
Development of an immersed boundary
method for simulating contaminated fluid
interfaces in two-phase flow

Morten Olsen Lysgaard

Master of Science in Physics and Mathematics

Supervisor: Helge Holden, MATH
Co-supervisor: Åsmund Ervik, EPT

Bernhard Müller, EPT
Svend Tollak Munkejord, SINTEF

Department of Mathematical Sciences

Submission date: June 2015

Norwegian University of Science and Technology

i

Abstract

This thesis covers the theory and implementation, verification and vali-
dation of an immersed boundary method for simulating the effect of an
elastic membrane covering water drops in crude oil. First an introduc-
tion to incompressible two phase flow is given. Surface tension as well
as elastic effects on the interface are also outlined. The discretization of
the Navier-Stokes equations in space and time as well as the projection
method are discussed. The penalization method for simulating obstacles
in the computational domain is covered, as well as the level-set method
for interface capturing, and the ghost-fluid method for handling the in-
terface discontinuities. A thorough derivation of the immersed boundary
method is done, and the details of the implementation is covered. A tech-
nique for coupling the immersed boundary method and the ghost fluid
method is presented, as well as a final overview connecting together all
the techniques used in the simulations into one coherent method.

Numerical evidence showing that the advection of the immersed bound-
ary method is second order accurate in space is presented as well as nu-
merical results showing that the immersed boundary method in some
cases handles advection of the interface in a more accurate way than level-
set. Numerical results comparing the immersed boundary method with
the ghost-fluid method using the level-set method is presented, show-
ing convergence of the two methods under grid refinement. Numerical
comparison between the immersed boundary method and the ghost-fluid
method using the level-set method for density and viscosity jumps is done
showing consistent results. Simulations of drops with elastic membrane
are performed, showing how the immersed boundary method enables the
simulation of a larger set of physics than the previous method. The effect
of the elastic membrane on a drop stretched in an electric field is simulated.
Finally, crumpling of a drop interface is shown as mass is drained from

the drop, similar to results seen in lab experiments [45].

iii

Sammendrag

Denne mastergraden omhandler teori, implementasjon, verifikasjon og
validering av en immersed boundary metode for å simulere effekten av
en elastisk membran som dekker vanndråper i råolje. Først gis en in-
troduksjon til inkompressibel strømmning, overflatespenning og hvor-
dan elastiske krefter påvirker overflaten. Så forklares diskertiseringen av
Navier-Stokes likninger i rom og tid sammen med projeksjons metoder.
Penalization metoden for å simulere solide obstruksjoner i domenet, level-
set metoden for representasjon av grenseflaten og ghost-fluid metoden
for å håndtere grenseflatediskontinuitetene blir dekket. En grundig gjen-
nomgang av immersed boundary metoden blir gjort og implementasjons-
detaljer blir dekket. En teknikk for å koble sammen immersed boundary
metoden og ghost-fluid metoden blir beskrevet. Til slutt gis en oversikt
som kobler alle de forskjellige teknikkene sammen til en helhetlig metode.

Numerisk bevis som viser at adveksjon med immersed boundary meto-
den er andre orden i rom presenteres, i tillegg til resultater som viser at
immersed boundary metoden noen ganger håndterer adveksjon på en
mer korrekt måte enn level-set metoden. Sammenlikning av immersed
boundary metode og ghost-fluid metoden med level-set metoden blir
gjort. Disse viser at de to metodene konvergerer mot det samme resultatet
etterhvert som griddet forfines. De to metodene blir også sammenliknet i
simuleringer med tetthet og viskositetssprang hvor de viser seg at meto-
dene gir konsistente resultater. Simuleringer av dråper med elastiske
membraner blir gjort. Disse viser hvordan immersed boundary metoden
tillater å simulere ny fysikk som ikke var tilgjengelig i de tidligere meto-
dene. Effekten av den elastiske membranen på en dråpe i et eletrisk felt
blir simulert. Til slutt gjøres et forsøk på å reprodusere effekten observert
i [45]. Der viser labeksperimenter at dråper med elastiske membraner får
ruglete overflater når man tømmer innholdet i de med en pipette.

v

Preface

This thesis is submitted to the Norwegian University of Science and Tech-
nology (NTNU) as part of my master’s degree. It is the result of my work
during the spring semester 2015, formally at the Department of Mathe-
matical Sciences. The work has been carried out on the behalf of SINTEF
Energy Research where it has been a part of the Compact Separation by
Electrocoalescence project.

I would like to thank my supervisor, Mr. Åsmund Ervik, who gave me
the opportunity to work on the project, always was open for my ideas,
and who have been a true mentor for me. I want to thank Professor Helge
Holden who have been my supervisor at the Department of Mathematical
Sciences. I also want to thank my two co-supervisors, Dr. Svend Tollak
Munkejord who helped me trough some of the intricacies of the numerical
code and Professor Bernhard Müller for good advice in numerical methods
for computational fluid dynamics. I would like to thank all my supervisors
for meticulously proofreading my manuscript. Lastly I would like to thank
my girlfriend for her love and support, and for helping me to forget work
every once in a while.

vii

Contents

1. Introduction 1

2. Motivation 3

3. Governing equations 5
3.1. Navier-Stokes equations . 5
3.2. Interface forces . 7

3.2.1. Surface tension . 8
3.2.2. General tension . 11

3.3. Jump conditions . 14

4. Numerical methods 15
4.1. Discretization of the Navier-Stokes equations 15

4.1.1. Spatial Discretization 16
4.1.2. Chorin’s projection method 18
4.1.3. Time integration method 22
4.1.4. Penalization method 22
4.1.5. The level-set method 24
4.1.6. The ghost-fluid method 26

4.2. The immersed boundary method 28
4.2.1. Motivation . 28
4.2.2. Introduction . 31
4.2.3. Derivation . 32
4.2.4. Discretization of space 42
4.2.5. Physical identities 44
4.2.6. The delta function, δ∆ 46
4.2.7. Deriving surface tension for the immersed bound-

ary method . 48

Contents

4.2.8. Generalized viscoelastic interface for immersed bound-
ary method . 49

4.2.9. CFL condition . 50
4.2.10. Computing the level-set function from the immersed

boundary . 51
4.2.11. Implementation details 52

4.3. Cubic splines . 55
4.4. The proposed method . 66

5. Numerical results 69
5.1. Analytic advection . 69
5.2. Drop in vortex . 71
5.3. Zalesak’s disk . 75
5.4. Comparison with reference method 77

5.4.1. Immersed boundary-driven surface tension 78
5.4.2. Relaxing ellipse with density and viscosity jump . . 79
5.4.3. Effect of adding sharp forces on the diffuse interface 83

5.5. Simulations with general interface tension 85
5.5.1. Relaxing drop with elastic membrane 85
5.5.2. Drop stretched in electric field 89
5.5.3. Pipette draining a water drop in crude-oil 91

6. Concluding remarks 95
6.1. Conclusion . 95
6.2. Future work . 96

A. Coding conventions 107

B. Core immersed boundary and linear algebra routines developed 109

ix

Nomenclature

τ Unit tangent vector

F Lagrangian force density, section 4.2.3.

f The Eulerian force field.

Fi Force on Lagrangian point i, section 4.2.7

n Unit normal vector

u The Eulerian velocity field.

v Perturbation of velocity field, section 4.2.3.

x A point in the domain : x ∈ Ω.

X(q, r, s, t) Position of Lagrangian point (q, r, s) at time t.

∆ The Eulerian grid spacing. m

δ Delta function.

δ∆ Smooth approximation to the Dirac delta function.

Γ Parametrization of fluid interface.

κ Curvature of interface. 1/m

µ Dynamic viscosity of fluid. Pa · s

Ω The spatial domain.

∂Ω The boundary of the spatial domain.

Contents

ρ Eulerian density field, section 4.2.3.

ρi Density of fluid i. section 3.1

σ Surface tension between fluids. N/m

℘ Pertubation.

A Interface area, section 3.2.1.

E Energy functional, section 4.2.3.

E Potential energy in interface, section 3.2.1.

Ka Interface elasticity constant. N/m

M Lagrangian mass, section 4.2.3.

N Dimension of linear system, section 4.3

N Number of grid points.

p The pressure field.

S Fiber tension functional, section 3.2.1.

T Interface tension.

t Time. s

xi

List of Figures

2.0.1.Illustration of the molecular diversity present in crude oil.
Source [44]. 4

3.1.1.Two phases of fluid and their interface Γ. 7
3.2.1.Two fluids and their interface. The infinitesimally displaced

interface is dashed. The dashed normals, δζ are drawn and
together with the two interfaces they form in infinitesimal
displaced volume. The surface between the two interface
normals, d f , is the infinitesimal interface segment. The
displaced segment, which is dashed, is to the right. 10

4.1.1.A staggered grid cell. The pressure is located at the center
of each cell, the x-velocities at the eastern and western, and
y-velocities at the northern and southern faces. Here u and
v denote the velocity in the x and y direction, respectively. 17

4.2.1.Part of immersed boundary grid showing where different
values are located. 53

4.3.1.Convergence of curvature estimates for the first test case,
sin(x). 61

4.3.2.The function sin(1
x), solid line, and the curvature of κ(y(x)) =

κ(sin(1
x)), dashed line. Note the difference in scales for the

left and right y-axis. The function has a large curvature
around x ≈ 0.21. 62

4.3.3.Convergence of curvature estimates for the second test case,
sin(1

x). Figure 4.3.1 shows the function and its curvature. . 63

List of Figures

5.1.1.Initial and end configuration in analytical advection test.
The solid black line is the initial boundary, the arrows show
the velocity field, and the dashed ellipse shows the end
configuration after advecting the boundary. 70

5.1.2.Initial and end configuration in analytic advection test. The
solid black line is the initial boundary, the arrows show
the advection field, and the dashed ellipse shows the end
configuration after advecting the boundary. The error is
almost invisible. 72

5.1.3.Error for advection. L1, L2 and L∞ error of the error stem-
ming from interpolating a velocity field rather than using
the analytical expression when preforming time integra-
tion. The interpolation is second order after time integra-
tion. Here h = 1/N. 73

5.2.1.Drop in potential vortex. Red is level-set solution while
black is the immersed boundary. 74

5.3.1.Zalesak’s disk for 0, 1 and 2 revolutions. Red shows level-
set interface while black shows immersed boundary. The
velocity field is constant in time and represents pure rotation. 76

5.4.1.Drop axis lengths for the two-dimensional relaxing drop,
section 5.4.1. Red is the reference solution, dashed black is
immersed boundary solution. The two methods converge
as the grid is refined. 80

5.4.2.Drop axis lengths for the axisymmetric, three-dimensional
relaxing drop, section 5.4.1. Red is the reference solution,
dashed black is immersed boundary solution. The two
methods converge as the grid is refined. 81

5.4.3.Comparison of reference method and proposed method
with a viscosity and density jump, section 5.4.2. Red is
reference method while dashed black is proposed method. 82

5.4.4.Comparison with and without viscosity and density jump,
section 5.4.3. Left figure shows relaxation driven purely
by surface tension, right shows relaxation with a jump in
viscosity and density. Red is reference method, dashed
black is the proposed method. 84

xiii

5.5.1.Several frames of the simulation with elastic membrane,
(colored) together with the clean interface, (black). The
colors indicate the relative length of the interface compared
to its equilibrium length. 86

5.5.2.Red is clean interface, dashed black is drop with elastic
membrane. The elastic membrane dampens the oscillations. 88

5.5.3.Drop stretched in electric field test. Showing drop axis ratio
as a function of time. Red is solution with Ka = 0, dashed
black is with Ka = 50× 10−3. 90

5.5.4.Left, the initial water drop, r ≈ 25× 10−6 m. Right, drop
after draining some of its volume using the pipette. Images
from [45]. 91

5.5.5.Frames from the simulation of a micropipette draining a
water drop. Color denotes pressure; red s high, blue is low.
Velocities are plotted for every 5th grid point and every
10th Lagrangian point is plotted. The simulation bears a
good qualitative resemblance to the photographs in fig. 5.5.4. 93

xv

List of Tables

5.1. Parameters for the drop in potential vortex. 74
5.2. Parameters for the Zalesak’s disk test. 76
5.3. Parameters for the elliptical drop driven by surface tension. 78
5.4. Parameters for relaxing drop with viscosity and density jump. 82
5.5. Parameters for relaxing drop with an elastic membrane. . . 85
5.6. Parameters for drop stretched in electric field. 89
5.7. Parameters for the pipette draining drop case. 92

1

1. Introduction

Offshore oil production involves capturing the oil from deep subsea reser-
voirs. The oil recovered often contains a considerable fraction of seawater.
The reservoirs are under high pressure, and to control the flow of oil to the
surface, the pressure is reduced through a pressure reduction valve. This
valve introduces a strong mixing of the oil and water. Before the oil can
be sold as a product, the water content has to be reduced, normally down
to about 1/2% in weight. The simplest way of separating the mixture is
leaving it in a tank where the drops coalesce and gravity slowly deposits
the water on the bottom until the two phases are sufficiently separated.

A model for a fluid drop falling trough another fluid is the Hadamard-
Rybczynski relation. However, this relation has the requirement that the
two fluids need to be perfectly clean. If either of the liquids have the
slightest contamination a surface active layer will develop on the interface,
the internal flow in the drop will stagnate. For this a better approximation
of terminal velocity is that one of a solid sphere falling trough a viscous
liquid [8, p. 35]. This is given by Stokes’ law,

vt =
JρKg2r2

9µ2
. (1.1)

Here fluid 1 is the drop, while fluid 2 is the oil. µ2 is the viscosity of the
surrounding fluid, JρK = ρ2 − ρ1 is the difference in density between the
two fluids. g is the gravitational acceleration and r is the drop radius.
As we see the terminal velocity is dependent on r2. For small drops this
makes the terminal velocity very small, and almost no current is needed
to keep the drops suspended in the oil. This makes the gravity coalescing
process slow. Because of this, the tanks have to be large to handle the
continuous stream of retrieved oil. To accelerate the process, electric fields
can be applied to the oil-water mixture. This creates dipole moments

1. Introduction

in the water drops which sets up forces pulling nearby drops together.
Another technique used is adding demulsifiers to the oil which chemically
enhances the separation rate. The oil industry is all about big scale, so
naturally there are huge costs connected to this process. The issue of
making the process more effective is not the only one. For example, if
the operating conditions change, it may be challenging to control the
separation equipment so as to maintain the specified maximum water
concentration. This has lead to a considerable amount of research into the
processes in an oil separator [24].

One such project is the “Fundamental understanding of electrocoales-
cence in heavy crude oils” project at SINTEF Energy Research. There the
elementary physics of water drops in oil is studied both experimentally
and numerically. The project goal is to gain fundamental knowledge about
the physics of oil, water, electric fields, surfactants, crude oil components,
and how they interact [41]. This should give a better understanding of the
electrocoalescence process. One part of the project is about numerically
simulating the small scale physics happening in the oil separator. In this
part (together with other SINTEF Energy Research projects) a multiphase
CFD code has been developed and is used to simulate the results from ex-
perimental research in the project. The code can simulate two-dimensional
as well as axisymmetric two-phase flow. In [42] and [23] the code was used
for simulations of clean water drops in oil under electric fields. Another
use has been in the study of low emission LNG systems. Here the code
was used for understanding of how LNG condensation happens in heat
exchangers [22], [9] and [10]. This report focuses on the addition of a new
interface tracking method to this code, the immersed boundary method,
as well as the new physics it allows us to simulate.

3

2. Motivation

The dynamics of a fluid interface is governed by the Navier-Stokes equa-
tions including surface tension. As we will discuss in section 3.2.1, the
forces from surface tension are only a function of the molecular compo-
sition of the two fluids as well as the shape of the current fluid interface.
Experiments have shown that this is not enough to describe how water
drops in crude oil behave. This stems from the very complex molecu-
lar composition of crude oil. A standard way of classifying a crude is
a SARA [12] (Saturated, Aromatic, Resin and Asphaltene) analysis. It
divides the different components of the crude into four groups based on
their polarizability and polarity. The saturate part consists of nonpolar
components such as branched, linear and cyclic saturated hydrocarbons,
paraffins. Aromatic parts contain aromatic rings, which make them some-
what more polarizable. The two remaining classes have polar substituents.
These are separated by that resins are miscible in heptane or pentane,
while asphaltenes are not. SARA is only a very basic classification of
crudes, and more advanced methods include mass spectrometry. In fact,
the popularization of mass spectrometry is by some accredited to the de-
mand for knowledge of the composition of crude oil[37]. Although highly
complicated analysis methods have been developed one is still a far way
from complete understanding of the composition of crude oil. Mass spec-
trometry analysis of a single crude sample has been able to identify ≈
17000 different species[27], and this technique is only able to measure
the polar species. Conservative estimates for the number of chemically
distinct species in a crude oil are in the order of 50000[37]. The sheer
number of different species and their diversity meant that up until 2008
there was still a dispute on the molecular weight of asphaltenes [17].

Because their composition is not well understood, modelling the interac-
tion between crudes and water also is not well understood. What one does

2. Motivation

Figure 2.0.1.: Illustration of the molecular diversity present in crude oil.
Source [44].

know, is that components of the crude are surface active and concentrate
on the interface. In [31], experiments show how a membrane forms on
the interface between a toluene drop with asphaltenes and water, and that
this has an effect on the physics at the interface. We are interested in small
water drops surrounded by crude oil, and how they behave under an
electric field similarly to the electrocoalescence process used in offshore oil
production. To understand this, one must be able to model, and simulate
the membrane experienced in experiments. The goal of this master’s thesis
is the investigation into using the immersed boundary method for this
purpose.

5

3. Governing equations

In this section we first talk about the single-phase Navier-Stokes equations,
then these are expanded to two phase. Surface tension as well as elastic
forces on the interface is discussed. Last, jump conditions are mentioned.

3.1. Navier-Stokes equations

Here a general introduction to the Navier-Stokes equations is given. For
a more in depth view and an introduction to continuum mechanics in
general, [4] is a good reference. First we introduce the single-phase, in-
compressible Navier-Stokes equations, then we extend this to two-phase
flow.

Single-phase, viscous flow in the domain Ω is governed by the Cauchy
equation,

ρ

(
∂u
∂t

+ u · ∇u
)
= ∇ · S + ρ f , (3.1)

where ρ is the fluid density, u is the velocity vector, t is the time, f rep-
resents external acceleration and S denotes the stress tensor. The mass-
conservation equation,

∂ρ

∂t
+∇ · (ρu) = 0, (3.2)

also needs to be satisfied. In this report, incompressibility is defined as

ρ = const. (3.3)

Because of incompressibility, the mass-conservation equation reduces to

∇ · u = 0. (3.4)

3. Governing equations

In other words, the velocity field, u, is divergence free and no mass is
created or disappears at any time. If the fluid is Newtonian, the stress
tensor is given by

S = −pI + 2µD− 2
3

µ(trace(D))I, (3.5)

where µ is the dynamic viscosity, p the pressure and D is the rate of strain
tensor,

D =
1
2

(
∇u + (∇u)T

)
. (3.6)

If we assume that viscosity is constant, the divergence of the stress tensor
becomes

∇ · S = −∇p + µ∇2u. (3.7)

Under the previous assumptions, the Navier-Stokes equations for incom-
pressible, single-phase flow, with constant viscosity are,

ρ

(
∂u
∂t

+ u · ∇u
)
= −∇p + µ∇2u + ρ f , (3.8)

∇ · u = 0, (3.9)
u(x, 0) = u0(x), (3.10)
u∂Ω(t) = g(t), (3.11)

where ∂Ω is the domain boundary and g(t) is the velocity boundary
condition.

We now want to extend the previous derivation to handle two fluid
phases, with different viscosity and density. Let Ω1 and Ω2 denote the
domains filled with fluid 1 and fluid 2, respectively and Γ denote the
interface separating the two fluids. Ω = Ω1 ∪Ω2.

On the interface, Γ, forces between the two fluids appear. These are
discussed in section 3.2. Here, it is sufficient to conclude that the forces can
be modeled as a contribution to eq. (3.8). This contribution is only present
on the interface. If one moves in the normal direction to the interface, the
contribution resembles a Dirac delta function.

fs(x, t) =
∫

Γ

(
∂T(s)

∂s
τ(s) + T(s)κ(s)n(s)

)
δ(x− Γ(s))ds, (3.12)

7

Ω1

Ω2

Γ

Figure 3.1.1.: Two phases of fluid and their interface Γ.

where T is the tension of the interface, ∂T
∂s is the derivative of tension

along the interface, τ is the unit interface tangent, κ is the local curvature
of Γ, n is the principal unit normal vector, δ is the Dirac delta function, and
xI(s) is a parametrization of the interface. Adding this to eq. (3.8) gives

ρ

(
∂u
∂t

+ u · ∇u
)
= −∇p + µ∇2u + ρ f + fs. (3.13)

3.2. Interface forces

On the interface between the two clean fluids, forces appear. These stem
from several phenomena on the molecular scale, which result in surface
tension. As we have indicated in chapter 2, classical surface tension is
not enough to describe the systems of interest for this report. To clear
any ambiguity, in this thesis, surface tension refers to the phenomenon
experienced in day to day life, e.g. the force that makes a raindrop shape
like a drop. When the term interface tension or interface force is used,
it is referring to a wider class of physics, including but not limited to
surface tension. The elastic forces which are studied in this report are
interface tension forces. Last, the term surface tension is not limited to a
fluid-gas interface, e.g. the surface of a lake, but also includes fluid-fluid
interfaces, like olive oil in water. The interface has a certain potential

3. Governing equations

energy. This energy stems from a tension, T, in the interface. By the
principle of minimum potential energy, the interface will deform and
displace until the potential energy reaches a minimum. Naturally, the
form of T has a big impact on this process. This section first discusses
interface tension for clean fluids and then extends this to a more general
model for the systems studied in this report.

3.2.1. Surface tension

For a clean fluid interface, the interface tension is the change in potential
energy, as a function of the change in interface area [21],

σ =
∂E
∂A

. (3.14)

Interestingly, for a given temperature and pressure, this property is con-
stant for all macroscopic interfaces between two clean fluids 1. This stems
from the fact that the interface tension is nothing but the sum of the inter-
molecular forces acting on the two different types of fluid-molecules on the
interface. If the area of the interface increases, the number of molecules on
the interface will increase proportionally. Since the macroscopic interface
tension is the sum of the inter-molecular forces, and the inter-molecular
forces are constant per molecule, the sum of molecular strain, or potential
energy, must also be proportional to the interface area. This leads to

E ∝ A⇒ ∂E
∂A

= const = σ. (3.15)

Following [21, p. 250], we consider two fluids, separated by an arbitrary
interface and an infinitesimally displaced version of this interface, as

1The underlying assumption for this is that on a molecular scale, the ratio of the range
of inter-molecular forces and the local radius of the curvature is much smaller than
1. Or rmκ � 1 where κ is the curvature. For a liquid water/water vapour interface
a conservative cutoff for molecule interactions is 20 Ångström [26], or 2nm. The
smallest drop relevant for the electrocoalescence process is around rm = 20µm. To
be on the safe side we assume drop radius rd = 1µm which gives κ = 1× 106 and
rmκ = 2× 10−9 × 106 = 2× 10−3 � 1. This assumption should thus hold for all
situations related to electrocoalescence.

9

in fig. 3.2.1. On each point of the original interface, draw the interface
normal towards the displaced interface. The length of this normal is
denoted by |δζ|. The original interface element is denoted by d f . Then the
displaced volume for a interface element is |δζ|d f . Now, let p1 and p2 be
the pressures on either side of the interface. The work needed to change
the volume is ∫

(−p1 + p2)|δζ|d f . (3.16)

In addition the interface has been stretched or compressed. This work is
proportional to the infinitesimal stretching of each segment, if the infinites-
imal stretching is written δ f the total work must be

δW =
∫
(−p1 + p2)|δζ|d f + σδ f . (3.17)

Where σ is the proportionality constant for stretching, similar to a spring
constant in Hooke’s law. From mechanical equilibrium, we have that
δW = 0.

Now, let R1 and R2 be the principal radii of curvature of two given
points on the interface. If a radius is drawn into fluid 1, we consider
it positive. Let dl1 and dl2 be the lengths of the two interface segments
associated with the two radii. When the infinitesimal displacement is done,
the change in length will be |δζ|

R1
dl1 and |δζ|

R2
dl2. By this, the area of the

interface element d f = dl1dl2 after displacement becomes (1+ |δζ|
R1

)dl1(1+
|δζ|
R2

)dl2 = dl1dl2(1 +
|δζ|
R1

+ |δζ|
R2

)2. The change is |δζ|d f (1
R1

+ 1
R2
) With this

expression for the infinitesimal stretching of a interface element, the whole
interface area will change under the displacement as

δ f =
∫
|δζ|

(
1

R1
+

1
R2

)
d f . (3.18)

Inserting this into eq. (3.17) we get

δW =
∫
|δζ|

(
(p1 − p2)− σ

(
1

R1
+

1
R2

))
d f = 0. (3.19)

2We are working to first order in the displacements |δζ| and δ f .

3. Governing equations

1 2

p1 p2

d f δζ

Figure 3.2.1.: Two fluids and their interface. The infinitesimally displaced
interface is dashed. The dashed normals, δζ are drawn and
together with the two interfaces they form in infinitesimal
displaced volume. The surface between the two interface
normals, d f , is the infinitesimal interface segment. The dis-
placed segment, which is dashed, is to the right.

Since the choice of δζ was arbitrary, it must hold for all δζ, this makes the
whole integrand above equal to zero and we can rewrite

p1 − p2 = σ

(
1

R1
+

1
R2

)
. (3.20)

Equation (3.20) is known as Laplace’s equation. It connects the jump in
pressure to the curvature, and the interface tension, σ. It is more familiarly
written

JpK = σκ, (3.21)

where σ is the interface tension coefficient, and κ is the interface curva-
ture and JaK is a general jump notation meaning the change in a as one
moves from one side to the other of the interface. Here, the pressure is
discontinuous over the interface, and the jump, is p1 − p2 = JpK.

11

3.2.2. General tension

As previously mentioned, the most general form of interface tension is
an arbitrary tension, T, may depend on various properties like interface
geometry, temperature, electric fields, stretching, bending, molecular prop-
erties and so on.

To derive the effect of this tension on the liquids, we utilize the im-
mersed boundary formulation [34]. We model the interface as a continuum
of elastic fibers, immersed in the fluid. These fibers serve as a device for
deriving the model. They do not have a mass nor a volume, but together
with the fluid they are immersed in, they act as a viscoelastic material.
The fibers are arranged in a structured mesh parametrized by three space
coordinates, (q, r, s). With this framework, fixing two of the space coor-
dinates, e.g. (q, r), uniquely determines a fiber. The last coordinate, s, is
then a parametrization along the elastic fiber (q, r).

Following [34], we describe the motion of the material by

x = X(q, r, s, t). (3.22)

If we consider an arbitrary fiber, (q, r),

τ =
∂X
∂s∣∣∣ ∂X
∂s

∣∣∣ (3.23)

is the unit tangent along the fiber. The fiber tension is kept as general as
possible,

T = S
(

∂X
∂s

; q, r, s, t
)

. (3.24)

Where ∂X
∂s is the local fiber strain. Here the functional S is allowed to

depend directly on q, r, s and t. This is important, as it lets the stress
be completely general, and the dependence of other parameters, like
temperature, can be added easily.

Now consider an infinitesimal bundle of elastic fibers of width dq and
height dr. The force transmitted by the bundle is Tdqdr. Let B be an
arbitrary part of the (q, r) plane, this is a bundle of fibers. We now only

3. Governing equations

look at the segment of the fibers that are between s1 < s < s2. As pre-
viously mentioned, the fibers are massless. From Newton’s second law,
this implies that the net force on the fibers must be zero, as they are in
equilibrium. The only forces acting on the fibers are the forces from the
surrounding fluid, as well as the force transmitted through the segment
endpoints, s1 and s2. With τ as the fiber tangent, this gives us:

0 = Forces on fiber bundle segment

= Force from fluid on fiber bundle segment +
∫

B
(Tτ)|s2

s1
dqdr (3.25)

Now, an interesting trick can be used, applying Newton’s third law to the
force from the fluid we get

0 = −Force from fiber bundle segment on fluid+
∫

B
(Tτ)|s2

s1
dqdr. (3.26)

Rearrange and using the fundamental theorem of calculus on the integral
gives

Force from fiber bundle segment on fluid =
∫ s2

s1

∫
B

∂(Tτ)

∂s
dqdrds.

(3.27)
The choice of B, s1 and s2 was arbitrary. This implies that the force density
of the fibers acting on the fluids is

f =
∂Tτ

∂s
. (3.28)

To get the force from the fibers on the fluid one simply integrates this, as
in eq. (3.27). By using the product rule we can expand the derivative to

f =
∂T
∂s

τ + T
∂τ

∂s
. (3.29)

Since curvature is given by κ =
∣∣∣ ∂τ

∂s

∣∣∣/∣∣∣ ∂X
∂s

∣∣∣, and the interface normal by
n =

(
∂τ
∂s

)
/
∣∣∣ ∂τ

∂s

∣∣∣, eq. (3.29) can be written:

f =
∂T
∂s

τ + T
∣∣∣∣∂X

∂s

∣∣∣∣ κn. (3.30)

13

From eq. (3.30) we see that the force is consisting of a component along the
fiber in the direction of τ, as well as a component in the principal normal
direction, pointing towards the centre of the osculating circle3 of the curve,
n. Similar to macroscopic experience with elastic materials, like a rubber
band, there is no force in the binormal direction, τ × n. Note however,
that if one considers another fiber bundle, say fixing (q, s) and varying r,
this bundle can act with a force in this direction. When calculating the
effect of the elastic fibres on the fluid, one has to take into account all fibres
present at a material point, (q, r, s). This way forces in all directions can be
generated by linear combination of forces from different fibres.

Interestingly, we see that if we assume constant interface tension,

T = σ = const, (3.31)

eq. (3.30) becomes

f =
∂σ

∂s
τ + σ

∣∣∣∣∂X
∂s

∣∣∣∣ κn

= σ

∣∣∣∣∂X
∂s

∣∣∣∣ κn,

and the tangential force disappears.
At this point we can introduce the model used for the elastic membrane.

In this thesis, a simple Hookean material was used for simulation

T = Ka

(∣∣∣∣∂X
∂s

∣∣∣∣− 1
)
+ σ. (3.32)

Here Ka(N/m) is the force density equivalent of a spring constant. ∂X
∂s is

the relative stretching of an infinitesimal interface element. As detailed in
chapter 2, there is not a full understanding of the interface between crude
oil and water. Taking this into account, by application of Occam’s razor, a
Hookean law is the most logical choice. In section 6.2 this decision and
its limitations is discussed further. In the code, the tension is discretized
in a straightforward way and calculated for the points on the immersed
boundary, then eq. (3.30) is used to calculate the force on each Lagrangian
point. This is elaborated in section 4.2.8.

3http://mathworld.wolfram.com/OsculatingCircle.html

http://mathworld.wolfram.com/OsculatingCircle.html

3. Governing equations

3.3. Jump conditions

As well as forces on the interface itself, the jump in viscosity and density
across the interface changes the physics on each side of the domain. For
example, because crude oil is highly viscous, a drop of water oscillating
in crude oil will have a more damped oscillation than one in e.g. air. The
constraints coming from these jumps are expressed as jump conditions. In
[18] these are derived for two-phase flow. In [15] and [5] the effect of an
electric field is added. In [23] Marangoni stresses coming from a varying
interface tension is added. All together the conditions are

JuK = 0, (3.33)
JpK = 2JµKn ·∇u · n + n · JMK · n + σκ, (3.34)
JΨK = 0, (3.35)

Jµ∇uK = JµK((n ·∇u · n)nn + (n ·∇u · t)nt
− (n ·∇u · t)tn + (t ·∇u · t)tt)
− (t · JMK · n)tn− (t ·∇Γσ)tn, (3.36)

where t is the unit tangent of the interface, n is the unit normal of the
interface and M is the Maxwell stress tensor.

15

4. Numerical methods

In this section the discretization of the Navier-Stokes equations will be dis-
cussed. How to approximate the spatial derivatives, Chorin’s projection
method, and a brief overview of Runge-Kutta methods is given. The pe-
nalization method for simulating solid objects in the domain is discussed.
The level-set method for interface capturing and the ghost-fluid method
for handling the viscosity and density jumps on the interface is covered. A
thorough introduction to the immersed boundary method is given and de-
tails regarding implementation are discussed. This includes cubic splines
for parameterizing the interface as well as a routine for computing the
level-set function based on the immersed boundary. Lastly an overview
connecting all pieces together into one coherent method is given.

4.1. Discretization of the Navier-Stokes equations

This section discusses the discretization of the Navier-Stokes equations for
single-phase, incompressible flow. Problems arising with a checkerboard
pressure field is studied, how this relates to the null space of the discrete
gradient operator, and how to correct this using a staggered grid. An
overview of the spatial discretization of the Navier-Stokes equations and
the differential operators needed on an orthogonal, rectilinear grid is given.
General projection methods are considered and specifically Chorin’s pres-
sure projection method is derived. A short overview of Runge-Kutta
methods for time integration is given and the penalization method for
simulating solid objects in the domain is covered. Lastly the level-set
method for interface capturing and the ghost-fluid method for handling
the viscosity and density jumps are discussed.

4. Numerical methods

4.1.1. Spatial Discretization

The discretization of the Navier-Stokes equations is not trivial, even for
a structured grid using finite differences. Naively one would discretize
eqs. (3.8) to (3.11) in space, store velocities, u, pressure, p, and body
forces f at each grid node and use a finite-difference stencil on this grid
to approximate the needed differential operators. Historically, the first
attempts at solving the Navier-Stokes equations proceeded using this
approach, but problems quickly arose with the pressure oscillating out of
control.

For the naive discretization, the finite-difference approximation to the
derivative of the pressure would be determined by

∂pi

∂x
≈ pi+1 − pi−1

2∆x

where pi denotes the pressure in grid node i and ∆x is the grid cell distance
along axis x. Given an oscillatory pressure field, e.g. pi = 1, pi+1 = −1,
pi+2 = 1 . . . the approximated derivative will be zero. In words, a checker-
board pressure is a part of the null-space of the finite-difference approxi-
mation of the derivative of pressure. One way of viewing this problem is
that if you color your grid in a chess board pattern, the pressure gradients
at black nodes will only depend on the pressures at black nodes, similarly
the pressure gradient on white nodes, only depend on the pressures at
the black nodes. To remedy this, a coupling between velocity components
and adjacent pressures needs to be added. This can be done via grid
staggering.

For the Navier-Stokes equations, staggering is normally done by storing
scalar quantities, e.g. pressure, at the center of each grid cell while vector
components are stored at the faces of each grid cell, cf. fig. 4.1.1. Using
this staggering couples the pressure at pi with pi+1, pi−1

1.

1Alternative solutions include Rhie-Chow interpolation [36], where all grid variables are

collocated. The Rhie-Chow interpolations uses ∂4 p
∂x4 to cancel the pressure oscillations,

which has a stabilizing effect.

17

pi,j pi+1,jpi−1,j

pi,j+1

pi,j−1

ui+1/2,jui−1/2,j

vi,j+1/2

vi,j−1/2

Figure 4.1.1.: A staggered grid cell. The pressure is located at the center
of each cell, the x-velocities at the eastern and western, and
y-velocities at the northern and southern faces. Here u and
v denote the velocity in the x and y direction, respectively.

4. Numerical methods

Finite difference approximations

The continuous differential operators in eqs. (3.8) to (3.11) have to be
discretized in order to be computed in the simulation. During this dis-
cretization it is important to preserve a high enough order of accuracy such
that the method as a whole has the expected order of accuracy. Spatially,
the numerical code used in this work is second order, except locally at
phase interfaces. Here the method is first order, this is due to the ghost-
fluid method[29, sec. 15.8] explained in section 4.1.6. In time, the code is
limited by the first order splitting error introduced by Chorin’s projection
method for the pressure discussed in the next section.

The gradient of a scalar field, g, is approximated with the second order
finite difference scheme,

[(∇g)i,j]x ≈
gi+ 1

2 ,j − gi− 1
2 ,j

∆x
, (4.1)

[(∇g)i,j]y ≈
gi,j+ 1

2
− gi,j− 1

2

∆y
, (4.2)

where gi,j is the value of the field g at grid node (i, j) and [vi,j]x is the value
of field v at coordinate (i, j) in x direction. For y the same applies.

The Laplacian of a two-dimensional vector field is calculated with the
second order finite difference approximation

(∇2 f)i,j ≈
fi+1,j − 2 fi,j + fi−1,j

∆2
x

+
fi,j+1 − 2 fi,j + fi,j−1

∆2
y

. (4.3)

To calculate the divergence of a 2D vector field, the second order finite
difference approximation is used,

∇ · fi,j ≈

[
fi+ 1

2 ,j − fi− 1
2 ,j

]
x

∆x
+

[
fi+ 1

2 ,j − fi− 1
2 ,j

]
y

∆y
. (4.4)

4.1.2. Chorin’s projection method

A general projection method relies on the Helmholtz-Hodge theorem. A
proof of this theorem can be found in [7, ch 1.3]. Here the theorem will

19

only be stated.

Theorem 4.1.1 (Helmholtz-Hodge theorem). An arbitrary vector field w can
be uniquely decomposed in a bounded domain Ω such that

w = u +∇g, (4.5)
u · n = 0 on ∂Ω, (4.6)

where g is a scalar function, n is the outwards unit normal vector on ∂Ω and u
is a divergence free vector field,

∇ · u = 0 in Ω. (4.7)

The Helmholtz-Hodge theorem asserts the existence and uniqueness
of an orthogonal projection operator P. This operator maps an arbitrary
vector field into a divergence-free vector field,

u = Pw (4.8)
= w−∇g. (4.9)

For further theory on projection operators, [38, sec. 1.12] is a good refer-
ence. A projection is defined by the property

P2 = P, (4.10)

thus, applying P to eq. (4.8) and using eq. (4.10), we get

Pu = P2w (4.11)
= Pw (4.12)
= u.

Expanding eq. (4.11) using eq. (4.9) instead gives

Pu = P2w,
= P(w−∇g),
= Pw− P(∇g). (4.13)

4. Numerical methods

From eq. (4.12) we know that Pu = Pw, which implies that

P(∇g) = 0. (4.14)

To find the projection operator we use eq. (4.7)

∇ · u = 0, (4.15)
∇ · Pw = 0, (4.16)

by applying (∇·) to eq. (4.9) we get

∇ · Pw = ∇ ·w−∇2g, (4.17)

0 = ∇ ·w−∇2g, (4.18)

∇2g = ∇ ·w, (4.19)

which is a Poisson equation for g. Using that u · n = 0 on ∂Ω we can
derive Neumann boundary conditions for the Poisson equation

u · n = 0,
= (w−∇g) · n,
= w · n−∇g · n, (4.20)
⇓

w · n = ∇g · n. (4.21)

To use the above results, we assume that u is smooth, and that it has a
continuous first derivative. Equation (3.8) may be written in the form of
eq. (4.5) and eq. (4.6) by using

g = p, (4.22)
w = a, (4.23)

ρ
∂u
∂t

= a(u)−∇p, (4.24)

a(u) = −ρ(u · ∇u) + µ∇2u + f . (4.25)

To continue the derivation of Chorin’s projection method discretizing in
time is also required. The code uses first order, forward Euler steps com-
posed together in a higher order Runge-Kutta time step, see section 4.1.3.

21

The implementation is based on the routines outlined in [29]. Because
of this, we only need to consider a first order Euler step. Let un be the
velocity field at time t = ∆tn and un+1 at t = ∆t(n + 1), where ∆t denotes
the time step size. Equation (4.24) can be written in an semi-implicit way

ρ
un+1 − un

∆t
= a(un)−∇pn+1. (4.26)

recognizing ρ un+1−un

∆t
as the divergence-free field and a(u) as our arbitrary

vector field. Solving eq. (4.19) with Neumann boundary conditions, we
can find pn+1 given a(un). Next we can compute un+1 using eq. (4.26).

The main advantage of this method is that the effect of pressure is sep-
arated from the effect of advection and viscosity. In the incompressible
Navier-Stokes equations one assumes that the speed of sound is infinite,
c → ∞. This means that a local change in pressure affects the whole do-
main instantaneously. The advection and viscosity, on the other hand, are
local phenomena and a local perturbation will only have a finite radius of
effect a time, t, after the perturbation. The all-to-all nature of the pressure
in the incompressible Navier-Stokes equations, makes it a computationally
expensive problem to solve. A pure Poisson problem such as the one in
Chorin’s projection method is in many ways the simplest possible elliptic
problem, and large amounts of research have been invested into efficient
solvers. If one introduces the effects of advection and viscosity into the
elliptic problem, which is perfectly legal, the computational effort needed
to solve the system would increase significantly and one could no longer
take advantage of the large amount of applied research on Poisson solvers.

In [40], a rigorous error analysis is performed and it is shown that if u
and p solving eqs. (3.8) to (3.11) are sufficiently smooth, and the domain
Ω satisfies a regularity condition, the error

‖u′ − u‖ = a(u, p, T)∆t = O(∆t), (4.27)

is a constant a, independent of the time-step, ∆t, such that the method is
first order accurate. Here u′ is the exact solution while u is the solution
using Chorin’s projection method, p is the pressure and T is the end time.

4. Numerical methods

4.1.3. Time integration method

Time-integrating the Navier-Stokes equations, and more generally a sys-
tem of equations, is a large field of research. In this work, a Runge-Kutta
method is used. Generally we want to solve the problem: Given

du(t)
dt

= f (u(t)), (4.28)

u(0) = u0, (4.29)

find u(t). Runge-Kutta methods approximate a solution to this problem
by evaluating f (·) at carefully chosen points in time and then composing
these in such a way that their errors cancel out up to a certain order. In
the code we use a special class of Runge-Kutta methods known as Strong
Stability-Preserving. It has the property that if the spatial discretization is
Total Variation Diminishing using forward Euler time integration, then
the method will also be TVD when integrated using a SSP Runge-Kutta
method. [20] is a good reference on strong stability-preserving Runge-
Kutta methods.

4.1.4. Penalization method

As will be seen in section 5.5.3, we want to be able to simulate solid
objects in our domain. To achieve this we utilize the penalization method.
Following [2] the penalization method can be derived as follows. Let
our domain contain n regular obstacles, Ωs

y, i ∈ {1 . . . n}, and let Ωs =

∪n
i=1Ωs

i be the obstructed, solid, part of the domain. Let Ω f = Ω \ Ω̄s be
the unobstructed, free, part of the domain. Lastly let Σs

i = ∂Ωs
i be the

boundary of each obstacle.
Our goal is now to solve eqs. (3.8) to (3.11) in Ω f subject to the boundary

conditions from the boundary of the domain, Γ, and from the boundaries
of the internal solid parts Σs

i . This is not straightforward, as changing Ω
to Ω f changes the topology of the domain adding holes. Instead we try to
modify the problem, solving it for the whole domain Ω but add a penalty
for flow trough obstacles.

23

We modify the velocity and pressure in the following way

uη = u + ηũ, (4.30)
pη = p + η p̃. (4.31)

That is, we allow a perturbation of the velocity field, ũ, proportional to a
parameter η. Then we solve a modified version of eqs. (3.8) to (3.11)

ρ

(
∂uη

∂t
+ uη · ∇uη

)
= −∇pη + µ∇2uη −

1
η

χuη + ρ f , (4.32)

∇ · uη = 0, (4.33)
uη(x, 0) = u0(x), (4.34)
uη∂Ω(t) = g(t), (4.35)

where χ is a marker function defined as

χ(x) =
{

1 if x ∈ Ωs,
0 otherwise.

(4.36)

By substituting eq. (4.30) and eq. (4.31) into eq. (4.32) we get

ρ

(
∂u + ηũ

∂t
+ (u + ηũ) · ∇(u + ηũ)

)
= (4.37)

−∇(p + η p̃) + µ∇2(u + ηũ)− 1
η

χ(u + ηũ) + ρ f . (4.38)

Even if we have perturbed the fields we still want eq. (3.8) to be satisfied.
If we enforce that the velocities should be zero in the solid domain, χu = 0,
it is possible to split eq. (4.38) into two equations

χu = 0, (4.39)

ρ

(
∂u
∂t

+ u · ∇u
)
= −∇p + µ∇2u− χũ + ρ f , (4.40)

ρ

(
∂ũ
∂t

+ u · ∇ũ
)
= −∇ p̃ + µ∇2ũ− ũ · ∇u + 0, (4.41)

(4.42)

4. Numerical methods

Since χ = 0 in Ω f , eq. (4.40) satisfies eq. (3.8). ũ satisfies

ũ +∇p = 0, in Ωs (4.43)

ρ

(
∂ũ
∂t

+ u · ∇ũ
)
= −∇ p̃ + µ∇2ũ− ũ · ∇u + 0, in Ω f (4.44)

∇ · ũ = 0, in Ω (4.45)

In [2] the existence, uniqueness as well as an error estimate are derived
for this penalization method. The error of this penalization method is
of the order of η. To get good results, one would naively set η = 0
and get infinite order, but as the time step needed for stability is inverse
proportional to η this is a balancing act. In [6] it is shown that for a given
grid there is on optimal η. For practical usage one sets up the simulation
without penalization, then η is tuned so that it gives good performance
on the given grid spacing, ∆, without a too small time step. To use the
penalization method in the code, − 1

η χuη is added as a force term as seen
in eq. (4.32). This force will then enter as a source term to the Poisson
equation after using Chorin’s projection method.

4.1.5. The level-set method

To solve the Navier-Stokes equations for two-phase flow, knowledge of
the interface is required. The level-set method was proposed by Osher
and Sethian[30]. Following [30] the interface is encoded as a signed scalar
distance field

ϕ(x, t) =
{

d(x, t) if x ∈ Ω1
−d(x, t) if x ∈ Ω2

(4.46)

where
d(x, t) = min

x′∈Γ(t)
‖x− x′‖. (4.47)

This gives an implicit definition of the interface,

Γ(t) = {x ∈ Ω | ϕ(x, t) = 0}. (4.48)

25

The interface moves according to the flow of the fluids. Time evolution is
thus simply advecting the function with the velocity field

∂ϕ

∂t
+ û ·∇ϕ = 0, (4.49)

where û is the fluid velocity field at the boundary, extrapolated to the
whole domain. This quantity can be found by solving

∂û
∂τ

+ S(ϕ)n ·∇û = 0, û|τ=0 = u, (4.50)

Here τ is a pseudo time, and S is a smeared sign function which is zero at
the interface,

S(ϕ) =
ϕ√

ϕ2 + 2∆2
x

. (4.51)

We are interested in the steady-state solution of this equation [47, p. 193],
in other words, the limit of the solution of eq. (4.50) as τ → ∞.

As the level-set field is advected by eq. (4.49) it will become distorted
and lose its signed distance-property. Because of this, the level-set function
is reinitialized at regular intervals by solving

∂ϕ

∂τ
+ S(ϕ0)(1∇ϕ| − 1) = 0, (4.52)

ϕ(x, 0) = ϕ0(x), (4.53)

to steady state [29, (7.4)]. Even though eq. (4.50) and eq. (4.52) are defined
for the whole domain, we are only interested in the extrapolated velocity
and the reinitialized field in a neighborhood around the interface. Inter-
estingly the characteristics of both eq. (4.50) and eq. (4.52) originate at the
interface going outwards. Because of this, solution to steady state in the
whole domain is not needed to get the data we are interested in. In [1] this
is detailed further.

The properties required to calculate forces coming from a fluid interface
is the interface normal vectors and the interface curvature. Both of these

4. Numerical methods

are available and can be computed from ϕ,

n =
∇ϕ

|∇ϕ| , (4.54)

κ = ∇ ·
(

∇ϕ

|∇ϕ|

)
. (4.55)

4.1.6. The ghost-fluid method

There are two main approaches in which the contact discontinuity at
the interface can enter the numerical scheme. One is as a smeared out
delta function. This is what is done in the immersed boundary method
eq. (4.169). Here the effect of the singular forces at the interface is approxi-
mated as a smooth delta function, section 4.2.6, which spans several grid
cells. With this method, the normal finite difference approximations to
derivatives can be used as there are no discontinuities in the solution, but
rather very steep, smooth, transitions. The other method is to incorporate
the contact discontinuities in the numerics, handling them in a sharp man-
ner. This means that there is an actual jump in the solution, and spatial
derivatives are not defined. Instead, jump conditions are used to relate
the values across the interface. This method require a whole deal more
implementation work as the numerics is altered at the interface and logic
has to be added to the code to handle this.

In the code, the ghost-fluid method ([14], [19] and [13]) , which is a
sharp-interface method, is used. Here the method will be outlined for a
one-dimensional model problem. The method is readily expanded to two
or three dimensions because it is applied dimension by dimension. For
more in-depth implementation details [19] is a good reference.

The key of this model problem is to demonstrate what has to be done
with the finite-difference approximations of the spatial derivatives. For
this, the one-dimensional Poisson problem is sufficient as an example

∂

∂x

(
β

∂u
∂x

)
= f . (4.56)

Here u and f are scalar functions while β is a constant on each side of the
interface. The ghost-fluid method needs interface jump conditions, for our

27

model problem assume that they are given by

JuK = a, (4.57)
s

β
∂u
∂x

{
= b, (4.58)

where JγK = γ+ − γ− is the jump of a discontinuous variable γ over the
interface, and γ− and γ+ is the value of γ at the left and right side of the
interface respectively 2. Now assume that the interface lies between grid
cell k and k + 1. Using a standard central difference approximation at grid
cell k, similar to eq. (4.3), would yield

βk+1/2
uk+1−uk

∆x
− βk−1/2

uk−uk−1
∆x

∆x
= fk. (4.59)

This approximation is second order accurate as long as the solution is
smooth, but at the interface this is not the case. This leads to an error which
smears the interface. The key trick in GFM is to replace the problematic
value, uk+1, with a ghost value, ug. This value is extrapolated from the left
side of the interface taking into account the jump conditions. We define

θ =
xI − xk

∆x
(4.60)

as the normalized distance from the grid cell xk to the interface xI . Using
this we can write ug as

ug =
u−(θ − 1)uk

θ
. (4.61)

Recall that β is assumed constant on each side of the surface. Inserting
eq. (4.61) into eq. (4.59) leaves us with

β u−−uk
θ∆x
− β uk−uk−1

∆x

∆x
= fk. (4.62)

2For two and three-dimensional problems the notion of left and right breaks down and
the two fluids domains are decided by the sign of the level-set function, hence the
convention is to use plus minus signs in superscript.

4. Numerical methods

Now an expression for u− is needed. To approximate it we discretize
eq. (4.58) to get

β+ uk+1 − u+

(1− θ)∆x
− β−

u− − uk

θ∆x
= b. (4.63)

Then we solve this for u− giving

u− =
θβ+uk+1 + (1 + θ)β−uk − θβ+a− θ(1− θ)∆xb

θβ+ + (1− θ)β−
. (4.64)

Inserting this approximation of the left interface value into eq. (4.62) gives

β̂(uk+1 − uk)− β−(uk − uk−1)

∆2
x

= fk +
β̂a
∆2

x
+

(1− θ)β̂b
β+∆x

, (4.65)

where

β̂ =
β−β+

θβ+ + (1− θ)β−
. (4.66)

Comparing with eq. (4.59) one sees that the modifications by GFM adds
a source term to the right hand side of the equation as well as a scaling
dependent on where the interface is located between grid cell k and k + 1.
If the interface is located between k and k− 1, the same procedure as above
would lead to

β+(uk+1 − uk)− β̂(uk − uk−1)

∆2
x

= fk −
β̂a
∆2

x
+

θβ̂b
β−∆x

. (4.67)

4.2. The immersed boundary method

4.2.1. Motivation

This section shows how the standard level-set method does not contain
the information required to express the compression or stretching of an
interface. To have compression of an interface in incompressible flow, as-
suming no sources or sinks are present, the velocity component tangential
to the interface of the fluid flow has to be nonzero. If this is not the case,
the interface will never be stretched or compressed.

29

Lemma 4.2.1. Given any vector with unit norm, ‖n‖ = 1, the operator Pn =
n(n·) applied to an arbitrary vector v is a projection

Proof. The defining property of a projection is P2 = P.

P2
nv = n(n · n(n · v))

= n(1(n · v))
= n(n · v)
= Pnv (4.68)

Another property of projections is that if Pa is a projection, then Pb =
(1− Pa) is also a projection.

P2
b = (1− Pa)

2

= (1− Pa)− Pa(1− Pa)

= 1− Pa − Pa + P2
a

= 1− Pa − Pa + Pa

= (1− Pa)

= Pb (4.69)

Lemma 4.2.2.
P‖(ϕ) = (1−∇ϕ(∇ϕ·))

is a projection operator.

Proof. ϕ is the signed distance from the interface, thus its gradient is al-
ways of unit norm, ‖∇ϕ‖ = 1. Using lemma 4.2.1, we see that (∇ϕ(∇ϕ·))
is a projection. Using the second property of projections, eq. (4.69), we
have that P‖(ϕ) = (1− (∇ϕ(∇ϕ·))) is also a projection.

Given a level-set function, ϕ, P‖(ϕ) projects an arbitrary velocity field u
into the space of velocity fields that are tangential to the interface.

4. Numerical methods

With this operator we can decompose an arbitrary velocity field into

u = u⊥ + u‖ (4.70)

u‖ = P‖u (4.71)

u⊥ = u− u‖ (4.72)

where u⊥ is a velocity field normal to the interface and u‖ is a velocity
tangential to the interface.

Recall that the goal of this thesis is to simulate the elastic effects observed
on the interface of water-drops in crude-oil. To be able to simulate this,
it is required to know how much an infinitesimal piece of the interface
has been deformed from its equilibrium length. We will now show that
standard level-set does not contain this information.

Theorem 4.2.3. A signed-distance field does not contain the information needed
to express compression or stretching of the interface, i.e.

∂

∂u‖
ϕ̇ = 0 (4.73)

Proof. At each time step the signed distance function, ϕ, is advected us-
ing the advection equation eq. (4.49). Applying this advection to the
decomposed velocity field gives

ϕ̇ = u · ∇ϕ (4.74)
ϕ̇ = (u⊥ + u‖) · ∇ϕ (4.75)

ϕ̇ = u⊥ · ∇ϕ + u‖ · ∇ϕ (4.76)

By construction gradient of ϕ is always normal to the interface, u‖ · ∇ϕ =
0, and

ϕ̇ = u⊥ · ∇ϕ + u‖ · ∇ϕ, (4.77)

= u⊥ · ∇ϕ. (4.78)

31

In other words, the interface is invariant under velocity fields tangential
to the interface. This, together with the statement that for incompressible
flow, the part of the velocity field that stretches or compresses the interface
is the tangential one tells about a fundamental limitation in the level-set
formulation for interface tracking. There is no way of knowing whether a
part of the interface is compressed or stretched, this information simply
does not exist in ϕ.

The conclusion is that without an extension, the level-set method is not
able to represent the compression of an interface. This lead to the search of
an alternative method. One of the criteria for the choice of method was that
it should have proven itself useful to simulate an elastic interface. This was
found in the immersed boundary method. It was originally developed
for simulating biological systems, e.g. blood flow trough a heart [33],
which have many similarities to the simulation of drops covered in elastic
membranes. Other than this, the immersed boundary method contains, as
will be shown in the following sections:

• A rigorous mathematical framework of how to represent the inter-
face, and how it interacts with the flow.

• The ability to represent an arbitrary shape.

• A uniquely defined delta function which guarantees several conser-
vation properties.

• The possibility to solve Navier-Stokes on a standard Eulerian grid.

4.2.2. Introduction

The key innovation of the immersed boundary method, [32], is to allow
solving the Navier-Stokes equations, or other continuum equations, on an
Eulerian regular grid, while handling a large class of arbitrary, deformable
and rigid bodies embedded in the continuum. These bodies are described
in a natural Lagrangian way. The crux of the method is to be able to
approximately transform Lagrangian information into Eulerian, and vice
versa.

4. Numerical methods

At first sight, it is not obvious why such a method is so desirable. If
one only deals with simple geometries, a full Eulerian formulation to-
gether with appropriate transformations of the grid and operators will be
sufficient and computationally efficient. If the geometries are not easily
described by a coordinate transformation, then this method cannot be
used. A way of handling such problems is an unstructured grid, together
with an unstructured finite-difference, finite-volume, or finite-element,
formulation. Here all the data is inherently unstructured and, because
of this, all discretization operators and resulting linear systems will be
in their most general forms. While theoretically attractive because of the
generality an unstructured approach offers, the computational cost car-
ried is normally massive. For problems where the geometry is spatially
stationary, grid generation can be done once and used in each time step.
However, if the problem has a geometry that changes over time, e.g. a
deforming water drop in oil, the grid generation has to be done for each
sub-time-step in the time integration method. Also, after generating the
grid, the linear systems resulting from discretization of the problem are
nowhere near as regular in their sparsity pattern and coefficient structure
as problems discretized using finite differences.

For the problems where it can be used, the immersed boundary method
takes the best from both worlds. Irregular geometries are represented
in the natural Lagrangian way; points in space, and surfaces/volumes
connecting the points. The PDEs of the problem are solved on an Eule-
rian grid, where all resulting linear systems have a nice structure. Any
time-dependent geometric features of the problem are only present in the
Lagrangian data, and a simple transformation between the Lagrangian
and Eulerian data is used to compute tho forces from the Lagrangian
structure to the Eulerian grid.

4.2.3. Derivation

This section gives a thorough derivation of the theory required to express
the immersed boundary method. It follows Peskin’s review paper of
the method, [32] together with [28] for a less abstract perspective on the
method. The result is a transformation between Lagrangian and Eulerian

33

data for a material immersed in a fluid. The transformation is shown to
preserve physical quantities like mass, momentum, torque, effect, force,
and energy. Here, capital letters are used for Lagrangian properties, while
lower case letters are used for Eulerian properties. This way, X is the
position of a Lagrangian point, while x is the position of an Eulerian grid
node.

The elastic material

Let (q, r, s) be curvilinear coordinates that describe an incompressible
elastic material filling a three-dimensional space. In this coordinate sys-
tem, integer values of (q, r, s) represent a Lagrangian material point3. Let
X(q, r, s, t) be the position of material point (q, r, s) at time t. Let M(q, r, s)
be the mass density of the material at (q, r, s) in such a way that∫

Q
M(q, r, s)dqdrds

is the mass of the material defined by (q, r, s) ∈ Q. Since we are mod-
eling an incompressible material, mass is time independent and mass is
conserved on a per material point basis.

Now, given a configuration of the material, X(·, ·, ·, t), we assume there
is a unique elastic potential energy. This energy is described by a func-
tional, E(X), meaning that E(X(·, ·, ·, t)) is the elastic potential energy at
time t.

Incompressibility in Lagrangian form

We now want to consider a perturbation of the position, X, and how it in-
fluences the energy functional. Denote a perturbation in X by ℘X(·, ·, ·, t),
then the accompanying perturbation in energy can always be expressed

3(q, r, s) can be viewed as coordinates into the data structure storing the variables of each
Lagrangian point. For a three-dimensional material, a three-dimensional array where
each element is a vector is used. In the actual code the domain is two and the interface
is one-dimensional.

4. Numerical methods

in the form

℘E(X(·, ·, ·, t)) =
∫
(−F(q, r, s, t)) · ℘X(q, r, s, t)dqdrds (4.79)

where F(·, ·, ·, t) is the Fréchet derivative of E at the material configuration
X(·, ·, ·, t). Physically, F can be interpreted as the force density resulting
from the elasticity of the material in the configuration X with respect to
(q, r, s). This agrees with the principle of virtual work[16, ch. 1], which
roughly can be summarized as: “For all possible trajectories a particle can
take in a potential field, the one taken will be a minimizer of the potential
energy.” A shorter way of expressing F is

F =
℘E
℘X

. (4.80)

We now have an elegant framework for expressing an elastic mate-
rial and its potential energy. Next we want to express the constraint of
incompressibility. Let

J(q, r, s, t) = det
(

∂X
∂q

,
∂X
∂r

,
∂X
∂s

)
(4.81)

be the volume density in such a way that the volume occupied by material
point (q, r, s) at time t is equal to∫

Q
J(q, r, s, t)dqdrds. (4.82)

Because of incompressibility, this should be constant for any choice of Q,
which is equivalent to

∂J
∂t

= 0. (4.83)

Because of this, we can drop the t argument and instead write J(q, r, s).
By the principle of least action [16, ch. 2], the system will evolve to

minimize the action of S,

S =
∫ T

0
L(t)dt, (4.84)

35

where L is the Lagrangian of the system. The minimization is constrained
by the incompressibility eq. (4.83) and initial and final conditions

X(q, r, s, 0) = X0(q, r, s), (4.85)
X(q, r, s, T) = XT(q, r, s). (4.86)

A Lagrangian is the difference between kinetic and potential energy. For
us it is

L(t) =
1
2

∫
M(q, r, s)

∣∣∣∣∂X
∂t

(q, r, s, t)
∣∣∣∣2 dqdrds− E(X(·, ·, ·, t)). (4.87)

For a perturbation we get

℘L(t) =
1
2

∫
M(q, r, s)

∣∣∣∣∂(℘X)

∂t
(q, r, s, t)

∣∣∣∣2 dqdrds− ℘E(X(·, ·, ·, t)).dt

(4.88)
We then integrate over time to get S, the quantity we want to minimize

℘S =
∫ T

0
℘L(t)dt

=
1
2

∫ T

0

∫
M(q, r, s)

∣∣∣∣∂(℘X)

∂t
(q, r, s, t)

∣∣∣∣2 dqdrdsdt

−
∫ T

0
℘E(X(·, ·, ·, t))dt.

We substitute eq. (4.79) for the last term in the above equation and get

℘S =
∫ T

0
℘L(t)dt

=
1
2

∫ T

0

∫
M(q, r, s)

∣∣∣∣∂(℘X)

∂t
(q, r, s, t)

∣∣∣∣2 dqdrdsdt

+
∫ T

0

∫
F(q, r, s, t) · ℘X(q, r, s, t)dqdrdsdt.

4. Numerical methods

The two integrands can now be collected:

℘S =
1
2

∫ T

0

∫
M(q, r, s)

∣∣∣∣∂(℘X)

∂t
(q, r, s, t)

∣∣∣∣2 + F(q, r, s, t) ·℘X(q, r, s, t)dqdrdsdt.

(4.89)
Applying integration by parts to the first term we get

℘S =
1
2

∫ T

0

∫ (
−M(q, r, s)

∂2X
∂t2 (q, r, s, t) + F(q, r, s, t)

)
·℘X(q, r, s, t)dqdrdsdt.

(4.90)
This is valid for arbitrary ℘X, but the perturbations are not arbitrary, they
must be consistent with the incompressibility constraint eq. (4.83). There
is no obvious way to enforce this constraint on eq. (4.90).

Incompressibility in Eulerian form

Incompressibility has a particularly nice form in Eulerian variables,

∇ · u = 0. (4.91)

Thus it is possible that a change to Eulerian variables would resolve this
difficulty.

To check this, we introduce two new quantities, the velocity field u and
the virtual velocity field v.

u(X(q, r, s, t), t) =
∂X
∂t

(q, r, s, t), (4.92)

v(X(q, r, s, t), t) = ℘X(q, r, s, t). (4.93)

u(X, t) is the familiar velocity field, while v(X, t) is the perturbation (dif-
ference from unperturbed velocity) experienced by a particle at position
X at time t.

The material derivative is also needed

Du
Dt

=
∂u
∂t

+ u · ∇u, (4.94)

37

and the identity
Du
Dt

=
∂2X
∂t2 (q, r, s, t). (4.95)

An insight is that the perturbations have to be incompressible not just
globally but also locally. That is, the density has to be both spatially and
temporally constant. Given this, substituting X + ℘X for X in J should
not change it up to first order terms of ℘X.

We introduce
a = (q, r, s) (4.96)

as a coordinate vector. Let

∂X
∂a

=

∂Xx
∂q

∂Xy
∂q

∂Xz
∂q

∂Xx
∂r

∂Xy
∂r

∂Xz
∂r

∂Xx
∂s

∂Xy
∂s

∂Xz
∂s

 . (4.97)

Using this we get a new way to write J,

J = det
(

∂X
∂a

)
. (4.98)

We want to see what happens when we perturb J, to do this we need the
following identity for perturbations of the determinant. Given that A is a
nonsingular square matrix, then

℘ log(det(A)) = Tr((℘A)A−1). (4.99)

Recall eq. (4.93). By differentiating on both sides with respect to a we
get

∂℘X
∂a

=
∂v
∂x

∂X
∂a

. (4.100)

By changing the order of perturbation and differentiation and multiplying

with
(

∂X
∂a

)−1
one arrives at (

℘
∂X
∂a

)
=

∂v
∂x

∂X
∂a

, (4.101)(
℘

∂X
∂a

)(
∂X
∂a

)−1

=
∂v
∂x

. (4.102)

4. Numerical methods

Now we take the trace on both sides

Tr

((
℘

∂X
∂a

)(
∂X
∂a

)−1
)

= Tr
(

∂v
∂x

)
. (4.103)

Substituting eq. (4.99) for the left-hand side gives

℘ log(det
(

∂X
∂a

)
) = Tr

(
∂v
∂x

)
. (4.104)

Inspecting eq. (4.97) we see that the trace on the right-hand side is noth-
ing but the divergence in Eulerian coordinates, we also insert J for the
derivative on the left-hand side and get

℘ log(J(q, r, s)) = ∇ · v(X(q, r, s, t), t). (4.105)

From this we can conclude that the incompressibility constraint in La-
grangian variables, ℘J = 0, is nothing but the familiar zero-divergence
constraint in Eulerian variables.

℘ log(J(q, r, s)) = 0, (4.106)
∇ · v(X(q, r, s, t), t) = 0, (4.107)

⇒ ∇ · v = 0. (4.108)

The same derivation can be done to the velocity field u and it yields the
same constraint,

∇ · u = 0. (4.109)

Transforming between Lagrangian and Eulerian variables

We can now start expressing the relationship between Lagrangian and
Eulerian variables. To translate between the two, the defining property of
the delta function is needed,∫

δ(x− x0) f (x) = f (x0). (4.110)

If we want to express eq. (4.90) in Eulerian variables, we will need to
convert perturbed position and acceleration times perturbed position. The

39

relationship between the Lagrangian perturbed position, virtual velocity,
and the Eulerian virtual velocity can, using a 3-dimensional delta function,
be written

℘X(q, r, s, t) =
∫

v(x, t)δ(x− X(q, r, s, t))dx. (4.111)

Multiplying with the acceleration on both sides and using the identity
eq. (4.95) we get

∂2X
∂t2 (q, r, s, t) · ℘X(q, r, s, t) =

∫ Du
Dt

(x, t) · v(x, t)δ(x− X(q, r, s, t))dx.

(4.112)
Substitute eq. (4.111) and eq. (4.112) into eq. (4.90) gives

0 =
1
2

∫ T

0

∫ ∫ (
−M(q, r, s)

Du
Dt

(x, t) + F(q, r, s, t)
)

· v(x, t)δ(x− X(q, r, s, t))dxdqdrdsdt.
(4.113)

There are still Lagrangian variables left in the expression, namely M and
F. Using the same delta function technique one can define

ρ(x, t) =
∫

M(q, r, s)δ(x− X(q, r, s, t))dqdrds, (4.114)

f (x, t) =
∫

F(q, r, s, t)δ(x− X(q, r, s, t))dqdrds, (4.115)

which is the Eulerian mass density and elastic force density, respectively.
Looking at eq. (4.113) we can substitute in eq. (4.114) and eq. (4.115),
getting rid of the integral over q, r, s,

0 =
1
2

∫ T

0

∫ (
−ρ(x, t)

Du
Dt

(x, t) + f (x, t)
)
· v(x, t)dxdt. (4.116)

Equation (4.116) now only contains Eulerian variables. It holds for
arbitrary v as long as they are within the constraints given,

v(x, 0) = 0, (4.117)
v(x, T) = 0, (4.118)
∇ · v = 0. (4.119)

4. Numerical methods

Using Helmholtz-Hodge decomposition, theorem 4.1.1, we can always
write an arbitrary vector field as the sum of a gradient and a divergence-
free vector field. We use this on the first part of the integrand in eq. (4.116):

ρ
Du
Dt
− f = −∇p + w (4.120)

∇ ·w = 0 (4.121)

Now, if w = 0, this would be the incompressible Navier-Stokes equations
without viscosity effects. To check if this is true we use the freedom in v
to choose

v(x, t) = ξ(t)w(x, t). (4.122)

Since ∇ ·w = 0 this satisfies the constraints, eq. (4.119), on v as long as
ξ(0) = ξ(T) = 0. Going forward we choose

ξ(t) > 0 ∀t ∈ (0, T), (4.123)

which inserted into eq. (4.116) gives

0 =
∫ T

0
ξ(t)

∫
(−∇p(x, t) + w(x, t)) ·w(x, t)dxdt. (4.124)

Since ∇ ·w = 0, the term with ∇p disappears and the integral ends up as

0 =
∫ T

0
ξ(t)

∫
|w(x, t)|2 dxdt. (4.125)

The only way for this to be true if ξ(t) > 0 is if w = 0.

Summary

To sum up, we have the following equations for the immersed boundary
formulation of an incompressible elastic material. The viscosity, which

41

was left out, is added assuming a Newtonian fluid.

ρ

(
∂u
∂t

+ u · ∇u
)
+∇p = µ∇2u + f , (4.126)

∇ · u = 0, (4.127)

ρ(x, t) =
∫

M(q, r, s)δ(x− X(q, r, s, t))dqdrds, (4.128)

f (x, t) =
∫

F(q, r, s, t)δ(x− X(q, r, s, t))dqdrds, (4.129)

∂X
∂t

(q, r, s, t) = u(X(q, r, s, t), t)

=
∫

u(x, t)δ(x− X(q, r, s, t)dx, (4.130)

F = − ℘E
℘X

. (4.131)

In the previous section, the immersed boundary equations for a viscous
elastic material filling all of the domain was derived. If the material does
not fill the whole domain, but is immersed in a fluid, the equations have
to be modified. The key change is that the mass term M in eq. (4.128)
must be modified to account for the buoyancy force experienced when
submerged in the fluid.

Another important case is when the material is an interface, e.g. a
balloon filled with water, immersed in water. This interface only needs two
variables to be parametrized, (r, s), which changes eq. (4.128)-eq. (4.130)
to

ρ(x, t) = ρ0 +
∫

M(r, s)δ(x− X(r, s, t))drds, (4.132)

f (x, t) =
∫

F(r, s, t)δ(x− X(r, s, t))drds, (4.133)

∂X
∂t

(r, s, t) = u(X(r, s, t), t) =
∫

u(x, t)δ(x− X(r, s, t)dx, (4.134)

where ρ0 is the density of the fluid the material is immersed in. Note that
since a surface has no volume, it does not displace any fluid, and one

4. Numerical methods

thus does not have to take into account the buoyancy force and M is not
modified. δ is still three-dimensional, but in the integral for ρ and f , only
two dimensions are integrated. Because of this, ρ and f are distributions,
similar to a one-dimensional delta function that when integrated normally
to the surface takes the appropriate value. It is common to call the opera-
tions taking a Lagrangian value and distributing it over the Eulerian grid
“spreading”. This makes eq. (4.132) and eq. (4.133) spreading equations.
Operations that construct a value for a Lagrangian point from an Eulerian
field are called interpolating, such as eq. (4.134).

4.2.4. Discretization of space

Up to now we have only discussed how to derive Eulerian variables from
Lagrangian ones and vice-versa. We will now start the discretization of
these equations, leading to a numerical method that can be implemented
on a computer. The basic idea is this: Take eq. (4.126)-eq. (4.131), ap-
proximate integrals as discrete sums and the delta functions as smooth
approximations of a delta function. Derivatives are approximated by finite
difference stencils on the Lagrangian grid. Note that in this section ∆ is
used to symbolize a discretized version of continuous variables, e.g. δ∆
and as grid distance in Eulerian and Lagrangian coordinates.

The Eulerian grid g∆ is the standard, orthogonal, uniform grid of the
form

x = j∆ (4.135)
j = (j1, j2, j3).

where the j vector is an integer index vector for the coordinates 4. The La-
grangian grid is a set, G∆, of integer vectors (q, r, s) of the form (kq∆q, kr∆r, ks∆s),
where (kq, kr, ks) = k. If the distance between two Lagrangian points is
too big, the discrete spreading operations will not approximate the con-
tinuous versions correctly. Because of this we have to demand that two

4the j vector uniquely specifies one grid node in the data structure storing the variables
on the Eulerian grid.

43

Lagrangian points never are further apart than 1/2 Eulerian grid cell,

|X(q + ∆q, r, s, t)− X(q, r, s, t)| < ∆
2
∀(q, r, s, t) (4.136)

and similarly for ∆r and ∆s.
In the continuous form, the functional for the elastic potential energy is

normally an integral over a local energy density E . In the discrete case the
integral is approximated by a sum as follows

E∆ = ∑
k′
Ek′(. . . Xk . . .)∆q∆r∆s. (4.137)

Perturbing this functional, we get

℘E∆ = ∑
k

∑
k′

∂Ek′

∂Xk
· ℘Xk∆q∆r∆s. (4.138)

If we let

Fk = −∑
k′

∂Ek′

∂Xk
, (4.139)

this can be written

℘E∆ = −∑
k

Fk · ℘Xk∆q∆r∆s. (4.140)

Looking at eq. (4.139) we see that it is equivalent to

Fk∆q∆r∆s = − ∂E∆

∂Xk
, (4.141)

which is the force acting on the material point (q, r, s). By a similar
argument if M∆ is the mass density of point (q, r, s) the actual mass is
M∆∆q∆r∆s.

Given a discretization of the Navier-Stokes equations, sections 4.1.1
to 4.1.2, and a smooth approximation to the delta function

lim
∆→0

δ∆ = δ (4.142)

4. Numerical methods

that obeys certain criteria, which will be discussed in section 4.2.6, we
can now define the discrete versions of the spreading and interpolating
equations

ρ(x, t) = ∑
(q,r,s)∈G∆

M(q, r, s)δ∆(x− X(q, r, s, t))∆q∆r∆s, (4.143)

f (x, t) = ∑
(q,r,s)∈G∆

F(q, r, s, t)δ∆(x− X(q, r, s, t))∆q∆r∆s, (4.144)

dX
dt

(q, r, s, t) = ∑
x∈g∆

u(x, t)δ∆(x− X(q, r, s, t)∆3, (4.145)

F = − ∂

∂X(q, r, s)
E∆(. . . X(q′, r′, s′) . . .) (4.146)

This is a system of ordinary differential equations, with x ∈ g∆ and (q, r, s)
and (q′, r′, s′) ∈ G∆ which can be integrated with a Runge-Kutta method,
see section 4.1.3. The code calculating eq. (4.146) is listed in listing 5.
Spreading of forces, eq. (4.144) is in listing 12. Finally the interpolation of
velocities to Lagrangian points, eq. (4.145), is in listing 9 and listing 4.

4.2.5. Physical identities

If eqs. (4.143) to (4.146) are to be correct, physical quantities should be the
same before and after being converted between Lagrangian and Eulerian,
and vice versa.

We start with the Eulerian form of momentum

∑
x∈g∆

ρ(x, t)u(x, t)∆3 (4.147)

= ∑
x∈g∆

∑
(q,r,s)∈G∆

M(q, r, s)δ∆(x− X(q, r, s, t))∆q∆r∆su(x, t)∆3

(4.148)

= ∑
(q,r,s)∈G∆

M(q, r, s)
dX
dt

(q, r, s, t)∆q∆r∆s, (4.149)

which is the Lagrangian form of momentum. This means that momentum
is conserved trough the transformation. Here, first we used eq. (4.143) and

45

then eq. (4.145). One important note is that if the spreading and interpolat-
ing operations use different δ, this identity does not hold. This is important
because no momentum should be created or destroyed when transforming
the representation of the physical system. The exact same argument can
be used to see that the effect from the elastic force is preserved.

Next we consider mass. To do this we need to enforce some properties
on the approximate delta function,

∑
x∈g∆

δ∆(x− X)∆3 = 1 ∀X, (4.150)

∑
x∈g∆

(x− X)δ∆(x− X)∆3 = 0 ∀X, (4.151)

∑
x∈g∆

xδ∆(x− X)∆3 = X ∀X. (4.152)

All of these properties are true for δ, and should thus also be true for a
good approximation δ∆. Setting up the Eulerian equation for mass we
have

∑
x∈g∆

ρ(x, t)∆3 (4.153)

= ∑
x∈g∆

∑
(q,r,s)∈G∆

M(q, r, s)δ∆(x− X(q, r, s, t)))∆q∆r∆s ∆3, (4.154)

= ∑
(q,r,s)∈G∆

M(q, r, s)∆q∆r∆s. (4.155)

Here we used eq. (4.143) and then eq. (4.150), interestingly this binds the
time varying ρ(x, t) to the constant ∑ M meaning that mass is conserved.
The same can be done for the force:

∑
x∈g∆

f (x, t)∆3 (4.156)

= ∑
x∈g∆

∑
(q,r,s)∈G∆

F(q, r, s, t)δ∆(x− X(q, r, s, t)))∆q∆r∆s ∆3, (4.157)

= ∑
(q,r,s)∈G∆

F(q, r, s, t)∆q∆r∆s. (4.158)

4. Numerical methods

Lastly, using eq. (4.152), we can show that torque is converted consistently

∑
x∈g∆

x× f (x, t)∆3 (4.159)

= ∑
x∈g∆

∑
(q,r,s)∈G∆

x× F(q, r, s, t)δ∆(x− X(q, r, s, t)))∆q∆r∆s ∆3,

(4.160)

= ∑
(q,r,s)∈G∆

X(q, r, s, t)× F(q, r, s, t)∆q∆r∆s. (4.161)

4.2.6. The delta function, δ∆

In the previous sections we have referred to a smooth approximate delta
function, δ∆, several times, without specifying further. This section studies
the properties and the derivation of the delta function.

First, we assume that the 3D delta function is the product of three
one-dimensional delta functions:

δ∆(x) =
1

∆3 γ

(
[x]x

h

)
γ

(
[x]y

h

)
γ

(
[x]z

h

)
. (4.162)

With this we can now focus on the function γ(r) and its properties. Fol-
lowing [32, sec. 6] they are

γ(r) is continuous ∀ r ∈ R, (4.163)
γ(r) = 0 for |r| ≥ 2, (4.164)

∑
j even

γ(r− j) = ∑
j odd

γ(r− j) =
1
2
∀ r ∈ R, (4.165)

∑
j
(r− j)γ(r− j) = 0 ∀ r ∈ R, (4.166)

∑
j
(γ(r− j))2 = C ∀ r ∈ R, (4.167)

where C is independent of r.
These postulates have different justification. First, composing the three-

dimensional delta function from one-dimensional delta functions, eq. (4.162),

47

reduces the complexity a lot, while it preserves the essential property that
lim∆→0 δ∆ = δ. The first property of the one-dimensional delta function,
continuity, makes sense in that one wants a smooth approximation of the
delta function, and that it does not introduce any jump in the Eulerian
grid as a point moves around. Equation (4.164) stems from a very practical
need, being computationally effective. Because of this bounded support,
each Lagrangian point has a finite radius of effect in the Eulerian grid.
Equation (4.165) implies

∑
j

γ(r− j) = 1 ∀ r ∈ R, (4.168)

which implies eq. (4.150) which is needed to derive the identities for mass,
torque and force in section 4.2.5. Equation (4.166) is needed for the identity
eq. (4.150) which is part of the derivation of torque in section 4.2.5. The
last property, eq. (4.167) is coming from the fact that ideally, the immersed
boundary should be translation invariant with respect to its effect on
the Eulerian grid. It can be proven that this is impossible with compact
support. In [32, sec. 6] it is shown that eq. (4.167) results in a good
approximation to translation invariance.

One interesting fact about these postulates, is that they together uniquely
identify a single delta function, derived in [32, sec. 6],

γ(r) =

0, r ≤ −2
1
8

(
5 + 2r−

√
−7− 12r− 4r2

)
, −2 ≤ r ≤ −1

1
8

(
3 + 2r +

√
1− 4r− 4r2

)
, −1 ≤ r ≤ −0

1
8

(
3− 2r +

√
1 + 4r− 4r2

)
, 0 ≤ r ≤ 1

1
8

(
5− 2r−

√
−7 + 12r− 4r2

)
, 1 ≤ r ≤ 2

0, 2 ≤ r.

(4.169)

This is quite different to most other diffuse-interface methods where it is
not clear which delta function is the most appropriate. The code for the
delta function is in listing 15.

4. Numerical methods

Discretizing the immersed boundary to get interface tension

As we have seen, the immersed boundary method can express the coupling
between an immersed elastic membrane and the fluid it is immersed in.
We will now take a closer look at what physical phenomena this enables
us to simulate. We derive ordinary surface tension using the results from
section 3.2.1. Then the results from section 3.2.2 is discretized to get a
general viscoelastic tension.

4.2.7. Deriving surface tension for the immersed boundary method

The immersed boundary elements are Lagrangian, so the natural way of
thinking about them is from a standard rigid body, Newtonian physics
perspective. Calculate all forces acting on each segment, and move it
according to the sum of these forces. In the most general way, every force
acting on the immersed boundary must follow this framework:

u̇i =
1

mi
∑ Fi, (4.170)

where u̇i is the acceleration, mi is the mass and Fi is the force force
interface segment i. From section 3.2.1, we know that given two fluids
surface tension is only a function of the shape of the surface. Thus, for a
linear segment of the interface, the only variables are the pressure on each
side, and the size and orientation of the segment. The pressure force is
proportional to area and acts normal to the surface. Thus the force on each
segment must be the area of the surface element times the difference in
pressure

Fi = (p1,i − p2,i)Aini, (4.171)

where ni is a unit-normal vector to the segment i, pointing towards phase
2. The surface elements themselves have a defined length, position, curva-
ture, equilibrium length and equilibrium curvature. There is no notion of
pressure for the interface itself. This makes physical sense, as the pressure
is discontinuous over the interface and thus the interface pressure is not
defined. To calculate the forces on the elements, an expression for the

49

pressure jump is needed. This is where eq. (3.21) comes in. Substituting it
for the pressure in eq. (4.171) gives

Fi = σiκi Aini. (4.172)

Interestingly this is a discrete version of the expression arrived at in
eq. (3.21), although a completely different path was taken to derive it.
This shows how the immersed boundary method can provide a solid
mathematical framework for describing any surface interacting with a
fluid.

The only thing missing now is the density, which is simply

ρ1,i + ρ2,i

2
. (4.173)

The final equation which is the one used in the code as a force contribution
in the Poisson equation is as follows

u̇i =
σiκi Ai

1/2(ρ1,i + ρ2,i)
ni. (4.174)

4.2.8. Generalized viscoelastic interface for immersed boundary method

Stretching and compression is implemented using the fully general tension
eq. (3.32) and eq. (3.30) relating this tension to a force density.

Let
‖X‖k

i = ‖Xk − Xi‖ (4.175)

be the Euclidean distance between Lagrangian points i and k. Discretizing
eq. (3.32) gives the following expression for the tension at point i:

Ti = Ka,i

(
‖X‖i+1

i + ‖X‖i
i−1

ei + ei−1
− 1

)
+ σi, (4.176)

where ei is the equilibrium length between point Xi and Xi+1. Ka,i is the
spring constant, and σi the surface tension of segment i. Using this, the

4. Numerical methods

tension for each Lagrangian point along the boundary is computed. This
is then used in a discretized version of eq. (3.30),

fi =
Ti+1 − Ti−1

2
τi + Ti

‖X‖i+1
i + ‖X‖i

i−1

2
κn. (4.177)

The equivalent code can be seen in listing 5.
One nice thing about this approach is that it encapsulates all the surface

effects we need to simulate in one coherent framework. It is able to simu-
late constant and varying surface tension, as well as an elastic membrane
effect. If, say, the elasticity of the material is a function of temperature,
this is trivially added, only one line of code has to be changed. This way,
new forces from physics can be added in an easy manner by modifying
eq. (4.176).

4.2.9. CFL condition

Following [18, sec 3.8] we have the following convective CFL number

CFLc = ∆t
(
|ux|
∆x

+
|uy|
∆y

)
≤ 1, (4.178)

and a viscous CFL number given by

CFLv = ∆t
(

max
(

µ1

ρ1
,

µ2

ρ2

)(
2

(∆x)2 +
2

(∆y)2

))
≤ 1. (4.179)

An added force f , e.g. surface tension, can be taken into account using the
relation

∆t
2

(
(CFLc + CFLv) +

√
(CFLc + CFLv)2 +

4| fx|
∆x

+
4| fy|
∆y

)
≤ 1 (4.180)

From eq. (4.144) we have that

f ∝ Fδ∆ (4.181)

51

where F is a force density on the interface. As δ∆ ∝ 1
∆x

eq. (4.180) can be
written

∆t
2

(
(CFLc + CFLv) +

√
(CFLc + CFLv)2 +

4|Fx|
(∆x)2 +

4|Fy|
(∆y)2

)
≤ 1.

(4.182)
Equation (4.178), eq. (4.179) and eq. (4.182) are used in the code to de-
termine the appropriate time step restriction when using dynamic time
stepping. This helps a lot for simulating time dependent problems since
several of the simulations have a big temporal variation in both convective
and surface force CFL numbers, as potential energy from the immersed
boundary is converted into kinetic energy in the flow field and vice versa.
This calculation is done in the end of the function in listing 5

4.2.10. Computing the level-set function from the immersed boundary

When using both the immersed boundary method and the ghost-fluid
method to calculate interface forces, special care has to be taken to make
the methods consistent. The following technique is proposed. The geome-
try is completely determined by the Lagrangian points along the interface.
In each sub time-step, the shortest distance from the Eulerian points to
the Lagrangian boundary is computed. In other words, we compute the
level-set function purely from the immersed boundary.

This has several advantages. First, advection is moved from the level-set
function to the immersed boundary. When no advection of the level-set
function is required, it is no longer needed to reinitialize it, eq. (4.52), or
extrapolate the velocity, eq. (4.50). These routines are costly, and their
saving leads to a 25% reduction in wall clock run time for two-phase
simulations. Second, using this, the level-set function is always the best
possible approximation to the exact signed distance function for the given
Eulerian grid. Third, given equal initial conditions for the immersed
boundary and the level-set field, the two descriptions of the interface will
not be consistent with respect to each other, meaning that after some time,
t, the advection of the level-set function and the Lagrangian points will

4. Numerical methods

not be exactly the same 5. This is highly problematic because the singular
interface forces will appear at two different interfaces rather than one. This
inconsistency disappears when reinitializing the level-set function from
the immersed boundary at every sub-step.

The algorithm for reinitialization is as follows. For each line segment on
the Lagrangian boundary, compute its bounding box. Grow the bounding
box such that it contains the biggest stencil, 4δ. For each grid node inside
the bounding box, compute the distance to the line segment and whether
the point is inside or outside the closed interface. If the current distance
is the smallest distance found, save it with sign according to if the grid
cell is inside or outside the boundary. For point to line distance, well
known formulas are used, and to calculate if a grid cell is inside or outside
the boundary, a point-inside-polyhedron algorithm, commonly used in
computer graphics is used. The idea behind the algorithm is beautifully
simple: Given an arbitrary point that is either inside or outside a closed
polyhedron. If one travels on a ray from infinity to the point, one will cross
the surface of the polyhedron an odd number of times if it is inside the
polyhedron, and an even number of times if it is not. Using this algorithm
together with the distance to the line segment gives an algorithm for
computing the level-set function in a narrow band around the immersed
boundary. The overall algorithm can be seen in listing 6, the distance
from line segment to point in listing 7 and the inside outside algorithm in
listing 8.

4.2.11. Implementation details

When implementing the immersed boundary method, certain choices
have to be made regarding where different quantities are stored in the
discretization, much in resemblance to how vector and scalar quantities
are stored on staggered and collocated grids in many CFD simulations.

5The reason for this is that the immersed boundary points can have sub grid details. This
means that inside a grid-cell there will be differences between the level-set and the
immersed boundary. Over time these will grow bigger than one grid cell because of
advection. At this point the two interface descriptions are not consistent with each
other.

53

κi−2

κi−1

κi κi+1

κi+2li−2

li−1

li
li+1

ni−2

ni−1

ni ni+1

ni+2

Figure 4.2.1.: Part of immersed boundary grid showing where different
values are located.

Figure 4.2.1 shows the immersed boundary elements around index i to-
gether with their different properties, and where they are defined. The
cubic spline fitted to the points is only evaluated at the knot points. Be-
cause of this curvature is only available at the nodes. The same applies to
the normal vectors, which are directly calculated from the first derivative
of the spline at the knot points. On the other hand, line segments are
computed as the difference in position between two adjacent nodes. This
means that lengths are defined on the segments, and not on the nodes.
Because the grid is staggered, interpolation will have to take place at some
point. Note that the cubic spline going trough the points is not shown
here, although it is used to derive the curvature, κ, and the normal vectors
n.

One of the fundamental decisions of the implementation was the usage
of cubic splines to generate a smooth analytic parametrization of the
interface. The main advantage of this is that properties like derivatives,
curvatures, tangents and normal vectors are all naturally defined for a
cubic spline, while for a line segment, one has to resort to approximate
difference formulas that span several nodes to recover the same values.
The previously mentioned staggering can be seen in fig. 4.2.1. Unit normal
vectors and curvature are defined at the nodes, while segment-lengths
are derived as the difference in node position and thus defined on the

4. Numerical methods

segments between the nodes. This leads to problems when computing
forces on the boundary because all variables have to be collocated to
compute the force. One apparent solution to this staggering would be
to evaluate the curvature and normal vectors of the cubic spline not at
the control points, but rather at the midpoints, with respect to arc-length,
between each control point. In this way, all properties would be centered
on the line segment midpoint, and the staggering would disappear. There
is, however, a catch. To do this, knowledge of the length of the cubic spline
is needed. Between the control points, the spline is parametrized as

fi(t) = (xi(t), yi(t)), (4.183)

xi(t) = aix + bixt + cixt2 + dixt3, (4.184)

yi(t) = aiy + biyt + ciyt2 + diyt3, (4.185)

(4.186)

where f (t = 0) = pi and f (t = 1) = pi+1. To find the midpoint, a
mapping,

t = m
(

s
si

)
, (4.187)

is needed. Here s is an arc-length along the cubic spline from point i to
i + 1, si is the total arc-length of the cubic spline between point i and i + 1
and m(s

si
) is the value of t such that p = f (m(s

si
)) is the midpoint with

respect to arc-length along the spline. There are two issues with creating
this mapping. First, calculating the arc length, si, requires evaluation of a
non-trivial elliptic integral. Second, the mapping m is the inverse of this
elliptic integral so that the arc length ratio can be mapped to the parameter
t. Because of this, the idea was not pursued further as it would incur a
considerable cost, both for implementation and computational time with
only questionable gain in accuracy. After all, the existing framework is
only of first order, calculating a higher order solution for the immersed
boundary itself would not enhance the simulation as other discretization
errors are dominating.

The end result was that splines are only evaluated at points t = 0,
where they coincide with the control points, and thus have a priori known

55

positions. Lengths of line segments are derived from the length between
control points, and not arc length on the spline, while curvature and
unit normal vectors are derived analytically from the cubic spline. The
calculation of this can be seen in listing 32.

4.3. Cubic splines

An arbitrary, closed, parametric curve in two dimensions can be written
in the form

γ(s) = (x(s), y(s)), s ∈ [0, S] (4.188)

where x(s) and y(s) are the x and y coordinates of the curve. s runs from
the start of the curve, s = 0 to the end, s = S. Since the curve is closed

(x(0), y(0)) = (x(S), y(S)). (4.189)

We see that if we can determine the one-dimensional functions x(s)
and y(s), the two-dimensional curve is completely determined. Thus,
following [3], it is enough to consider the one-dimensional problem.

Given n + 1 values, {y0, y1, . . . , yn}, at regular intervals, ∆x, a cubic
spline is a piece-wise third-order polynomial that goes through all the
points, (i∆x, yi), in order, has a smooth first derivative, and a continuous
second derivative. For our purposes we can assume that ∆x = 1 which
makes s run from i to i + 1 on spline segment i. For convenience we define
a local parameterization,

t = s− i ∈ [0, 1]. (4.190)

The ith segment of the spline is represented by

Yi(t) = ai + bit + cit2 + dit3 (4.191)

where t is in the domain [0, 1] and i = 0, . . . , n− 1. Then

Yi(0) = yi = ai, (4.192)
Yi(1) = yi+1 = ai + bi + ci + di. (4.193)

4. Numerical methods

The derivative of yi(t) at each interval gives

Y′i (0) = bi = Ei, (4.194)
Y′i (1) = bi + 2ci + 3di = Ei+1, (4.195)

where Ei and Ei+1 are unknowns. Solving eqs. (4.192) to (4.195) for
ai, bi, ci, di we get

ai = yi (4.196)
bi = Ei (4.197)
ci = 3(yi+1 − yi)− 2Ei − Ei+1 (4.198)
di = 2(yi − yi+1) + Ei + Ei+1 (4.199)

A requirement for the curve is that it is continuous and that the first and
second derivatives should match at the knot points

Yi−1(1) = yi. (4.200)
Yi(0) = yi, (4.201)

Y′i−1(1) = Y′i (0), (4.202)
Y′′i−1(1) = Y′′i (0). (4.203)

Because of periodicity we have

Yn(1) = y0. (4.204)
Y0(0) = y0, (4.205)
Y′n(1) = Y′0(0), (4.206)
Y′′n (1) = Y′′0 (0). (4.207)

This leaves us with 4n equations for 4n unknowns which can be ex-

57

pressed as a linear system

AE = f

4 1 1
1 4 1

1 4 1
.

1 4 1
1 4 1

1 1 4

E1
E2
E3
...

En−2
En−1
En

= 3

(y2 − yn)
(y3 − y1)
(y4 − y2)

...
(yn−1 − yn−3)
(yn − yn−2)
(y1 − yn−1)

. (4.208)

By solving this linear system for E one can compute Yi(t) using eqs. (4.196)
to (4.199) and eq. (4.191).

By creating two one-dimensional splines, Yi(t) and Xi(t) and composing
them

γi(t) = (Xi(t), Yi(t)), t ∈ [0, 1] (4.209)

we get a full two-dimensional cubic spline. The code performing the above
operations and calculating the spline coefficients is listed in listing 26. For
axisymmetric flow instead of a periodic spline a normal cubic spline is
needed. The calculation of this is done in listing 27.

Curvature of a spline

As previously mentioned, the two-dimensional cubic spline is a parametric
smooth curve where each segment of the curve, from (xi, yi) to (xi+1, yi+1),
is parametrized by

γi(t) = (xi(t), yi(t)), (4.210)

xi(t) = axi + bxit + cxit2 + dxit3, (4.211)

yi(t) = ayi + byit + cyit2 + dyit3. (4.212)

Being cubic polynomials, both the x and y directions have analytical

4. Numerical methods

expressions for both the first and second derivatives given by

xi(t)′ = bxi + 2cxit + 3dxit2, (4.213)
xi(t)′′ = 2cxi + 6dxit. (4.214)

(4.215)

The signed curvature of a parametric curve, γ(t) = (x(t), y(t)), in two
dimensions, is given by

κ =
x′y′′ − y′x′′

(x′2 + y′2)3/2 . (4.216)

Using this one can efficiently compute the curvature of the spline. In
addition, if one is only interested in the curvature at the control points,
then t = 0 and the derivatives are even simpler,

x′i = bxi, (4.217)
x′′i = 2cxi. (4.218)

(4.219)

When simulating using axisymmetry, even though the computational
domain is two dimensional, the physics is three dimensional. This changes
how curvature is computed. For a two dimensional surface embedded in
3D space, a different measure of curvature is needed. This can easily be
seen by plotting a saddle function. Depending on which direction one is
looking, the curvature at the saddle point can be both positive, negative or
zero. As we saw in the derivation of surface tension in section 3.2.1 in 3D
we need to compute the mean curvature, which is the mean between the
minimum and the maximum curvature at a point. Using [35] the following
relation was found. Given a parametrization of a surface of revolution

x(θ, t) = φ(t) cos(θ) (4.220)
y(θ, t) = φ(t) sin(θ) (4.221)
z(θ, t) = Ψ(t). (4.222)

59

where t is the parameter along the spline and θ is the angle of rotation.
The mean curvature is given by

κ =

φ
(

∂2φ
∂t2

∂Ψ
∂t −

∂φ
∂t

∂2Ψ
∂t2

)
− ∂Ψ

∂t

(
∂φ
∂t

2
+ ∂φ

∂t
2
)

2|φ|
(

∂φ
∂t

2
+ ∂Ψ

∂t
2
)3/2

(4.223)

The code for calculating the curvature of a spline is listed in listing 29.
Also, the alternative method of using an osculating circle is available in
listing 30, but only used for comparison with the spline method.

Numerical performance of curvature estimate using cubic splines

A test was set up to evaluate the performance of the curvature calculation
based on splines versus a naive three-point circle estimate. The most
naive way of calculating the local curvature of a function is to take three
successive points on the curve, draw the circle that is defined by those
three points, calculate the radius of the circle, and then the curvature.

The radius of a circle that passes trough three points,

P = {(xi, yi), i ∈ {1, 2, 3}}, (4.224)

is given by

r(P) =

√(
(x2 − x1)

2 + (y2 − y1)
2
) (

(x2 − x3)
2 + (y2 − y3)

2
) (

(x3 − x1)
2 + (y3 − y1)

2
)

2 |x1 y2 + x2 y3 + x3 y1 − x1 y3 − x2 y1 − x3 y2|
.

(4.225)
The curvature is defined as

κ =
1

r(P) . (4.226)

This method was compared to the more elaborate method using splines
explained in section 4.3. The test function was chosen to be

y(x) = sin(x), x ∈ [0, π]. (4.227)

4. Numerical methods

Which has an exact solution for the curvature

κ =
|y′′|

(1 + y′2)3/2 =
| − sin(x)|

(1 + cos2(x))3/2 =
| sin(x)|

(1 + cos2(x))3/2 . (4.228)

The function was discretized with n points, n = 8× 2i, i ∈ 0 . . . 9, and
the L1, L2 and L∞ errors of the two methods were compared in fig. 4.3.1.
We observe a difference in the error for the two methods, but it is not very
pronounced. Interestingly the L2 error is of order 2.5 while L1 and L∞ is
of order 2. This test does not seem to justify the usage of splines, as it is
much more complicated implementation wise.

The above tested function, sin(x), is a good example of a smooth, easy
to approximate, function. The interfaces we are interested in, are not this
smooth, they are crumpled, have dimples and kinks. Because of this a
more demanding test function was investigated,

sin
(

1
x

)
, x ∈ [0.2, 0.3], (4.229)

which can be seen in fig. 4.3.2. The tricky part of this function is at x ≈ 0.21.
Here, the function is has a large curvature. This can be seen as a spike
for the dashed line in fig. 4.3.2. The curvature was estimated using both
a cubic spline and a three-point circle. The errors of the two estimates is
shown in fig. 4.3.3. Here, there is a much more distinct difference between
the circle and the cubic spline estimates. They are both of the same order,
and the L2 norm still shows a 2.5 order, but the relative difference in error
almost 2 orders of magnitude. This much more clearly advocates the usage
of splines. This conclusion was also strengthened later, in experiments,
where a test case using three-point circle for estimating curvature would
compute extreme curvature values making the simulation blow up, while
cubic splines gave no such problems.

Modified Thomas Algorithm

For each sub-time step in the code, the curvature information is required
to compute the forces from the immersed boundary on the fluid. For

61

10−3 10−2 10−1
10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

h

L 1 h2

h2.5

Spline L1
Spline L2
Spline L∞
Circle L1
Circle L2
Circle L∞

Figure 4.3.1.: Convergence of curvature estimates for the first test case,
sin(x).

4. Numerical methods

0.2 0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.3
−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

x

si
n(

1 x
)

0

100

200

300

400

κ
(s

in
(

1 x
))

Figure 4.3.2.: The function sin(1
x), solid line, and the curvature of

κ(y(x)) = κ(sin(1
x)), dashed line. Note the difference in

scales for the left and right y-axis. The function has a large
curvature around x ≈ 0.21.

63

10−3 10−2 10−1

10−8

10−6

10−4

10−2

100

102

104

h

L 1 h2

h2.5

Spline L1
Spline L2
Spline L∞
Circle L1
Circle L2
Circle L∞

Figure 4.3.3.: Convergence of curvature estimates for the second test case,
sin(1

x). Figure 4.3.1 shows the function and its curvature.

4. Numerical methods

accurate curvature estimates, as seen in the previous section, a cubic
spline is needed. This means that a cubic spline has to be computed often,
and an efficient algorithm is favourable.

Recall the linear system eq. (4.208). It is almost tridiagonal, but because
of the periodicity it has a bandwidth equal to its dimension, N. Had it
been tridiagonal it would have been straightforward to solve it utilizing
the Thomas algorithm, forward-backward substitution, which is an O(N)
algorithm. Luckily, for this special kind of periodic tridiagonal matrix, a
reduction can be made [43, Algorithm 4, p. 320].

Given a symmetric, diagonally dominant, constant coefficient, periodic,
system of the form

Ax = b

λ 1 1
1 λ 1

1 λ 1
.

1 λ 1
1 λ 1

1 1 λ

x1
x2
x3
...

xn−2
xn−1
xn

= 3

b1
b2
b3
...

bn−2
bn−1
bn

, (4.230)

let E be the resulting matrix removing the first row and column of A.
Define

f̂ =

1
0
...
0
1

 , x̂ =

x2
x3
...

xn−1
xn

 , b̂ =

b2
b3
...

bn−1
bn

 , (4.231)

all being vectors of dimension n− 1.
Now suppose that we know the value of x1, then the reduced system

65

can be written

Ex̂ = b̂− f̂ x1 (4.232)

λ 1
1 λ 1

1 λ 1
.

1 λ 1
1 λ

x2
x3
...

xn−1
xn

 =

b2
b3
...

bn−1
bn

−

1
0
...
0
1

 x1. (4.233)

This is a tridiagonal system that can be solved efficiently with the
Thomas Algorithm. The only thing stopping us is the unknown value of
x1.

Let r = (r1, r2, . . . , rn) denote the first row of A−1. Given this x1 is
computable by the dot product

x1 = r · b (4.234)

x1 =
n

∑
i=1

ribi (4.235)

Because A is a symmetric periodic matrix, so is A−1, thus

ri = rn+2−i, 2 ≤ i ≤ n. (4.236)

Let m = b n+1
2 c, the floor of n+1

2 , then eq. (4.235) can be rewritten

x1 = r1b1 +
m

∑
i=2

ri(bi + bn+2−i), if n is odd (4.237)

x1 = r1b1 + rm+1bm+1 +
m

∑
i=2

ri(bi + bn+2−i), if n is even (4.238)

Define

α =
−λ + sgn(λ)

√
λ2 − 4

2
, (4.239)

σ =
1

(α + αn−1) + λ(1 + αn)
, (4.240)

4. Numerical methods

where sgn(x) is the sign of x.
It can be shown that

ri+1 = σ(αi + αn−i), (4.241)

Now we can first use eq. (4.241) to calculate the first row of A−1, then
use eq. (4.235) to compute x1, then lastly solve the linear system eq. (4.232).
This gives us the full solution to a periodic, symmetric, constant coefficient,
tridiagonal system in O(N) flops, where N is the number of knot-points.

Different versions of the above algorithm were implemented as stand-
alone functions in Fortran, listing 50, listing 51 and listing 52. These
were then tested against the default linear system solver in Matlab and
a reference implementation of the above algorithm in Matlab. All the
algorithms where in agreement down to machine epsilon.

4.4. The proposed method

We have now reached the point where we can assemble all the theory and
numerics into one complete coherent simulation of a drop with density
and viscosity jumps with respect to the bulk fluid, as well as variable
surface tension and an elastic membrane.

We start off by discretizing our domain as explained in section 4.1.1.
The simulation is incompressible. Thus we can use Chorin’s projection
method, section 4.1.2, to get a Poisson equation for pressure, split the
effect of pressure from advection and viscosity, and thereby lower the
computational cost. In time we integrate using the SSP 2-2 Runge-Kutta
method, section 4.1.3. When static solid objects are wanted in the domain,
the penalization method is used, section 4.1.4. The geometry of the inter-
face is described by Lagrangian points, following the immersed boundary
method, section 4.2. The forces from the boundary are modeled as a source
term, eq. (3.12), of the Navier-Stokes equation. These forces are computed
by two different methods. The effect of the density and viscosity jump is
calculated by the ghost-fluid method, section 4.1.6. In section 4.2.10 it is
explained how the level-set field given to the GFM is calculated purely
from the immersed boundary enabling simultaneous use of immersed

67

boundary and GFM. Given the nature of GFM, the force from the jumps
is computed in a sharp manner. The forces from the surface tension and
elastic membrane are computed on the immersed boundary, as explained
in sections 4.2.6 to 4.2.8 . From eq. (4.144) we see that these forces are
spread to the Eulerian grid in a smooth way using a delta function. Be-
cause of this, we have a hybrid GFM immersed-boundary method having
both sharp and smooth interface discretizations. As will be shown in
chapter 5, this gives results consistent with existing simulations and is
able to simulate additional physics from the elastic membrane that was
previously not possible.

69

5. Numerical results

In this section the results from the numerical simulations performed for
this master’s thesis is presented. First, the advection of the immersed
boundary method is compared with analytic advection. Then the im-
mersed boundary method is compared with the level-set method. Simu-
lating surface tension with the two methods is compared. Then viscosity
and density jumps are added and the effect of these are discussed. Lastly,
simulations with an elastic membrane is done. An elliptical drop with
elastic membrane relaxing to equilibrium driven by surface tension is
studied. The effect of an elastic membrane when stretching a drop in an
electric field is shown. The last simulation is an effort to reproduce the
crumpling effect seen in lab experiments.

5.1. Analytic advection

The routines responsible for advecting the immersed boundary are impor-
tant. The general entry point for calculating advection is listing 4. From
there listing 9 takes over, and the details are contained in listing 11. These
routines correspond to eq. (4.145). To be certain that they were imple-
mented correctly, and to investigate their order of error, a test case was
created.

The setup is seen in fig. 5.1.1. The initial configuration is a circle of
radius 0.1 centered at (1⁄2, 1⁄2) in a 1× 1 domain. The velocity field is given
as

u(x, y) = [−(x− 1/2), y− 1/2]. (5.1)

Two separate solutions for the advection are computed. The first, reference
method, performs forward Euler integration of the velocity. The velocity
is computed by evaluating eq. (5.1) at each Lagrangian point. In the

5. Numerical results

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

x

y

Velocity field
Initial configuration

Numerical interpolation

Figure 5.1.1.: Initial and end configuration in analytical advection test.
The solid black line is the initial boundary, the arrows show
the velocity field, and the dashed ellipse shows the end
configuration after advecting the boundary.

71

second method, the domain is discretized using a N × N grid, and a
discrete velocity field is computed by evaluating eq. (5.1) at each grid
node. To compute the velocity at a Lagrangian point, the immersed-
boundary interpolation equation, eq. (4.145), is used. This interpolated
velocity is then forward Euler integrated, for each point, in time with the
same time step as for the prescribed velocity field. The goal of this test
is quantifying how big the error is when interpolating a discretized field
versus using the analytical one in the context of time integration. For the
test N was chosen small, N = 4, to amplify any errors. The integration
was 1000 time steps at ∆t = 0.01 s. The result from this test was that
the two methods of calculating the velocity and thus also advecting the
boundary were equal down to machine precision. The reason for this lies
in the chosen velocity field, eq. (5.1), being linear. This means that a 1st or
higher order interpolation of the velocity field will be exact. Because of
this, eq. (4.145) is exact for this field.

Although being exact for linear fields is nice, this result does not reveal
the error. To do this, the velocity field

u(x, y) = [cos(x), sin(y)] (5.2)

was used. Figure 5.1.2 shows this configuration. Again, 1000 time steps
were taken with ∆t = 5× 10−4 to keep the advected particles inside the
domain.

The error between the interpolated and the analytically evolved bound-
ary was recorded for different grid resolutions N = {4, 8, 16, 32, 64, 128}.
Figure 5.1.3 shows how the interpolation introduces a second-order error.
Chorin’s projection method, section 4.1.2, has a first-order splitting error
in time. With this in mind it is safe to say that a second-order advection
error is sufficient, and using the immersed boundary method should not
degrade the order of the solution.

5.2. Drop in vortex

A standard test of advection for interface tracking methods is the drop in
a potential vortex [25]. Here a drop is placed in the unit box, and a static

5. Numerical results

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

y

Velocity field
Initial configuration

Analytic
Interpolated

Figure 5.1.2.: Initial and end configuration in analytic advection test. The
solid black line is the initial boundary, the arrows show
the advection field, and the dashed ellipse shows the end
configuration after advecting the boundary. The error is
almost invisible.

73

10−2 10−1

10−5

10−4

10−3

10−2

10−1

100

h

L 1

h2

L1
L2
L∞

Figure 5.1.3.: Error for advection. L1, L2 and L∞ error of the error stem-
ming from interpolating a velocity field rather than using
the analytical expression when preforming time integration.
The interpolation is second order after time integration. Here
h = 1/N.

5. Numerical results

Table 5.1.: Parameters for the drop in potential vortex.

Parameter Symbol Value

Drop radius r 0.15
Domain size Ω 1× 1
CFL 0.5
Euler grid nodes N 200× 200
Lagrangian point density 5/∆

(a) t = 0 (b) t = 3.5 (c) t = 7

Figure 5.2.1.: Drop in potential vortex. Red is level-set solution while
black is the immersed boundary.

potential vortex advects it. The velocity field is given by

ux = −2(sin(π(x− 1/2)))2 cos(π(y− 1/2)) sin(π(y− 1/2)) (5.3)
uy = −2(cos(π(y− 1/2)))2 sin(π(x− 1/2)) cos(π(x− 1/2)) (5.4)

The rest of the parameters for this test are in table 5.1. At some time t = te
2 ,

the flow field is reversed, and the simulation is run until t = te. Then
the initial interface is compared with the final one. Figure 5.2.1 shows
the initial condition (a), the interface at half time (b) where t = te

2 = 3.5,
and the final interface for both the level-set and the immersed boundary
method. We see that the immersed boundary method has no visible
mass loss, while the level-set representation loses mass when the drop
gets stretched thinner than a grid cell. The reason for this is that when

75

two interfaces are this close, the discrete level-set function does not have
the required resolution to switch sign. The immersed boundary method
does not have this restriction. If one wanted to represent the smaller
features with level-set representation, one choice would be to double the
grid resolution. For two dimensions this would make the computational
cost increase quadratically. To get the same increase in resolution with
the immersed boundary method, one would need to double the number
of points, this would only double the amount of work needed. Thus
immersed boundary scales considerably better than level-set as a function
of interface resolution. The previous argument makes immersed boundary
seem superior to level-set when it comes to resolution. However this is not
the whole story. For the immersed boundary to represent a non-smooth
sub-grid feature, the Lagrangian points have to be advected in a sub-grid
way. From eq. (4.134) we see that the Lagrangian points are advected
using a delta function interpolation of the velocity field from the Eulerian
grid. This means that the highest wave number that can be created by the
immersed boundary is proportional to 1∆x. With this in mind, for non
smooth velocity fields, we can conclude that for each Eulerian grid, there
exists an optimal Lagrangian point density. For smooth velocity fields, like
this potential vortex, the immersed boundary method has some sub grid
resolution. This is because it can accurately represent stretching, squishing
and other smooth transformations that lead to sub grid details. Another
way of thinking about this is that the immersed boundary method has
some sub grid detail as long there is no turbulence.

5.3. Zalesak’s disk

Another interesting difference between an Eulerian and Lagrangian de-
scription of geometry is the effect of grid alignment. For a Lagrangian
description, the grid is by definition aligned with the geometry. For the
level-set method, this is not the case. As long as the interface is smooth,
the level set can accurately represent it, but in the presence of corners,
the interface is not resolved sharply unless the corner is aligned with the
grid. This effect can be seen in the next test, Zalesak’s disk [46]. Here, a

5. Numerical results

Table 5.2.: Parameters for the Zalesak’s disk test.

Parameter Symbol Value

Disk radius r 1/3

Domain size Ω 1× 1
CFL 0.5
Euler grid nodes N 64× 64
Velocity field u π

10 [1/2− y, x− 1/2]
Lagrangian point density 5/∆

(a) t = 0 (b) t = 40 (c) t = 80

Figure 5.3.1.: Zalesak’s disk for 0, 1 and 2 revolutions. Red shows level-
set interface while black shows immersed boundary. The
velocity field is constant in time and represents pure rotation.

slotted disk is put in a velocity field that has constant angular velocity. The
boundary is advected one or more revolutions and the result is inspected.

From fig. 5.3.1 it is clear that the immersed boundary resolves the rotated
disk better than the level-set function. During the rotation, information is
lost in the level-set, while the immersed boundary is virtually not affected.
The reason for this is that the level set, based on an Eulerian grid, cannot
represent nonsmooth features that are not aligned with the grid perfectly.
This means that over the duration of the rotation, small errors in the
interface position creeps in as a consequence of the interface not being
straight and aligned with the grid. In the immersed boundary method, the

77

grid has no preference about the orientation of the interface. In the drop-in-
vortex test, section 5.2, it was argued that the difference between the two
methods were exaggerated by the specifics of the test, very thin stretched
parts of the drop disappear. There does not seem to be any such argument
for Zalesak’s disk. The immersed boundary method is fundamentally
better at preserving non-smooth features like corners without smearing.
In real life, non smooth interfaces appear several places, e.g. when two
drops meet and coalesce.

5.4. Comparison with reference method

We have now verified that the immersed boundary method captures the
interface correctly under advection. Next we need to verify that the forces
from the boundary on the fluid are implemented correctly. The forces
from the viscosity and density jumps must also be verified to be correctly
coupled with the immersed boundary. The technique chosen for this was
to compare the proposed method, section 4.4, with a reference method,
the level-set method with the ghost fluid method, which had previously
been verified to be correct [42], [23], [22], [9] and [10]. The main reason for
using a reference method, instead of an analytical solution, is that as far as
the author knows, analytical solutions for relaxing drops with large eccen-
tricity, viscosity and density jumps are not known. To measure the drops,
the horizontal and vertical axis lengths are used. This stems from the
usage of Fiji [39] in the experimental setup. Conveniently the top/bottom
and left/right sides of the drops also are the part of the drop that is most
rapidly advected, with highest pressure differences and sharpest curva-
ture, thus, if there is any difference, it would be most pronounced here. All
simulations were done with zero gravity and a Lagrangian point density
of 5 per ∆. Unless otherwise stated simulations are in two-dimensions.
The stretching of a drop in an electric field was only done for axisymmetric
flow. Crumpling was only done in two-dimensions because crumpling as
a phenomenon is not axisymmetric, it would thus violate the assumptions
of axisymmetric flow to simulate crumpling.

5. Numerical results

Table 5.3.: Parameters for the elliptical drop driven by surface tension.

Parameter Symbol Value

Drop density ρ1 103 kg/m3

Matrix density ρ2 103 kg/m3

Drop viscosity µ1 10−3 Pa · s
Matrix viscosity µ2 10−3 Pa · s
Surface tension σ 15× 10−3 N/m

Drop radius r 10−3 m
Drop axis length ratio a

b 1.16
Domain size Ω 0.007× 0.007 m
CFL 0.2
Grid nodes N {100, 200, 400, 800}

5.4.1. Immersed boundary-driven surface tension

In this test, an elliptical drop is relaxing to its equilibrium, a sphere, driven
by surface tension. The purpose of this test is to verify that surface tension
simulated with the immersed boundary gives the same results as when
simulated with the level-set method. To isolate the effect of surface tension,
no density or viscosity jumps are present. There is also zero gravity. This
way, all forces are generated by surface tension as it drives the ellipse
to equilibrium. The parameters of the test are listed in table 5.3. The
densities and viscosities are equal in each phase. This way the only force
generated comes from surface tension. The test was run for increasing
grid resolution to see how the two methods compare under refinement.
The result for 2D and axisymmetric simulation can be seen in fig. 5.4.1 and
fig. 5.4.2 respectively. The length of the ellipse axis as a function of time
can be seen in fig. 5.4.1 and fig. 5.4.2. We see that under grid refinement,
the proposed method converges to the same answer as the previously
verified method. This indicates that both the theoretical work deriving
surface tension for the immersed boundary, and the implementation of
the proposed method have been done correctly. For low grid resolution,

79

there is a visible difference in the two results. This stems from the main
difference between the two methods. The reference method resolves
surface tension using the ghost fluid method, which is a sharp-interface
method. The proposed method uses a smeared delta function, resulting
in a diffuse interface spanning a distance of 4δ. As the grid resolution
is increased, the diffuse interface approximates a sharp interface closer,
which can be seen in fig. 5.4.1 and fig. 5.4.2. The level-set method with
the ghost-fluid method is the most correct for this simulation, as the sharp
interface works better.

5.4.2. Relaxing ellipse with density and viscosity jump

The previous test shows that the reference method converges to the same
solution as our proposed method for a relaxing ellipse driven by surface
tension. There is, however, no jump in density or viscosity in this test. As
elaborated in section 4.2.10 the proposed method will treat density and
viscosity jumps in a sharp fashion, while surface tension will be diffuse. If
the proposed level-set reinitialization from immersed boundary does not
work, or there is a flaw in the assumptions that it is possible to use both
sharp and diffuse interface forces at a same time, adding a viscosity and
density jump should uncover these.

A simulation with the same geometry as in section 5.4.1, of a relaxing
ellipse driven by surface tension was set up. Instead of equal density and
viscosity, the relative density jump was 2, and the relative viscosity jump
was 10. The simulation was run on a moderately fine grid, N = 400, which
showed good agreement between the two methods in the previous test.
The full set of parameters for the simulation are listed in table 5.4. These
parameters correspond roughly to a water drop in oil. The simulations
were run both for 2D and axisymmetric flow for both methods.

As seen in fig. 5.4.3 the two methods are in agreement both for two-
dimensional and axisymmetric flow. This shows that the usage of both
sharp and diffuse interface forces in the proposed method as well as the
implementation works consistently with the reference method which only
has sharp interface forces.

5. Numerical results

t

E
ll
ip

s
e

 a
x

is
 l
e

n
g

th

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

0.00092

0.00094

0.00096

0.00098

0.001

0.00102

0.00104

N=400

t

E
ll
ip

s
e

 a
x

is
 l
e

n
g

th

0 0.01 0.02 0.03 0.04

0.00092

0.00094

0.00096

0.00098

0.001

0.00102

0.00104

N=100

t

E
ll
ip

s
e

 a
x

is
 l
e

n
g

th

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

0.00092

0.00094

0.00096

0.00098

0.001

0.00102

0.00104

N=200

t

E
ll
ip

s
e

 a
x

is
 l
e

n
g

th

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

0.00092

0.00094

0.00096

0.00098

0.001

0.00102

0.00104

N=800

Figure 5.4.1.: Drop axis lengths for the two-dimensional relaxing drop,
section 5.4.1. Red is the reference solution, dashed black is
immersed boundary solution. The two methods converge as
the grid is refined.

81

t

E
ll
ip

s
e

 a
x

is
 l
e

n
g

th

0 0.01 0.02 0.03 0.04

0.00095

0.001

0.00105

N=100

t

E
ll
ip

s
e

 a
x

is
 l
e

n
g

th

0 0.01 0.02 0.03 0.04

0.00095

0.001

0.00105

N=200

t

E
ll
ip

s
e

 a
x

is
 l
e

n
g

th

0 0.01 0.02 0.03 0.04

0.00095

0.001

0.00105

N=400

t

E
ll
ip

s
e

 a
x

is
 l
e

n
g

th

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

0.00095

0.001

0.00105

N=800

Figure 5.4.2.: Drop axis lengths for the axisymmetric, three-dimensional
relaxing drop, section 5.4.1. Red is the reference solution,
dashed black is immersed boundary solution. The two meth-
ods converge as the grid is refined.

5. Numerical results

Table 5.4.: Parameters for relaxing drop with viscosity and density jump.

Parameter Symbol Value

Drop density ρ1 103 kg/m3

Matrix density ρ2 5× 102 kg/m3

Drop viscosity µ1 10−3 Pa · s
Matrix viscosity µ2 10−2 Pa · s
Surface tension σ 15× 10−3 N/m

Drop radius r 10−3 m
Drop axis length ratio a

b 1.16
Domain size Ω 0.007× 0.007 m
CFL 0.2
Grid nodes N 400

t

E
ll
ip

s
e

 a
x

is
 l
e

n
g

th

0 0.005 0.01 0.015 0.02 0.025 0.03

0.00095

0.001

(a) Two-dimensional drop.

t

E
ll
ip

s
e

 a
x

is
 l
e

n
g

th

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

0.00092

0.00094

0.00096

0.00098

0.001

0.00102

0.00104

(b) Three-dimensional, axisymmetric
drop.

Figure 5.4.3.: Comparison of reference method and proposed method with
a viscosity and density jump, section 5.4.2. Red is reference
method while dashed black is proposed method.

83

5.4.3. Effect of adding sharp forces on the diffuse interface

A hypothesis was that if the proposed method correctly simulated density
and viscosity jumps together with surface tension, the difference between
the proposed method and the reference method should be smaller than if
simulating something only driven by surface tension. The rationale behind
this hypothesis is that if only simulating surface tension, the proposed
method is a fully diffuse interface method, while the reference method is
fully sharp. When adding density and viscosity jumps, sharp forces are
added to the proposed method, these will not suffer the same problems
as the diffuse interface. This means that the relative amount of diffuse
interface effects decreases for the proposed method when introducing
density and viscosity jumps. It thus makes sense that the effects from the
diffuse interface would be less pronounced for a simulation with density
and viscosity jumps.

To test this hypothesis, a coarse grid of the above test was compared to
a coarse simulation with only surface tension. The result can be seen in
fig. 5.4.4. As can be seen, the higher viscosity and density of the surround-
ing liquid damps the oscillation, in other words the physics have changed.
From the figure there is a smaller error when viscosity and density jumps
are present. Still one cannot conclude that the method is better with jumps,
as this is not an apples to apples comparison. Even with this limitation it is
reassuring to see that adding more forces to the method, does not degrade
the solution. The oscillation frequency has a pronounced improvement
when adding the sharp effects of density and viscosity.

This test shows that the proposed method consistently combines the sur-
face tension from the diffuse interface, with the sharp forces from viscosity
and density jumps. This is interesting, because it enables the implemen-
tation of interface forces in the Lagrangian formulation as well as in an
Eulerian. Having this flexibility can be beneficial for a multiphysics code
as different phenomena are more naturally expressed in either Eulerian or
Lagrangian coordinate systems.

5. Numerical results

t

E
ll
ip

s
e

 a
x

is
 l
e

n
g

th

0 0.01 0.02 0.03 0.04

0.00092

0.00094

0.00096

0.00098

0.001

0.00102

0.00104

t

E
ll
ip

s
e

 a
x

is
 l
e

n
g

th

0 0.01 0.02 0.03 0.04

0.00092

0.00094

0.00096

0.00098

0.001

0.00102

0.00104

Figure 5.4.4.: Comparison with and without viscosity and density jump,
section 5.4.3. Left figure shows relaxation driven purely
by surface tension, right shows relaxation with a jump in
viscosity and density. Red is reference method, dashed black
is the proposed method.

85

Table 5.5.: Parameters for relaxing drop with an elastic membrane.

Parameter Symbol Value

Drop density ρ1 103 kg/m3

Matrix density ρ2 103 kg/m3

Drop viscosity µ1 10−3 Pa · s
Matrix viscosity µ2 10−3 Pa · s
Surface tension σ 15× 10−3 N/m

Elastic tension Ka 0 and 15× 10−2 N/m

Drop radius r 10−3 m
Drop axis length ratio a

b 3.0
Domain size Ω 0.007× 0.007 m
CFL 0.5
Grid nodes N 150

5.5. Simulations with general interface tension

After verifying that the proposed method can simulate surface tension,
viscosity and density jumps we are now in a position where we can
simulate the elastic membrane, which was not previously possible. With
this we are leaving the classical area of research about drops with constant
surface tension and little material exist on the analytical or approximate
solutions. Because of this we rely on qualitatively replicating experiments,
rather than exact or reference solutions.

5.5.1. Relaxing drop with elastic membrane

The first test of the effect of an elastic membrane is simply comparing the
previous simulation with one having an elastic membrane. In this test, an
ellipse with a surface membrane is set to relax under surface tension in
a box. The parameters for this test are in table 5.5. Initially , at t = 0, the
elastic membrane is in equilibrium. This means that ∂X

∂s = 1 in eq. (3.32)
and the membrane is neither stretched nor compressed.

The interface starts in equilibrium, red, in fig. 5.5.1a. Because of its

5. Numerical results

(a) t = 0.0 (b) t = 0.00103 (c) t = 0.00502 (d) t = 0.00600

0.99

0.98

0.97

0.96

0.95

0.94

0.93

0.92

0.91

0.9

0.89

relative
seg-
ment
length,
∂X
∂s

(e) t = 0.00805 (f) t = 0.01303 (g) t = 0.03106 (h) t = 0.03503

(i) t = 0.03901 (j) t = 0.04304 (k) t = 0.06903

Figure 5.5.1.: Several frames of the simulation with elastic membrane, (col-
ored) together with the clean interface, (black). The colors
indicate the relative length of the interface compared to its
equilibrium length.

87

eccentricity, surface tension is relatively strong on the left and right side
of the drop and it is quickly compressed, fig. 5.5.1b. After 5× 10−3 s the
drop is almost fully compressed fig. 5.5.1c. In this simulation Ka is 10
times larger than than σ, this means that eq. (3.32) will be close to zero
when ∂X

∂s ≈ 0.9. In other words, when the membrane is compressed to
90% of its original length, elastic forces and surface tension forces will be
in balance. This means that the interface no longer introduces any force
and modulo any viscosity or density differences the simulation can be
considered single phase! As there is a quite strong flow field present in
fig. 5.5.1c, advection of the interface continues. The part of the potential
kinetic energy that is not dissipated by viscosity goes into deforming and
again stretching the interface. At t = 3.5× 10−2, fig. 5.5.1g, this potential
energy has stretched the interface maximally again, and the flow field is
close to zero. Now there is not enough potential energy in the membrane
to do another oscillation and it is critically damped. The interface contracts
creating a crumpled drop as seen in fig. 5.5.1h to fig. 5.5.1i. As this has
happened the normal drop in black has oscillated towards its equilibrium
shape, a spherical. To see the difference the elastic membrane makes for
the oscillation, the axis lengths of the two simulations were plotted in
fig. 5.5.2. It is clear that for these parameters, the elastic membrane has a
significant effect on the time evolution of the drop, dampening its response.
The elastic membrane introduces a new potential energy to the system.
For clean fluids, the equilibrium interface is always the one that has the
minimal interface area. The elastic potential changes this equilibrium to a
more chaotic and unpredictable one. The equilibrium state is no longer
obvious given the initial conditions. One insight from this simulation is
that for a clean drop without an elastic membrane, there exists a unique
spherical equilibrium state, only given by the initial volume of the drop.
On the other hand, for the drop with an elastic membrane, the equilibrium
is not just a function of the initial volume, but also its shape. This is
because the initial shape affects what parts of the drop is stretched and
compressed which has a big impact on the final steady state. This shows
how the evolution of a drop with an elastic membrane is more complex
than one without.

5. Numerical results

t

E
ll
ip

s
e

 a
x

is
 l
e

n
g

th

0 0.05 0.1 0.15 0.2

0.0006

0.0008

0.001

0.0012

0.0014

Figure 5.5.2.: Red is clean interface, dashed black is drop with elastic mem-
brane. The elastic membrane dampens the oscillations.

89

Table 5.6.: Parameters for drop stretched in electric field.

Parameter Symbol Value

Drop density ρ1 1000 kg/m3

Matrix density ρ2 830 kg/m3

Drop viscosity µ1 1.03× 10−3 Pa · s
Matrix viscosity µ2 12.4× 10−3 Pa · s
Surface tension σ 40× 10−3 N/m

Elastic tension Ka 0 and 50× 10−3 N/m

Drop radius r 4.5× 10−4 m
Drop axis length ratio a

b 1.0
Domain size Ω 0.001× 0.002 m (axisymmetric)
CFL 0.5
Grid nodes N 100× 200 (axisymmetric)

5.5.2. Drop stretched in electric field

For the electrocoalescence process, it is interesting to see what the elastic
membrane does to a drop stretched in an electric field. To do this, a
simulation with a spherical drop, in zero gravity, was set up. Then an
electric field was applied to the drop. This sets up dipole moments in
the water and creates a force stretching the drop. For the elasticity, Ka =
50× 10−3 which is 5/4× σ, is used. The rest of the parameters of the test
are summarized in table 5.6. The measured property was the ratio of the
horizontal and vertical ellipse axis. A comparison with, and without elastic
membrane was done. From fig. 5.5.3 we see that the elastic membrane
does not visibly effect the eigenfrequency of the drop. However, it does
make the drop harder to stretch. Also note that the steady state solution
with elastic membrane is more spherical than without. Conclusions about
what consequences this has for electrocoalescence is left as further work,
here it is sufficient to state that there is an effect.

5. Numerical results

t

a
/b

0 0.005 0.01 0.015 0.02 0.025 0.03
1

1.05

1.1

1.15

1.2

1.25

1.3

Figure 5.5.3.: Drop stretched in electric field test. Showing drop axis ratio
as a function of time. Red is solution with Ka = 0, dashed
black is with Ka = 50× 10−3.

91

Figure 5.5.4.: Left, the initial water drop, r ≈ 25× 10−6 m. Right, drop
after draining some of its volume using the pipette. Images
from [45].

5.5.3. Pipette draining a water drop in crude-oil

The last test with an elastic membrane is an effort to reproduce the effect
seen in [45]. There, a bitumen (asphalt), extracted from crude oil, is
added to a solvent consisting of one part n-heptane and one part toluene.
Then a water drop with r ≈ 25× 10−6 m is inserted into the bulk using
a micropipette. The drop is aged and then drained using the pipette
while observed under a microscope. Instead of shrinking spherically, as
expected, the drop crumples as seen in fig. 5.5.4.

To simulate this experiment the proposed method, section 4.4, was used.
To simulate the pipette walls, and to enforce the flow trough the pipette
tube, the penalization method, section 4.1.4, was used. The result can be
observed in fig. 5.5.5. The parameters for the simulation was are listed in
table 5.7. The parameters are representative for a water drop in a model
crude oil. As long as the membrane is compressed less than 1− σ

Ka
the

interface is still driven by surface tension. During this phase the drop will
shrink spherically, as tension builds up. When the interface is compressed
enough, the tension in the membrane will be zero, and crumples will
appear. To accelerate the simulation the membrane was pre-tensioned
close to 1− σ

Ka
. This is equivalent to an initial condition where some of

5. Numerical results

Table 5.7.: Parameters for the pipette draining drop case.

Parameter Symbol Value

Drop density ρ1 1000 kg/m3

Matrix density ρ2 830 kg/m3

Drop viscosity µ1 1.03× 10−3 Pa · s
Matrix viscosity µ2 12.4× 10−3 Pa · s
Surface tension σ 40× 10−3 N/m

Elastic tension Ka 50× 10−3 N/m

Drop radius r 5× 10−4 m
Domain size Ω (2× 10−3)× (3× 10−3)m
CFL 0.5
Grid nodes N 132× 200
Penalization η 5× 10−6

the drop mass already has been removed. Because of this, a relatively
small amount of mass had to be removed from the drop to induce the
crumpling. There is a good qualitative similarity between fig. 5.5.5 and
fig. 5.5.4. Clearly the physics inside the pipette is not correct, as contact
angle handling has been done. Also the trick of enforcing the penalization
domain across a fluid interface is questionable. The numerical methods are
being pushed to their limit, nevertheless the crumpling seems qualitatively
correctly captured, which is very interesting.

93

(a) t = 0.0 (b) t = 0.0096 (c) t = 0.0132 (d) t = 0.0164

(e) t = 0.0202 (f) t = 0.0202 (g) t = 0.0238 (h) t = 0.0300

Figure 5.5.5.: Frames from the simulation of a micropipette draining a
water drop. Color denotes pressure; red s high, blue is low.
Velocities are plotted for every 5th grid point and every 10th
Lagrangian point is plotted. The simulation bears a good
qualitative resemblance to the photographs in fig. 5.5.4.

95

6. Concluding remarks

6.1. Conclusion

The goal of this thesis was to develop an immersed boundary method for
simulating contaminated fluid interfaces in two-phase flow. The immersed
boundary method was chosen for its history of simulating biological sys-
tems, e.g. blood flow trough a heart [33], which share many properties
with the drops in question. A thorough derivation of interface forces was
given, and then extended using the mathematical tools of the immersed
boundary formulation to describe a general viscoelastic membrane. The
projection method for simulating the Navier-Stokes equations were re-
viewed, both in space, time and how to split the pressure from viscous
and advective effects. Interface capturing with the level-set method and
handling of interface discontinuities with the ghost fluid method where
also discussed.

The mathematical framework of the immersed boundary method was
reviewed. The discretization as well as practical implementation details
of the method were discussed. Specific contributions are the usage of
cubic splines to parametrize the boundary. To the author’s knowledge, the
approach of using the immersed boundary to generate a level-set function
that is consistent in such a way that it enables simulating interface forces
from both a sharp Eulerian method, as well as the diffuse immersed
boundary method, is novel.

The developed code has been verified by unit testing, appendix A, and
full case testing. The numerical results show the expected performance
for known test cases and the ability to reproduce experiments not pre-
viously possible. For the new method, combining the strengths of the
immersed boundary method and the level-set method has allowed to sim-
ulate the dynamics of elastic membranes covering water drops immersed

6. Concluding remarks

in crude oil. The elastic membranes represent interfaces contaminated by
surfactants. This was used to reproduce crumpling of a drop, showing
good qualitative resemblance to the results seen in lab experiments [45].
Other work reproducing the crumpling phenomenon seen in [45] using
simulation has not been found and to the author’s knowledge, this is
new. Based on the experiences from this master’s thesis, the immersed
boundary method is a good choice for simulation of contaminated fluid
interfaces in two-phase flow.

6.2. Future work

During the work on this thesis, new questions have emerged that needs
to be addressed in future work. First, the expression for tension used in
this project is a Hookean linear law, eq. (3.32). As always, a linearization
is only a good approximation close to the linearization point. As stated
in chapter 2, the exact details of the forces acting on the interface are not
known and because of this, it is uncertain if the linear model is accurate
enough to represent the interface behaviour of water drops in oil correctly.
Further investigation could involve devising microscopic experiments
measuring the interfacial properties. Another approach, which could
bring more insight into the mechanics of these interfaces, would be new
and accurate molecular dynamics simulations of the interfaces. One of
the author’s supervisors, Åsmund Ervik, has started this work [11] using
molecular dynamics software to simulate the interface on a nanometer
level. The preliminary results are promising, but a lot of work still has to
be done with regards to modeling of the surface active molecules in the
crude.

Another limitation of the model used in this thesis is the assumption
that there is no exchange of interfacially-active molecules between the
bulk fluid and the interface. To get a full understanding of the electrocoa-
lescence process, this will have to be addressed. The author hypothesizes
that as a crude representation, this diffusion can be modeled as a one-
parameter model where the equilibrium length of the immersed boundary
segments is computed by low-pass filtering the instantaneous length. The

97

diffusion then determines the time constant of the low-pass filter. More
advanced models would include an added Eulerian field holding the sur-
factant concentration and a diffusion equation between the immersed
boundary and this field.

Last, even if section 4.2.1 proves that the level-set method alone cannot
simulate compression or stretching of the interface, this does not mean that
it is impossible in an Eulerian formulation. To do this, a new Eulerian field
would have to be added. This field would represent the interface density.
At each time step, this field would be advected, in a compressible way,
by the tangential part of the velocity field, u‖. This tangential part can be
found using the projection operator derived in section 4.2.1. To handle de-
formation of the interface, a reinitialization routine similar to the velocity
extrapolation, eq. (4.50), could be used. This would have some advantages
in that it would allow usage of the ghost-fluid method for sharp interface
forces, and would again unify all the methods into an Eulerian framework.
The downside would be simulations with crumpled interfaces and kinks.
For these simulations, the immersed boundary method would probably
still be better, because of its ability to represent the sub-grid features and
more stable curvature estimates on these features. Further work could
look into the implementation details of such an Eulerian routine.

99

Bibliography

[1] D. Adalsteinsson and J. Sethian. “A Fast Level Set Method for
Propagating Interfaces”. In: Journal of Computational Physics 118.2
(1995). cited By 0, pp. 269–277. D O I: 10.1006/jcph.1995.1098
(cit. on p. 25).

[2] P. Angot, C.-H. Bruneau, and P. Fabrie. “A penalization method
to take into account obstacles in incompressible viscous flows”. In:
Numerische Mathematik 81.4 (1999), pp. 497–520. D O I : 10.1007/
s002110050401 (cit. on pp. 22, 24).

[3] R. H. Bartels, J. Beatty, and B. Barsky. An Introduction to Splines for
Use in Computer Graphics and Geometric Modeling. Morgan Kaufmann
Series in Computer Graphics and Geometric Modeling. Morgan
Kaufmann, 1995. I S B N: 9781558604001 (cit. on p. 55).

[4] G. Batchelor. An Introduction to Fluid Dynamics. Cambridge Mathe-
matical Library. Cambridge University Press, 2000. I S B N: 9780521663960
(cit. on p. 5).

[5] E. Bjørklund. “The level-set method applied to droplet dynamics in
the presence of an electric field”. In: Computers & Fluids 38.2 (2009),
pp. 358 –369. I S S N : 0045-7930. D O I : 10.1016/j.compfluid.
2008.04.008 (cit. on p. 14).

[6] G. Carbou and P. Fabrie. “Boundary layer for a penalization method
for viscous incompressible flow”. In: Advances in Differential Equa-
tions 8.12 (2003). cited By 0, pp. 1453–1480. I S S N : 10799389. U R L :
http : / / projecteuclid . org / euclid . ade / 1355867981
(visited on 06/28/2015) (cit. on p. 24).

http://dx.doi.org/10.1006/jcph.1995.1098
http://dx.doi.org/10.1007/s002110050401
http://dx.doi.org/10.1007/s002110050401
http://dx.doi.org/10.1016/j.compfluid.2008.04.008
http://dx.doi.org/10.1016/j.compfluid.2008.04.008
http://projecteuclid.org/euclid.ade/1355867981

Bibliography

[7] A. Chorin and J. E. Marsden. A Mathematical Introduction to Fluid
Mechanics. Springer, 2000. I S B N : 9780387904061. D O I : 10.1007/
978-1-4684-0082-3 (cit. on p. 18).

[8] R. Clift, J. Grace, and E. Weber. Bubbles, Drops, and Particles. Dover
Civil and Mechanical Engineering. Dover Publications, 2013. I S B N:
9780486317748 (cit. on p. 1).

[9] Åsmund. Ervik. “The local level-set extraction method for robust
calculation of geometric quantities in the level-set method”. MA
thesis. NTNU, 2012. U R L : http : / / daim . idi . ntnu . no /
masteroppgaver/008/8230/masteroppgave.pdf/ (visited
on 06/28/2015) (cit. on pp. 2, 77).

[10] Åsmund. Ervik, K. Lervåg, and S. Munkejord. “A robust method
for calculating interface curvature and normal vectors using an
extracted local level set”. In: Journal of Computational Physics 257,
Part A.0 (2014), pp. 259 –277. I S S N : 0021-9991. D O I : 10.1016/j.
jcp.2013.09.053 (cit. on pp. 2, 77).

[11] Ervik et al. A Multiscale Coarse-Grained Molecular and Continuum
Model for the Flow of Droplets in Oil With Asphaltenes. English. 2015.
U R L : http://folk.ntnu.no/asmunder/petrophase2015.
html#/ (visited on 06/28/2015) (cit. on p. 96).

[12] T. Fan, J. Wang, and J. Buckley. “Evaluating Crude Oils by SARA
Analysis”. In: cited By 0. 2002, pp. 883–889. D O I: 10.2118/75228-
MS (cit. on p. 3).

[13] R. P. Fedkiw and X. D. Liu. The Ghost Fluid Method for Viscous
Flows. Presented at the "Solutions of PDE" Conference in honour of
Prof. Phil Roe. 1998. U R L : http://physbam.stanford.edu/
~fedkiw/papers/cam1998- 44.pdf (visited on 06/28/2015)
(cit. on p. 26).

[14] R. P. Fedkiw et al. “A Non-oscillatory Eulerian Approach to Inter-
faces in Multimaterial Flows (the Ghost Fluid Method)”. In: Journal
of Computational Physics 152.2 (1999), pp. 457 –492. I S S N: 0021-9991.
D O I: 10.1006/jcph.1999.6236 (cit. on p. 26).

http://dx.doi.org/10.1007/978-1-4684-0082-3
http://dx.doi.org/10.1007/978-1-4684-0082-3
http://daim.idi.ntnu.no/masteroppgaver/008/8230/masteroppgave.pdf/
http://daim.idi.ntnu.no/masteroppgaver/008/8230/masteroppgave.pdf/
http://dx.doi.org/10.1016/j.jcp.2013.09.053
http://dx.doi.org/10.1016/j.jcp.2013.09.053
http://folk.ntnu.no/asmunder/petrophase2015.html#/
http://folk.ntnu.no/asmunder/petrophase2015.html#/
http://dx.doi.org/10.2118/75228-MS
http://dx.doi.org/10.2118/75228-MS
http://physbam.stanford.edu/~fedkiw/papers/cam1998-44.pdf
http://physbam.stanford.edu/~fedkiw/papers/cam1998-44.pdf
http://dx.doi.org/10.1006/jcph.1999.6236

101

[15] E. Hansen. “Numerical simulation of droplet dynamics in the pres-
ence of an electric field”. PhD thesis. NTNU, 2005. U R L : http:
/ / www . diva - portal . org / smash / get / diva2 : 370048 /
FULLTEXT01.pdf (visited on 06/28/2015) (cit. on p. 14).

[16] J. S. Herbert Goldstein Charles Poole. Classical Mechanics. 3rd.
Springer, 2000. I S B N: 9780201657029 (cit. on p. 34).

[17] A. A. Herod, K. D. Bartle, and R. Kandiyoti. “Comment on a Paper
by Mullins, Martinez-Haya, and Marshall "Contrasting Perspective
on Asphaltene Molecular Weight. This Comment vs the Overview
of A. A. Herod, K. D. Bartle, and R. Kandiyoti"”. In: Energy & Fuels
22.6 (2008), pp. 4312–4317. D O I : 10.1021/ef8006036 (cit. on
p. 3).

[18] M. Kang, R. P. Fedkiw, and X.-D. Liu. “A Boundary Condition
Capturing Method for Multiphase Incompressible Flow”. In: Journal
of Scientific Computing 15 (2000), pp. 323–360. I S S N: 0885-7474. D O I:
10.1023/A:1011178417620 (cit. on pp. 14, 50).

[19] M. Kang, R. Fedkiw, and X.-D. Liu. “A Boundary Condition Cap-
turing Method for Multiphase Incompressible Flow”. English. In:
Journal of Scientific Computing 15.3 (2000), pp. 323–360. I S S N: 0885-
7474. D O I: 10.1023/A:1011178417620 (cit. on p. 26).

[20] D. I. Ketcheson and A. C. Robinson. “On the practical importance
of the SSP property for Runge-Kutta time integrators for some com-
mon Godunov-type schemes”. In: International Journal for Numerical
Methods in Fluids 48.3 (2005), pp. 271–303. I S S N : 1097-0363. D O I :
10.1002/fld.837 (cit. on p. 22).

[21] L. Landau and E. Lifshitz. Fluid Mechanics. v. 6. Elsevier Science,
2013. I S B N: 9781483140506 (cit. on p. 8).

[22] K. Lervåg. “Calculation of the interface curvatures with the level-
set method for two-phase flow simulations and a second-order
diffuse-domain method for elliptic problems in complex geome-
tries”. PhD thesis. NTNU, 2013. U R L : http : / / www . diva -
portal.org/smash/get/diva2:649166/FULLTEXT01.pdf
(visited on 06/28/2015) (cit. on pp. 2, 77).

http://www.diva-portal.org/smash/get/diva2:370048/FULLTEXT01.pdf
http://www.diva-portal.org/smash/get/diva2:370048/FULLTEXT01.pdf
http://www.diva-portal.org/smash/get/diva2:370048/FULLTEXT01.pdf
http://dx.doi.org/10.1021/ef8006036
http://dx.doi.org/10.1023/A:1011178417620
http://dx.doi.org/10.1023/A:1011178417620
http://dx.doi.org/10.1002/fld.837
http://www.diva-portal.org/smash/get/diva2:649166/FULLTEXT01.pdf
http://www.diva-portal.org/smash/get/diva2:649166/FULLTEXT01.pdf

Bibliography

[23] K. Lervåg. “Simulation of two-phase flows with varying surface
tension”. MA thesis. NTNU, 2008. U R L : http://ntnu.diva-
portal.org/smash/get/diva2:348658/COVER01 (visited
on 06/28/2015) (cit. on pp. 2, 14, 77).

[24] S. Less et al. “Electrostatic destabilization of water-in-crude oil
emulsions: Application to a real case and evaluation of the Aibel
VIEC technology”. In: Fuel 87.12 (2008), pp. 2572 –2581. I S S N :
0016-2361. D O I: 10.1016/j.fuel.2008.03.004 (cit. on p. 2).

[25] R. J. Leveque. “High-Resolution Conservative Algorithms for Ad-
vection in Incompressible Flow”. English. In: SIAM Journal on
Numerical Analysis 33.2 (1996), pp. 627–665. I S S N : 00361429. D O I :
10.1137/0733033 (cit. on p. 71).

[26] P. Mark and L. Nilsson. “Structure and dynamics of liquid water
with different long-range interaction truncation and temperature
control methods in molecular dynamics simulations”. In: Journal
of Computational Chemistry 23.13 (2002), pp. 1211–1219. I S S N: 1096-
987X. D O I: 10.1002/jcc.10117 (cit. on p. 8).

[27] A. b. Marshall and R. b. Rodgers. “Petroleomics: The Next Grand
Challenge for Chemical Analysis”. In: Accounts of Chemical Research
37.1 (2004). cited By 307, pp. 53–59. D O I : 10.1021/ar020177t
(cit. on p. 3).

[28] R. Mittal and G. Iaccarino. “Immersed boundary methods”. In:
Annu. Rev. Fluid Mech. 37 (2005), pp. 239–261. D O I : 10.1146/
annurev.fluid.37.061903.175743 (cit. on p. 32).

[29] S. Osher and R. Fedkiw. Level Set Methods and Dynamic Implicit
Surfaces. Applied Mathematical Sciences. Springer New York, 2012.
I S B N: 9781468492514 (cit. on pp. 18, 21, 25).

[30] S. Osher and J. A. Sethian. “Fronts propagating with curvature-
dependent speed: Algorithms based on Hamilton-Jacobi formula-
tions”. In: Journal of Computational Physics 79.1 (1988), pp. 12 –49.
I S S N : 0021-9991. D O I : 10.1016/0021-9991(88)90002-2 (cit.
on p. 24).

http://ntnu.diva-portal.org/smash/get/diva2:348658/COVER01
http://ntnu.diva-portal.org/smash/get/diva2:348658/COVER01
http://dx.doi.org/10.1016/j.fuel.2008.03.004
http://dx.doi.org/10.1137/0733033
http://dx.doi.org/10.1002/jcc.10117
http://dx.doi.org/10.1021/ar020177t
http://dx.doi.org/10.1146/annurev.fluid.37.061903.175743
http://dx.doi.org/10.1146/annurev.fluid.37.061903.175743
http://dx.doi.org/10.1016/0021-9991(88)90002-2

103

[31] V. Pauchard, J. P. Rane, and S. Banerjee. “Asphaltene-Laden In-
terfaces Form Soft Glassy Layers in Contraction Experiments: A
Mechanism for Coalescence Blocking”. In: Langmuir 30.43 (2014).
PMID: 25330092, pp. 12795–12803. D O I : 10.1021/la5028042
(cit. on p. 4).

[32] C. S. Peskin. “The immersed boundary method”. In: Acta Numerica
11 (Jan. 2002), pp. 479–517. I S S N : 1474-0508. D O I : 10.1017/
S0962492902000077. U R L : http://journals.cambridge.
org/article_S0962492902000077 (cit. on pp. 31, 32, 46, 47).

[33] C. Peskin. “Numerical analysis of blood flow in the heart”. In:
Journal of Computational Physics 25.3 (1977). cited By 1276, pp. 220–
252. D O I: 10.1016/0021-9991(77)90100-0 (cit. on pp. 31, 95).

[34] C. Peskin and D. McQueen. “A general method for the computer
simulation of biological systems interacting with fluids”. In: Sym-
posia of the society for Experimental Biology. Vol. 49. cited By 58. 1995,
pp. 265–276. U R L : http://www.math.nyu.edu/~mcqueen/
Public/papers/seb/SEB_19971216/SEB_19971216.html
(visited on 06/28/2015) (cit. on p. 11).

[35] C. Pozrikidis. Introduction to Theoretical and Computational Fluid Dy-
namics. Oxford University Press, USA, 2011. I S B N: 9780199909124
(cit. on p. 58).

[36] C. M. Rhie and W. L. Chow. “Numerical study of the turbulent flow
past an airfoil with trailing edge separation”. In: AIAA Journal 21.11
(1983), pp. 1525–1532. D O I: 10.2514/3.8284 (cit. on p. 16).

[37] R. b. c. f. Rodgers, T. d. Schaub, and A. e. Marshall. “PETROLEOMICS:
MS returns to its roots”. In: Analytical Chemistry 77.1 (2005). cited
By 0, 20 A–27 A. D O I: 10.1021/ac053302y (cit. on p. 3).

[38] Y. Saad. Iterative Methods for Sparse Linear Systems. 2nd. Philadelphia,
PA, USA: Society for Industrial and Applied Mathematics, 2003.
I S B N: 0898715342 (cit. on p. 19).

http://dx.doi.org/10.1021/la5028042
http://dx.doi.org/10.1017/S0962492902000077
http://dx.doi.org/10.1017/S0962492902000077
http://journals.cambridge.org/article_S0962492902000077
http://journals.cambridge.org/article_S0962492902000077
http://dx.doi.org/10.1016/0021-9991(77)90100-0
http://www.math.nyu.edu/~mcqueen/Public/papers/seb/SEB_19971216/SEB_19971216.html
http://www.math.nyu.edu/~mcqueen/Public/papers/seb/SEB_19971216/SEB_19971216.html
http://dx.doi.org/10.2514/3.8284
http://dx.doi.org/10.1021/ac053302y

Bibliography

[39] J. Schindelin et al. “Fiji: an open-source platform for biological-
image analysis”. In: Nat Meth 9.7 (July 2012), pp. 676–682. I S S N :
1548-7091. D O I: 10.1038/nmeth.2019 (cit. on p. 77).

[40] J. Shen. “On Error Estimates of the Projection Methods for the
Navier-Stokes Equations: Second-Order Schemes”. English. In:
Mathematics of Computation 65.215 (1996), pp. 1039–1065. I S S N :
00255718. U R L : http://www.jstor.org/stable/2153791
(visited on 06/28/2015) (cit. on p. 21).

[41] SINTEF. Compact Separation by Electrocoalescence. 2014. U R L: http:
//www.sintef.no/home/projects/sintef-energy-research/
Compact-Separation-by-Electrocoalescence-/ (visited
on 06/28/2015) (cit. on p. 2).

[42] K. Teigen. “Development and use of interface-capturing methods
for investigation of surfactant-covered drops in electric fields”. PhD
thesis. NTNU, 2010. U R L : http://www.diva-portal.org/
smash / get / diva2 : 370048 / FULLTEXT01 . pdf (visited on
06/28/2015) (cit. on pp. 2, 77).

[43] C. Temperton. “Algorithms for the solution of cyclic tridiagonal
systems”. In: Journal of Computational Physics 19.3 (1975), pp. 317
–323. I S S N: 0021-9991. D O I: 10.1016/0021-9991(75)90081-9
(cit. on p. 64).

[44] USGS. Organic Origins of Petroleum. 2015. U R L : http://energy.
usgs.gov/GeochemistryGeophysics/GeochemistryResearch/
OrganicOriginsofPetroleum.aspx (visited on 06/28/2015)
(cit. on p. 4).

[45] A. Yeung et al. “On the interfacial properties of micrometre-sized
water droplets in crude oil”. In: Proceedings of the Royal Society of
London A: Mathematical, Physical and Engineering Sciences 455.1990
(1999), pp. 3709–3723. I S S N : 1364-5021. D O I : 10.1098/rspa.
1999.0473 (cit. on pp. ii, iii, 91, 96).

http://dx.doi.org/10.1038/nmeth.2019
http://www.jstor.org/stable/2153791
http://www.sintef.no/home/projects/sintef-energy-research/Compact-Separation-by-Electrocoalescence-/
http://www.sintef.no/home/projects/sintef-energy-research/Compact-Separation-by-Electrocoalescence-/
http://www.sintef.no/home/projects/sintef-energy-research/Compact-Separation-by-Electrocoalescence-/
http://www.diva-portal.org/smash/get/diva2:370048/FULLTEXT01.pdf
http://www.diva-portal.org/smash/get/diva2:370048/FULLTEXT01.pdf
http://dx.doi.org/10.1016/0021-9991(75)90081-9
http://energy.usgs.gov/GeochemistryGeophysics/GeochemistryResearch/OrganicOriginsofPetroleum.aspx
http://energy.usgs.gov/GeochemistryGeophysics/GeochemistryResearch/OrganicOriginsofPetroleum.aspx
http://energy.usgs.gov/GeochemistryGeophysics/GeochemistryResearch/OrganicOriginsofPetroleum.aspx
http://dx.doi.org/10.1098/rspa.1999.0473
http://dx.doi.org/10.1098/rspa.1999.0473

105

[46] S. T. Zalesak. “Fully multidimensional flux-corrected transport
algorithms for fluids”. In: Journal of Computational Physics 31.3 (1979),
pp. 335 –362. I S S N : 0021-9991. D O I : 10.1016/0021-9991(79)
90051-2 (cit. on p. 75).

[47] H.-K. Zhao et al. “A Variational Level Set Approach to Multiphase
Motion”. In: Journal of Computational Physics 127.1 (1996), pp. 179
–195. I S S N : 0021-9991. D O I : 10.1006/jcph.1996.0167. U R L :
http://www.sciencedirect.com/science/article/pii/
S0021999196901679 (cit. on p. 25).

http://dx.doi.org/10.1016/0021-9991(79)90051-2
http://dx.doi.org/10.1016/0021-9991(79)90051-2
http://dx.doi.org/10.1006/jcph.1996.0167
http://www.sciencedirect.com/science/article/pii/ S0021999196901679
http://www.sciencedirect.com/science/article/pii/ S0021999196901679

107

A. Coding conventions

As this master’s thesis was an implementation project code was written.
This code will go into the upstream SINTEF repository and available for
future simulations. Because of this, the author early decided to take the
issue of code quality seriously. The following goals were set, from general
to more specific.

• Clearly communicate any assumptions the code makes in comments.

• In the documentation, not only say what something is, but how it
works.

• Considerate use of abstractions. This is a balancing act between a
tower of abstraction only those who create them understand, and an
ocean of tedious explicitness. Both are unwanted.

• Independently test all non trivial routines and verify them correct
for a realistic input space.

• Minimize the use of subroutines because they can mutate their
environment, instead use functions. When done correctly, this
has negligible runtime cost.

• In a similar spirit, strive to make as many of the functions pure,
and in the ideal case elemental. This gives static guarantees of
their behaviour and enables automatic inlining removing the cost of
function calls.

• Minimize the usage of global variables. Treating programs like a big
state machine where everything has a potential interaction trough a
global variable is harder to understand than the isolation given by
functions.

A. Coding conventions

The overall idea behind these points is to enforce a certain structure on the
program, such that if one knows a part of the code, reading the rest of it
will feel familiar. The specific points about favouring functions over sub-
routines and discourage global variables are to lower the mental burden of
state management between different parts of the code. If a function is pure,
its output is uniquely defined by its input, and it does not have any effect
on any other function in the code. The points above served as guidelines
and had to be violated several times because of limitations in Fortran, like
not being able to return multiple variables from a function, architecture of
existing code or the points simply being impractical to follow.

Testing and verifying correctness of all non trivial functions was a goal.
This implies at least one test per non-trivial function, which quickly adds
up to quite a lot. To efficiently work with that many tests automation
was needed. A minimal testing framework was created. Using it adding
a new unit test was as simple as creating a single file. When compiled
and linked with the rest of the source code this file would create a binary
which when run would output any errors. Then a wrapper script was
created to compile, run and report back the status of all tests. This way,
verifying that nothing was broken in a new revision of the code was as
simple as running a single command. This proved essential several times
during development and saved many hours of debugging.

109

B. Core immersed boundary and linear
algebra routines developed

The most essential parts of developed code are listed below, they are also
embedded in the PDF file and can be obtained by pressing the following
links: , .

Listing 1: immersed_boundary_module_header

1 module immersed_boundary

2 !

3 !> @file
4 !> Immersed boundary
5 !>

6 !> MOL, 2015-02-03.
7 !> This is a 2D implementation of the immersed boundary method based
8 !> on Peskins review paper on the method (2002).

9 !>
10 !> The main use of the code is to enable simulation of elastic

membranes↪→

11 !> coming from asphaltene surfactants. See masterthesis of
12 !> Morten Olsen Lysgaard (NTNU 2015) for further reference.

13 !> This works for both 2D and axisymmetry, but note that for
axisymmetry↪→

14 !> it is unphysical for the drop to crumple axisymmetricly.

15 !>
16 !> The code has been verified to simulate surface tension correctly
17 !> together with density and viscosity jumps. It also has been tested

18 !> Together with electric fields. In general, it is compatible with
19 !> any sharp interface forces coming from the GFM method.
20 !> It should also work together with the CSF method, but

21 !> this has not been verified.
22 !> The code is also verified for axisymmetry.

23 !>

module immersed_boundary
 !
 !> @file
 !> Immersed boundary
 !>
 !> MOL, 2015-02-03.
 !> This is a 2D implementation of the immersed boundary method based
 !> on Peskins review paper on the method (2002).
 !>
 !> The main use of the code is to enable simulation of elastic membranes
 !> coming from asphaltene surfactants. See masterthesis of
 !> Morten Olsen Lysgaard (NTNU 2015) for further reference.
 !> This works for both 2D and axisymmetry, but note that for axisymmetry
 !> it is unphysical for the drop to crumple axisymmetricly.
 !>
 !> The code has been verified to simulate surface tension correctly
 !> together with density and viscosity jumps. It also has been tested
 !> Together with electric fields. In general, it is compatible with
 !> any sharp interface forces coming from the GFM method.
 !> It should also work together with the CSF method, but
 !> this has not been verified.
 !> The code is also verified for axisymmetry.
 !>
 !> Variable surface tension has been implemented, but not verified to
 !> work correctly.
 !>
 !> The code can simulate a single closed interface, e.g. a drop,
 !> although adding support for several interfaces should be quite easy.
 !> This would preferably be done using a dynamic datastructure that can
 !> hold the data for the different boundaries.
 !>
 !> Code for topological change, e.g. collission is not implemented.
 !> This depends on support for multiple interfaces first.
 !> Once multiple interfaces is implemented it should be easy to
 !> implement for the 2D case.
 !
 implicit none
 private
 save
 !
 ! Logical telling if (general) surface tension is simulated with the IB method.
 logical :: libsigma=.false.
 !
 ! The Lagrangian point density per Eulerian grid cell.
 integer :: ibdensity=0
 !
 ! The maximum number of Lagrangian points we can handle.
 ! The limit arises because of the current storage method used
 ! for easy integration with the Runge-Kutta methods.
 integer :: ib_max_points=0
 !
 ! The current number of Lagrangian points <= ib_max_points.
 integer :: npoints=0
 !
 ! The surface tension of the immersed boundary.
 real :: ibsigma=0.0
 !
 ! The elastic membrane Hookean spring constant.
 real :: ibKa=0.0
 !
 ! The CFL number coming from surface forces, this is used by the outer routines
 ! calculating the time step.
 real :: ib_cfl_st=0.0
 !
 ! Public procedures
 public :: init_ib,init_ib_from_userinp
 public :: rhs_ib
 public :: find_boundary
 public :: ib_force
 public :: ellipsoid_ib
 public :: reinitialize_level_set_from_ib
 public :: write_ib_to_tecplot
 !
 ! Public variables
 public :: npoints
 public :: libsigma, ibsigma, ib_cfl_st
 !
 ! In an ideal world these would not be public, as they are not used by the outer routines.
 ! However, they are used by the unit tests, because of this they need to be public.
 public :: ib_max_points, ibdensity
 public :: calculate_curvature, cubic_spline, cubic_spline_normal
 public :: spread_vector_lagrangian_to_eulerian, interpolate_vector_eulerian_to_lagrangian
 public :: heaviside
 !
 ! Static variables used for saving the immersed boundary to a TecPlot compatible file
 ! This is used for visualization.
 integer, parameter :: itec_points =51
 character(len=24) :: tec_pointfile="levelZ-points.tec"
contains
 !---
 subroutine init_ib_from_userinp
 ! This routine is used to initialize the IB-method from user
 ! input (user.inp file).
 !
 !---
 ! Created: MOL, 2015-02-03.
 ! Changed: MOL, 2015-02-18 seperated out find_boundary
 !---
 use userinp
 integer :: pibdensity
 !
 ! Get immersed boundary point density
 pibdensity=ivalue("Number of points per grid cell, (0 == No IB-method) recommended ~ 5", &
 'I',"spi.ib.ibdensity",'0')
 libsigma=lvalue("Use Immersed Boundary method for surface tension calculation", &
 'L',"spi.ib.libsigma",'0')
 ibKa=rvalue("Immersed Boundary coefficient of elasticity, Ka",'R',"spi.ib.ibKa",'0.0')
 call init_ib(pibdensity)
 end subroutine init_ib_from_userinp
 !--
 subroutine init_ib(pibdensity)
 ! This routine calculates the maximum number of points and sets up
 ! logical to signal that we are either using or not using the IB
 ! method.
 !
 !---
 ! Created: MOL, 2015-03-20.
 !---
 use grid, only: imax, jmax
 use rhs_var, only: lib
 ! the Lagrangian point density per Eulerian grid cell
 integer, intent(in) :: pibdensity
 ibdensity = pibdensity
 if(ibdensity>0) then
 ! We are using the IB-method
 lib=.true.
 !
 ! calculate the limit of number of points we can handle
 ib_max_points = (imax*jmax)/2
 endif
 end subroutine init_ib
 !--
 subroutine rhs_ib(ibp, ibdk, f, dpdt, dibdkdt)
 ! This is the main advection routine. It uses the immersed
 ! boundary delta function interpolation to interpolate an
 ! Eulerian velocity field to the Lagrangian grid points.
 !
 ! Calculates the right hand side of
 !
 ! dp_i/dt = rhs_i
 !
 ! where p_i is position of point i at the current time.
 ! This right hand side is simply an Euler step of an ordinary ODE.
 ! These Euler steps are composed in a higher order Runge-Kutta
 ! Method from the calling code.
 !---
 ! Created: MOL, 2015-02-03.
 ! Changed: MOL, 2015-02-18 Several bug fixes fixing a sign error caused
 ! by a bug in the interpolation function
 !---
 use grid, only: ib1,ibn, jb1, jbn
 use rhs_var, only: lvar_st
 use surfactants, only: surf_diff
 real, intent(in) :: f(ib1:ibn,jb1:jbn,2) ! eulerian staggered velocity field
 real, intent(in) :: ibp(2,ib_max_points) ! current point positions
 real, intent(in) :: ibdk(2,ib_max_points) ! current point equilibrium distance and curvature
 real, intent(out) :: dpdt(2,ib_max_points) ! output velocities of each point
 real, intent(out) :: dibdkdt(2,ib_max_points) ! output rate of change for surfactant
 real :: consentration(npoints) ! consentration of surfactant at a point
 real :: d_mid(npoints) ! array containing the distance between 2 points
 integer :: i

 dpdt(:,1:npoints) = interpolate_velocity_field(ibp, f)

 dibdkdt = 0.0
 if(lvar_st) then
 write(*,*) 'MOL: Varying surface tension has not been validated to be correct for the immersed boundary.'
 write(*,*) ' This warning only applies if you want to '
 write(*,*) ' tension from _both_ elastic membrane and insoluble surfactants (soap)'
 write(*,*) ' at the same time.'
 write(*,*) ''
 write(*,*) ' Summary:'
 write(*,*) ' Constant surface tension = Use level-set + GFM or immersed boundary, both are verified.'
 write(*,*) ' Varying surface tension = Use level-set + GFM, verified.'
 write(*,*) ' Elastic forces + constant surface tension = Use immersed boundary, verified.'
 write(*,*) ' Elastic forces + varying surface tension = Use immersed boundary, but remove this warning and verify that it works correctly.'
 write(*,*) " Program will now terminate so that you don't get results you can't trust ;)"
 stop

 d_mid = calculate_middle_dist(ibp)
 consentration = ibdk(2,1:npoints)/d_mid

 do i=1,npoints
 dibdkdt(2,i) = surf_diff*(consentration(iprev(i))-2.0*consentration(i)+ &
 consentration(inext(i)))/d_mid(i)**2.0 ! laplace term
 end do
 end if
 end subroutine rhs_ib
 !---
 subroutine ib_force(ibp, ibdk, fi, f)
 ! Calculates the forces from the interface on the
 ! fluid.
 !
 ! This enters as a right hand side term in the pressure equation.
 !---
 ! Created: MOL, 2015-03-02.
 !---
 use grid, only: ib1, ibn, jb1, jbn, dxymin
 use rhs_var, only: rho, laxisym, lvar_st
 use surfactants, only: max_surfactant_packing, elasticity
 real, intent(out) :: f(ib1:ibn,jb1:jbn,2) ! eulerian staggered force field
 real, intent(in) :: fi(ib1:ibn, jb1:jbn) ! level-set function
 real, intent(in) :: ibp(2,ib_max_points) ! current point positions
 real, intent(in) :: ibdk(2,ib_max_points) ! equilibrium distances and curvatures, [(d1,k1)...(dn,kn)]
 real :: k(npoints) ! current curvature
 real :: d_mid(npoints) ! segment length interpolated to point
 real :: fp(2,npoints) ! sum of forces on particle
 real, dimension(2,npoints,4) :: abcd ! coeffecients for cubic spline
 real, dimension(2,npoints) :: tangents ! normalized xy tangent vector to interface
 real, dimension(2,npoints) :: inward_normal ! unit normal vector to interface
 real :: T(npoints) ! tension in the boundary
 real :: dTds(npoints) ! derivative of tension in boundary
 real :: mass_density(ib1:ibn, jb1:jbn) ! Eulerian mass density
 integer :: i
 fp=0.0

 d_mid = calculate_middle_dist(ibp)

 if(laxisym) then
 abcd = cubic_spline_normal(ibp)
 else
 abcd = cubic_spline(ibp)
 endif
 tangents = calculate_tangent(abcd)
 k = calculate_curvature(ibp, abcd)

 if(lvar_st) then
 T(:) = ibKa*(d_mid(:)/ibdk(1,1:npoints) - 1.0) + ibsigma*(1.0+elasticity*log(1.0-(ibdk(2,1:npoints)/d_mid(:))/max_surfactant_packing))
 else
 T(:) = ibKa*(d_mid(:)/ibdk(1,1:npoints) - 1.0) + ibsigma
 end if

 do i=1,npoints
 dTds(i) = (T(inext(i))-T(iprev(i)))/2.0
 end do

 mass_density = rho(1) + heaviside_fi(fi)*(rho(2)-rho(1)) ! heaviside smooth eulerian mass density

 if(libsigma) then
 inward_normal = -calc_outward_normal(ibp, tangents, fi)
 do i=1,npoints
 fp(:,i) = (&
 dTds(i)*tangents(:,i) + &
 T(i)*k(i)*d_mid(i)*inward_normal(:,i) &
)/interpolate_scalar_eulerian_to_lagrangian(ibp(1,i), ibp(2,i), mass_density)
 end do
 end if

 ! When the simulation is axisymmetrix the x-forces on points at y==0 are in
 ! equilibrium, in code: if(y==0) then fx=0
 ! Since the points having y==0 are known, the first and last point on the bondary,
 ! we simply set the forces there to zero.
 if(laxisym) then
 fp(1,1) = 0.0
 fp(1,npoints) = 0.0
 end if

 ib_cfl_st=sqrt(maxval(abs(norm2(fp,1)/d_mid))/dxymin**2)

 f = 0.0
 do i=1,npoints
 call spread_vector_lagrangian_to_eulerian(ibp(1,i), ibp(2,i), fp(1,i), fp(2,i), f)
 end do
 end subroutine ib_force
 !--
 subroutine reinitialize_level_set_from_ib(ibp, fi)
 ! Reinitialize the level-set function from the immersed boundary.
 !
 ! This function takes the immersed boundary points, ibp,
 ! and outputs a level-set field, a signed distance to
 ! the immersed boundary.
 !
 ! The general algorithm is outlined in Morten Olsen Lysgaards masterthesis and works
 ! as follows:
 !
 ! * For each segment of the immersed boundary create a bounding box, and
 ! then grow the box by 4 grid cells in all directions.
 !
 ! * For each grid cell in this bounding box,
 ! calculate the distance between the grid cell node and the line segment.
 ! If this distance is the smallest yet discovered, store it in a temporary field.
 !
 ! * When all segments have been evaluated, go trough the temporary field node by node.
 ! If there is a saved distance for the node, calculate wheter the node is inside
 ! or outside the polyhedron defined by ibp. This decides the sign of the distance.
 !
 ! * Save the signed distance for the updated nodes in the original fi field.
 !
 !---
 ! Created: MOL, 2015-04-24.
 !---
 use grid, only: x, y, ib1,ibn,jb1,jbn, p2ij, nbord
 use constants, only: almost_infinite
 real, intent(in) :: ibp(2,ib_max_points) ! current point positions
 real, intent(inout) :: fi(ib1:ibn, jb1:jbn) ! the level-set field
 real :: fiTmp(ib1:ibn, jb1:jbn) ! temporary level-set field

 integer :: i,j,k
 integer :: ij1(2), ij2(2), ijtmp(2)

 fiTmp = almost_infinite ! set temp array to inf because fi never should be inf

 do k=1,npoints
 ij1 = p2ij(ibp(:,k))
 ij2 = p2ij(pnext(ibp,k))
 ijtmp = ij1
 ij1 = [min(ij1(1), ij2(1)), min(ij1(2), ij2(2))] - 4
 ij1 = [max(ij1(1), ib1), max(ij1(2), jb1)]
 ij2 = [max(ijtmp(1), ij2(1)), max(ijtmp(2), ij2(2))] + 4
 ij2 = [min(ij2(1), ibn), min(ij2(2), jbn)]

 do i=ij1(1),ij2(1)
 do j=ij1(2),ij2(2)
 fiTmp(i,j) = min(fiTmp(i,j), dist_point_to_line(ibp(:,k), pnext(ibp,k), [x(i), y(j)]))
 end do
 end do

 end do

 !$OMP PARALLEL DO schedule(guided, 10) private(i, j) shared(ib1, ibn, jb1, jbn, fi, fiTmp, ibp)
 do i=ib1,ibn
 do j=jb1,jbn
 if(fiTmp(i,j) < almost_infinite) then ! if this value was updated
 fi(i,j) = fiTmp(i,j)*point_inside(ibp,[x(i),y(j)])
 end if
 end do
 end do
 !$OMP END PARALLEL DO
 end subroutine reinitialize_level_set_from_ib
 !---
 pure real function dist_point_to_line(v, w, p) result(d)
 ! Distance between a point, p, and a line segment defined by the
 ! points v and w.
 !---
 ! Created: MOL, 2015-04-24.
 !---
 real, dimension(2), intent(in) :: p(2) ! the point in question
 real, dimension(2), intent(in) :: v, w ! the endpoints of the linesegment
 real :: l2, t, projection(2)

 l2 = sum((w-v)**2) ! length squared i.e. |w-v|^2
 if (l2 == 0.0) then ! v == w case
 d = distp(p- v)
 return
 end if
 ! Consider the line extending the segment, parameterized as v + t (w - v).
 ! We find projection of point p onto the line.
 ! It falls where t = [(p-v) . (w-v)] / |w-v|^2
 t = dot_product(p - v, w - v) / l2;
 if (t < 0.0) then ! Beyond the 'v' end of the segment
 d = distp(p- v)
 return
 else if (t > 1.0) then
 d = distp(p- w) ! Beyond the 'w' end of the segment
 return
 end if
 projection = v + t * (w - v) ! Projection falls on the segment
 d = distp(p- projection)
 end function dist_point_to_line
 !---
 pure real function point_inside(ibp, p) result(sgn)
 ! Returns negative if a point is inside the closed polyhedron
 ! defined by ibp, positive if not.
 !
 ! Algorithm follows this principle:
 !
 ! * Given a closed polyhedron G, and an arbitrary point p.
 !
 ! * Count the number of times crossing the interface of G when
 ! traveling on a ray from infinity to the point p.
 !
 ! * If the number is odd, p is inside the polyhedron,
 ! if it is even, p is outside.
 !
 !---
 ! Created: MOL, 2015-04-24.
 !---
 real, intent(in) :: ibp(2,ib_max_points) ! current point positions
 real, dimension(2), intent(in) :: p(2) ! the point in question
 integer :: i
 real ymin, ymax

 sgn = 1.0 ! starting outside

 do i=1,npoints
 if(p(1) < ibp(1,i)) then ! only count crossing to the right
 ymin = min(ibp(2,i), ibp(2,inext(i)))
 ymax = max(ibp(2,i), ibp(2,inext(i)))
 if(ymin <= p(2) .and. p(2) < ymax) then ! this is a crossing
 sgn = -1.0*sgn
 end if
 end if
 end do
 end function point_inside
 !--
 pure function interpolate_velocity_field(ibp, eulerVel) result(pointVel)
 ! Interpolates an Eulerian velocity field to the Lagrange points
 !
 !---
 ! Created: MOL, 2015-04-17.
 !---
 use grid, only: ib1,ibn, jb1, jbn
 use rhs_var, only: laxisym

 real, intent(in) :: ibp(2,ib_max_points) ! current point positions
 real, intent(in) :: eulerVel(ib1:ibn,jb1:jbn,2) ! Eulerian staggered velocity field
 real :: pointVel(2,npoints) ! output velocities of each point
 integer :: i

 forall(i=1:npoints)
 pointVel(:,i) = interpolate_vector_eulerian_to_lagrangian(ibp(1,i), ibp(2,i), eulerVel)
 endforall

 ! If the simulation is axysymmetric the mirror points (x==0) are constarined
 ! to the y axis (enforce vx == 0)
 if(laxisym) then
 pointVel(1,1) = 0.0
 pointVel(1,npoints) = 0.0
 end if
 end function
 !--
 pure function interpolate_scalar_eulerian_to_lagrangian(px, py, F) result(res)
 ! Calculates the effect of a scalar field on a lagrangian particle
 ! using the deltafunction interpolation from the Peskin review paper.
 !
 ! The deltafunction has a radius of 2 times the discretization size.
 ! As the figure below illustrates this mean that one for an arbitrary
 ! point inside a grid cell, have to consider 16 different points
 ! to be able to interpolate the value correctly.
 ! In the figure p is the arbitrary point, and x is the grid points
 ! that need to be considered in order to interpolate the from the
 ! eulerian grid to the point p
 !
 ! --------------------------
 ! | dx | dx | dx | dx | dx |
 ! |dy | | | | |
 !s+2|----x----x----x----x----|
 ! | | | | | |
 ! |dy | | | | |
 !s+1|----x----x----x----x----|
 ! | | | p | | |
 ! |dy | | | | |
 ! s|----x----x----x----x----|
 ! | | | | | |
 ! |dy | | | | |
 !s-1|----x----x----x----x----|
 ! | | | | | |
 ! |dy | | | | |
 ! |----|----|----|----|----|
 ! w-1 w w+1 w+2
 !
 ! Also note the point (w,s), it is this point we use
 ! as basis for calculating the 16 points.
 !
 !--
 ! Created: MOL, 2015-06-10.
 !--
 use grid, only: ib1,ibn,jb1,jbn,x2i,y2j, x, y, dx, dy
 ! Input/Output
 real, intent(in) :: px,py ! x and y position of current point
 real, intent(in), dimension(ib1:ibn,jb1:jbn) :: F ! Eulerian scalar field
 real res ! output interpolated scalar value
 !
 ! Local variables
 integer :: nstencil ! number of Eulerian points to consider
 parameter (nstencil = 16) ! for a stencil that has radius 2h, we have to consider 16 points
 real :: Fs(nstencil) ! values of the scalar field at our 16 points
 integer :: s ! lower y-bound in the eulerian grid for cell containing (px,py)
 integer :: w ! lower x-bound in the eulerian grid for cell containing (px,py)
 integer :: xvec(nstencil) ! x-coordinates of the 16 points
 integer :: yvec(nstencil) ! y-coordinates of the 16 points
 integer :: i,j,k

 ! find south-west corner of the cell for point (x,y)
 w=x2i(px)
 s=y2j(py)

 ! calculate coordinates for 16 points
 k=1
 do i=-1,2
 do j=-1,2
 xvec(k) = w+i
 yvec(k) = s+j
 k = k+1
 end do
 end do

 ! calculate scalar at the 16 points
 forall(i=1:nstencil)
 Fs(i) = F(xvec(i),yvec(i))
 end forall

 ! Compute interpolated scalar
 !
 ! Here we use the fact that fortran supports vector arguments to elemental functions
 ! to compute all 16 points in one go.
 res = sum(delta2d(px-x(xvec),dx(xvec),py-y(yvec),dy(yvec))*Fs(:))
 end function interpolate_scalar_eulerian_to_lagrangian
 !--
 pure function interpolate_vector_eulerian_to_lagrangian(px, py, F) result(res)
 ! Calculates the effect of a vector field on a lagrangian particle
 ! using the deltafunction interpolation from the Peskin review paper.
 !
 ! The deltafunction has a radius of 2 times the discretization size.
 ! As the figure below illustrates this mean that one for an arbitrary
 ! point inside a grid cell, have to consider 16 different points
 ! to be able to interpolate the value correctly.
 ! In the figure p is the arbitrary point, and x is the grid points
 ! that need to be considered in order to interpolate the from the
 ! eulerian grid to the point p
 !
 ! --------------------------
 ! | dx | dx | dx | dx | dx |
 ! |dy | | | | |
 !s+2|----x----x----x----x----|
 ! | | | | | |
 ! |dy | | | | |
 !s+1|----x----x----x----x----|
 ! | | | p | | |
 ! |dy | | | | |
 ! s|----x----x----x----x----|
 ! | | | | | |
 ! |dy | | | | |
 !s-1|----x----x----x----x----|
 ! | | | | | |
 ! |dy | | | | |
 ! |----|----|----|----|----|
 ! w-1 w w+1 w+2
 !
 ! Also note how the point (w,s) is denoted, it is this point we use
 ! as basis for calculating the 16 points.
 !
 ! This function takes into account the staggered grid used for velocities.
 !--
 ! Created: MOL, 2015-02-05.
 ! Updated: MOL, 2015-02-18 - Fixed sign and swap of u,v coordinates
 !--
 use grid, only: ib1,ibn,jb1,jbn,x2i,xu2i,y2j,yv2j, x, xu, y, yv, dx, dy, dxu, dyv
 ! Input/Output
 real, intent(in) :: px,py ! x and y position of point
 real, intent(in), dimension(ib1:ibn,jb1:jbn,2) :: F ! eulerian velocity field
 real res(2) ! output vector containing the interpolated x,y velocities
 !
 ! Local variables
 integer :: nstencil ! the number of eulerian points to consider
 parameter (nstencil = 16) ! for a stencil that has radius 2h, we have to consider 16 points
 real :: Fs(nstencil,2) ! values of the velocity field at our 16 points
 integer :: s,sv ! lower y-bound in the eulerian grid for cell containing (px,py)
 integer :: w,wu ! lower x-bound in the eulerian grid for cell containing (px,py)
 integer :: xvec(nstencil) ! x-coordinates of the 16 points
 integer :: xuvec(nstencil) ! xu-coordinates of the 16 points
 integer :: yvec(nstencil) ! y-coordinates of the 16 points
 integer :: yvvec(nstencil) ! yv-coordinates of the 16 points
 integer :: i,j,k

 ! find south-west corner of the cell for point (x,y)
 w=x2i(px)
 wu=xu2i(px)
 s=y2j(py)
 sv=yv2j(py)

 ! calculate coordinates for 16 points
 k=1
 do i=-1,2
 do j=-1,2
 xvec(k) = w+i
 yvec(k) = s+j
 xuvec(k) = wu+i
 yvvec(k) = sv+j
 k = k+1
 end do
 end do

 ! calculate velocities at the 16 points
 forall(i=1:nstencil)
 Fs(i,:) = [F(xuvec(i),yvec(i),1), F(xvec(i),yvvec(i),2)]
 end forall

 ! Compute interpolated velocies
 !
 ! Here we use the fact that fortran supports vector arguments to elemental functions
 ! to compute all 16 points in one go.
 res(1) = sum(delta2d(px-xu(xuvec),dxu(xuvec),py-y(yvec),dy(yvec))*Fs(:,1))
 res(2) = sum(delta2d(px-x(xvec),dx(xvec),py-yv(yvvec),dyv(yvvec))*Fs(:,2))
 end function interpolate_vector_eulerian_to_lagrangian
 !--
 subroutine spread_vector_lagrangian_to_eulerian(px, py, fx, fy, F)
 ! Calculates the effect of a lagrangian particle on a vector field
 ! using the deltafunction interpolation from the Peskin review paper.
 !
 ! The deltafunction has a radius of 2 times the discretization size.
 ! As the figure below illustrates this mean that one for an arbitrary
 ! particle inside a grid cell, have to interpolate the particle value to 16 different grid nodes.
 ! In the figure, p is the arbitrary point, x is the grid nodes
 ! that need to be considered
 !
 ! --------------------------
 ! | dx | dx | dx | dx | dx |
 ! |dy | | | | |
 !s+2|----x----x----x----x----|
 ! | | | | | |
 ! |dy | | | | |
 !s+1|----x----x----x----x----|
 ! | | | p | | |
 ! |dy | | | | |
 ! s|----x----x----x----x----|
 ! | | | | | |
 ! |dy | | | | |
 !s-1|----x----x----x----x----|
 ! | | | | | |
 ! |dy | | | | |
 ! |----|----|----|----|----|
 ! w-1 w w+1 w+2
 !
 ! Also note how the point (w,s) is denoted, it is this point we use
 ! as basis for calculating the 16 points.
 !
 ! This function takes into account the staggered grid used for velocities.
 !--
 ! Created: MOL, 2015-03-04
 ! Updated: MOL, 2015-04-17 - fixed scaling of deltafunction
 !--
 use grid, only: ib1,ibn,jb1,jbn,x2i,xu2i,y2j,yv2j, x, xu, y, yv, dx, dy, dxu, dyv
 ! Input/Output
 real, intent(in) :: px,py ! x and y position of our arbitrary point
 real, intent(in) :: fx,fy ! x and y forces on our arbitrary point
 real, intent(out), dimension(ib1:ibn,jb1:jbn,2) :: F ! eulerian vector field
 !
 ! Local variables
 integer :: s,sv ! lower y-bound in the eulerian grid for cell containing (px,py)
 integer :: w,wu ! lower x-bound in the eulerian grid for cell containing (px,py)
 integer :: i,j,k

 ! find south-west corner of the cell for point (x,y)
 w=x2i(px)
 wu=xu2i(px)
 s=y2j(py)
 sv=yv2j(py)

 forall (i=-1:2,j=-1:2)
 F(wu+i,s+j,1) = F(wu+i,s+j,1) + delta2d(px-xu(wu+i),dxu(wu+i),py-y(s+j),dy(s+j))/(dxu(wu+i)*dy(s+j))*fx
 F(w+i,sv+j,2) = F(w+i,sv+j,2) + delta2d(px-x(w+i),dx(w+i),py-yv(sv+j),dyv(sv+j))/(dx(wu+i)*dyv(s+j))*fy
 end forall
 end subroutine spread_vector_lagrangian_to_eulerian
 !--
 function spread_scalar_lagrangian_to_eulerian(ibp, fin) result(F)
 ! Spreads/distributes a scalar value from all the Lagrangian point
 ! to an Eulerian field.
 !
 ! Uses the deltafunction interpolation from the Peskin review paper.
 !--
 ! Created: MOL, 2015-05-07
 !--
 use grid, only: ib1,ibn,jb1,jbn,x2i,y2j, x, y, dx, dy
 ! Input/Output
 real, intent(in) :: ibp(2,ib_max_points) ! x and y position of our arbitrary point
 real, intent(in) :: fin(npoints) ! scalar value on points
 real, dimension(ib1:ibn,jb1:jbn) :: F ! eulerian scalar field
 integer, dimension(ib1:ibn,jb1:jbn) :: N ! normalization field
 integer :: i

 N = 0
 F = 0.0
 do i=1,npoints
 call spread_scalar_lagrangian_to_eulerian_inner(ibp(1,i), ibp(2,i), fin(i), F, N)
 end do
 F = F/real(max(N,1)) ! normalize
 end function spread_scalar_lagrangian_to_eulerian
 !--
 subroutine spread_scalar_lagrangian_to_eulerian_inner(px, py, fin, F, N)
 ! Spreads/distributes a scalar value from a single point to an Eulerian
 ! field. Also updates a normilazition field which is used in the outer routine.
 !
 !--
 ! Created: MOL, 2015-05-07
 !--
 use grid, only: ib1,ibn,jb1,jbn,x2i,y2j, x, y, dx, dy
 ! Input/Output
 real, intent(in) :: px,py ! x and y position of our arbitrary point
 real, intent(in) :: fin ! x and y forces on our arbitrary point
 real, intent(inout), dimension(ib1:ibn,jb1:jbn) :: F ! eulerian scalar field
 integer, intent(inout), dimension(ib1:ibn,jb1:jbn) :: N ! normalization field
 !
 ! Local variables
 integer :: s ! lower y-bound in the eulerian grid for cell containing (px,py)
 integer :: w ! lower x-bound in the eulerian grid for cell containing (px,py)
 integer :: i,j

 ! find south-west corner of the cell for point (x,y)
 w=x2i(px)
 s=y2j(py)

 do i=-1,2
 do j=-1,2
 F(w+i,s+j) = F(w+i,s+j) + delta2d(px-x(w+i),dx(w+i),py-y(s+j),dy(s+j))*fin
 N(w+i,s+j) = N(w+i,s+j) + 1
 end do
 end do
 end subroutine spread_scalar_lagrangian_to_eulerian_inner
 !--
 elemental real function delta2d(x,hx,y,hy)
 ! 2D delta function from Peskins review (2002) paper on the IB-method
 ! Centered around (x,y)=(0,0)
 !
 ! NOTE: one slight difference from the paper is that this deltafunction
 ! is not divided by the step size.
 ! This is because for interpolation(spreading) we need an unscaled
 ! deltafunction. The caller of this function is thus responsible of
 ! scaling correctly.
 !
 !--
 ! Created: MOL, 2015-02-03.
 ! Updated: MOL, 2015-02-18 - updated documentation
 !--
 real, intent(in) :: x,y,hx,hy

 delta2d = delta1d(x,hx)*delta1d(y,hy)
 end function delta2d
 !--
 elemental real function delta1d(r, h)
 ! 1D delta function from Peskins review (2002) paper on the IB-method
 ! Centered around r=0
 !
 ! NOTE: one slight difference from the paper is that this deltafunction
 ! is not divided by the step size.
 ! This is because for interpolation(spreading) we need an unscaled
 ! deltafunction. The caller of this function is thus responsible of
 ! scaling correctly.
 !
 !--
 ! Created: MOL, 2015-02-03.
 ! Updated: MOL, 2015-02-18 - updated documentation
 !--
 real, intent(in) :: r, h
 delta1d = phi(r/h)
 end function delta1d
 !--
 elemental real function phi(rin)
 ! 1D phi function from Peskins review (2002) paper on the IB-method
 ! Centered around rin=0
 !
 !--
 ! Created: MOL, 2015-02-03.
 ! Updated: MOL, 2015-02-18 - simplified and updated documentation
 !--
 real, intent(in) :: rin
 real r
 ! since the delta function is symmetric we only consider positive distances
 ! this saves unnessesary complexity
 r = abs(rin)
 if (2.0 < r) then
 phi=0.0
 else if (1.0 < r) then
 phi=1.0/8.0 * (5.0 -2.0*r -sqrt(-7.0 +12.0*r -4.0*r*r))
 else ! if r <= 1.0
 phi=1.0/8.0 * (3.0 -2.0*r +sqrt(1.0 +4.0*r -4.0*r*r))
 endif
 end function phi
 !--
 function heaviside_fi(fi)
 ! Take heaviside of level-set field.
 ! Used for calculating density in the routine ib_force.
 !
 !--
 ! Created: MOL, 2015-06-16.
 !--
 use grid, only: dx, dy, ib1, ibn, jb1, jbn, str_method
 real, intent(in) :: fi(ib1:ibn, jb1:jbn) ! level-set function
 real :: heaviside_fi(ib1:ibn, jb1:jbn) ! output heaviside of level-set function
 integer :: i, j

 if (str_method==0) then
 heaviside_fi(:,:) = heaviside(fi(:,:)/dx(1))
 else
 forall (i=ib1:ibn, j=jb1:jbn)
 heaviside_fi(i,j) = heaviside(fi(i,j)/dx(i))
 end forall
 end if
 end function heaviside_fi
 !--
 elemental real function heaviside(r)
 ! 1D heaviside function from Peskins review (2002) paper on the IB-method
 ! Centered around r=0
 !
 !--
 ! Created: MOL, 2015-05-03.
 !--
 use constants, only: pi
 real, intent(in) :: r
 if (2.0 < r) then
 heaviside=1.0
 else if(r < -2.0) then
 heaviside=0.0
 else if (r < -1.0) then
 ! integrate from -inf to -2<r<-1
 heaviside = -(pi-46.0)/64.0-(2.0*asin((2.0*r+3.0)/sqrt(2.0)) + (2.0*r+3.0)*sqrt(-4.0*r**2-12.0*r-7.0) - 4.0*r**2-20.0*r)/32.0
 else if (r < 0.0) then
 ! integrate from -inf to -1<r<0
 heaviside = (2.0*asin((2.0*r+1.0)/sqrt(2.0)) + (2.0*r+1.0)*sqrt(-4.0*r**2-4.0*r+1.0)+4.0*r**2+12.0*r)/32.0 + (pi+18.0)/64.0-(pi-6.0)/32.0
 else if (r < 1.0) then
 ! integrate from -inf to 0<r<1
 heaviside = (2.0*asin((2.0*r-1.0)/sqrt(2.0)) + (2.0*r-1.0)*sqrt(-4.0*r**2+4.0*r+1.0)-4*r**2+12.0*r)/32.0 + (pi+2.0)/64.0+0.5
 else if (r < 2.0) then
 ! integrate from -inf to 1<r<2
 heaviside = -(2.0*asin((2.0*r-3.0)/sqrt(2.0)) + (2.0*r-3.0)*sqrt(-4.0*r**2+12.0*r-7.0)+4.0*r**2-20.0*r)/32.0 - (pi+34.0)/64.0+(pi+26.0)/32.0
 endif
 end function heaviside
 !--
 subroutine find_boundary(ibp, ibdk, fi)
 ! Given a discretized eulerian scalar field, the level-set function fi,
 ! this function computes a piecewice linear path such that all points along
 ! the path lie on fi = 0.
 ! The distance between the points is calculated from the immersed boundary
 ! point density.
 ! The actual algorithm roughly works like this:
 !
 ! * Find the point in fi that has smallest absolute value.
 !
 ! * Use bilinear interpolation ta make the discrete fi continous.
 !
 ! * From the point with smallest absolute value, consider all
 ! points that are on the circle with radius p=1.01*sqrt(dx**2+dy**2) away from it.
 !
 ! * Use a bisection search algorithm to find the angle that corresponds
 ! to the value closest to zero.
 !
 ! * To make sure that the algorithm finishes it only looks for the next
 ! point within a given sector based on the previous point. This is to
 ! keep it from turning 180 deg and never finish the curve.
 !
 ! * Iteratively find new points untill the current point is closer than
 ! pd to the starting point. This means we have closed the curve.
 !
 ! * Fit a cubic spline to the rough points
 !
 ! * Intersperse the rough points with new points such that the distance
 ! from one to the next is pd
 !
 !---
 ! Created: MOL, 2015-02-17.
 !---
 use grid, only: ij2p, dx, dy, ib1, ibn, jb1, jbn
 use rhs_var, only: laxisym, lvar_st
 use surfactants, only: surf0
 real :: heading ! current heading (rad), this is the tangent of fi=0 at p
 real :: boundary_length ! estimated length of the closed curve fi=0
 real :: pd ! step length between two points on the curve fi=0
 real :: last_p_dist ! The distance between the first and the last points in the curve.
 real :: p(2) ! The previous point added to the curve
 real :: pn(2) ! The new point to be added to the curve
 real, intent(in) :: fi(ib1:ibn,jb1:jbn) ! level-set function, we want to find a closed curve where fi=0
 real, intent(inout) :: ibp(2,ib_max_points) ! array containing the points (xi, yi) along the closed curve
 real :: ibp_tmp(2,ib_max_points) ! tmp array containing the points (xi, yi) along the closed curve
 real, intent(inout) :: ibdk(2,ib_max_points) ! array containing the equilibrium distance and curvature
 real, allocatable, dimension(:,:,:) :: abcd ! coeffecients cubic spline for points
 integer :: i,j
 real :: t

 ! calculate the mean point distance
 pd = 0.5*sqrt(dx(1)**2+dy(1)**2) ! pd is longest diagonal plus 1%

 last_p_dist=10.0*pd ! set to value to stop uninitialized memory valgrind error

 ! bootstrap the algorithm by finding the points on the eulerian grid with
 ! smalles absolute value
 if(laxisym) then
 p = find_axisym_edge(fi, pd)
 else
 p = find_start_point(fi, pd)
 end if
 heading=0.0
 npoints=0
 ibp_tmp=0.0
 ! while we have not closed the circle or have to few points.
 do while (last_p_dist>pd .or. npoints<3)
 ! find next point and add it to the curve
 call find_next_point(p, heading, fi, pd, pn)
 npoints = npoints+1
 ibp_tmp(:,npoints) = pn
 p = pn
 if(laxisym) then
 ! calculate the distance between the currently added point and the y-axis (x==0)
 last_p_dist = abs(ibp_tmp(1,npoints))
 else
 ! calculate the distance between the beginning of the curve and the currently added point
 last_p_dist = distp(ibp_tmp(:,1)-ibp_tmp(:,npoints))
 end if
 end do
 ! calculate the approximated boundary length
 boundary_length = (npoints-2)*pd + last_p_dist
 ! calculate new pd to get wanted amount of points
 pd = boundary_length/real(npoints-1)

 ibp = ibp_tmp
 allocate(abcd(2,npoints,4))

 ! we are done placing the rough points
 ! now calculate a spline following the points, and insert more points on it
 if(laxisym) then
 abcd = cubic_spline_normal(ibp)
 else
 abcd = cubic_spline(ibp)
 endif

 ibp = 0.0
 do i=1,npoints
 do j=1,ibdensity
 t=real(j-1)/real(ibdensity)
 ibp(:,(i-1)*ibdensity+j) = eval_cubic_spline(abcd, i, t)
 end do
 end do
 npoints = npoints + npoints*(ibdensity-1)

 ! calculate equilibrium distances
 ibdk(1,1:npoints) = calculate_middle_dist(ibp)

 if(lvar_st) then
 ibdk(2,1:npoints) = surf0*ibdk(1,1:npoints)
 else
 ! calculate equilibrium curvatures
 ibdk(2,1:npoints) = calculate_curvature(ibp, cubic_spline(ibp))
 end if

 ! cleanup
 deallocate(abcd)
 end subroutine find_boundary
 !--
 function find_start_point(fi, pd) result(p)
 ! Finds the point in the level-set field fi
 ! which has the smalles absolute value.
 ! This is the starting point for the search in the
 ! find_boundary routine. For axisymmetric simulations
 ! the find_axisym_edge is used instead.
 !
 ! This function finds a minimum of the bilinear interpolation
 ! of abs(fi), not the minimum of the discrete field.
 !
 !---
 ! Created: MOL, 2015-04-12.
 !---
 use grid, only: ij2p, dx, dy, imax, jmax, ib1, ibn, jb1, jbn
 real, intent(in) :: pd ! step length for search
 real, intent(in) :: fi(ib1:ibn,jb1:jbn) ! level-set function, we want to find the minimum of abs(fi)
 real :: p(2) ! the previous point
 real :: pn(2) ! the new point
 real :: heading ! current heading (rad) for the algorithm
 logical :: on_boundary

 ! inital seed for search
 p = ij2p(minloc(abs(fi)))

 heading=0.0
 ! while we have not closed the circle or have to few points.
 do while (.not. on_boundary)
 ! gradient decent ontoo the level-set function
 call find_next_point(p, heading, fi, pd, pn, on_boundary)
 p = pn
 end do
 end function find_start_point
 !--
 function find_axisym_edge(fi, pd) result(p)
 ! Finds a point in the level-set field fi
 ! which has the properties fi==0 and x==0
 !
 ! This is the starting point for the search in the
 ! find_boundary routine when simulating an
 ! axisymmetric case. For 2D simulations
 ! the find_start_point is used instead.
 !
 ! This function finds a minimum of the bilinear interpolation
 ! of abs(fi), not the minimum of the discrete field.
 !
 !---
 ! Created: MOL, 2015-04-12.
 !---
 use grid, only: ij2p, dx, dy, imax, jmax, ib1, ibn, jb1, jbn
 real :: heading ! current heading (rad) for the algorithm
 real, intent(in) :: pd ! search step length between two points on the curve fi=0
 real :: p(2) ! the previous point
 real :: pn(2) ! the new point
 real, intent(in) :: fi(ib1:ibn,jb1:jbn) ! level-set function

 ! bootstrap the algorithm by finding the points on the eulerian grid with
 ! smalles absolute value
 p = ij2p(minloc(abs(fi)))
 heading=0.0
 ! while we have not reach the axysymmetric axis
 do while (p(1)>0.0)
 ! find next point
 call find_next_point(p, heading, fi, pd, pn)
 if(pn(1)<0.0) then
 p = p+(pn-p)*abs(p(1))/abs(pn(1)-p(1))
 else
 p = pn
 end if
 end do
 end function find_axisym_edge
 !--
 subroutine find_next_point(pa, heading, fi, pd, pb, on_boundary)
 ! Given a point, pa, level-set function, fi, radius, pb, heading
 ! output the next point, pb, which is on the curve fi=0 and distance
 ! pd from pa in the direction of heading +- pi/1.7.
 ! A bisection search is used to find the correct angle.
 !---
 ! Created: MOL, 2015-02-17.
 !---
 use constants, only: pi
 use grid, only: ib1,ibn, jb1,jbn
 real, intent(in) :: pd ! radius of search circle
 real, intent(in) :: pa(2) ! current point
 real, intent(in) :: fi(ib1:ibn,jb1:jbn) ! level-set function
 real, intent(out) :: pb(2) ! output next point
 real, intent(inout) :: heading ! the current heading, search direction for next point
 logical, optional, intent(out) :: on_boundary ! whenether the returned point is on the boundary
 !
 ! how much we look left and right for the next point.
 ! We deliberately do not want to look backwards, because
 ! this can make us repeatedly turn 180 degrees not making progress.
 real :: minmaxtheta
 !
 ! when the bisection sector has size thres (rad), the bisection is done
 real :: thres
 parameter (thres = 1E-12)
 ! variables for bisection algorithm. t=angle, f=level-set, p=point
 real :: tlow, thigh, tmid, flow, fhigh, fmid, phigh(2), plow(2), pmid(2)

 ! assume we are on the boundary untill prooven otherwise
 if(present(on_boundary)) on_boundary=.true.

 minmaxtheta = pi/1.7
 fmid = huge(fmid)
 tlow = -minmaxtheta
 thigh = minmaxtheta

 ! bisection search
 do while (abs(thigh-tlow) > thres)
 plow = pa + pd*dir2p(heading+tlow)
 phigh = pa + pd*dir2p(heading+thigh)

 flow = bilinear(plow, fi)
 fhigh = bilinear(phigh, fi)
 ! swap if low is high
 if (flow > fhigh) then
 call swap_real(tlow,thigh)
 call swap_real(flow,fhigh)
 call swap_array(plow,phigh)
 end if

 if(flow>0.0 .or. fhigh<0.0) then
 if(present(on_boundary)) on_boundary=.false.
 end if

 tmid = (tlow+thigh)/2.0
 pmid = pa + pd*dir2p(heading+tmid)
 fmid = bilinear(pmid, fi)

 if (0.0 < fmid) then
 thigh = tmid
 else
 tlow = tmid
 end if
 end do

 pb = pa + pd*dir2p(heading+tmid)
 heading = mod(heading + tmid, 2.0*pi)
 end subroutine find_next_point
 !--
 subroutine ellipsoid_ib(x_c, y_c, a, b, ibp, ibdk)
 !
 ! Initialize the immersed boundayr as a ellipsoid
 ! with centre (x_c, y_c) and half axis lengths (a,b)
 !
 ! Does not evenly place points out. This is not a problem
 ! as the method handles this using a variable equilibrium
 ! distance for each line segment.
 !
 !---
 ! Created: MOL, 2015-04-13.
 !---
 use grid, only: dx, dy
 use constants, only: pi
 use rhs_var, only: laxisym, lvar_st
 use surfactants, only: surf0
 real, intent(in) :: x_c, y_c ! x and y ellipsoid centre
 real, intent(in) :: a, b ! x and y half axis length
 real, dimension(2,ib_max_points) :: ibp
 real, dimension(2,ib_max_points) :: ibdk
 real :: pd,arcLength
 integer :: i,di

 pd = min(dx(1),dy(1))
 if(laxisym) then
 arcLength=pi
 di=1
 else
 arcLength=2.0*pi
 di=0
 end if

 npoints=ibdensity*int(arcLength*max(a,b)/pd)+di
 do i=1,npoints
 ibp(:,i) = [a,b] * &
 [cos(arcLength*real(i-di)/real(npoints-di)-pi/2.0), &
 sin(arcLength*real(i-di)/real(npoints-di)-pi/2.0)] + &
 [x_c, y_c]
 end do

 ibdk(1,1:npoints) = calculate_middle_dist(ibp)

 if(lvar_st) then
 ibdk(2,1:npoints) = surf0*ibdk(1,1:npoints)
 else
 ! calculate curvature of relaxed ellipse (circle)
 ibdk(2,1:npoints) = 1.0/((a**2*b)**(1.0/3.0))
 end if

 end subroutine ellipsoid_ib
 !--
 pure real function bilinear(p, f) result(v)
 ! Bilinear interpolation of a discrete scalar field for an arbitrary point
 ! in this field.
 ! Takes an Eulerian field, f, and a point, p, returns
 ! the bilinear interpolation of f to p.
 !
 ! Ref: https://en.wikipedia.org/wiki/Bilinear_interpolation#Algorithm
 !---
 ! Created: MOL, 2015-02-17.
 !---
 use grid, only: ij2p, p2ij, ib1, ibn, jb1, jbn
 real, intent(in) :: p(2) ! point we want to interpolate to
 real, intent(in) :: f(ib1:ibn, jb1:jbn) ! discrete field to interpolate from
 integer :: ij(2)
 real :: xy1(2), xy2(2), x1, x2, y1, y2, Q11, Q12, Q21, Q22
 ij = p2ij(p)
 xy1 = ij2p(ij)
 xy2 = ij2p(ij+1)
 x1 = xy1(1)
 y1 = xy1(2)
 x2 = xy2(1)
 y2 = xy2(2)
 Q11 = f(ij(1),ij(2))
 Q12 = f(ij(1),ij(2)+1)
 Q22 = f(ij(1)+1,ij(2)+1)
 Q21 = f(ij(1)+1,ij(2))
 v = (Q11*(x2-p(1))*(y2-p(2)) + Q21*(p(1)-x1)*(y2-p(2)) + Q12*(x2-p(1))*(p(2)-y1) + Q22*(p(1)-x1)*(p(2)-y1))/((x2-x1)*(y2-y1))
 end function bilinear
 !---
 function cubic_spline(ibp) result(abcd)
 ! Calculate a periodic cubic spline contaning the points ibp
 ! Uses an efficient modified Thomas algorithm for solving the
 ! periodic tridiagonal system.
 !
 ! Ref: http://mathworld.wolfram.com/CubicSpline.html
 !---
 ! Created: MOL, 2015-04-04.
 !---
 use linalg, only: solve_constant_symmetric_tridiag_periodic
 real, intent(in) :: ibp(2,ib_max_points) ! current point positions
 real, dimension(2,npoints) :: coeffs
 real, dimension(2,npoints) :: ibpdiff,sn,sm
 real, dimension(2,npoints,4) :: abcd ! coeffecients for cubic spline
 integer :: n,i

 ! alias to make code more readable
 n = npoints

 ! calculate point distances
 do i=1,n
 ibpdiff(:,i) = ibp(:,inext(i)) - ibp(:,iprev(i))
 end do

 coeffs(1,:) = solve_constant_symmetric_tridiag_periodic(4.0, 1.0, 3.0*ibpdiff(1,1:n), n)
 coeffs(2,:) = solve_constant_symmetric_tridiag_periodic(4.0, 1.0, 3.0*ibpdiff(2,1:n), n)

 ! calculate coefficients in polynomials
 ! a + b*t + c*t^2 + d*t^3
 ! t in [0,1] for each a, b, c and d

 ! a is the points
 abcd(:,:,1) = ibp(:,1:n)
 ! b is the coefficients
 abcd(:,:,2) = coeffs(:,:)

 do i=1,n
 ! c
 abcd(:,i,3) = 3.0*(ibp(:,inext(i))-ibp(:,i))-2.0*coeffs(:,i)-coeffs(:,inext(i))
 ! d
 abcd(:,i,4) = 2.0*(ibp(:,i)-ibp(:,inext(i)))+coeffs(:,i)+coeffs(:,inext(i))
 end do
 end function cubic_spline
 !---
 function cubic_spline_normal(ibp) result(abcd)
 ! Calculate a normal cubic spline contaning the points ibp
 ! mirroring the first and last point around the x-axis.
 ! This special case cubic spline is used for solving the
 ! axisymmetric case, where the spline is not periodic.
 ! Uses an efficient Thomas algorithm for solving the
 ! periodic tridiagonal system.
 !
 ! Ref: http://mathworld.wolfram.com/CubicSpline.html
 !---
 ! Created: MOL, 2015-04-15.
 !---
 use linalg, only: solve_tridiag
 real, intent(in) :: ibp(2,ib_max_points) ! current point positions
 real, dimension(2,npoints+2) :: coeffs
 real, dimension(2,npoints+2) :: ibpdiff,sn,sm
 real, dimension(2,npoints,4) :: abcd ! coeffecients for cubic spline
 real :: ac(npoints+2), b(npoints+2)
 integer :: n,i,ii

 ! alias to make code more readable
 n = npoints

 ! calculate point distances
 do i=1,n
 ibpdiff(:,i+1) = pnext(ibp,i) - pprev(ibp,i)
 end do
 ibpdiff(:,1) = ibp(:,1) - pprev(ibp,1)
 ibpdiff(:,n+2) = pnext(ibp,n) - ibp(:,n)

 ac = 1.0
 b = 4.0
 b(1) = 2.0
 b(n+2) = 2.0

 coeffs(1,:) = solve_tridiag(ac, b, ac, 3.0*ibpdiff(1,:), n+2)
 coeffs(2,:) = solve_tridiag(ac, b, ac, 3.0*ibpdiff(2,:), n+2)

 ! calculate coefficients in polynomials
 ! a + b*t + c*t^2 + d*t^3
 ! t in [0,1] for each a, b, c and d

 ! a is the points
 abcd(:,:,1) = ibp(:,1:n)
 ! b is the coefficients
 abcd(:,:,2) = coeffs(:,2:n+1)

 do i=1,n
 ! c
 abcd(:,i,3) = 3.0*(pnext(ibp,i)-ibp(:,i))-2.0*coeffs(:,i+1)-coeffs(:,i+2)
 ! d
 abcd(:,i,4) = 2.0*(ibp(:,i)-pnext(ibp,i))+coeffs(:,i+1)+coeffs(:,i+2)
 end do
 end function cubic_spline_normal
 !---
 pure function eval_cubic_spline(abcd, i, t) result(p)
 ! Evaluate a spline given by the coeficcients abcd
 ! at spline segment i at t, t in [0,1].
 !
 ! Ref: http://mathworld.wolfram.com/CubicSpline.html
 !---
 ! Created: MOL, 2015-04-13.
 !---
 real, intent(in), dimension(2,npoints,4) :: abcd ! coeffecients cubic spline
 integer, intent(in) :: i ! index of segment
 real, intent(in) :: t ! parameter [0,1] on segment i
 real :: p(2)

 p = abcd(:,i,1) + abcd(:,i,2)*t + abcd(:,i,3)*t**2 + abcd(:,i,4)*t**3

 end function eval_cubic_spline
 !---
 function calculate_curvature(ibp, abcd) result(k)
 ! Calculate the curvature at knot points of a spline given by the
 ! coeficcients abcd.
 !
 ! Ref: http://mathworld.wolfram.com/CubicSpline.html
 !---
 ! Created: MOL, 2015-04-02.
 !---
 use rhs_var, only: rho, laxisym
 real, intent(in), dimension(2,npoints,4) :: abcd ! coeffecients for cubic spline
 real, intent(in), dimension(2,ib_max_points) :: ibp ! current point positions
 real, dimension(2,npoints) :: d ! first derivative
 real, dimension(2,npoints) :: dd ! second derivative
 real, dimension(npoints) :: k ! curvature
 integer :: n

 n = npoints ! convenience to make code more readable

 ! first derivative at t=0 is b
 d = abcd(:,:,2)

 ! second derivative at t=0 is 2c
 dd = 2.0*abcd(:,:,3)

 ! 2d curvature formula, ref: http://mathworld.wolfram.com/Curvature.html

 ! Also, the above formula could be expanded, check level_set_geometry.f90:1231
 if(laxisym) then
 k(2:n-1) = -2.0*(ibp(1,2:n-1)*(dd(1,2:n-1)*d(2,2:n-1) - d(1,2:n-1)*dd(2,2:n-1)) - d(2,2:n-1) * sum(d(:,2:n-1)**2,1)) / (2.0*ibp(1,2:n-1)*(sum(d(:,2:n-1)**2,1)**(3.0/2.0)))
 k(1) = 2.0*(dd(2,1)*d(1,1)-dd(1,1)*d(2,1))/(sum(d(:,1)**2,1)**(3.0/2.0))
 k(n) = 2.0*(dd(2,n) * d(1,n)-dd(1,n)*d(2,n)) / (sum(d(:,n)**2,1)**(3.0/2.0))
 else
 k = (dd(2,:)*d(1,:)-dd(1,:)*d(2,:))/(sum(d**2,1)**(3.0/2.0))
 end if
 end function calculate_curvature
 !---
 function calculate_curvature_circle(ibp) result(k)
 ! Calculate the curvature at points using three point circle approximation.
 ! This gives approximately 2 orders of magnitude bigger errors than
 ! using calculate_curvature which uses a spline.
 !
 ! When used for relaxing ellipse this method was unstable and lead
 ! to huge errors in curvature, enogh to make the simulation blow up.
 !
 ! Ref: http://en.wikipedia.org/wiki/Curvature#Local_expressions
 !---
 ! Created: MOL, 2015-04-02.
 !---
 real, intent(in), dimension(2,ib_max_points) :: ibp ! coeffecients for polynomial at each point
 real, dimension(npoints) :: k ! curvature
 real :: p1(2), p2(2), p3(2), r
 integer :: i

 do i=1,npoints
 p1 = pprev(ibp,i)
 p2 = ibp(:,i)
 p3 = pnext(ibp,i)

 ! spline approximated curvature
 r = sqrt(((p2(1)-p1(1))**2+(p2(2)-p1(2))**2) * ((p2(1)-p3(1))**2+(p2(2)-p3(2))**2) * ((p3(1)-p1(1))**2+(p3(2)-p1(2))**2)) / (2.0*abs(p1(1)*p2(2) + p2(1)*p3(2) + p3(1)*p1(2) - p1(1)*p3(2) - p2(1)*p1(2) - p3(1)*p2(2)))
 k(i) = 1.0/r
 end do

 end function calculate_curvature_circle
 !--
 pure function calculate_tangent(abcd) result(tangent)
 ! Calculate the tangent at knot points of a spline given by abcd
 !---
 ! Created: MOL, 2015-04-10.
 !---
 real, dimension(2,npoints,4), intent(in) :: abcd ! coeffecients for cubic spline
 real, dimension(2,npoints) :: tangent ! unit tangent to immersed boundary
 integer :: i
 forall (i=1:npoints)
 tangent(:,i) = abcd(:,i,2)/norm2(abcd(:,i,2))
 end forall
 end function calculate_tangent
 !--
 pure function calculate_middle_dist(ibp) result(dist)
 ! Calculate the mean distance between point i-1, i and i, i+1.
 ! This distance is an approximation to the segment length, centered on
 ! points.
 ! This resolves the problem that all quantities except lengths
 ! are stored on points.
 !---
 ! Created: MOL, 2015-04-28.
 !---
 real, intent(in) :: ibp(2,ib_max_points)
 real :: dist(npoints)
 integer :: i

 ! calculate distance between points
 forall(i=1:npoints)
 dist(i) = (distprev(ibp,i)+distnext(ibp,i))/2.0 ! mean distance between points
 endforall
 end function calculate_middle_dist
 !--
 pure function calculate_dist(ibp) result(dist)
 ! Calculate the distance of segment between point i and i+1
 !---
 ! Created: MOL, 2015-04-28.
 !---
 real, intent(in) :: ibp(2,ib_max_points)
 real :: dist(npoints)
 integer :: i

 ! calculate distance between points
 forall(i=1:npoints)
 dist(i) = distnext(ibp,i)
 endforall
 end function calculate_dist
 !--
 function calc_outward_normal(ibp, tangent, fi) result(outward_normal)
 ! Calculate the outward normal, this normal points towards
 ! bigger level-set function. It will point from phase2 to phase1.
 !---
 ! Created: MOL, 2015-04-09.
 !---
 use grid, only: dx, ib1,ibn,jb1,jbn
 real, intent(in) :: ibp(2,ib_max_points) ! current point positions
 real, dimension(2,npoints), intent(in) :: tangent ! unit tangent to immersed boundary
 real, intent(in) :: fi(ib1:ibn,jb1:jbn) ! level-set function
 real, dimension(2,npoints) :: outward_normal ! unit normal to immersed boundary
 integer :: i
 real :: p(2)

 !$OMP PARALLEL DO schedule(guided, 30) private(i, p) shared(ibp, dx, tangent, fi, outward_normal)
 do i=1,npoints
 ! rotate tangent 90 degrees, and walk a small amount in that direction, check if fi is bigger there
 ! if it is this is the outwards normal
 p(1) = ibp(1,i) - dx(1)*tangent(2,i)
 p(2) = ibp(2,i) + dx(1)*tangent(1,i)

 if(bilinear(p,fi) > bilinear(ibp(:,i),fi)) then
 outward_normal(1,i) = -tangent(2,i)
 outward_normal(2,i) = tangent(1,i)
 else
 outward_normal(1,i) = tangent(2,i)
 outward_normal(2,i) = -tangent(1,i)
 end if
 end do
 !$OMP END PARALLEL DO
 end function calc_outward_normal
 !--
 pure integer function inext(i)
 ! Returns the index of point after point i
 !---
 ! Created: MOL, 2015-04-06.
 !---
 use rhs_var, only: laxisym
 integer, intent(in) :: i

 if(laxisym) then
 if (i==npoints) then
 inext=npoints-1
 return
 end if
 end if

 inext = modulo(i,npoints)+1
 end function inext
 !--
 pure integer function iprev(i)
 ! Returns the index of point before point i
 !---
 ! Created: MOL, 2015-04-06.
 !---
 use rhs_var, only: laxisym
 integer, intent(in) :: i

 if(laxisym) then
 if (i==1) then
 iprev=2
 return
 end if
 end if

 iprev = modulo(i-2,npoints)+1
 end function iprev
 !--
 pure function pprev(points,i)
 ! Returns the point before point i
 !---
 ! Created: MOL, 2015-04-06.
 !---
 use rhs_var, only: laxisym
 integer, intent(in) :: i
 real, intent(in) :: points(2, ib_max_points)
 real pprev(2)

 pprev = points(:,iprev(i))

 ! flip x axis if axisym and on edge
 if(laxisym .and. i==1) then
 pprev(1) = -pprev(1)
 end if
 end function pprev
 !--
 pure function pnext(points,i)
 ! Returns the point after point i
 !---
 ! Created: MOL, 2015-04-06.
 !---
 use rhs_var, only: laxisym
 integer, intent(in) :: i
 real, intent(in) :: points(2, ib_max_points)
 real pnext(2)

 pnext = points(:,inext(i))

 ! flip x axis if axisym and on edge
 if(laxisym .and. i==npoints) then
 pnext(1) = -pnext(1)
 end if
 end function pnext
 !--
 pure function dir2p(d) result(p)
 ! Angle (radians) to unit length vector pointing in
 ! the direction of the angle
 !---
 ! Created: MOL, 2015-02-18.
 !---
 real, intent(in) :: d
 real :: p(2)
 p = [cos(d), sin(d)]
 end function dir2p
 !---
 elemental real function dist(x,y)
 ! Euclidean norm, component version
 !---
 ! Created: MOL, 2015-02-18.
 !---
 real, intent(in) :: x, y
 dist=sqrt(x*x+y*y)
 end function dist
 !---
 pure real function distp(p)
 ! Euclidean norm, 2-vector version
 !---
 ! Created: MOL, 2015-02-18.
 !---
 real, intent(in), dimension(2) :: p
 distp=dist(p(1),p(2))
 end function distp
 !---
 pure real function dist2p(ibp, i, j)
 ! Euclidean norm of difference between point i and j
 ! (Distance between point i and j)
 !---
 ! Created: MOL, 2015-02-18.
 !---
 real, intent(in), dimension(2,ib_max_points) :: ibp
 integer, intent(in) :: i, j
 dist2p=distp(ibp(:,j)-ibp(:,i))
 end function dist2p
 !---
 pure real function distprev(ibp, i)
 ! Euclidean distance between point i and the point before it on the
 ! immersed boundary
 !---
 ! Created: MOL, 2015-02-18.
 !---
 real, intent(in), dimension(2,ib_max_points) :: ibp
 integer, intent(in) :: i
 distprev=distp(pprev(ibp,i)-ibp(:,i))
 end function distprev
 !---
 pure real function distnext(ibp, i)
 ! Euclidean distance between point i and the point after it on the
 ! immersed boundary
 !---
 ! Created: MOL, 2015-02-18.
 !---
 real, intent(in), dimension(2,ib_max_points) :: ibp
 integer, intent(in) :: i
 distnext=distp(pnext(ibp,i)-ibp(:,i))
 end function distnext
 !---
 subroutine write_ib_to_tecplot(ibp, ibdk, f, fi, t)
 ! Writes the current immersed boundary to a tecplot file with name
 ! levelZ-points.tec
 !
 ! The file contains the variables:
 ! x,y - position
 ! u,v - velocity
 ! k - curvature
 !
 !---
 ! Created: MOL, 2015-04-17.
 !---
 use grid, only: ib1,ibn, jb1, jbn
 use rhs_var, only: laxisym

 real, intent(in) :: f(ib1:ibn,jb1:jbn,2) ! Eulerian staggered velocity field
 real, intent(in) :: fi(ib1:ibn,jb1:jbn,2) ! Eulerian staggered velocity field
 real, intent(in) :: ibp(2,ib_max_points) ! current point positions
 real, intent(in) :: ibdk(2,ib_max_points) ! current point equilibrium distance and curvature
 real, intent(in) :: t ! time
 real :: tangent(2,npoints) ! tangents to immersed boundary
 real :: k(npoints) ! curvature
 integer :: i

 if(laxisym) then
 tangent = calculate_tangent(cubic_spline_normal(ibp))
 k = calculate_curvature(ibp, cubic_spline_normal(ibp))
 else
 tangent = calculate_tangent(cubic_spline(ibp))
 k = calculate_curvature(ibp, cubic_spline(ibp))
 endif

 call tec_points_2vec_2scalar(ibp(:,1:npoints), interpolate_velocity_field(ibp, f), -calc_outward_normal(ibp, tangent, fi),
 calculate_middle_dist(ibp), k, npoints, t)
 end subroutine write_ib_to_tecplot
 !---
 subroutine tec_points_2vec_2scalar(points, vec1, vec2, scalar1, scalar2, npoints, t)
 ! Output the a list of points, a vector quantity, curvatures in tecplot format to levelZ-points.tec
 ! We are using tecplots FELINESEG which can represent a 2D linesegment,
 ! or a list of points.
 ! Only one of tec_points and tec_points_vel should be used at a time.
 ! MOL, 2015-02-04.
 !---
 ! Local variables
 logical, save :: lopen=.false.
 integer :: ierr=0,ivar,i,npoints
 real, intent(in) :: t
 real, intent(in), dimension(2, npoints) :: points
 real, intent(in), dimension(2, npoints) :: vec1, vec2
 real, intent(in), dimension(npoints) :: scalar1, scalar2
 !---
 !
 ! Open file
 if (.not. lopen) then
 lopen=.true.
 open(itec_points,file=tec_pointfile(1:len(tec_pointfile)),&
 status='unknown',form='formatted',iostat=ierr)
 if (ierr /= 0) then
 write(*,*) 'Error while opening file ',trim(tec_pointfile),':',ierr
 call stoperror('')
 else
 ! write header if open successfull
 write(itec_points,*) 'TITLE = "levelZ - Immersed Boundary"'
 write(itec_points,*) 'VARIABLES = x, y, u, v, nx, ny, d, k'
 end if
 end if
 !
 ! Write current ZONE and IB-points to file
 write(itec_points, 74) t, npoints, npoints, t
 do i=1,npoints
 write(itec_points, 78) points(1,i), points(2,i), vec1(1,i), vec1(2,i), vec2(1,i), vec2(2,i), scalar1(i), scalar2(i)
 enddo
 write(itec_points,*) ''
 do i=1,npoints
 write(itec_points, 79) i, mod(i,npoints)+1
 enddo
 ! Under Linux (at least with pgf compilers), output is buffered.
 ! If the program (or the computer) crashes before the file is properly
 ! closed, the buffered output is lost. This is fixed by the following call,
 ! which, however, does not seem to be Fortran standard. Neither of ifort,
 ! pgf90, or f90 on OSF1 complain, though.
 flush(itec_points)
 !
74 format(' ZONE T="t=',es12.3,'", DATAPACKING=POINT, NODES=',I9,', ELEMENTS=',I9,', &
 &ZONETYPE=FELINESEG, DT=(DOUBLE DOUBLE), SOLUTIONTIME=',es12.3)
78 format(es18.10, ', ', es18.10, ', ', es18.10, ', ', es18.10, ', ', es18.10, ', ', es18.10, ', ', es18.10, ', ', es18.10)
79 format(I9,' ',I9)
 end subroutine tec_points_2vec_2scalar
 !---
 subroutine swap_real(a,b)
 ! Swap two real values
 !---
 ! Created: MOL, 2015-02-18.
 !---
 real, intent(inout) :: a,b
 real :: c
 c = a
 a = b
 b = c
 end subroutine swap_real
 !---
 subroutine swap_array(a,b)
 ! Swap the values in two arrays
 !---
 ! Created: MOL, 2015-02-18.
 !---
 real, intent(inout), dimension(:) :: a,b
 real, dimension(size(a)) :: c
 c = a
 a = b
 b = c
 end subroutine swap_array
 !---
end module immersed_boundary

module linalg
 !> @file
 !> Immersed boundary
 !>
 !> MOL, 2015-02-03.
 !> Linear algebra routines, currently only for solving tridiagonal systems of differents sorts.
 !> Used in cubic spline aprroximation for immersed boundary.
 !> The routines have been tested up agains the standard Matlab linear system
 !> solver and they give the same result.
 implicit none
 public
 save
contains

 function solve_tridiag(a,b,c,d,n) result(x)
 ! a - sub-diagonal variable coeffecient (means it is the diagonal below the main diagonal)
 ! b - the main diagonal variable coefficient
 ! c - sup-diagonal variable coeffecient (means it is the diagonal above the main diagonal)
 ! d - right part
 ! x - the answer
 ! n - number of equations

 integer,intent(in) :: n
 real,dimension(n),intent(in) :: a,b,c,d
 real,dimension(n) :: x
 real,dimension(n) :: cp,dp
 real :: m
 integer :: i

 ! initialize c-prime and d-prime
 cp(1) = c(1)/b(1)
 dp(1) = d(1)/b(1)
 ! solve for vectors c-prime and d-prime
 do i = 2,n
 m = b(i)-cp(i-1)*a(i)
 cp(i) = c(i)/m
 dp(i) = (d(i)-dp(i-1)*a(i))/m
 enddo
 ! initialize x
 x(n) = dp(n)
 ! solve for x from the vectors c-prime and d-prime
 do i = n-1, 1, -1
 x(i) = dp(i)-cp(i)*x(i+1)
 end do
 end function solve_tridiag

 function solve_constant_tridiag(a,b,c,d,n) result(x)
 ! a - sub-diagonal (means it is the diagonal below the main diagonal)
 ! b - the main diagonal
 ! c - sup-diagonal (means it is the diagonal above the main diagonal)
 ! d - right part
 ! x - the answer
 ! n - number of equations
 integer, intent(in) :: n
 real, intent(in) :: a,b,c
 real, dimension(n),intent(in) :: d
 real, dimension(n) :: x
 real, dimension(n) :: cp,dp
 real :: m
 integer i

 ! initialize c-prime and d-prime
 cp(1) = c/b
 dp(1) = d(1)/b
 ! solve for vectors c-prime and d-prime
 do i = 2,n
 m = b-cp(i-1)*a
 cp(i) = c/m
 dp(i) = (d(i)-dp(i-1)*a)/m
 enddo
 ! initialize x
 x(n) = dp(n)
 ! solve for x from the vectors c-prime and d-prime
 do i = n-1, 1, -1
 x(i) = dp(i)-cp(i)*x(i+1)
 end do
 end function solve_constant_tridiag

 function solve_constant_symmetric_tridiag_periodic(a,b,d,n) result(x)
 ! a - the main diagonal
 ! b - sub and super-diagonal
 ! d - right part
 ! x - the answer
 ! n - number of equations
 ! Using tactic for periodic systems from: http://www.cfm.brown.edu/people/gk/chap6/node14.html
 ! Essentialy reduce the tridiagonal periodic system to two n-1 tridiagonal NON-periodic systems.
 ! http://www.sciencedirect.com/science/article/pii/0021999175900819
 integer, intent(in) :: n
 real, intent(in) :: a,b
 real, dimension(n),intent(in) :: d
 real, dimension(n) :: x,r
 real, dimension(n-1) :: d2
 real :: lambda, alpha, sigma
 integer :: m,i

 ! calculate factors for first unknown
 lambda = a/b

 if (lambda > 2.0) then
 alpha = (-lambda+sqrt(lambda*lambda-4.0))/2.0
 else if(lambda < -2.0) then
 alpha = (-lambda-sqrt(lambda*lambda-4.0))/2.0
 else
 write(*,*) 'linalg.f90: Error: system not diagonally dominant'
 stop
 endif

 sigma = (1.0+alpha*alpha)/(lambda*(1.0-alpha*alpha)*(1.0-alpha**n)*b)

 forall (i=0:n-1)
 r(i+1) = sigma*(alpha**i+alpha**(n-i))
 end forall

 m = (n+1)/2

 x(1) = 0.0
 do i=2,m
 x(1) = x(1) + r(i)*(d(i)+d(n+2-i))
 end do

 if (mod(n,2)==0) then
 x(1) = x(1) + r(m+1)*d(m+1)
 end if
 x(1) = x(1) + r(1)*d(1)

 ! create modified rhs
 d2 = d(2:n)
 d2(1) = d2(1)-b*x(1)
 d2(n-1) = d2(n-1)-b*x(1)

 ! solve rest of the system
 x(2:n) = solve_constant_tridiag(b,a,b,d2,n-1)

 end function solve_constant_symmetric_tridiag_periodic

end

B. Core immersed boundary and linear algebra routines developed

24 !> Variable surface tension has been implemented, but not verified to
25 !> work correctly.

26 !>
27 !> The code can simulate a single closed interface, e.g. a drop,
28 !> although adding support for several interfaces should be quite easy.

29 !> This would preferably be done using a dynamic datastructure that can
30 !> hold the data for the different boundaries.
31 !>

32 !> Code for topological change, e.g. collission is not implemented.
33 !> This depends on support for multiple interfaces first.
34 !> Once multiple interfaces is implemented it should be easy to

35 !> implement for the 2D case.
36 !
37 implicit none
38 private
39 save
40 !
41 ! Logical telling if (general) surface tension is simulated with the IB

method.↪→

42 logical :: libsigma=.false.

43 !
44 ! The Lagrangian point density per Eulerian grid cell.

45 integer :: ibdensity=0

46 !
47 ! The maximum number of Lagrangian points we can handle.

48 ! The limit arises because of the current storage method used
49 ! for easy integration with the Runge-Kutta methods.
50 integer :: ib_max_points=0

51 !
52 ! The current number of Lagrangian points <= ib_max_points.

53 integer :: npoints=0

54 !
55 ! The surface tension of the immersed boundary.

56 real :: ibsigma=0.0

57 !
58 ! The elastic membrane Hookean spring constant.

59 real :: ibKa=0.0

60 !
61 ! The CFL number coming from surface forces, this is used by the outer

routines↪→

62 ! calculating the time step.

111

63 real :: ib_cfl_st=0.0

64 !

65 ! Public procedures
66 public :: init_ib,init_ib_from_userinp

67 public :: rhs_ib

68 public :: find_boundary

69 public :: ib_force

70 public :: ellipsoid_ib

71 public :: reinitialize_level_set_from_ib

72 public :: write_ib_to_tecplot

73 !

74 ! Public variables
75 public :: npoints

76 public :: libsigma, ibsigma, ib_cfl_st

77 !
78 ! In an ideal world these would not be public, as they are not used by

the outer routines.↪→

79 ! However, they are used by the unit tests, because of this they need
to be public.↪→

80 public :: ib_max_points, ibdensity

81 public :: calculate_curvature, cubic_spline, cubic_spline_normal

82 public :: spread_vector_lagrangian_to_eulerian,

interpolate_vector_eulerian_to_lagrangian↪→

83 public :: heaviside

84 !

85 ! Static variables used for saving the immersed boundary to a TecPlot
compatible file↪→

86 ! This is used for visualization.
87 integer, parameter :: itec_points =51

88 character(len=24) :: tec_pointfile="levelZ-points.tec"

89 contains

Listing 2: init_ib_from_userinp

1 subroutine init_ib_from_userinp

2 ! This routine is used to initialize the IB-method from user
3 ! input (user.inp file).

4 !
5 !---
6 ! Created: MOL, 2015-02-03.

B. Core immersed boundary and linear algebra routines developed

7 ! Changed: MOL, 2015-02-18 seperated out find_boundary
8 !---

9 use userinp

10 integer :: pibdensity

11 !

12 ! Get immersed boundary point density
13 pibdensity=ivalue("Number of points per grid cell, (0 == No

IB-method) recommended ~ 5", &↪→

14 ’I’,"spi.ib.ibdensity",’0’)

15 libsigma=lvalue("Use Immersed Boundary method for surface tension

calculation", &↪→

16 ’L’,"spi.ib.libsigma",’0’)

17 ibKa=rvalue("Immersed Boundary coefficient of elasticity,

Ka",’R’,"spi.ib.ibKa",’0.0’)↪→

18 call init_ib(pibdensity)

19 end subroutine init_ib_from_userinp

Listing 3: init_ib

1 subroutine init_ib(pibdensity)

2 ! This routine calculates the maximum number of points and sets up
3 ! logical to signal that we are either using or not using the IB
4 ! method.

5 !
6 !---
7 ! Created: MOL, 2015-03-20.

8 !---
9 use grid, only: imax, jmax

10 use rhs_var, only: lib

11 ! the Lagrangian point density per Eulerian grid cell
12 integer, intent(in) :: pibdensity

13 ibdensity = pibdensity

14 if(ibdensity>0) then
15 ! We are using the IB-method

16 lib=.true.

17 !
18 ! calculate the limit of number of points we can handle

19 ib_max_points = (imax*jmax)/2

20 endif

21 end subroutine init_ib

113

Listing 4: rhs_ib

1 subroutine rhs_ib(ibp, ibdk, f, dpdt, dibdkdt)

2 ! This is the main advection routine. It uses the immersed
3 ! boundary delta function interpolation to interpolate an
4 ! Eulerian velocity field to the Lagrangian grid points.

5 !
6 ! Calculates the right hand side of
7 !

8 ! dp_i/dt = rhs_i
9 !

10 ! where p_i is position of point i at the current time.

11 ! This right hand side is simply an Euler step of an ordinary ODE.
12 ! These Euler steps are composed in a higher order Runge-Kutta
13 ! Method from the calling code.

14 !---
15 ! Created: MOL, 2015-02-03.

16 ! Changed: MOL, 2015-02-18 Several bug fixes fixing a sign error
caused↪→

17 ! by a bug in the interpolation function

18 !---
19 use grid, only: ib1,ibn, jb1, jbn

20 use rhs_var, only: lvar_st

21 use surfactants, only: surf_diff

22 real, intent(in) :: f(ib1:ibn,jb1:jbn,2) ! eulerian staggered
velocity field↪→

23 real, intent(in) :: ibp(2,ib_max_points) ! current point positions
24 real, intent(in) :: ibdk(2,ib_max_points) ! current point equilibrium

distance and curvature↪→

25 real, intent(out) :: dpdt(2,ib_max_points) ! output velocities of
each point↪→

26 real, intent(out) :: dibdkdt(2,ib_max_points) ! output rate of change
for surfactant↪→

27 real :: consentration(npoints) ! consentration of surfactant at a

point↪→

28 real :: d_mid(npoints) ! array containing the distance between 2
points↪→

29 integer :: i

30

31 dpdt(:,1:npoints) = interpolate_velocity_field(ibp, f)

B. Core immersed boundary and linear algebra routines developed

32

33 dibdkdt = 0.0

34 if(lvar_st) then
35 write(*,*) ’MOL: Varying surface tension has not been validated to

be correct for the immersed boundary.’↪→

36 write(*,*) ’ This warning only applies if you want to ’

37 write(*,*) ’ tension from _both_ elastic membrane and insoluble

surfactants (soap)’↪→

38 write(*,*) ’ at the same time.’

39 write(*,*) ’’

40 write(*,*) ’ Summary:’

41 write(*,*) ’ Constant surface tension = Use level-set + GFM or

immersed boundary, both are verified.’↪→

42 write(*,*) ’ Varying surface tension = Use level-set + GFM,

verified.’↪→

43 write(*,*) ’ Elastic forces + constant surface tension = Use

immersed boundary, verified.’↪→

44 write(*,*) ’ Elastic forces + varying surface tension = Use

immersed boundary, but remove this warning and verify that it

works correctly.’

↪→

↪→

45 write(*,*) " Program will now terminate so that you don’t get

results you can’t trust ;)"↪→

46 stop
47

48 d_mid = calculate_middle_dist(ibp)

49 consentration = ibdk(2,1:npoints)/d_mid

50

51 do i=1,npoints

52 dibdkdt(2,i) =

surf_diff*(consentration(iprev(i))-2.0*consentration(i)+ &↪→

53 consentration(inext(i)))/d_mid(i)**2.0 ! laplace term
54 end do
55 end if
56 end subroutine rhs_ib

Listing 5: ib_force

1 subroutine ib_force(ibp, ibdk, fi, f)

2 ! Calculates the forces from the interface on the
3 ! fluid.

115

4 !
5 ! This enters as a right hand side term in the pressure equation.

6 !---
7 ! Created: MOL, 2015-03-02.
8 !---

9 use grid, only: ib1, ibn, jb1, jbn, dxymin

10 use rhs_var, only: rho, laxisym, lvar_st

11 use surfactants, only: max_surfactant_packing, elasticity

12 real, intent(out) :: f(ib1:ibn,jb1:jbn,2) ! eulerian staggered force
field↪→

13 real, intent(in) :: fi(ib1:ibn, jb1:jbn) ! level-set function

14 real, intent(in) :: ibp(2,ib_max_points) ! current point positions
15 real, intent(in) :: ibdk(2,ib_max_points) ! equilibrium distances and

curvatures, [(d1,k1)...(dn,kn)]↪→

16 real :: k(npoints) ! current curvature
17 real :: d_mid(npoints) ! segment length interpolated to point

18 real :: fp(2,npoints) ! sum of forces on particle
19 real, dimension(2,npoints,4) :: abcd ! coeffecients for cubic spline
20 real, dimension(2,npoints) :: tangents ! normalized xy tangent vector

to interface↪→

21 real, dimension(2,npoints) :: inward_normal ! unit normal vector to
interface↪→

22 real :: T(npoints) ! tension in the boundary
23 real :: dTds(npoints) ! derivative of tension in boundary
24 real :: mass_density(ib1:ibn, jb1:jbn) ! Eulerian mass density

25 integer :: i

26 fp=0.0

27

28 d_mid = calculate_middle_dist(ibp)

29

30 if(laxisym) then
31 abcd = cubic_spline_normal(ibp)

32 else
33 abcd = cubic_spline(ibp)

34 endif

35 tangents = calculate_tangent(abcd)

36 k = calculate_curvature(ibp, abcd)

37

38 if(lvar_st) then

B. Core immersed boundary and linear algebra routines developed

39 T(:) = ibKa*(d_mid(:)/ibdk(1,1:npoints) - 1.0) +

ibsigma*(1.0+elasticity*log(1.0-

(ibdk(2,1:npoints)/d_mid(:))/max_surfactant_packing))

↪→

↪→

40 else
41 T(:) = ibKa*(d_mid(:)/ibdk(1,1:npoints) - 1.0) + ibsigma

42 end if
43

44 do i=1,npoints

45 dTds(i) = (T(inext(i))-T(iprev(i)))/2.0

46 end do
47

48 mass_density = rho(1) + heaviside_fi(fi)*(rho(2)-rho(1)) ! heaviside
smooth eulerian mass density↪→

49

50 if(libsigma) then
51 inward_normal = -calc_outward_normal(ibp, tangents, fi)

52 do i=1,npoints

53 fp(:,i) = (&

54 dTds(i)*tangents(:,i) + &

55 T(i)*k(i)*d_mid(i)*inward_normal(:,i) &

56)/interpolate_scalar_eulerian_to_lagrangian(ibp(1,i),

ibp(2,i), mass_density)↪→

57 end do
58 end if
59

60 ! When the simulation is axisymmetrix the x-forces on points at y==0
are in↪→

61 ! equilibrium, in code: if(y==0) then fx=0
62 ! Since the points having y==0 are known, the first and last point on

the bondary,↪→

63 ! we simply set the forces there to zero.
64 if(laxisym) then
65 fp(1,1) = 0.0

66 fp(1,npoints) = 0.0

67 end if
68

69 ib_cfl_st=sqrt(maxval(abs(norm2(fp,1)/d_mid))/dxymin**2)

70

71 f = 0.0

72 do i=1,npoints

117

73 call spread_vector_lagrangian_to_eulerian(ibp(1,i), ibp(2,i),

fp(1,i), fp(2,i), f)↪→

74 end do
75 end subroutine ib_force

Listing 6: reinitialize_level_set_from_ib

1 subroutine reinitialize_level_set_from_ib(ibp, fi)

2 ! Reinitialize the level-set function from the immersed boundary.

3 !
4 ! This function takes the immersed boundary points, ibp,
5 ! and outputs a level-set field, a signed distance to

6 ! the immersed boundary.
7 !
8 ! The general algorithm is outlined in Morten Olsen Lysgaards

masterthesis and works↪→

9 ! as follows:

10 !
11 ! * For each segment of the immersed boundary create a bounding box,

and↪→

12 ! then grow the box by 4 grid cells in all directions.
13 !
14 ! * For each grid cell in this bounding box,

15 ! calculate the distance between the grid cell node and the line
segment.↪→

16 ! If this distance is the smallest yet discovered, store it in a

temporary field.↪→

17 !
18 ! * When all segments have been evaluated, go trough the temporary

field node by node.↪→

19 ! If there is a saved distance for the node, calculate wheter the

node is inside↪→

20 ! or outside the polyhedron defined by ibp. This decides the sign
of the distance.↪→

21 !
22 ! * Save the signed distance for the updated nodes in the original fi

field.↪→

23 !
24 !---

25 ! Created: MOL, 2015-04-24.

B. Core immersed boundary and linear algebra routines developed

26 !---
27 use grid, only: x, y, ib1,ibn,jb1,jbn, p2ij, nbord

28 use constants, only: almost_infinite

29 real, intent(in) :: ibp(2,ib_max_points) ! current point positions
30 real, intent(inout) :: fi(ib1:ibn, jb1:jbn) ! the level-set field

31 real :: fiTmp(ib1:ibn, jb1:jbn) ! temporary level-set field
32

33 integer :: i,j,k

34 integer :: ij1(2), ij2(2), ijtmp(2)

35

36 fiTmp = almost_infinite ! set temp array to inf because fi never

should be inf↪→

37

38 do k=1,npoints

39 ij1 = p2ij(ibp(:,k))

40 ij2 = p2ij(pnext(ibp,k))

41 ijtmp = ij1

42 ij1 = [min(ij1(1), ij2(1)), min(ij1(2), ij2(2))] - 4

43 ij1 = [max(ij1(1), ib1), max(ij1(2), jb1)]

44 ij2 = [max(ijtmp(1), ij2(1)), max(ijtmp(2), ij2(2))] + 4

45 ij2 = [min(ij2(1), ibn), min(ij2(2), jbn)]

46

47 do i=ij1(1),ij2(1)

48 do j=ij1(2),ij2(2)

49 fiTmp(i,j) = min(fiTmp(i,j), dist_point_to_line(ibp(:,k),

pnext(ibp,k), [x(i), y(j)]))↪→

50 end do
51 end do
52

53 end do
54

55 !$OMP PARALLEL DO schedule(guided, 10) private(i, j) shared(ib1, ibn,
jb1, jbn, fi, fiTmp, ibp)↪→

56 do i=ib1,ibn

57 do j=jb1,jbn

58 if(fiTmp(i,j) < almost_infinite) then ! if this value was

updated↪→

59 fi(i,j) = fiTmp(i,j)*point_inside(ibp,[x(i),y(j)])

60 end if
61 end do
62 end do

119

63 !$OMP END PARALLEL DO
64 end subroutine reinitialize_level_set_from_ib

Listing 7: dist_point_to_line

1 pure real function dist_point_to_line(v, w, p) result(d)

2 ! Distance between a point, p, and a line segment defined by the
3 ! points v and w.

4 !---
5 ! Created: MOL, 2015-04-24.
6 !---

7 real, dimension(2), intent(in) :: p(2) ! the point in question
8 real, dimension(2), intent(in) :: v, w ! the endpoints of the

linesegment↪→

9 real :: l2, t, projection(2)

10

11 l2 = sum((w-v)**2) ! length squared i.e. |w-v|^2
12 if (l2 == 0.0) then ! v == w case
13 d = distp(p- v)

14 return
15 end if
16 ! Consider the line extending the segment, parameterized as v + t (w

- v).↪→

17 ! We find projection of point p onto the line.
18 ! It falls where t = [(p-v) . (w-v)] / |w-v|^2

19 t = dot_product(p - v, w - v) / l2;

20 if (t < 0.0) then ! Beyond the ’v’ end of the segment

21 d = distp(p- v)

22 return
23 else if (t > 1.0) then
24 d = distp(p- w) ! Beyond the ’w’ end of the segment
25 return
26 end if
27 projection = v + t * (w - v) ! Projection falls on the segment
28 d = distp(p- projection)

29 end function dist_point_to_line

Listing 8: point_inside

B. Core immersed boundary and linear algebra routines developed

1 pure real function point_inside(ibp, p) result(sgn)

2 ! Returns negative if a point is inside the closed polyhedron

3 ! defined by ibp, positive if not.
4 !
5 ! Algorithm follows this principle:

6 !
7 ! * Given a closed polyhedron G, and an arbitrary point p.
8 !

9 ! * Count the number of times crossing the interface of G when
10 ! traveling on a ray from infinity to the point p.
11 !

12 ! * If the number is odd, p is inside the polyhedron,
13 ! if it is even, p is outside.
14 !

15 !---
16 ! Created: MOL, 2015-04-24.

17 !---
18 real, intent(in) :: ibp(2,ib_max_points) ! current point positions
19 real, dimension(2), intent(in) :: p(2) ! the point in question

20 integer :: i

21 real ymin, ymax

22

23 sgn = 1.0 ! starting outside
24

25 do i=1,npoints

26 if(p(1) < ibp(1,i)) then ! only count crossing to the right
27 ymin = min(ibp(2,i), ibp(2,inext(i)))

28 ymax = max(ibp(2,i), ibp(2,inext(i)))

29 if(ymin <= p(2) .and. p(2) < ymax) then ! this is a crossing
30 sgn = -1.0*sgn

31 end if
32 end if
33 end do
34 end function point_inside

Listing 9: interpolate_velocity_field

1 pure function interpolate_velocity_field(ibp, eulerVel)

result(pointVel)↪→

2 ! Interpolates an Eulerian velocity field to the Lagrange points

121

3 !
4 !---

5 ! Created: MOL, 2015-04-17.
6 !---
7 use grid, only: ib1,ibn, jb1, jbn

8 use rhs_var, only: laxisym

9

10 real, intent(in) :: ibp(2,ib_max_points) ! current point positions

11 real, intent(in) :: eulerVel(ib1:ibn,jb1:jbn,2) ! Eulerian staggered
velocity field↪→

12 real :: pointVel(2,npoints) ! output velocities of each point

13 integer :: i

14

15 forall(i=1:npoints)

16 pointVel(:,i) = interpolate_vector_eulerian_to_lagrangian(ibp(1,i),

ibp(2,i), eulerVel)↪→

17 endforall

18

19 ! If the simulation is axysymmetric the mirror points (x==0) are

constarined↪→

20 ! to the y axis (enforce vx == 0)
21 if(laxisym) then
22 pointVel(1,1) = 0.0

23 pointVel(1,npoints) = 0.0

24 end if
25 end function

Listing 10: interpolate_scalar_eulerian_to_lagrangian

1 pure function interpolate_scalar_eulerian_to_lagrangian(px, py, F)

result(res)↪→

2 ! Calculates the effect of a scalar field on a lagrangian particle
3 ! using the deltafunction interpolation from the Peskin review paper.
4 !

5 ! The deltafunction has a radius of 2 times the discretization size.
6 ! As the figure below illustrates this mean that one for an

arbitrary↪→

7 ! point inside a grid cell, have to consider 16 different points
8 ! to be able to interpolate the value correctly.
9 ! In the figure p is the arbitrary point, and x is the grid points

B. Core immersed boundary and linear algebra routines developed

10 ! that need to be considered in order to interpolate the from the
11 ! eulerian grid to the point p

12 !
13 ! --------------------------
14 ! | dx | dx | dx | dx | dx |

15 ! |dy | | | | |
16 !s+2|----x----x----x----x----|
17 ! | | | | | |

18 ! |dy | | | | |
19 !s+1|----x----x----x----x----|
20 ! | | | p | | |

21 ! |dy | | | | |
22 ! s|----x----x----x----x----|
23 ! | | | | | |

24 ! |dy | | | | |
25 !s-1|----x----x----x----x----|

26 ! | | | | | |
27 ! |dy | | | | |
28 ! |----|----|----|----|----|

29 ! w-1 w w+1 w+2
30 !
31 ! Also note the point (w,s), it is this point we use

32 ! as basis for calculating the 16 points.
33 !
34 !--

35 ! Created: MOL, 2015-06-10.
36 !--
37 use grid, only: ib1,ibn,jb1,jbn,x2i,y2j, x, y, dx, dy

38 ! Input/Output
39 real, intent(in) :: px,py ! x and y position of current point

40 real, intent(in), dimension(ib1:ibn,jb1:jbn) :: F ! Eulerian scalar
field↪→

41 real res ! output interpolated scalar value

42 !
43 ! Local variables
44 integer :: nstencil ! number of Eulerian points to consider

45 parameter (nstencil = 16) ! for a stencil that has radius 2h, we have

to consider 16 points↪→

46 real :: Fs(nstencil) ! values of the scalar field at our 16 points

47 integer :: s ! lower y-bound in the eulerian grid for cell containing
(px,py)↪→

123

48 integer :: w ! lower x-bound in the eulerian grid for cell containing
(px,py)↪→

49 integer :: xvec(nstencil) ! x-coordinates of the 16 points
50 integer :: yvec(nstencil) ! y-coordinates of the 16 points
51 integer :: i,j,k

52

53 ! find south-west corner of the cell for point (x,y)
54 w=x2i(px)

55 s=y2j(py)

56

57 ! calculate coordinates for 16 points

58 k=1

59 do i=-1,2

60 do j=-1,2

61 xvec(k) = w+i

62 yvec(k) = s+j

63 k = k+1

64 end do
65 end do
66

67 ! calculate scalar at the 16 points
68 forall(i=1:nstencil)

69 Fs(i) = F(xvec(i),yvec(i))

70 end forall
71

72 ! Compute interpolated scalar
73 !
74 ! Here we use the fact that fortran supports vector arguments to

elemental functions↪→

75 ! to compute all 16 points in one go.

76 res = sum(delta2d(px-x(xvec),dx(xvec),py-y(yvec),dy(yvec))*Fs(:))

77 end function interpolate_scalar_eulerian_to_lagrangian

Listing 11: interpolate_vector_eulerian_to_lagrangian

1 pure function interpolate_vector_eulerian_to_lagrangian(px, py, F)

result(res)↪→

2 ! Calculates the effect of a vector field on a lagrangian particle
3 ! using the deltafunction interpolation from the Peskin review paper.
4 !

B. Core immersed boundary and linear algebra routines developed

5 ! The deltafunction has a radius of 2 times the discretization size.
6 ! As the figure below illustrates this mean that one for an

arbitrary↪→

7 ! point inside a grid cell, have to consider 16 different points
8 ! to be able to interpolate the value correctly.

9 ! In the figure p is the arbitrary point, and x is the grid points
10 ! that need to be considered in order to interpolate the from the
11 ! eulerian grid to the point p

12 !
13 ! --------------------------
14 ! | dx | dx | dx | dx | dx |

15 ! |dy | | | | |
16 !s+2|----x----x----x----x----|
17 ! | | | | | |

18 ! |dy | | | | |
19 !s+1|----x----x----x----x----|

20 ! | | | p | | |
21 ! |dy | | | | |
22 ! s|----x----x----x----x----|

23 ! | | | | | |
24 ! |dy | | | | |
25 !s-1|----x----x----x----x----|

26 ! | | | | | |
27 ! |dy | | | | |
28 ! |----|----|----|----|----|

29 ! w-1 w w+1 w+2
30 !
31 ! Also note how the point (w,s) is denoted, it is this point we use

32 ! as basis for calculating the 16 points.
33 !

34 ! This function takes into account the staggered grid used for
velocities.↪→

35 !--

36 ! Created: MOL, 2015-02-05.
37 ! Updated: MOL, 2015-02-18 - Fixed sign and swap of u,v coordinates
38 !--

39 use grid, only: ib1,ibn,jb1,jbn,x2i,xu2i,y2j,yv2j, x, xu, y, yv, dx,

dy, dxu, dyv↪→

40 ! Input/Output

41 real, intent(in) :: px,py ! x and y position of point

125

42 real, intent(in), dimension(ib1:ibn,jb1:jbn,2) :: F ! eulerian
velocity field↪→

43 real res(2) ! output vector containing the interpolated x,y
velocities↪→

44 !

45 ! Local variables
46 integer :: nstencil ! the number of eulerian points to consider
47 parameter (nstencil = 16) ! for a stencil that has radius 2h, we have

to consider 16 points↪→

48 real :: Fs(nstencil,2) ! values of the velocity field at our 16
points↪→

49 integer :: s,sv ! lower y-bound in the eulerian grid for cell
containing (px,py)↪→

50 integer :: w,wu ! lower x-bound in the eulerian grid for cell
containing (px,py)↪→

51 integer :: xvec(nstencil) ! x-coordinates of the 16 points

52 integer :: xuvec(nstencil) ! xu-coordinates of the 16 points
53 integer :: yvec(nstencil) ! y-coordinates of the 16 points
54 integer :: yvvec(nstencil) ! yv-coordinates of the 16 points

55 integer :: i,j,k

56

57 ! find south-west corner of the cell for point (x,y)

58 w=x2i(px)

59 wu=xu2i(px)

60 s=y2j(py)

61 sv=yv2j(py)

62

63 ! calculate coordinates for 16 points
64 k=1

65 do i=-1,2

66 do j=-1,2

67 xvec(k) = w+i

68 yvec(k) = s+j

69 xuvec(k) = wu+i

70 yvvec(k) = sv+j

71 k = k+1

72 end do
73 end do
74

75 ! calculate velocities at the 16 points
76 forall(i=1:nstencil)

B. Core immersed boundary and linear algebra routines developed

77 Fs(i,:) = [F(xuvec(i),yvec(i),1), F(xvec(i),yvvec(i),2)]

78 end forall
79

80 ! Compute interpolated velocies
81 !

82 ! Here we use the fact that fortran supports vector arguments to
elemental functions↪→

83 ! to compute all 16 points in one go.

84 res(1) = sum(delta2d(px-xu(xuvec),dxu(xuvec),py-

y(yvec),dy(yvec))*Fs(:,1))↪→

85 res(2) = sum(delta2d(px-x(xvec),dx(xvec),py-

yv(yvvec),dyv(yvvec))*Fs(:,2))↪→

86 end function interpolate_vector_eulerian_to_lagrangian

Listing 12: spread_vector_lagrangian_to_eulerian

1 subroutine spread_vector_lagrangian_to_eulerian(px, py, fx, fy, F)

2 ! Calculates the effect of a lagrangian particle on a vector field
3 ! using the deltafunction interpolation from the Peskin review paper.
4 !

5 ! The deltafunction has a radius of 2 times the discretization size.
6 ! As the figure below illustrates this mean that one for an

arbitrary↪→

7 ! particle inside a grid cell, have to interpolate the particle value
to 16 different grid nodes.↪→

8 ! In the figure, p is the arbitrary point, x is the grid nodes

9 ! that need to be considered
10 !

11 ! --------------------------
12 ! | dx | dx | dx | dx | dx |
13 ! |dy | | | | |

14 !s+2|----x----x----x----x----|
15 ! | | | | | |
16 ! |dy | | | | |

17 !s+1|----x----x----x----x----|
18 ! | | | p | | |
19 ! |dy | | | | |

20 ! s|----x----x----x----x----|

21 ! | | | | | |
22 ! |dy | | | | |

127

23 !s-1|----x----x----x----x----|
24 ! | | | | | |

25 ! |dy | | | | |
26 ! |----|----|----|----|----|
27 ! w-1 w w+1 w+2

28 !
29 ! Also note how the point (w,s) is denoted, it is this point we use
30 ! as basis for calculating the 16 points.

31 !
32 ! This function takes into account the staggered grid used for

velocities.↪→

33 !--
34 ! Created: MOL, 2015-03-04
35 ! Updated: MOL, 2015-04-17 - fixed scaling of deltafunction

36 !--
37 use grid, only: ib1,ibn,jb1,jbn,x2i,xu2i,y2j,yv2j, x, xu, y, yv, dx,

dy, dxu, dyv↪→

38 ! Input/Output
39 real, intent(in) :: px,py ! x and y position of our arbitrary point

40 real, intent(in) :: fx,fy ! x and y forces on our arbitrary point
41 real, intent(out), dimension(ib1:ibn,jb1:jbn,2) :: F ! eulerian

vector field↪→

42 !
43 ! Local variables
44 integer :: s,sv ! lower y-bound in the eulerian grid for cell

containing (px,py)↪→

45 integer :: w,wu ! lower x-bound in the eulerian grid for cell

containing (px,py)↪→

46 integer :: i,j,k

47

48 ! find south-west corner of the cell for point (x,y)
49 w=x2i(px)

50 wu=xu2i(px)

51 s=y2j(py)

52 sv=yv2j(py)

53

54 forall (i=-1:2,j=-1:2)

55 F(wu+i,s+j,1) = F(wu+i,s+j,1) + delta2d(px-xu(wu+i),dxu(wu+i),py-

y(s+j),dy(s+j))/(dxu(wu+i)*dy(s+j))*fx↪→

56 F(w+i,sv+j,2) = F(w+i,sv+j,2) + delta2d(px-x(w+i),dx(w+i),py-

yv(sv+j),dyv(sv+j))/(dx(wu+i)*dyv(s+j))*fy↪→

B. Core immersed boundary and linear algebra routines developed

57 end forall
58 end subroutine spread_vector_lagrangian_to_eulerian

Listing 13: spread_scalar_lagrangian_to_eulerian

1 function spread_scalar_lagrangian_to_eulerian(ibp, fin) result(F)

2 ! Spreads/distributes a scalar value from all the Lagrangian point
3 ! to an Eulerian field.
4 !

5 ! Uses the deltafunction interpolation from the Peskin review paper.
6 !--
7 ! Created: MOL, 2015-05-07

8 !--
9 use grid, only: ib1,ibn,jb1,jbn,x2i,y2j, x, y, dx, dy

10 ! Input/Output

11 real, intent(in) :: ibp(2,ib_max_points) ! x and y position of our
arbitrary point↪→

12 real, intent(in) :: fin(npoints) ! scalar value on points
13 real, dimension(ib1:ibn,jb1:jbn) :: F ! eulerian scalar field
14 integer, dimension(ib1:ibn,jb1:jbn) :: N ! normalization field

15 integer :: i

16

17 N = 0

18 F = 0.0

19 do i=1,npoints

20 call spread_scalar_lagrangian_to_eulerian_inner(ibp(1,i), ibp(2,i),

fin(i), F, N)↪→

21 end do
22 F = F/real(max(N,1)) ! normalize

23 end function spread_scalar_lagrangian_to_eulerian

Listing 14: spread_scalar_lagrangian_to_eulerian_inner

1 subroutine spread_scalar_lagrangian_to_eulerian_inner(px, py, fin, F,

N)↪→

2 ! Spreads/distributes a scalar value from a single point to an
Eulerian↪→

3 ! field. Also updates a normilazition field which is used in the

outer routine.↪→

129

4 !
5 !--

6 ! Created: MOL, 2015-05-07
7 !--
8 use grid, only: ib1,ibn,jb1,jbn,x2i,y2j, x, y, dx, dy

9 ! Input/Output
10 real, intent(in) :: px,py ! x and y position of our arbitrary point
11 real, intent(in) :: fin ! x and y forces on our arbitrary point

12 real, intent(inout), dimension(ib1:ibn,jb1:jbn) :: F ! eulerian
scalar field↪→

13 integer, intent(inout), dimension(ib1:ibn,jb1:jbn) :: N !

normalization field↪→

14 !

15 ! Local variables
16 integer :: s ! lower y-bound in the eulerian grid for cell containing

(px,py)↪→

17 integer :: w ! lower x-bound in the eulerian grid for cell containing
(px,py)↪→

18 integer :: i,j

19

20 ! find south-west corner of the cell for point (x,y)
21 w=x2i(px)

22 s=y2j(py)

23

24 do i=-1,2

25 do j=-1,2

26 F(w+i,s+j) = F(w+i,s+j) +

delta2d(px-x(w+i),dx(w+i),py-y(s+j),dy(s+j))*fin↪→

27 N(w+i,s+j) = N(w+i,s+j) + 1

28 end do
29 end do
30 end subroutine spread_scalar_lagrangian_to_eulerian_inner

Listing 15: delta2d

1 elemental real function delta2d(x,hx,y,hy)

2 ! 2D delta function from Peskins review (2002) paper on the

IB-method↪→

3 ! Centered around (x,y)=(0,0)
4 !

B. Core immersed boundary and linear algebra routines developed

5 ! NOTE: one slight difference from the paper is that this
deltafunction↪→

6 ! is not divided by the step size.
7 ! This is because for interpolation(spreading) we need an unscaled
8 ! deltafunction. The caller of this function is thus responsible of

9 ! scaling correctly.
10 !
11 !--

12 ! Created: MOL, 2015-02-03.
13 ! Updated: MOL, 2015-02-18 - updated documentation
14 !--

15 real, intent(in) :: x,y,hx,hy

16

17 delta2d = delta1d(x,hx)*delta1d(y,hy)

18 end function delta2d

Listing 16: delta1d

1 elemental real function delta1d(r, h)

2 ! 1D delta function from Peskins review (2002) paper on the
IB-method↪→

3 ! Centered around r=0
4 !

5 ! NOTE: one slight difference from the paper is that this
deltafunction↪→

6 ! is not divided by the step size.

7 ! This is because for interpolation(spreading) we need an unscaled
8 ! deltafunction. The caller of this function is thus responsible of
9 ! scaling correctly.

10 !
11 !--
12 ! Created: MOL, 2015-02-03.

13 ! Updated: MOL, 2015-02-18 - updated documentation
14 !--

15 real, intent(in) :: r, h

16 delta1d = phi(r/h)

17 end function delta1d

Listing 17: phi

131

1 elemental real function phi(rin)

2 ! 1D phi function from Peskins review (2002) paper on the IB-method

3 ! Centered around rin=0
4 !
5 !--

6 ! Created: MOL, 2015-02-03.
7 ! Updated: MOL, 2015-02-18 - simplified and updated documentation
8 !--

9 real, intent(in) :: rin

10 real r

11 ! since the delta function is symmetric we only consider positive

distances↪→

12 ! this saves unnessesary complexity
13 r = abs(rin)

14 if (2.0 < r) then
15 phi=0.0

16 else if (1.0 < r) then
17 phi=1.0/8.0 * (5.0 -2.0*r -sqrt(-7.0 +12.0*r -4.0*r*r))

18 else ! if r <= 1.0

19 phi=1.0/8.0 * (3.0 -2.0*r +sqrt(1.0 +4.0*r -4.0*r*r))

20 endif

21 end function phi

Listing 18: heaviside_fi

1 function heaviside_fi(fi)

2 ! Take heaviside of level-set field.
3 ! Used for calculating density in the routine ib_force.

4 !
5 !--
6 ! Created: MOL, 2015-06-16.

7 !--
8 use grid, only: dx, dy, ib1, ibn, jb1, jbn, str_method

9 real, intent(in) :: fi(ib1:ibn, jb1:jbn) ! level-set function

10 real :: heaviside_fi(ib1:ibn, jb1:jbn) ! output heaviside of
level-set function↪→

11 integer :: i, j

12

13 if (str_method==0) then
14 heaviside_fi(:,:) = heaviside(fi(:,:)/dx(1))

B. Core immersed boundary and linear algebra routines developed

15 else
16 forall (i=ib1:ibn, j=jb1:jbn)

17 heaviside_fi(i,j) = heaviside(fi(i,j)/dx(i))

18 end forall
19 end if
20 end function heaviside_fi

Listing 19: heaviside

1 elemental real function heaviside(r)

2 ! 1D heaviside function from Peskins review (2002) paper on the
IB-method↪→

3 ! Centered around r=0
4 !
5 !--

6 ! Created: MOL, 2015-05-03.
7 !--

8 use constants, only: pi

9 real, intent(in) :: r

10 if (2.0 < r) then
11 heaviside=1.0

12 else if(r < -2.0) then
13 heaviside=0.0

14 else if (r < -1.0) then
15 ! integrate from -inf to -2<r<-1
16 heaviside = -(pi-46.0)/64.0-(2.0*asin((2.0*r+3.0)/sqrt(2.0)) +

(2.0*r+3.0)*sqrt(-4.0*r**2-12.0*r-7.0) -

4.0*r**2-20.0*r)/32.0

↪→

↪→

17 else if (r < 0.0) then
18 ! integrate from -inf to -1<r<0
19 heaviside = (2.0*asin((2.0*r+1.0)/sqrt(2.0)) +

(2.0*r+1.0)*sqrt(-4.0*r**2-4.0*r+1.0)+4.0*r**2+12.0*r)/32.0 +

(pi+18.0)/64.0-(pi-6.0)/32.0

↪→

↪→

20 else if (r < 1.0) then
21 ! integrate from -inf to 0<r<1
22 heaviside = (2.0*asin((2.0*r-1.0)/sqrt(2.0)) +

(2.0*r-1.0)*sqrt(-4.0*r**2+4.0*r+1.0)-4*r**2+12.0*r)/32.0 +

(pi+2.0)/64.0+0.5

↪→

↪→

23 else if (r < 2.0) then
24 ! integrate from -inf to 1<r<2

133

25 heaviside = -(2.0*asin((2.0*r-3.0)/sqrt(2.0)) +

(2.0*r-3.0)*sqrt(-4.0*r**2+12.0*r-7.0)+4.0*r**2-20.0*r)/32.0 -

(pi+34.0)/64.0+(pi+26.0)/32.0

↪→

↪→

26 endif

27 end function heaviside

Listing 20: find_boundary

1 subroutine find_boundary(ibp, ibdk, fi)

2 ! Given a discretized eulerian scalar field, the level-set function
fi,↪→

3 ! this function computes a piecewice linear path such that all points

along↪→

4 ! the path lie on fi = 0.
5 ! The distance between the points is calculated from the immersed

boundary↪→

6 ! point density.

7 ! The actual algorithm roughly works like this:
8 !
9 ! * Find the point in fi that has smallest absolute value.

10 !
11 ! * Use bilinear interpolation ta make the discrete fi continous.
12 !

13 ! * From the point with smallest absolute value, consider all
14 ! points that are on the circle with radius

p=1.01*sqrt(dx**2+dy**2) away from it.↪→

15 !
16 ! * Use a bisection search algorithm to find the angle that

corresponds↪→

17 ! to the value closest to zero.
18 !

19 ! * To make sure that the algorithm finishes it only looks for the
next↪→

20 ! point within a given sector based on the previous point. This is

to↪→

21 ! keep it from turning 180 deg and never finish the curve.

22 !

23 ! * Iteratively find new points untill the current point is closer
than↪→

24 ! pd to the starting point. This means we have closed the curve.

B. Core immersed boundary and linear algebra routines developed

25 !
26 ! * Fit a cubic spline to the rough points

27 !
28 ! * Intersperse the rough points with new points such that the

distance↪→

29 ! from one to the next is pd
30 !
31 !---

32 ! Created: MOL, 2015-02-17.
33 !---
34 use grid, only: ij2p, dx, dy, ib1, ibn, jb1, jbn

35 use rhs_var, only: laxisym, lvar_st

36 use surfactants, only: surf0

37 real :: heading ! current heading (rad), this is the tangent of fi=0

at p↪→

38 real :: boundary_length ! estimated length of the closed curve fi=0

39 real :: pd ! step length between two points on the curve fi=0
40 real :: last_p_dist ! The distance between the first and the last

points in the curve.↪→

41 real :: p(2) ! The previous point added to the curve
42 real :: pn(2) ! The new point to be added to the curve
43 real, intent(in) :: fi(ib1:ibn,jb1:jbn) ! level-set function, we want

to find a closed curve where fi=0↪→

44 real, intent(inout) :: ibp(2,ib_max_points) ! array containing the
points (xi, yi) along the closed curve↪→

45 real :: ibp_tmp(2,ib_max_points) ! tmp array containing the points
(xi, yi) along the closed curve↪→

46 real, intent(inout) :: ibdk(2,ib_max_points) ! array containing the
equilibrium distance and curvature↪→

47 real, allocatable, dimension(:,:,:) :: abcd ! coeffecients cubic

spline for points↪→

48 integer :: i,j

49 real :: t

50

51 ! calculate the mean point distance
52 pd = 0.5*sqrt(dx(1)**2+dy(1)**2) ! pd is longest diagonal plus 1%

53

54 last_p_dist=10.0*pd ! set to value to stop uninitialized memory
valgrind error↪→

55

135

56 ! bootstrap the algorithm by finding the points on the eulerian grid
with↪→

57 ! smalles absolute value
58 if(laxisym) then
59 p = find_axisym_edge(fi, pd)

60 else
61 p = find_start_point(fi, pd)

62 end if
63 heading=0.0

64 npoints=0

65 ibp_tmp=0.0

66 ! while we have not closed the circle or have to few points.
67 do while (last_p_dist>pd .or. npoints<3)

68 ! find next point and add it to the curve

69 call find_next_point(p, heading, fi, pd, pn)

70 npoints = npoints+1

71 ibp_tmp(:,npoints) = pn

72 p = pn

73 if(laxisym) then
74 ! calculate the distance between the currently added point and

the y-axis (x==0)↪→

75 last_p_dist = abs(ibp_tmp(1,npoints))

76 else
77 ! calculate the distance between the beginning of the curve and

the currently added point↪→

78 last_p_dist = distp(ibp_tmp(:,1)-ibp_tmp(:,npoints))

79 end if
80 end do
81 ! calculate the approximated boundary length
82 boundary_length = (npoints-2)*pd + last_p_dist

83 ! calculate new pd to get wanted amount of points
84 pd = boundary_length/real(npoints-1)

85

86 ibp = ibp_tmp

87 allocate(abcd(2,npoints,4))

88

89 ! we are done placing the rough points

90 ! now calculate a spline following the points, and insert more points
on it↪→

91 if(laxisym) then
92 abcd = cubic_spline_normal(ibp)

B. Core immersed boundary and linear algebra routines developed

93 else
94 abcd = cubic_spline(ibp)

95 endif

96

97 ibp = 0.0

98 do i=1,npoints

99 do j=1,ibdensity

100 t=real(j-1)/real(ibdensity)

101 ibp(:,(i-1)*ibdensity+j) = eval_cubic_spline(abcd, i, t)

102 end do
103 end do
104 npoints = npoints + npoints*(ibdensity-1)

105

106 ! calculate equilibrium distances

107 ibdk(1,1:npoints) = calculate_middle_dist(ibp)

108

109 if(lvar_st) then
110 ibdk(2,1:npoints) = surf0*ibdk(1,1:npoints)

111 else
112 ! calculate equilibrium curvatures
113 ibdk(2,1:npoints) = calculate_curvature(ibp, cubic_spline(ibp))

114 end if
115

116 ! cleanup
117 deallocate(abcd)

118 end subroutine find_boundary

Listing 21: find_start_point

1 function find_start_point(fi, pd) result(p)

2 ! Finds the point in the level-set field fi

3 ! which has the smalles absolute value.
4 ! This is the starting point for the search in the
5 ! find_boundary routine. For axisymmetric simulations

6 ! the find_axisym_edge is used instead.
7 !
8 ! This function finds a minimum of the bilinear interpolation

9 ! of abs(fi), not the minimum of the discrete field.
10 !
11 !---

137

12 ! Created: MOL, 2015-04-12.
13 !---

14 use grid, only: ij2p, dx, dy, imax, jmax, ib1, ibn, jb1, jbn

15 real, intent(in) :: pd ! step length for search
16 real, intent(in) :: fi(ib1:ibn,jb1:jbn) ! level-set function, we want

to find the minimum of abs(fi)↪→

17 real :: p(2) ! the previous point
18 real :: pn(2) ! the new point

19 real :: heading ! current heading (rad) for the algorithm
20 logical :: on_boundary

21

22 ! inital seed for search
23 p = ij2p(minloc(abs(fi)))

24

25 heading=0.0

26 ! while we have not closed the circle or have to few points.

27 do while (.not. on_boundary)

28 ! gradient decent ontoo the level-set function
29 call find_next_point(p, heading, fi, pd, pn, on_boundary)

30 p = pn

31 end do
32 end function find_start_point

Listing 22: find_axisym_edge

1 function find_axisym_edge(fi, pd) result(p)

2 ! Finds a point in the level-set field fi
3 ! which has the properties fi==0 and x==0

4 !
5 ! This is the starting point for the search in the
6 ! find_boundary routine when simulating an

7 ! axisymmetric case. For 2D simulations
8 ! the find_start_point is used instead.
9 !

10 ! This function finds a minimum of the bilinear interpolation
11 ! of abs(fi), not the minimum of the discrete field.
12 !

13 !---

14 ! Created: MOL, 2015-04-12.
15 !---

B. Core immersed boundary and linear algebra routines developed

16 use grid, only: ij2p, dx, dy, imax, jmax, ib1, ibn, jb1, jbn

17 real :: heading ! current heading (rad) for the algorithm

18 real, intent(in) :: pd ! search step length between two points on the
curve fi=0↪→

19 real :: p(2) ! the previous point

20 real :: pn(2) ! the new point
21 real, intent(in) :: fi(ib1:ibn,jb1:jbn) ! level-set function
22

23 ! bootstrap the algorithm by finding the points on the eulerian grid
with↪→

24 ! smalles absolute value

25 p = ij2p(minloc(abs(fi)))

26 heading=0.0

27 ! while we have not reach the axysymmetric axis

28 do while (p(1)>0.0)

29 ! find next point

30 call find_next_point(p, heading, fi, pd, pn)

31 if(pn(1)<0.0) then
32 p = p+(pn-p)*abs(p(1))/abs(pn(1)-p(1))

33 else
34 p = pn

35 end if
36 end do
37 end function find_axisym_edge

Listing 23: find_next_point

1 subroutine find_next_point(pa, heading, fi, pd, pb, on_boundary)

2 ! Given a point, pa, level-set function, fi, radius, pb, heading
3 ! output the next point, pb, which is on the curve fi=0 and distance
4 ! pd from pa in the direction of heading +- pi/1.7.

5 ! A bisection search is used to find the correct angle.
6 !---
7 ! Created: MOL, 2015-02-17.

8 !---
9 use constants, only: pi

10 use grid, only: ib1,ibn, jb1,jbn

11 real, intent(in) :: pd ! radius of search circle

12 real, intent(in) :: pa(2) ! current point
13 real, intent(in) :: fi(ib1:ibn,jb1:jbn) ! level-set function

139

14 real, intent(out) :: pb(2) ! output next point
15 real, intent(inout) :: heading ! the current heading, search

direction for next point↪→

16 logical, optional, intent(out) :: on_boundary ! whenether the
returned point is on the boundary↪→

17 !
18 ! how much we look left and right for the next point.
19 ! We deliberately do not want to look backwards, because

20 ! this can make us repeatedly turn 180 degrees not making progress.
21 real :: minmaxtheta

22 !

23 ! when the bisection sector has size thres (rad), the bisection is
done↪→

24 real :: thres

25 parameter (thres = 1E-12)

26 ! variables for bisection algorithm. t=angle, f=level-set, p=point

27 real :: tlow, thigh, tmid, flow, fhigh, fmid, phigh(2), plow(2),

pmid(2)↪→

28

29 ! assume we are on the boundary untill prooven otherwise
30 if(present(on_boundary)) on_boundary=.true.

31

32 minmaxtheta = pi/1.7

33 fmid = huge(fmid)

34 tlow = -minmaxtheta

35 thigh = minmaxtheta

36

37 ! bisection search
38 do while (abs(thigh-tlow) > thres)

39 plow = pa + pd*dir2p(heading+tlow)

40 phigh = pa + pd*dir2p(heading+thigh)

41

42 flow = bilinear(plow, fi)

43 fhigh = bilinear(phigh, fi)

44 ! swap if low is high
45 if (flow > fhigh) then
46 call swap_real(tlow,thigh)

47 call swap_real(flow,fhigh)

48 call swap_array(plow,phigh)

49 end if
50

B. Core immersed boundary and linear algebra routines developed

51 if(flow>0.0 .or. fhigh<0.0) then
52 if(present(on_boundary)) on_boundary=.false.

53 end if
54

55 tmid = (tlow+thigh)/2.0

56 pmid = pa + pd*dir2p(heading+tmid)

57 fmid = bilinear(pmid, fi)

58

59 if (0.0 < fmid) then
60 thigh = tmid

61 else
62 tlow = tmid

63 end if
64 end do
65

66 pb = pa + pd*dir2p(heading+tmid)

67 heading = mod(heading + tmid, 2.0*pi)

68 end subroutine find_next_point

Listing 24: ellipsoid_ib

1 subroutine ellipsoid_ib(x_c, y_c, a, b, ibp, ibdk)

2 !

3 ! Initialize the immersed boundayr as a ellipsoid
4 ! with centre (x_c, y_c) and half axis lengths (a,b)
5 !

6 ! Does not evenly place points out. This is not a problem
7 ! as the method handles this using a variable equilibrium

8 ! distance for each line segment.
9 !

10 !---

11 ! Created: MOL, 2015-04-13.
12 !---
13 use grid, only: dx, dy

14 use constants, only: pi

15 use rhs_var, only: laxisym, lvar_st

16 use surfactants, only: surf0

17 real, intent(in) :: x_c, y_c ! x and y ellipsoid centre

18 real, intent(in) :: a, b ! x and y half axis length
19 real, dimension(2,ib_max_points) :: ibp

141

20 real, dimension(2,ib_max_points) :: ibdk

21 real :: pd,arcLength

22 integer :: i,di

23

24 pd = min(dx(1),dy(1))

25 if(laxisym) then
26 arcLength=pi

27 di=1

28 else
29 arcLength=2.0*pi

30 di=0

31 end if
32

33 npoints=ibdensity*int(arcLength*max(a,b)/pd)+di

34 do i=1,npoints

35 ibp(:,i) = [a,b] * &

36 [cos(arcLength*real(i-di)/real(npoints-di)-pi/2.0), &

37 sin(arcLength*real(i-di)/real(npoints-di)-pi/2.0)] + &

38 [x_c, y_c]

39 end do
40

41 ibdk(1,1:npoints) = calculate_middle_dist(ibp)

42

43 if(lvar_st) then
44 ibdk(2,1:npoints) = surf0*ibdk(1,1:npoints)

45 else
46 ! calculate curvature of relaxed ellipse (circle)
47 ibdk(2,1:npoints) = 1.0/((a**2*b)**(1.0/3.0))

48 end if
49

50 end subroutine ellipsoid_ib

Listing 25: bilinear

1 pure real function bilinear(p, f) result(v)

2 ! Bilinear interpolation of a discrete scalar field for an arbitrary
point↪→

3 ! in this field.
4 ! Takes an Eulerian field, f, and a point, p, returns
5 ! the bilinear interpolation of f to p.

B. Core immersed boundary and linear algebra routines developed

6 !
7 ! Ref:

https://en.wikipedia.org/wiki/Bilinear_interpolation#Algorithm↪→

8 !---
9 ! Created: MOL, 2015-02-17.

10 !---
11 use grid, only: ij2p, p2ij, ib1, ibn, jb1, jbn

12 real, intent(in) :: p(2) ! point we want to interpolate to

13 real, intent(in) :: f(ib1:ibn, jb1:jbn) ! discrete field to
interpolate from↪→

14 integer :: ij(2)

15 real :: xy1(2), xy2(2), x1, x2, y1, y2, Q11, Q12, Q21, Q22

16 ij = p2ij(p)

17 xy1 = ij2p(ij)

18 xy2 = ij2p(ij+1)

19 x1 = xy1(1)

20 y1 = xy1(2)

21 x2 = xy2(1)

22 y2 = xy2(2)

23 Q11 = f(ij(1),ij(2))

24 Q12 = f(ij(1),ij(2)+1)

25 Q22 = f(ij(1)+1,ij(2)+1)

26 Q21 = f(ij(1)+1,ij(2))

27 v = (Q11*(x2-p(1))*(y2-p(2)) + Q21*(p(1)-x1)*(y2-p(2)) +

Q12*(x2-p(1))*(p(2)-y1) +

Q22*(p(1)-x1)*(p(2)-y1))/((x2-x1)*(y2-y1))

↪→

↪→

28 end function bilinear

Listing 26: cubic_spline

1 function cubic_spline(ibp) result(abcd)

2 ! Calculate a periodic cubic spline contaning the points ibp
3 ! Uses an efficient modified Thomas algorithm for solving the
4 ! periodic tridiagonal system.

5 !
6 ! Ref: http://mathworld.wolfram.com/CubicSpline.html
7 !---

8 ! Created: MOL, 2015-04-04.
9 !---

10 use linalg, only: solve_constant_symmetric_tridiag_periodic

143

11 real, intent(in) :: ibp(2,ib_max_points) ! current point positions
12 real, dimension(2,npoints) :: coeffs

13 real, dimension(2,npoints) :: ibpdiff,sn,sm

14 real, dimension(2,npoints,4) :: abcd ! coeffecients for cubic spline
15 integer :: n,i

16

17 ! alias to make code more readable
18 n = npoints

19

20 ! calculate point distances
21 do i=1,n

22 ibpdiff(:,i) = ibp(:,inext(i)) - ibp(:,iprev(i))

23 end do
24

25 coeffs(1,:) = solve_constant_symmetric_tridiag_periodic(4.0, 1.0,

3.0*ibpdiff(1,1:n), n)↪→

26 coeffs(2,:) = solve_constant_symmetric_tridiag_periodic(4.0, 1.0,

3.0*ibpdiff(2,1:n), n)↪→

27

28 ! calculate coefficients in polynomials
29 ! a + b*t + c*t^2 + d*t^3
30 ! t in [0,1] for each a, b, c and d

31

32 ! a is the points
33 abcd(:,:,1) = ibp(:,1:n)

34 ! b is the coefficients
35 abcd(:,:,2) = coeffs(:,:)

36

37 do i=1,n

38 ! c

39 abcd(:,i,3) = 3.0*(ibp(:,inext(i))-ibp(:,i))-2.0*coeffs(:,i)-

coeffs(:,inext(i))↪→

40 ! d

41 abcd(:,i,4) =

2.0*(ibp(:,i)-ibp(:,inext(i)))+coeffs(:,i)+coeffs(:,inext(i))↪→

42 end do
43 end function cubic_spline

Listing 27: cubic_spline_normal

B. Core immersed boundary and linear algebra routines developed

1 function cubic_spline_normal(ibp) result(abcd)

2 ! Calculate a normal cubic spline contaning the points ibp

3 ! mirroring the first and last point around the x-axis.
4 ! This special case cubic spline is used for solving the
5 ! axisymmetric case, where the spline is not periodic.

6 ! Uses an efficient Thomas algorithm for solving the
7 ! periodic tridiagonal system.
8 !

9 ! Ref: http://mathworld.wolfram.com/CubicSpline.html
10 !---
11 ! Created: MOL, 2015-04-15.

12 !---
13 use linalg, only: solve_tridiag

14 real, intent(in) :: ibp(2,ib_max_points) ! current point positions

15 real, dimension(2,npoints+2) :: coeffs

16 real, dimension(2,npoints+2) :: ibpdiff,sn,sm

17 real, dimension(2,npoints,4) :: abcd ! coeffecients for cubic spline
18 real :: ac(npoints+2), b(npoints+2)

19 integer :: n,i,ii

20

21 ! alias to make code more readable
22 n = npoints

23

24 ! calculate point distances
25 do i=1,n

26 ibpdiff(:,i+1) = pnext(ibp,i) - pprev(ibp,i)

27 end do
28 ibpdiff(:,1) = ibp(:,1) - pprev(ibp,1)

29 ibpdiff(:,n+2) = pnext(ibp,n) - ibp(:,n)

30

31 ac = 1.0

32 b = 4.0

33 b(1) = 2.0

34 b(n+2) = 2.0

35

36 coeffs(1,:) = solve_tridiag(ac, b, ac, 3.0*ibpdiff(1,:), n+2)

37 coeffs(2,:) = solve_tridiag(ac, b, ac, 3.0*ibpdiff(2,:), n+2)

38

39 ! calculate coefficients in polynomials

40 ! a + b*t + c*t^2 + d*t^3
41 ! t in [0,1] for each a, b, c and d

145

42

43 ! a is the points

44 abcd(:,:,1) = ibp(:,1:n)

45 ! b is the coefficients
46 abcd(:,:,2) = coeffs(:,2:n+1)

47

48 do i=1,n

49 ! c

50 abcd(:,i,3) =

3.0*(pnext(ibp,i)-ibp(:,i))-2.0*coeffs(:,i+1)-coeffs(:,i+2)↪→

51 ! d

52 abcd(:,i,4) =

2.0*(ibp(:,i)-pnext(ibp,i))+coeffs(:,i+1)+coeffs(:,i+2)↪→

53 end do
54 end function cubic_spline_normal

Listing 28: eval_cubic_spline

1 pure function eval_cubic_spline(abcd, i, t) result(p)

2 ! Evaluate a spline given by the coeficcients abcd

3 ! at spline segment i at t, t in [0,1].
4 !

5 ! Ref: http://mathworld.wolfram.com/CubicSpline.html
6 !---
7 ! Created: MOL, 2015-04-13.

8 !---
9 real, intent(in), dimension(2,npoints,4) :: abcd ! coeffecients cubic

spline↪→

10 integer, intent(in) :: i ! index of segment
11 real, intent(in) :: t ! parameter [0,1] on segment i
12 real :: p(2)

13

14 p = abcd(:,i,1) + abcd(:,i,2)*t + abcd(:,i,3)*t**2 + abcd(:,i,4)*t**3

15

16 end function eval_cubic_spline

Listing 29: calculate_curvature

1 function calculate_curvature(ibp, abcd) result(k)

2 ! Calculate the curvature at knot points of a spline given by the

B. Core immersed boundary and linear algebra routines developed

3 ! coeficcients abcd.
4 !

5 ! Ref: http://mathworld.wolfram.com/CubicSpline.html
6 !---
7 ! Created: MOL, 2015-04-02.

8 !---
9 use rhs_var, only: rho, laxisym

10 real, intent(in), dimension(2,npoints,4) :: abcd ! coeffecients for

cubic spline↪→

11 real, intent(in), dimension(2,ib_max_points) :: ibp ! current point
positions↪→

12 real, dimension(2,npoints) :: d ! first derivative
13 real, dimension(2,npoints) :: dd ! second derivative

14 real, dimension(npoints) :: k ! curvature
15 integer :: n

16

17 n = npoints ! convenience to make code more readable
18

19 ! first derivative at t=0 is b

20 d = abcd(:,:,2)

21

22 ! second derivative at t=0 is 2c

23 dd = 2.0*abcd(:,:,3)

24

25 ! 2d curvature formula, ref:

http://mathworld.wolfram.com/Curvature.html↪→

26

27 ! Also, the above formula could be expanded, check
level_set_geometry.f90:1231↪→

28 if(laxisym) then
29 k(2:n-1) = -2.0*(ibp(1,2:n-1)*(dd(1,2:n-1)*d(2,2:n-1) -

d(1,2:n-1)*dd(2,2:n-1)) - d(2,2:n-1) * sum(d(:,2:n-1)**2,1)) /

(2.0*ibp(1,2:n-1)*(sum(d(:,2:n-1)**2,1)**(3.0/2.0)))

↪→

↪→

30 k(1) = 2.0*(dd(2,1)*d(1,1)-

dd(1,1)*d(2,1))/(sum(d(:,1)**2,1)**(3.0/2.0))↪→

31 k(n) = 2.0*(dd(2,n) * d(1,n)-dd(1,n)*d(2,n)) /

(sum(d(:,n)**2,1)**(3.0/2.0))↪→

32 else
33 k = (dd(2,:)*d(1,:)-dd(1,:)*d(2,:))/(sum(d**2,1)**(3.0/2.0))

34 end if
35 end function calculate_curvature

147

Listing 30: calculate_curvature_circle

1 function calculate_curvature_circle(ibp) result(k)

2 ! Calculate the curvature at points using three point circle
approximation.↪→

3 ! This gives approximately 2 orders of magnitude bigger errors than

4 ! using calculate_curvature which uses a spline.
5 !
6 ! When used for relaxing ellipse this method was unstable and lead

7 ! to huge errors in curvature, enogh to make the simulation blow up.
8 !

9 ! Ref: http://en.wikipedia.org/wiki/Curvature#Local_expressions
10 !---
11 ! Created: MOL, 2015-04-02.

12 !---
13 real, intent(in), dimension(2,ib_max_points) :: ibp ! coeffecients

for polynomial at each point↪→

14 real, dimension(npoints) :: k ! curvature
15 real :: p1(2), p2(2), p3(2), r

16 integer :: i

17

18 do i=1,npoints

19 p1 = pprev(ibp,i)

20 p2 = ibp(:,i)

21 p3 = pnext(ibp,i)

22

23 ! spline approximated curvature
24 r = sqrt(((p2(1)-p1(1))**2+(p2(2)-p1(2))**2) *

((p2(1)-p3(1))**2+(p2(2)-p3(2))**2) *

((p3(1)-p1(1))**2+(p3(2)-p1(2))**2)) / (2.0*abs(p1(1)*p2(2) +

p2(1)*p3(2) + p3(1)*p1(2) - p1(1)*p3(2) - p2(1)*p1(2) -

p3(1)*p2(2)))

↪→

↪→

↪→

↪→

25 k(i) = 1.0/r

26 end do
27

28 end function calculate_curvature_circle

Listing 31: calculate_tangent

B. Core immersed boundary and linear algebra routines developed

1 pure function calculate_tangent(abcd) result(tangent)

2 ! Calculate the tangent at knot points of a spline given by abcd

3 !---
4 ! Created: MOL, 2015-04-10.
5 !---

6 real, dimension(2,npoints,4), intent(in) :: abcd ! coeffecients for
cubic spline↪→

7 real, dimension(2,npoints) :: tangent ! unit tangent to immersed

boundary↪→

8 integer :: i

9 forall (i=1:npoints)

10 tangent(:,i) = abcd(:,i,2)/norm2(abcd(:,i,2))

11 end forall
12 end function calculate_tangent

Listing 32: calculate_middle_dist

1 pure function calculate_middle_dist(ibp) result(dist)

2 ! Calculate the mean distance between point i-1, i and i, i+1.
3 ! This distance is an approximation to the segment length, centered

on↪→

4 ! points.
5 ! This resolves the problem that all quantities except lengths

6 ! are stored on points.
7 !---
8 ! Created: MOL, 2015-04-28.

9 !---
10 real, intent(in) :: ibp(2,ib_max_points)

11 real :: dist(npoints)

12 integer :: i

13

14 ! calculate distance between points

15 forall(i=1:npoints)

16 dist(i) = (distprev(ibp,i)+distnext(ibp,i))/2.0 ! mean distance
between points↪→

17 endforall

18 end function calculate_middle_dist

Listing 33: calculate_dist

149

1 pure function calculate_dist(ibp) result(dist)

2 ! Calculate the distance of segment between point i and i+1

3 !---
4 ! Created: MOL, 2015-04-28.
5 !---

6 real, intent(in) :: ibp(2,ib_max_points)

7 real :: dist(npoints)

8 integer :: i

9

10 ! calculate distance between points
11 forall(i=1:npoints)

12 dist(i) = distnext(ibp,i)

13 endforall

14 end function calculate_dist

Listing 34: calc_outward_normal

1 function calc_outward_normal(ibp, tangent, fi) result(outward_normal)

2 ! Calculate the outward normal, this normal points towards
3 ! bigger level-set function. It will point from phase2 to phase1.

4 !---
5 ! Created: MOL, 2015-04-09.
6 !---

7 use grid, only: dx, ib1,ibn,jb1,jbn

8 real, intent(in) :: ibp(2,ib_max_points) ! current point positions
9 real, dimension(2,npoints), intent(in) :: tangent ! unit tangent to

immersed boundary↪→

10 real, intent(in) :: fi(ib1:ibn,jb1:jbn) ! level-set function
11 real, dimension(2,npoints) :: outward_normal ! unit normal to

immersed boundary↪→

12 integer :: i

13 real :: p(2)

14

15 !$OMP PARALLEL DO schedule(guided, 30) private(i, p) shared(ibp, dx,

tangent, fi, outward_normal)↪→

16 do i=1,npoints

17 ! rotate tangent 90 degrees, and walk a small amount in that

direction, check if fi is bigger there↪→

18 ! if it is this is the outwards normal
19 p(1) = ibp(1,i) - dx(1)*tangent(2,i)

B. Core immersed boundary and linear algebra routines developed

20 p(2) = ibp(2,i) + dx(1)*tangent(1,i)

21

22 if(bilinear(p,fi) > bilinear(ibp(:,i),fi)) then
23 outward_normal(1,i) = -tangent(2,i)

24 outward_normal(2,i) = tangent(1,i)

25 else
26 outward_normal(1,i) = tangent(2,i)

27 outward_normal(2,i) = -tangent(1,i)

28 end if
29 end do
30 !$OMP END PARALLEL DO

31 end function calc_outward_normal

Listing 35: inext

1 pure integer function inext(i)

2 ! Returns the index of point after point i
3 !---

4 ! Created: MOL, 2015-04-06.
5 !---

6 use rhs_var, only: laxisym

7 integer, intent(in) :: i

8

9 if(laxisym) then
10 if (i==npoints) then
11 inext=npoints-1

12 return
13 end if
14 end if
15

16 inext = modulo(i,npoints)+1

17 end function inext

Listing 36: iprev

1 pure integer function iprev(i)

2 ! Returns the index of point before point i
3 !---
4 ! Created: MOL, 2015-04-06.

151

5 !---
6 use rhs_var, only: laxisym

7 integer, intent(in) :: i

8

9 if(laxisym) then
10 if (i==1) then
11 iprev=2

12 return
13 end if
14 end if
15

16 iprev = modulo(i-2,npoints)+1

17 end function iprev

Listing 37: pprev

1 pure function pprev(points,i)

2 ! Returns the point before point i

3 !---
4 ! Created: MOL, 2015-04-06.

5 !---
6 use rhs_var, only: laxisym

7 integer, intent(in) :: i

8 real, intent(in) :: points(2, ib_max_points)

9 real pprev(2)

10

11 pprev = points(:,iprev(i))

12

13 ! flip x axis if axisym and on edge

14 if(laxisym .and. i==1) then
15 pprev(1) = -pprev(1)

16 end if
17 end function pprev

Listing 38: pnext

1 pure function pnext(points,i)

2 ! Returns the point after point i
3 !---

B. Core immersed boundary and linear algebra routines developed

4 ! Created: MOL, 2015-04-06.
5 !---

6 use rhs_var, only: laxisym

7 integer, intent(in) :: i

8 real, intent(in) :: points(2, ib_max_points)

9 real pnext(2)

10

11 pnext = points(:,inext(i))

12

13 ! flip x axis if axisym and on edge
14 if(laxisym .and. i==npoints) then
15 pnext(1) = -pnext(1)

16 end if
17 end function pnext

Listing 39: dir2p

1 pure function dir2p(d) result(p)

2 ! Angle (radians) to unit length vector pointing in

3 ! the direction of the angle
4 !---

5 ! Created: MOL, 2015-02-18.
6 !---
7 real, intent(in) :: d

8 real :: p(2)

9 p = [cos(d), sin(d)]

10 end function dir2p

Listing 40: dist

1 elemental real function dist(x,y)

2 ! Euclidean norm, component version

3 !---
4 ! Created: MOL, 2015-02-18.
5 !---

6 real, intent(in) :: x, y

7 dist=sqrt(x*x+y*y)

8 end function dist

153

Listing 41: distp

1 pure real function distp(p)

2 ! Euclidean norm, 2-vector version

3 !---
4 ! Created: MOL, 2015-02-18.
5 !---

6 real, intent(in), dimension(2) :: p

7 distp=dist(p(1),p(2))

8 end function distp

Listing 42: dist2p

1 pure real function dist2p(ibp, i, j)

2 ! Euclidean norm of difference between point i and j
3 ! (Distance between point i and j)

4 !---
5 ! Created: MOL, 2015-02-18.

6 !---
7 real, intent(in), dimension(2,ib_max_points) :: ibp

8 integer, intent(in) :: i, j

9 dist2p=distp(ibp(:,j)-ibp(:,i))

10 end function dist2p

Listing 43: distprev

1 pure real function distprev(ibp, i)

2 ! Euclidean distance between point i and the point before it on the
3 ! immersed boundary
4 !---

5 ! Created: MOL, 2015-02-18.
6 !---
7 real, intent(in), dimension(2,ib_max_points) :: ibp

8 integer, intent(in) :: i

9 distprev=distp(pprev(ibp,i)-ibp(:,i))

10 end function distprev

B. Core immersed boundary and linear algebra routines developed

Listing 44: distnext

1 pure real function distnext(ibp, i)

2 ! Euclidean distance between point i and the point after it on the
3 ! immersed boundary

4 !---
5 ! Created: MOL, 2015-02-18.
6 !---

7 real, intent(in), dimension(2,ib_max_points) :: ibp

8 integer, intent(in) :: i

9 distnext=distp(pnext(ibp,i)-ibp(:,i))

10 end function distnext

Listing 45: write_ib_to_tecplot

1 subroutine write_ib_to_tecplot(ibp, ibdk, f, fi, t)

2 ! Writes the current immersed boundary to a tecplot file with name
3 ! levelZ-points.tec

4 !
5 ! The file contains the variables:
6 ! x,y - position

7 ! u,v - velocity
8 ! k - curvature
9 !

10 !---
11 ! Created: MOL, 2015-04-17.

12 !---
13 use grid, only: ib1,ibn, jb1, jbn

14 use rhs_var, only: laxisym

15

16 real, intent(in) :: f(ib1:ibn,jb1:jbn,2) ! Eulerian staggered
velocity field↪→

17 real, intent(in) :: fi(ib1:ibn,jb1:jbn,2) ! Eulerian staggered
velocity field↪→

18 real, intent(in) :: ibp(2,ib_max_points) ! current point positions

19 real, intent(in) :: ibdk(2,ib_max_points) ! current point equilibrium

distance and curvature↪→

20 real, intent(in) :: t ! time

155

21 real :: tangent(2,npoints) ! tangents to immersed boundary
22 real :: k(npoints) ! curvature

23 integer :: i

24

25 if(laxisym) then
26 tangent = calculate_tangent(cubic_spline_normal(ibp))

27 k = calculate_curvature(ibp, cubic_spline_normal(ibp))

28 else
29 tangent = calculate_tangent(cubic_spline(ibp))

30 k = calculate_curvature(ibp, cubic_spline(ibp))

31 endif

32

33 call tec_points_2vec_2scalar(ibp(:,1:npoints),

interpolate_velocity_field(ibp, f), -calc_outward_normal(ibp,

tangent, fi),

↪→

↪→

34 calculate_middle_dist(ibp), k, npoints, t)

35 end subroutine write_ib_to_tecplot

Listing 46: tec_points_2vec_2scalar

1 subroutine tec_points_2vec_2scalar(points, vec1, vec2, scalar1,

scalar2, npoints, t)↪→

2 ! Output the a list of points, a vector quantity, curvatures in
tecplot format to levelZ-points.tec↪→

3 ! We are using tecplots FELINESEG which can represent a 2D
linesegment,↪→

4 ! or a list of points.

5 ! Only one of tec_points and tec_points_vel should be used at a time.
6 ! MOL, 2015-02-04.

7 !--
-------↪→

8 ! Local variables

9 logical, save :: lopen=.false.

10 integer :: ierr=0,ivar,i,npoints

11 real, intent(in) :: t

12 real, intent(in), dimension(2, npoints) :: points

13 real, intent(in), dimension(2, npoints) :: vec1, vec2

14 real, intent(in), dimension(npoints) :: scalar1, scalar2

15 !--

-------↪→

16 !

B. Core immersed boundary and linear algebra routines developed

17 ! Open file
18 if (.not. lopen) then
19 lopen=.true.

20 open(itec_points,file=tec_pointfile(1:len(tec_pointfile)),&

21 status=’unknown’,form=’formatted’,iostat=ierr)

22 if (ierr /= 0) then
23 write(*,*) ’Error while opening file

’,trim(tec_pointfile),’:’,ierr↪→

24 call stoperror(’’)

25 else
26 ! write header if open successfull

27 write(itec_points,*) ’TITLE = "levelZ - Immersed Boundary"’

28 write(itec_points,*) ’VARIABLES = x, y, u, v, nx, ny, d, k’

29 end if
30 end if
31 !

32 ! Write current ZONE and IB-points to file
33 write(itec_points, 74) t, npoints, npoints, t

34 do i=1,npoints

35 write(itec_points, 78) points(1,i), points(2,i), vec1(1,i),

vec1(2,i), vec2(1,i), vec2(2,i), scalar1(i), scalar2(i)↪→

36 enddo

37 write(itec_points,*) ’’

38 do i=1,npoints

39 write(itec_points, 79) i, mod(i,npoints)+1

40 enddo

41 ! Under Linux (at least with pgf compilers), output is buffered.
42 ! If the program (or the computer) crashes before the file is

properly↪→

43 ! closed, the buffered output is lost. This is fixed by the following

call,↪→

44 ! which, however, does not seem to be Fortran standard. Neither of
ifort,↪→

45 ! pgf90, or f90 on OSF1 complain, though.
46 flush(itec_points)

47 !

48 74 format(’ ZONE T="t=’,es12.3,’", DATAPACKING=POINT, NODES=’,I9,’,

ELEMENTS=’,I9,’, &↪→

49 &ZONETYPE=FELINESEG, DT=(DOUBLE DOUBLE), SOLUTIONTIME=’,es12.3)

50 78 format(es18.10, ’, ’, es18.10, ’, ’, es18.10, ’, ’, es18.10, ’, ’,

es18.10, ’, ’, es18.10, ’, ’, es18.10, ’, ’, es18.10)↪→

157

51 79 format(I9,’ ’,I9)

52 end subroutine tec_points_2vec_2scalar

Listing 47: swap_real

1 subroutine swap_real(a,b)

2 ! Swap two real values

3 !---
4 ! Created: MOL, 2015-02-18.

5 !---
6 real, intent(inout) :: a,b

7 real :: c

8 c = a

9 a = b

10 b = c

11 end subroutine swap_real

Listing 48: swap_array

1 subroutine swap_array(a,b)

2 ! Swap the values in two arrays
3 !---

4 ! Created: MOL, 2015-02-18.
5 !---
6 real, intent(inout), dimension(:) :: a,b

7 real, dimension(size(a)) :: c

8 c = a

9 a = b

10 b = c

11 end subroutine swap_array

Listing 49: linalg_module_header

1 module linalg

2 !> @file

3 !> Immersed boundary
4 !>
5 !> MOL, 2015-02-03.

B. Core immersed boundary and linear algebra routines developed

6 !> Linear algebra routines, currently only for solving tridiagonal
systems of differents sorts.↪→

7 !> Used in cubic spline aprroximation for immersed boundary.
8 !> The routines have been tested up agains the standard Matlab linear

system↪→

9 !> solver and they give the same result.
10 implicit none
11 public
12 save
13 contains

Listing 50: solve_tridiag

1 function solve_tridiag(a,b,c,d,n) result(x)

2 ! a - sub-diagonal variable coeffecient (means it is the diagonal
below the main diagonal)↪→

3 ! b - the main diagonal variable coefficient

4 ! c - sup-diagonal variable coeffecient (means it is the diagonal
above the main diagonal)↪→

5 ! d - right part

6 ! x - the answer
7 ! n - number of equations
8

9 integer,intent(in) :: n

10 real,dimension(n),intent(in) :: a,b,c,d

11 real,dimension(n) :: x

12 real,dimension(n) :: cp,dp

13 real :: m

14 integer :: i

15

16 ! initialize c-prime and d-prime

17 cp(1) = c(1)/b(1)

18 dp(1) = d(1)/b(1)

19 ! solve for vectors c-prime and d-prime

20 do i = 2,n

21 m = b(i)-cp(i-1)*a(i)

22 cp(i) = c(i)/m

23 dp(i) = (d(i)-dp(i-1)*a(i))/m

24 enddo

25 ! initialize x

159

26 x(n) = dp(n)

27 ! solve for x from the vectors c-prime and d-prime

28 do i = n-1, 1, -1

29 x(i) = dp(i)-cp(i)*x(i+1)

30 end do
31 end function solve_tridiag

Listing 51: solve_constant_tridiag

1 function solve_constant_tridiag(a,b,c,d,n) result(x)

2 ! a - sub-diagonal (means it is the diagonal below the main
diagonal)↪→

3 ! b - the main diagonal
4 ! c - sup-diagonal (means it is the diagonal above the main

diagonal)↪→

5 ! d - right part
6 ! x - the answer

7 ! n - number of equations
8 integer, intent(in) :: n

9 real, intent(in) :: a,b,c

10 real, dimension(n),intent(in) :: d

11 real, dimension(n) :: x

12 real, dimension(n) :: cp,dp

13 real :: m

14 integer i

15

16 ! initialize c-prime and d-prime
17 cp(1) = c/b

18 dp(1) = d(1)/b

19 ! solve for vectors c-prime and d-prime
20 do i = 2,n

21 m = b-cp(i-1)*a

22 cp(i) = c/m

23 dp(i) = (d(i)-dp(i-1)*a)/m

24 enddo

25 ! initialize x
26 x(n) = dp(n)

27 ! solve for x from the vectors c-prime and d-prime

28 do i = n-1, 1, -1

29 x(i) = dp(i)-cp(i)*x(i+1)

B. Core immersed boundary and linear algebra routines developed

30 end do
31 end function solve_constant_tridiag

Listing 52: solve_constant_symmetric_tridiag_periodic

1 function solve_constant_symmetric_tridiag_periodic(a,b,d,n) result(x)

2 ! a - the main diagonal
3 ! b - sub and super-diagonal
4 ! d - right part

5 ! x - the answer
6 ! n - number of equations
7 ! Using tactic for periodic systems from:

http://www.cfm.brown.edu/people/gk/chap6/node14.html↪→

8 ! Essentialy reduce the tridiagonal periodic system to two n-1

tridiagonal NON-periodic systems.↪→

9 ! http://www.sciencedirect.com/science/article/pii/0021999175900819
10 integer, intent(in) :: n

11 real, intent(in) :: a,b

12 real, dimension(n),intent(in) :: d

13 real, dimension(n) :: x,r

14 real, dimension(n-1) :: d2

15 real :: lambda, alpha, sigma

16 integer :: m,i

17

18 ! calculate factors for first unknown
19 lambda = a/b

20

21 if (lambda > 2.0) then
22 alpha = (-lambda+sqrt(lambda*lambda-4.0))/2.0

23 else if(lambda < -2.0) then
24 alpha = (-lambda-sqrt(lambda*lambda-4.0))/2.0

25 else
26 write(*,*) ’linalg.f90: Error: system not diagonally dominant’

27 stop
28 endif

29

30 sigma = (1.0+alpha*alpha)/(lambda*(1.0-alpha*alpha)*(1.0-alpha**n)*b)

31

32 forall (i=0:n-1)

33 r(i+1) = sigma*(alpha**i+alpha**(n-i))

161

34 end forall
35

36 m = (n+1)/2

37

38 x(1) = 0.0

39 do i=2,m

40 x(1) = x(1) + r(i)*(d(i)+d(n+2-i))

41 end do
42

43 if (mod(n,2)==0) then
44 x(1) = x(1) + r(m+1)*d(m+1)

45 end if
46 x(1) = x(1) + r(1)*d(1)

47

48 ! create modified rhs
49 d2 = d(2:n)

50 d2(1) = d2(1)-b*x(1)

51 d2(n-1) = d2(n-1)-b*x(1)

52

53 ! solve rest of the system
54 x(2:n) = solve_constant_tridiag(b,a,b,d2,n-1)

55

56 end function solve_constant_symmetric_tridiag_periodic

	Introduction
	Motivation
	Governing equations
	Navier-Stokes equations
	Interface forces
	Surface tension
	General tension

	Jump conditions

	Numerical methods
	Discretization of the Navier-Stokes equations
	Spatial Discretization
	Chorin's projection method
	Time integration method
	Penalization method
	The level-set method
	The ghost-fluid method

	The immersed boundary method
	Motivation
	Introduction
	Derivation
	Discretization of space
	Physical identities
	The delta function,
	Deriving surface tension for the immersed boundary method
	Generalized viscoelastic interface for immersed boundary method
	CFL condition
	Computing the level-set function from the immersed boundary
	Implementation details

	Cubic splines
	The proposed method

	Numerical results
	Analytic advection
	Drop in vortex
	Zalesak's disk
	Comparison with reference method
	Immersed boundary-driven surface tension
	Relaxing ellipse with density and viscosity jump
	Effect of adding sharp forces on the diffuse interface

	Simulations with general interface tension
	Relaxing drop with elastic membrane
	Drop stretched in electric field
	Pipette draining a water drop in crude-oil

	Concluding remarks
	Conclusion
	Future work

	Coding conventions
	Core immersed boundary and linear algebra routines developed

