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Preface

This master’s thesis is written at Department of Mathematical Sciences, Faculty of Information

Technology, Mathematics and Electrical Engineering, NTNU. It is a part of two-years interna-

tional master’s degree program, Masters of Science (M.Sc.) in Mathematical Sciences at NTNU.

The title of this thesis is "Imperfect Testing and its Influence on Availability of Safety Instru-

mented Systems". It is written under supervision of Professor Anne Barros (co-supervisor), Fac-

ulty of Product and Quality Engineering at NTNU and Professor Bo Lindqvist (main supervisor),

Department of Mathematical Sciences. His main concern was to ensure that this report satisfies

the requirements of Mathematics Department.

This thesis intends towards the study of imperfect testing of a SIS and suggests an alternative

way to model this imperfectness. Different strategies used for testing the reliability of a SIS and

formulas used to calculate the unreliability measure PFDavg are discussed as well. The reader

ought to have some basic knowledge about the probability theory, assessment criteria for un-

availability of SIS and the formulas used for PFDavg calculation. Moreover, it is also assumed

that the reader is familiar with the contents of international standards referring to industrial

practices i.e., IEC61508 (IEC61508, 2010) and IEC61511 (IEC61511, 2003), the book Reliability of

Safety-Critical Systems written by Rausand (2014), fundamentals of Petri Nets and PDS Method

Handbook by SINTEF. (Hauge et al., 2013)

Trondheim, July 2015

Shipra Sachdeva.
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Abstract

Imperfect Testing of Safety Instrumented Systems (SIS) in process industry is a cause of dilemma

for most Reliability Engineers. On one side it saves the cost and danger of testing an item per-

fectly whereas on the other hand it raises uncertainty related to the study. Because of imper-

fect test, the validity of analysis of average unavailability (PFDAv g ) period for a safety system

becomes ambiguous. There is a positive correlation between an imperfect test and the uncer-

tainty about average unavailability of the system. Lots of research has been done to reduce this

imperfectness in testing process so that uncertainty can be discounted, but this imperfectness

in testing process is somehow a natural phenomenon and hence can not be turned into a pure

perfect process. For example, if a gas detector must be tested to carry out its safety function, a

perfect test should be to release the specific poisonous gas in the room where gas detector is in-

stalled. But practically, it is almost impossible to do this test in a process industry where people

are working at that time since it poses a threat to workers. So, an imperfect test is performed by

releasing any non harmful gas directly at the head of detector and observing if the alarm goes

off or not.

In this thesis, various types of imperfect tests are defined and different ways of categoriz-

ing them are outlined. Three diverse approaches have been explained that can be used for

obtaining the input of imperfect testing in calculation of average unavailability. A simple and

analytical model utilizing partial tests and Mean Partial Test Time (MPTT) has also been sug-

gested to help in reducing the unclarity of estimate for average Probability of Failure on De-

mand (PFDAv g )/unavailability. Suggested design has been shown to adhere model assump-

tions. There have been used computation tools such as MATLAB and Petri Nets to capture nu-

merical outputs for proposed and studied formulas of (PFDAv g ). Part of thesis is also dedicated

to certify use of Petri Nets as a tool to analyze safety instrumented systems and uncertainty

study of the outputs achieved from Petri Nets is also focused on by implementing simulations

in MATLAB.

The evaluation depicts that Petri Nets works out as a sensible and easy tool to model a safety

system’s dynamics. It is a graphical interface and uses Monte-Carlo Simulations to provide the

user with a reasonably approximated value of PFDAvg close to the exact one. The model pro-



iv

posed in this thesis considering partial tests and mean partial test time to reduce imperfectness

can not be regarded as perfect for diminishing the ambiguity in average unavailability (PFDAvg)

of the system. But it provides remarkably important insights about changes that can be intro-

duced in full/proof testing strategies to get more accurate results and increase the quality of

testing process. This will prove helpful in decision making aspect concerning inspection pro-

cess.
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Acronyms

CCF Common cause failure

CI Confidence interval

D Detected

DD Dangerous detected

DTC Diagnostic test coverage

DTUT Downtime unavailability (due to planned activities of testing or maintenance)

DU Dangerous undetected

E/E/PE Electrical/electronic/programmable electronic

EUC Equipment under control

GRIF Graphical interface for reliability forecasting

HIPPS High integrity pressure protection system

HSE Health, safety and environment

IEC International Electro-technical Commission

IEC61508 Generic standard by IEC for functional safety of E/E/PE safety items in industries

IEC61511 Standard issued by IEC for safety systems in process industries specifically

IME Faculty of Information technology, Mathematics and Electrical Engineering, NTNU

IPK Faculty of Product and Quality Engineering, NTNU

ISA International Society of Automation

ISA-TR84.00.03 Standard on Mechanical Integrity of Safety Instrumented Systems by ISA

IV1 Isolated valve 1
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IV2 Isolated valve 2

MATLAB Matrix Laboratory

MPRT Mean partial repair time

MPTT Mean partial test time

MRT Mean repair time (for proof test)

MTT Mean test time (for proof test)

MTTF Mean time to failure

MTTR Mean time to restore (for diagnostic test)

MV Main valve

NOG Norwegian Oil and Gas Association

NTNU Norwegian University of Science and Technology

PDS Norwegian acronym for Reliability and availability of programmable safety instrumented

systems

PFD Probability of failure on demand

PN Petri nets

PTC Proof test coverage

PST Partial stroke test

RAMS Reliability, availability, maintainability, and safety

SDV Shutdown valve

SIF Safety Instrumented Function

SIL Safety Integrity Level
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SINTEF Norwegian acronym for Foundation for Industrial and Technology Research

SIS Safety Instrumented System

TOTAL France based company of oil and gas

TS Testing Strategy

U Undetected



Nomenclature

(1−θ)λDU Failure rate for partial test undetectable failures (= λU )

κ Number of minimal cut sets for a koon system, page 30

λ Total failure rate

λDD Dangerous detected failure rate

λDU Dangerous undetected failure rate

λD Fraction of DU failures detected by partial test

λU Fraction of DU failures not detected by partial test

A(t ) Average unavailability of system in i’th partial test interval, page 28

τ Length of a proof test

τ/n Time difference between staggered testing of n redundant components

τi Length between two consecutive partial tests (here i’th and (i+1)st)

PFD1oo2
Av g Average PFD of 1oo2 system, see equation (5.2), page 64

PFDi PFD of the system in i’th partial test interval

PFDT OT (t ) Total time dependent PFD for 1oon system (testing strategy model), page 41

θ Proof test coverage factor

θλDU Failure rate for partial test detectable failures (= λD )

viii
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τ̃ Length between two consecutive periodic partial tests

a Constant of multiplication for suggested model, page 65

A(t ) Time dependent availability of system

Ae (t ) Time dependent availability of single component in i’th partial test interval, page 33

B j Probability of having j type f failures at given time, page 28

C j j’th Minimal cut set, page 30

e Exponential function

F koo(n− j )(t |ti−1) Conditional instantaneous unreliability for a koo(n − j ), given it has survived

until time ti−1 , page 29

F koo(n− j )(t ) Instantaneous unreliability of a k out of (n-j) structure

F j (t ) Failure function of j’th minimal cut set, page 30

i Local subscript situational variable

j Local subscript situational variable

l Local subscript situational variable

m Number of total tests in one proof test interval including last/proof test

Nb Number of type f failures in the system at a given time , page 27

PF D [1oo(n−k+1)]
Av g ,C j

Probability of Failure on Demand for j’th minimal cut set of order n-k+1 , page 30

PF Dkoon
Av g Probability of Failure on Demand for a koon structure without partial tests, page 31

PF Di (t ) Time dependent unavailability from i’th component (testing strategy model), page 39

R j (t ) Survivor function for j’th minimal cut set, page 30

s Local subscript situational variable
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S(k,n, x) Vector used in PFD calculation , see equation (3.22), page 34

t0 Time of first partial test

ti Time instant to execute i’th partial test in a proof test interval

tm Time instant to execute last test (i,e, proof test (∵ tm = τ)) in a proof test interval

t0 Time taken to test and restore the item in case of sequential testing (not otherwise),

page 19

Ti Length between two consecutive tests of a component (testing strategy model), page 38

Tp Time elapsed between first system startup and first test (testing strategy model), page 38

Tr Repair time taken for a component (testing strategy model), page 38

Tt Duration of a test (testing strategy model), page 38

w State defining variable (testing strategy model), page 39

[0, τ] First proof test instant

(ti−1, ti ] i’th Partial test interval

PFDAv gi Average unavailability in i’th partial test interval

koon System architecture

PFD(t) Time dependent PFD of the system

PFDAvg Average probability of failure in demand

PFDmax Maximum value of PFD in each partial test interval, page 48

T Lifetime of a component/item
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Chapter 1

Introduction

1.1 Background

Uncertainty involved in analysis of a real life phenomena is a huge concern for mathematical

analysts in all fields. The field of reliability engineering is not an exception. Imperfect testing is a

key source of contribution to ambiguity experienced in reliability and unavailability analysis of

repairable Safety Instrumented Systems (SIS). Though this ambiguity is inevitable while study-

ing any stochastic process, still more and more models are built with the aim of reducing this

unpredictability.

Testing of a SIS is of utmost importance to ensure safe operation of system and also to reveal

all possible dangerous failures. The average amount of time for which a repairable SIS remains

unavailable during process can be estimated using testing procedures. Routinely, when a SIS is

tested, it is assumed that the test is always perfect and it detects all possible failure modes of the

item/component being tested. But the issue of concern is, "Can each test really be perfect?", if

not,

? How can a test be categorized as perfect or imperfect?

? What is the impact of an imperfect test on the unavailability of system?

? Is imperfect testing connected to Uncertainty?

? How this impact can be taken into account in calculation of average unavailability (PFDAvg)?

2
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? Can this effect be used in any way to reduce uncertainty in study and to make relevant de-

cisions about system operation?

The concept of imperfect testing of SIS and its impact on calculation of average unavailability

(PFDAvg) of the system is of interest from many points of view such as, diminishing ambiguity of

analysis, choosing the strategy of testing and operation in future, making decisions about practi-

cal issues of postponing proof test or as a ground to get a beneficial compromise between perfect

test and system unavailability.

Many research papers and articles have enlightened this concept and suggested models to

take into account the imperfectness of testing process. HSE (2002), NOG-070 (2004) and ISA-

TR84.00.03 (2002) define imperfect tests as not being an end-to-end test, whereas Jin and Rau-

sand (2014), Brissaud et al. (2012) and Lundteigen and Rausand (2008) bring in the notion of test

coverage factor to conclude if a test is perfect. Čepin (1995), Summers and Zachary (2000) and

Torres-Echeverría et al. (2009) concentrate on defining various test strategies and relating them

to imperfect testing. Rausand (2014) opine to consider the circumstances as well in which an

item is tested to call it as a perfect/imperfect test. Hauge et al. (2010) propose to always add a

certain fixed constant contribution in PFDAvg formula to compensate for any kind of imperfect-

ness present in testing process. All of these papers suggest various types of inputs which can be

added as a contribution from imperfect testing of the system.

Despite existing literature mentioned above, basic grounds for categorizing a test as perfec-

t/imperfect are quite unclear. The boundary line between these is blurred as they are used in

place of each other recursively in literature. This difference should be made clear to understand.

Moreover, any of the physical quantities used in calculation of average unavailability (PFDAvg)

are not related in any way to assess the quality of test. If any such quantity is used to assess test

quality, it would be easier to control credibility of the test.

There are a bunch of softwares that can calculate PFDAvg of a koon system structure from

a given formula, but only some of them offer a graphical user interface such that the system

architecture can be built in that and user can get an insight of how the system will actually work.

One such software is Petri Nets which is used to model the dynamic behavior of a SIS. It has
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gained a wide recognition among reliability engineers in recent years due to its ease of use.

Being a relatively new option to model SIS with its specific conditions, a lot of study can be

done further in this field to discover various areas of its application.

1.2 Objectives

This thesis aims at achieving the following objectives:

� To provide a concrete definition of Imperfect testing and making a thin boundary line be-

tween partial and imperfect tests.

� To define different types of tests and test scheduling in practice.

� To explain the main models devised till now for collecting input from imperfect/partial

test in average unavailability (PFDAvg) of system.

� To elaborate the use of various computational softwares (MATLAB and Petri Nets) to model

real life situations of SIS.

� To compute and compare the values of PFDAvg for the system given in respective articles

of Brissaud et al. (2012) and Jin and Rausand (2014) using computer programs mentioned

above.

� To suggest a model that can increase test quality characterization using mean test time

taken to conduct a partial test (MPTT) for an item/component.

� To check the variance in results produced by model proposed in the report using softwares

(MATLAB and Petri Nets).

1.3 Limitations

The span of time allotted for completing this report was 1.5 semester, which limits the scope of

this study in itself. Imperfect testing is a wide topic of interest and many things can be evaluated

in this interest. But due to time constraint it was not possible to cover the entire scope, so an
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agreement was reached with the supervisor, Anne Barros to narrow down the investigation to

defining existing literature and confirming the validity of Petri nets usage for low-demand SIS

modeling. A simple model to investigate imperfectness involved in test was proposed and small

validity analysis was also done for this model.

1.4 Approach

The primary source of information for definitions, existing models and model proposition have

been Brissaud et al. (2012), Jin and Rausand (2014) & Torres-Echeverría et al. (2009) and books

written by the author Marvin Rausand (Rausand and Høyland (2004) & Rausand (2014)). Ac-

cess to articles and literature search have been successfully completed using Google scholar and

Science Direct. The books and standards, IEC61508 (2010) & IEC61511 (2003) have been of ex-

tensive use regarding information for various testing processes and scheduling of tests. PDS

Method (Hauge et al. (2013)) and Data (Hauge and Håbrekke (2013)) Handbooks were utilized

to retrieve available information on imperfect tests and for collecting values of data parame-

ters used in computations. Wikipedia page (Wikipedia (2015)) together with some other articles

(Petri (1962) & Petri and Reisig (2008)) on Petri Nets were employed to gather general informa-

tion about Petri Nets.

For computational objectives, the softwares used were MATLAB (MATLAB, 2013) (for com-

puting analytical outputs from formulas and simulations), Petri Net and Tree modules from

GRIF software (TOTALR&D, 2009a) (for designing system architecture and running simulations

to compare results with those achieved from MATLAB).

1.5 Structure of the Report

This report is structured in a document containing 6 chapters. Chapter 1 gives a complete

overview of basic concepts, ideas and objectives to be studied and covered in the report. Chap-

ter 2 includes the definitions to various types of testing and factors influencing test procedures.

Different ways of scheduling the tests are also explained in the same chapter. In the 3rd chapter,

a detailed description of all known models considering partial tests is specified together with
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the analytical formulas obtained for calculation of average unavailability (PFDAvg). All the nu-

merical conclusions gained by using the computational softwares are explained and discussed

thoroughly in chapter 4. Chapter 5 includes the new proposed model to include the contribu-

tion from the mean partial test time into PFDAvg calculations such that it helps to determine test

quality (PTC θ) according to time taken for testing. Finally, chapter 6 contains major conclu-

sions followed by some recommendations for future work that can be done in this direction.



Chapter 2

Testing of SIS

2.1 Introduction

Testing of SIS 1 is a process which is well planned and organized beforehand its installation,

already in planning phase according to the standards, IEC61508 (IEC61508, 2010) and IEC61511

(IEC61511, 2003). Regular testing of SIS is a strict requirement according to the above standards.

SIS is the most critical system and is of utmost importance inasmuch as its response must be

correct and in time.

Usually, Safety Instrumented Systems (SISs) operating in low-demand mode are kept passive

during normal operation and are activated only when a demand occurs, thus regular proof tests

are required to reveal Dangerous Undetected (hidden) faults (IEC61508, 2010; Liu and Rausand,

2013). Further, almost all SISs have a voted group structure as an input element, for eg., "1oo2

or 2oo3" structure and hence subjected to tolerate a certain amount of random hardware fail-

ures. It is therefore difficult to know if a SIS will perform adequately on demand, if not tested

periodically. Testing also confirms the continued operation of the required SIS.

Testing a SIS involves intentional execution of the actual safety function of the system, (in-

cluding all its subsystems and channels) in an artificial or unreal demand situation. A test aims

to replicate all the Dangerous Failures (i.e. Dangerous Detected (DD) and Dangerous Unde-

tected (DU)) of the item. A hypothetical/partial demand is created and the item is put under

1SIS, defined as a Safety Instrumented Systems are used widely in the process industry. A SIS is installed to detect
and mitigate the consequences of hazardous events occurring. These are critical systems as their failure to perform
an intended function may lead to harm of assets or can cause dangerous accidents in industry.

7
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test to ensure that it will perform when a real demand occurs. Another main aim of testing a

SIS is to decide a suitable maintenance strategy for the repairs and/or replacements of system,

subsystem or channels before they actually start deteriorating or failing frequently and sustain

its required Safety Integrity Level (SIL2).

In this way testing also provides information to the maintenance team about corrective and

preventive maintenance measures required by the system so that SIS has an optimal reliability

and survival. (Lintala and Ovtcharova, 2013; Smith, 2011)

Before these concepts are discussed any further, it is important to understand the basic idea

behind testing that plays an important part in PFDAvg calculations. First of all, whenever relia-

bility analysis is used, the following assumptions are usually considered:

(i) The lifetime of the item under consideration is exponentially distributed.

(ii) Failure rate of the item is constant and is denoted by λ, which includes all the dangerous

failures.

(iii) λ is the total failure rate and is represented as:

λ=λDD +λDU (2.1)

where λDD is the contribution from rate of dangerous detected failures and λDU is the contri-

bution from the rate of dangerous undetected failures.

2.2 Different Categories of Tests

The response of SIS is normally tested when it is in operational phase. The tests can be split into

three main categories: (i) Diagnostic tests, (ii) Proof tests, and (iii) Partial tests.

2.2.1 Diagnostic Tests

Diagnostic testing is a kind of self-testing phenomenon which is usually built-in in the item/

component. Self-testing means that an item will test itself and the built-in technology which

executes these tests, is a software or a program installed from before into these items which

2SIL is the probability of a SIS satisfactorily performing its intended function and informs about how high is the
level of protection a SIS is providing by using average unavailability (PFDAvg) of SIS.
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carry out self tests as programmed. Diagnostic test is an automatic partial test, as it is a self-

test planned to reveal certain types of pre-decided dangerous failure modes.

But the question that arises is, how can a diagnostic test be partial? It can be answered

in two different ways: Firstly, diagnosis is a self-test and the flaws revealed by it will be named

detected dangerous failures, i.e., they relate to first term (λDD ) of Equation 2.1. Therefore, since

the test does not reveal all the dangerous failures (for example, test does not confirms if alarm

is raised on reaching dangerous pressure limit and this fault remains undetected) of the item,

it is called partial as it does not gives the full dangerous failure rate (λ). Another point of view

is that, if it does not unveil all the faults for which it was planned, for example, assuming that

the diagnosis of a pressure transmitter should be able to give information about signal loss,

mis-calibration, impulse line pluggage and drifted analogue signal, but it is only able to raise an

alarm when there is signal loss and does not provide information about any other decided failure

modes, so it turns out to be an imperfect test (but not partial) as it does not fulfill all what it was

designed for (distinction between imperfect and perfect tests is further explained in Chapter

3). Hence, it is a matter of which aspect is being evaluated and what result is demanded out of

diagnosis. If one wants to look at the complete failure rate of the component then diagnostic

test is partial for sure and if the interest lies in the failure modes revealed then it is imperfect.

And therefore there is a need for proof tests (explained in section 2.2.2) to unveil the dangerous

undetected failures left by diagnostic tests.

The factors involved in calculations of PFDAvg related to diagnostic tests are:

Diagnostic Test Coverage (DTC): Diagnostic Test Coverage (DTC) is defined as the fraction of

dangerous failures detected by built-in diagnostic test (IEC61511, 2003). It can be illustrated as:

DT C = λDD

λ
=⇒ λDD =λ.DTC (2.2)

where λ=λDD +λDU .

Equation 2.2 shows that DTC is the part of dangerous failures unveiled through conducting

diagnosis of the item. A SIS comprises of three subsystems, which are sensors, logic solver and

final elements, and hence each of the item in every subsystem will have its own diagnostic cov-

erage fraction (Rausand, 2014). Normally, if an item has a high diagnostic factor, then it has an

embedded software in it so that diagnostic tests can be programmed and executed effectively.
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Due to improvement in technology, it is quite possible to get a very high DTC (almost as high

as 50%-99%) for sensors and logic solvers as they can be programmed being E/E/PE (Electrical/

Electronic/ Programmable Electronic) items. Whereas the DTC of final elements is rather low

(about ≤30%) because these are most probably mechanical items such as valves, relays etc. and

cannot be programmed using any software.

Diagnostic Test Interval: Diagnostic (or any other) test interval stands for the time difference

between two consecutive diagnostic tests. Whenever any item is programmed to conduct the

built-in tests, then the time between two sequential tests is also predefined. But when there is

an involvement of high technology, this interval is usually negligible, say, some seconds or even

milliseconds, hence it has no significant role to play in the calculations compared to the lifetime

of the item to determine PFDAvg.

Mean Time To Restore (MTTR): The MTTR is the mean time to restore the fault detected in

the item by diagnosis. After restoration, the item is always considered to be "as-good-as-new".

MTTR is the time from when a fault occurs, till it is detected and repaired and until the item

is put into function again. Therefore, MTTR is the addition of the time from when failure oc-

curs until it is detected in diagnosis plus the time from when failure is detected until the item is

repaired and put into use again. But, since the diagnostic test time (NT) is negligible, it is there-

fore sensible to neglect the time between occurrence of fault until detection (as it will be merely

milliseconds) and take the "MTTR = mean time from occurrence of fault until item’s restoration

(repairing and starting again are considered one process, that is, there is no time used to start

the item after repair)." The illustration of this is in Figure 2.1 below:

Figure 2.1: The Timeline Illustration of Time To Restore after one Diagnosis and the mean of
these times is MTTR (Mean Time To Restore).
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2.2.2 Proof Testing

A proof test or full proof-test is an intentional test which is well-planned and designed in ad-

vance to reveal all the DU (dangerous undetected) failures (λDU )3 of a SIS, within regular test

intervals and where investigation starts from the element level and continues up to the system

level. Moreover, if the proof test reveals any faults that lead to failure of the safety loop4, then a

repair action is initiated immediately to fix the fault and restore the SIS to a condition as-good-

as-new. However, assuming "as-good-as-new" condition is unrealistic, but is still accepted for

the sake of simplifying the calculation of PFDAvg using different formulas.

Figure 2.2: The Process of Proof testing (Rausand, 2014)

As Figure 2.2 illustrates, the proof test investigates the presence of DU faults in the item

when its state with respect to DU faults is unknown. If the proof test reveals no DU faults, then

the state of the item is assumed to be as-good-as-new and it is again put into operation (because

the item is unavailable to perform its function when undergoing a test), whereas if any/more DU

faults are revealed then the item is repaired and brought back in function under the assumption

of being as-good-as-new again.

Remark: There is a distinction between proof testing and functional testing as they vary form

each other regarding test benefits. The former is aimed to test each and every element involved

in the SIS whereas the latter just verifies the safety function (safety loop) of SIS, i.e. it will not be

3Contribution from the dangerous undetected failure rate, that is, the second term λDU in Equation 2.1. It can
be calculated using equations 2.1 and 2.2 as λDU = (1−DTC ) ·λ

4The successful performance of a safety instrumented function by a SIS, or more precisely the series structure
(sensors, logic solvers and final elements) which performs a SIF is called a Safety Loop.
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able to reveal any flaws in the elements of SIS that are comprised in voted groups of koon struc-

tures with n-k elements having failures, because SIF 5 can still be performed using k elements

of the group. However, a functional test is equivalent to the proof test when there are no voted

groups in a safety loop and each subsystem has only one item to carry out the desired safety

function.

There are various important factors involved in the study of proof tests (analogous to di-

agnostic tests) which play a significant role in the calculation of PFDAvg, that accounts to the

availability of SIS. These factors comprise of:

Proof Test Coverage (PTC (θ)): "Fraction of dangerous undetected failures revealed during par-

tial test within one proof test interval" (Hauge et al., 2013). A proof test is always intended to re-

veal all dangerous undetected (DU) failure modes (left unveiled by diagnosis) of the item which

can prevent a safety function in a real demand situation. But in practice it is often not possi-

ble to conduct the test in a real demand situation (Partial Stroke Test (PST) is an option then6)

(Lundteigen and Rausand, 2008; Summers and Zachary, 2000) and hence some fraction of DU

failures may remain undetected after the proof test as well. Therefore a fraction value is as-

signed to the failures that are detected by a proof test which is called Proof Test Coverage (PTC).

The proof test coverage is 100% if test discloses all the desired failure modes that were decided,

otherwise this coverage fraction is < 100%. The contribution from PTC in calculation of PFDAvg

can be incorporated in two ways which is further discussed in Chapter 3.

Proof Test Interval: Proof tests are targeted to ensure continuity in the operation of a safety

function. Thus a SIF is needed to be checked regularly and within a decided interval. The de-

cision of the proof test interval is usually made in the overall planning phase of the IEC61508

(IEC61508, 2010) where decisions are made regarding maintenance strategies of SIS. The proof

test interval is not so small that it could be neglected. This interval of testing is usually denoted

by τ and a proof test is carried out at each nτ until the whole lifetime (T) of the item such that T

= nτ for some n ∈Z+. An illustration for this interval is given in Figure 2.3.

5SIF is the Safety Instrumented Function which is intended to be performed by concerned SIS for a specific EUC.
A SIS can have several SIFs to perform in case of demand. Such as, a level transmitter must detect first if liquid is
over danger threshold and simultaneously it should send the signal to logic unit.

6A partial test for the shutdown valves in industry where the safety function is tested just by moving the valves
partially not fully, maybe 20% or some other fraction because it is hazardous itself to build up a high pressure in the
pipeline to do a full proof test.
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Figure 2.3: Proof Test Interval, where a test is carried out at each nτ

The proof test interval has an important role in calculation of PFDAvg of a particular item.

Mean Test Time (MTT): The mean test time is the mean time spent to perform the proof tests

in entire lifetime of the item. The test time is typically less than one hour, but can also be signif-

icantly longer for some applications (Rausand, 2014). For long time of test, there is no method

suggested about how to incorporate the contribution from this factor in PFDAvg calculation in

IEC61508. Considering that EUC 7 is unsafe when the test is being performed, it counts in the

time for which SIS is not available. The PDS Data Handbook recognizes and mentions it as DTUT

(Downtime Unavailability of SIS during testing, maintenance and inspection time) (Hauge et al.,

2013), and this handbook also suggests a method to calculate this fraction of time elapsed dur-

ing the test and how to include this in calculations of PFDAvg of an item and some voted groups

but the results obtained are still not generalized. On the other hand, it is completely neglected

in the industry focused standards and if test time is sufficiently large, it will surely play a role in

system’s unavailability.

Mean Repair Time (MRT): When a DU failure is detected in an item, it is assumed that a repair

action is initiated immediately. There may or may not be any flaws detected in a proof test, so it

is not necessary that some time will be spent in repair after each proof test. Therefore, the MRT

is the mean time from which the failure is detected until this failure is fixed and item is put back

into function. In the diagnostic tests, the time between occurrence and detection of failure was

very small and hence negligible. But in proof tests, this time can be significantly large, so it has

to be taken into account for the calculations. Figure 2.4 below, illustrates the relation between

MTT and MRT:
7EUC is known as Equipment Under Control, for which a SIS is actually installed. The aim of SIS is to safeguard

the EUC under the operational condition so that there is no hazard to EUC in demand case.
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Figure 2.4: Test Time (TT) and Repair Time (RT) shown for one Proof Test and MTT and MRT
are the respective means of Test Times and Repair Times.

2.2.3 Partial Proof-Testing

The section above, explains well the proof-test (or full proof-test) which is planned to reveal all

the failures of an item. In this section the focus is on partial proof-test, which is a variation of

proof test that is planned to reveal only one or more specific types of pre-decided failure modes

in an item (Rausand, 2014). Further, a partial test can be carried out more frequent than the

proof tests in order to increase the reliability of SIS. Precisely, it can be said that the first thing

decided/planned is the failure modes which are desired to be replicated as the result of partial

proof-test and then the partial test of the item is carried out. In this way the partial test reveals

only a fraction of all the failure modes of an item and hence is named as partial proof-test.

The main objective of doing a partial test is to avoid any interruptions in the actual process

(for example, stop of production in an oil-industry) as the EUC needs to be shut down for ac-

tual/full proof tests. Therefore, instead of carrying out a full proof-test, it is better to carry out a

partial proof-test, without significantly disturbing the EUC.

Analogous to the proof tests, there are some factors which affect the quantifying process of

PFDAvg:

Partial Proof Test Coverage: "Percentage of intended DU Failures detected during further test-

ing (if any) between one partial test interval". Similar to the proof test coverage, there is a partial

test coverage as well. This coverage factor is the fraction of DU failures partial test successfully

reveals for which it is designed. If it replicates all the failures which it intends to investigate, it

has a 100% coverage otherwise <100%. It is seldom mentioned in literature as the main emphasis

is always laid on proof test coverage factor for one proof test interval.

Partial Test Interval: The partial test interval is obviously less than test interval τ for proof test.
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Therefore, a partial test interval can be any point of time between [0, τ] say t0 for example and

these are also regular tests which can/can not be carried out periodically (this means that if

there is a proof test each iτ, there will be a partial proof test of the item each i t0, for i ∈ N, in

case of periodic partial tests). There can be more than one partial tests between two proof tests

as well depending on test strategy employed. Hence, these are more frequent than proof tests

and play a remarkable role in increasing the reliability of SIS.

Mean Partial Repair Time (MPRT): The Mean Partial Repair Time (MPRT) has the same sense

as Mean Repair Time in the case of proof tests. It also contributes to the calculation of PFDAvg

related to the partial proof-test.

Mean Partial Repair Time (MPTT): A partial test will also take some time to be executed. This

time is said to be Mean Partial Test Time (MPTT). It can also be an influential factor for PFDAvg

calculations if taken into account.

2.3 Real Demands Serving As Tests

After all the distinct kinds of the test, there is a real life phenomenon which serves as a test for

the SIS and its each subsystem. This is called real demand for SIS. If there occurs a real demand

then it will verify the safety function and correct response of the safety loop of SIS. A demand

is real and more realistic than any proof, partial or diagnostic test. It can almost be considered

as equivalent to a functional test as it will also test the execution of the safety function but not

the proper functioning of each and every channel/item involved in voted groups of the sub-

systems. The sole difference between a functional test and a real demand is that, the former

can be planned and executed in accordance to what the testing team desires but the latter is an

unwanted situation that arises unexpectedly and is not desired to be confronted in any way.

Therefore, a real demand, inspite of being the most revealing event in case of dangerous

failures of SIS, is least desired scenario that any industry will ever wish to occur.
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2.4 Various Methods to Execute Tests

Testing of an item involves a large variety of factors that are important and affect the quality of

test. This section explains some of such factors that are connected to different aspects of the SIS

under operation and test conducted on it.

Automatic, Semi-Automatic and Manual Tests.

Automatic Test: Automatic test is a test which is normally programmed via a software into the

item itself. This kind of test needs no involvement of humans. The basic advantage of such kind

of tests is to avoid human errors caused while testing of the item. Diagnostic tests are example

of automatic tests.

Semi-Automatic Tests: As the name suggests these are the tests which have the involvement

of humans but to a limited extent. They include some manual actions but a part of them is also

automatic. For instance, assume that a test will be carried out if a switch is turned on manually

and rest of the process is automatic, thus this test will be a semi-automatic test.

Manual Tests: These type of tests are initiated as well as executed by humans only, i.e. there

is no involvement of any program or software in these.

Proof tests and partial proof tests are typically manual or semi-automatic tests.

Online and Offline Tests.

Online Tests: The test that is conducted while EUC is in operating phase8, is called an online

test.

Offline Tests: The test that is executed while EUC is not operating are called offline tests.

For such tests, the SIS needs to be isolated then proof tested and it is not safe to operate EUC

without any protection therefore, EUC is stopped and an offline test is performed.

A proof test may be online or offline depending upon the architectural design of EUC, the possi-

bilities available and consequences that follow in process of isolating the SIS associated with it.

Sometimes, an EUC is designed in such a way that it compliments and facilitates the testing and

repair procedures. Figure 2.5 is an illustration to this.

In normal operation, the process is protected by the shutdown valve, SDV, and the isolation

8Here it can not be said if SIS is operating because, Firstly, SIS is a passive system which protects the EUC and it
comes into operation under hazardous conditions only. Secondly, the EUC has to be shut down if the SIS associated
is not available because EUC is unprotected in that period of time. So the term online here connects to the state of
EUC not SIS.
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Figure 2.5: Valve Layout to facilitate Testing and Repair (Rausand, 2014).

valves IV1 and IV2 are in open position whereas the manual valve, MV is closed. But when a test

and repair is going on, the shutdown valve is isolated by closing both the isolation valves and

manual valve is opened to facilitate the flow and EUC continues the operation. This design does

not interrupt the process while testing and repair of SDV (Rausand, 2014).

2.5 Scheduling of Tests

Test scheduling is an important part of the testing process of a subsystem. There are many

practical issues connected to testing of a SIF as it is critical in view of the fact that it not being

available to perform, the concerned EUC will be unsafe.

Therefore, the testing of the subsystem of SIS is performed using different strategies. The

three widely adopted strategies of scheduling a test are: (i) Simultaneous Testing, (ii) Sequen-

tial Testing, and (iii) Staggered Testing.

• Simultaneous Testing: Simultaneous testing is a test schedule where all redundant chan-

nels of a subsystem in SIS are taken out of the function altogether at the time of test. In

this type of testing, the safety function remains unavailable until all channels are tested

and restored. This is an unacceptable criteria for many production companies as they

have to shutdown the EUC or run unsecured due to safety function not working in pe-

riod when test is going on. It is difficult to make a decision between either running EUC

without protection (increases risk factor) to continue production or to shutdown the EUC

(production loss). Loss of safety, production and a high risk factor involved in this kind

of testing makes it the least preferred option of testing. The figure 2.6 below shows an
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illustration to simultaneous testing of a 2oo3 subsystem of a safety loop.

Figure 2.6: Simultaneous testing redundant channels tested at the same time (at every τ).

• Sequential Testing: Sequential testing is the second type of testing schedule. In this type

of testing each item or channel in the subsystem are tested consecutively one after the

other. This means that if a "1oon" (a parallel) structure of the safety loop is tested, then

while testing one item, the other (n-1) are available to function if there arises a demand.

In this strategy, the safety function is available but is functioning in a degraded mode. It

gives better reliability than the simultaneous testing strategy. Consider, for example the

2oo3 voted group. While one item (or channel) of the group is under test then the other

two are available to function. In this specific case, they will not function in a degraded

mode if demanded but the subsystem of the loop is in degraded mode. This schedule has

an advantage over the simultaneous testing considering that the EUC does not need to be

shutdown and the production is not lost. The channel which is tested first is restored after

testing and repairing (if necessary), before taking out the next channel to test.

Mathematically, if proof test is at the beginning (or end)9 (Torres-Echeverría et al., 2009;

Čepin, 1995) of τ, then the first item is tested and restored at T1 = τ, and the second item

starts its test at time T2 = T1+ t0, third at time T3 = T2+ t0 (where t0 is the time taken

for testing and restoring the first item and is the same for each item) and so on, until all

the redundant items are tested. This type of testing is usually practiced in most of the

industries. Figure 2.7 shows the pattern of sequential testing.

9The same procedure can be done at the end of each proof test as well such that all the items finish the testing
process before start of the next proof test interval
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Figure 2.7: Sequential testing of redundant channels at the starting/end of each proof test τ.

• Staggered Testing: According to M.Čepin, "Staggered testing strategy is a strategy where

n redundant components or systems are tested in a way that every τ/n one component

or system is tested" (Čepin, 1995). In staggered testing the n redundant components are

tested with a time difference of τ/n (Torres-Echeverría et al., 2009). This is the most com-

mon staggering. It is clear from above that in staggered testing, the proof test interval is

divided into n equal parts, where n is the number of redundant items in the subsystem

we want to test. First of these n items is tested at τ and the last at τ+ (n −1)τ

n
, therefore

testing the next item at the time difference of τ/n10.

Figure 2.8: Staggered testing of n redundant channels at equal parts of the proof test interval τ.

This type of testing ensures the functioning of safety loop. The production and safety of

EUC are not affected during this testing schedule. It also increases the reliability of SIS

and is considered to be the best option (better than both simultaneous and sequential

10A new test starts at τ+ nτ

n
= 2τ
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testing) for testing the SIF. The effect of CCFs (common cause failures) is also reduced in

this testing strategy rather than sequential one, the reason being that different items are

tested by different testing teams (if CCFs were introduced by errors made by testing team).

Figure 2.8 presents the phenomenon of staggered testing.

2.6 Conclusion and Further Discussion

This chapter explains different testing procedures which apply to the testing of Safety Instru-

mented System (SIS). Testing of an item/component (or subsystem of safety loop) aims to find

the undetected failures of an item within a test interval. This detection of failures allows us to

find out the PFDAvg of the system.

There are three categories of tests that reveal the dangerous failures of SIF. Diagnostic tests

(the built-in tests) reveal the dangerous detected failures (DD) out of all dangerous failures. Usu-

ally, the contribution from these is neglected in the calculation of PFDAvg (because they are con-

sidered as safe failures11), but the knowledge of the numeric factors involved in diagnostic test-

ing help to better understand proof test and partial proof test procedures. It is also in some cases

included in the formulas when its contribution is non-negligible.

Proof tests and Partial proof tests reveal dangerous undetected (DU) failures left by diagnostic

tests.

Proof tests are complete tests which intend to reveal all the failure modes of every channel of

the subsystem. They play a vital role in calculation of system reliability. The factors influencing

proof tests such as proof test interval, MRT and proof test coverage are key factors to manipulate

in order to get the desired PFDAvg according to the SIL demanded.

Partial tests are a variant of proof tests. They are an option to enhance the reliability of SIF

and contribute to increasing the quality of regular proof tests (Jin and Rausand, 2014). They can

be carried out more frequently to assure the operating condition of system and reveal a part of

certain pre-decided dangerous failure modes to be revealed by them. Factors influencing partial

tests are explained.

Test scheduling is also a matter of concern because all the three strategies explained in this

11Safe failures because they get revealed by an item itself and an alarm is raised to inform the maintenance team,
so that they can decide if they want to switch the system in a safe state for that particular failure/set of failures.



CHAPTER 2. TESTING OF SIS 21

chapter, that is Sequential Testing, Simultaneous Testing and Staggered Testing introduce a

change in the interval of proof test for the subsystem of SIF. It is also of interest to know the

agenda of all these strategies as they affect system unavailability.12

A test may or may not be perfect test. Perfectness of a test has a direct relation with availabil-

ity/reliability analysis of the item/component. Next chapter enlightens this difference further

and defines the two concepts (perfect and imperfect tests) in general with a focus on proof tests.

The motive of the following chapter is to state clearly the conditions and explain different view-

points under which a test can be said perfect or imperfect.

12Unavailability and PFDAvg of a system are same things.



Chapter 3

Perfect and Imperfect (Partial) Proof Testing

The previous chapter introduces that testing1 of SIS can be both Perfect or Imperfect. Knowing

this fact is of great importance as the quality of a test affects the whole process of reliability

analysis of the system. There are various angles to look at this situation. The differentiation

between Perfect and Imperfect tests can be made based on any one or a combination of more

than one perspective mentioned in the section below.

3.1 Perfect, Imperfect or Partial?

The distinction between perfect and imperfect tests is easier to make and understand rather than

the one between an imperfect and a partial test. The former is much clear in a basic sense of

completeness of a test. If a test is complete (in all the ways mentioned below) and accomplishes

all the desires of testing the item, then it is a perfect test else it is an imperfect one. Whereas,

the situation involves several other factors in the latter case to differentiate. One has to consider

minute details of the entire process for concluding that a test is partial or imperfect. The bor-

derline between these two is blurred. Efforts have been made to clear this difference in the next

section of the chapter.

Some of the various points of consideration are as follows:

• Proof Test Coverage (PTC (θ)): The concept of proof test coverage has been introduced

in the previous chapter. If PTC = 100%, the test is a perfect test and if PTC < 100% the test is

1Refers to either full/partial depending on the context and section in which the word "Testing" is used.

22
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imperfect/partial test (Rausand, 2014). In other words, if the test detects all the dangerous

undetected failures (listed to be unveiled) within the item under testing time, then the test

is a perfect test. Otherwise it is an imperfect/partial test.

• End-to-End Test: Phenomenon related to this point is simple to understand. If the test

starts from input elements, one end and continues to the final elements other end then it

is a perfect test else it is an imperfect/partial test (ISA-TR84.00.03, 2002; NOG-070, 2004)

and (HSE, 2002). A simple illustration of an End-to-End test is shown in Figure 3.1 and

that of how it becomes a partial test is in Figure 3.2.

Figure 3.1: An End-to-End test/prefect Test.

Figure 3.2: The test is said to be partial/imperfect if elements are tested separately.

• Testing Circumstances: Another criterion to see the perfectness is, evaluating the actual

content of the testing situations. Reality check is of utmost importance as far as perfect-

ness of the test is considered. For example, consider testing of a gas detector. Usually, its

sensitivity is evaluated by letting some non-poisonous gas to flow at the very central de-

tection point. In addition, such trials are carried out in a small laboratory or room. This

kind of test does not verify if the same detector would be able to react in a same way under

the real demand situations, which will be very different in truth. Hence the test which is
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performed in such situation which is far away from the real demand can never be said as

a perfect test and is treated as an imperfect/partial one.

• Time Constraints: The time taken to test an item is a decisive factor when deciding if the

test is as perfect or imperfect and it also affects the PFDAvg calculation of the item (Hauge

et al., 2013). In some cases the item which has to be proof tested is a production critical

item 2(for example a shutdown valve). Therefore, for such an item, the test is desired to

finish as soon as possible to avoid production loss and hence the manufacturer does not

wish to spend too much time to test the item perfectly (Rausand, 2014). Consequently, the

item is tested on partial basis to inquire for some really critical failures instead of all the

dangerous undetected (DU) ones. Due to lack of time given to test the component, this

results in an imperfect/partial test of the component contrary to a perfect test.

3.2 Viewing Partial Test as an Imperfect Test

As mentioned in the previous section, the borderline between Partial and Imperfect proof tests

is not very much clear. But one thing can be said for sure about these two tests, the partial tests

are a subset of imperfect tests. However, in case of considering an End-to-End test it would be

sensitive to name it as a partial test rather than imperfect even if it is imperfect in the sense

of complete testing of SIS. Essentially, an imperfect test can be classified into two dimensions

(Rolén, 2007):

ä The test does not cover all possible failures - inadequate test method (i.e., test is designed for

detecting specific failures).

ä The test does not detect all the failures - unsuccessful test (i.e., designed as a full test but did

not reveal all failures).

The reasons for imperfect testing are related to five M-factors: method, machine, milieu (en-

vironment), man-power and material (Rolén, 2007). Though it is not possible to measure all

types of imperfectness entangled in the testing procedure but some for example, the test cov-

erage factor (Rausand, 2014; Hauge et al., 2013) and partial testing policy (Torres-Echeverría

2A production critical item is the one which when ceased, will result in the stop of production.
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et al., 2009) can be measured to make the reliability analysis more authentic. In order to iden-

tify the effects of imperfect testing, the notion of partial tests and proof test coverage factor (θ)

have been used. Many experiments have been carried out by different Reliability Engineers to

examine the effect of various factors involved in imperfect testing by making the use of par-

tial tests. One or another certain factor is selected and a testing model is designed to explore

its consequence on the PFDAvg of the item on which the test is implemented. Several models

which consider one or another factor (or factors) that bring in imperfectness in a test and eval-

uate its impact on the reliability of the component have been introduced. For instance, there

are models that use proof test coverage as a factor to estimate the grade of imperfectness of the

test (Jin and Rausand, 2014; Brissaud et al., 2012). Likewise there are some other models which

have been using the partial proof test strategies3 to optimize the test frequency of the proof tests

(Torres-Echeverría et al., 2009).

Actually, the reason of using a partial test instead of imperfect one lies in the fact that the

former is carried out usually in a planned and controlled environment which makes it easy to

conduct them and much more realistic than the latter one. It provides us with an estimate of

impact the factor leaves on the PFDAvg without involving so many difficult and unsure calcu-

lations in the test. Besides, there is a huge uncertainty involved in the study of imperfectness

as there are no evident means to recognize the grade of imperfectness in a test. The following

section presents some ways to model a partial test.

3.3 Modeling of a Partial Test

3.3.1 Partial Test modeled using Proof test Coverage (θ)

Consider a subsystem of SIS which is a koon system of components. In this type of model only

independent DU failures of components are treated. Both partial and proof tests are used to

detect DU-failures. One or more partial tests (at time ti ) can be carried out in a proof test

interval [0,τ] (as shown in figure 3.3 below). An "as good as new" condition can only be claimed

after a proof test, not after a partial test. Partial tests are able to detect only a specific failure

(particular type) of all DU-failures (Jin and Rausand, 2014; Brissaud et al., 2012).

3Namely, Simultaneous, Sequential and Staggered Testing Strategies.
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Figure 3.3: Partial tests at times ti ’s when the proof test is at τ.

Proof test coverage is defined as the fraction of dangerous undetected failures4 which is de-

tected through partial test. Mathematically, the proof test coverage (θ) will be:

θ = λD

λDU
⇒λD = θλDU (3.1)

where the subscript D in λD stands for the part of DU which is detected using the partial test

and will be named in the further text as type p failure in item. Analogously, there is the failure

rate λU which is the part of DU not detected by partial test said as type f failure in item. This

equation provides that the undetected failures can be written using PTC (θ) as,

λDU =λD +λU ⇒λDU = θλDU +λU

⇒λU =λDU −θλDU ⇒λU = (1−θ)λDU

(3.2)

Thus the failure rate of a single component is split into two parts and hence this componen-

t/item can be expressed as a series combination of two items having failure rates θλDU (Type p

failure in item) and (1−θ)λDU (Type f failure in item) as Figure 3.4 below illustrates.

Further, several other assumptions are also made before the calculation of PFDAvg starts:

• The channels in the koon system are identical and independent having a constant failure

rate λDU .

• All the tests are performed simultaneously for all the n channels.

4The contribution from the dangerous detected failures are neglected here, therefore λ (total failure rate) = λDU

instead of λ = λDD +λDU as safe state transition is assumed on detection of a dangerous failure. Furthermore, in
the case of partial test, DU failure rate can be written as a sum of DU’s detected and undetected in a partial test (i.e.,
λDU =λD +λU ).
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Figure 3.4: Series representation of an item with failure rates θλDU and (1−θ)λDU (Jin and Rau-
sand, 2014).

• A particular part of the failures (λD ) is revealed by partial tests and are repaired immedi-

ately. Others (λU ) are left for detection under proof test in which all the DU failures are

detected and the "as good as new" condition is retained.

• Any failures detected either in partial or proof tests are subjected to immediate repairs

and there is a negligible repairing time assumed.

• No contribution is considered from the test times or repair times when calculations for

PFDAvg are executed.

In consideration of above assumptions, an analysis is then performed reckoning the proof

test coverage θ and using either the Probability Conditioning and Approximation Model (Jin and

Rausand, 2014) or the Direct Calculation Model (Brissaud et al., 2012).

Probability Conditioning and Approximation Model

This model considers a random variable Nb , which indicates the number of Type f failures in the

system indicated by the suffix j (at time ti−1). These are undetectable by the partial test (i.e. with

the failure rate (1−θ)λDU ) such that j = 0,1,2,3, ....,n in a given koon structure. It is clear that

these are the only failures which will cause the system to fail in (ti−1, ti ] (if the value of j increases

from n −k) because all the failures of Type p will be detected and repaired immediately at ti−1.

Therefore, PFDAvg in the interval [0,τ] is equal to the average safety unavailability in this interval,

PFDAvg = 1

τ

∫ τ

0
A(t )d t = 1

τ

m∑
i=1

∫ ti

ti−1

A(t )d t (3.3)
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where m is the number of partial tests in one proof test interval [0,τ] and A(t) is the average

safety unavailability in (ti−1, ti ], given as,

A(t ) =
n∑

j=0
Pr(Nb = j |ti−1)A(t |Nb = j , ti−1)

for n ∈N
(3.4)

To understand equation 3.4 it is essential to look back into the roots of Probability Theory

and the law of total probability. Consider an event F = System Failure at ti−1 representing "a

system failure at the time ti−1", which corresponds to the A(t) at anytime t . Let another event

named B j = Pr(Having j = 1,2, ...,n number of Type f failures in subsystem at a given instant

ti−1) or it can also be written as B j = Pr(Nb = j |ti−1). So, B1,B2, ...,Bn form a set of "n" mutually

exclusive and exhaustive events with respect to event F , as Bi ∩B j = ;∀i 6= j and ∪n
j=0B j = Ω

(entire sample space). The law of total probability gives the Pr(F) at any time t as:

Pr(F) = P (F |B1)P (B1)+P (F |B2)P (B2)+ ...+P (F |Bn)P (Bn)

=
n∑

j=0
P (F |B j )P (B j )

(∗)

Adopting the compatible notation and substituting terms Pr(F), P(F|B j ) and P(B j ) with A(t ),

A(t |Nb = j , ti−1) and Pr(Nb = j |ti−1) in (∗) respectively, the desired equation 3.4 is obtained. In

this way, the use of law of total probability and conditioning events makes it easy to quantify the

A(t ) of the system at any instant of time t.

Now as per the assumptions, all channels are independent and identical, so the probability

of having j unrevealed failures follows a binomial distribution. Since the channels have con-

stant failure rates, the probability is

Pr(Nb=j|ti−1) =
(

n

j

)
(1−e−(1−θ)λDU ti−1 ) j (e−(1−θ)λDU ti−1 )n− j (3.5)

Again, the subsystem is a koon structure, hence the system is failed if j > n −k undetected

failures occur at ti−1 in the interval (ti−1, ti ] for i = 2,3, ...m, which gives:

A(t |Nb = j , ti−1) = 1 for j > n-k

Otherwise, if j ≤ n −k the koon system is reduced to a koo(n-j) system. This koo(n-j) struc-
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ture will fail when more than n − j −k of the items fail. Therefore, the unavailability of the new

koo(n-j) subsystem is equal to the unreliability function of this system, which is:

A(t |Nb = j , ti−1) = F koo(n− j )(t|ti−1) for j ≤ n-k

where F koo(n− j )(t|ti−1) is the unreliability function for a koo(n − j ) at time t , given it has

survived to time ti−1 (Jin and Rausand, 2014).

The PFDAvg in the interval (ti−1, ti ] is then,

PFDAv gi =
1

τi

∫ ti

ti−1

A(t )d t = 1

τi

∫ ti

ti−1

n∑
j=0

Pr (Nb = j |ti−1)A(t |Nb = j , ti−1)d t

= 1

τi

∫ ti

ti−1

(n−k∑
j=0

(
n

j

)
(1−e−(1−θ)λDU ti−1 ) j (e−(1−θ)λDU ti−1 )n− j F koo(n− j )(t |ti−1)

+
n∑

j=n−k+1

(
n

j

)
(1−e−(1−θ)λDU ti−1 ) j (e−(1−θ)λDU ti−1 )n− j

)
d t

=
n−k∑
j=0

(
n

j

)
1

τi

∫ ti

ti−1

(1−e−(1−θ)λDU ti−1 ) j (e−(1−θ)λDU ti−1 )n− j F koo(n− j )(t |ti−1)d t

+
n∑

j=n−k+1

(
n

j

)
1

τi

∫ ti

ti−1

(1−e−(1−θ)λDU ti−1 ) j (e−(1−θ)λDU ti−1 )n− j ·1d t

Given that the length of τi is ti -ti−1 and making the use of memoryless property of the expo-

nential and constant failure rates of components, the above equation becomes:

PFDAv gi =
n−k∑
j=0

(
n

j

)
(1−e−(1−θ)λDU ti−1 ) j (e−(1−θ)λDU ti−1 )n− j 1

τi

∫ τi

0
F koo(n− j )(t )d t

+
n∑

j=n−k+1

(
n

j

)
(1−e−(1−θ)λDU ti−1 ) j (e−(1−θ)λDU ti−1 )n− j

(3.6)

Now, taking the term F koo(n− j )(t |ti−1) from equation 3.6 and knowing the fact that there is

no test for this koon system within the interval (ti−1, ti ], the subsystem will be fully functioning

at ti−1, the term
1

τi

∫ τi

0
F koo(n− j )(t )d t in (ti−1, ti ] is calculated according to (Rausand, 2014) and

(Hauge et al., 2010) as:



CHAPTER 3. PERFECT AND IMPERFECT (PARTIAL) PROOF TESTING 30

1

τi

∫ τi

0
F koo(n− j )(t )d t ≈ (n − j )!((λDUτi )n− j−k+1)

(n − j −k +2)!(k −1)!
(3.7)

It is necessary to clarify the approximation obtained in equation 3.7 before continuing the rest

of calculations. It follows from the reliability block diagram approach which evolved simplified

formulas to find the PFDAvg defined in (Rausand and Høyland, 2004). This approach is also em-

ployed in the PDS Example Collection by (Hauge et al., 2010) and later on generalized in (Rau-

sand, 2014). Consider a koon structure and the aim is to find out its PFDAvg. A koon structure

fails when any n −k +1 of its channels fail. So, the subsystem with independent and identical

components having a constant failure rate λDU will have κ=
(

n

n −k +1

)
number of minimal cut

sets denoted as say C j , j = 1,2, ..,κ and each cut set will be of order n−k +1. The system will fail

even if any one (C j ) of its

(
n

n −k +1

)
minimal cut sets fail. Moreover, each minimal cut set can

be considered as a 1oo(n −k +1) parallel structure of channels. The survivor function R j (t ) of

this 1oo(n −k +1) structure is given as,

R j (t ) = 1− ∏
j∈C j

(1−e−λDU , j t )

where λDU , j is the failure rate of j’th channel in the minimal cut set C j . The failure distribution

function is therefore,

F j (t ) = 1−R j (t )

= 1−1+ ∏
j∈C j

(1−e−λDU , j t )

= ∏
j∈C j

(1−e−λDU , j t ) ≈ ∏
j∈C j

λDU , j t 5

Introducing this value of F j (t ) in PFDAvg of one minimal cut set C j , the outcome is,

PF D [1oo(n−k+1)]
Av g ,C j

= 1

τ

∫ τ

0
F j (t )d t

for a given test interval [0,τ]. This implies,

PF D [1oo(n−k+1)]
Av g ,C j

≈ ∏
j∈C j

λDU , j
1

τ

∫ τ

0
t n−k+1d t = (λDUτ)n−k+1

n −k +2
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for all the channels in C j having equal failure rate λDU . Finally, the value of PFDAvg for a koon

structure is,

PF Dkoon
Av g ≈

(
n

n −k +1

)
(λDUτ)n−k+1

n −k +2
= n!(λDUτ)n−k+1

(n −k +2)!(k −1)!

which is used in equation 3.7 for n = (n − j ) and τ= τi .

Inserting the result from 3.7 to 3.6, the outcome is:

PFDAv gi ≈
n−k∑
j=0

(
n

j

)
(1−e−(1−θ)λDU ti−1 ) j (e−(1−θ)λDU ti−1 )n− j (n − j )!((λDUτi )n− j−k+1)

(n − j −k +2)!(k −1)!

+
n∑

j=n−k+1

(
n

j

)
(1−e−(1−θ)λDU ti−1 ) j (e−(1−θ)λDU ti−1 )n− j

(3.8)

The equation above gives the PFDAvg for each partial test interval (ti−1, ti ]. So, to calculate

the average unavailability in the whole proof test interval [0,τ], we have

PFDAvg = 1

τ

m∑
i=1

∫ ti

ti−1

A(t )d t = 1

τ

m∑
i=1

τi PFDAv gi

≈ 1

τ

m∑
i=1

n−k∑
j=0

(
n

j

)
τi (1−e−(1−θ)λDU ti−1 ) j (e−(1−θ)λDU ti−1 )n− j (n − j )!((λDUτi )n− j−k+1)

(n − j −k +2)!(k −1)!

+ 1

τ

m∑
i=1

n∑
j=n−k+1

(
n

j

)
τi (1−e−(1−θ)λDU ti−1 ) j (e−(1−θ)λDU ti−1 )n− j

(3.9)

Moreover, when λDUτi and (1−θ)λDUτ are small enough (that is less than 0.01), the approx-

imations, (1− e−λDUτi ) ≈ λDUτi , (1− e−(1−θ)λDU ti−1 ) ≈ (1−θ)λDU ti−1 and (e−(1−θ)λDU ti−1 )n− j = 1

can be used. Then 3.8 and 3.9 become

PFDAv gi ≈
n−k∑
j=0

(
n

j

)
((1−θ)λDU ti−1) j (n − j )!((λDUτi )n− j−k+1)

(n − j −k +2)!(k −1)!

+
n∑

j=n−k+1

(
n

j

)
((1−θ)λDU ti−1) j

(3.10)
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PFDAvg ≈ 1

τ

m∑
i=1

n−k∑
j=0

(
n

j

)
τi ((1−θ)λDU ti−1) j (n − j )!((λDUτi )n− j−k+1)

(n − j −k +2)!(k −1)!

+ 1

τ

m∑
i=1

n∑
j=n−k+1

(
n

j

)
τi ((1−θ)λDU ti−1) j

(3.11)

Also, when the partial tests are executed periodically on fixed interval τ̃, i.e., τi = τ̃ for all

i , ti = i .τ̃ and τ̃= τ/m; the PFDAvg formula is simplified to

PFDAvg ≈ 1

m

m∑
i=1

n−k∑
j=0

(
n

j

)
((i −1)((1−θ)λDU )τ̃) j (n − j )!((λDU τ̃)n− j−k+1)

(n − j −k +2)!(k −1)!

+ 1

m

m∑
i=1

n∑
j=n−k+1

(
n

j

)
((i −1)((1−θ)λDU )τ̃) j

(3.12)

which finally gives the desired Average Probability of Failure on Demand for the assumed

koon subsystem making the use of partial proof test coverage as prime tool of the entire assess-

ment.

Direct Calculation Model

This is another model which uses the concept of partial proof test coverage to assess the PFDAvg

of a subsystem koon. Present model is introduced by Florent Brissaud, Anne Barros and Christophe

Bérenguer in the Journal of Risk and Reliability (Brissaud et al., 2012). A system in this model is

defined by the set {k,n,λDU }, where λDU is the failure rate of a single component. The test policy

can be defined either by set {θ, t1, t2, ..., tm} or by {θ,τ1,τ2, ...,τm}. The existing system is a koon

structure with partial tests at instants t1, t2, ..., tm and the lengths between two consequent tests

are τ1,τ2, ...,τm where θ like in the previous model is the proof test coverage factor and m is the

total number of tests in the full test time interval, that is (m-1) partial plus the mth test, which is

the full or proof test.

For each system component, a part with a failure rate θλDU can be revealed by any test i.e.,

either partial or full test and the part having failure rate (1-θ)λDU can only be tested by full

proof tests. Therefore, following the reliability rules from Rausand and Høyland (2004), the time

dependent availability of the component in interval (ti−1, ti ) is:
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Ae (t ) = e−θλDU .(t−ti−1).e−(1−θ)λDU .t

= eθλDU .ti−1 .e−λ.t

for ti−1 ≤ t < ti where i = 1,2, ...,m.

(3.13)

According to the assumed hypothesis, the time dependent unavailability of the system will fol-

low a binomial distribution, hence

A(t ) =
n∑

s=k

[(
n

s

)
.Ae (t )s .(1− Ae (t ))n−s

]
for ti−1 ≤ t < ti where i = 1,2, ...,m.

(3.14)

where s indicates the number of working components in the subsystem at any time point t .

A(t ) =
n∑

s=k

[(
n

s

)
.e s.θλDU .ti−1 .e−s.λDU .t .(1−eθλDU .ti−1 .e−λDU .t )n−s

]
for ti−1 ≤ t < ti where i = 1,2, ...,m.

(3.15)

Using the Newton’s binomial theorem the following result is obtained

A(t ) =
n∑

s=k

[(
n

s

)
.e s.θλDU .ti−1 .e−s.λDU .t .

n−s∑
l=0

[(
n − s

l

)
.(−1)n−s−l .

(
e(n−s−l )θλDU .ti−1 .e−(n−s−l )λDU .t

)]]
for ti−1 ≤ t < ti where i = 1,2, ...,m.

(3.16)

A(t ) =
n∑

s=k

n−s∑
l=0

[(
n

s

)
.

(
n − s

l

)
.(−1)n−s−l .e(n−l )θλDU .ti−1 .e−(n−l )λDU .t

]
for ti−1 ≤ t < ti where i = 1,2, ...,m.

(3.17)

Using Fubini’s theorem, the order of summation can be changed

A(t ) =
n−k∑
l=0

n−l∑
s=k

[(
n

s

)
.

(
n − s

l

)
.(−1)n−s−l .e(n−l )θλDU .ti−1 .e−(n−l )λDU .t

]
for ti−1 ≤ t < ti where i = 1,2, ...,m.

(3.18)

Then by putting x = n − l in 3.18,
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A(t ) =
n∑

x=k

x∑
s=k

[(
n

s

)(
n − s

n −x

)
.(−1)x−s .ex.θλDU .ti−1 .e−x.λDU .t

]
for ti−1 ≤ t < ti where i = 1,2, ...,m.

(3.19)

Using arithmetic manipulations and combination properties to simplify the expression in

equation 3.19

A(t ) =
n∑

x=k

x∑
s=k

[(
n

s

)(
n − s

n −x

)
x!

x!
.(−1)x−s .ex.θλDU .ti−1 .e−x.λDU .t

]
for ti−1 ≤ t < ti where i = 1,2, ...,m.

(3.20)

A(t ) =
n∑

x=k

x∑
s=k

[(
n

x

)(
x

s

)
.(−1)x−s .ex.θλDU .ti−1 .e−x.λDU .t

]
for ti−1 ≤ t < ti where i = 1,2, ...,m.

(3.21)

Ultimately, the following equation is obtained

A(t ) =
n∑

x=k

[
S(k,n, x).ex.θλDU .ti−1 .e−x.λDU .t ]

for ti−1 ≤ t < ti where i = 1,2, ...,m.

(3.22)

where

S(k,n, x) =
x∑

s=k

[(
n

x

)(
x

s

)
.(−1)x−s

]
for ti−1 ≤ t < ti , where i = 1,2, ...,m and x = k,k +1...,n.

(3.23)

Now making use of the result of equations 3.22 and 3.23 the time-dependent unavailability

of the system is therefore

PFD(t) = 1− A(t ) = 1−
n∑

x=k

[
S(k,n, x).ex.θλDU .ti−1 .e−x.λDU .t ]

for ti−1 ≤ t < ti where i = 1,2, ...,m.

(3.24)

Having all the results above and making use of equation 3.22, the average unavailability in

interval [ti−1, ti ) can be found as:
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PFDi = 1

τi

∫ ti

ti−1

PFD(t)dt = 1− 1

τi

∫ ti

ti−1

A(t)d t

= 1− 1

τi

∫ ti

ti−1

n∑
x=k

[
S(k,n, x).ex.θλDU .ti−1 .e−x.λDU .t ]d t

= 1− 1

τi

n∑
x=k

[
S(k,n, x).ex.θλDU .ti−1 .

e−xθλDU .ti−1 −e−xλDU .ti

x.λDU

]

= 1− 1

τi

n∑
x=k

[
S(k,n, x).ex.θλDU .ti−1 .e−x.λDU .ti−1 .

1−e−x.λDU .(ti−ti−1)

x.λDU

]

= 1−
n∑

x=k

[
S(k,n, x).e−x.(1−θ)λDU .ti−1 .

1−e−x.λDU .τi

x.λDU .τi

]

(3.25)

and the average unavailability in full proof test interval [0,τ] (with i = 1,2, ...,m partial tests in

[0,τ]) can be written on similar grounds as equation 3.25 , utilizing PFDi

PFDAv g = 1

τ

n∑
i=1

[
τi .PFDi

]
= 1

τ

n∑
i=1

[
τi −

n∑
x=k

[
S(k,n, x).e−x.(1−θ)λDU .ti−1 .

1−e−x.λDU .τi

x.λDU

]]

= 1

τ
.

(
τ−

n∑
i=1

n∑
x=k

[
S(k,n, x).e−x.(1−θ)λDU .ti−1 .

1−e−x.λDU .τi

x.λDU

])

= 1−
n∑

x=k

[
S(k,n, x).

n∑
i=1

[
e−x.(1−θ)λDU .ti−1 .

1−e−x.λDU .τi

x.λDU .τ

]]
(3.26)

In the case of periodic partial tests, with period τ̃= τ/m,τi = τ̃ and ti = i .τ̃ for i = 1, ...,m, the

equations 3.25 and 3.26 takes the following forms:

PFD(t ) = 1−
n∑

x=k

[
S(k,n, x).ex.θ.λDU .(i−1).τ̃.e−x.λDU .t

]
for (i −1).τ̃≤ t < i .τ̃ where i = 1,2, ...,m

(3.27)

PFDAv g = 1−
n∑

x=k

[
S(k,n, x).

1−e−x.λDU .τ̃

x.τ̃.λDU
.

1

m
.

m∑
i=1

[
e−x.(1−θ).λDU .(i−1).τ̃

]]
(3.28)

where 3.27 and 3.28 give PFDAvg for the case of periodic partial tests.

The models discussed above make a very practical use of the proof test coverage factor "θ"

and the rules of reliability theory to measure the effect of partial tests and their distribution on

the PFDAvg of the SIS subsystem. This coverage factor θ has a big importance in the Reliability

Analysis. As the standards like IEC61508 and IEC61511 have strict requirements for the SIL levels
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of the Safety-Critical Instruments used in the industry, the PFDAvg of the system needs to be

maintained at a certain limit declared for the desired purpose of SIS. It is therefore reasonable

to sometimes manipulate the partial tests and their frequency to preserve the PFDAvg within that

limit, as the other requirements need to be followed as per the standard rules.

Although both the models use same framework and assumptions to carry out the analyses,

there are still some diversities which isolate them from one another. Some of these contrasts are

discussed in table 3.1 below:

Table 3.1: Comparison Between above Two Models

Probability Conditioning and Approxima-

tion Model

Direct Calculation Model

1. The principles of probability theory and

rules of conditioning events demonstrate

the PFDAvg.

1. Algebraic manipulations and mathemat-

ical results with theorems are presented to

quantify PFDAvg accurately.

2. The analysis is built upon the calcula-

tion of Average Unavailability in each par-

tial test interval (ti−1, ti ].

2. This model quantifies Average Availabil-

ity in each partial test interval (ti−1, ti ] and

then builds up further.

3. An approximation is made (which is

true for certain assumptions only) using the

memoryless property of exponential distri-

bution at each and every step of the analy-

sis to simplify the numerical results so pro-

duced.

3. No approximations have been made in

the entire process of quantification and for-

mulas have been devised which give exact

numerical results.

4. Further analysis have been carried out to

include the effect from the Common Cause

Failures.

4. The Common Cause Failures have not

been given the due attention.
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5. A problem of getting an over conser-

vative result is confronted if the inequality

λDUτ and (1−θ)λDUτ ≤ 0.01 is not fulfilled

as per the requirement for approximating

the values of the exponential terms.

5. This model is free from any kind of ambi-

guity when it comes to the final result.

3.3.2 Partial Test Modeled Using Testing Strategies

A.C. Torres-Echeverría, S. Martorell and H.A. Thompson, suggest the use of different testing

strategies as a form of partial tests 6 to optimize the average unavailability of the safety system in

their article (Torres-Echeverría et al., 2009). This paper presents a new model for the quantifica-

tion of time-dependent and average probability of failure on demand (PFD(t) and PFDAvg) of SIS

1oon subsystem and demonstrates the integration of this PFD model into the multi-objective

optimization of proof testing policies of SIS. As this chapter concerns only quantification of

PFDAvg using the concept of partial test, so the optimization aspect is not focused here. A par-

tial test according to Torres-Echeverría et al. (2009) is defined as "testing of system components

at different times and frequencies or the testing of sub-sets of functions of single components." It

corresponds to the definition already stated about the partial test in Chapter 2, that if a test is

not an "end-to-end or integral" test that tests the entire safety loop at once, it is said to be a

partial test.

When a SIS is entitled for use in a process industry, the underlying aim to test this system is to

maintain its SIL level based on its average PFD. The lower PFDAvg corresponds to the better SIL

Level. IEC 61511 (IEC61511, 2003) states that the frequency of proof test "shall be decided using

the PFDAvg calculation" (Torres-Echeverría et al., 2009). Although an integral or end-to-end test

is considered to be the best policy of testing a SIS, but sometimes it is not possible to do so due

to practical obligations and hence partial tests are conducted on sub-system level. Moreover,

it is very convenient to manipulate the test frequency and strategy in case of partial test rather

6Partial test because the test is not an end-to-end test with respect to either system or sub-system level. The
components of a subsystem are also tested at different times with respect to the testing strategies, simultaneous,
sequential or staggered.
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than a proof test. 7 So a partial test can be tried out employing different testing strategies that of

simultaneous, sequential or staggered to check its effect on PFDAvg for the subsystem and then

on the system level. Finally, the alterations can be made such as using distinct test frequencies

combined together with diverse testing strategies to find out the best test policy 8 to optimize

the PFDAvg so that it is minimum for that sub-system followed by the system’s PFDAvg as well.

According to Torres-Echeverría et al. (2009), "it can be concluded that during optimization of

test frequency and strategy, partial test seems to be the most convenient for manipulation rather

than integral test."

It is important to specify some definitions that build up the basis to understand the model

presented in the article. Firstly, a Testing Policy includes the type of test, testing interval (Ti ,

which determines the frequency) and the test strategy (TS). Secondly, a Mean test cycle include

all the events between two consecutive tests of a single component of the subsystem. The com-

ponent goes through several states along the cycle: testing, repair and standby (either before

first test or between the two tests of same component). The figure below 3.5 illustrates a mean

life cycle.

Figure 3.5: Mean Test Cycle.

The time between two consecutive tests of same component is equivalent to Ti −Tt −Tr .

7The standards impose different restrictions on the frequency of proof test.
8For example, consider that staggered testing repeated for three times a year gives the minimum PFDAvg for

some koon structure, then this combination will be the best test policy for that particular subsystem.
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PFD Test Strategy and State-dependent model

The primitive thought of PFDAvg described in this paper has been adopted from the work done

by M. Čepin and B. Makvo in their paper "Probablilistic safety assessment improves surveillance

requirements in technical specifications" (Čepin and Mavko, 1997). Čepin and Mavko (1997) pro-

posed in their work that the mean unavailability of a periodically tested standby component has

to depend at least on test interval (Ti ), test duration time (Tt ), and failure rate (λ). They asserted

also that it is possible to include the probability per demand, mean time to repair, test over-

ride factor,9 and dependency on time to first test (TP ), which by shifting the tests of redundant

equipment allows modeling of testing strategies. This dependency on time to first test of the

component gave a clue to Torres-Echeverría et al. (2009), to model different testing strategies in

their research.

The variable which supports defining and determining the state of a component when adopt-

ing any of testing strategy is w , characterized as:

w = (t −TP )modTi (3.29)

where "mod" is the modulo operation (dividing remainder), which permits to reset w every time

a test interval is completed and a new test must be performed as w = 0 whenever the numerator

is a multiple of Ti .

Consider a 1oon subsystem of SIS. When this subsystem is proof tested, each of its item goes

through distinct states during a mean test cycle. Consequently, it adds on a diverse contribution

to its unavailability. These are formulated below:

(a.) Standby before first test: In a redundant 1oon structure, if item I is being tested and is out

of service, item II takes charge to serve the desired purpose. In this case, other n-2 com-

ponents are in a standby before the first test state. The unavailability contribution from ith

component in this stage will simply be the component unreliability.

9The test override factor specifies the portion of test duration time (Tt ) when component is unavailable. This
quantity will be a variable because the test time will not be the same each time a component will be tested. Some-
times it will have some flaws to be repaired (so there will be a repair time included also in test time) and at other
times it can pass the test without any failure.
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PFDi (t ) = 1−e−λt for t −TP ≤ 0 & 1 ≤ i ≤ n (3.30)

(b.) Testing: The component is taken out of service so it can be tested. It is assumed that it is

unavailable during the entire test time (Torres-Echeverría et al., 2009). The unavailability

contribution from ith component in this stage will simply be 1.

PFDi (t ) = 1

for {t −TP > 0 & 0 < w ≤ Tt }
(3.31)

(c.) Repair: This contribution to the PFD is due to the fact that the component is found to be in

a failed state after the test and has to be repaired (repair follows immediately after test). It

can happen in two possible ways. First, the component is failed at the time of its first test

TP and hence is under repair. Secondly, the component is working at the time Tt and fails

in the test duration and thus needs to be repaired. So the desired PFD(t) for ith component

is formulated as 3.32:

PFDi (t ) = (1−e−λTP )+ (e−λTP )(1−e−λ(w−Tt ))

for {0 < t −TP ≤ Ti & Tt < w < Tt +Tr },

when item undergoes the test and consequential repair for the first time, and

PFDi (t ) = (1−e−λ(Ti−Tt−Tr ) +e−λ(Ti−Tt−Tr )(1−e−λ(w−Tt ))

for {t −TP > Ti & Tt < w < Tt +Tr }, (3.32)

when item undergoes a repair between two sequential tests.

(d.) Standby between tests: The quantification is same as in the part (a.), i.e. for the first standby
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interval but with different exponent for exponential term.

PFDi (t ) = 1−e−λ(w−Tt−Tr )

for {t −TP > 0 & w > Tt +Tr }
(3.33)

Torres-Echeverría et al. (2009) have also included the input from Dangerous detected fail-

ures and Common cause failures as well but here those additions are disregarded to preserve,

compare and discuss the analogy in all the models described in this Chapter.

Quantification of the average PFD

With the method discussed in the section above, it is possible to calculate the PFDi (t ) for each

of the components of 1oon subsystem. Hence, the total time dependent PFD for the subssytem

can be found as the product of independent PFD’s of each component. It is expressed as:

PFDT OT (t ) =
n∏

i=1
PFDi (t ) (3.34)

whereas the average unavailability of a considered 1oon subsystem, PFDAvg, according to this

article can be calculated by finding the mean of values of PFDTOT evaluated at "s" discrete points

of time within the interval [0,T], where T is the lifetime of the subsystem. It can be represented

as:

PFDAvg =
∑s

i=0 PFDT OT (ti )

s
(3.35)

3.4 Conclusion and Further Discussion

This chapter focuses on the dissimilarity of perfect, imperfect and partial tests and how can an

imperfect test be modeled using the notion of partial test. First section explains clearly four

points forming the grounds for a perfect test being different from imperfect one. Second section

suggests that partial tests can be a subset of imperfect tests. A test can be imperfect if it is inade-

quate or unsuccessful. A partial test can be used in analyses process to take into account some

kind of imperfectness of a proof test but not all. For instance, the proof test coverage factor (θ)
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tells what amount of dangerous undetected failures test has revealed in a partial test. Third sec-

tion explains the work done in the field of representing imperfectness of a test using the essence

of partial test. Three dissimilar models are presented. First two of them use the phenomenon

of proof test coverage factor θ to measure the imperfectness in the test. Third model defines a

partial test as, "testing of system components at different times and frequencies or the testing of

sub-sets of functions of single components" and checks for the effect of testing strategies on the

PFDAvg of a 1oon subsystem.

To make a conclusion, consider models based on the PTC (θ). These tests can also be seen as

double partial because of two reasons. Firstly, they are not end-to-end tests and secondly, they

are partial in failure detection (i.e., not testing 100% of the dangerous detected failures which is

also the measure of imperfection). Both models use θ which quantifies the effect of the ratio of

detected to the total dangerous failures and PFDAvgi for ith interval in a proof test for each koon

structure in the system. Average unavailability for full proof test interval is calculated by adding

PFDAvgi for all partial test intervals. In the end, one can find the PFDAvg of the Safety Instru-

mented System by adding the independent PFDAvg’s of each koon structure involved in system.

The only difference between these two models is that the prior is an approximation to PFDAvg,

whereas the posterior gives the exact value for PFDAvg of any koon structure. The last model for-

mulated by Torres-Echeverría et al. (2009) is valid only for subsystems having a 1oon structure.

It has evolved from the notion of performing a partial/imperfect test by testing sub-structures

of the system independently. For 1oon substructure, one of the distinct test strategies (simulta-

neous, sequential or staggered) is employed. The time dependent PFD(t) for each component

is found at discrete time steps. Total time dependent PFDTOT(t) of this substructure is found by

taking the product of all the independent PFD(t)’s of the n components. Ultimately, the PFDAvg

of the 1oon subsystem is found by evaluating the average value of PFDTOT(ti) at discrete time

points from 0 ≤ t ≤ T & i = 1,2,3...,m, where T is the lifetime of system and ti are m discrete

time points in this interval.

Subsequent chapter reproduces and discusses the results for PFDAvg of a koon subsystem

from the models of Brissaud et al. (2012) and Jin and Rausand (2014) using MATLAB. As the

problem addressed in the last model is that of optimization, its results are sidelined in this doc-

ument. The move for next chapter is to model the partial/imperfect test situation by Petri Nets.



Chapter 4

Numerical Outputs

Previous chapter explains the notion of using a Partial Test to include the spirit of imperfectness

in quantification of PFDAvg to see its effect on the Average Unavailability of the Safety Instru-

mented System (SIS). This chapter aims to review the models presented in the last chapter and

to produce numerical outputs similar to the papers presented in Chapter 3 and also to explore

other available ways for example, fault tree analysis and petri nets technique to find out if they

are also compatible in achieving similar output.

This chapter includes the numerical results for the PFDAvg formulas discussed in Brissaud

et al. (2012) and Jin and Rausand (2014). The computation and analysis was done with the help

of MATLAB and GRIF (TOTALR&D, 2009b).

4.1 Outcomes form Different Formulas

Both of the authors, Jin and Rausand (2014) and Brissaud et al. (2012) use the same phenomenon

of considering the proof test coverage factor θ to introduce an essence of imperfectness in the

models. According to the case study given in both articles, there are three partial tests in a proof

test interval of one year. Both works use same structure and equal parameters to be plugged

in the different formulas of PFDAvg presented in last chapter. The values for PFDAvg are calcu-

lated using parameter based values given in table 4.1. Furthermore, a comparison of outputs is

also presented in tabular form in table 4.2 and results are thoroughly discussed in the following

section.

43
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Description Parameter Base Value

System Architecture koon 2oo5

Dangerous Undetected Failure Rate λDU 1.0 ·10−5

Proof Test Coverage Factor θ 0.50

Length between two periodic partial

tests

τ̃ 2190 hours

Proof Test Interval τ 8760 hours (i.e. 1 year)

Total Number of tests in one Proof Test

Interval [0,τ] that is, (m −1) partial tests

plus the mth full/proof test

m 4

Table 4.1: Parameters used for Calculations

First, to ensure readability, the equations used to determine PFDAvg in each paper are rewritten

below so that they can be easily recalled.

• The first equation is from Jin and Rausand (2014) that shows the approximated value of

PFDAvg, keeping the exponential functions in the formula.

PFDAvg = 1

τ

m∑
i=1

∫ ti

ti−1

A(t )d t = 1

τ

m∑
i=1

τi PFDAv gi

≈ 1

τ

m∑
i=1

n−k∑
j=0

(
n

j

)
τi (1−e−(1−θ)λDU ti−1 ) j (e−(1−θ)λDU ti−1 )n− j (n − j )!((λDUτi )n− j−k+1)

(n − j −k +2)!(k −1)!

+ 1

τ

m∑
i=1

n∑
j=n−k+1

(
n

j

)
τi (1−e−(1−θ)λDU ti−1 ) j (e−(1−θ)λDU ti−1 )n− j

(4.1)

• The second equation is again from Jin and Rausand (2014) which using further approx-

imations of the functions (1− e−λDUτi ) ≈ λDUτi , (1− e−(1−θ)λDU ti−1 ) ≈ (1−θ)λDU ti−1 and

(e−(1−θ)λDU ti−1 )n− j = 1, when λDUτi and (1−θ)λDUτ are small enough (here, the phrase

"small enough" corresponds to being less than 0.01). Also, when the partial tests are con-

ducted periodically on fixed interval τ̃, i.e., τi = τ̃ for all i , ti = i .τ̃ and τ̃= τ/m; the result-
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ing PFDAvg formula is simplified to:

PFDAvg ≈ 1

m

m∑
i=1

n−k∑
j=0

(
n

j

)
((i −1)((1−θ)λDU )τ̃) j (n − j )!((λDU τ̃)n− j−k+1)

(n − j −k +2)!(k −1)!

+ 1

m

m∑
i=1

n∑
j=n−k+1

(
n

j

)
((i −1)((1−θ)λDU )τ̃) j

(4.2)

• The third and fourth equations are outcomes of investigation done by Brissaud et al. (2012).

Basic mathematical theorems and algebraic manipulations are used instead of approxi-

mations to acquire the exact value of both Time - Dependent (PFD(t)) and average un-

availability (PFDAvg). The formula derived is hence accurate with no further limitations

than just of the model’s. Formulas deduced are presented below:

PFD(t ) = 1−
n∑

x=k

[
S(k,n, x).ex.θ.λDU .(i−1).τ̃.e−x.λDU .t

]
for (i −1).τ̃≤ t < i .τ̃ where i = 1,2, ...,m

(4.3)

PFDAv g = 1−
n∑

x=k

[
S(k,n, x).

1−e−x.λDU .τ̃

x.τ̃.λDU
.

1

m
.

m∑
i=1

[
e−x.(1−θ).λDU .(i−1).τ̃

]]
(4.4)

where both the equations 4.3 and 4.4 stands for the case of periodic partial tests.

Table 4.2 displays results achieved by implementing the above formulas into MATLAB codes and

also those from the original papers.

Result Jin and Rausand

(2014) Equation

4.1

Jin and Rausand

(2014) Equation

4.2

Brissaud et al.

(2012) Equation

4.4

PFDAvg calculated in Au-

thentic Articles

6.73×10−6 7.44×10−6 6.61×10−6

Outcomes for PFDAvg at-

tained through MATLAB

6.7290×10−6 7.4651×10−6 6.6066×10−6

Table 4.2: Outcomes for PFDAvg from different equations
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Table 4.2 shows results from equations 4.1, 4.2 and 4.4 only because the formula in equa-

tion 4.3 gives the Time-dependent and continuously changing value for PFD which generates

a continuous curve representing PFD(t) for each value of time "t" for (i − 1)τ̃ ≤ t < i τ̃ where

τ̃ = 2190 and i = 1,2, ...,m. The figure 4.1 below is the consequent graph of PFD(t) from equa-

tion 4.3.

Figure 4.1: Time-dependent PFD(t) as a function of Time(t)

When implemented in MATLAB, the resulting graph of equation 4.3 displays breaks at the

end points of each sub-interval, that is on every (i − 1)τ̃ and i τ̃ in [0,τ] for i = 1,...,m, τ = 8760

and τ̃= 2190.
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4.2 Discussion of Results

Now, by observing different conclusions for PFDAvg found with respect to distinct formulas, it is

reasonable to question Why do actually these results vary? The reason for this deviation does not

lie in the model assumptions as they are the same for both the models. This contrast is observed

due to the technique and mathematical approach which is taken to proceed when finding the

PFDAvg formula.

Brissaud et al. (2012) used a complete mathematical approach to derive an exact formula.

Their technique is straightforward and easy to understand. This formula will function for each

and every koon structure with any parameter values only if it satisfies the basic model assump-

tions. Whereas, the work done by Jin and Rausand (2014) includes further approximations in

addition to the assumptions made in underlying model which makes the result more conser-

vative. From table 4.2, equation 4.1 gives 6.73×10−6 as value of PFDAvg and by equation 4.2 it

is 7.44×10−6, when in fact this value should be exactly equal to 6.61×10−6 from equation 4.4.

This shows that the first approximation made by Jin and Rausand (2014) is still close to Brissaud

et al. (2012), but another approximation does not conform here very well as the conditions are

not satisfied (because in this case, λDU τ̃≈ 0.0219 and (1−θ)λDU τ̃≈ 0.01095 (both greater than

0.01)) and hence approximation in equation 4.2 gives a relatively high value for PFDAvg. The sec-

ond row in the table 4.2 shows the values achieved by implementing the formulas into MATLAB.

It can be seen that these correspond very well for each equation.

Coming to the PFD(t) graph, it is a discontinuous curve and has breaks at the end points

of each sub-interval, [0,i τ̃], where i = 1,2,3,4 and τ̃ = 2190. The curve in blue shows time-

dependent PFD of the subsystem. A mark in red displays the maximum value of PFD at the

end of one year which is 3.857×10−5 and the green line shows the average value PFDAvg of PFD

during one proof test interval of 8760 hours (i.e. 1 year). All these values confirm the outputs

from Brissaud et al. (2012).

4.3 Verification using Software GRIF (TOTALR&D, 2009b)

The software GRIF (TOTALR&D, 2009b) is developed by Research & Development Team of the

leading French oil and gas company, TOTAL. A demonstration version of this software can be
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downloaded from http://grif-workshop.com/downloads/ (TOTALR&D, 2009a). This pro-

gram is specially developed for working within the field of Reliability Engineering. It has various

modules which can be used to model any type of SIS (safety instrumented system) itself or any

of it’s sub-system ("koon" structure). It is a very useful and easy tool to do Monte Carlo Simula-

tions which is a prior requirement in analyzing many complex system cases in Reliability. It also

has a segment for constructing Markov Chains and many other techniques used to study Safety

Systems such as: Reliability Block Diagrams, Petri Nets, Safety Integrity Level Evaluation tools

and more.

Figure 4.2: Fault Tree for a 2oo5 structure drawn in GRIF Fault Tree Module.

In addition to MATLAB, the result for the above numerical case is also verified by the Fault

Tree module of GRIF Software. Apparently, it also gave the same result for PFDAvg and PFDmax

values. A demonstration of a fault tree graph in Fault Tree segment of present 2oo5 structure is

given in the figure 4.2. The curve of PFD(t) (time-dependent PFD), observed using GRIF is also

http://grif-workshop.com/downloads/
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exactly similar as that presented by MATLAB, and is shown in figure 4.3:

Figure 4.3: Curve showing the time-dependent, average and maximum values for PFD over
[0,τ(8760)].

All the methods mentioned above can be used to quantify the value of PFDAvg but each of

them has it’s own benefits and limitations. Use of GRIF software is also suggested which makes

the reliability world a bit easier to visualize and work with. Next section presents the idea of

using Petri Nets to view the same structure and try to validate the use of Petri Nets to quantify

PFDAvg, moving a step ahead in achieving one of the aims of this thesis of verifying, "If Petri

nets can be used to model these kind of problems or not and if it is a reliable tool to get desired

results?"

4.4 Petri Nets: A Brief Introduction

Petri Nets were introduced in 1962 by Dr. Carl Adam Petri (Petri, 1962). The basic purpose of

evolution of Petri Nets was to be able to represent, visualize and analyze the working of Concur-



CHAPTER 4. NUMERICAL OUTPUTS 50

rent Systems. Petri Nets is a well defined combination of mathematical theory with a graphical

representation of dynamic behavior of the system (Wang, 2007). This combination has caused

Petri Nets to be so popular and successful. Hence, it helps to visualize the working of Safety

Instrumented Systems also. Using petri nets the long-term behavior of a SIS can be easily seen

as a stochastic process and simulations are easily made for the respective system under consid-

eration. In this thesis, Petri Nets are used first to verify if the stochasticity/dynamics of SIS are

preserved by using petri nets and we can approximate the system unavailability (PFDAvg). Sec-

ondly, to carry over the analysis for the case study example (Case Study of a 1oo2 system worked

out in the next chapter.). The formal definition of Petri Nets is: "A Petri net is a graphical tool for

the description and analysis of concurrent processes which arise in systems with many compo-

nents (distributed systems)" (Petri and Reisig, 2008). The basic nodes in Petri nets are: places,

transitions and directed arcs. All petri net models work according to the interaction between

these three elements. Places in a PN 1 give information about the local state or condition and

transitions are used to model local events (Rausand, 2014). Directed arcs go either from a place

to a transition or from a transition to a place, never between places and transitions (Wikipedia,

2015). Arcs are further classified in two categories namely test arcs and inhibitor arcs, but the

scope of this thesis only considers test arcs so this classification is not clarified here. Another

basic entry in any petri net is tokens. Tokens are the elements which make a petri net dynamic

since they are only movable items in the whole net. A petri net without any token is also called

"empty".

Graphically, places are drawn as circles, transitions as bars and directed arcs as arrows. A

place from which an arc is initiated to a transition is called an input place for that arc (/input arc

for transition) and the place to which an arc is directed by the transition is named as output place

for the arc (/output arc for transition). Each arc carries a weight which indicates the number of

tokens it can take-out/put-in from input/output places when the respective transition is fired. If

the weight of an arc is 1, it is usually not presented in the graph else-wise corresponding weight

is displayed with each arc in the diagram. An illustration of a simple PN is given in figure 4.4. The

figure displays an empty PN with two places and one transition, where no place has any token

and each arc has a weight of 1 token. Tokens are displayed as small black dots in specific places.

1PN will be used as an acronym for Petri Nets now and then.
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Figure 4.5 shows a PN with 2 tokens in place 1, where the weight of input arc for transition 1 is 2.

The number of tokens distributed by arcs with different weights need not to be equal, that is, an

arc with weight 2 can take 2 tokens from one place and will only deposit one token to the output

place if output arc has weight 1.

Figure 4.4: An empty Petri Net drawn in GRIF.

Figure 4.5: A Petri Net with tokens.

4.4.1 Enabling, Validation and Firing of a Transition

In PN the main idea one has to really understand is the phenomenon of when a transition be-

comes enabled, validated and when it is actually fired. To make the system dynamics work in

a right order, it is very important to keep the right track of this phenomenon. These points are

described below briefly:

• Enabling: A transition is enabled if and only if input place of the directed arc to that tran-

sition has a number of tokens which are equal or greater than the weight of that arc. The

following depiction 4.6 clarifies the situation:

• Validation: In a PN it is very important to make sure that the system dynamics are exe-

cuted in a right order. To do that, sometimes it becomes necessary to assign a few con-
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(a) Transition1 not enabled. (b) Transition1 is enabled.

Figure 4.6: In figure 4.6a Transition1 is not enabled whereas in figure 4.6b it is enabled.

ditions on some specific transitions. These assertions are called guards that stop a tran-

sition to be fired unless all the conditions/guards are satisfied. Once all the guards asso-

ciated with a specific transition are fulfilled, it is validated. Also, it is possible to have a

transition which is enabled but not validated.

For example, from figure 4.7 it can be seen that transition2 has a condition associated to

place1. When the simulation is started, the following algorithm is adopted:

– Transition1 is enabled and validated at first, so it is executed.

– The software checks the conditions for both transactions and finds out that both

Transaction1 and Transaction2 stand enabled and valid.

– The choice will be made at random for which transition is executed.

– If Transition1 is executed again, Transition2 is left invalid (because Place1 is empty
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Figure 4.7: Validity of a Transition.

now with no tokens left).

– If Transition2 is executed, then both the transitions will remain enabled and valid (as

Place1 will have 2 tokens again so satisfying both transitions).

• Firing a Transition: A transition is fired/executed when it is both enabled and validated.

This is the only rule for firing a transition. If even one of the above conditions are not

satisfied, the transition can not be fired.

In this way a stochastic process is run via a Petri Net and many simulations are carried out to find

out the desired outputs. The wanted result (in this case it will be PFDAvg) is defined in the form

of variables which consider certain conditions to get a value after each simulation/realization.

Afterwards there is calculated the long-run probability of the whole system being in a particular

state.
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4.4.2 Evaluating PFDAvg of 2oo5 system by Petri Nets

Petri Nets is a powerful tool to model any system’s dynamics and visualize various states of a SIS.

Therefore, to confirm the application of Petri Nets in modeling a SIS, the 2oo5 system consid-

ered until now was established through Petri Nets module of GRIF (TOTALR&D, 2009a) software.

A demonstration of how this 2oo5 system was modeled is shown as figure 4.8. After finalizing

the design, simulations were done. The behavior of various structures during simulations can

be understood as follows:

• Component: The structure inside the red box in figure 4.8 denotes a component/item of

system. A token in Pl17 indicates that the component is working. There are two transi-

tions FTFailure_5 and PTFailure_5 connected to Pl17 marking that the component can

have a failure either detectable by the full Proof test (with a failure rate (1− θ)λDU ) or

detectable by a Partial test (with a failure rate θλDU ). To ensure that the components are

repaired after having either of the 2 failures, the returning transitions have been assigned

relevant guards. These guards cross check the state of structures in blue and green boxes

respectively. These guards check if the proof/partial tests are active, then the token must

return to Pl17 before the proof/partial tests end.

The same phenomenon as above is followed by the rest four similar structures in the figure

4.8 which are outlined by a brown box.

• Full/Proof Test: The structure inside the blue box in figure 4.8 indicates the operation

of a full/proof test. A token in FTest shows that there is no proof test going on but when

the delay in transition FTon is completed, a proof test is triggered and token is moved to

Pl5. When the proof/full test is over, the guards of transition FToff confirm that all the

components having failures detectable through proof test are sorted and the components

return to the working state again.

• Partial Test: The structure inside the green box in figure 4.8 displays the working of a par-

tial test. A token in PTest shows that there is no partial test going on but when the delay in

transition PTon is completed, a partial test is initiated and token is delivered to Pl7. When

the partial test is finished, the guards of transition PToff affirms that all components hav-
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Figure 4.8: Petri Net drawn for a 2oo5 system in GRIF.
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ing failures detectable through a partial test are fixed and the components return to the

working state.

Results from PN Simulations and Discussion

A separate variable was defined to calculate PFDAvg from this PN as the average probability of

not having a token in any four places out of 1, 8, 11, 14 and 17 (that is probability of having 4

failures out of 5 components). Results achieved from Monte Carlo simulations accomplished in

Petri Net module of GRIF software are presented in a table below:

Number of Simula-

tions

Value of PFDAvg Confidence Interval

(Lower)

Confidence Interval

(Upper)

10000 0 0 0

100000 3.59 ·10−3 −2.59 ·10−7 7.44 ·10−6

1 Million 5.30 ·10−6 3.59 ·10−6 7.02 ·10−6

3 Million 6.95 ·10−6 5.80 ·10−6 8.10 ·10−6

3.5 Million 6.76 ·10−6 5.71 ·10−6 7.80 ·10−6

3.9 Million 6.71 ·10−6 5.73 ·10−6 7.68 ·10−6

4 Million 6.65 ·10−6 5.69 ·10−6 7.61 ·10−6

4 Million 25 Thousand 6.62 ·10−6 5.67 ·10−6 7.57 ·10−6

4 Million 50 Thousand 6.58 ·10−6 5.63 ·10−6 7.53 ·10−6

4.1 Million 6.56 ·10−6 5.62 ·10−6 7.50 ·10−6

5 Million 6.14 ·10−6 5.33 ·10−6 6.96 ·10−6

10 Million 6.18 ·10−6 5.56 ·10−6 6.79 ·10−6

Table 4.3: Table showing resulting value of PFDAvg from simulations

From table 4.3 above, it is evident that the value of PFDAvg approaches quite near to the actual

value 6.60·10−6 when the number of simulations is around 4 Million. But as the table also shows,

if the number of simulations is further increased, this value does not seem to stabilize and the

Monte-Carlo simulations are not converging to the actual value. The same can be observed by

taking a look at the confidence interval (CI) given by each number of simulations. If a simulation
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process converges or is probable to converge, the confidence interval tends to get smaller and

upper and lower bounds of CI get closer as the number of simulations increase. But that is not

the case here, the lower and upper bounds of CI’s in each case do not come closer. However, if

the case of getting 4 items failed out of 5 items is considered, then it is also a rare event. This is a

common problem of a simulation process that it can not actually trace such rare events so easily.

That is why it is also clear from table 4.3 that first 10000 simulations display the value of PFDAvg

as 0, that is the random process does not capture any failures in the first 10000 simulations

which in turn affects the main PFDAvg.

Though the approximation achieved by the simulation process is not very accurate, yet it can

not be considered as a bad approximation. To verify this statement, two proofs can be seen from

the table and explanation above. Primarily, in each case the CI contains real value of the PFDAvg

(6.60 ·10−6) observed as the result form (Brissaud et al., 2012) and (Jin and Rausand, 2014). Sec-

ondly, being a rare event it is obvious that the process takes a long time to really converge to

a value and it is also possible that number of iterations is yet to be increased to see the actual

behavior of the process (which is not done here due to time limitations). So, it is reasonable to

believe that the approximation is justified and is not completely wrong. However, according to

table 4.3, this process can be said to converge around 6.15 ·10−6 approximately.

4.5 Conclusion and Further Discussion

This chapter aimed at presenting and discussing the numerical outputs produced from calculat-

ing PFDAvg by using different formulas and techniques. Sections 4.1 and 4.2 display and discuss

thoroughly the results from original papers and MATLAB. A comparison of these outputs is also

displayed in 4.2 for clarification. In section 4.3 an illustration (by drawing a fault tree using fault

tree module in GRIF (TOTALR&D, 2009b)) of the same 2oo5 system verifies the results obtained

in previous sections.

The concept of Petri Nets and its fundamentals are made familiar to the reader and its capa-

bility of modeling stochastic processes is explained in section 4.4. This section clarifies the basic

concepts of PN’s as well as showing how 2oo5 system was modeled using a Petri Net and what

were the results so observed. Also, from the discussion done in that section, it is established that
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Petri Net is a useful tool to model a SIS’s dynamics.

In the next chapter, an effort is made to suggest a model that aspires to figure out the con-

tribution of imperfect testing of SIS on PFDAvg of the system. To do this, the mean time taken to

carry a partial test is added into the PFDAvg formula and proof test coverage factor (θ) is consid-

ered to be a linear function of this mean partial test time. A 1oo2 system is used to make things

easier and understandable. Again, tools such as petri nets and MATLAB simulations are used to

confirm analytical results achieved for the system (using MATLAB Code).



Chapter 5

Modeling Imperfect Tests using Mean

Partial Test Time (MPTT)

Imperfect testing of Safety Instrumented Systems (SIS) is one of the main causes of uncertainty

experienced in finding system unavailability in Reliability Engineering. Due to this reason, im-

perfect testing is an interesting aspect (regarding uncertainty analysis) to investigate further as it

contributes to the system unavailability. Hence, if the testing process can be evaluated or made

close to perfect somehow, then this uncertainty could be reduced. Therefore, imperfect tests

are looked at closely in the present chapter. An attempt has been made to figure out and pro-

pose a possible model that can incorporate the contribution from imperfect testing analytically

in PFDAvg formula using a simple approach. As already explained in former chapters, a test can

be termed as imperfect because of either any one or a combination of the following reasons:

Z A random event that occurs during testing of item (change in any of 5 M-factors mentioned

on 3).

Z Some hidden root failures which can not be identified even by a full proof test (unsuccessful

test (Rolén, 2007)).

Z Test/Inspection practices which are different from real demand situations (testing item in

circumstances other than real demand).

59
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It is however very difficult to control the actual situations and circumstances to make a test

really perfect, but some of the criteria can still be controlled for improving a test’s quality. For

example, the time taken to conduct a test can be really helpful to decide the quality of a test.

Thus Mean Test Time, that is mean time taken to test the item during a proof test interval seems

to be a criteria which can be examined. But here the focus is laid on partial tests rather than

proof test considering that a partial test is better than it will obviously increase the quality of

failure detection for Full/Proof test and one can also think of postponing actual full/proof test.

So, in this chapter Mean Partial Test Time (MPTT) 1 and Proof Test Coverage Factor (θ) are put

together to study the effect of increased test time on the unavailability of SIS. The quantitative

results are achieved using MATLAB codes and ‘Petri Nets are tested to satisfy the same. An effort

has also been made to do some uncertainty analysis of model assumptions and working using

MATLAB simulations.

5.1 Suggested Model

It is usually assumed that the contribution from the testing time in average unavailability is neg-

ligible. It seems to be a reasonable assumption which is clarified later in subsection 5.2.1 of

this chapter. But for suggesting a model, to calculate input coming from imperfect testing in

the unavailability of the system, the mean time taken to conduct partial tests (within one proof

test interval), that is Mean Partial test Time (MPTT) is used. Proof test coverage factor (θ) is as-

sumed to be a linear function of MPTT such that there exists a positive correlation between θ

and MPTT (i.e., increasing MPTT increases θ and decreasing MPTT decreases θ). Practically,

one can deduce and should expect from the relation above that PFDAvg will be negatively cor-

related with both MPTT and θ (i.e., increasing MPTT and θ decreases PFDAvg and decreasing

MPTT and θ increases PFDAvg). Using this relation gives an insight about how test time can be

used to increase the quality of testing an item. The following subsections explain the suggested

model and its specifications in detail.

1Mean Partial Test Time (MPTT) refers to the time taken to test an item at each partial test during one proof/full
test interval.
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5.1.1 Model Assumptions

Whenever, there is a discussion about modeling any physical phenomenon to evaluate or calcu-

late something, prior concern of an analyst are situations which validate the use of that partic-

ular model exactly. So, for every model in statistical analysis there are some assumptions which

are prerequisites to carry out an analysis using that model. The assumptions of this model are

just same as that mentioned in the book written by Marvin Rausand, "Realiability of Safety Crit-

ical Systems: Theory and Applications" (Rausand, 2014) and in the paper of Marvin Rausand

and Hui Jin (Jin and Rausand, 2014). Yet for the sake of reader’s comfort, before presenting the

possible model, the model assumptions are listed below:

General Assumptions:

• The lifetime t of an item/component is exponentially distributed with a constant fail-

ure rate λDU .

• All the channels/items in the koon structure are identical and independent and each

channel has a constant Dangerous Undetected(DU) failure rate λDU .

• Each item/channel can have two types of failures that is, either detectable by partial

tests or by full tests, where the proof test coverage factor is (θ). So, the failure rate

λDU can be split into two types, type p failures with rate θλDU revealed in partial

tests and type f failures with rate (1−θ)λDU revealed in full tests.

• All the items are completely functioning at time t = 0.

• In a proof test interval τ, m periodic partial tests are performed. The partial tests are

conducted at the times i · τ̃, where i = 1,2,3, ...,m and τ̃ = τ/m. First m −1 tests are

partial whereas last mth test will be the full/proof test.

• Type f failure will not at all be affected by partial test.

• When a type p or type f failure occurs, the channel is in a dangerously failed state.

• The full/proof test is considered (assumed) to be a perfect test which reveals all failure

modes and the system is restored to a fully functional state after the proof test (as-

good-as-new).
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Model Specific Assumptions:

• Partial tests are periodic and are performed at equal intervals of time.

• Unlike the industry practices, here it is assumed that all the items/components of

the koon system are tested simultaneously rather than sequentially.

• Mean Partial Test Time (MPTT) will contribute to system’s average unavailability (PFDAvg)

only if any of the items have a partial test detectable failure at the time of partial test,

not otherwise. It is because of the approach used here to incorporate input from

MPTT is of kind that it treats test time as repair time in PFDAvg formula 2.

• The PFDAvg formula (for koon structure) suggested in the paper of Marvin Rausand

and Hui Jin (Jin and Rausand, 2014) is followed.

• The formula mentioned above is augmented by the contribution from MPTT using

an analogous approach to the one in Marvin’s book (Rausand, 2014) for including

contribution from Mean Repair Time and Mean Test Time in PFDAvg (average un-

availability). 3

5.1.2 Data Table: Values of Parameters

For analytical results, the parameters connected to the system structure and other important

data values should be decided first. Here a 1oo2 system of HIPPS 4 (main valve including ac-

tuator) is considered. These valves are final elements for a HIPPS safety instrumented system.

Table 5.1 below displays the values of all parameters needed to augment the PFDAvg formula:

Description Parameter Base Value

System Architecture koon 1oo2 (HIPPS Main valves)

Dangerous Undetected Failure

Rate

λDU 1.3 · 10−6, taken from PDS Data

Handbook (Hauge and Håbrekke,

2013)

2But this assumption will not follow in case of Monte-Carlo simulations done in MATLAB.
3The approach is described in Chapter 8, Section 8.3.7 (Non-Negligible Repair Time) and Section 8.3.8 (Non-

Negligible Test Time).
4High Integrity Pressure Protection System used in SUBSEA (IEC61508, 2010).
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Constant to be multiplied by

MPTT

a 1/60

Mean Partial Test Time MPTT 15 minutes or 30 minutes (Two

cases are studied)

Proof Test Coverage Factor θ a ·MPTT (It will also be either 25%

or 50% w.r.t. MPTT being 15 min-

utes or 30 minutes)

Interval between two periodic Par-

tial tests

τ̃ 2190 hours

Proof/Full test Interval τ 8760 hours (i.e. 1 year)

Total Number of tests in one Proof

Test Interval [0,τ] that is, (m −
1) partial tests plus the mth ful-

l/proof test

m 4

Table 5.1: Parameter Values used for Calculations

5.1.3 Analytical Outlook

Motive of this section is to explain how the input from MPTT is augmented in the PFDAvg for-

mula. As described in model specific assumptions, analytically MPTT will play the same role

as mean repair time in PFDAvg formula. It will be accounted only if any item has a partial test

detectable failure (referred to as type p failure in chapter 3) at the time of partial test, not else-

wise (because of the way used for augmentation). MATLAB codes calculating the formula and

Petri Net simulations deal with this particular case. Therefore, to observe the actual contribu-

tion, MATLAB simulations were used that take in account MPTT even if there is no failure at the

time of partial test (section 5.3). It was necessary to pay attention and recognize the real input

coming from MPTT.

It is easier to follow this augmentation process in a form of a stepwise list as described below:

First, expand the approximation formula of PFDAvg, related to periodic partial tests for desired



CHAPTER 5. MODELING IMPERFECT TESTS USING MEAN PARTIAL TEST TIME (MPTT) 64

koon structure from the article Jin and Rausand (2014). It is already shown as equation 3.12

earlier in Section 3.3.1 of Chapter 3 and can be recalled as:

PFDkoon
Av g ≈ 1

m

m∑
i=1

n−k∑
j=0

(
n

j

)
((i −1)((1−θ)λDU )τ̃) j (n − j )!((λDU τ̃)n− j−k+1)

(n − j −k +2)!(k −1)!

+ 1

m

m∑
i=1

n∑
j=n−k+1

(
n

j

)
((i −1)((1−θ)λDU )τ̃) j

(5.1)

Now, expanding equation 5.1 for a 1oo2 system, the output is:

PFD1oo2
Av g ≈ 1

4

4∑
i=1

2−1∑
j=0

(
2

j

)
((i −1)((1−θ)λDU )τ̃) j (2− j )!((λDU τ̃)2− j−1+1)

(2− j −1+2)!(1−1)!
(5.2)

+ 1

4

4∑
i=1

2∑
j=2−1+1

(
2

j

)
((i −1)((1−θ)λDU )τ̃) j

= 1

4

4∑
i=1

1∑
j=0

(
2

j

)
((i −1)((1−θ)λDU )τ̃) j (2− j )!((λDU τ̃)2− j )

(3− j )! ·1

+ 1

4

4∑
i=1

2∑
j=2

(
2

j

)
((i −1)((1−θ)λDU )τ̃) j

By expanding the summations and canceling like terms together with some other algebraic cal-

culations in equation 5.2, it is observed that,

PFD1oo2
Av g ≈ θλDU τ̃

2

3
+ (1−θ)λDUτ

2

3
+ 1

2

(θλDU τ̃(1−θ)λDUτ)

2
+ 1

6
θλDU (1−θ)λDU τ̃

2 (5.3)

Equation 5.3 above gives final PFDAvg of a 1oo2 system.

Secondly, to add the input from MPTT, it is supposed that all the items are tested simulta-

neously with each of them having (1− e−θλDU i τ̃) as the probability of failure at time of partial

test. Accordingly, if the system has a type p failure at start of partial test, the MPTT will give

(1− e−θλDU i τ̃)2 ·MPTT5 (where i = 1,2,...,m) as contribution to the average unavailability, each

time system is tested partially.

5Failure probability is raised to the power 2 as there are two items and both of these are tested simultaneously
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Thirdly, when θλDU i τ̃ is small enough (i.e., less than 0.01), the value (1− e−θλDU i τ̃) can be ap-

proximated to θλDU i τ̃. It can be written as:

(1−e−θλDU i τ̃) ≈ θλDU i τ̃

=⇒ (1−e−θλDU i τ̃)2 ≈ (θλDU i τ̃)2

and hence the final input from MPTT becomes:

(θλDU i τ̃)2MPT T for i = 1,2, ...,m.

Fourthly, adding the average (over one full/proof test interval τ) of contribution calculated above

to equation 5.1 for each partial test (for each i = 1,2,...,m), gives the following formula 5.4 as

complete average unavailability augmented with input from MPTT:

PFDkoon
Av g ≈ 1

m

m∑
i=1

n−k∑
j=0

(
n

j

)
((i −1)((1−θ)λDU )τ̃) j (n − j )!((λDU τ̃)n− j−k+1)

(n − j −k +2)!(k −1)!

+ 1

m

m∑
i=1

n∑
j=n−k+1

(
n

j

)
((i −1)((1−θ)λDU )τ̃) j + 1

τ

m∑
i=1

((θλDU i τ̃)2 ·MPTT)

(5.4)

where θ(= a ·MPTT) changes its value according to the time taken in partial testing of the item.

Therefore, by expanding formula 5.4 above, the average unavailability with MPTT’s contribution

can be found for desired 1oo2 system.

In present chapter, the value of PFDkoon
Av g is noted for two different values of MPTT. Hence, the

value of θ will also vary with respect to MPTT. Table 5.2 shows variation in θ with respect to

MPTT, where the constant of multiplication a = 1

60
.

MPTT θ

15 minutes θ = 1/60 × 15 = 1/4 = 25%

30 minutes θ = 1/60 × 30 = 1/2 = 50%

Table 5.2: Input values for two different cases.
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5.2 MATLAB (Analytic) and Petri Nets Results

5.2.1 MATLAB Codes

In section 5.1 it was mentioned that usually the contribution from test time is considered to

be negligible. This assumption was cross checked using acquired formulas. On comparing the

output given by MATLAB on using equation 5.1 and 5.4 for same 1oo2 system and parameter val-

ues, it seems to be a reasonable assumption. The change in PFDAvg value was not good enough

to be acknowledged. This fact can be clarified by looking at MATLAB results in table 5.3 below

(parameter values taken from table 5.1). But it does not mean that test time factor is useless to

take into consideration. If the test time is not as small as indicated, it will introduce an error in

the calculation of PFDAvg. Thus, the suggested model can prove to be fruitful in assessing test

quality even if its contribution is insignificant because here its related to test excellence.

System

Archi-

tecture

MPTT Constant

a

Theta

(θ)

Equation 5.1

(PFD1oo2
Av g without

MPTT and using θ

directly)

Equation 5.4

(PFD1oo2
Av g with

MPTT and using

θ as a function of

MPTT)

1oo2
15

min-

utes

1/60 0.25

(25%)

2.7778e-05 2.7778e-05

30

min-

utes

1/60 0.50

(50%)

1.5873e-05 1.5877e-05

Table 5.3: MATLAB Results

From 1st row of table 5.3, it is clear that if MPTT is as less as 15 minutes, it does not affect the

average unavailability at all. The 2nd row shows that even though MPTT is half an hour (30 min-

utes) the increase in PFD1oo2
Av g is just 0.0004e-05 which is close to 0. Hence it’s significance is

negligible which makes this assumption logical. Also, from the result in table 5.3, the correla-
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tions between (MPTT, θ) and (MPTT, PFD1oo2
Av g ) can be cross-validated as described in section

5.1.

But as far as the proposed model is concerned, it has several other benefits in unavailability

analysis even if it’s addition is unimportant. Because θ is a function of MPTT, it has a great

impact on PFD1oo2
Av g calculation. Further details are discussed in section 5.4.

Another important issue to address was the extreme case of testing the system. It is fully

possible that one can get obsessed with having a perfect test by investing more and more time

in testing procedure. In that case, it is obvious that the PFDAvg of SIS will increase as the system

is always being tested and it is not able to perform its function accurately. Related to this fact,

if the algorithm applied in the model suggested here is correct and suits reality, then it must

increase the PFDAvg value as the test time is increased. Though test excellence is increased but

it becomes a case of over-testing the system. Therefore, the accepted algorithm was tested to

confirm this fact. Table 5.4 depicts MATLAB outcomes confirming this matter.

System Under

Test

Mean Par-

tial Test Time

(MPTT)

Value of PFDAvg

1oo2 Design

15 minutes 2.7778e-05

30 minutes 1.5877e-05

45 minutes 7.5261e-06

60 minutes 2.7296e-06

120 minutes 1.9135e-05

180 minutes 9.2611e-05

240 minutes 2.2332e-04

Table 5.4: PFDAvg value increases as the time taken to test the item increases extremely.

5.2.2 Petri Net Simulation Results

Use of Petri Nets make life easier as far as simulations of simple and small systems are con-

cerned. Thus, moving forward to another objective of the thesis, Petri Net is used to confirm the

results achieved analytically from MATLAB codes. It will verify the belief that petri nets can be
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used to model various SIS’s and can also prove useful in adhering to system specific conditions

such as augmentation from repair time, test time and so on.

To certify usability of petri net simulations, same 1oo2 system with identical parameters in table

5.1 was modeled in Petri Net module of GRIF software (TOTALR&D, 2009b). Testing conditions

and timings were also kept equivalent to those in MATLAB calculations. Figure 5.1 displays the

complete petri net design for 1oo2 system with partial tests whereas 5.2 below shows the petri

net structure of a single item.

Item’s architecture explained: In figure 5.2, a token in place2 shows that component is in a

working state. If the token moves from place2 to place1, it denotes component has a full/proof

test detectable failure and will return to place2 only when proof test is conducted (i.e., when

place7 will hold the token as shown in figure 5.1). Transition rate from place2 to place1 is, (1−
θ)λDU (same as the rate of type f failure). Akin to that is transition from place2 to place3 denoting

a partial test detectable failure with transition rate θλDU (also failure rate for type p failures).

The places, place8 and place17 in single item designs (figure 5.1) are drawn to preserve the re-

spective tokens after the type p failure. Because place3 and place12 must be empty so as to let

tokens in place5 and palce7 leave to indicate the completion of proof and partial tests. 6 This

way it is made sure that the partial tests always run in a periodic manner.

Places place8 and place17 are used to hold the tokens so as to add the desired input from test

duration or mean partial test time (MPTT) in average system unavailability. In case of a partial

test of component 1, the token stays in place8 until the test duration (MPTT) is fulfilled. Anal-

ogous is the case with place17 and place11 for component 2 7. For the case of full test, token

is transferred immediately from place8 and palce17 to place2 and palce11 respectively without

any delay because the duration of full/proof test is considered to be negligible in this scenario.

Also, the two similar structures in the lower part of diagram 5.1 show the phenomenon of partial

and proof tests. The transitions Partial and Proof in figure 5.1 are Dirac (constant delay) tran-

sitions which are triggered according to the delay. Architecture to the right displays partial test

phenomenon and that to the left indicates full/proof test phenomenon. Token in place4 leaves

6Because the guards of transitions from place5 and palce7 will check if place3 and palce12 are empty or not
before returning token to place4 and placec6.

7The token must stay in those places during the partial test, so as to get the contribution from test duration
(MPTT).



CHAPTER 5. MODELING IMPERFECT TESTS USING MEAN PARTIAL TEST TIME (MPTT) 69

Figure 5.1: Petri-Net Model for complete 1oo2 system with contribution from MPTT.

for place5 at a constant delay of each 2190 (τ̃) hours and token in place6 leaves at each 8760

(τ) hours. Therefore, there are 3 partial tests in between one proof test interval and a total of 4

tests are carried out for each iteration. Form the first figure, it can also be noticed that there is a

counter variable named i which increases its value by 1 each time a partial test is executed. This

i is specified in such a way that after 3 partial tests its value comes back to 0 when proof test is

executed, i.e., if i < m −1, where m = 4 (equal to "m" in table 5.1), then partial test will be per-
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Figure 5.2: Petri-Net Model for single item/component.

formed and when i ≥ m −1, then only proof test will be implemented. Therefore this counter

variable makes sure that there is no conflict between partial and proof tests being conducted

together at the time 8760 hours. The PFD1oo2
Av g is calculated by defining a separate variable in

related PN file that counts the average amount of time for which the place2 or place11 are empty

or without a token.

Results from Petri Net Simulations

After designing system’s architecture and verifying its functional accuracy in Petri Nets, lot

of simulations were run using the same parameter values given in table 5.1. Simulations were

carried out for both values of MPTT (i.e., 15 and 30 minutes) and hence it gives PFD1oo2
Av g with θ (=

25% and 50%) respectively. The results gained by these simulations are compared to the outputs

of MATLAB in table 5.6, whereas table 5.5 displays the results from Petri Net simulations.

From tables 5.5 and 5.6, it can be easily observed that the simulation results do not match exactly
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to MATLAB outputs but studying the values closely, they are quite around the accurate one for

both the cases. When MPTT = 15 minutes the exact PFD1oo2
Av g of system is 2.7778e-05 and if the

values from PN simulations are looked at, they get stabilized around 2.75e-5 (approximately) for

most of iterations. Moreover, the exact value is included in 90% Confidence Interval each time

PN is run for any number of iterations. Similar to above is the case when MPTT = 30 minutes,

the actual value of PFD1oo2
Av g is 1.5877e-05 and the PN simulations give a value stabilized around

1.60e-5 (approximately). 90% Confidence Interval can also be noted to contain the exact value

each time,i.e., analogous behavior as mentioned for the case above.

Therefore, it can be easily confirmed and deduced that PN is a useful and promising tool to

analyze the Safety Instrumented Systems (SIS) as far as small systems are concerned. Also, it is

a good tool to undertake different assumptions and scenarios into consideration for bigger and

complex systems as well. But as it is well known that each concept has both advantages and

disadvantages. So, the disadvantage of PN for a complex and complicated system lies in the fact

that it explodes with the number of states as the complexity of a system increases.

5.3 MATLAB Simulations-Why?

Mentioned as one of the assumptions in subsection "Model Specific Assumptions", input from

Mean Partial Test Time (MPTT) is added to average unavailability only when any one or more

than one item/component has a partial test detectable failure at the time of partial test, not oth-

erwise. But it is a practical fact that there will be contribution of MPTT in average unavailability

each time the system is tested partially regardless of whether any (or more) item has a failure or

not. Hence, results achieved by MATLAB and Petri Net can not be trusted blindly. So, there is a

reason to investigate this model further to find out, "How can the real addition from each par-

tial test time be augmented?". Hence, the same situation (as studied in MATLAB codes and Petri

Nets) is modeled by using MATLAB simulating techniques to know the details of this issue. In

this section, there are shown and discussed the results from MATLAB simulations for the same

1oo2 system and identical data as used above.
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Results from MATLAB Simulations

A MATLAB code was written and compiled to observe the variation in analytical results when

test time is included for each iteration even if no failure is observed at the time of partial test.

In this way test time will actually contribute each time as desired to system’s unavailability. The

outputs obtained from PN and MATLAB using analytical formulas are compared to MATLAB

simulations results. This code was tried for several number of iterations and the outcome so

observed are listed in a form of table 5.7.

Number of

iterations

θ = 50%, MPTT = 30 Minutes θ = 25%, MPTT = 15 Minutes

Number of

failures ob-

served

PFDAvg (Average

Unavailability)

Number of

failures ob-

served

PFDAvg (Average

Unavailability)

100000 3 2.2366e-04 0 1.7108e-04

500000 4 2.1433e-04 1 1.5689e-04

1 Million 9 2.1650e-04 4 1.5737e-04

5 Million 16 2.1575e-04 8 1.5992e-04

10 Million 33 2.1573e-04 17 1.5776e-04

Table 5.7: Result of MATLAB Simulations

It can be observed from table 5.7 that if MPTT (mean partial test time) is accounted in each

iteration then the value of PFDAvg over the proof test interval will increase. This is intuitive as

well because of having the system unavailable during whole partial test duration. The linear

relationship between test time and test quality is also a concerning factor here because even

if the test quality is increasing with test time, the PFDAvg does not decrease. This somehow

overcomes the effect of increasing test quality. But the relationship between test time and test

effectiveness described here considers only one value of the parameter a (which is the constant

in relation θ = a·MPTT). This algorithm should be experimented and validated for several values

of test time and the parameter a to achieve an optimal relation between MPTT and θ, such that

it maximizes the affect of increasing test coverage to decrease the average unavailability of the

system.

Another fact to notice from table 5.7 is that the number of failures compared to the number
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of iterations are very low for each simulation history. It is because the failure rate of individual

components is very low. Therefore the probability that a component fails within one year is

very less. However, to ensure that the algorithm is right, two plots were generated for the first

iteration showing the state of components and system itself. When the code is run with the

failure rate λ = 1.3 · 10−6, the graph shows that no failure is observed for the first iteration as

the mean time to failure (MTTF) 8 of each component is greater than one year. It can be seen

in the figures 5.3a and 5.3b below. Therefore, both the components (and hence the system) are

unavailable just for the duration of partial test each time within one τ. The states of both the

components can be seen in same graph 5.3a. For component 1, the curve takes the values 0 (for

failed state) and 1 (for working state) whereas, for component 2 the failure and working states

are marked from 1.25 to 2.25, so that it is easy to see the state of both in same plot.

(a) State of both components during one proof test
interval (actual failure rate).

(b) System state within one proof test interval (actual
failure rate).

Figure 5.3: State of components and system within one proof test interval (τ).

But if the failure rate of component is increased, it is clear form the plots 5.4a and 5.4b below

that failures are observed from the first iteration. Hence, the algorithm implemented is correct.

Plot 5.4a shows the state for both components as blue lines and green lines mark the end of each

partial test. Plot 5.4b shows the system state as a black line during one proof test interval (τ).

8MTTF is the mean time an item takes to fail for the first time. It is calculated from failure rate of the item (λ) as

MTTF =
1

λ
(only in the case when the item has an exponential failure rate). Here, MTTF =

1

λ
= 1

1.3 ·10−6 = 769230.76

hours » 8760 hours (one proof test interval).
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(a) State of both components during one proof test
interval (increased failure rate).

(b) System state within one proof test interval (in-
creased failure rate).

Figure 5.4: State of components and system within one proof test interval (τ).

5.4 Conclusion and Further Discussion

Primary aim of this chapter was to introduce a model that can be credited to plug-in the effect

of imperfectness in the formula of PFDAvg in such a manner that it can help in diminishing un-

certainty involved in testing procedures of a SIS. The idea was to assume θ as a linear function

of MPTT in order to have a positive interaction in these two variables.

Section 5.1 proposes the advised model by explaining all the detailed assumptions to be kept

in mind while trying to incorporate input from MPTT. The procedure used to augment existing

formula of PFDAvg is also explained in the same section representing analytically that how the

outlook of current formula changes. Moreover, it specifies the two cases for which calculations

will be carried out throughout the chapter.

In next section 5.2 the results obtained from MATLAB codes and PN simulations are pre-

sented and discussed thoroughly. It is clear from the results of MATLAB and PN that the basic

idea of suggested model is working and satisfies the expectations of user in relation to assump-

tions made earlier. Test quality (in sense of PTC (θ)) increases and PFDAvg decreases as MPTT is

increasing within the limit of 60 minutes. Extreme cases of over-testing the system in order to

achieve the best test also marks the rise in average unavailability as expected. The experiment

performed in PN module for1oo2 system under consideration proved to be successful as well.

Thence, it is validated that PN can be used to model and calculate the PFDAvg of any SIS taking
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in account various scenarios related to testing and repairs.

Finally, section 5.3 enlightens uncertainty involved in specific model. In analytical formula,

MPTT adds on only for the case of a partial test detectable failure, not otherwise. Hence it is

intuitive that the values attained until now underestimate actual value of average unavailability

in case of periodic partial proof tests. To see the real effect from MPTT regardless of any failure

in system, MATLAB simulations were employed. Outcomes show that if MPTT is taken into con-

sideration at each partial test, the PFDAvg becomes ten times more than analytical result. This

is because in MATLAB simulations MPTT is acting as test time rather than repair time, which

now increases the PFDAvg to 2.0707e-04, i.e., multiplied by 10 compared to the value 1.5877e-

05 obtained in earlier outputs. Hence it can be deduced that for analytical formula PFDAvg is

influenced by the effect of proof test coverage (θ) more than MPTT because MPTT does not

contributes at each partial test which results in decreased value of PFDAvg. Whereas for MAT-

LAB simulations MPTT is accounted for each partial test and it influences the value of PFDAvg

more than θ, which overcomes the affect of increased test quality and average unavailability

also increases. But it must be kept in mind that the model employed in MATLAB simulations is

tested only for one value of parameter a = 1/60. This strategy needs to be validated and tested

for various values of test time and a to attain an optimal relation between test coverage (θ) and

MPTT so that it maximizes the test effectiveness and decreases the PFDAvg of system in long run.



Chapter 6

Concluding Remarks

Safety Instrumented Systems play an eminent role in process industries. They safeguard all the

valuable assets against any hazardous event/accident that unfortunately happens during oper-

ational phase. Therefore, safety-critical systems are a primary part of insurance against unlikely

events. Hence, it is necessary to ensure they are working and to check that they are able to in-

voke appropriate reactions in case of any drastic event (/real demand). Thus, unavailability of

SIS is the major area of study which affects the safety provided by it. Usually, SIS’s can be clas-

sified into low-demand or high-demand systems. In this thesis, low-demand SIS are studied.

They use the measure of average unavailability (PFDAvg) to assess the SIL (Safety Integrity Level)

related to them. For a repairable SIS, testing is conducted to confirm the continuous operation

and calculation of PFDAvg of safety equipment. Usually, it is assumed that each test is a perfect

test and the system is in "as-good-as-new" after testing process is over that makes unavailability

equal to zero, but it is not at all a realistic assumption. Practically, any test can not be as perfect

that it covers and detects 100% failures of system. Even the repair process can not return the

system back into "as-good-as-new" state due to natural degradation in the system’s operating

condition. So, the imperfectness involved in the testing process is chosen as subject matter to

study in this thesis.

77
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6.1 Conclusions

Distinct types of tests and their scheduling have been explained in detail by doing extensive

study of existing literature. Three contrasting models are investigated in chapter 3 related to

augmentation from imperfect testing into PFDAvg. On one side, model proposed by Brissaud

et al. (2012) is achieved by using neat arithmetic formulas and theorems to get the exact input

from imperfectness using concept of proof test coverage factor (θ) whereas on the other hand Jin

and Rausand (2014) suggests the use of probability theories and approximation techniques to

get the addition from imperfect test. Comparing both models asserts that approximation pro-

cess only suited for the case where some specific assumptions are true. Approximation results

provide in general a pessimistic estimation for the value of average unavailability and even bad

evaluation if assumptions regarding approximation process are violated. Torres-Echeverría et al.

(2009) adopt a completely different outlook to include the contribution from partial testing of a

1oon SIS. He considers employing sequential and staggered test schedules as conducting a par-

tial test and using this notion the probability of failure on demand of a single component varies

with respect to the state in which component/item is regarding test strategy so employed. Then

the average unavailability is evaluated as mean value of product of PFD of n items observed at

s discrete time points. The numerical outputs achieved by applying various PFDAvg formulas

(related to two prior models described above) in MATLAB (MATLAB, 2013) validate the same

ideas.

To check the functionality of Petri nets was an aspect to be investigated in current analy-

sis. For this purpose, a system architecture (2oo5) similar to the assumption in the two papers

was designed in Petri Nets module of GRIF software (TOTALR&D, 2009b) and results were ob-

tained by carrying out different number of Monte-Carlo iterations for that 2oo5 architecture.

The outputs gathered depict that Petri Nets prove to be a quite trustworthy tool for computing

the PFDAvg of certain safety systems and they can also account for various conditions and situ-

ations associated with that particular system. However, the approximations made by Petri Nets

were not exactly equal for the 2oo5 structure (reason being difficulty in tracking the rare event),

yet it gives a relatively good estimate.

A simple and easy model for a 1oo2 system is proposed to increase the quality of test using
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time taken to test the item. Proof test coverage is considered as a linear function of test time

such that proof test coverage (θ) and mean partial test time (MPTT) have a positive correlation.

The input from mean partial test time (MPTT) in the PFDAvg formula is augmented on the basis

of the approach mentioned in Rausand (2014). This way mean partial test time is used to decide

test quality. Therefore, imperfectness involved in testing process can be controlled to some

extent. The results are obtained and cross validated using both the softwares, MATLAB and

Petri Net simulations in GRIF. Outputs attained from such a model can be used to make practical

decisions about testing strategies to be employed. A fair compromise can be reached between

average unavailability and test coverage factor. Accordingly, a resolution to postpone the date

for actual full/proof test can also be considered.

A deliberate effort has been made to carry out an uncertainty analysis for the results ob-

tained for proposed model using MATLAB simulations. Due to selected approach and some

limitations of time and software related issues, the mean partial test time is acting as mean re-

pair time for 1oo2 system as observed. Hence it was necessary to get the reality check done.

The outcomes gained through this uncertainty check show that there is 10 times increase in the

PFDAvg of the system if MPTT is accounted at each partial test. But the suggested model needs

further validation to find an ideal value of parameter a for the relationship of test time with θ. In

this way, maximum benefit can be captured from increased time of partial test to reduce average

unavailability (PFDAvg) of the system.

6.2 Future Work

Imperfect Testing of SIS consists a very wide range of topics to study. Lots of different situations

need to be analyzed and researched to be able to track each and every concept (especially un-

availability) that get affected by this type of testing. One such list has already been built up

during the writing process of this thesis. There are several possible directions that could have

been investigated in order to make this thesis more certain about the contribution from imper-

fectness of a test. But because of time constraint and software complexities, these issues can be

noted down for future endeavors.

In future, it will be interesting to introduce the notion of proof test coverage factor (θ) in the
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model proposed by Torres-Echeverría et al. (2009). This can be a big step in analysis of im-

perfectness when any 1oon system is not tested on end-to-end basis. For the rest, concerning

model proposed in this thesis, several further aspects will be interesting to investigate. For in-

stance:

â It will be curious to find a stochastic model based on real parameters/situations to include

the input from mean partial test time (MPTT) rather than to just include a constant value in

PFDAvg formula.

â Instead of considering simultaneous testing of all the items of koon structure, it will be rea-

sonable to examine real life practice used in case of partial testing, i.e., sequential testing. It

will raise many possible situations to look at in contrast to just the one discussed here.

â Intensive study of Petri Net software would be another challenging task to focus on. It must

be analyzed if PN can deal with all these complicated scenarios of sequential testing and

grabbing the exact grant from test time regardless of any item having a failure or not. Maybe

High Level Petri Nets can solve this problem.

â It will be thought-provoking to validate the model and MATLAB code suggested for simula-

tions in this report. Many experiments can be conducted to find the best value of parameter

a in the function, θ = a ·MPTT such that the test effectiveness is optimized and it rules over

increasing test time to reduce (rather than raise) the final PFDAvg of the system.

â Pertaining to the model suggested here, there was a discussion about functionality of partial

tests. Inputs received by Fares Innal 1 declared that only a specific percentage of DU failures

can be detected using a partial test. So it is not optimal to take into account the details like

MPTT. Relevant to this particular issue, it will be an exciting exercise to design (or change the

existing) software used for partial tests and program them in such a way that it is possible to

detect more failure modes with more time available to test the item partially.

Thus, further studies in this direction have a potential of revealing appealing and illuminat-

ing findings that can lead to improve the quality of the PFDAvg calculations and reckoning of

imperfectness involved in testing process.

1Post Doc. at Department of Product and Quality Engineering



Appendix A

Selection of Codes Implemented in MATLAB

A.1 Evaluating PFDAvg using equation 3.28 from Brissaud et al.

(2012) (equation number 9 in paper)

1 function [] = time_depPFD(M,N) % Main function to evaluate PFD_avg at ...

the starting of each partial test interval and calculating average ...

PFD using formula from the article by Brissaud et al. 2012 (Equation ...

9 in paper)

2 hold on;

3 p1 = PFD_t(M,N,1); % call nested funtion PFD_t for 1st partial test

4 p2 = PFD_t(M,N,2); % call nested funtion PFD_t for 2nd partial test

5 p3 = PFD_t(M,N,3); % call nested funtion PFD_t for 3rd partial test

6 p4 = PFD_t(M,N,4); % call nested funtion PFD_t for 4th partial test

7 PFDavg = PFDeqn9barros(M,N); % call nested funtion PFDeqn9barros for ...

computaion of average unvavailability

8 disp(PFDavg)

9 hold off;

10

11

12 function [pfd_max] = PFD_t(M,N,i) %function that calculates and plots ...

maximum as well as time dependent values of PFD_avg during and at the...

end of each partial test

81



APPENDIX A. SELECTION OF CODES IMPLEMENTED IN MATLAB 82

13 t_0 = 2190; % time for first partial test

14 E = 0.50; % theta (PTC)

15 lambda = 10^−5; % DU failure rate

16 AVL = zeros(1,2191); % initiaiizing availability vector

17 ONE = ones(1,2191); % vector of ones

18 u = Summ(M,N); % call nested function Summ

19 j = 1;

20 for x = M:N

21 t = (i−1)*t_0:1:(i)*t_0;
22 A = u(j)*exp(x*E*lambda*(i−1)*t_0)*exp(−x*lambda*t); % calculation of ...

availability at time "t"

23 AVL = AVL + A;

24 PFD = ONE − AVL;

25 %disp(PFD); (can be used to display the PFD vector showing time point ...

values of PFD)

26 pfd_max = max(PFD); % maximum PFD in one partial test interval

27 j = j+1;

28 end

29 disp(pfd_max); %display maximum PFD

30 l1 = plot(t,PFD);xlabel('Time(t)'),ylabel('PFD(t)'),title('Time − ...

Dependent PFD'); %legend for graph

31 l2 = plot((i*t_0),max(PFD),'r*','MarkerSize',8); %legend for graph

32 PFDavg = PFDeqn9barros(M,N); % call the function PFDeqn9barros

33 %disp(PFDavg); (can be used to display average PFD)

34 x1 = 0;

35 x2 = 8760;

36 graph = plot([x1, x2], [PFDavg, PFDavg],'g−');
37 legend([l1,l2,graph],'PFD(t)','PFD_{max} for each sub−interval','PFD_{...

Avg}','Location','northwest');

38

39

40 function [PFD_avg] = PFDeqn9barros(M,N) % function used to implement ...

PFD_avg formula in Brissaud et al. 2012 (can be used for any "koon" ...

structure)

41 n = 4; % no. of total tests

42 E = 0.50; % value of theta
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43 lambda = 10^−5; % DU failure rate

44 T_0 = 2190; % time of first partial test

45 S = Summ(M,N); % call to function Summ

46 %disp(S); (can be used to display the value of vector output of Summ ...

function)

47 j = 1;

48 I = 0;

49 for x = M:N

50 for i = 1:n

51 inner = S(j)*((1−exp(−x*lambda*T_0))/(x*lambda*T_0*n))*exp(−x*(1−E)*...
lambda*(i−1)*T_0);

52 I = I+inner;

53 end

54 j = j+1;

55 end

56

57 PFD_avg = 1 − I; % average PFD in [0,tau]

58 %disp(PFD_avg); (can be used to display PFD_avg value)

59

60

61 function [S] = Summ (M,N) % function to calculate the vector S(M,N,x) ...

used in Equation 9 of the paper

62 x = M:N; % values "x" can take

63 r = zeros(1,length(x));

64 S = zeros(1,length(x)); % resulting vector

65 l = 0;

66 for i = 1:length(x)

67 k = M:x(i); % increasing the length stepwise

68 %disp(k); (used to check)

69 for j = 1:length(k)

70 r(j) = nchoosek(N,x(i))*nchoosek(x(i),k(j))*(−1)^(x(i)−k(j));
71 l = sum(r);

72 end

73 S(j) = l;

74 %disp(S); (check the resulting vector S(M,N,x))

75 end
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A.2 Evaluation of PFDAvg using equation 3.9 adopted from Jin

and Rausand (2014) (equation labeled 5 in actual paper)

1 function [PFDavg] = PFDeqn5jin (n,k,theta) %function to calculate PFD ...

using equation 5 in the paper Jin 2013 (for any "koon" structure and ...

any theta)

2 tau = 8760; % proof test interval

3 tautilde = 2190; % start of first partial test

4 m = 4; % no. of total tests

5 lambda = (1.0)*10^−5; % DU failre rate

6 lambdab = (1−theta)*lambda; % lambda_b

7 fn1 = 0; % initializing variable

8 fn2 = 0; % initializing variable

9

10 for i = 1:m % loop to sum the values form each partial test

11

12 for j = 0:(n−k)
13 func1= (nchoosek(n,j)*tautilde*(1−exp(−lambdab*(i−1)*tautilde))^(j)*(exp...

(−lambdab*(i−1)*tautilde)^(n−j))*factorial(n−j)*(lambda*tautilde)^(n−...
j−k+1))/(factorial(n−j−k+2)*factorial(k−1)); % calculation of first ...

term in equation

14 fn1 = fn1+func1; % updating value with each iteration

15 %disp(fn1); (can be used to display mentioned value)

16 end

17

18 for j = (n−k+1):(n)
19 func2= nchoosek(n,j)*tautilde*(1−exp(−lambdab*(i−1)*tautilde))^(j)*(exp...

(−lambdab*(i−1)*tautilde)^(n−j)); % calculation of second term in ...

equation

20 fn2 = fn2+func2; % updating value with each iteration

21 %disp(fn2); (can be used to display mentioned value)

22 end

23

24 end
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25

26 PFDavg=(fn1/tau)+(fn2/tau); % finding the mean value over full test ...

inteval [0,tau]

27

28 disp(PFDavg); % display the result

A.3 Evaluation of PFDAvg using equation 3.12 from Jin and Rau-

sand (2014) (equation number 8 in paper)

This equation results after applying the approximation laws to equation 3.9 and considering the

special case of periodic partial tests in equation 3.11.

1 function [PFDavg] = PFDeqn8jin(n, k, theta) %function to calculate PFD ...

using equation 8 in the paper Jin 2013 (for any "koon" structure and ...

any theta)

2 tautilde=2190; % start of first partial test

3 m=4; % no. of total tests

4 lambda=(1.0)*10^−5; % DU failre rate

5 lambdab=(1−theta)*lambda; % lambda_b

6 fn1=0; % initializing variable

7 fn2=0; % initializing variable

8

9 for i = 1:m % loop to sum the values form each partial test

10

11 for j = 0:(n−k)
12 func1= (nchoosek(n,j)*(lambdab*tautilde*(i−1))^(j)*(factorial(n−j)*(...

lambda*tautilde)^(n−j−k+1)))/(factorial(n−j−k+2)*factorial(k−1)); % ...

calculation of first term in equation

13 fn1= fn1+func1; % updating value with each iteration

14 % disp(fn1) (can be used to display mentioned value)

15 end

16

17 for j= (n−k+1):(n)
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18 func2= (nchoosek(n,j)*(lambdab*(i−1)*tautilde)^(j)); % calculation of ...

second term in equation

19 fn2= fn2+func2; % updating value with each iteration

20 % disp(fn2); (can be used to display mentioned value)

21 end

22 end

23 PFDavg = (fn1/m)+(fn2/m); % finding the mean value over full test ...

inteval [0,tau]

24 disp(PFDavg); % display the result

A.4 Code computing PFDAvg including contribution of MPTT im-

plementing equation 5.4

The following MATLAB code computes the average unavailability when input from mean partial

test time (MPTT) is added in existing formula for PFDAvg. It emerged as a result of suggested

model to incorporate the contribution of MPTT to increase test quality.

1 function [PFDavgMPTT] = PFDeqn8jinMPTT(n, k, MPTT) % function ...

incorporating input form MPTT to increase test coverage (can be used ...

for any "koon" structure and any vamlue of MPTT)

2 tau=8760; % proof test interval

3 tautilde=2190; % start of first partial test

4 m=4; % total no. of tests in [0,tau]

5 a = 1/60; % constant to be multiplied by MPTT ("a" can be changed ...

according to MPTT i.e. in hours or minutes)

6 theta = a*MPTT; % Proof test coverage theta as linear function of MPTT (...

MPTT taken in minutes here)

7 lambda=(1.3)*10^−6; % DU failure rate

8 lambdaa=(theta)*lambda; % failure rate for partial test detectable ...

failures

9 lambdab=(1−theta)*lambda; % failure rate for failures not detectable ...

using partial test

10 fn1=0; % initial value
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11 fn2=0; % initial value

12 fn3=0; % initial value

13

14 for i = 1:m

15

16 for j = 0:(n−k)
17 func1= (nchoosek(n,j)*(lambdab*tautilde*(i−1))^(j)*(factorial(n−j)*(...

lambda*tautilde)^(n−j−k+1)))/(factorial(n−j−k+2)*factorial(k−1)); % ...

computing the first term in equation

18 fn1= fn1+func1; % updating the value for each iteration

19 % disp(fn1) (can be used to display mentioned value)

20 end

21

22 for j= (n−k+1):(n)
23 func2= (nchoosek(n,j)*(lambdab*(i−1)*tautilde)^(j)); % computing the ...

second term in equation

24 fn2= fn2+func2; % updating the value for each iteration

25 % disp(fn2); (can be used to display mentioned value)

26 end

27

28 func3 = (lambdaa*i*tautilde)^n*(MPTT/60); % comuting the third term in ...

equation

29 fn3 = func3+fn3; % updating the value for each iteration

30 % disp(fn3); (can be used to display mentioned value)

31 end

32 PFDavgMPTT = (fn1/m)+(fn2/m)+(fn3/tau); % calculation of the final ...

average unavailability in interval [0,tau]

33 disp(PFDavgMPTT); % display the result

A.5 MATLAB code for simulating a "1oo2" system

To investigate the ambiguity involved by MPTT acting as repair time in suggested proposal to

incorporate test time in PFDAvg formula, the following simulation code was run in MATLAB for
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comparison of values. This code was written with the supervisor (Anne Barros) as a joint work.1

1 function Final1oo2A

2

3 clear all;

4 close all;

5

6 % Parameters

7 theta = 0.5; % Probability of detection

8 lambda = (1.3*1e−6);
9 muParam = 1/lambda;

10 %muParam = 3000;

11 vStartTest = [2190 2*2190 3*2190 4*2190]';

12 vDurationTest = [0.5 0.5 0.5 0]';

13

14 nbHist = 500000;

15 nbComp = 2;

16

17 vAvailSys = zeros(nbHist,1);

18 % Main loop

19 for idHist=1:nbHist

20 % Init storing variables

21 vUnavailability = zeros(nbComp,1);

22 mFailure = zeros(nbComp,numel(vStartTest)+1);

23 vNbFailure = zeros(nbComp,1);

24 mDetection = zeros(nbComp,numel(vStartTest));

25 %cwUnavailability = vUnavailability./nbHist;

26 %disp(cwUnavailability);

27 % Loop on components

28 for idComp=1:nbComp

29 [unavailability,vFailure,vDetection] = Histoire(muParam,theta,vStartTest...

,vDurationTest);

30 vUnavailability(idComp,1) = unavailability;

1This code was not validated to provide an optimal solution resolving the conflict between effects of MPTT and
θ on PFDAvg.
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31 mFailure(idComp,1:numel(vFailure)) = vFailure;

32 vNbfailure(idComp,1) = numel(vFailure)−1;
33 mDetection(idComp,1:numel(vDetection)) = vDetection;

34 end

35 % Init State matrix (Gestion of several components)

36 mState = true(nbComp,vStartTest(end)*10);

37 mFailure = round(mFailure/0.1)*0.1;

38 mDetection = round(mDetection/0.1)*0.1;

39 % Loop on components

40 for idComp=1:nbComp

41 % Inspection induces unavailability

42 for idInsp=1:numel(vStartTest)−1
43 val1 = round(vStartTest(idInsp)*10);

44 val2 = round(vDurationTest(idInsp)*10);

45 mState(idComp,val1:val1+val2) = false;

46 end

47 % failure induce unavailability

48 for idFail=1:vNbfailure(idComp)

49 val1 = round(mFailure(idComp,idFail)*10);

50 val2 = round(mDetection(idComp,idFail)*10);

51 val3 = sum(vDurationTest.*(mDetection(idComp,idFail)==vStartTest))*10;

52 mState(idComp,val1:val2+val3) = false;

53 end

54 end

55 % Merging of components availability

56 vState = any(mState,1);

57 % Illustration for the first "simulation"

58 if idHist==1

59 figure;

60 hold on;

61 for idComp=1:nbComp%

62 plot(0.1:0.1:vStartTest(end),(idComp−1)*1.25+mState(idComp,:),'b','...
linewidth',2);

63 end

64 hold on;

65 for id=1:numel(vStartTest)
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66 plot(vStartTest(id)*[1 1],get(gca,'ylim'),'r');

67 plot((vStartTest(id)+vDurationTest(id))*[1 1],get(gca,'ylim'),'g');

68 end

69 set(gca,'ylim',[−0.2 (idComp−1)*1.25+1.2]);
70 grid on

71 figure;

72 plot(0.1:0.1:vStartTest(end),vState,'k','linewidth',2);

73 set(gca,'ylim',[−0.2 1.2]);

74 grid on

75 end

76 % Calcul avaliability on the whole set of simulations

77 vAvailSys(idHist,1) = sum(vState)/length(vState);

78 end

79

80 AvgAvailSys = mean(vAvailSys);

81 disp(AvgAvailSys);

82 disp(1−AvgAvailSys);
83 function [unavailability,vFailure,vDetection] = Histoire(muParam,theta,...

vStartTest,vDurationTest)

84

85 vEndTest = vStartTest+vDurationTest;

86

87 % Iniit of storing variables (not optimal regarding time processing ...

management)

88 vFailure = [];

89 vDetection = [];

90 unavailability = 0;

91

92 % Date Failure

93 dateFailure = GeneDateFailure(muParam,0,vStartTest,vEndTest);

94 vFailure(end+1) = dateFailure;

95

96 id = 0;

97 while dateFailure<vStartTest(end)

98 % Increment the inspection id

99 id = id+1;
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100 % If it is an unperfect inspection

101 if id<length(vStartTest)

102 % If there is a failure

103 if dateFailure<vStartTest(id)

104 % Detection test

105 if rand(1)<theta

106 % Storing of detection date

107 vDetection(end+1) = vStartTest(id);

108 % Calculus of unavailability

109 unavailability = unavailability+(vStartTest(id)−dateFailure);
110 % Next failure date

111 dateFailure = GeneDateFailure(muParam,vStartTest(id)+vDurationTest(id),...

vStartTest,vEndTest);

112 % Storing of failure date

113 vFailure(end+1) = dateFailure;

114 end

115 else

116 % Update of unavailability due to inspection (only in the case

117 % of no failure)

118 % If there is a failure, the inspections periods are counted

119 % after the detection

120 unavailability = unavailability+vDurationTest(id);

121 end

122 else

123 % It is the last and perfect inspection

124 if dateFailure<vStartTest(id)

125 % Storing of detection date

126 vDetection(end+1) = vStartTest(id);

127 % Calculus of unavailability

128 unavailability = unavailability+(vStartTest(id)−dateFailure);
129 % Next failure date (unnecessary task)

130 dateFailure = GeneDateFailure(muParam,vStartTest(id)+vDurationTest(id),...

vStartTest,vEndTest);

131 % Storing of failure date (unnecessary task)

132 vFailure(end+1) = dateFailure;

133 end
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134 end

135 end

136

137 %% Generation Date Failure

138 function dateFailure = GeneDateFailure(muParam,t0,vStartTest,vEndTest)

139 dateFailure = exprnd(muParam)+t0;

140 % exclusion of failure during inspection

141 while any(vStartTest(1:end−1)≤dateFailure & dateFailure<vEndTest(1:end...

−1))
142 dateFailure = exprnd(muParam)+t0;

143 fprintf('Bing\n');

144 end
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