIGHER CATEGORIES

cabc : C(b, c)× C(a, b)→ C(a, c)

and the latter by, for each a ∈ C0, a functor

ua : 1→ C(a, a)

where 1 is the trivial one-object category.

This data is required to satisfy weak associativity and unitality. The former is
given by, for each quadruple of objects a, b, c, d ∈ C0, an invertible 2-morphism

and the latter by, for each pair of objects a, b ∈ C0, a pair of invertible
2-morphisms

Finally, we require the 2-morphisms appearing in the axioms to satisfy some
higher coherence conditions. Firstly, we have the following version of the pentagon
axiom for monoidal categories: For any quintiplet of objects a, b, c, d, e ∈ C0, the
following pastings of 2-morphisms are equal.
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Secondly, we have the following relation on the unitors. For each triplet of
objects a, b, c ∈ C0, the following pastings of 2-morphisms are equal.

Example 1.4. [B6́7] Let C be a category with pushouts. We define its
bicategory of cospans Cosp(C) as follows. The objects of Cosp(C) are simply the
objects of C. A 1-morphism of Cosp(C) is a cospan in C, that is a diagram

P0 S P1
f0 f1
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which we denote by (f0, f1) A 2-morphism is a morphism of cospans, that is a
commutative diagram

S0

P0 P1

S1

For each pair of cospans

P0 S P1
f0 f1

P1 S′ P2g0 g1

we choose a pushout of the diagram

S P1 S′
f1 g0

and this pushout is defined as the composition of the two 1-morphisms. The
associator and unitors now follow from the fact that the pushout is a universal
construction.

Definition 1.2.2. Let C and D be bicategories. A psuedofunctor P : C → D is
the data of:

– a function P0 : C0 → D0,

– for each pair x, y ∈ C0, a functor Pxy : C(x, y)→ D(P0(x), P0(y)),

– for each object x ∈ C0, an invertible 2-morphism Pidx : idP0(x) → Pxx(idx),
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– for each triple x, y, z ∈ C0, an isomorphism, natural in f : x → y and
g : y → z,

Pxyz(f, g) : Pyz(g) ◦ Pxy(f)→ Pxz(g ◦ f)

these data are required to satisfy the following axioms. For each hom-category
C(x, y) and each f ∈ C(x, y), the following diagrams commute.

Pxy(f) ◦ idP0(x) Pxy(f)

Pxy(f) ◦ Pxx(idx) Pxy(f ◦ idx)

λPxy(f)

Pxy(λf )idPxy(f) ◦ Pidx

Pxxy(f ◦ idx)

idP0(y) ◦ Pxy(f) Pxy(f)

Pyy(idy) ◦ Pxy(f) Pxy(idy ◦ f)

ρPxy(f)

Pxy(ρf )Pidy ◦ idPxy(f)

Pxyy(idy ◦ f)

Furthermore, for each quadruple w, x, y, z ∈ C0 and 1-morphisms f ∈ C(w, x),
g ∈ C(x, y) and h ∈ C(y, z), the following diagram commutes:

Pyz(h) ◦ (Pxy(g) ◦ Pwx(f)) (Pyz(h) ◦ Pxy(g)) ◦ Pwx(f) Pxz(g ◦ h) ◦ Pwx(f)

Pyz(h) ◦ Pwy(g ◦ f) Pwz(h ◦ (g ◦ f)) Pwz((h ◦ g) ◦ f)

αPwx(f),Pxy(g),Pyz(h) Pxyz(g, h) ◦ idPwx(f)

Pwxy(f, g) ◦ idPyz(h) Pwxz(f, h ◦ g)
Pwyz(g ◦ f, h) Pwz(αf,g,h)
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1.3 k-tuple categories

Idea 1.3.1. Just as a strict k-category was defined as a category enriched in
strict (k− 1)-categories, a k-tuple category is defined as a category internal to the
category of (k − 1)-tuple categories. k-tuple categories first appeared in [Ehr63]
in the case k = 2. The notion of a category defined internally to another category
is an essential concept for this idea, so we will spend some time developing the
theory of internal categories. Readers who are familiar with this notion may safely
skip to the next section.

1.3.1 The 2-category Cat(A)

Remark 1.3.2. In this section, we will develop some central aspects of internal
categories. We choose to do this in the most general setting possible, and to work
explicitly within the base category. Although what follows is an independent
development, the ideas and constructions are certainly not new. Examples of
existing treatments can be found in for instance [Bor94, Chapter 8]. Throughout
this section, let us fix a category A, which we for convenience assume to admit
pullbacks, although the below discussion makes sense as long asA has the pullbacks
appearing in definitions.

Definition 1.3.3. A category internal to A, also called an A-category, is the
data of

– an object C0 of A, called an object of objects,

– an object C1 of A, called an object of arrows,

– a pair of arrows

C1 C0

s

t

of A, called source and target, respectively,

– an arrow

C0 C1
Id



1.3. k-TUPLE CATEGORIES 11

of A, called identity,

– a pullback square

C1 ×s,t C1 C1

C1 C0

ut

tus

s

and an arrow

C1 ×s,t C1 C1
c

of A, called composition.

This data is required to satisfy the following axioms. Namely, the following
diagrams commute in A.

– (Source and target of composition)

C1 ×s,t C1 C1

C1 C0

c

sut

s

C1 ×s,t C1 C1

C1 C0

c

tus

t

– (Associativity)
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C1 ×s,t C1 ×s,t C1 C1 ×s,t C1

C1 ×s,t C1 C1

c×s,t id

cid×s,t c

c

– (Source and target of identity arrows)

C0

C0 C1 C0

id
Id

id

s t

– (Compositions with identity arrows)

C0 ×id,t C1 C1 ×s,t C1 C1 ×s,id C0 C1 ×s,t C1

C1 C1

Id×id,t id

c
ut

id×s,id Id

c
us

Remark 1.3.4. There are a few immediate observations from Definition 1.3.3:

(i) The source and target morphisms s, t and the composition morphism c are
necessarily epimorphisms.

(ii) The identity morphism Id is necessarily a monomorphism.

Lemma 1.3.5. Let C = (C0, C1, s, t, Id, c) be an A-category. Then Id is the
unique morphism in A satisfying its axioms.

Proof. Assume we have two identity morphisms

C0 C1

Id

Id′
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and consider the morphism

C0 C0 ×id,t C1
Id′ × Id

By the "compositions with identity arrows" axioms, we have commutative diagrams

C0 C1 ×s,t C1 C0 C1 ×s,t C1

C1 C1

Id′ × Id

c
Id

Id′ × Id

c
Id′

such that Id = Id′.

Definition 1.3.6. Let C = (C0, C1, s, t, Id, c) and D = (D0, D1, s
′, t′, Id′, c′) be

A-categories. A functor

C D
F

is the data of

– an arrow

C0 D0
F0

– an arrow

C1 D1
F1

such that the following diagrams commute.
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– (Source and target)

C1 D1 C1 D1

C0 D0 C0 D0

F1

s′s

F0

F1

t′t

F0

– (Composition)

C1 ×s,t C1 C1

D1 ×s′,t′ D1 D1

c

F1F1 × F1

c′

– (Identity)

C0 D0

C1 D1

F0

Id′Id

F1

Definition 1.3.7. Let C = (C0, C1, s, t, Id, c) and D = (D0, D1, s
′, t′, Id′, c′) be

A-categories, and let

C D

F

G

be a pair of functors from C to D. A natural transformation

F G
η
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is the data of an arrow

C0 D1
η

such that the following diagrams commute.

– (Source and target)

C0 D1 C0 D1

D0 D0

η

s′
F0

η

t′
G0

– (Naturality)

C1 C1 ×s,id C0 D1 ×s′,t′ D1

C0 ×id,t C1 D1 ×s′,t′ D1 D1

id× s G1 × η

t× id c′

η × F1 c′

Definition 1.3.8. – Given three functors F,G,H from C to D and natural
transformations

F G
η

and

G H
φ

we have commutativity of
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C0 D1

D1 D0

φ

s′η

t′

so there is a unique factorization

C0

D1 ×s′,t′ D1 D1

D1 D0

α(φ, η)

φ

η

p1

p2 s′

t′

Define the vertical composition

F H
φ ◦ η

to be the composition

C0 D1 ×s′,t′ D1 D1
α(φ, η) ◦

– Given a functor

C D
F

define the identity natural transformation at F to be the arrow

C0 D1
idF
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such that the following diagram commutes:

C0

D0 D1

F0

Id′

idF

Then clearly the diagram

C1 C1 ×s,id C0 D1 ×s′,t′ D1

C0 ×id,t C1 D1 ×s′,t′ D1 D1

id× s F1 × Id′F0

t× id c′

Id′F0 × F1 c′

commutes, so idF is a natural transformation.

Lemma 1.3.9. The vertical composition defined in Definition 1.3.8 is an internal
natural transformation F → H.

Proof. We have to show that the diagram

C1 C1 ×s,id C0 D1 ×s′,t′ D1

C0 ×id,t C1 D1 ×s′,t′ D1 D1

id× s H1 × (φ ◦ η)

t× id c′

(φ ◦ η) c′

commutes. We can fill it in with commutative diagrams as follows.
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C1 ×s,id C0 D1 ×s′,t′ D1 ×s′,t′ D1 D1 ×s′,t′ D1

C1 C0 ×id,t C1 ×s,id C0 D1 ×s′,t′ D1 ×s′,t′ D1

C0 ×id,t C1 D1 ×s′,t′ D1 ×s′,t′ D1 D1 ×s′,t′ D1

id× s

t× id× s

t× id

H1 × φ× η

φ×G1 × η

φ× η × F1

c′ × id

c′ × id

id× c′

id× c′

And then gluing the following diagram along the arrows between the D-nodes.

D1 ×s′,t′ D1 ×s′,t′ D1 D1 ×s′,t′ D1

D1 ×s′,t′ D1

D1 ×s′,t′ D1 ×s′,t′ D1 D1

D1 ×s′,t′ D1

D1 ×s′,t′ D1 ×s′,t′ D1 D1 ×s′,t′ D1

c′ × id

id× c′

c′ × id

id× c′

c′ × id

id× c′

c′

c′

c′

c′
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Terminology 1.3.10. If there is a risk of confusion, we will refer to functors
between A-categories as A-functors, and natural transformations between A-
functors as A-natural transformations.

Lemma 1.3.11. Let A,B,C be A-categories.

– Assume we have an A-functor

A B
F

and a pair of A-functors

B C

G

H

such that there is a natural transformation

G H
α

Then there is a natural transformation

GF HF
α · F

called the whiskering of α and F , given by the composition

A0 B0 C1
F0 α

– Assume we have a pair of A-functors

A B

F

G

and an A-functor
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B C
H

such that there is a natural transformation

F G
α

Then there is a natural transformation

HF HG
H · α

called the whiskering of H and α, given by the composition

A0 B1 C1
α H1

Proof. In the first case, the source and target axioms are clearly satisfied. As for
the commutativity axiom, we have

cC ◦ (αF0 ×G1F1) ◦ (tA × id) = cC ◦ (αF0tA ×G1F1)

= cC ◦ (αtBF1 ×G1F1) = cA(α×G1) ◦ (tB × id) ◦ (F1 × F1)

= cC ◦ (H1 × α) ◦ (id× sB) ◦ (F1 × F1) = cC ◦ (H1F1 × αF0) ◦ (id× sA)

The second case is similar.

Lemma 1.3.12. Let A,B,C be A-categories. Assume we have a pair of A-
functors

A B

F

F ′

and a pair of A-functors

B C

G

G′
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such that there are A-natural transformations

F F ′
φ

and

G G′
γ

The following defines A-natural transformations

GF G′F ′

First whiskering φ and G and then vertically composing with the whiskering of
F ′ and γ:

A C

⇒

G · φ

⇒

γ · F ′

GF

GF ′

G′F ′

Denote the resulting A-natural transformation by

GF G′F ′
α

We can also whisker γ with F first and then vertically compose with the whiskering
of G′ and φ:
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A C

⇒

γ · F

⇒

G′ · φ

GF

G′F

G′F ′

Denote the resulting A-natural transformation by

GF G′F ′
β

Then α = β.

Proof. By precomposing the naturality hexagon of γ with φ, be obtain the
commutative diagram

A0

B1 B1 ×s,id B0 C1 ×s,t C1

B0 ×id,t B1 C1 ×s,t C1 C1

φ

id× s G′1 × γ

ct× id
γ ×G1 c

where we see that

c(G′1 × γ)(s× id)φ = c(G′1 × γ)(F0 × φ)

= c [(G′1φ)× (γF0)] = α

and
c(γ ×G1)(t× id)φ = c(γ ×G1)(F ′0 × φ)

= c [(γF0)× (G1φ)] = β

and we have that α = β.
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Definition 1.3.13. The resulting A-natural transformation in Lemma 1.3.12 is
denoted γ · φ and is called the horizontal composition of γ and φ.

Lemma 1.3.14. Assume we have A-categories A,B,C, A-functors F, F ′, F ′′ :
A→ B and G,G′, G′′ : B → C. Assume we have A-natural transformations

F F ′ F ′′
η η′

and

G G′ G′′
γ γ′

Then
(γ′ · F ) ◦ (γ · F ) = (γ′ ◦ γ) · F

(G · η′) ◦ (G · η) = G · (η′ ◦ η)

Proof. The first equality is immediate by precomposing the definition of γ′ ◦ γ
with F0. For the second relation, we have the following commutative diagram:

A0 B1 ×s,t B1 B1

C1 ×s,t C1 C1

η′ × η

(G1η
′)× (G1η)

c

G1 ×G1

c

G1

Then we have

(G · η′) ◦ (G · η) = c((G1η
′)× (G1η)) = c(G1 ×G1)(η′ × η)

= G1c(η′ × η) = G · (η′ ◦ η)

Lemma 1.3.15. Assume we are in the situation of Definition 1.3.12. The
whiskering G · φ is equal to the horizontal composition idG · φ. Similarly, the
whiskering γ · F is equal to the horizontal composition γ · idF .
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Proof. This follows by observing that

G · idF = G1idF = G1IdBF0 = IdCG0F0 = idGF

and
idG · F = idGF0 = IdCG0F0 = idGF

Lemma 1.3.16. Assume we have A-categories A,B,C, A-functors F, F ′, F ′′ :
A→ B and G,G′, G′′ : B → C, as well as A-natural transformations η : F → F ′,
η′ : F ′ → F ′′, γ : G→ G′ and γ′ : G′ → G′′. Then

(γ′ · η′) ◦ (γ · η) = (γ′ ◦ γ) · (η′ ◦ η)

Proof. First, we decompose and rearrange the the right hand side using Lemma
1.3.12 and Lemma 1.3.14:

(γ′ ◦ γ) · (η′ ◦ η) = [(γ′ ◦ γ) · F ] ◦ [G′′ · (η′ ◦ η)]

= (γ′ · F ′′) ◦ (γ · F ′′) ◦ (G · η′) ◦ (G · η)

= (γ′ · F ′′) ◦ (G′ · η′) ◦ (γ · F ′) ◦ (G · η)

= (γ′ · η′) ◦ (γ · η)

Corollary 1.3.17. By the above lemmas, we obtain a strict 2-category Cat(A)
where the objects are A-categories, 1-morphisms are A-functors and 2-morphisms
are A-natural transformations.

Lemma 1.3.18. There is an adjunction

Cat(A) A
Ob

disc

Proof. Let B be an object of A and let C be an A-category. Assume we have a
functor
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disc(B) C
F

i.e. F = (F0, F1) and fits into commutative diagrams

B C1 B C0

B C0 B C1

F1

s, tid

F0

F0

Idid

F1

which means that we can write F1 = IdF0. Note that sId = id = tId and
c(F1 × F1) = c(Id × Id)F0 = IdF0 = F1, so F determines and is determined by
the arrow

B C0
F0

Define

HomCat(A)(disc(B), C) HomA(B,Ob(C))Φ

by Φ(F ) = F0. Φ is clearly a bijection. We check naturality. Let B′ be another
object of A and let C ′ be another A-category. say we have an arrow

B′ B
g

and an A-functor

C C ′
G



26 1. HIGHER CATEGORIES

We then have

HomA(g,Ob(G)) ◦ ΦB′C′(F ) = HomA(g,Ob(G))(F0) = G0F0g

ΦBC◦HomCat(A)(disc(g), G)(F ) = ΦBC(GF◦(gId, g)) = ΦBC((G1F1gId, G0F0g)) = G0F0g

So the following diagram commutes

HomCat(A)(disc(B), C) HomA(B,Ob(C))

HomCat(A)(disc(B′), C ′) HomA(B′,Ob(C ′))

ΦBC

HomA(g,Ob(G))HomCat(A)(disc(g), G)

ΦB′C′

and we have the stated adjunction.

Remark 1.3.19. There are evident functors

Cat(A) A
Ob

Arr

taking an A-category to its object of objects and object of arrows respectively.
There is also a functor

A Cat(A)disc

taking an object A ∈ A to its discrete A-category

disc(A) = (A,A, id, id, id, id)

Lemma 1.3.20. Limits of diagrams of shape J exist in Cat(A) if and only if
they exist in A.

Proof. Assume A has limits of diagrams of shape J . Now let
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J Cat(A)D

be a diagram in Cat(A) of shape J . That is, D consists of a pair of J-shaped
diagrams D0, D1 in A, with natural transformations

D1 D0

s

t

and

D0 D1
Id

We write Dj = (Dj
0, D

j
1, sj , tj , Idj , cj) for the value of D at j ∈ J . We construct

a new A-category C = (C0, C1, s
′, t′, Id′, c′) with C0 = limD0 and C1 = limD1.

s′, t′ and Id′ are defined to be the canonical morphisms induced by composing
the canonical projection morphisms by s, t and Id respectively. We construct
the J shaped diagram D1 ×s,t D1 by sending j ∈ J to Dj

1 ×sj ,tj D
j
1. Then

limD1 ×s,t D1 ' C1 ×s′,t′ C1 and j 7→ cj is a natural transformation

D1 ×s,t D1 D1
c

We define c′ to be the canonical induced morphism

C1 ×s′,t′ C1 C1

Naturality of s, t, Id, c implies that C satisfies theA-category axioms. We now show
that C satisfies the needed universal property. Let B = (B0, B1, s

′′, t′′, Id′′, c′′) be
another A-category with A-functors

B Dj
f j
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for all j ∈ J , i.e. a natural transformation

∆B D
f

Let

B0 C0
b0

and

B1 C1
b1

be the canonical induced morphisms. We show that b = (b0, b1) is an A-functor
from B to C. Then uniqueness comes for free. Denote the canonical projection
maps

C1 Dj
1

pj1

C0 Dj
0

pj0

Then observe that

pj0b0s
′′ = f0s

′′ = sjf
j
1 = sjp

j
1b1 = pj0sb1

as morphisms

B1 Dj
0
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so by the universal property of C0, the following diagram commutes.

B1 C1

B0 C0

b1

s′s′′

b0

The target and identity axioms follow similarly. Also observe that

pj1c
′(b1 ×s′′,t′′ b1) = cj(pj1 ×s′,t′ p

j
1)(b1 ×s′′,t′′ b1) = cj(pj1b1 ×s′′,t′′ p

j
1b1)

= cj(f j1 ×s′′,t′′ f
j
1 ) = f j1 c

′′ = pj1b1c
′′

as morphisms

B1 Dj
1

for all j ∈ J , so by the universal property of C1, the following diagram commutes.

B1 ×s′′,t′′ B1 B1

C1 ×s′,t′ C1 C1

c′′

b1b1 ×s′′,t′′ b1

c′

So

B C
f

is a functor and we are done.

For the opposite direction, assume Cat(A) has J-shaped limits. Let
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J A
D

be a J-shaped diagram in A. We pass it to Cat(A) be composing with

A Cat(A)disc

and take its limit, which will also be on the form disc(A′) for some object A′ ∈ A.
Then clearly A′ ' limD.

Remark 1.3.21. As the above lemma shows, existence of limits in Cat(A) is a
non-issue. Colimits, however, are a major obstacle, due to the fact that limits and
colimits do not, in general, commute. The problem arises when we try to define
the composition map in the to-be colimit A-category. There are known sufficient
conditions for Cat(A) to have colimits, two of which cover most of our intended
examples.

Lemma 1.3.22. Let A be a category. Sufficient conditions on A which guarantee
that Cat(A) has finite colimits include

(1) if A is a topos with a natural numbers object, in particular a Grothendieck
topos, or

(2) if A is locally finitely presentable.

Proof. For (1), see [JT91]. For (2), see [AR94].

Remark 1.3.23. Examples of (1) include simplicial and cubical sets. Examples
of (2) include sets, categories, bicategories, strict n-categories, groups and abelian
groups.

1.3.2 strict k-tuple categories

Definition 1.3.24. We define the category Cat〈n〉 of strict n-tuple or n-fold
categories inductively in the following fashion. The category of 0-tuple categories is
the category Set of sets and functions between them. Now let n ≥ 1. The category
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of strict n-tuple categories is inductively given by the category of categories
internal to strict (n− 1)-categories, i.e. Cat〈n〉 := Cat(Cat〈n− 1〉)

Definition 1.3.25. Denote by � the category consisting of two objects, 0 and 1, a
pair of arrows d0, d1 : 0 ⇒ 1, and an arrow s : 1→ 0, such that d0◦s = id0 = d1◦s.

Notation 1.3.26. We may denote an object a of �k as a k-tuple of binary num-
bers (a1, ..., ak). De denote the morphisms dj0, d

j
1 : (a1, ..., aj−1, 0, aj+1, ..., ak)→

(a1, ..., aj−1, 1, aj+1, ..., ak) and sj : (a1, ..., aj−1, 1, aj+1, ..., ak)→ (a1, ..., aj−1, 0, aj+1, ..., ak).
We denote �k 3 0 = (0, ..., 0) and �k 3 1 = (1, ..., 0). Given an element
a = (a1, ..., ak) ∈ �k, we denote by ω(a) the number of 1s among the ai. Finally,
given an a ∈ �k, denote a′ = 1− a ∈ �k as the k-tuple where the zeroes and ones
have been reversed.

Remark 1.3.27. Unravelling the definition, we see that a strict k-fold category
C has k directions of morphisms, such that the data of morphisms of varying
dimension, along with their source, target and identity maps, assemble into a
cubical diagram of sets C : (�k)op → Set. We denote the image of a ∈ �k

under this functor by Ca. We say the elements of Ca are cells of dimension ω(a).
Furthermore, a pair of elements of C(1,...,1) may be composed along a common
face; there are composition functions

cj : C(1,...,1) ×dj0,dj1 C(1,...,1) → C(1,...,1)

for each 1 ≤ j ≤ k. This composition rule is required to be unital with respect to
degenerate k-cells (i.e. the image of sj in C(1,...,1)).

This composition rule is required to satisfy associativity rules to the effect
that any k-dimensional grid of k-dimensional cells in which any pair of neighbours
are composable in the above sense, in the appropriate direction, has a unique
composition.

Next, unravelling the definition of a functor between strict k-fold category is
given by a morphism of the underlying cubical sets, such that the composition
operations at each level and in each direction are preserved.

Remark 1.3.28. There is a natural generalization of the 2-morphisms of Cat(A)
in Section 1.3.1 for Cat〈n〉. This construction works for any complete base category
A, but we will only talk about Set here, since that is all we are interested in here.
For the sake of a clean exposition, we first introduce some auxiliary notation.
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Notation 1.3.29. Given an object a ∈ �n, denote by Sa ⊆ {1, ..., n} the subset
containing those 1 ≤ j ≤ n for which aj = 0. For a given subset S ⊆ {1, ..., n},
denote by Z(S) the set of those a ∈ �n for which S ⊆ Sa.

We also introduce the binary operation (a, b) 7→ a + b for a, b ∈ �n, where
(a+ b)j := aj + bj mod 2.

Definition 1.3.30. Let C and D be n-fold categories. The functors Fun(C,D)
assemble into an n-tuple category as follows. The set of objects Fun(C,D)0 is the
set of functors C → D as described in Remark 1.3.27. Let a ∈ Cuben. An element
F ∈ Fun(C,D)a, also called an a-morphism, is the data of, for each b ∈ Z(Sa′), a
function

Fb : Cb → Db+a

The set of such Cb assemble into a (n− ω(a))-fold category which we denote by
Ca0 . We also denote by Da

1 the (n− ω(a))-fold category generated by those Dc

for which c′ ∈ Z(Sa′). We then require that the Fb assemble into a functor of
(n−ω(a))-fold categories. Postcomposition with the face operators on a gives rise
to face operations for a-morphisms, and similarly for degeneracy operations. See
1.5 for the situation written out for n = 2.

Example 1.5. Let us see in detail how this plays out for k = 2, i.e. a strict
double category C. In this case, we have the following data:

– a set C(0,0) of objects,

– a set C(0,1) of vertical 1-morphisms,

– a set C(1,0) of horizontal 1-morphisms, and

– a set C(1,1) of 2-morphisms.

There are source, target and identity morphisms between these which fit into a
cubical diagram:
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Where the face morphisms satisfy a commutation relation given by the following
diagram:

There are two directions in which to compose 2-morphisms in a double category:
horizontal and vertical, represented by operations

which satisfy an associativity relation to the effect that every 2-dimensional grid
of composable 2-morphisms, like the following diagram, has a unique composition.
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Let us now see how functors between double categories behave. Let C and D

be a pair of double categories. As explained in Definition 1.3.30, a 0-morphism
F : C → D ∈ Fun(C,D)0 is a morphism between the underlying cubical sets, as
in the following diagram:

where each component map is required to commute with composition in each
available direction. Next, we have 2-morphisms in two directions: horizontal and
vertical 2-morphisms, also called (1, 0)-morphisms and (0, 1)-morphism respectively.
Let F,G ∈ Fun(C,D)0 be functors from C to D. A (1, 0)-morphism α : F → G ∈
Fun(C,D)10 is given by, for each x ∈ C0, a morphism α(x) : Fx→ Gx ∈ D10, and
for each pair x, y ∈ C0 and f : x→ y ∈ C01, a (1, 1)-morphism α(f) ∈ D11 given
by the left side of the below diagram. A (0, 1)-morphism β : F → G ∈ Fun(C,D)01
is defined similarly by interchanging (0, 1) and (1, 0) in the above, pictured in the
right part of the below diagram.
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Finally, given four functors F, F ′, G,G′ ∈ Fun(C,D)0, (1, 0)-morphisms α, α′ ∈
Fun(C,D)10 and (0, 1)-morphisms β, β′ ∈ Fun(C,D)01 fitting into the diagram
below (left), a 3-morphism, or (1, 1)-morphism h ∈ Fun(C,D)11 fitting into this
diagram (middle diagram below) is given by, for each x ∈ C0, a (1, 1)-morphism
h(x) ∈ D11 fitting into the diagram below (right).

We also require, for any pair x, y ∈ C0 and f : x → y ∈ C10, that the following
horizontal compositions are equal.

Similarly, for any f : x→ y ∈ C01 the following vertical compositions are equal.
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Example 1.6. Let X be a topological space. In Definition 3.5.8, we define the
notion of a box in Rk, and the 〈k〉-space �(k) of such boxes. We define the k-fold
path category of X, P k(X), as the topological k-fold category whose a-morphisms
for a ∈ 2k is given by the space of morphisms [x, y]→ X for [x, y] ∈ �(k)(a). A
more precise name for this construction would be the k-fold unreduced Moore path
caregory of X, as it is a k-fold generalization of an unreduced version of the usual
Moore path space.

1.3.3 The nerve of a strict k-tuple category

(Ref. Fiore and Paoli : A Thomason model structure on the category of small
n-fold categories)

Goal 1.3.31. Let C be a n-fold category. Then the classifying space BC of C is
given by the geometric realization of the diagonal simplicial set associated to the
n-fold nerve N•,....,•C.

Definition 1.3.32. Let C be an n-fold category. We define the n-fold nerve of
C, denoted N•,...,•C, as the n-fold simplicial set whose set of (k1, ..., kn) multi-
simplices is given by the set of (k1, ..., kn) grids of composable n-morphisms. The
multisimplicial structure maps are given by composing and inserting degenerate
n-morphisms along each direction.

Definition 1.3.33. Let X : ∆op×∆op → Set∆op
be a bisimplicial set. We define

its realization to be the simplicial set |X| given by the coend

|X| =
∫ [n]∈∆

Xn,∗ ×∆[n]
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computed in Set∆op
.

Definition 1.3.34. Given an n-fold simplicial set X : ∆op × ...×∆op → Set, we
define its diagonal, d(X), to be the simplicial set given by precomposing X with
the diagonal functor d : ∆op → ∆op × ...×∆op

Remark 1.3.35. There are now several possible ways to define the geometric
realization of an n-fold simplicial set. We may take the ordinary geometric
realization of its diagonal, or of the simplicial set obtained by repeated realizations
of multisimplicial sets, or a combination of these. The below results show that
the result is the same up to weak equivalence.

Lemma 1.3.36. The diagonal functor d : ∆op → ∆op× ...×∆op preserves homo-
topy colimits. I.e., for every diagram J : ∆op × ...×∆op → Set∆op

, precomposing
with d there is a weak equivalence hocolim J ' hocolimJ ◦ d.

Lemma 1.3.37. Let X : ∆op×∆op → Set be a bisimplicial set. Denote by d(X)
the diagonal of X, defined as the precomposition of X with the diagonal functor
∆op → ∆op ×∆op. Then there is a weak equivalence of simplicial sets

|X| :=
∫ [n]∈∆

Xn,∗ ×∆[n] ' d(X)

Theorem 1.3.38. Let C be an n-fold category. Then the geometric realization
of the n-fold nerve of C is weakly equivalent to the diagonal nerve d(N•,...,•C).

Remark 1.3.39. The above also applies when C is a topological strict n-fold
category. In that case, we obtain an n-fold simplicial space. The classifying space
is then given by the geometric realization of the diagonal, which is defined as
follows.

Definition 1.3.40. LetX : ∆op → Top be a simplicial topological space and write
∆Top for the cosimplicial space whose n’th space is given by the standard topological
n-simplex ∆n

Top = {(x0, ..., xn) ∈ Rn+1 | x0 + ...+xn = 1 , and xi ≤ 0∀0 ≤ i ≤ n}.
The geometric realization of X, denoted |X|, is defined by the quotient

|X| =
∏

[n]∈∆

Xn ×∆n
Top/ ∼

where the equivalence relation identifies, for each pair (x, p) ∈ Xl × ∆k
Top and

each morphism f : [k]→ [l] in ∆, the points (x, f∗p) ∈ Xl ×∆l
Top and (f∗x, p) ∈

Xk ×∆k
Top.
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1.3.4 Obtaining k-categories from strict k-fold categories

Goal 1.3.41. In this section we will show how a strict k-fold category C gives
rise to a k-category in a number of ways. If C is "isotropic" in the sense defined
below, we show that an additional method becomes possible, which we call folding.

Remark 1.3.42. If C is a strict k-fold category, there is always two canonical
ways to obtain a (k − 1)-fold category from C for each 1 ≤ j ≤ k, by restricting
the structure to those a ∈ �k for which aj = 0 or aj = 1.

Definition 1.3.43. Let C be a k-fold category. There is a natural action of Σk,
the symmetric group on k letters, on �k, defined by permuting indices. We say
that C is isotropic if this action induces an action on C in such a way that the
source, target, identity and composition maps are all Σk-equivariant.

Remark 1.3.44. Let C be an isotropic double category. This is the same as a
double category equipped with a bijection C01 → C10 and a twist autobijection
τ : C11 → C11 such that τ2 = id and these commute with all the structure maps.
Then the following defines a 2-category. Let the set of objects be C0, and let
C1 := (C01 ∪ C10)/ ∼, where we identify f ∼ φ(f) for all f ∈ C01, be the set of
1-morphisms. For each f, g ∈ C1, we now define the morphism set C2(f, g) to be
the union of all (11)-morphisms C11 whose boundary

x0 x1

x2 x3

f1

f2g1

g2

satisfies φ(f2) ◦ f1 = f and g2 ◦ φ(g1) = g.

Remark 1.3.45. The same construction is available in more general circum-
stances, but it less well-behaved. First of all, it makes use of the free product
of categories. Let C and D be a pair of categories with the same object sets,
Ob(C) = Ob(D). Let F : S → D be a functor from a subcategory of C. Then
we can form the pushout C ∪C′ D, which acts as a categorical analogue of the
amalgamated free product of monoids. Using this construction, we can construct a
2-category from the data of an arbitrary 2-fold category C equipped with functors
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F : S → C10 and G : S → C01, where S is a small category. This construction
behaves well when, say, one of C10 and C01 is a subcategory of the other.

Remark 1.3.46. A similar folding construction is available for k-fold categories,
but the combinatorics involved would bring us too far afield, so we will not go
into details about its construction.

Remark 1.3.47. The consequence of the folding construction is that whenever
we talk about strict k-fold categories of cobordisms, it is in principle possible to
tweak it into a strict k-category of cobordisms, but this loses information. Indeed,
strict k-fold categories model homotopy types ([Lod82]), while strict k-categories
do not (for example, there is no strict 3-category with the homotopy 3-type of S2,
see [Sim11, Part I, Sec. 2.7]). For this reason, we deem the question of obtaining
strict k-categories of cobordisms less interesting than the k-fold case, and will not
be paying further attention to strict k-categories in this text.





Chapter2Introduction to cobordism

Goal 2.0.48. The purpose of this chapter is to give a brief introduction to central
ideas related to cobordism theory. We will assume that the reader has some basic
knowledge about algebraic topology and differential topology. Standard references
for background material are [Hat01] and [Hir76].

2.1 Structured manifolds

Remark 2.1.1. In this section we will look briefly at tangential structures on
manifolds. We do this mainly for completeness. Everything we say later about
manifolds applies also for manifolds with arbitrary tangential structure, with
some added bookkeeping in order to keep track of these. However, the structures
themselves will not occupy our attention, and we include this section merely for
completeness. The reader may therefore safely skip this section completely.

Convention 2.1.2. We will follow the standard convention of referring to a
vector bundle F → E → B by naming only the total space E.

Definition 2.1.3. Let G(r, n) be the space of r-dimensional subspaces of Rr+n.

Recollection 2.1.4. There is a natural inclusion Rn+d → Rn+d+1 given by v 7→
(v, 0), and this induces inclusions G(r, n)→ G(r, n+ 1) and γ(r, n)→ γ(r, n+ 1).
Let O(r) be the Lie group of orthogonal r× r matrices with real coefficients. The
colimit of bundle maps gives rise to a model for the classifying space BOr of O(r):

colimn→∞G(r, n) := G(r,∞) ' BOr

colimn→∞ γ(r, n) := γ(r,∞) ' γOr

41
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where γOr → BOr is the universal r-plane bundle consisting of pairs (V, v) of an
r-dimensional subspace V of Rn+r, for some n ≥ 0, and a vector v ∈ V .

Recollection 2.1.5. Let M be a smooth manifold. A rank r vector bundle
p : E → M is in particular an O(r)-principal fiber bundle, so there exists a
classifying map ξp : M → BOr which is unique up to homotopy, such that the
following diagram commutes:

E γOr

M BOr

pOp

ξp

where pO : γOr → BOr is the universal r-plane bundle.

Definition 2.1.6. Let Xr be a space with a fibration fr : Br → BOr, M a
smooth manifold and p : E →M a vector bundle on M with rank r. We say that
an (Br, fr)-structure on E is a lift of ξp through fr. Two such lifts are said to be
equivalent if they are homotopic.

Example 2.1. Recall that a Whitehead tower of a pointed space X is a factor-
ization of the basepoint inclusion ∗ → X into a sequence

∗ → ...→ X(2) → X(1) → X(0) ' X

such that for each n, the pointed space X(n) is (n− 1)-connected, and the map
X(n+1) → X(n) induces an isomorphism on all homotopy groups in degree k > n.

The Whitehead tower of BOr starts out as

...→ BStringr → BSpinr → BSOr ' BSOr → BOr

This gives us a wealth of examples of fibrations Br → BOr and thus of
naturally occurring tangential structures on manifolds. Given a d-manifold with
a smooth structure, i.e. a map M → BOd, the question of whether this structure
lifts through higher orientations can be answered by obstruction theory, by looking
at different universal characteristic classes.
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Example 2.2. If p : E → M is a rank 1 vector bundle, also called a line
bundle, then ξp lifts through f1 : BSO1 → BO1 if and only it is trivial, or
equivalently, if the first Stiefel-Whitney class of E vanishes. To see this, recall
that BO1 ' RP∞ ' K(Z/2, 1), such that [M,BO1] ' H1(M ;Z/2). Now, BSO1
is contractible, so a line bundle is orientable if and only if ξp is nullhomotopic,
which happens if and only if the corresponding cohomology class in H1(M ;Z/2)
vanishes and the bundle is trivial. In particular, all line bundles on a simply
connected manifold are trivial.

2.2 Remarks on embeddings of smooth manifolds

In this section we describe the classical cobordism category, which to the author’s
knowledge was first defined by Galatius-Madsen-Tillmann-Weiss [GMTW09].

Idea 2.2.1. The details which go into the definition of the cobordism category
are somewhat technical, but informally we may describe it as having objects
(d − 1)-dimensional manifolds and d-dimensional cobordisms between these as
morphisms. It is useful for technical reasons to consider manifolds not in the
abstract sense, but as embedded submanifolds of high-dimensional euclidean
space. We will see this equips the set of manifolds with natural topologies and a
particularly pleasing choice of simplicial replacement.

Definition 2.2.2. Let M and N be manifolds, possibly with boundary. Recall
that an embedding M → N is an immersion which is diffeomorphic to its image
as a submanifold of N . Denote by Emb(M,N) the space of embeddings of M
into N , equipped with the compact-open topology. If M and N have boundaries
∂M and ∂N , let Emb∂(M,N) be the subset of Emb(M,N) which are boundary
preserving. I.e. for each φ : Emb∂(M,N), we have φ(∂M) ⊆ ∂N .

Remark 2.2.3. For the purposes of defining the cobordism category, we are also
interested in the colimit of the spaces Emb(M,RN ) as N tends to infinity. We
will take some time to talk about the nice properties this space possesses.

Definition 2.2.4. We define the infinite dimensional euclidean space R∞ as the
colimit

R∞ := colim{R ↪→ R2 ↪→ R3 ↪→ ...}

in which each arrow Rn ↪→ Rn+1 is the inclusion (x1, ..., xn) 7→ (x1, ..., xn, 0). In
other words, an element of R∞ is given by a tuple of real numbers of arbitrary
finite length, with scalar multiplication and addition defined degreewise.
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Remark 2.2.5. R∞ inherits a scalar product from its finite-dimensional con-
stituents defined by (x1, x2, ...) · (y1, y2, ...) =

∑∞
i=1 xiyi. Note that only finitely

many terms are non-zero, so the sum is well-defined. The fact that R∞ is a locally
compact topological vector space is clear from the definition. It is actually globally
convex. Any pair of elements of R∞ are contained in Rn for some n, and so is
the line connecting them.

Remark 2.2.6. Any infinite sequential colimit is isomorphic to the colimit of
any diagram degreewise isomorphic to one of its infinite subsequences. Hence we
may also define R∞ as

R∞ := colim{R ↪→ R2 ↪→ R4 ↪→ R8 ↪→ ...}

We have R2n+1 ' R2n⊕R2n both as vector spaces and smooth manifolds, and may
take the arrows in the diagram to be the inclusion into the first direct summand.

Definition 2.2.7. For x ∈ R∞ denote by mindegx the lowest natural number n
such that xn 6= 0, or ∞ if x = 0.

Lemma 2.2.8. For x ∈ R∞ nonzero, mindegx < is finite.

Proof. Any such x is a finite sequence of reals, so unless x = 0 there must be
some finite degree n for which xn 6= 0.

Lemma 2.2.9. There is an isomorphism f : R∞ → R∞ ⊕R∞ with the property
that for one of the induced maps on summands fj : R∞ → R∞ where j = 1, 2,
the eventual image vanishes,

⋂
n≥1 imn fj ' {0}.

Proof. Define the maps ui : Rn ↪→ R2n for i = 1, 2 such that u1(x1, x2, ..., xn) =
(x1, 0, x2, 0, ..., xn, 0) and u2(x1, x2, ..., xn) = (0, x1, 0, x2, ..., 0, xn). Denote by ij
the inclusion of the j-th direct summand of R2n ' Rn⊕Rn, that is i1(x1, ..., xn) =
(x1, ..., xn, 0, ..., 0) and i2(x1, ..., xn) = (0, ..., 0, x1, ..., xn). Note that then ij◦uj′ =
uj ◦ ij′ for all j, j′ = 1, 2. The maps fj are then induced by the maps of diagrams

R R2 R4 R8 ...

R R2 R4 R8 ...

i1 i1 i1

i1 i1 i1

uj uj uj uj
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In other words, we have f1(x1, x2, ...) = (x1, 0, x2, 0, ...) and f2(x1, x2, ...) =
(0, x1, 0, x2, ...). The images of f1 and f2 are clearly orthogonal and span R∞, so
they exhibit R∞ as a direct sum of two copies of itself. For the second claim,
for each nonzero x ∈ R∞ and every natural number k, mindeg(f2)k+1(x) >
mindeg(f2)k(x). This shows that the minimal degree of any element of the
eventual image is larger than any finite integer, so any such element must be
trivial, and the eventual image vanishes.

Remark 2.2.10. Any manifold admits an essentially unique embedding into
R∞. The abstract properties of R∞ introduced in Lemma 2.2.9 are enough to
establish the essential uniqueness part. For a compact manifold, a partition of
unity subordinate to an atlas is usually employed to establish an embedding into
RN for some finite N . For non-compact manifolds, the same line of argument
gives rise to an embedding into R∞.

Lemma 2.2.11. Let M be an n-manifold. M admits an embedding into R∞

with closed image.

Lemma 2.2.12. Let M be an n-manifold. Then the space Emb(M,R∞) is
contractible.

Remark 2.2.13. The proofs of Lemmas 2.2.11 and 2.2.12 are available at [Sta12].

Definition 2.2.14. Let M be an n-manifold. Denote by Diff(M) the topological
group of diffeomorphisms of M equipped with the compact-open topology.

Lemma 2.2.15. Let M be an n-manifold. Then Emb(M,R∞) admits a free
action on the right by Diff(M).

Proof. Let ψ ∈ Diff(M) and e ∈ Emb(M,R∞). We define the action by pre-
composition: e · ψ = e ◦ ψ. This is continuous since we chose the compact-open
topology on both spaces and M is a manifold, and in particular locally compact
Hausdorff. To see that this is a free action, note that is for any e ∈ Emb(M,R∞)
we have e ◦ ψ = e, we have in particular e ◦ ψ(x) = e(x) for every x ∈ M , but
since e is monic, this implies ψ(x) = x and ψ = idM .

Definition 2.2.16. Let M be a manifold and let U and V be submanifolds of
M . We say that U and V intersect transversally if TxU +TxV = TxM (note: this
is the ordinary sum, not a direct sum) at each x ∈ U ∩ V . Similarly, if U →M is
a smooth map, we say that f is transverse to V if im(dfx) + Tf(x)V = Tf(x)M for
each x ∈ f−1(V ).
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Theorem 2.2.17. Let Emb(U,M) be the space of embeddings of U into M , and
let V be a submanifold of M . Denote by EmbV (U,M) ⊆ Emb(U,M) the subset
of those embeddings which are transverse to V . Then EmbV (U,M) is a dense
subset of Emb(U,M)

Proof. See [Tho54] or [Hir76], Chapter 2, Theorem 2.4.

Definition 2.2.18. LetW be a d-dimensional manifold. An embedding ofW into
[a0, a1]× Rn+d−1 is called proper if W intersects {a0, a1} × Rn+d−1 transversally
in ∂W .

Remark 2.2.19. Analogues of Lemmas 2.2.11, 2.2.12 and 2.2.15 exist when we
replace M by W and embeddings by proper embeddings.

2.3 Rudiments of spectra

Goal 2.3.1. In this section, we will give the bare minimum material on spectra
required to make sense of the rest of the text. All the material in this section is
taken from [Rud98] Readers with a basic knowledge of spectra may safely skip
this section.

Convention 2.3.2. We assume that all spaces are pointed CW complexes. We
use the notation SX = S1 ∧X for the pointed suspension of a space X.

Definition 2.3.3. – A spectrum E is a sequence {En, sn}n∈Z, where the En
are spaces and the sn are embeddings of CW complexes sn : SEn → En+1.

– Let E = {En, sn} and F = {Fn, tn} be spectra. Then F is called a
subspectrum of E if Fn is a subcomplex of En and sn|SFn = tn for each
n ∈ Z.

– Let E be a spectrum. The k’th suspension of E, denoted ΣkE is defined by
(ΣkE)n = En+k.

– Let E be a spectrum. A cell of E is a sequence {e, Se, ..., Ske, ...} where
e is a cell of En which is not the suspension of any cell in En−1. If e is a
k-dimensional cell of En, then e is a (k − n)-dimensional cell of E.
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– Let E be a spectrum and let F be a subspectrum. We say that F is cofinal
in E if each cell of E is eventually in F . I.e. for each cell e of E, there is
some k for which Ske ∈ F .

Example 2.3. Recall from two sections ago the universal bundles γOr → BOr.
The inclusion G(r, n) → G(r + 1, n) given by adding a factor R in the last
coordinate gives rise to bundle maps

γOr γOr+1

BOr BOr+1

jr

ir

The pullback along jr is given by j∗r ' γOr ⊕ ε1, where ε1 is the trivial one-
dimensional vector bundle. Denote by Th(γ) the one-point compactification of a
vector bundle γ → B when B is compact. On the one-point compactifications,
we then get maps

er : Th(γ⊥Or ) ∧ S1 → Th(γ⊥Or+1)

so we get a spectrum, which we call the Thom spectrum MO = {Th(γ⊥Or ), er}.

Lemma 2.3.4. 1. Let E be a spectrum, let F be a cofinal subspectrum of E,
and let G be a subspectrum of F . Then G is cofinal in E if and only if G is
cofinal in F .

2. Let E be a spectrum and let F and F ′ be cofinal subspectra. Then the
intersection F ∩ F ′, whose n’th space is given by Fn ∩ F ′n ⊆ En, is also a
cofinal subspectrum.

Definition 2.3.5. Let E and E′ be spectra.

– A map f : E → E′ is a family of pointed maps fn : En → E′n such that all
the squares of the following form commute.
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SEn En+1

SE′n E′n+1

sn

fn+1Sfn

s′n

– Let E′′ be a spectrum. Given maps f : E → E′ and f ′ : E′ → E′′, the
composition f ′ ◦ f is defined by the maps f ′n ◦ fn : En → E′′n.

– Let F be a subspectrum of E and f : E → E′ be a map. Then the restriction
of f to F , denoted f |F , is given by the family of maps fn|Fn : Fn → E′n.

– Let S be the set of pairs (F, f) where F is a cofinal subspectrum of E and
f : F → E′ is a map. Two such pairs (F, f) and (F ′, f ′) are said to be
equivalent if there is a pair (G, g) such that G is a cofinal subspectrum of
F ∩ F ′ and f |G = g = f ′|G. A equivalence class under this relation is called
a morphism E → E′.

Lemma 2.3.6. Composition of morphisms is well defined and gives rise to a
category Spc of spectra.

Lemma 2.3.7. 1. Let f, g : E → F be maps of spectra and let E′ be a cofinal
subspectrum of E. If f |E′ = g|E′ , then f = g.

2. Let E′ and E′′ be cofinal subspectra of E and let f ′ : E′ → F and f ′′ :
E′′ → F be two equivalent maps. Then f ′|E′∩E′′ = f ′′|E′∩E′′ .

3. Every morphism f : E → F contains a greatest element with respect to the
partial ordering.

Proof. [Rud98, Ch.II,Proposition 1.6.]

Definition 2.3.8. Let E = (En, sEn ) and F = (Fn, sFn ) be spectra.

– Let f : E → F be a map of spectra. The mapping cone, or cofiber of f is
defined as the spectrum Cf whose n’th space is given by Cfn, the cofiber
of fn : En → Fn, and with structure maps
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SCfn = SFn ∪ S(CEn) Fn+1 ∪ CEn+1 = Cfn+1
sFn ∪ CsEn

– Let f : E → F be a morphism of spectra. The cofiber of f is defined as the
cofiber of g, where g : E′ → F is the largest element in f .

Definition 2.3.9. – Let X be a space. Define the infinite suspension of X
as the spectrum whose n’th space is given by SnX and whose structure
maps are the indentities.

– Let E = {En, sn} be a spectrum. For each k ∈ Z, the adjoints of the sn,
which we call un, arrange into a sequence

Ek → ΩEk+1 → Ω2Ek+2 → ...

Define the (∞− k)’th loop space of E as the colimit of this sequence:

Ω∞−kE := colimn→∞Ωn−kEn

Definition 2.3.10. Let E be a spectrum. The morphisms un : En → ΩEn+1
induces a homomorphisms on the level of homotopy groups given by

πk(un) : πn+k(En)→ πn+k(ΩEn+1) ' πn+k+1(En+1)

The homotopy groups of E are defined as the colimit over these homomorphisms,

πkE := colimn→∞ πn+kEn

2.4 Categories of cobordisms

Definition 2.4.1. Let M and N be d-dimensional manifolds, possible with
some tangential structure. A cobordism from M to N is a (d + 1)-dimensional
manifold W with the same structure, such that there is a structure-preserving
diffeomorphism ∂W ' (−M) t N , where (−M) denotes M with the opposite
structure.

Lemma 2.4.2. The cobordism relation is an equivalence relation.

Proof. LetM , N and P be d-dimensional manifolds such that there are cobordisms
V from M to N and W from N to P .
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– Reflexivity: The cylinder M × I is a cobordism from M to M .

– Symmetry: The manifold (−V ) is a cobordism from N to M .

– Transitivity: Choose smooth collars about N in V and W . With respect
to these collars, there exists a glueing X : V ∪N W of V and W along
their common boundary component N such that the union of the collars
attain the smooth structure of the open cylinder N × (−1, 1). Then X is a
cobordism from M to P .

Definition 2.4.3. The set of equivalence classes of unoriented d-dimensional
manifolds with respect to the cobordism relation, called d-dimensional unoriented
cobordism classes, is denoted by Ωd.

Lemma 2.4.4. Disjoint union and cartesian product equips Ω∗ with the structure
of a graded commutative ring.

Theorem 2.4.5 (Pontryagin-Thom theorem). There is an isomorphism of graded
rings

Ω∗ ' π∗(MO)
where MO is the orthogonal Thom spectrum.

Remark 2.4.6. Classical cobordism theory focuses on the structure of Ωd and
the variant Ωd(X) of manifolds equipped with a map into a background space
X, which can be seen to define a cohomology theory Ωd(X) ' πd(MO ∧ X+).
Results similar to the Pontryagin-Thom theorem hold for arbitrary structure
groups, where we replace MO with the Thom spectrum associated to the pullback
of the universal d-plane bundle along the fibrations Bd → BOd.

Remark 2.4.7. Especially in the presence of tangential structure, we can see that
the cobordism relation comes equipped with natural source and targets. In the
definition above, M is the source and N is the target of W (in the unstructured
case these come as auxiliary data). While from the classical point of view we would
be satisfied with viewing cobordism as an equivalence relation, the modern point
of view is to attempt to organize these cobordisms into a categorical structure.
In other words, we lift the focus from the manifolds themselves and make the
cobordisms between them the main actors. There are several ways one might
attempt to do this, depending on what one wants to accomplish. We will review
the main lines of thought in this section.
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2.4.1 Contracting diffeomorphism classes

Definition 2.4.8. A cobordism W from M to N can be formalized as a cospan
of embeddings

M W N
iM iN

where iM is reverses the tangential structure, iN preserves the tangential structure,
and ∂W = iM (M) t iN (N).

Definition 2.4.9. Let M and N be d-dimensional manifolds and let W and W ′
be a pair of cobordisms from M to N . We say that W and W ′ are equivalent
as cobordisms if there is a diffeomorphism φ : W → W ′ which preserves the
boundary components, i.e. there is a commutative diagram.

W

M N

W ′

iM iN

i′M i′N

φ

We say that φ is an isomorphism of cobordisms.

Remark 2.4.10. Notice that the transitivity of the cobordism relation depends
on a choice of smooth collars for our manifolds. Indeed, in the cospan-picture the
composition is given by taking pushouts in the category of smooth manifolds, which
are only well-defined up to canonical isomorphisms. Because of this dependence,
the glueing procedure is not strictly associative. However, it will be associative
up to isomorphism of cobordisms. This motivates the following definition.

Definition 2.4.11. Let d > 0. The d-dimensional oriented cobordism category
Cobd is defined such that

– objects are (d− 1)-dimensional manifolds M,N, ...,

– morphisms are equivalence classes of cobordisms W from M to N in the
sense of Definition 2.4.9,
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– composition is given by glueing cobordisms,

– and the identity maps are given by the cylinders M × I.

Lemma 2.4.12. Disjoint union equips Cobd with a symmetric monoidal structure.
The unit object is given by the empty manifold.

Remark 2.4.13. One of the main perspectives of cobordism theory has been to
study Cobd in terms of symmetric monoidal functors Cobd → A, called topological
field theories, for some symmetric monoidal algebraic category A. These can be
thought of as categorical analogues of group representations, in the sense that a
linear group representation is simply a functor G→ Vectk where we consider G
as a category with one object. In this sense, cobordism in a particular dimension
encodes a specific algebraic structure. We give two easy examples in the oriented
case.

Example 2.4. 1. (d=1): A functor F : CobSO1 → Vectk from the oriented 1-
dimensional cobordism category determines and is determined by specifying
a finite-dimensional vector space V = F (•), the image of the point.

2. (d=2): A functor F : CobSO2 → Vectk determines and is determined by a
finite-dimensional commutative Frobenius algebra A = F (S1). This result
is due to Abrams in [Abr96].

2.4.2 Diffeomorphisms as higher structure

Another perspective is that we might want to study topological quantum field
theories which are equivariant with respect to diffeomorphisms. For example,
say we have an assignment taking manifolds to (projective) chain complexes and
cobordisms to chain homomorphisms. Given a pair of cobordismsW,W ′ : M → N

and the corresponding chain homomoprhisms Z(W ), Z(W ′) : Z(M)→ Z(N), we
might want to assign to an isomorphism of cobordisms φ : W →W ′ a homotopy
from Z(W ) to Z(W ′). Since (higher) homotopies give rise to an (∞, 1)-category
structure (in the sense of [Lur09]) on projective chain complexes, we might ask if
diffeomorphisms and smooth (higher) isotopies give rise to a similar structure on
cobordisms. It turns out that this is very possible, and was carried out by Lurie
in [Lur].
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2.4.3 Diffeomorphism spaces

Instead of incorporating the diffeomorphisms as higher morphisms in a higher
category, it is also possible to incorporate them by putting a topology on the
morphism spaces. Specifically, if we denote by Diff(W ) the set of automorphisms
of a cobordism W : M → N , we take one element in each such isomorphism
class and add a component homotopy equivalent to BDiff(W ). It turns out
that this idea cooperates really well with the notion of the moduli space of
manifolds, resp. manifolds with boundary, making the setting categories internal
to topological spaces the natural one. In this setting, it is even possible to recover
strict associativity and unitality, while keeping the extra homotopical information
provided by the diffeomorphism groups. This idea was explored in detail in
dimension 2 by Madsen-Weiss in [MW07] and generalized to arbitrary dimension
by Galatius-Madsen-Tillmann-Weiss in [GMTW09]. We will come back to this
and go into the details of the construction in the next section.

This approach is equivalent to the higher-category approach, a fact which can
be made precise using the language of model categories, but which will not occupy
our attention here. However, the approach of topological cobordism categories has
had independent interest as a way to investigate the homology groups of moduli
spaces of manifolds.

2.5 Topological cobordism categories

In this section, we give a brief introduction to the cobordism categories introduced
in [GMTW09].

Remark 2.5.1. We would like to define a category whose objects are given by
closed (d− 1)-dimensional smooth manifolds, and whose morphisms are cobor-
disms between these. However, due to the problems we addressed earlier about
the glueing of manifolds only being well-defined up to a contractible choice of
diffeomorphisms, we need to supplement the data with some extra structure such
that associativity and unitality holds strictly.

Definition 2.5.2. We define the d-dimensional cobordism category Cd as the
topological category whose objects are given by pairs (M,a), where M is a (d−1)-
dimensional closed submanifold of R∞, and for two such pairs (M,a) and (N, b),
with b > a, a morphism (M,a) → (N, b) is given by a d-dimensional compact
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submanifold W of [a, b]× R∞ such that

W ∩ ({a} × R∞) = M ⊆W

W ∩ ({b} × R∞) = N ⊆W

and such that there exists an open neighborhood U of ∂W for which there exist a
pair of real numbers εa > 0 and εb > 0 such that

U = (M × [a, a+ εa)) t (N × (b− εb, b])

We also formally add in identity morphisms as the degenerate cobordisms M ⊂
[a, a] × R∞ = {a} × R∞. Composition of morphisms is defined by taking the
union of cobordisms in R× R∞.

Remark 2.5.3. Central to the problem of computing both the cobordism ring
and the classifying spaces of cobordism categories is the notion of the Pontryagin-
Thom collapse map, which was devised by Thom in [Tho54]. We first need some
preliminary definitions.

Definition 2.5.4. Let p : E → B be a vector bundle with B paracompact. Then
there is a metric on E which restricts on each fiber Eb, b ∈ B, to the euclidean
norm on that fiber.

– Define the disk bundle D(E)→ B such that D(E)b = {v ∈ Eb | |v| ≤ 1}.

– Define the sphere bundle associated to p as the fiber bundle S(E)→ B such
that S(E)b = {v ∈ Eb | |v| = 1}.

– Define the Thom space of p as the space Th(p) = D(E)/S(E). Th(p) is a
pointed space with basepoint given by S(E).

Lemma 2.5.5. If p : E → B is a vector bundle and B is compact, then Th(p) is
homotopy equivalent to the one-point compactification of E.

Lemma 2.5.6. Let p : E → B and p′ : E′ → B be vector bundles, and B

paracompact. Denote by p⊕ p′ the Whitney sum of p and p′. Then Th(p⊕ p′) '
Th(p) ∧ Th(p′)

Proof. We have

(D(E)/S(E))∧(D(E′)/S(E′)) ' (D(E)×D(E′))/((S(E)×D(E′))∪(D(E)×S(E′)))
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' D(E × E′)/S(E × E′)

Corollary 2.5.7. Let p : εn → B be the trivial n-plane bundle, i.e. εn ' Rn×B
and p is the projection. Then Th(p) ' Sn ∧B+ = Sn(B+), the n-fold suspension
of B+, where B+ denotes B appended with a disjoint basepoint.

Remark 2.5.8. Consider now the sequence of Grassmannians

...→ G(d, n)→ G(d, n+ 1)→ ...

induced by the inclusions Rd+n → Rd+n+1. The pullback of the universal bundle
γ⊥(d, n + 1) along G(d, n) → G(d, n + 1) is isomorphic to γ⊥(d, n) ⊕ ε1. The
inclusion γ⊥(d, n) ⊕ ε1 → γ⊥(d, n + 1) is given by ((V, v), a) → (V, (v, a)). It
follows that there is a map

S1 ∧ Th(γ⊥(d, n))→ γ⊥(d, n+ 1)

Thus the spaces Th(γ⊥(d, n)) assemble into a spectrum.

Definition 2.5.9. Let the d-dimensional Madsen-Tillmann spectrum MT (d) be
the spectrum whose (n+ d)’th space is given by Th(γ(d, n)) and whose structure
maps are as in the above remark.

Remark 2.5.10. We will now outline the Pontryagin-Thom collapse map as
applied to the study of topological cobordism categories. In a nutshell, this
construction relates the classifying space BCd of the cobordism category to the
(∞− 1)st loop space Ω∞−1MT (d) of the degree d Thom spectrum MT (d).

Definition 2.5.11. Let M ⊆ Rn+d be a d-dimensional compact submanifold
without boundary, letM ⊂ U ⊆ Rn be a tubular neighbourhood ofM in Rn+d, and
let ν : U →M denote the normal bundle. The projection Rn+d → Rn+d/(Rn+d \
U) ' Th(ν) is called the Pontryagin-Thom collapse map associated to M . Note
that since different choices of U are homotopic, this map is uniquely determined
up to homotopy. This map extends through the inclusion Rn+d ↪→ Sn+d by
sending the basepoint of Sn+d to (Rn+d \ U). We thus get a map

Sn+d → Rn+d/(Rn+d \ U) ' Th(ν)

Now denote by u : U → γ⊥(d, n) the classifying map of ν on the level of the total
spaces. Composing the above map with Th(u), we obtain a map

tn+d
M : Sn+d → Th(γ⊥(d, n)) = MT (d)n+d
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We call this map the classifying map of M ⊆ Rn+d.

Lemma 2.5.12. The map tn+d
M is stable, i.e. the following diagram commutes

up to homotopy.

S1 ∧ Sn+d S1 ∧MT (d)n+d

Sn+d+1 MT (d)n+d+1

tn+d
M

tn+d+1
M

Proof. Starting fromM ⊆ Rn+d, if we append an additional factor R onto the right
hand side, the resulting normal bundle will have an extra trivial direct summand,
νn+d+1 ' νn+d ⊕ ε1, from which we get that Th(νn+d+1) ' S1 ∧ Th(νn+d),
so the Ponryagin-Thom collapse map factors through the latter. In addition,
the classifying map for νn+d+1 factors, up to homotopy, through γ⊥(d, n) ⊕
ε1 → γ⊥(d, n). This establishes the homotopy commutativity of the original
diagram.

Corollary 2.5.13. The Pontryagin-Thom construction assigns to each submani-
fold M ⊆ R∞ a point in Ω∞MT (d).

Remark 2.5.14. The Pontryagin-Thom collapse map also applies to submanifolds
with boundary. In particular, let W : M → N be a morphism of Cd. Then W is a
neatly embedded submanifold of [a, b] × Rn+d−1, and so the Pontryagin-Thom
collapse map gives a map

[a, b]+ ∧ Sd+n−1 → Th(ν)→MT (d)n+d

which is stable in the same way as above, and the adjoint of this map as n→∞
is a path [a, b] → Ω∞−1MT (d). Now, if we choose once and for all a tubular
neighbourhood for all (d − 1)-dimensional submanifolds M,N ⊆ Rd+n−1, say
M ⊆ UM ⊆ Rd+n−1 and N ⊆ UN ⊆ Rd+n−1m we can require the tubular
neighbourhoods of the morphisms behave nicely with respect to these, in particular
we can choose our tubular neighbourhoods W ⊆ U ⊆ [a, b]× Rd+n−1 such that
for εa, εb > 0 as in Definition 2.5.2, we have

U ∩ [a, a+ εa)× Rd+n−1 = [a, a+ εa)× UM
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U ∩ (b− εb, b]× Rd+n−1 = (b− εb, b]× UN

such that we can glue tubular neighbourhoods by taking their unions. Then we
obtain by the above assignment a functor

Cd → P 1(Ω∞−1MT (d))

which on the level of classifying spaces gives us a map

α : BCd → B(P 1(Ω∞−1MT (d))) ' Ω∞−1MT (d))

Theorem 2.5.15. ([GMTW09]) The map

α : BCd → Ω∞−1MT (d))

is a weak homotopy equivalence.

Remark 2.5.16. This result was subsequently generalized, using a different
method of proof, in [BM]. This result will be discussed at the end of the next
chapter.





Chapter3Manifolds with corners

3.1 Introduction

Manifolds with corners are a generalization of manifolds with boundary, where
roughly for a manifold M , the relation ∂2M = ∅ is replaced by ∂kM = ∅ for some
k ∈ N.

Definition 3.1.1. Let k, n ∈ N such that n ≥ k. We define Rnk := [0,∞)k×Rn−k

to be the n-dimensional Euclidean plane with k-corners. For a point x ∈ Rnk ,
denote by c(x) the number of factors [0,∞) which are zero. We call c(x) the depth
of x.

Definition 3.1.2. Let U and V be subsets of Rn. We say a function f : U → V

is smooth if there exist open subsets U ′ and V ′ of Rn such that U ⊆ U ′ and
V ⊆ V ′ and there exists a smooth function g : U ′ → V ′, in the sense that partial
derivatives of all orders exist, and such that g|U = f . A usual, we say f is a
diffeomorphism if it is smooth and admits a smooth inverse.

Lemma 3.1.3. Let U ⊆ Rnk and V ⊆ Rnk be subsets such that there is a
diffeomorphism f : U → V . Then for each x ∈ U we have c(x) = c(f(x)).

Warning 3.1.4. The above lemma does not apply if we loosen the restriction
on f to be merely a homeomorphism. Note that there is a homeomorphism
[0,∞)2 → [0,∞) × R, but no such diffeomorphism exists. Therefore, in the
theory of topological manifolds with corners, it is necessary to force the transition
functions to respect the corner structure, which this comes for free in the smooth
case.

59
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Definition 3.1.5. An n-dimensional manifold with k-corners is a second-countable
Hausdorff space which is locally homeomorphic to Rnk . I.e. for each x ∈M , there
is an open set U ⊆ M containing x and an homeomorphism φU from U to an
open subset of Rnk . We say (U, φU ) is a chart of M at x. Let (U, φU ) and (V, φV )
be two charts of M at x. We say the two charts are compatible if the transition
function

φV ◦ φ−1
U : φU (U ∩ V )→ φV (U ∩ V )

is a diffeomorphism in the sense of Definition 3.1.2. An atlas on M is a covering
of M by pairwise compatible charts, and a maximal such atlas is called a smooth
structure with corners on M .

Definition 3.1.6. Let x ∈ M be a point of an n-dimensional manifold with
k-corners and let (U, φU ) be a chart of M at x. Denote by c(x) the number of
components of [0,∞)k which are zero in φU (x). This is independent on the choice
of chart (U, φU ) by Lemma 3.1.3.

Definition 3.1.7. Let M be an n-dimensional manifold with k-corners and let
0 ≤ l ≤ k. Define the subspace

∂lM := {x ∈M | c(x) ≥ l}

called the l-boundary of M .

Definition 3.1.8. Let M be an n-dimensional manifold with k-corners. A face
of M is a union of connected component of the subset {x ∈M | c(x) = 1}.

Remark 3.1.9. We are interested in manifolds whose corner structure is particu-
larly well-behaved. Precisely, the structure we will impose will tailor our manifolds
such that the usual embedding theorems and bundle theory from ordinary manifold
theory generalize to the setting of manifolds with corners.

3.2 〈k〉-manifolds

Definition 3.2.1. Let M be an n-dimensional manifold with k-corners. A 〈k〉-
structure on M is a decomposition of the boundary of M , ∂M ' ∂1M ∪ ∂2M ∪
... ∪ ∂kM , such that

1. each ∂iM is the closure of a face of M in M ,



3.2. 〈k〉-MANIFOLDS 61

2. each x ∈M is contained in c(x) of the ∂iM ’s.

3. for all 1 ≤ i, j ≤ k with i 6= j, ∂iM ∩ ∂jM is the closure of a face in ∂iM
and a face in ∂jM .

Example 3.1. The prototypical 〈k〉-manifolds are the spaces Rnk and their
one-point compactifications Snk . Note that the point at infinity attains maximum
depth, c(∞) = k.

Example 3.2. Any smooth manifold with empty boundary is a 〈0〉-manifold.
Similarly, any manifold with boundary is a 〈1〉-manifold in a natural way.

Example 3.3. Let M be the 2-dimensional disk, D2, whose boundary S1 is
subdivided into n > 1 pieces (i.e. an n-gon). Then M is a 〈k〉-manifold for any k
such that n divides k.

Definition 3.2.2. Let 2 be the free arrow category, defined up to isomorphism
as the category with two objects 0 and 1, and a single non-identity arrow 0→ 1.
Denote by 2k the product of k copies of 2. Explicitly, the objects of 2k are k-tuples
of binary numbers a = (a1, ..., ak), and a single morphism denoted a < b whenever
ai ≤ bi for all 1 ≤ i ≤ k. For a ∈ 2k, define the weight of a, denoted w(a), as the
number of nonzero entries in a = (a1, ..., ak).
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Definition 3.2.3. Let M be a 〈k〉-manifold and let a ∈ 2k. Define the subspace

M(a) :=
⋂

1≤i≤k
ai=0

∂iM

Example 3.4. Let M ∈ Rk × Rn be an embedded submanifold such that for
each a ∈ 2k, Rnk (a) ⊆ Rnk ⊆ Rk × Rn intersects M transversally. Then assigning
M(a) := M ∩ Rnk (a) equips M with the structure of a 〈k〉-manifold.

Remark 3.2.4. For any 〈k〉-manifold M and a ∈ 2k, M(a) is a 〈w(a)〉-manifold
in a natural way.

Definition 3.2.5. The category 〈k〉Top of 〈k〉-spaces is the functor category
Fun(2k,Top).

Remark 3.2.6. Every 〈k〉-manifoldM can be realized as a 〈k〉-space by Definition
3.2.3.

Definition 3.2.7. There are natural functors −×− : 〈k〉Top×〈l〉Top→ 〈k+l〉Top
given by taking X : 2k → Top and Y : 2l → Top to the composition

2k+l ' 2k × 2l X×Y−→ Top× Top −×−−→ Top

Definition 3.2.8. Consider I = [0, 1] as a 〈0〉-space, such that we get a cylinder
functor −×I : 〈k〉Top→ 〈k〉Top. There are natural morphisms i0, i1 : X → X×I
given by the endpoint inclusions i0, i1 : ∗ → I. Let f, g : X → Y be a pair of
morphisms of 〈k〉-spaces. A homotopy between f and g is defined as a morphism
of 〈k〉-spaces h : X × I → Y , such that hi0 = f and hi1 = g.

Definition 3.2.9. Let X be a 〈k〉-manifold. A neat embedding of X into RN+k
k

for some N ≥ 0, is a morphism of 〈k〉-manifolds e : X → RN+k
k such that:

– for each a ∈ 2k, the map e(a) : X(a)→ RN+k
k (a) is an embedding,

– for each a < b ∈ 2k, we have X(b) ∩ RN+k
k (a) = X(a), and

– these intersections are perpendicular, in the sense that there is an ε > 0
such that

X(b) ∩ (Rkk(a)× [0, ε]k(b− a)× RN ) = M(a)× [0, ε]k(b− a)

where

b− a := (b1, ..., bk)− (a1, ..., ak) = (b1 − a1, ..., bk − ak)
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[Diagram: Neat embedding of a square in R3
2]

Remark 3.2.10. In [Lau00], Laures showed that each 〈k〉-manifold admits a
neat embedding into Rnk for n large enough. Furthermore, in [Gen08], Genauer
proved that the space of these embeddings is weakly contractible. This shows that
any 〈k〉-manifold arises in the fashion of Example 3.4 in an essentially unique way.
Given a 〈k〉-manifoldM neatly embedded into Rnk , we can construct a submanifold
M ′ ⊆ Rk × Rn such that M(a) = M ′ ∩ Rnk (a) for each a ∈ 2k by attaching open
collars to M in the following way. For each a ∈ 2k, we glue on the open collar
M(a)× (−1, 0]ω(a). We obtain a cubical diagram of glueings, whose colimit is M ′.

3.3 Vector bundles on 〈k〉-manifolds

Definition 3.3.1. Let X be a 〈k〉-space. A 〈k〉-vector bundle E on X is a
2k-indexed system of vector bundles E(a)→ X(a).

Remark 3.3.2. In discussing 〈k〉-vector bundles, it will be very useful to regard R
as a 〈1〉-space, in order to have better control over its subspaces. We will therefore
consider R as a 〈1〉-space with R(0) = {0} ⊂ R, R(1) = R, and R(0)→ R(1) the
inclusion {0} → R. In this sense Rn is a 〈n〉-space in the obvious way. Similarly,
we

Example 3.5. Let M be a d-dimensional 〈k〉-manifold. We denote by TM the
em tagent 〈k〉-vector bundle on M . If a ∈ 2k with ω(a) = k − 1, we then have
TM(1)|M(a) = ε⊕ TM(a), where ε denotes the trivial rank 1 bundle.

Example 3.6. Let M be a d-dimensional 〈k〉-manifold equipped with a neat
embedding e : M → Rnk . We glue an open collar to M to obtain a manifold M ′
with an embedding e′ : M ′ → Rn. The pullback of the tangent bundle of Rn then
splits as e′∗TRn ' ν′ ⊕ TM ′, where ν′ is the normal bundle of M ′ with respect
to the embedding e′. Since then TM ′|M = TM , we may write ν = ν′|M ⊆ Rnk .
Since the original embedding e was neat, for any a ∈ 2k, the restriction ν|M(a)

is the normal bundle of M(a) ⊆ Rn+k−ω(a)
ω(a) . We may therefore extend ν to the

normal 〈k〉-bundle ν of M by the above procedure.

Definition 3.3.3. Let X be a 〈k〉-space and let E be a 〈k〉-vector bundle on X.
Then we say that E is a geometric 〈k〉-vector bundle if for each a < b in 2k, the
pullback of E(b) over X(a) is naturally isomorphic to E(a)⊗ εc for some c ≥ 0.
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Remark 3.3.4. Given a 〈k〉-manifold M ⊆ Rnk , both the tangent and normal
bundles of M are examples of geometric 〈k〉-vector bundles. Geometric bundles
are well-behaved in the sense that there exists a canonical geometric 〈k〉-bundles,
which we will now describe.

Definition 3.3.5. The 〈k〉-Grassmannian G(d, n)〈k〉, is defined as the 〈k〉-space
whose component G(d, n)(a), for each a ∈ 2k, is given by the space of (d−k+ω(a))-
dimensional subspaces of Rk(a)× Rn+d−k, isomorphic to G(d− k + ω(a), n+ d).
For each a < b in 2k, the corresponding structure map G(d, n)(a)→ G(d, n)(b) is
given by taking each V ∈ G(d, n)(a) to V + R(b− a) ∈ G(d, n)(b).

Definition 3.3.6. The canonical geometric 〈k〉-bundle γ(d, n)〈k〉 is defined as the
geometric 〈k〉-vector bundle on G(d, n)〈k〉 whose component total space γ(d, n)(a)
for a ∈ 2k is given by

γ(d, n)(a) = {(V, v) ∈ G(d, n)(a)× Rk(a)× Rn+d−k | v ∈ V }

with the bundle γ(d, n)(a)→ G(d, n)(a) given by the projection (V, v) 7→ V . Given
a < b in 2k, the associated bundle map γ(d, n)(a < b) : γ(d, n)(a) → γ(d, n)(b)
sends (V, v) ∈ γ(d, n)(a) to (V + Rk(b− a),Rk(a < b)(v))

Definition 3.3.7. The canonical perpendicular geometric 〈k〉-bundle γ⊥(d, n)〈k〉
is defined as the geometric 〈k〉-vector bundle on G(d, n)〈k〉 whose component
total space γ⊥(d, n)(a) for a ∈ 2k is given by

γ⊥(d, n)(a) = {(V, v) ∈ G(d, n)(a)× Rk(a)× Rn+d−k | v ∈ V ⊥}

with the bundle γ⊥(d, n)(a) → G(d, n)(a) given by the projection (V, v) 7→ V .
Given a < b in 2k, the associated bundle map γ⊥(d, n)(a < b) : γ⊥(d, n)(a) →
γ⊥(d, n)(b) sends (V, v) ∈ γ⊥(d, n)(a) to (V + Rk(b− a),Rk(a < b)(v))

Example 3.7. A neatly embedded 〈k〉-manifold Md ⊆ Rnk induces canonical
morphisms of 〈k〉-manifolds ξM : M → G(d, n)〈k〉 and νM : M → G(d, n)〈k〉, in-
ducing by pullback the tangent and normal 〈k〉-vector bundles on M , respectively.

Remark 3.3.8. The canonical bundles are natural with respect to the structure
maps of 2k. I.e., there are isomorphisms

γ(d, n)(a) ' γ(d− k + ω(a), n)

γ⊥(d, n)(a) ' γ⊥(d− k + ω(a), n)

However, the isomorphism γ(d, n) ' γ⊥(n, d) of the ordinary canonical bundles
does not extend to the 〈k〉-setting.
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Definition 3.3.9. Just like in the case for ordinary Grassmannians, the canonical
inclusion Rn+d ↪→ Rn+d+1 induces a morphism of 〈k〉-spaces G(d, n)〈k〉 → G(d, n+
1)〈k〉. The colimit as n → ∞ is denoted by BO(d)〈k〉. There are also induced
bundle inclusions γ(d, n) ↪→ γ(d, n+ 1) inducing a universal vector bundle γ(d)→
BO(d).

Remark 3.3.10. Let M be a d-dimensional 〈k〉-manifold. Then for large enough
n, there is a neat embedding e : M → Rn+d

k which is unique up to isotopy and
whose normal bundle induces a morphism νnM : M → G(d, n)〈k〉 which is uniquely
determined up to homotopy. Thus we get a morphism νM : M → BO(d)〈k〉 which
is uniquely determined up to homotopy. We call νM the stable normal bundle of
M .

Definition 3.3.11. A local 〈k〉-structure (A, f) is a commutative diagram of
〈k〉-spaces

... Ar Ar+1 ...

... BO(r)〈k〉 BO(r + 1)〈k〉 ...

gr

jr

fr fr+1

Let M be a d-dimensional 〈k〉-manifold. An (A, f)-structure on M is a lift of the
stable normal bundle of M through fd : Ad → BO(d)〈k〉.

Example 3.8. Let SO(d, n)〈k〉 be the 〈k〉-space whose components SO(d, n)(a)
for a ∈ 2k is given by the space of oriented d + ω(a)-dimensional subspaces of
Rk(a)×Rn+d and whose structure morphisms are given similarly as for G(d, n)〈k〉.
There is a natural morphism SO(d, n)(a)→ G(d, n)(a) is given by forgetting the
orientation. A lift of the stable normal bundle of M through SO(d, n)〈k〉 is called
an orientation on M .

Definition 3.3.12. An injective 〈k〉-bundle is a 〈k〉-vector bundle E → B such
that for each a < b in 2k, the associated bundle morphism E(a)→ E(b) is injective
on each fiber.

Definition 3.3.13. Let p : E → B be an injective 〈k〉-bundle. We then define
the associated disk 〈k〉-bundle as the 〈k〉-fiber bundle D(p) : D(E) → B given
by D(E)(1) = D(E(1)), the disk bundle associated to p(1) : E(1)→ B(1), and
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for a ∈ 2k, D(E)(a) is the preimage in E(a) of D(E)(1) ⊆ E(1). We define the
sphere 〈k〉-bundle S(p) : S(E) → B in the same way from the sphere bundle
associated to p(1) : E(1)→ B(1).

Definition 3.3.14. Let p : E → B be an injective 〈k〉-bundle. Then we may
define the Thom space Th(p) of p as the 〈k〉-space whose component at each
a ∈ 2k is given by

Th(p)(a) = D(E)(a)
S(E)(a)

and the map Th(p)(a)→ Th(p)(b) is induced by the map E(a)→ E(b).

Definition 3.3.15. Let e : M ↪→ Rnk be a neatly embedded 〈k〉-manifold. A
tubular neighborhood of M is a neat embedding e′ : νe ↪→ Rnk of the normal
〈k〉-bundle of M with respect to e, such that e′|M = e, i.e. e′ restricts to e on the
zero section.

3.4 〈k〉-spectra

Convention 3.4.1. In this section, a space will be understood to mean a pointed
CW complex.

Definition 3.4.2. Let X : 2k → Top∗ be a pointed 〈k〉-space. The reduced
suspension SX of X is defined by postcomposing X with the functor S1 ∧ − :
Top∗ → Top∗.

Definition 3.4.3. A 〈k〉-spectrum is a sequence {En, sn}n∈Z, where En is a
〈k〉-space and sn : SEn → En+1 is a morphism of 〈k〉-spaces such that sn(a) :
SEn(a)→ En+1(a) is an embedding of CW complexes.

Remark 3.4.4. A 〈k〉-spectrum may equivalently be defined as a functor from
2k to the category of spectra and maps between them.

Remark 3.4.5. Consider once more the canonical map jd,n : G(d, n)〈k〉 →
G(d, n + 1)〈k〉 induced by the inclusion Rn+d ↪→ Rn+d+1. The pullback of
γ⊥(d, n + 1)〈k〉 along jd,n is isomorphic to γ⊥(d, n)〈k〉 ⊕ ε1, where ε1 is the
constant trivial rank one bundle. We call the resulting map

ud,n : γ⊥(d, n)〈k〉 ⊕ ε1 → γ⊥(d, n+ 1)〈k〉
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Definition 3.4.6. The Thom 〈k〉-spectrum MT (d)〈k〉 is such that the (n+ d)-th
space of MT (d)(a) is the Thom space of γ⊥(d, n)(a) and the structure maps are
the Thom maps Th(ud,n), or in terms of the spectra MT (d) of [GMTW09], we
have MT (d)(a) = Σω(a)−kMT (d− k + ω(a)), namely, the spaces are given by:

MT (d)(a)n+d = Th(γ⊥(d, n)(a))
= Th(γ⊥(d− k + ω(a), n))
= MT (d− k + ω(a))n+d−k+ω(a)

= Σω(a)−kMT (d− k + ω(a))n+d

and the structure maps follow similarly.

Remark 3.4.7. Laures defines a procedure to pass from a 〈k〉-spectrum to an
ordinary Ω-spectrum in the following way.

Definition 3.4.8. Let X be a 〈k〉-space. Define the n’th loop space of X as the
space of based 〈k〉-maps Rnk → X.

Definition 3.4.9. Let E = {En, sn} be a 〈k〉-spectrum. Define the infinite loop
spectrum of E as the spectrum Ω∞〈k〉E whose n’th space is given by

colimm→∞Ωn+m
〈k〉 Em := Ω∞−n〈k〉 E

the right hand side we call the (∞− n)-th loop space of E.

3.5 Cobordism categories of 〈k〉-manifolds

Idea 3.5.1. In [Gen08], Genauer defines a topological category C̄kd of d-dimensional
neatly embedded 〈k−1〉-manifolds and cobordisms between them, generalizing the
embedded cobordism categories considered by Galatius-Madsen-Tillmann-Weiss in
[GMTW09]. We will present his construction and generalize it to obtain a k-fold
topological category Ckd . We may also fix the codimension n of the embedding,
obtaining a refinement of Ckd into a sequence of k-fold topological categories Ckd,n.
In [BM], Bökstedt and Madsen determined the homotopy type of the k-fold
topological nerve of Cnd,k. We recall their result below, but first we will spend
some time on the construction of the cobordism category itself.

Definition 3.5.2. We consider I = [0, 1] as a 〈1〉-manifold in the obvious way.
Then the k-dimensional unit box Ik attains the structure of a 〈k〉-manifold as in
Definition 3.2.7.
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Remark 3.5.3. The concept of neat embedding extends to embeddings M ↪→
Ik × Rn−k by applying the conditions in Definition 3.2.9 locally at each point of
the boundary.

Definition 3.5.4. LetM andN be a pair of d-dimensional 〈k〉-manifolds, possibly
equipped with some tangential structure. An abstract cobordism from M to N is
a (d+ 1)-dimensional 〈k + 1〉-manifold W such that ∂0W = (−M) tN .

Definition 3.5.5. LetM andN be a pair of d-dimensional 〈k〉-manifolds, possibly
equipped with some tangential structure. An abstract cobordism from M to N is
a (d+ 1)-dimensional 〈k + 1〉-manifold W such that ∂0W = (−M) tN .

Definition 3.5.6. Let M and N be a pair of neatly embedded d-dimensional
〈k〉-manifolds, M,N ⊆ R × Rnk , where M ⊆ {a0} × Rnk and N ⊆ {a1} × Rnk ,
possibly equipped with some tangential structure. We assume a0 < a1 if M 6= N .
An embedded cobordism from M to N is a d + 1-dimensional 〈k + 1〉-manifold
with a neat embedding W ↪→ [a0, a1]×Rn−1

k such that W ∩{0}×Rn−1 = M and
W ∩ {1} × Rn−1 = N . We then have ∂0W = (−M) tN .

Remark 3.5.7. We differ between abstract and embedded cobordisms because
these enjoy different properties. For example, embedded cobordisms can be
organized into a strictly associative category, while this is not the case for abstract
cobordisms. Indeed, composing abstract cobordisms requires a choice of smooth
collars about the common boundary component. Thus the composition is only
well-defined up to diffeomorphism relative the boundary. Thus abstract cobordism
naturally assemble into a so-called k-fold Segal space.

A neat embedding of a cobordism provides a choice of smooth collar from
the outset, so the composition becomes well-defined. Furthermore, we allow
the interval to expand as in the Moore cylinder, so the reparameterization is
unnecessary, and if we construct the Segal space of embedded cobordisms, it cill
collapse into a strict k-fold topological category.

However, the two Segal spaces have weakly equivalent k-dimensional topological
multinerves.

Definition 3.5.8. Let a, b ∈ Rk be two vectors in Rk such that for all 1 ≤ j ≤ k,
aj ≤ bj . We then say that a ≤ b and this defines a partial ordering on Rk. We
denote by [a, b] the box

[a, b] = {(x1, ..., xk) ∈ Rk | ai ≤ xi ≤ bi ∀1 ≤ i ≤ k}
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We call this the box bounded by a and b.

Recall that for a ∈ 2k, Sa is the set of 1 ≤ i ≤ k for which ai = 0. The set
of boxes in Rk, which we denote by �(k) = {[x, y] | x, y ∈ Rk , x ≤ y}, assemble
into a 〈k〉-manifold by putting �(k)(a) = {[x, y] ∈ �(k) | xi = yi∀i ∈ Sa}.

Given a box [x, y] ∈ �(k)(a), for every i ∈ Sa′ , there are two natural projections
si, ti : �(k)(a)→ �(k)(a− ei) given by the projections of [xi, yi] onto xi and yi
respectively. There is also an obvious inclusion Idi : �(k)(a− ei)→ �(k)(a)

Definition 3.5.9. We define a strict k-tuple category Ckd,n of embedded d-
dimensional 〈k〉-manifolds in codimension n in the following manner. An a-
morphism of Ckd,n is a triple (W,x, y), where x, y ∈ Rk such that x ≤ y and
[x, y] ∈ �(k)(a), and W is a neatly embedded d-dimensional 〈k〉-submanifold of
[x, y]× Rn+d−k ⊆ Rn+d.

For i ∈ Sa′ , we define the source and target of (W,a, b) in the i-direction by
intersecting W with si([x, y])×Rn+d−k and ti([x, y])×Rn+d−k, respectively. We
define the identities similarly.

Composition is defined by taking the union of subsets of Rn+d.

Remark 3.5.10. Definition 3.5.9 defines an ordinary strict k-fold category of
cobordisms. The way we topologize the category varies depending on whether we
limit the codimension. We first treat the simpler case of infinite codimension, and
then the case of finite codimension. The former is an adaption of the treatment
in [GMTW09] to the k-fold setting, while the latter is taken from [BM].

3.5.1 A topology on Ck
d

We topologize the k-fold category Ckd = colimn→∞ Ckd,n as follows. The topology on
the set of objects is identical to the one considered in [GMTW09], but we recall its
construction here. LetM be a closed d−k-dimensional manifold. The space of codi-
mension infinity embeddings Emb(M,Rd−k+∞) = colimn→∞ Emb(M,Rd−k+n) is
contractible by Whitney’s embedding theorem. Now, the diffeomorphism group
Diff(M) of M acts freely on Emb(M,Rd−k+∞) on the right by precomposition,
and the projection

Emb(M,Rd−k+∞)→ Emb(M,Rd−k+∞)/Diff(M)
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onto orbits is a principal Diff(M)-bundle. It follows that the tensor product

Emb(M,Rd−k+∞)⊗Diff(M) M → Emb(M,Rd−k+∞)/Diff(M) := B∞(M)

is a principal Diff(M)-bundle with contractible total space and fiber M . It
follows that Emb(M,Rd−k+∞)/Diff(M) ' BDiff(M). Since there is a one-to-one
correspondence between Emb(M,Rd−k+∞)/Diff(M) and the set of submanifolds
of Rd−k+∞ diffeomorphic to M . We thus topologize Ob Ckd such that

Ob Ckd = Rk × tMB∞(M)

where M varies over closed (d− k)-dimensional manifolds, one in each diffeomor-
phism class. In particular then Ob Ckd ' tMBDiff(M).

We now treat the morphism spaces. Fix an a ∈ 2k with ω(a) ≥ 1 and
assume that we have already topologized the sets Cdk(b) for all b ∈ 2k for which
ω(b) < ω(a). Let (W,h) be a pair where W is an element of Ckd (a) and h is a
collar for W . That is, for each j ∈ Sa′ , a pair of embeddings

hj0 : [0, 1)× sj(W )→W

hj1 : (0, 1]× tj(W )→W

We also require that the restriction of the hiν for i 6= j and ν = 0, 1 to ∂jW defines
a collar of ∂jW .

For 0 < ε < 1
2 , let Embε(W, [0, 1]ω(a) × Rd−k+n) be the space of neat em-

beddings e : W → [0, 1]ω(a) × Rd−k+n such that for each j ∈ Sa′ , there are
embeddings

ej0 : sj(W )→ Rn−k+n

ej1 : tj(W )→ Rn−k+n

such that e ◦ hj0(τ0, x0) = (τ0, ej0(x0)) and e ◦ hj1(τ1, x1) = (τ1, ej1(x1)) for all
τ0 ∈ [0, ε), τ1 ∈ (1− ε, 1], x0 ∈ sj(W ) and s1 ∈ tj(W ). We define

Emb(W, [0, 1]ω(a) × Rd−k+∞) = colim ε→0
n→∞

Embε(W, [0, 1]ω(a) × Rd−k+n)

This construction of Emb(W, [0, 1]ω(a) × Rd−k+∞) is a more elaborate version
of Definition 3.2.9. We now denote by Diffε(W ) the subgroup of Diff〈a〉(W ) of
〈a〉-structure preserving diffeomorphisms ofW which restrict to product diffeomor-
phisms on the ε-collars and we denote the colimit Diff(W ) = colimε→0 Diffε(W )
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the group of diffeomorphisms which preserve ε-collars for sufficiently small ε. Now,
Diffε(W ) acts freely on Embε(W, [0, 1]ω(a) ×Rd−k+n) on the right by precomposi-
tion, and we again get principal Diffε(W )-bundles

Embε(W, [0, 1]ω(a) × Rd−k+n)→ Embε(W, [0, 1]ω(a) × Rd−k+n)/Diffε(W )

Taking the colimit as n→∞ and ε→ 0, we then obtain the principal Diff(W )-
bundle

Emb(W, [0, 1]ω(a) × Rd−k+∞)→ Emb(W, [0, 1]ω(a) × Rd−k+∞)/Diff(W )

Viewing W as a left Diff(W )-module, we form the tensor product

Emb(W, [0, 1]ω(a)×Rd−k+∞)⊗Diff(W )W → Emb(W, [0, 1]ω(a)×Rd−k+∞)/Diff(W )

As above, Emb(W, [0, 1]ω(a) × Rd−k+∞) is contractible, hence the above is a
principal Diff(W )-bundle with fiber W . We conclude that

Emb(W, [0, 1]ω(a) × Rd−k+∞)/Diff(W ) := B∞(W ) ' BDiff(W )

The above describes the space of nondegerate a-morphisms of Cdk , i.e. those
whose associated box [x, y](a) has no j ∈ Sa′ for which xj = yj . The degenerate
morphisms are added by appending the spaces of lower morphisms. Denote by
(Rk)2

+(a) the set of pairs (x, y) ∈ Rk×Rk such that xj < yj if aj = 1 and xj = yj
if aj = 0. We then topologize Ckd (a) such that

Ckd (a) = t b 6=a
b<a

Ckd (b) tW (Rk)2
+(a)×B∞(W )

where W varies over d− k + ω(a)-dimensional 〈a〉-cobordisms (W,h), one in each
diffeomorphism class.

3.5.2 Models for Ck
d,n

We now show how to put a topology on Ckd,n by a method fairly different to the
above. The following is due to [BM]. Let Ψd(Rd+n) denote the set of d-dimensional
submanifolds W of Rd+n such that ∂W = ∅ and W is a closed subset of Rn+d.
We topologize Ψd(Rd+n) in the following way. Given a W ∈ Ψd(Rn+d), let
NW ⊂ Rd+n be a tubular neighborhood of W with projection map r : NW →W .
Denote by C∞(W,NW ) be the space of smooth sections of r, equipped with the
C∞-Whitney topology. Assume we are given a metric µ on G(d, n), we now define
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a norm on C∞(W,NW ). Given an element s ∈ C∞(W,NW ) and a compact
subset K ⊂ Rd+n, we write

||s||K = sup
x∈W∩K

(|s(x) + µ(TxW,ds(TxW )))

where | · | is the Euclidean norm on Rd+n and ds is the differential of s. Now
define

ΓK,ε = {s ∈ C∞(W,NW ) | ||s||K < ε}

I.e. ΓK,ε is the subset of C∞(W,NW ) for which s and the zero section are
sufficiently close on K. The corresponding neighborhood of W in Ψd(Rd+n) is
given by

NK,ε(W ) = {V d | V d ∩K = s(W ) ∩K , s ∈ ΓK,ε}

I.e. NK,ε is the set of submanifolds sufficiently close to W wherever it intersects
K.

Theorem 3.5.11. The sets NK,ε(W ) form a system of neighbourhoods for a
topology on Ψd(Rn+d). Given W and K, the set NK,ε(W ) is open for sufficiently
small ε, and this topology turns Ψd(Rd+n) into a metrizable space

Proof. The proof of metrizability is given in section 4 of [BM] by showing that
Ψd(Rd+n) is a second countable regular space.

Remark 3.5.12. Note that if M ∈ Ψd(Rn+d) and U ⊆ Rn+d is an open subset,
when the intersectionM∩U is a d-dimensional submanifold of U with ∂(M∩U) = ∅
and M ∩ U is a closed subset of U . In addition, if we have two open sets and
such submanifolds M ⊆ U and N ⊆ V such that M ∩ V = N ∩U , then the union
M ∪N is a d-dimensional submanifold of U ∪ V with empty boundary and closed
as a subspace. In other words, Ψd extends to a sheaf of topological spaces on
Rn+d. This sheaf is the basis for the sheaf model of the cobordism category and
was used by Madsen-Weiss in [MW07] and by Galatius-Madsen-Tillmann-Weiss
in [GMTW09].

Remark 3.5.13. We are also interested in the subspaces

Dk
d,n = {W ∈ Ψd(Rd+n) | W ⊂ Rk × (−1, 1)d+n−k}

of manifolds with (d+ n− k) compact directions and k non-compact directions.
This space can also be characterized as the subspace of submanifolds for which
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the projection onto the last k coordinates are proper. The spaces Ψd(Rn+d) and
Dk
d,n have basepoints given by the empty manifold.

Theorem 3.5.11 shows in particular that Ψd(Rn+d) and Dk
d,n are compactly

generated weak Hausdorff spaces. The spaces Dk
d,n give rise to a topological poset

model for the cobordism category with very good properties. In particular, we
have topological niceties like Lemma 3.5.15.

Definition 3.5.14. We define the k-fold topological poset Dkn,d. For a ∈ 2k,
the a-morphisms are given by the subspace Dkd,n(a) = �(k)(a)×Dk

d,n consisting
of those pairs ([x, y],M) for which M intersects the walls of [x, y] transversally.
Two such pairs ([x, y],M) and ([x′, y′],M ′) are composable in the i-direction if
and only if xj = x′j and yj = y′j for all j 6= i and yi = x′i, i.e. if the boxes are
composable, and M = M ′. In that case, the composition is given by ([x′′, y′′],M),
where x′′j = xj and y′′j = yj for all j. This is called the topological poset model of
the cobordism category.

Lemma 3.5.15. Let a ∈ R and define the subset Ua ⊆ D1
d,n of elements M such

that a is a regular value of the projection x1 : M → R. Then Ua is an open set in
D1
d,n. The analogous subset in Ψd(Rn+d) is not open in general.

Proof. Let M ∈ Ua. Then by a standard theorem of differential topology, there
exists an open neighbourhood V of Ma := x−1

1 (a) such that x1 has full rank on
V . Choosing a compact subset A of x1(V ), let K = A × [−1, 1]n+d−1 ⊆ Rn+d.
Now let S be the set of d-planes which are perpendicular to the first coordinate
axis and let 0 < ε < infx∈M∩K

s∈S
(µ(TxM, s). The open set NK,ε(M) is then an open

neighbourhood of M contained in Ua, which shows that Ua is open.

To see why openness fails for Ψd(Rn+d), notice that for a general M ∈
Ψd(Rn+d), x−1

1 (a) is not a bounded subset, hence cannot be contained in any
compact subset. It follows that any open neighborhood of M will contain at least
one element with a critical point of x1 at a.

Definition 3.5.16. We define the k-fold topological poset D⊥kn,d. It is defined like
Dk
n,d in 3.5.14, but we require of our a-morphisms ([x, y],M) that M intersects

the walls of [x, y] orthogonally. This is called the orthogonal topological poset
model of the cobordism category.
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Remark 3.5.17. In order to properly relate Dk
d,n to the neat embeddings into

[x, y]× (−1, 1)d+n−k, we have the following lemma.

Lemma 3.5.18 ([GRW10], Lemma 3.4.). Let f : X → Ψd(Rn+d) be a continuous
map, and let U, V ⊆ X be open sets with Ū ⊆ V . Furthermore, let a ∈ R be a
regular value for the projection x1 : f(x)→ R onto the first coordinate for each
x ∈ V . Lastly, let ε > 0 be a real number. Then there is a homotopy

ft : X → Ψd(Rn+d)

for t ∈ [0, 1], and for which

1. f0 = f and for each x ∈ U , there is a manifold M ⊆ Rn+d−1 such that
f1(x) ∩ [a− ε, a+ ε] = M × [a− ε, a+ ε].

2. The restriction to [0, 1]× (X \ V )→ Ψd(Rn+d)

3. The composition of ft with the restriction Ψd(Rn+d) → Ψd(Rn+d \ ([a −
2ε, a+ 2ε]× Rn+d−1)) is a constant homotopy.

Proof. Fix a smooth function λ : R→ R for which

λ(s) =
{

0 , |s| ≤ 1
s , |s| ≥ 2

and such that λ′(s) > 0 for |s| > 1. We now construct a scaling function
φτ (s) = (1− τ)s+ τελ( s−aε ) for τ ∈ [0, 1]. Further, let ρ : X → [0, 1] be a bump
function with support contained in V and such that U ⊆ ρ−1(1). The homotopy
[0, 1]×X → Ψd(Rn+d) is now defined by (x, t) 7→ (φtρ(x) × id)−1(f(x)).

Remark 3.5.19. The homotopy in the above lemma can be seen as stretching
the manifold about a regular value in order to make the manifold orthogonal to
the x1 direction. An important aspect of the homotopy is also that the tangent
space of the restriction f(x) ∩ x−1

1 (a) = M is preserved. Furthermore, the lemma
still holds when we exchange the fist coordinate projection with the i’th. We
therefore get the following corollary.

Corollary 3.5.20. Let X → Ψd(Rn+d) be a continuous map, let U, V be open
sets in X such that Ū ⊆ V and let [a, b] ∈ �(k) such that for each x ∈ X, f(x)
intersects the walls of the box [a, b]×Rd+n−k transversally. Finally, let 0 < ε < 1

4
be a real number. Then there is a homotopy h : X × [0, 1]→ Ψd(Rd+n) such that
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1. h(x, 0) = f(x),

2. h(x, 1) is orthogonal to the walls of the box [a, b]× Rd+n−k,

3. h(x, t) = f(x) for all x ∈ X \ V

4. For all x ∈ X, h is a constant homotopy on the intersection f(x) ∩(
(Rn+d \ [a− 2ε, b+ 2ε]) ∪ int([a+ 2ε, b− 2ε])

)
.

Proof. Apply Lemma 3.5.18 to each ai and bi for all i ∈ {1, ..., k}. Since ε < 1
4 ,

the homotopies are orthogonal to one another and thus commute, so the resulting
composed homotopy is well defined and independent of the order of application.

Remark 3.5.21. The above observations give rise to a comparison between the
topological poset models for the cobordism category.

Lemma 3.5.22. The inclusion D⊥kd,n ↪→ Dkd,n induces a levelwise weak equivalence
of simplicial spaces ND⊥kd,n ' Dkd,n on the level of their k-fold nerves.

Theorem 3.5.23 ([BM]). We consider Dk
d,n as a constant k-fold simplicial space.

There is then a forgetful map NDkd,n → Dk
d,n given by discarding the data of

transversal planes. This map is a levelwise weak homotopy equivalence.

In [BM], Bökstedt-Madsen prove this result as a corollary of a more general
theorem, using their machinery of abstract transversality.

Remark 3.5.24. The following lemma follows from the definition of the topolo-
gies in the previous sections. The proof makes heavy use of model categorical
techniques. In order to give a satisfying proof, we would have to go through the
necessary background material on model categories, for which we do not have
space or time. Rather than give an unsatisfying half-proof, we have opted to leave
it as is.

Lemma 3.5.25. With the topologies of the previous sections, there are continuous
closed inclusions Ckd,n → Ckd,n+1 giving rise to an isomorphism of topological
categories

colimn→∞ Ckd,n ' Ckd
This induces a homotopy equivalence of classifying spaces

BCkd ' colimn→∞BCkd,n
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3.6 The nerve of the cobordism multicategory

Let (W, [x, y]) ∈ Ckd,n be a k-morphism, i.eW ⊆ [x, y]×Rd−k+n, and let U ⊂ Rd+n
k

be a tubular neighborhood of W as per Definition 3.3.15. The Pontrjagin-Thom
collapse map associated to U gives a map

[x, y]+ ∧ Sd−k+n → Th(U⊥d,n)

whose adjoint map is
[x, y]→ Ωd−k+nTh(U⊥d,n)

It is possible to make this into a functor of strict k-fold categories Ckd,n →
P k(Ωd−k+nTh(U⊥d,n)), where P k(−) denoted the k-fold unreduced Moore path cat-
egory, see Example 1.6. There is a homotopy equivalenceBΠk(Ωd−k+nTh(U⊥d,n)) '
Ωd−k+nTh(U⊥d,n), so we get a map

α : BCkd,n → Ωd+n−kTh(U⊥d,n)

The main theorem of [BM] states that this map is a weak homotopy equivalence.

Theorem 3.6.1 ([BM]). Let γ⊥d,n denote the universal normal bundle on G(d, n).
Then

BCkd,n ' Ωd+n−kTh(γ⊥d,n)

Corollary 3.6.2. When n→∞, the classifying space of the infinite codimension
cobordism k-fold category is

BCkd ' colimn→∞Ωd+n−kTh(γ⊥d,n) ' Ω∞−kMT(d)

Corollary 3.6.3. We have ΩBCkd,n ' BC
k−1
d,n , hence {BCkd}∞k=1 is an Ω-spectrum

model for MT(d)

Definition 3.6.4. Denote by Cob〈k〉(d) the ordinary topological category obtained
from Ckd by restricting to those a ∈ �k for which ai = 1 for all 2 ≤ i ≤ k.

Theorem 3.6.5 ([Gen08], Main Theorem 4.5). There is a homotopy equivalence

BCob〈k〉(d) ' Ω∞−1
〈k〉 MT (d)〈k〉
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3.6.1 Outline of the proof of Theorem 3.6.1

In this section, we will give an outline of the proof of Theorem 3.6.1. The techniques
involved are due to Bökstedt-Madsen in [BM] and Galatius-Randall-Williams in
[GRW10]. The proof proceeds in the following steps:

1. a weak homotopy equivalence BCkd,n → Dk
d,n

2. a weak homotopy equivalence Dk
d,n → Ωd+n−kΨd(Rn+d)

3. a weak homotopy equivalence Th(γ⊥(d, n))→ Ψd(Rn+d)

Lemma 3.6.6. There is a weak homotopy equivalence

BCkd,n → Dk
d,n

Proof. Recall that an element of NCkd,n is a grid of cobordisms. We can view
this as a single cobordism W embedded into a k-dimensional grid of boxes in
Rn+d intersecting W transversally, even orthogonally. Similarly an element of
ND⊥kd,n can be seen as an element W of Dk

d,n along with a k-dimensional grid
of embedded planes intersecting W transversally, even orthogonally. We can
construct an embedding of NCkd,n into ND⊥kd,n by adjoining an open collar as in
3.2.10 and extending it to infinity. Now, D⊥kd,n contracts onto the image of this
inclusion. The idea here is to push everything outside of the grid of transverse
planes to infinity. We can accomplish this by a homotopy φt(a, b) : R→ R defined
as follows. Let s = t

1−t . We then define

φt(a, b)(x) =



x , x ∈ [a, b]
a , x ∈ (a− s, a)
b , x ∈ (b, b+ s)
x+ s , x ∈ (−∞, a− s]
x− s , x ∈ [b+ s,∞)

A box [a, b] ∈ �(k) defines a homotopy φt([a, b]) : Rk → Rk given by

(x1, ..., xk) 7→ (φt(a1, b1)(x1), ..., φt(ak, bk)(xk))

and this defines a homotopy φt : ND⊥kd,n → D⊥kd,n for which φ0 = id and the image
of φ1 equals the image of NCkd,n in ND⊥kd,n. By Lemma 3.5.18 and Theorem 3.5.23
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we now get a sequence of weak homotopy equivalences

BCkd,n → BD⊥kd,n → BDkd,n → Dk
d,n

Theorem 3.6.7. There is a weak homotopy equivalence

Dk
d,n → Ωd+n−kΨd(Rn+d)

Proof. We define a map R×Dk
d,n → Dk+1

d,n given by (t,M) 7→M − t · ek+1, where
ek+1 denotes the (k + 1)st standard basis vector of Rk+1. As t→ ±∞, the image
of this map approaches the basepoint ∅, so it extends to a map S1 ∧Dk

d,n → Dk
d,n.

Then the adjoint Dk
d,n → ΩDk+1

d,n is a homotopy equivalence ([GRW10, Theorem
3.13.]).

Theorem 3.6.8. There is a weak homotopy equivalence

Th(γ⊥(d, n))→ Ψd(Rn+d)

Proof. The map which witnesses this weak homotopy equivalence is constructed
as follows. Recall first that Dn+d

d,n = Ψd(Rn+d). If (V, v) ∈ γ⊥(d, n), we send this
pair to the translated linear manifold V − v ∈ Ψd(Rn+d). As |v| → ∞, the value
of this assignment approaches the empty manifold, so the map extends to a based
map φ : Th(γ⊥(d, n))→ Ψd(Rn+d).

Let Ψo ⊂ Ψd(Rn+d) be the subspace of manifolds containing the origin. There
is a map S : [0, 1]×Ψo → Ψo given by

S(t,M) =
{

M · 1
1−t , t < 1

T0M t = 1

This defines a deformation retraction of Ψo onto the subspace L ' G(d, n) ⊂ Ψo

of linear manifolds intersecting the origin. Now consider the vector bundle
p : N → Ψo whose fiber at M ∈ Ψo is the fiber of the normal bundle of M
at the origin, p−1(M) = ν−1

M (0). We then obtain a map e : N → Ψd(Rn+d)
sending a pair (M,v) to the translated manifold M − v. This map extends
to an open set about the zero-section, giving an embedding onto the subspace
U ⊆ Ψd(Rn+d) of manifolds with a unique point closest to the origin. Since the
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elements of the complement C := Ψd(Rn+d) \ U in particular do not contain
the origin, we can push these manifolds off to infinity by applying the isotopy
− · 1

1−t : [0, 1) × Rn+d → Rn+d. Extending this to a map [0, 1] × C → C for
which (1,M) = ∅, we get that C is contractible. Now, since U is the image of
an embedding of an open set around the zero section of N , the inclusion of the
complement e−1(C)→ N is a cofibration. Furthermore, the inclusion of C into
Ψd(Rn+d) is the pushout of the inclusion e−1(C)→ N , so it is itself a cofibration.
This gives rise to a homotopy equivalence

Th(p) ' N/e−1(C) ' Ψd(Rn+d)/C ' Ψd(Rn+d)

The observation that Th(p) ' Th(γ⊥(d, n)) finishes the proof.





Chapter4Manifolds with singularities

In this chapter we will be looking at manifolds with Baas-Sullivan singularities.
These objects were first studied by Sullivan in [Sul67a] and [Sul67b], and their
cobordism theory has been studied by Baas in [Baa73] and Perlmutter in [Perb]
and [Pera].

4.1 Manifolds with a single singularity type

Definition 4.1.1. Let P be a closed p-dimensional manifold. A closed n-
dimensional P -manifold is a topological space Ā which is constructed as the
union of an n-dimensional manifold A with ∂A = β1A × P , and the space
A1 × CP , where CP denotes the unreduced cone. To be precise, Ā is given by
the pushout

Ā = A ∪β1A×P β1A× CP

Remark 4.1.2. Unravelling the definition, we see that Ā has two types of points;
those at which Ā locally look like Rn are called smooth points, and those at which
Ā locally looks like Rn−p−1 × CP are called singular points.

Example 4.1. Let M be the topological space given by an n-sphere with q

disctinct points {x1, ..., xp} ⊂ Sn identified, M = Sn/{x1, ..., xp}. This space is
a closed n-dimensional P -manifold with P = Zq × Sn−1. Let A be Sn with the
interiors of q closed disks removed, then ∂A = Zq×Sn−1, andM is homeomorphic
to A ∪Zq×Sn−1 C(Zq × Sn−1). The below figure shows the situation for q = 2 and
n = 2.

81
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Example 4.2. LetM and N be closed n-dimensional submanifolds of RN which
intersect in a nonempty (n− 1)-dimensional submanifold Q. Let S be the union
of tubular neighborhoods of Q in M and N , and denote by S̄ the closure of S in
M ∪N . Then S̄ ∼= Q × CZ4 and M ∪N is a closed n-dimensional P -manifold
with P = Z4, given by

M ∪N = (M ∪N) \ S ∪Q×Z4 Q× CZ4

As an example, consider two copies of Sn intersecting transversally and
nontrivially in Rn+1. Then this intersection can be written as

Sn ∪ Sn = Dn × Z4 ∪Sn−1×Z4 S
n−1 × CZ4

Remark 4.1.3. Due to the uniform structure of the singularities, it is possible to
ignore the cone part A1×CP of a manifoldM = A∪A1×PA1×CP with singularity
type P , and look instead at manifolds A equipped with a diffeomorphism β :
∂A

∼→ Ā ∪A1 × P .

The following figure illustrates the situation. The foremost line is the subset
of singular points, and after removing the cone [0, 1]× C(Z2), we are left with a
disk equipped with a partition of its boundary into two sets of line segments, one
of which comprises the singular boundary.
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Remark 4.1.4. By relaxing the requirement ∂A = A1 × P to an inclusion
A1 × P ⊆ ∂A, we obtain a notion of not necessarily closed P -manifolds. Writing
∂A = δA ∪ A1 × P , the association A 7→ δA is a natural choice for a boundary
operation for P -manifolds. As in the story for manifolds with tangential structure,
we would like to take δA itself to be a P -manifold. When we do this, the most
natural formalism this notion of manifolds with singularities fits into is the setting
of 〈k〉-manifolds we introduced in the previous chapter. Definition 4.1.5 makes
these ideas precise.

Definition 4.1.5. Let P be a closed manifold. A manifold of singularity type P
is given by a 〈2〉-manifold A and a 〈1〉-manifold β1A equipped with isomorphisms

φ1 : ∂1A
∼→ β1A× P

φ0 : ∂1∂0A
∼→ ∂0(β1A)× P

Furthermore, we require that these diffeomorphisms are compatible, in the sense
that the following diagram commutes:

∂0∂1A ∂0(β1A× P )

∂1∂0A ∂0β1A× P

∂0φ1

idid

φ0

where we have used the equality ∂0∂1A = ∂0A ∩ ∂1A = ∂1∂0A. In this way, the
assignment A 7→ β1A is a natural transformation from P -manifolds to manifolds
with boundary, so we may denote the above data simply by A alone, leaving β1A

and the isomorphisms φ0 and φ1 implicit in the notation. Furthermore, we say a
P -manifold A is closed if ∂0A = ∅. In particular, for any P -manifold A, ∂0A is a
closed P -manifold.
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Definition 4.1.6. The above definition readily generalizes to 〈k〉-manifolds with
singularity type S = {P1, ..., Pk}, where each Pi is a closed manifold, and we allow
the Pi to be trivial, i.e. the point ∗. Such an S-manifold M is given by the data
of, for each a ∈ 2k, an 〈ω(a)〉-manifold M〈a〉, such that for each 0 ≤ i ≤ k with
ai = 1, there is an isomorphism of 〈ω(a)− 1〉-manifolds

β(a, i) : ∂iM〈a〉 'M〈a− ei〉 × Pi

where ei is the k-tuple with all zeroes except for a 1 in the i’th position. We
require that, whenever ai = aj = 1, the following diagram commutes.

∂j∂iM〈a〉 ∂jM〈a− ei〉 × P M〈a− ei − ej〉 × Pj × Pi

∂jM〈a〉 ∩ ∂iM〈a〉

∂i∂jM〈a〉 ∂iM〈a− ej〉 × Pj M〈a− ei − ej〉 × Pi × Pj

β(a, i) β(a− ei, j)× id

id

id
β(a, j) β(a− ej , i)× id

id× T

Remark 4.1.7. Although we have given the full definition of a manifold with
multiple singularities (our definition is a very slight generalization of the one given
in [Baa73], by omitting the requirement P1 = ∗) we want to focus on the case
Pi = ∗ for all 0 ≤ i ≤ k − 1 (i.e. S = {∗, ..., ∗, P}. However, everything we say in
the rest of the chapter admits a suitable generalization to arbitrary singularity
types.

4.1.1 Mapping spaces

Definition 4.1.8. Let M = (A,B, β) and N = (A′, B′, β′) be P -manifolds. A
P -morphism f : M → N is a pair of smooth maps f1 : A→ A′ and f0 : B → B′

such that the following diagram commutes.
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∂1A ∂1A
′

B × P B′ × P

∂1f1

β′1β1

f0 × idP

Definition 4.1.9. Let M and N be P -manifolds. The set C∞P (M,N) of P -
morphisms M → N is a subset of the space C∞〈2〉(M,N) of morphisms of 〈2〉-
manifolds. We give C∞P (M,N) the subspace topology.

Definition 4.1.10. A P -morphism M → N is a P -diffeomorphism if it is a
diffeomorphism considered as a morphism of 〈2〉-manifolds. We denote the
space of P -diffeomorphisms by DiffP (M,N). Also, we denote the space of self-
diffeomorphisms of a P -manifold M by DiffP (M) := DiffP (M,M). This is a
topological group with the product given by composition.

Definition 4.1.11. Consider a pair of n-dimensional P -manifold, say M =
(A,A1) = A ∪A1×P A1 × CP and N = (B,B1) = B ∪B1×P B1 × CP . We define
their disjoint union to be

M tN = (A tB) ∪(A1tB1)×P (A1 tB1)× CP

In other words, M tN = (A tB,A1 tB1).

Definition 4.1.12. Let M = (A,A1) and N = (B,B1) be n-dimensional closed
P -manifolds in the sense of Definition 4.1.5. A P -cobordism from M to N is a
P -manifold W such that ∂0W = (−M) tN .

Remark 4.1.13. By the commutative diagram in Definition 4.1.5, it follows that
if M = (A,A1) and N = (B,B1) are n-dimensional closed P -manifolds and W is
a P -cobordism from M to N , then ∂1W ∼= W1 × P is a cobordism from A1 × P
to B1 × P .

Remark 4.1.14. We would like to impose slightly more structure on our P -
cobordisms in order to make them more susceptible to analysis by homotopy
theoretical methods. Namely we would like to require that the cobordismW1×P :
A1 × P → B1 × P in Remark 4.1.13 arises as the product of a cobordism
W1 : A1 → B1 and the manifold P , thus eliminating the possibility of twisting in
P .



86 4. MANIFOLDS WITH SINGULARITIES

Definition 4.1.15. A P -cobordism whose singular boundary arises as in Remark
4.1.14 is called a regular P -cobordism.

Example 4.3. The following is an example of a regular P -cobordism.

The following is an example of a P -manifold which is not a regular P -cobordism,
as the twist cobordism T : Z2 → Z2 is not a product of Z2 with a cobordism
∗ → ∗.

Definition 4.1.16. Let M be an m-dimensional P -manifold. Fix once and for
all an embedding iP : P → Rp+l for some l ≥ 0. We define the space of neat
P -embeddings M ↪→ Rn+m

2 as the subspace EmbP (M,Rn+m
2 ) ⊂ Emb(M,Rn+m

2 )
of the space of neat embeddings such that for each e ∈ EmbP (M,Rn+m

2 ), the
restriction to ∂1M ' β1M × P is equal to e|∂1M = e1 × iP for some embedding
e1 : β1M → Rn+m−p−l−1.
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Remark 4.1.17. LetM be anm-dimensional P -manifold. Then there is a natural
free right action of DiffP (M) on EmbP (M,Rn+m

2 ) given by precomposition. For
large n, EmbP (M,Rn+m

2 ) becomes contractible, so the moduli space

colimn→∞ EmbP (M,Rn+m
2 )/DiffP (M) := B∞(M)

is homotopy equivalent to BDiffP (M).

Remark 4.1.18. Definition 4.1.16 holds also for embedded cobordisms, that is,
neat embeddings into [x, y]× Rn+m−2 for x, y ∈ R2 with x ≤ y. In this case we
have a free action on EmbP (M, [x, y]×Rn+m−2) by the subgroup DiffP (M ; ∂�2) ⊆
DiffP (M) of P -diffeomorphisms fixing the boundary decompositions. This is a
P -singular adaptation of the situation discussed in Section 3.5.1. The moduli
space

colimn→∞ EmbP (M, [x, y]× Rn+m−2)/DiffP (M ; ∂�2) := B∞(M ;�2)

now becomes homotopy equivalent to BDiffP (M ; ∂�2).

4.2 Higher categorical structure from singularities

In this section we will consider manifolds with singularity of type P . We will
explore the different ways in which such manifolds assemble into k-fold categories.
The question of how the introduction of singularities introduces a new categorical
level, either in terms of k-categories or k-fold categories, is a question which has
been emphasized by Nils Baas in private communication. Although determining
what the singularities add to the equation is a very interesting problem, we restrict
ourselves in the following to the structure inherited on P -manifolds from their
corner structure.
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Definition 4.2.1. Let P be a closed p-dimensional manifold. We fix an embedding
iP : P → Rp+m. We define the k-fold category of P -cobordisms Ck−1

d,n (P ) for
d ≥ p+ 1 in a fashion similar to how we defined Ckd , i.e. an a-morphism for a ∈ 2k
is given by a neat P -embedding Md → [x, y]× Rd+n−ω(a) where [x, y] ∈ �(k)(a).
That is, we assign the singular boundary to the last coordinate, such that skM =
βM × iP (P ) ⊆ sk([x, y])×Rn+d−ω(a)−m−p×Rm+p, such that iP (P ) ⊆ Rm+p and
βM ⊆ sk([x, y])× Rn+d−ω(a)−m−p. We topologize these as a subspace of Ckd,n.

Definition 4.2.2. We can extract a (k − 1)-fold category which we denote
Cobk−1

d,n (P ) from Ck−1
d,n (P ) by restricting to composition in the non-singular (i.e.

the first (k − 1)) directions.

Remark 4.2.3. It follows from Definition 4.2.1 that the (1, 1)-morphisms of
C1
d,n(P ) are d-dimensional P -manifolds in the sense of Definition 4.1.5. Further-

more, the (1, 0)-morphisms are closed (d− 1)-dimensional P -manifolds.

Remark 4.2.4. Notice that if we remove the requirement that our P -cobordisms
are regular, then we can define the 2-fold category of twisted P -cobordisms as the
full subcategory of C2

d for which each horizontal morphism is of the form V × P
but whose embedding does not need to be constant on the factor P . In particular,
there is an action on the set of such cobordisms by the H-space ΩDiff(P ).

4.2.1 The nerve of CobP (d)

Remark 4.2.5. A consequence of Theorem 3.6.1 is that a compact d-dimensional
submanifold M ⊆ Rd+n corresponds up to homotopy to a map fM : Sn+d →
Th(γ⊥(d, n)). Furthermore, the empty manifold corresponds to the fixed map at
the basepoint. It follows then that the map fM is nullhomotopic if and only if the
manifold M is nullcobordant. One perspective on the theory of manifolds with
singularities is that we are taking a prescribed p-dimensional compact manifold
P and forcing it to be nullcobordant, by adding cones N × CP for all d − p-
dimensional manifolds N . The corresponding procedure in the thom space is to
take the homotopy cofiber of a certain composition of maps which we describe
below.

In [Perb], Perlmutter defines the spectrum MTP (d) as a generalization of the
Madsen-Tillmann spectrum MT (d) in the following way. From the embedding
iP : P → Rp+m in 4.1.16, we obtain the Pontryagin-Thom collapse map cP :
Sp+m → Th(γ⊥(p,m)). There is a morphism of vector bundles



4.2. HIGHER CATEGORICAL STRUCTURE FROM SINGULARITIES 89

γ⊥(d− p, n−m)× γ⊥(p,m) γ⊥(d, n)

G(d− p, n−m)×G(p,m) G(d, n)

µ̂

µ

where µ̂((V, v), (U, u)) = (V ×U, (v, u)), which gives rise to a map of Thom spaces

Th(µ̂) : Th(γ⊥(d− p, n−m)) ∧ Th(γ⊥(p,m))→ Th(γ⊥(d, n))

Precomposing this map with cP , we obtain a map

τd,n = Th(µ̂) ◦ (id ∧ cP ) : Th(γ⊥(d− p, n−m)) ∧ Sp+m → Th(γ⊥(d, n)) (4.1)

Since Th(γ⊥(d− p, n−m)) ∧ Sp+m ⊆ Th(γ⊥(d, n) defines a cofinal subspectrum,
this map extends to a morphism of spectra

τP : MT (d− p)→MT (d)

The embedding G(d, n) → G(d + 1, n) also gives rise to a morphism of spectra
ĵd : Σ−1MT (d)→MT (d+ 1). The cofiber of the composition

Σ−1MT (d− p) Σ−1MT (d) MT (d+ 1)
Σ−1τP ĵd

is called MTP (d+ 1).

Theorem 4.2.6 ([Perb], Theorem 1.1). There is a weak homotopy equivalence

BCobP (d+ 1) ' Ω∞−1MTP (d+ 1)

4.2.2 A poset model for Cobk
d,n(P )

Goal 4.2.7. Just like Rd+n is the natural background space for d-dimensional
manifolds without boundary, the natural background space for d-dimensional
manifolds M with boundary is the space Rd+n−1×R+. In this section we define a
moduli space of manifolds with Baas-Sullivan singularities of type P and construct
a poset model for Cobkd,n(P ), with a view toward a generalization of Theorem
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4.2.6 in line with Bökstedt-Madsen’s generalization (Theorem 3.6.1) of Theorem
2.5.15. Of course, we may swap Rd+n

1 with Rd+n
k in the case of d-dimensional 〈k〉-

manifolds, and in this way the material which follows admits a natural extension
to manifolds with more than one singularity type, although we will only cover
here the case of a single singularity type. Due to constraints on time, we have had
to leave many results as conjectures, although we believe most of them should
follow in a relatively straightforward manner from the proofs of the analogous
results in the previous chapter.

Definition 4.2.8. We fix once and for all a p-dimensional closed compact sub-
manifold P ⊆ (−1, 1)p+m, and let d > p and n ≥ m. Let Ψd,n(P ) be the set
of d-dimensional submanifolds M ⊆ Rd+n−1 × R+ such that M is closed as a
subset, and ∂M ⊆ Rd+n−1×{0}. The latter factor splits as Rd+n−p−m−1×Rp+m,
and we require that ∂M = β1M × P for a β1M ∈ Ψd−p−1(Rd+n−m−p−1). By
adjoining an open collar [0,−∞)× ∂M , we can topologize Ψd,n(P ) as a subspace
of Ψd(Rd+n).

Definition 4.2.9. For 0 ≤ k ≤ n+ d−m− p− 1, let Dk
d,n(P ) be the subspace of

Ψd,n(P ) consisting of those manifolds M such that M ⊆ Rk × (−1, 1)n+d−k−1 ×
[0, 1). As before, the empty manifold serves as a basepoint for both Ψd,n(P ) and
Dk
d,n(P ).

Lemma 4.2.10. Let [a, b] ∈ �(k) and denote by Ua ⊆ Dk
d,n(P ) the subset of

P -manifolds M such that M intersects the walls of [a, b] transversally. Then Ua
is a open subset.

Proof. The openness of Ua follows in the same manner as in Corollary 3.5.20.

Conjecture 4.2.11. There is a weak homotopy equivalence Dk
d,n(P ) ' ΩDk+1

d,n

Remark 4.2.12. We expect Conjecture 4.2.11 to be an easy consequence of the
proof of [GRW10, Theorem 3.13.], but time has not allowed a detailed analysis.

Definition 4.2.13. Let Dkd,n(P ) be the k-fold topological poset whose space of
top level morphisms is given by the subspace Dkd,n(P ) ⊆ �(k)×Dk

d,n(P ) consisting
of those pairs ([a, b],M) for which M intersects the walls of [a, b] transversally.
Two such pairs ([x, y],M) and ([x′, y′],M ′) are composable in the i-direction if
and only if xj = x′j and yj = y′j for all j 6= i and yi = x′i, i.e. if the boxes are
composable, and M = M ′. In that case, the composition is given by ([x′′, y′′],M),
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where x′′j = xj and y′′j = yj for all j. This defines a k-fold topological poset
structure.

Definition 4.2.14. We also define the topological poset D⊥kd,n(P ) as the sub-poset
of Dkd,n(P ) consisting of those ([a, b],M) for which M intersects the walls of [a, b]
orthogonally.

Lemma 4.2.15. The inclusion D⊥kd,n(P ) ↪→ Dkd,n(P ) induces a weak equivalence
of simplicial spaces ND⊥kd,n(P )→ NDkd,n(P ).

Proof. Let M ∈ Dkd,n(P ) such that M intersects the walls of the box [x, y]
transversally. The homotopies we defined in Lemma 3.5.18 and Corollary 3.5.20
fix the walls of the box [x, y]. We can extend this homotopy to the box [(x, 0), (y, 2)]
where the last coordinate is along the factor [0, 1). can be applied along the first
n+ d−m− p− 1 coordinates of Rn+d−1. We thus obtain the result in the same
way as for Lemma 3.5.22.

Conjecture 4.2.16. There is a weak homotopy equivalence BDd,n(P ) ' Dd,n(P ).

Conjecture 4.2.17. The inclusion

NCobkd,n(P )→ ND⊥kd,n(P )

defined by attaching infinite open collars gives rise to a weak homotopy equivalence

BCobkd,n(P ) ' BD⊥kd,n(P )

Conjecture 4.2.18. There is a weak homotopy equivalence

BDkd,n(P ) ' Ωn+d−kCτd,n

where Cτd,n is the homotopy cofiber of the map defined in (4.1).

Remark 4.2.19. When k = 1 and n = ∞, and assuming Conjecture 4.2.17,
we regain Perlmutter’s theorem (Theorem 4.2.6). This conjecture generalizes
Perlmutter’s theorem by drawing a comparison with the Bökstedt-Madsen theorem
(Theorem 3.6.1) and Galatius-Madsen-Tillmann-Weiss theorem (the case when
k = 1 and n =∞).
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4.2.3 The nerve of Ck
d,n(P )

Remark 4.2.20. We can extend the definition of Dk
d,n(P ) and Dkd,n(P ) to obtain

topological (k + 1)-fold poset models for the full (k + 1)-fold category Ckd,n(P ), as
follows.

Definition 4.2.21. Define the poset model of Ckd,n(P ) as the (k+1)-fold topologi-
cal poset D̄kd,n(P ) whose top level morphisms are pairs ([x, y],M) ∈ �(k+1)×Rn+d

such that M is closed as a subset and has empty boundary, and M inter-
sects the walls of [x, y] transversally. We further require that the intersection
(sk+1([x, y]) ∪ tk+1([x, y])) ∩M split as

βM × P ⊆ (sk+1([x, y]) ∪ tk+1([x, y]))× Rn+d−k−p−m−1 × Rp+m

where βM ⊆ (sk+1([x, y]) ∪ tk+1([x, y]))× Rn+d−k−p−m−1 and P ⊆ Rp+m. Com-
position is defined by glueing boxes as for Dkd,n(P ).

Remark 4.2.22. The chief problem for calculating BCkd,n(P ) is that it is not
obvious what the homotopy type of BD̄k

d,n(P ) is. One of the nice properties
of Dkd,n(P ) is that every d-dimensional submanifold M ∈ Dk

d,n(P ) appears as a
top-level morphism. This is not the case for D̄k

d,n(P ). Indeed, we cannot apply
[BM, Theorem 1.8] unless we restrict to a specific subspace of Dk

d,n. It is also not
clear what, if any, alterations are necessary on the thom space of the universal
bundle to account for this modification.

Although we do not treat this problem in detail here, it is an interesting
problem which the author wishes to return to in the future, and may serve as a
signpost for future development in the field.



References

[Abr96] Lowell Abrams. Two-dimensional topological quantum field theories and
frobenius algebras, 1996.

[AR94] J Adámek and J. Rosický. Locally presentable and accessible categories, 1994.

[B6́7] J Bénabou. Introduction to bicategories. In Reports of the Midwest Category
Seminar, Springer Lecture Notes in Mathematics. Springer-Verlag, 1967.

[Baa73] Nils Andreas Baas. On bordism theory of manifolds with singularities. Math.
Scand., 33:279–302, 1973.

[Baa10] Nils Andreas Baas. A note on cobordism categories, 2010.

[BM] M. Bökstedt and Ib Madsen. The cobordism category and waldhausen’s
k-theory.

[Bor94] Francis Borceux. Handbook of Categorical Algebra: Volume 1, Basic Category
Theory. Cambridge University Press, 1994.

[Ehr63] Charles Ehresmann. Catégories structurées. Annales scientifiques de l’École
Normale Supérieure, 80:349–426, 1963.

[Gen08] Josh Genauer. Cobordism categories of manifolds with corners, 2008.

[GMTW09] Søren Galatius, Ib Madsen, Ulrike Tillmann, and Michael Weiss. The homotopy
type of the cobordism category. Acta Math., 202(2):195–239, 2009.

[GRW10] Søren Galatius and Oscar Randal-Williams. Monoids of moduli spaces of
manifolds. Geom. Topol., (3):1243–1302, 2010.

[Hat01] Allen Hatcher. Algebraic Topology. Cambridge University Press, 2001.

[Hir76] Morris W. Hirsch. Differential Topology. Springer Verlag, 1976.

93



94 REFERENCES

[JT91] A. Joyal and M. Tierney. Strong stacks and classifying spaces, 1991.

[Lau00] Gerd Laures. On cobordism of manifolds with corners. Trans. Amer. Math.
Soc., 352:5667–5688, 2000.

[Lod82] Jean-Louis Loday. Spaces with finitely many non-trivial homotopy groups. J.
Pure. Appl. Algebra, 24:179–202, 1982.

[Lur] Jacob Lurie. On the classification of topological field theories.

[Lur09] Jacob Lurie. Higher Topos Theory. Number 170 in Annals of Mathematics
Studies. Princeton University Press, 2009.

[MW07] IB Madsen and Michael Weiss. The stable moduli space of riemann surfaces:
Mumford’s conjecture. Annals of Mathematics, 165:843–941, 2007.

[Pera] Nathan Perlmutter. Cobordism categories of manifolds with baas-sullivan
singularities, part 2.

[Perb] Nathan Perlmutter. Cobordism category of manifolds with baas-sullivan
singularities, part i.

[Rud98] Yuli B. Rudyak. On Thom Spectra, Orientability, and Cobordism. Springer
Momographs in Mathematics. Springer-Verlag, 1998.

[Sim11] Carlos Simpson. Homotopy Theory of Higher Categories: From Segal Cate-
gories to n-Categories. Cambridge University Press, 2011.

[Sta12] Andrew Stacey. Embedding of Smooth Manifolds. http://ncatlab.org/nlab/
show/embedding+of+smooth+manifolds, 2012. [Online; revision February 21,
2012 23:27:47].

[Sul67a] D. Sullivan. Geometric Topology Seminar Notes. Princeton University, 1967.

[Sul67b] D. Sullivan. The hauptvermutung for manifolds. Bull. Amer. Math. Soc.,
73:598–600, 1967.

[Tho54] R. Thom. Quelques propriétés globales des variétés différentiables. Com-
ment.Math.Helv., 28:17–86, 1954.

http://ncatlab.org/nlab/show/embedding+of+smooth+manifolds
http://ncatlab.org/nlab/show/embedding+of+smooth+manifolds

	Higher categories
	Strict n-categories
	Coherence conditions
	k-tuple categories
	The 2-category Cat(A)
	strict k-tuple categories
	The nerve of a strict k-tuple category
	Obtaining k-categories from strict k-fold categories


	Introduction to cobordism
	Structured manifolds
	Remarks on embeddings of smooth manifolds
	Rudiments of spectra
	Categories of cobordisms
	Contracting diffeomorphism classes
	Diffeomorphisms as higher structure
	Diffeomorphism spaces

	Topological cobordism categories

	Manifolds with corners
	Introduction
	"426830A k"526930B -manifolds
	Vector bundles on "426830A k"526930B -manifolds
	"426830A k"526930B -spectra
	Cobordism categories of "426830A k"526930B -manifolds
	A topology on Ckd
	Models for Ckd,n

	The nerve of the cobordism multicategory
	Outline of the proof of Theorem 3.6.1


	Manifolds with singularities
	Manifolds with a single singularity type
	Mapping spaces

	Higher categorical structure from singularities
	The nerve of CobP(d)
	A poset model for Cobkd,n(P)
	The nerve of Ckd,n(P)


	References

