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Abstract

In the recent years, much attention has been given to the design of offshore wind turbines. To-
day, the largest wind turbine has a rotor diameter of 164m. The harsh environments expose the
turbines to large forces from wind and waves. During the service years of a turbine, extreme
wind loads must be expected. And the need for tools to accurately analyse the mechanical
properties of the turbine blade arise.

Isogeometric analysis was introduced in [5] in 2005. One of the advantages of isogemetric anal-
ysis is that we may use the same mathematical model for geometry and analysis, hence no
discretization error occur.

With an increased size, the blades of wind turbines become relatively more flexible, and the
wind load grows with the size of the blade. Peak wind loads will give large deformations. A
nonlinear analysis is required for optimum results [21].

In this thesis, we have developed a static non-linear isogeometric finite element solver in Mat-
lab, using bsplines as basisfuction. We started by a study of the basic properties of bsplines.
We then derived the linear elasticity equation, and implemented a linear finite element code to
solve this. From this, we took the step to nonlinear analysis. We derived the weak form for the
Updated Lagrangian Formulation. This resulted in a nonlinear finite element algorithm, which
we have implemented in Matlab.

For verification, the nonlinear isogeometric solver was compared to the isogeometric NFE pro-
gram IFEM with a high level of correlation. We applied the nonlinear solver to a twisted bar
case, and the wind turbine blade of the NREL offshore 5-MW baseline wind turbine.
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Sammendrag

I de senere år har mye arbeid blitt investert i design av ofshore vinturbiner. I dag har den største
av dem en diameter på 164 m. Belastningene fra vind og bølger vil i løpet av installasjonens
levetid kunne nå ekstremverdier. Derfor er en grundig analyse av de mekansike egenskaper i
designet påkrevd.

Isogeometrisk analyse ble introdusert i 2005 [5]. En av fordelene med denne er at den har
samme geometriske representasjon av objectet som skal analyseres som CAD programvaren.
Følgelig blir det ikke diskretiseringsfeil.

Med økende bladstørrelse blir vingene mer bøyelige. Ekstrembelastninger vil gi kraftige defor-
masjoner. Problemstillingen krever en ikke-lineær analyse for optimale resultater [21]

I denne avhandlingen har vi utviklet en statisk, ikke-lineær isogeometrisk finite element løser
i Matlab. Denne brukes bsplines som basisfunksjoner. Vi begynte arbeidet med studier av
bspline egenskapene, vi avledet så den lineære elastisitetslikningen, og implementerte an lineær
"finite element" metode i Matlabkode. Ut fra denne tok vi så steget til ikke-lineær analyse. Vi
avledet "the weak for for the updated langangian formulation". Og ut fra denne avledet vi den
ikke-lineære løseren som ble implementert i Matlab.

For verifiseringsformål ble den ikke-lineære løseren sammenlignet med analyseresultatene fra
NFE programmet IFEM. De to løsningene hadde høy grad av korrelasjon. Vi anvendte så den
ikke lineære løseren på en vindturbinbladet av "NREL offshore 5 NW basline".
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Chapter 1

Introduction

1.1 Wind turbine foil

In recent years much research has been invested in the development of offshore wind tur-
bines. Bigger wind turbines generate electrisity at a lower price pr kilowatt-hour and the
designed wind turbine foils have grown steadily during the last decade. [16] The world’s
biggest wind turbine per april 2014 is Vestas’s V164, which has a rotor diameter of 164m.

Figure 1.1.1: Evolution of the wind turbine size over time.

For comparison, this is 11 meters
taller than the height of UN’s head-
quarter in New York, of more then
twice the wingspan of Airbus A380,
the world’s largest passenger air-
liner. Figure (1.1.1) shows a visual
representation of the growth of wind
turbine dimensions during the last
25 years.

As the dimensions of the turbine
blades increase, so does complexity
in design. Turbine foils are sub-
jected to extreme peak wind loads
during their lifetime, and a detailed
study of the inherent strength of the design is required to verify design parameters, and to
predict lifetime. Turbines grow more flexible with increasing size. And the wind load grow
with the size of the blade. Thus, under peak wind loads, there may be a potential for large
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Figure 1.1.2: The relative size of a v164 rotor blade compared to nine english buses

deformations with high level of stress in the structure. Hence nonlinear analysis are required
for optimum results. [21].

1.2 Isogeometric Analysis

Computer Aided Engineering (CAE) plays an important role in the engineering world. Stress
analysis, thermal flow simulations and fluid-body interaction are all examples of problems
where the use of computer aided methods are essential. [13, 19, 14]. The Finite Element
Method (FEM) has been the focus of much research and refinement since it’s introduction in
the 1950’s. It is today a well established tool.

Another well established computer based tool is Computer Aided Design (CAD). CAD software
is used for design and visualization of two- and three dimensional objects, curves and surfaces.
CAD is used for both engineering and architectural design, as well as in computer animated
movies.[17, 9]
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CAD and CAE have been developed for different purposes. CAD-software is typically used to
design an object. The design may be followed by Finite Element Analysis (FEA) to analyse
the object properties. FEA requires a data representation of the CAD geometrical object. For
the standard Finite Element Method, a transformation of the geometry into a suitable mesh is
required. The transformation is time consuming. It has been estimated that as much as 80%
of the total computation time of an FEA is related to this process [5]. To visualize the scope
of this challenge: a modern nuclear submarine consist of more that 1 million parts [6]. Should
each part be subjected to a rigorous analysis, deadlines would be broken.

The aim of isogeometrical analysis is to fill the gap between CAD and FEA [7]. For many
geometrical objects the isogeometrical analysis reduce or remove the problem with model im-
perfection. Isogeometric Analysis is an approach to the Finite Element Method where one uses
the same basisfunction in both CAD and FEA. The most used basisfunctions in CAD packages
are build upon bsplines, and in this project we will explore the use of these.

The smooth geometry of a wind turbine blade is well suited to be modelled by splines. Thus,
isogeometrical analysis is a natural choice for the analysis of turbine blades. E.g. a fluid-
structure interaticion analysis could be solved using splines and isogeometrical analysis. It is
believed that the abilities of splines to represent smooth geometries accarately will renter the
computation more physically accurate. [20]

1.3 The aim of the project

The aim of this project is to construct a general static isogeometric nonlinear finite element
solver in Matlab with bsplines as basis functions. We will verify the code, and then apply the
solver on the wind turbine blade of the NREL offshore 5-MW baseline wind turbine for a chosen
load case.

1.4 Principle

We will begin the project by investigating the basic theory of bsplines and linear elasticity. We
will then focus on nonlinear elasticity and derive the weak form for the updated lagrangian
formulation. From this formulation we will derive a algorithm to be implemented in Matlab.
We will build a linear and a non-linear isogeometric solver. For verification of the code, the
solver will be compared to the isogeometric NFE program IFEM. We will then apply the solver
for analysis of the static displacement and stress in the NREL offshore 5-MW baseline wind
turbine foil resulting from a chosen load case.
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Figure 1.4.1: The wind foil under condiseration



Chapter 2

Isogeometric Basis

We will here explore some of the basic properties of Bsplines.

2.1 Bsplines

A Bspline, Li,p(ξ), is a piecewise polynomial of a degree p defined by it’s assosiated knot vector.
A knot vector, denoted Ξ = [ξ1, ξ2, ..., ξn+p+1], is a non-decresing set of numbers, Ξ ∈ R

l+p+1. n
is the number of basisfunctions of degree p we may extrude from that knot vector. The entries
of the vector, ξi, i = 1, ..., n + p + 1 are called knots. In this project we will exclusively operate
with open knot vectors. A knot vector Ξ = [ξ1, ξ2, ..., ξn+p+1] is said to be open if the first p + 1
and the last p + 1 indices are identical ,and no other knot in the non-decresing sequence may
appear more than p times. Or more formally, if it meets the following citeria:

n ≥ p + 1

ξi ∈ R for i = 1, ..., n + p + 1

ξi = ξ1 for i = 1, ..., p + 1

ξi = ξn+p+1 for i = n + 1, ..., n + p + 1

ξi ≤ ξi+1 for i = p + 1, ..., n

ξi < ξi+p+1 for i = 2, ..., n

6
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Li−p,p(ξ) Li−p+1,p(ξ) · · · Li,p(ξ)
տ ↑ տ↑ տ↑ տ↑ տ ↑
· · · · · · · · · · · · · · ·
տ ↑ տ ↑ տ ↑ տ ↑

Li−3,3(ξ) Li−2,3(ξ) Li−1,3(ξ) Li,3(ξ)
տ ↑ տ ↑ տ ↑

Li−2,2(ξ) Li−1,2(ξ) Li,2(ξ)
տ ↑ տ ↑

Li−1,1(ξ) Li,1(ξ)
տ ↑

Li,0(ξ)

Figure 2.1.1: Recurrence diagram for Cox-de Boor recursion formula (2.1)

A bspline is defined from it’s knot vector by the Cox-de Boor recursion formula:

Li,p=0(ξ) =







1 if ξ ∈ [ξi, ξi+1)

0 otherwise

Li,p≥1(ξ) =
ξ − ξi

ξi+p − ξi

Li,p−1 +
ξi+p+1 − ξ

ξi+p+1 − ξi+1

Li+1,p−1(ξ)

If ξi+p = ξi, the denominator in the first term in (2.1) will be zero, and we get division by zero.
As we shall soon se, the support interval of Li,p−1(ξ) will be zero as well. We get a 0

0
-term,

which we define to be 0. We do the same for the case ξi+p+1 = ξi+1

For ξ ∈ [ξi, ξi+1), Li,0 is the only non-zero bspline of degree p = 0. For p = 1, both Li−1,1

and Li,1 will have support. For p = 2, Li−2,2, Li−1,2 and Li,2 have support. To help visualize
this recursion, we have build a a recursion diagram.
For ξ ∈ [ξi, ξi+1) we get:.

From figure 2.1.1 it is easy to see agree to the following:

Non-zero basisfunctions:
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If x ∈ [ξi, ξi+1) , then

Lj,p(ξ) :







≥ 0 for j = i− p, ..., i

= 0 otherwis

From this it follows that:

Support intervall for Bsplines:

Li,p(ξ) :







≥ 0 for [ξi, ξi+p+1)

= 0 otherwise

2.1.1 Local support of Bsplines

Since Li,p(ξ) has support on [ξi, ξi+p+1) only, it is obviously independent of all other knots ξ < ξi

and ξ ≥ ξi+p+1. To illustrate which knots a bspline depend upon, we sometimes write Li,p(ξ)
as Li,p(ξ)[ξi−p, ..., ξi].

2.1.2 Some Bsplines

In figure (2.1.2), we have added plots of the bsplines of degree p = 1 and p = 2 for the knot
vectors Ξ = [0, 0, 1, 2, 2] and Ξ = [0, 0, 0, 1, 1, 2, 3, 3, 3] respectively. Using the Cox-de Boor
recursion formula (2.1) for different values of i, one get the different bspline functions. The
values are generated by a matlab script which loops through small increments in ξ from ξ1 to
ξn+1, iterating through (2.1) each time

2.1.3 Continuity Properties

As Bsplines are piecewise polynomials, they are C
∞ on each knot intervall. Over the knots,

however, it may be proved that they are C
p−m, where m is the multiplicity of that specific knot

within the Bsplines support. For example, see L3,2(ξ) = L3,2[0, 1, 1, 2](ξ) in figure (2.1.2b). The
knot 1 occures two times, and has multiplicity 2. It is a polynomial of second degree, hence
it is C

p−m = C
2−2 = C

0. This is easy to verify from figure (2.1.2a) and (2.1.2b). For knot 0,
L1,2(ξ) = L1,2[0, 0, 1](ξ) has multiplicity m = 2, hence it is C

2−3 = C
−1, i.e discontinuous over

this knot.
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1
XI = 0  0  1  2  2   ,p = 1

(a) The basisfunctions for the knot
vector Ξ = [0, 0, 1, 2, 2]
L1,1(ξ) = L1,1[0, 0, 1](ξ) is blue,
L2,1(ξ) = L2,1[0, 1, 2](ξ) is red,
L3,1(ξ) = L3,1[1, 2, 2](ξ) is green-

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
XI = 0  0  0  1  1  2  3  3  3   ,p = 2

(b) The six basisfunctions of
Ξ = [0, 0, 0, 1, 1, 2, 3, 3, 3] for p = 2.
L1,2(ξ) = L1,2[0, 0, 0, 1](ξ) is blue,
L2,2(ξ) = L2,2[0, 0, 1, 1](ξ) is red,
L3,2(ξ) = L3,2[0, 1, 1, 2](ξ) is green
L4,2(ξ) = L4,2[1, 1, 2, 3](ξ) is black
L5,2(ξ) = L5,2[1, 2, 3, 3](ξ) is yellow
L6,2(ξ) = L6,2[2, 3, 3, 3](ξ) is bright blue

Figure 2.1.2
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2.1.4 Partition of unity

The Bsplines Li,p(ξ), i = 1, ..., n defined from the knot vector Ξ = (ξi)
l+p+1
i=1 form a partition of

unity,i.e

l∑

i=1

Li,p(ξ) = 1

for all ξ ∈ [ξ1, ξn+p+1)

2.1.5 Derivatives of Bsplines

The derivative of a Bspline may easily be found by applying the formula below:

dLi,p

dξ
=

p

ξi+p − ξi

Li,p−1(ξ)−
p

ξi+p+1 − ξi+1

Li+1,p−1(ξ)

2.1.6 Linear Independence of Bsplines

Bsplines generated from an open knot vectors are linearly independent. From the indexing of
the nonzero basisfunctions (2.1), we saw that on each intervall [ξi, ξi+1], the p+1 basisfunctions
Li−p,p(ξ), ..., Li,p(ξ) have support. In other words, on each interval there are p + 1 linearly
independent polynomials of degree p. This means we can span Pp on each subintervall. Hence
we can represent any polynomial of degree p on the intervall [ξ1, ξn+p+1] as a linar combination
of Bsplines

2.2 Tensor Product of Bsplines

When we combine basic bsplines in linear combination and tensor products, it yields many
interesting results, and makes it easy to represent one-, two and tree dimensional shapes.

2.2.1 Spline curves

A bspline curve is defines in the following manner:

f(ξ) =
l∑

i=1

PiLi,p(ξ)
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where ci ∈ R
d, d = 1, 2, 3. If d = 1, we get a one dimensional curve. If d = 2 we get a curve in

the plane, and if d = 3 we get a volume curve in space.
In two- and three dimensions, Pi are called control points. As

∑l
i Li,p(ξ) = 1, f(ξ) may be

thought of as a weighted mean of the these control points. Figure 3.1.1 shows an example of
a 2D spline curve. The space of spline curves generated from the knot vector Ξ of degree p is
denoted as

S
s
Ξ,p =

{
l∑

i=1

PiLi,p(ξ) | Pj ∈ R
s ∀i

}

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

3.5

4

Figure 2.2.1: A 2D spline curve from the knot vector [0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1] The control
polygon is plotted in red, with the red dots as its control points.
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2.2.2 Spline surface

If we let Pi in (2.2.1) be a spline itself, we are left with a spline surface. We insert Pi =
∑m

j=1 Pi,jMj,q(η), Pi,j ∈ R
d into equation (2.2.1):

f(ξ, η) =
l∑

i=1





m∑

j=1

Pi,jMj,q(η)



Li,p(ξ)

=
l∑

i=1

m∑

j=1

Li,p(ξ)Mj,q(η) Pi,j

=
l∑

i=1

m∑

j=1

M i,j,p,q(ξ, η) Pi,j

where P ∈ R
s. Hence f : R

2 → R
s. If s = 3 for instance, f is a parametrized surface,

f : (ξ, η)→ (x, y, z)

2.2.3 Spline volumes

A similar argument as for spline surfaces gives us a spline volume.

f(ξ, η, ζ) =
l∑

i=1

m∑

j=1

o∑

k=1

Li,p(ξ)Mj,q(η)Ok,r(ζ), Pi,j,k Pi,j,k ∈ R
s

This is a mapping f : R3 → iRs. For s = 3, f is a parametrized volume. This is in fact how we
will represent our configuration Ω over where we wish to solve the elasticity equation.

2.2.4 Control polygon

We have mentioned that the P’s are called control points. The control points form what is called
the control polygon or the control net. The control polygon can be thought of as a scaffold,
or a rough sketch for how the final surface/volume will look like. A 2D control polygon is
illustraded in figure 2.2.2

2.2.5 Mapping in FEA

As mentioned in (2.2.3), we will represent our domain is as:

x(ξ, η, ζ) =
l∑

i=1

m∑

j=1

o∑

k=1

Li,p(ξ)Mj,q(η)Ok,r(ζ), Pi,j,k Pi,j,k ∈ R
3
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Figure 2.2.2: A 2D spline area. The red dots are the control points, and are marked with its
assosiated number. They form the control polygon. The blue area is the domain Ω.
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From now on we will distinguish between parameter space, Ω̂, where (ξ, η, ζ) live, and physical
space, where (x, y, z) is defined. Hence

x : Ω̂→ Ω

An visual representation of a 2D mapping is illustraded in figure (2.2.3)

η

η
max

η
min

ξ
min

ξ

x

Figure 2.2.3: Mapping from parameter space, Ω̂ to physical space, Ω. The mapping in itself is
surjective , but we will assume that Ξ,H and B are given so that we have injectivity as well.
Our method will not work otherwise.

2.3 Refinements

We will need strategies to refine our domain for the error evaluation in chapter 6. We will here
present two common refinement procedures called h-refinement and p-refinement.

2.3.1 h-refinement

In h-refinement, also known as knot insertion, we insert knots into our existing knot vector.
This makes the basis richer, and may or may not reduce the element size. In any case it makes
the solution space larger, which again makes our solution more accurate.

Our first action is to insert one or several knots into our knot vector Ξ. Let us call the new,
refined knot vector Ξ̃. The new knots ξi may be any ξ ∈ [ξ1, ξn+p+1) as long as it does not
interfere with the properties of an open knot vector (see chapter 2.1). If we insert a knot ξ
which is not present in Ξ, the element size is reduced. If we insert a knot ξ which is already
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present, i.e we increase the multiplicity of that knot, we reduce the continuity of the basis.
However, the way we choose our new control points will prevent any change to the spline itself.

Assume we are given a spline S ∈ Sp,Ξ. Sp,Ξ ⊆ Sp,Ξ̃ [10], hence any spline S ∈ Sp,Ξ may also be
represented by the basis in Sp,Ξ̃.

S =
l∑

i=1

Li(ξ)ci

=
l̃∑

i=1

M i(ξ)di

where M i, i = 1, ..., l̃ is the basis of Sp,Ξ̃. In fact, any basisfunctions Li(ξ) ∈ S ∈ Sp,Ξ may be
represented by the basis in S ∈ Sp,Ξ̃,

Lj(ξ) =
l̃∑

i=1

M iai,j (2.3.1)

We define the vector L =
[

L1(ξ), L2(ξ), . . . , Ln(ξ)
]

and M =
[

M1(ξ), M2(ξ), . . . , M l̃(ξ)
]

This

allows us to write (2.3.1) in vector form:

L = L̃A

By definning cT = (ci)
l
i=1 and dT = (di)

l̃
i=1 we may also write: S = Lc and S = Md Hence

Md = Lc = Ac

which yields d = Ac Matrix A is called the knot insertion matrix of degree p from Ξ to Ξ̃.

Generation the knot insertion matrix

We will not dig deeper into the theory behind the knot insertion matrix, but simply present an
algorithm for how to generating it. The algorithm is build upon theorem 4.6 in [10]. Note that
Ξ = (ξi), while Ξ̃ = (ξ̃i).

For i = 1...l̃
......Find µ : ξµ ≤ ξ̃i < ξµ+1
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......Calculate the 1× (p + 1) discrete bspline vector α

α =
[

αµ−p,p · · ·αµ,p

]

=







1 if p = 0

R1(ξ̃i+1) · · ·Rp(ξ̃i+p) if p > 0

......where Rk is the k × (k + 1) Bspline matrix with entries:

Ri,j
k =







τµ+i−ξ

τµ+i−τµ+i−k
if j = i

......
ξ−τµ+i−k

τµ+i−τµ+i−k
if j = i + 1

......

0 otherwise

......Define the ith row of A as [0, 0, . . . , 0
︸ ︷︷ ︸

µ−p+1

, α, 0, 0, . . . , 0
︸ ︷︷ ︸

n−µ

]

Knot Insertion in 2D

We will here present an algorithm for inserting knots into a 2D spline. The algorithm is very
similar in 3D. To do insert knots into a 2D bspline, we first modify our control polygon for the
changes in Ξ→ Ξ̃, and then for H → H̃:

S =
l∑

i=1

m∑

j=1

Li(ξ)Mj(η)

[

c
(x)
i,j

c
(y)
i,j

]

We then define Pi, di and ei in the following fashion:

Pi =







c
(x)
i,j=1 c

(y)
i,j=1

...
...

c
(x)
i,j=m c

(y)
i,j=md









CHAPTER 2. ISOGEOMETRIC BASIS 17

Now, we modify the control points for refinment in η-direction :

S =
l∑

i=1

Li(ξ)
(

Mci

)T

=
l∑

i=1

Li(ξ)
(

M̃(A1ci)
)T

=
l∑

i=1

Li(ξ)
(

M̃di

)T

=
m̃∑

j=1

M̃j(η)
l∑

i=1

Li(ξ)

[

d
(x)
i,j

d
(y)
i,j

]

We define dj =







c
(x)
i=1,j c

(y)
i=1,j

...
...

c
(x)
i=n,j c

(y)
i=n,j







and modify

[

d
(x)
i,j

d
(y)
i,j

]

for change in ξ-direction:

S =
m̃∑

j=1

M̃j(η)
(

Ldj

)T

=
m̃∑

j=1

M̃j(η)
(

L̃A2dj

)T

=
m̃∑

j=1

M̃j(η)
(

L̃ej

)T

=
l̃∑

i=1

m̃∑

j=1

L̃i(ξ)M̃j(η)

[

e
(x)
i,j

e
(y)
i,j

]

which yields the new l̃m̃ controlpoints

[

e
(x)
i,j

e
(y)
i,j

]

2.3.2 p-refinement

As for h-refinement, a p-refinement of a spline SΞ,H,Z,p,q,r → S̃
Ξ̃,H̃,Z̃,p+1,q+1,r+1

must not change

the image of the spline, i.e:

S(ξ, η, ζ) = S̃(ξ, η, ζ) ∀(ξ, η, ζ) ∈ Ω̂

To keep the continuity properties of the new splien S̃, we create the new knot vector Ξ̃, H̃
and Z̃ by increasing the multiplicity of each knot in Ξ,H and Z by one. This does not change
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the elements in parameter space. From section 2.1.6 we know that on each intervall we can
span any polynomials of order ≤ p. The elements are the same, hence Sp,q,r ⊂ Sp+1,q+1,r+1.
The question of creating S̃ is really just a question of choosing the right combination of the
basisfunctions Li(ξ)Mj(η)Ok(ζ) spanning S̃.

S̃ is a lmo dimensional space, where l, m and o are the number of basisfunctions from the
knot vectors Ξ̃,H̃ and Z̃ respectively. To find the lmo control points needed, we simply do a
general spline interpolation. We create a system MP = S, where M is a lmo× lmo matrix de-
fined as below (2.3.2), P is our matrix of new control points and S the old spline S evaluated in
the interpolation points. To ensure that the system has a unique solution,i.e M is nonsingular,
we choose the interpolation points to be

(ξ∗
i , η∗

j , ζ∗
k) : ξ∗

i =
ξi+1 + . . . ξi+(p+1)

(p + 1)
, η∗

j =
ηj+1 + . . . ηj+(q+1)

(q + 1)
and ζ∗

j =
ζk+1 + . . . ζk+(r+1)

(r + 1)
[10]

Here ξi ∈ Ξ̃, ηj ∈ H̃ and ζk ∈ Z̃. The system becomes (slett denne setningen: Itilde =
(i-1)*(m*o) + (j-1)*o + k;)












L1(ξ
∗
1)M1(η

∗
1)O1(ζ

∗
1 ) L1(ξ

∗
1)M1(η

∗
1)O2(ζ

∗
1 ) · · · Ln(ξ∗

1)Mm(η∗
1)Or(ζ

∗
1 )

L1(ξ
∗
1)M1(η

∗
1)O1(ζ

∗
2 ) L1(ξ

∗
1)M1(η

∗
1)O2(ζ

∗
2 ) · · · Ln(ξ∗

1)Mm(η∗
1)Or(ζ

∗
2 )

L1(ξ
∗
1)M1(η

∗
1)O1(ζ

∗
3 ) L1(ξ

∗
1)M1(η

∗
1)O2(ζ

∗
3 ) · · · Ln(ξ∗

1)Mm(η∗
1)Or(ζ

∗
3 )

...
...

...
L1(ξ

∗
n)M1(η

∗
m)O1(ζ

∗
r ) L1(ξ

∗
n)M1(η

∗
m)O2(ζ

∗
r ) · · · Ln(ξ∗

n)Mm(η∗
m)Or(ζ

∗
r )




















P111
...

Plmo









=









S(ξ∗
1 , η∗

1, ζ∗
1 )

S(ξ∗
1 , η∗

1, ζ∗
2 )

...
S(ξ∗

n, η∗
m, η∗

r)









MP = S

(2.3.2)

Both S and P are 3 × lmo matrice, having the control point’s x-coodrinate in column 1, y-
coordinate in column 2 and z-coordinate in column 3. We solve (2.3.2) for P, which together
with Ξ̃,H̃,Z̃ defines our new p-refined spline S̃.
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Figure 2.4.1: The 2D basisfunction Ñ1,2,3,3 and Ñ2,2,3,3 from the knot vectors Ξ = H =
[0, 0, 0, 0, 0.5, 1, 1, 1, 1]

2.4 Bsplines as basisfunctiosn in FEA

We will use Bsplines as basisfunctions in our Finite Element Analysis. We defined the scalar
basis function ÑĨ as

ÑĨ : Ω̂→ R

ÑĨ(ξ, η, ζ) = Li(ξ)Mj(η)Ok(ζ)

The relatoin Ĩ (i, j, k) is:

Ĩ = (i− 1)mo + (j − 1)o + k

We define the vector basis function, NI , the following way:

NI =







ÑĨ

[

1 0 0
]T

if I = 1, 4, 7, . . .

ÑĨ

[

0 1 0
]T

if I = 2, 5, 8, . . .

ÑĨ

[

0 0 1
]T

if I = 3, 6, 9, . . .

Figure(2.4.1) it is shows a ploit of two 2D scalar basisfunctions.



Chapter 3

Continuum Mechanics

We have assumed an isotrophic and homogenic material.

3.1 Important Definitions

3.1.1 Displacement

The displacement u = u( 0x), is the quantity we directly solve fore in our Isogeometical analysis.

u( 0x) =






u1

u2

u3




 is a vector function for how much a particle with positoin 0x before the load

was added will move.

3.1.2 Deformation Gradient

Before we can look deeper into the steps in the lagrangian description, we need to define some
terms we will soon need. The first we need to define is the deformation gradient F . Simply
said, the deformation gradient contains information of deformation and rotation on infinitesimal
level. F is defined in the following manner:

t
0F =








∂ tx1

∂ 0x1

∂ tx1

∂ 0x2

∂ tx1

∂ 0x3
∂ tx2

∂ 0x1

∂ tx2

∂ 0x2

∂ tx2

∂ 0x3
∂ tx3

∂ 0x1

∂ tx3

∂ 0x2

∂ tx3

∂ 0x3








=






∂x
∂X

∂x
∂Y

∂x
∂Z

∂y
∂X

∂y
∂Y

∂y
∂Z

∂z
∂X

∂z
∂Y

∂z
∂Z






t
0F iI is the element in row i and column I of F . Note the identity in notation between
0x1 = X, 0x2 = Y and 0x3 = Z.

20
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For an infinitesimal vector, d tx = [dx, dy, dz]T it follows from the chain rule that d tx = t
0F

0x.

x
2

x
3

d
0
x

d
t
x

x
1

Figure 3.1.1: Two infinitesimal arrows, d 0x and d tx. They are related via the linear transfor-
mation d tx = t

0Fd tx

Volume

Let us look at an infinitessimally small volume in the original configuration 0Ω, d 0Ω spanned

by the three vectors orthogonal vectors dx1 =






ds1
0
0




, dx2 =






0
ds2
0




 and dx3 =






0
0

ds3




. Its volume

is dΩ = (dx1× dx2) · dx3 Since the deformation gradient t
0F carries information relation d tx
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to d 0x, it comes a now suprise that is also is used to calculate d tΩ from 0Ω.

d tΩ = det( t
0F ) 0dΩ

The deformation tensor

The (right) Cauchy-Green deformation tensor is defined as:

t
0C = t

0F
T t

0F

3.1.3 Strain measures

Strain is a dimensionless quantity that describes the displacement of a relative to the adjacent
particles. One may define strain in many ways. Any definition, however, must give zero strain
for pure rigid body-deformations, and give the correct infinitesimal strains if we remove the
nonlinear terms. . Also, it should go towards +/−∞ for infinite strech/compression. [12].
In Voigt notation, the linear engineering strain is defined as:

ǫ = ∇u =













∂
∂X

0 0
0 ∂

∂Y
0

0 0 ∂
∂Z

∂
∂Y

∂
∂X

0
0 ∂

∂Z
∂

∂Y
∂

∂Z
0 ∂

∂X


















ux

uy

uz






The Green-Lagrange (GL)-strain is defined as:













Exx

Eyy

Ezz

Exy

Eyz

Ezx













=

















∂u
∂X

+ 1
2

(

( ∂u
∂X

)2 + ( ∂v
∂X

)2 + ( ∂w
∂X

)2
)

∂v
∂Y

+ 1
2

(

( ∂u
∂Y

)2 + ( ∂v
∂Y

)2 + ( ∂w
∂Y

)2
)

∂w
∂Z

+ 1
2

(

( ∂u
∂Z

)2 + ( ∂v
∂Z

)2 + (∂w
∂Z

)2
)

1
2

(
∂u
∂Y

+ ∂v
∂X

)

+ 1
2

(

( ∂u
∂X

)( ∂u
∂Y

) + ( ∂v
∂X

)( ∂v
∂Y

) + ( ∂w
∂X

)( ∂w
∂Y

)
)

1
2

(
∂v
∂Z

+ ∂w
∂Y

)

+ 1
2

(

( ∂u
∂Y

)( ∂u
∂Z

) + ( ∂v
∂Y

)( ∂v
∂Z

) + ( ∂w
∂Y

)(∂w
∂Z

)
)

1
2

(
∂w
∂X

+ ∂u
∂Z

)

+ 1
2

(

( ∂u
∂Z

)( ∂u
∂X

) + ( ∂v
∂Z

)( ∂v
∂X

) + (∂w
∂Z

)( ∂w
∂X

)
)

















in Voigt notation and:

t
0Eij =

1

2

(
t
0ui,j + t

0uj,i

)

+
1

2

(
t
0uk,i

t
0uk,j

)
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on tensor form. Other, equivalent definitions are:

t
0E =

1

2
( t

0C − I)

Eij =
1

2
(F iJF iJ − δIJ)

3.1.4 Stress (measures)

We will use two stress measures in this project, Cauchy stress and second Piola-Kirchhoff stress
(PK2).

Cauchy stress, denoted σ, is defined as current force divided by current area. [12]. It is
the true, physical stress that arises in a physical configuration when it is subjected to stress.
The PK2-stress is a useful theoretical quantity which is defined as current force mapped into
the reference configuration divided by a reference area. [18]. The relation between Cauchy
stress and PK2 stress is:

σij =
1

J
F iIF jJSIJ (3.1.1)

where J = det(F ). [11].

3.1.5 Traction

Traction is cauchy stress that is assosiated with a surface. This surface could be a given surface
within the configuration, or the outer surface of the configuration. [4]



Chapter 4

Linear Elasticity

We will start our approach towards nonlinear finite element analysis by looking at the linear
finite element method. The Updated Lagrangian Description we will use later builds upon this
method. Linear Finite Element analysis leans upon the assumptions of a the linear material
law and a liner strain displacement relation. The first assumption requires small strains, while
the latter requires small displacements.

We will now derive the linear elasticity equation,∇u = −f , as this gives a fundamental under-
standing of the physical problem. From the linear elasticity equation we will derive the weak
from, from wich we will eventually assebmle the linear system.

4.1 Deriving the linear elasticity equation

In our static analysis we will consider two kinds of forces action on our body; body forces and
traction forces. Body forces are forces that acts on the body itself, like magnetic forces, gravi-
tation forces or forces arising from thermal expansion. The traction forces act on the boundary
of our body, like weight upon a bridge.

Figure (4.1.1) shows a principal 2D sketch of an infinitesimally small element within a configura-
tion (domain), subjected to body forces f and traction forces σ along its borders. For a similar

3D infinitesimal element, we define We define σx =
[

σxx σxy σxz

]T
, σy =

[

σyx σyy σyz

]T

24
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∆y

∆x

-σy(x, y -      )

(x,y)

∆y

2

σy(x, y +      )
∆y

2

-σx(x -     , y)
∆x

2

σx(x +     , y)
∆x

2

σyy

σyx

σxy

σxx

Figure 4.1.1: Forces acting on an infinitesimal element. The figure is insipred by figure 9.3 in
[4]

and
[

σzx σzy σzz

]T
. The basic static equalibrium equations yield;

−∆y∆z σx(x−
∆x

2
, y, z) + ∆y∆z σx(x +

∆x

2
, y, z)

−∆x∆z σy(x, y −
∆y

2
, z) + ∆x∆z σy(x, y +

∆y

2
, z)

−∆x∆y σz(x, y, z −
∆z

2
) + ∆x∆y σz(x, y, z +

∆z

2
)

= −f(x, y, z)∆x∆y∆z

where f(x, y, z) is the body force pr. unit area. We divide by ∆x∆y∆z. As ∆x and ∆y go
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towards zero, we get:

1

∆x

(

−σx(x−
∆x

2
, y, z) + σx(x +

∆x

2
, y, z)

)

1

∆y

(

−σy(x, y −
∆y

2
, z) + σy(x, y +

∆y

2
, z)

)

1

∆z

(

−σz(x, y, z −
∆z

2
) + σz(x, y, z +

∆z

2
)

)

= −f(x, y, z)

∆x→ 0 , ∆y → 0 and ∆z → 0⇒

∂σx

∂x
+

∂σy

∂y
+

∂σz

∂z
= −f

[
∂

∂x
∂

∂y
∂
∂z

]






σx

σy

σz




 = −f

[
∂

∂x
∂

∂y
∂

∂x

]






σxx σxy σxz

σyx σyy σyz

σzx σzy σzz




 = −






fx

fy

fz






[
∂

∂x
∂

∂y
∂

∂x

]






σxx σyx σzx

σxy σyy σzy

σxz σyz σzz




 = −






fx

fy

fz






∇σ = −f

Note that σij is a symmetric stress tensor, i.e σij = σji.
We have now arrived with the problem we wish to solve in linear elasticity:

Find u such that:

∇σ(u) = −f (4.1.1)

u = uD on ΓD

σ n = h on ΓN

where σ = Cǫ(u) = C∇uf
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4.2 Deriving the weak form

We will now derive its the weak form of problem (4.1.1). The theory in this section is in cor-
relation with [4].

We will here utilize the geometrical relationship between ǫ and u, and the physical relationship
between σ and u. We search for a u ∈ R

3 such that σ(u) forfills (4.1.1). The derivatives of
u will later be integrated, so we define the solution space to consist of those u where that are
suited for this;

u ∈ U = {u|u ∈ H1, u = uD on ΓD}

∇σ(u) is a vector, hence (4.1.1) is a system of the three equations:

∂σ11

∂x1

+
∂σ21

∂x2

+
∂σ31

∂x3

= −f1

∂σ12

∂x1

+
∂σ22

∂x2

+
∂σ32

∂x3

= −f2

∂σ13

∂x1

+
∂σ23

∂x2

+
∂σ33

∂x3

= −f3

(slett: (Jacob fish s. 67, s. 224). ) We multiply each of these two equations by a testfunction
vi ∈ V . We define V = Hk(Ω) = {f ∈ L2(Ω) : Dαf ∈ L2(Ω)∀α : |α| ≤ k} to ensure that all
the integrals that contain vi are well defined.

∂σ11

∂x1

v1 +
∂σ21

∂x2

v1 +
∂σ31

∂x3

v1 = −f1v3

∂σ12

∂x1

v2 +
∂σ22

∂x2

v2 +
∂σ32

∂x3

v2 = −f2v3

∂σ13

∂x1

v3 +
∂σ23

∂x2

v3 +
∂σ33

∂x3

v3 = −f3v3

We integrate over Ω and add the terms together: :

3∑

i=1

3∑

j=1

∫

Ω

∂σij

∂xi

vj dΩ = −
3∑

j=1

∫

Ω
fjvj dΩ (4.2.1)

The formula for integration by parts for higher dimensions states,
∫

Ω

∂σij

∂xi

vj dΩ =
∫

Γ
σijvjni dΓ−

∫

Ω
σij

∂vj

∂xi

dΩ
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where ni is the i-th component of the outward normal vector n at that point on Γ. We apply
this identity into (4.2.1):

3∑

i=1

3∑

j=1

∫

Ω

∂σij

∂xi

vj dΩ = −
3∑

j=1

∫

Ω
fjvj dΩ

3∑

i=1

3∑

j=1

∫

Γ
σijvjni dΓ−

3∑

i=1

3∑

j=1

∫

Ω
σij

∂vj

∂xi

dΩ = −
3∑

j=1

∫

Ω
fjvj dΩ

3∑

i=1

3∑

j=1

∫

Ω
σij

∂vj

∂xi

dΩ =
3∑

j=1

∫

Ω
fjvj dΩ +

3∑

i=1

3∑

j=1

∫

Γ
σijvjni dΓ (4.2.2)

Note that, according to the linear relation between engineering strain ǫij and u,

ǫij(v) =







∂vi

∂xj
if i = j

∂vi

∂xj
+ ∂vj

∂xi
if i 6= j

We apply this relation to equation (4.2.2):

3∑

i=1

3∑

j=1

∫

Ω
σij

∂vj

∂xi

dΩ =
3∑

j=1

∫

Ω
fjvj dΩ +

3∑

i=1

3∑

j=1

∫

Γ
σijvjni dΓ

3∑

i=1

3∑

j=i

∫

Ω
σijǫij dΩ =

3∑

j=1

∫

Ω
fjvj dΩ +

3∑

i=1

3∑

j=1

∫

Γ
σijvjni dΓ

Using Voigt notation,

ǫ =













ǫ11

ǫ22

ǫ33

ǫ12

ǫ23

ǫ31













, σ =













σ11

σ22

σ33

σ12

σ23

σ31













f =






f1

f2

f3






we get:

∫

Ω
ǫT (v)σ(u) dΩ =

∫

Ω
vTf dΩ +

∫

Γ
vT σn dΓ

We then insert σ = Cǫ(u)
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∫

Ω
ǫT (v)Cǫ(u) dΩ =

∫

Ω
vTf dΩ +

∫

ΓD

vT σn dΓ +
∫

ΓN

vT σn dΓ

The weak form becomes:

Weak form:

Find u ∈ V such that

a(u, v) = F (v) ∀v ∈ V (4.2.3)

where

a(u, v) =
∫

Ω
ǫT (v)Cǫ(u) dΩ

F (v) =
∫

Ω
vTf dΩ +

∫

Γ
vT σn dΓ

V = {v|v ∈ H1, v = 0 on ΓD}

4.2.1 Galerkin method

Lax-Milgram’s lemma states that there exist one unique solution to (4.2.3). However, the space
V may be infinite dimensional, and the task (4.2.3) of finding a function u that works for all
v ∈ V may be far beyond reach. We therefor approximate V to finite dimensional subspace:

V h = {vh | vh ∈ H1(Ω), vh|Γ = 0} ⊆ V

Hence, we reformulate equation (4.2.3) to:

Weak form (discrete). Find uh ∈ V h such that

a(uh, vh) = F (vh) ∀vh ∈ V h (4.2.4)
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Since we use an approximating to the possibly infite space V , the answer of problem (4.2.4)
will in general no longer give us the exact answer. It can however be shown that the solution
of problem (4.2.4) will always be the best possible solution within that space [15]. By best
possible we mean the solution that minimizes the energy norm ||uexact − uh||a.

4.3 Assembling the linear system

Given (4.2.4), we want to assemble a linear system we can solve using matix manipulation.
According to our choise of basisfunctions, we may write the possible displacement fields u as

u = NU = NIUI (4.3.1)

where N = [N1N2, ..., N3lmo] and the repeated index imply summation. Also, we may write the
test function v as

v = NV = NJVJ

since they come from the same function space. U and V are here two coefficient vectors. We
insert (4.3.1) into (4.2.4):

a(NIUI , v) = F (v) ∀v ∈ V h

a(NI , v)UI = F (v) ∀v ∈ V h

This must hold for all v ∈ V h, which is equivalent of saying that it must hold for all the
basisfunctions spanning V h. Since a and F are bilinear and linear respectivly, and V h =
span{N1, N2, ...NNndof

}, we get:








a(N1, N1) a(N2, N1) ... a(Nndof , N1)
a(N1, N2) a(N2, N2) ... a(Nndof , N2)

. . .
a(N1, Nndof ) a(N2, Nndof ) ... a(Nndof , Nndof )
















U1

U2
...

Undof









=









F (N1)
F (N2)

...
F (Nndof )









(4.3.2)

Av = F

where A is the stiffness matrix. Implementation detilas for A and F can be found in Appendix
C.

4.4 Boundary conditions

In this thesis we have consider homogeneous dirichlet boundary conditions and neumann bound-
ary conditions. Homogeneous dirichlet boundary conditions represent areas there the configura-
tion is fixed. Neumann boundary condtions represent areas where the configuration is subjected
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to pressure.

4.4.1 Dirichlet Boundary Conditions

The solution u(x, y, z) must be zero on the areas where we have homogeneous dirichlet bound-
ary conditions. We do this by simply removing those basisfunctions ÑĨ which has support over
this area from the linear system (4.3.2). Or more accurately, we never even calculate them,
and remove their corresponding rows and columns.

Note that without dirichet boundary conditions, six of the eigenvalues of the stiffness matrix
A will be zero (the six degrees of freedom). A will be singular, and we will not get a solution.

4.5 Neumann boundary Conditions

The neumann conditions along the boundary, σ · n = h on ΓN , ends up as a part on the load
vector F via the integral

∫

ΓN
NT

J σn dΓ. Evaluation of this integral is described in Appendix
C.



Chapter 5

Nonlinear Finite Element Analysis

We will now take the leap to nonlinear finite element analysis. When the deformation of the
configuration becomes large, the linear strain-displacement relationship we have used so far
becomes inaccurate. Also, changes in volume and shape may be inadmissible to neglect.

In a nonlinear finite element method, the load is typically divided into load increments. For
each load step we use some form of numerical method to iterate until we get the satisfied
accuracy. A graphical representation of this technique is shown in figure (5.0.1).

5.0.1 Variational Formulations

There are two common variational descriptions for the nonlinear problem. The first is called
the total lagrangian (TL) formulation. The total lagrangian formulation uses the original con-
figuration as reference configuration, and the energetically conjugate Green-Lagrange strain
and the PK2 stress tensor are normally used.

The other formulation is called the Updated Lagrangian (UL) formulation. The UL formulation
uses the current configuration as reference configuration. We have programmed a nonlinear
isogeometric solver in Matlab using the UL formulation. We will therefore go through the
mathematical theory behind the UL formulation in some detail. This will eventually result in
the nonlinear algorithm underlying our Matlab code.

5.1 Updated Lagrange

The updated lagrangian description is a variational description where we may use a nonlinear
strain-displacement law and a nonliner stress-strain relation. In this project, we have looked at

32
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3
F

2
F

1
F

1
U

2
U

3
U

U

F

Figure 5.0.1: A principle sketch of the load path, were we add the load vector R in increments.
This figure is is a modified version of figure (2.5) in [8]
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nonlinearity in strain only, and we will use a linear stress-strain law.

The following theory and notation is compiled from [1]. Note that this notation may differ at
some points from more commonly used nomenclature. For a introduction to the notation, see
Appendix A.

5.1.1 Weak form

We will derive the weak for the updated lagrangian description by using the principle of virtual
displacement. This principle relies on the fact that, for a given perturbation of the configuration,
the sum internal work must equal the sum external work.

δWint = δWext

For small perturbation, the work induced by the stress variation has neglectable influence.
Hence

∫

t+∆tΩ
δ t+∆teij

t+∆tσij
t+∆tdΩ =

∫

t+∆tΩ
(δu)T t+∆tf t+∆tdΩ +

∫

t+∆tΓ
(δu)T t+∆th t+∆tdΓ

= t+∆tR (5.1.1)

This left hand side of (5.1.1) is energy conjugate to
∫

tΩ δ t+∆t
tEij

t+∆t
tSij

tdΩ. This yields:
∫

tΩ
δ t+∆t

tEij
t+∆t

tSij
tdΩ = t+∆tR (5.1.2)

Note the following relations of the PK2 stress and nonlinear strain:

t+∆t
tSij = t

tSij + tSij = tσij + tSij (5.1.3)
t+∆t

tEij = t
tEij + tEij = tEij (5.1.4)

tEij is the strain increment from configuration tΩ to t+∆tΩ. tu is the corresponding increment
in displacement. This gives ut the expression for tEij:

tEij =
1

2
( tui,j + tuj,i) +

1

2
( tuk,i tuk,j) (5.1.5)

Repeated indices imply summation, and tui,j means ∂ui

∂ txj
. The first term in (5.1.5) is linear in

ui, while the second term is nonlinear in ui. We now split the strain into two parts, one linear
and one nonlinear.

tEij =
1

2
( tui,j + tuj,i) +

1

2
( tuk,i tuk,j)

= tǫij + tβij (5.1.6)



CHAPTER 5. NONLINEAR FINITE ELEMENT ANALYSIS 35

The strain increments induced from a small perturbation δu becomes:

δ tEij = δ tǫij + δ tβij

δ tǫij =
1

2
(( tu + δ tu)i,j + ( tu + δ tu)j,i)−

1

2
( tui,j + tuj,i)

=
1

2
(δ tui,j + δ tuj,i) (5.1.7)

Note that ǫij is a constant for a given virtual displacement δu. A similar argument reveals that
δ tβij is linear in ui:

δ tβij =
1

2
(( tu + δ tu)k,i( tu + δ tu)k,j)−

1

2
( tuk,i tuk,j)

=
1

2
( tuk,i tuk,j + tuk,iδ tuk,j + δ tuk,i tuk,j + δ tuk,iδ tuk,j)−

1

2
( tuk,i tuk,j)

=
1

2
( tuk,iδ tuk,j + δ tuk,i tuk,j) (5.1.8)

We then insert expressions from (5.1.3) (5.1.4) and (5.1.6) into (5.1.2):
∫

tΩ
δ t+∆t

tEij
t+∆t

tSij
tdΩ = t+∆tR

∫

tΩ
(δ tǫij + δ tβij)(

tσij + tSij)
tdΩ = t+∆tR

∫

tΩ
δ tǫij

tσij + δ tβij
tσij + (δ tǫij + δ tβij) tSij

tdΩ = t+∆tR
∫

tΩ
δ tǫij

tσij
tdΩ +

∫

tΩ
δ tβij

tσij
tdΩ +

∫

tΩ
δ tEij tSij

tdΩ = t+∆tR

Until now, all we have done is continuum mechanics. As we mentioned in the beginning of this
chapter, we will add the external loads incrementally. The load vector R is a function of time.
We first solve the load vector t1R, then add the load increment ∆R = t2R− t1R and solve the
system again. Figure (5.0.1) illustrates the procedure. This means that for a given time t, tU ,
tΩ and tσ are all known. We move the known quantities to the right hands side and keep the
unknown integrals on the left hand side:

∫

tΩ
δ tβij
︸ ︷︷ ︸

unknown

tσij
tdΩ

︸ ︷︷ ︸

known

+
∫

tΩ
δ tEij
︸ ︷︷ ︸

unknown

tSij
tdΩ

︸ ︷︷ ︸

unknown

= t+∆tR
︸ ︷︷ ︸

known

−
∫

tΩ
δ tǫij
︸ ︷︷ ︸

known

tσij
︸︷︷︸

known

tdΩ

This is actually our weak formulation:
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Weak form:

Find tu such that

∫

tΩ
δ tEij tSij

tdΩ +
∫

tΩ
δ tβij

tσij
tdΩ = t+∆tR−

∫

tΩ
δ tǫij

tσij
tdΩ

(5.1.9)

for any small virtual displacement δu.

5.2 Linearisation and discretisation

Since we will do this with the finite element method, we somehow need to transform (5.1.9)
into a linear system. The weak form (5.1.9) contains nonlinear terms. We will now show we
linearise them and obtain a system on the form

t
tK∆U = t+∆t

t+∆tR−
t
tF

where t
tK is the tangent stiffness matrix, t+∆t

t+∆tR is the external force vector at time t + ∆t, and
t
tF is the internal force vector at time t.

5.2.1 The integral
∫

tΩ δ tEij tSij
tdΩ

In this thesis, we use a linear stress-strain relation. The stress increment is tSij = tCijrs tErs,
where tCijkl is the material moduli in the current configuration. We linearise the integral in
the following manner:

∫

tΩ
δ tEij tSij

tdΩ =
∫

tΩ
δ tEij tCijrs tErs

tdΩ

=
∫

tΩ
(δ tǫij + δ tβij) tCijrs( tǫrs + tβrs)

tdΩ

≈
∫

tΩ
δ tǫij tCijrs tǫrs

tdΩ (5.2.1)

Here we approximated tEij ≈ tǫij and δ tEij ≈ δ tǫij. This approximation holds whenever the
time between two load increments small, i.e whenever ∆t is small.
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Assembly of
∫

tΩ δ tǫijCijrs tǫrs
tdΩ

The vectors tu, tǫ and there virtual pairs are defined as follows:

tu = tN∆U

δ tu = tNδU

tǫ = ∇ tu = ∇ tN∆U = B∆U

δ tǫ = BδU

We arrange the tensor tCijrs into matrix form in the following manner.

tC =













tC1111 tC1122 tC1133 0 0 0

tC2211 tC2222 tC2233 0 0 0

tC3311 tC3322 tC3333 0 0 0
0 0 0 tC1212 0 0 0
0 0 0 0 tC2323 0 0
0 0 0 0 0 tC3131













The integral under consideration (5.2.1) becomes:
∫

tΩ
δ tǫij tC tǫrs

tΩ =
∫

tΩ
(δ tǫ

T ) tC( tǫ)
tdΩ

=
∫

tΩ
δUT BT

tCB∆U tdΩ

= δUT

(
∫

tΩ
BT

tCijrsB
tdΩ

)

∆U

= δUT
tKM∆U

where the material stiffness matrix KM is defined as tKM =
∫

tΩ BT
tCijrsB

tdΩ

5.2.2 The integral
∫

tΩ δ tβij
tσij

tdΩ

As we saw in (5.1.8), δ tβij is a linear term. Since tσij is known, this integral is linear with
respect to ui.

Assembly

We want to discretise this integral into a linear system. tβ, the nonlinear part of the strain
increment we defined in (5.1.6):

tβ =
1

2
( tuk,i tuk,j)
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In voight notation, when it is discretized, we write:

∂ tu

∂ txi

= tu.,i =








∂ tu1

∂ txi
∂ tu2

∂ txi
∂ tu3

∂ txi








=
∂ tN∆U

∂ txi

=
∂ tN

∂ txi

∆U

=








∂Ñ1

∂ txi
0 0 ∂Ñ2

∂ txi
0 0 ...

0 ∂Ñ1

∂ txi
0 0 ∂Ñ2

∂ txi
0 ...

0 0 ∂Ñ1

∂ txi
0 0 ∂Ñ2

∂ txi
...





















∆U1

∆U2

...

∆UNbf














Note that Ĩ refer to a scalar basis function ÑĨ(x, y, z) ∈ R, while I refer to the vector basis
function NI(x, y, z) ∈ R

3. Ĩ = 1, ..., lmo, while I = 1, ..., 3lmo. See Appendix A for the relation
Ĩ ∼ I.

tuk,i =
∂ÑĨ

∂ txi

∆UI(Ĩ) (sum over Ĩ) (5.2.2)

δ tuk,i =
∂ÑĨ

∂ txi

δUI(Ĩ) (sum over Ĩ) (5.2.3)

The definition of δβ is from (5.1.8)

δ tβij =
1

2
(δ tuk,i tuk,j) +

1

2
( tuk,iδ tuk,j) (5.2.4)

We insert expression (5.2.2) and (5.2.3) to (5.2.4)

δ tβij
tσij =

1

2
(δ tuk,i tuk,j + tuk,iδ tuk,j)

tσij

=
1

2

(

tÑ Ĩ,iδUI(Ĩ) tÑ J̃ ,j∆UJ(J̃) + tÑ Ĩ,i∆UI(Ĩ) tÑ J̃ ,jδUJ(J̃)

)
tσij

= tÑ Ĩ,iδUI(Ĩ) tÑ J̃ ,j∆UJ(J̃)
tσij

= δUI(Ĩ)

(

tÑ Ĩ,i
tσij tÑ J̃ ,j

)

∆UJ(J̃)
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Hence:
∫

tΩ

tσijδ tβij
tdΩ =

∫

tΩ
δUI(Ĩ)

(

tÑ Ĩ,i
tσij tÑ J̃ ,j

)

∆UJ(J̃)
tdΩ

= (δU)T








t
tG11

t
tG12

t
tG13 ... t

tG1Nbf
t
tG21

t
tG22

t
tG23 ... t

tG2Nbf

...
t
tGNbf 1

t
tGNbf 2

t
tGNbf 3 ... t

tGNbf Nbf








∆U

(5.2.5)

where t
tGĨJ̃ is a 3× 3 block matrix:

t
tGĨJ̃ = I(3×3)

∫

tΩ
tÑ Ĩ,i

tσij tÑ J̃ ,j
tdΩ

We define

t
tKG =








t
tG11

t
tG12

t
tG13 ... t

tG1Nbf
t
tG21

t
tG22

t
tG23 ... t

tG2Nbf

...
t
tGNbf 1

t
tGNbf 2

t
tGNbf 3 ... t

tGNbf Nbf








(5.2.6)

Hence equation (5.2.5) becomes

∫

tΩ

tσijδ tβij
tdΩ = δUT t

tKG∆U

Details for how to calculate KG may be found in Appendix D).

5.2.3 Assembly of
∫

tΩ δ tǫij
tσij

tdΩ

For a given δu, all the therm in the integral
∫

tΩ δ tǫij
tσij

tdΩ are known. δ tǫij is given by
equation (5.1.7). We discretize it the following way:

δ tǫ = ∇( tu + δ tu)−∇ tu = ∇δ tu = ∇ tNδ tU = Bδ tU

∫

tΩ
δ tǫij

tσij
tdΩ =

∫

tΩ
δ tǫ

T tσ tdΩ

= δ tU
T
∫

tΩ
BT tσ tdΩ

= δ tU
T t

tF
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5.2.4 The external virtual work

t+∆t
tR =

∫

tΩ
δui

t+∆tf i
tdΩ +

∫

tΩ
δui

t+∆th tdΩ

=
∫

tΩ
δuT t+∆tf tdΩ +

∫

tΩ
δuT t+∆th tdΩ

=
∫

tΩ
δUT

tN
T t+∆tf tdΩ +

∫

tΩ
δUT

tN
T t+∆th tdΩ

= δUT

(
∫

tΩ
tN

T t+∆tf tdΩ +
∫

tΩ
tN

T t+∆th tdΩ

)

= δUT t+∆t
tR

where f is the body force, and h is the traction force.
We will now summarize what we have done on the previous pages to form the linear system
t
tKT ∆U = R− F .

5.3 Assembling the linear system

From equation (5.1.9) we had the following equation:

Find tu such that

∫

tΩ
δ tβij

tσij
tdΩ +

∫

tΩ
δ tǫij tSij

tdΩ = t+∆tR−
∫

tΩ
δ tǫij

tσij
tdΩ

for any small virtual displacement δu.

We now insert the discretized versions of each on the integrals in (5.3). This gives us:

∫

tΩ
δ tβij

tσij
tdΩ +

∫

tΩ
δ tǫij tSij

tdΩ = t+∆tR−
∫

tΩ
δ teij

tσij
tdΩ

δUT t
tKG∆U + δUT

tKM∆U = δUT t+∆t
tR− δ tUT t

tF

δUT
(

t
tKG + tKM

)

∆U = δUT
(

t+∆t
tR−

t
tF
)

This must hold for any virtual displacement δu = tNδU , hence it must hold for any δU . This
is equivalent to say that the following equality must hold:



CHAPTER 5. NONLINEAR FINITE ELEMENT ANALYSIS 41

t
tKT ∆U = t+∆t

tR−
t
tF (5.3.1)

where

t+∆t
tR =

∫

tΩ
tN

T t+∆tf tdΩ +
∫

tΩ
tN

T t+∆th tdΩ

t
tF =

∫

tΩ
BT C t

0ǫ
tdΩ

t
tKT = tKM + t

tKG,

tKM =
∫

tΩ
BT CijrsB

tdΩ

and t
tKG is defined as in (5.2.6). Impementation details for F and

5.4 Comments to the linear system

The linear system (5.3.1) does not represent (5.1.9) perfectly, in that the second intergral in
(5.1.9),

∫

tΩ δ tǫij tSij
tdΩ, has been linearized. As mentioned in (5.2.1), this approximation is

good when tu is small. To assure this, we will divide the external load, the body force f and
the traction force h into many load steps

5.5 The Nonlinear Algorithm

The algorithm we present here is the core of our matlab code. For each load case, the algorithm
calculates the terms in (5.3.1), solve for ∆U , and update the configuration. It iterates until
equalibrium, and start over again on the next load increment.
Start with configuration t0Ω.

for time t = t1, t2, ..., tn.
......(We have tU, tΩ)
......(We wish to find t+∆tU : t+∆tF ( t+∆tU) = t+∆t

t+∆tF = t+∆t
t+∆tR.)

......(We know (from last time step) that t
tF = t

tR)

......Update the external forece vector according to the new load;

............ t+∆t
tR =

∫

tΩ tN
T t+∆tf i

tdV +
∫

tΓ tN
T t+∆thi

tdΓ
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......Calculate t
tKT = tKM + t

tKG,
............ tKM =

∫

tΩ BT CB tdV .

............ t
tK

ab
G = I3×3

∫

tΩ tNa,i
tσij tN b,j

tdV

......Set t+∆t
t+∆tF

(0) = t
tF , t+∆t

t+∆tR
(0) = t+∆t

tR, t+∆tU (0) = tU and k = 1.

...... t+∆t
t+∆tK

(0)
T = t

tK.

......r(0) = t+∆t
t+∆tR

(0) − t+∆t
t+∆tF

(0) (out of balance term)
......While ||r(k−1)|| > tol

............Find ∆U (k) : t+∆t
t+∆tK

(k−1)
T ∆U (k) = r(k−1)

............ t+∆tU (k) = t+∆tU (k−1) + ∆U (k)

............Update t+∆tΩ

............Calcualte t+∆t
t+∆tK

(k)
T

............Calculate t+∆t
t+∆tR

(k)

............Calculate t+∆t
t+∆tF

(k) (see D.2).

............r(k) = t+∆t
t+∆tR

(k) − t+∆t
t+∆tF

(k)

............k = k + 1

......end
end



Chapter 6

Verification of the linear isogeometric
solver

6.0.1 Problem setup

We have tested our linear solver by comparison against several different analytic solutions to the

differential equation ∇σ = −f . The error, ||e||a = ||u − uh||a =
√

a(u− uh, u− uh) converged
to zero for all test solutions. For the analytic solution

u =






(x4 − 1)(y4 − 1)(z4 − 1)
(x4 − 1)(y4 − 1)(z4 − 1)
(x4 − 1)(y4 − 1)(z4 − 1)




 (6.0.1)

we will examine the error, and use it as a mean to verify our Matlab code. u is a solution to
∇σ = −f on the cube [−1, 1]3, where f is found by solving f = −∇Cǫ(u). An advantage of the
analytic solution 6.0.1 is that we obtain accurate results in the evaluation of the energynorm
when we use ≥ 5 gauss points in each direction.
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For our finite element analysis, uh is the best possible approximation within V h to the analytic
solution u, measured in the energy norm. [22] For a situation where the solution space V h

contains u, the approximation uh would equal u exactly, and no interesting error analysis could
occur. To avoid this, we perturb the inner control point of the one-element, p = 2 control
polygon associated with identity mapping from the unit cube Ω̂ to Ω. We then use h- and
p-refinement as described in section (2.3.1) and (2.3.2) to transform this coarse discretization

to the current order and number of elements. We therefor get the same mapping x : Ω̂ → Ω
for all the error evaluations in the error plots (6.0.5). See figure (6.0.2) for a visual description
of the control polygons.
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Figure 6.0.1: The analytic solution (6.0.1): (a) is a vector plot of the vector field u(x, y, z) over
the domain Ω = [−1, 1]3. (b) shows the scalar value, uscalar = (x4− 1)(y4− 1)(z4− 1), over the
horizontal surface z = 0. uscalar represent the x−, y− and z-coordinate to the arrows in (a)
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(a)
(b)

Figure 6.0.2: The perturbed control polygons: (a) is the control polygon for a one-element
second order discretization of [−1, 1]3. The inner control point is perturbed to avoid identity
mapping. (b) is the control polygon for a one-element third order discretization of [−1, 1]3.
This polygon is a refined version of (a)

6.0.2 Error plots

The upper bound for the error is given as

||u− uh||a ≤ c hp||u||a [3]

where c is a constant. The number of degrees of freedom, ndof ∼ O(h−3) where h is the
maximum element size in any direction. For sufficiently large values of ndof :

ndof ≤ Ch−3 ⇒ log(h) ≤ −
1

3
log(ndof)

||u− uh||a
||u||a

≤ chp ⇒ log

(

||u− uh||a
||u||a

)

≤ p log(h)

Hence

log

(

||u− uh||a
||u||a

)

≤ −
p

3
log(ndof)

The value of log(||u− uh||a/||u||a should decrease with a factor of −p/3 relative to log(ndof).
For p = q = r = 2 and p = q = r = 3 we have plotted these values against each other for
h = 1, 1/2, 1/4, 1/8 and 1/16. For p = 4 we have plotted the values for h = 1, 1/2, 1/4, 1/8. For
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each value of p, we have also drawn a dashed line, showing a slope of −p/3 for easy comparison.
Figure (6.0.3a) - (6.0.3d) shows 2D projections of the 3D domains on which we evaluated the
error.

6.0.3 Aspect Ratio
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Figure 6.0.4: The analytic solution (6.0.3):
(a) is a vector plot of the vector field u(x, y, z) over the domain Ω = [−1, 1]3.
(b) show the scalar value of uscalar = (x4 − 1)(y4 − 1)(z4 − 1) over the horizontal surface z = 0

Some of the elements in the given NREL offshore 5-MW baseline wind turbine foil has high
aspect ratio values. The maximum aspect ratio in the medium foil (see seciton 8.2) is 6. High
aspect ratios introduce the possibility of locking. Locking is a problem that arises when the
the element kinematics are to restrained to represent the desired solution. To check if our code
can handle the aspect ratios in the foil, we calculate the relative errors for the analytic solution

u =






(x4 − 6)(y4 − 1)(z4 − 1)
(x4 − 6)(y4 − 1)(z4 − 1)
(x4 − 6)(y4 − 1)(z4 − 1)





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(a) Element size h,
8 elements

(b) Element size h
2
,
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(c) Element size h
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p = 2, Matlab

p = 2, Asymptotic conv. rate −p/2

p = 3, Matlab

p = 3, Asymptotic conv. rate −p/2

p = 4, Matlab

p = 4, Asymptotic conv. rate −p/2

(e) Plot of log(ndof) vs log(||u− uh||a)/||u||a. The straight lines have a slope of −p/3

Figure 6.0.3: The verification process: The physical domains and error plot. The analytic test
solution is (??).
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on the cuboid [−6, 6]× [−1, 1]× [−1, 1]. This result appear to be good, and are shown in figure
(6.0.5)
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p = 2, Matlab

p = 2, Asymptotic conv. rate −p/2

p = 3, Matlab

p = 3, Asymptotic conv. rate −p/2

p = 4, Matlab

p = 4, Asymptotic conv. rate −p/2

(e) Plot of log(ndof) vs log(||u− uh||a)/||u||a. The straight lines have a slope of −p/3

Figure 6.0.5: The locking problem: The physical domains and error plot for the analytic test
solution (6.0.3).
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Verification of the non-linear solver

7.1 Description of test case

As a test case for the nonlinear isogeometric solver we have programmed in Matlab, we chose a
a solid beam of dimensions 0.4m× 0.4m× 2m. It is fixed in all direction over the face defined
by x = 0. The test case has common steel S235 material properties (E = 206.8GPa, ν = 0.29,

ρ = 7820kg/m3, and is subjected to a vertical shear load of sin
(

π
10

)

GPa. This load was evenly

distributed at the face x = 2. The shear load depend on t via the relation τ(t) = −107sin(πt
10

).

We will add the load over 3 time steps, at time t = π/10
3

, t = 2π/10
3

and t = 3π/10
3

The beam is
displayed in figure (7.1.1). The beam has 80 nodes (control points) and 192 degrees of freedom
not including those influenced by the dirichled boundary conditions.

7.2 Test case results

For the test case described in section 7.1, our Matlab code gave the following results (7.2.1):
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Figure 7.1.1: The test case: Figure (a) shows the beam’s control polygon, while (b) shows the
beam itself. The beam is fixed in all directions at the face x = 0 and subjected to a shear load
of sin

(
π
10

)

GPa at the face x = 2. The black lines are the element boundaries
.
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Figure 7.2.1: The fixed beam test case: σ11 plot of the test case. The black lines are the element
boundaries.

7.3 Comparison to IFEM

7.3.1 Nodal comparison

We also ran the fixed beam test case (7.1) in IFEM, which will be our main verification tool
for the nonliner solver. IFEM is a object-oriented toolbox for performing isogeometric NFEA.
There were no visual difference between figure (7.2.1) and the IFEM plot. For the various time
steps, IFEM gave the maximum nodal displacements in table 7.1.
A pointwise comparison of of the relative nodal difference (uMatlab − uIF EM)/uMatlab of the 9
nodes in question yields the following table:
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Table 7.1: The fixed beam test case: Maximum nodal displacements, IFEM

Time Step time Max Nodal Displacement

x-direction y-direction z-direction

1 π/10
3

0.0177454 (node 10) 0.00101751 (node 2) 0.099796 (node 70)

2 2π/10
3

0.0407524 (node 10) 0.00201773 (node 2) 0.198071 (node 70)

3 3π/10
3

0.0678808 (node 15) 0.00297953 (node 2) 0.292417 (node 75)

Table 7.2: The fixed beam test case: Relative nodal difference between Matlab and IFEM of
maximum displacement nodes

Time Step time Relative difference in nodal Dispalcement

x-direction y-direction z-direction

1 π/10
3

0.0015 (node 10) 2.7597 (node 2) -0.0008 (node 70)

2 2π/10
3

0.0023 (node 10) 2.7761 (node 2) 0.0002 (node 70)

3 3π/10
3

0.0034 (node 15) 2.7918 (node 2) 0.0012 (node 75)
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7.3.2 Global comparison

For a global comparison of our solver vs IFEM, we have calculated the relative energy norm of
the difference,

||uMatlab − uIF EM ||a
||uMatlab||a

where ||u||a =
√

a(u, u). The explicit expression for a(., .) is described in (4.2.3).

Table 7.3: The fixed beam test case: Comparison of the norms ||uMatlab||a and ||uIF EM ||a

Matlab IFEM Difference in norms Relative difference in norms

||uMatlab||a ||uIF EM ||a ||uMatlab − uIF EM ||a
||uMatlab−uIF EM ||a

||uMatlab||a

162.38 162.23 1.37 0.0085

7.4 Convergence Rate

Our solver needed 7, 9 and 11 iterations to converge to a tolerance tol = 10−10 for each of the
three time steps. The convergence rate is close quadratic.

Table 7.4: The fixed beam test case: Max nodal displacements, IFEM

Time Step time Max Nodal Displacement

x-direction y-direction z-direction

1 π/10
3

0.0177454 (node 10) 0.00101751 (node 2) 0.099796 (node 70)

2 2π/10
3

0.0407524 (node 10) 0.00201773 (node 2) 0.198071 (node 70)

3 3π/10
3

0.0678808 (node 15) 0.00297953 (node 2) 0.292417 (node 75)
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7.5 Discussion

The comparison to IFEM gave a high level of correlation. The low value of the relative difference
in a-norm is an indicator that our code is correct. The IFEM result vector we used in the
comparison only had a six digit accuracy for each coefficient in the U solution vector. The
energy norm is sensitive to changes in the coefficients, and this may have influenced the result.

7.6 Modifications

We implemented some modifications to our code to make it more computational efficient. We
held the stiffness matrix constand whenever the relative norm was small, and we added a
adaptive time step algorithm, that cut ∆t in half whenever the relative norm of the out-of-

balance term ||r(i)||l2
||r(0) became to large.



Chapter 8

Results

We will here present the results from the two main problem on which we have used our non-linear
isogeometric finite element solver. We will not verify these, but rather present them, in a similar

Figure 8.0.1: The
twisted bar example in
its original configura-
tion

way that a mechanical engineer may need in a design phase.

The first result is a case that is sometimes used as a benchmark test
in isogeometric analysis settings [2], and is the case of a bar which we
twist in its longitudinal direction. The other result we will present
is the result which has been the aim of nonlinear solver, the NREL
offshore 5-MW baselind wind turbine blade.

8.1 The twisted bar

We have have a bar of dimensions 0.4m·0.4m·5m which is standing in
vertical z-direction. The bar is illustrated in its original configuration
in figure (8.0.1). It is fixed in all directions at the bottom (z = 0) and
in z−direction only at the top (z = 5). At the top it is also subjected
to a horisontal shear force that gives a positive torque around the
z− axis. We add the shear force subsequently, and see how large
rotations we get before the solver diverge. Figure (8.1.1) shows the
development of Von Mieses stress for 8 time steps the our nonlinear
solver managed. The nonlinear solver diverged for time t = t9. The
final rotation angle was approximately 140 degrees.
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(a) t = t1 (b) t = t2 (c) t = t3 (d) t = t4 (e) t = t5

(f) t = t6 (g) t = t7 (h) t = t8

Figure 8.1.1: The twisted bar: The plot shows the evolution of Von Mieses Stress for the time
steps t1 to t8. The final rotation angle was approximately 140 degrees.
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8.2 The NREL offshore baseline wind

turbine blade

We have applied our nonlinear isogeometric finite element solver on the NREL offshore baseline
wind turbine foil to calculate displacement and stress. We chose a load of 1500Pa subjected
to the foil as pressure on the flat side of the wing. If we assume that all the wind molecules
transfer their entire linear momentum to the foil, a square meter of the foil will stop a volume
of V = [windspeed] · 1m2 · 1s air every second. From this, simple hand calculations yield that
for a wind speed of 35m/s, the pressure of the foil would be 1500Pa. We have tested three
different discretizations of various size, but we will only display the results from most refined
model here. This discretization has 280 nodes (control points), and 780 degrees of freedom.
Figure (8.2.1) shows some of the rotor’s geometrical properties. Figure 8.2.2 shows plots of the
six unique components of the stress tensor, and figure (8.2.3) the shows the Von Mieses Stress.

(a)

 

 

(b)

 

 

(c)

Figure 8.2.1: The NREL offshore baseline wind turbine blade’s origial configuration. (a): The
control polygon of the foil, (b): The wind foil with true proposions, (c): The wind foil seen
from top down, viewing the foil profiles
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Figure 8.2.2: The NREL offshore baseline wind turbine blade: The six stress components of
the foil. (a) σ11, (b) σ22, (c) σ33, (d) σ12, (e) σ23 and (f) σ31
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Von Mieses Stress
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Figure 8.2.3: The NREL offshore baseline wind turbine blade: The Von Mieses Stress resulting
from a pressure of 1500Pa from the left side. The unit of the axis is N/m2.
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8.2.1 Physical Interpretation

The highest value of Von Mieses Stress for the design load is below the yield strength of the
given material. Thus, the foil distortion is within the elastic range of the design.



Chapter 9

Concluding remarks

We have programmed a linear and a nonlinear isogeometric finite element solver in Matlab code
for the elasticity problem. For code verification, the linear Matlab solver code was compared to
test problems where we had analytic solutions.The nonlinear solver was compared to the IFEM
software, where it correlated well. The nonlinear solver was applied to a twisted bar case and
the wind turbine foil of the NREL offshore 5-MW baseline wind turbine. The analytical results
were visualised in distortion plots and Von Mieses stress plots.
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Appendix A

Notation

A.1 Basis functions

ÑĨ : A scalar basis function.
Ĩ: The index of a scalar basis function, Ĩ = (i− 1)mo + (j − 1)o + k
NI : A vector basis function.

NI =







ÑĨ

[

1 0 0
]T

if I = 1, 4, 7, . . .

ÑĨ

[

0 1 0
]T

if I = 2, 5, 8, . . .

ÑĨ

[

0 0 1
]T

if I = 3, 6, 9, . . .

The matrix N is defined as

N = [N1, N2, ..., N3lmo]

A.2 Nonlinear sections

Left super and sub indices: time
configurationR(iteration numer)

t: Pseudo time. Influence the system via the external load vector, which increase with time.
tΩ: Domain (configuration) at (pseudo-)time t.
tx is the x-coordiate refered to configuration tΩ.
Xi = 0xi.
U : The coefficient vector. The coefficients is the displacement in the controlpoints in the ap-
propriate direction.
t+∆t

tE: Almansi strain
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t
0E: Green strain.

0E : = t+∆t
0E −

t
0E.

t+∆tσij: Cauchy stress at time t + ∆t.
t+∆t

tSij: 2 PK stress tensor induced from the displacement relative to tΩ, (i.e induced from
t+∆t

tu) .
t+∆tR: Externally applied force.
t+∆tR: Virtual work due from the external forces.
t+∆t

tEij = t+∆t
tǫij + t+∆t

tβij
t+∆t

tǫij: linear part of the GL strain.
t+∆t

tβij: nonlinear part of the GL strain



Appendix B

Notation

B.0.1 Voigt notation

ǫ =













ǫ11

ǫ22

ǫ33

ǫ12

ǫ23

ǫ31













, σ =













σ11

σ22

σ33

σ12

σ23

σ31













, v =






v1

v2

v3




 ∈ V 3, f =






f1

f2

f3






σ = Cǫ =
E

1− ν2






1 ν 0
ν 1 0
0 0 1−ν

2











ǫ11

ǫ22

ǫ12






When we write something in matrix form, we will consistently use Voight notation
Sections refereres til slik: sec 1.3
ligninger refereres slik: (4.1)
Every time I introduce a new variable I will write it here:
d: The dimension of our physical domain, Ω ⊂ R

d

Γ: Grensen av Ω,dvs jeg bruker dette istedenfor ∂Ω. Jeg gidder ikke skrive den i bold.
Hk(Ω): Sobolev space. Hk(Ω) = {f ∈ L2(Ω) : Dαf ∈ L2(Ω)∀α : |α| ≤ k}

Dαf = ∂|α|

∂x
α1
1 ∂x

α2
2 ∂x

α3
3

, |α| =
∑

i αi (in three dimensions).

u =
Nbf∑

I=1

ūINI

= u1

[

S̃1

0

]

+ u2

[

0
S̃1

]

+ u3

[

S̃2

0

]

+ u4

[

0
S̃2

]

+ ... + uNbf −1

[

S̃nm

0

]

+ uNbf

[

0
S̃nm

]
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Linear Isogeometric Finite Element
Sover

C.1 Algorithms for assemling the stiffness matrix

Mathematically, we wish to calculate

AJ,I =
∫

Ω
ǫ(NJ)T Cǫ(NI) dΩ

=
nk∑

e=1

∫

Ωe
ǫ(NJ)T Cǫ(NI) dΩ

=
nk∑

e=1

ak(NI , NJ)

We do this via the loop:

....................................for Ω̂e = Ω̂1 . . . Ω̂nk

..........................................for all I ∈ IΩe

................................................for all J ∈ IΩe

......................................................AJ,I = AJ,I + ak(NI , NJ)

................................................end

..........................................end

....................................end

where IΩe is the set of those basisfunctions that will not be influenced by the homogeneous
dirichlet conditions.
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C.1.1 Subfunction ak(NI , NJ) 3D

We are on Ωe.
For each Ωe, we have calculated the L(ξG),M(ηG) and O(ζG), where ξG,ηG and ζG are the local
Gauss points.

ak(NI , NJ) =
∫

Ωe
ǫ(NJ)T Cǫ(NI) dΩ

=
∫

Ω̂e
ǫ(N̂J)T Cǫ(N̂I)|J | dΩ̂ (J = J(ξ, η, ζ))

=
∫ ζα+1

ζα

∫ ηκ+1

ηκ

∫ ξι+1

ξι

ǫ(N̂J)T Cǫ(N̂I) |J | dξdηdζ

=
ζα+1 − ζα

2

ηκ+1 − ηκ

2

ξι+1 − ξι

2

∫ 1

−1

∫ 1

−1

∫ 1

−1
ǫ
(

N̂J (ξ, η, ζ)
)T

Cǫ
(

N̂I (ξ, η, ζ)
)

|J(ξ, η, ζ)| dξ̃dη̃dζ̃

≈
ζα+1 − ζα

2

ηκ+1 − ηκ

2

ξι+1 − ξι

2

∑

∀ζ̃G

∑

∀η̃G

∑

∀ξ̃G

w
(ζ)
G w

(η)
G w

(ξ)
G ǫ

(

N̂J (ξ, η, ζ)
)T

Cǫ
(

N̂I (ξ, η, ζ)
)

|J(ξ, η, ζ)|

≈
ζα+1 − ζα

2

ηκ+1 − ηκ

2

ξι+1 − ξι

2

∑

∀ζG

∑

∀ηG

∑

∀ξG

w
(ζ)
G w

(η)
G w

(ξ)
G ǫ

(

N̂J (ξ, η, ζ)
)T

Cǫ
(

N̂I (ξ, η, ζ)
)

|J(ξ, η, ζ)|

w
(η)
G and w

(ξ)
G are the corresponding weights to the values of ηG and ξG respectivly. ξG and ηG

are the gauss-points on [−1, 1] mapped to Ω̂e.

C.1.2 Subfunction ǫ(NI)

The following is defined for the 2D case. The calculation for 3D is very similar:

ǫ(NI) = ∇NI =






∂
∂x

0
0 ∂

∂y
∂

∂y
∂

∂x






[

Ñx
ãlI

Ñy

Ĩ

]

Either Ñx
Ĩ

or Ñy

Ĩ
will be zero, and the other will be equal to the 2d scalar bspline ÑĨ =

Li(ξ)Mj(η). This following calculations is for when I is odd, and NI only has components in
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x-direction:

ǫ(NI) =







∂ÑĨ

∂x

0
∂ÑĨ

∂y







=







Mj
∂Li

∂ξ
∂ξ
∂x

+ Li
∂Mj

∂η
∂η
∂x

0

Mj
∂Li

∂ξ
∂ξ
∂y

+ Li
∂Mj

∂η
∂η
∂y







when I is odd

ǫ(NI) =







0
∂ÑĨ

∂y
∂ÑĨ

∂x







=







0

Mj
∂Li

∂ξ
∂ξ
∂y

+ Li
∂Mj

∂η
∂η
∂y

Mj
∂Li

∂ξ
∂ξ
∂x

+ Li
∂Mj

∂η
∂η
∂x







when I is even

ǫ(NI) = ǫ(NI(ξ, η)) is a function of (ξ, η).

C.2 Assembling the load vector

The assemly of the F -vector is as follows:

F (v) =
∫

Ω
vTf dΩ +

∫

ΓD

vT σn dΓ +
∫

ΓN

vT σn dΓ

=
∫

Ω
V T

N
T f dΩ +

∫

ΓD

V T
N

T σn dΓ +
∫

ΓN

V T
N

T σn dΓ

=
∫

Ω
V T








NT
1

NT
2

. . .
NNbf








T

f dΩ +
∫

ΓD

V T








NT
1

NT
2

. . .
NNbf








T

σn dΓ +
∫

ΓN

V T








NT
1

NT
2

. . .
NNbf








T

σn dΓ

This must be true for all V ⇒

F J = F (v = NJ) =
∫

Ω
NT

J f dΩ +
∫

ΓD

NT
J σn dΓ +

∫

ΓN

NT
J σn dΓ

C.2.1 Calculating Neumann boundary conditions,
∫

ΓN
NT

J σn dΓ

The following calculation as for the 2D case. They are, however, very similar in 3D.
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σn = h on ΓN First, we define the remember that the boundary may be represented as follows
Γ as follows:

Γ =







x(η; ξl) on Γ1

x(ξ; ηm) on Γ2

x(η; ξ1) on Γ3

x(ξ; η1) on Γ4

We denote ΓN1 to be the neumann boundary on Γ1, ΓN2 to be the neumann boundary on Γ2

and so forth.

∫

ΓN

NT
J (x)h(x) dΓ =







∑

Ω̂e on ΓN1

∫ ηκ+1
ηκ

ŜT
J (ξl, η))h(x(ξl, η))

∣
∣
∣

∣
∣
∣

dx(ξl,η)
dξ

∣
∣
∣

∣
∣
∣ dη if on ΓN1

∑

Ω̂e on ΓN2

∫ ξι+1

ξι
ŜT

J (ξ, ηm))h(x(ξ, ηm))
∣
∣
∣

∣
∣
∣

dx(ξ,ηm)
dξ

∣
∣
∣

∣
∣
∣ dξ if on ΓN2

∑

Ω̂e on ΓN3

∫ ηκ+1
ηκ

ŜT
J (ξ1, η))h(x(ξ1, η))

∣
∣
∣

∣
∣
∣

dx(ξ1,η)
dξ

∣
∣
∣

∣
∣
∣ dη if on ΓN3

∑

Ω̂e on ΓN4

∫ ξι+1

ξι
ŜT

J (ξ, η1))h(x(ξ, η1))
∣
∣
∣

∣
∣
∣

dx(ξ,η1)
dξ

∣
∣
∣

∣
∣
∣ dξ if on ΓN4

(C.2.1)

where Ω̂e = [ξι, ξι+1)× [ηκ, ηκ+1)
On ΓN1 :

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

dx(ξl, η)

dη

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
l2

=

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

[∑

i Li(ξl)
∑

j
d

dη
Mj(η)Bx

i,j
∑

i Li(ξl)
∑

j
d

dη
Mj(η)By

i,j

]∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
l2

=

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

[∑

j
d

dη
Mj(η)Bx

i=n,j
∑

j
d

dη
Mj(η)By

i=n,j

]∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
l2

On ΓN2 :

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

dx(ξ, ηm)

dξ

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
l2

=

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

[∑

j Mj(ηm)
∑

i
d
dξ

Li(ξ)Bx
i,j

∑

j Mj(ηm)
∑

i
d
dξ

Li(ξ)By
i,j

]∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
l2

=

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

[∑

i
d
dξ

Li(ξ)Bx
i,j=m

∑

i
d
dξ

Li(ξ)By
i,j=m

]∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
l2

On ΓN3 :

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

dx(ξ1, η)

dη

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
l2

=

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

[∑

i Li(ξ1)
∑

j
d

dη
Mj(η)Bx

i,j
∑

i Li(ξ1)
∑

j
d

dη
Mj(η)By

i,j

]∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
l2

=

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

[∑

j
d

dη
Mj(η)Bx

i=1,j
∑

j
d

dη
Mj(η)By

i=1,j

]∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
l2
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On ΓN4

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

dx(ξ, η1)

dξ

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
l2

=

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

[∑

j Mj(η1)
∑

i
d
dξ

Li(ξ)Bx
i,j

∑

j Mj(η1)
∑

i
d
dξ

Li(ξ)By
i,j

]∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
l2

=

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

[∑

i
d
dξ

Li(ξ)Bx
i,j=1

∑

i
d
dξ

Li(ξ)By
i,j=1

]∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
l2

We use gauss integration to calculate (C.2.1):
We can skip the first summation sign since Mj(ηm) is different from zero only in j = m.

For ΓN1

∫

ΓN1

NT
J (x)h(x) dΓ =

∑

Ω̂e on ΓN1

∫ ηκ+1

ηκ

ŜT
J (ξl, η))h(x(ξl, η))

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

dx(ξl, η)

dξ

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

dη

=
∑

Ω̂e on ΓN1

∫ ηκ+1

ηκ

f(η) dη

=
∑

Ω̂e on ΓN1

ηκ+1 − ηκ

2

∑

ηG

w(η)f(ηG)

f(η) = ŜT
J (ξl, η))h(x(ξl, η))

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

dx(ξl, η)

dξ

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

= ˆ̃SJ̃(ξl, η))

[

J == odd
J == even

]T

h(x(ξl, η))

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

dx(ξl, η)

dξ

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

f(ηG) = Li(ξl)
︸ ︷︷ ︸

=δin

Mj(ηG)

[

J == odd
J == even

]T

h(x(ξl, ηG
︸ ︷︷ ︸

evaluert

))

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

dx(ξl, ηG)

dξ

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

︸ ︷︷ ︸

evaluertiηG

where (i, j) corresponds to J̃
Evaluation x(ξl, ηG):

x(ξ1, ηG) =

[∑

i Li(ξ1)
∑

j Mj(ηG)Bx
i,j

∑

i Li(ξ1)
∑

j Mj(ηG)By
i,j

]

=

[∑

j Mj(ηG)Bx
i=1,j

∑

j Mj(ηG)By
i=1,j

]
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C.2.2 Calculating
∫

Ω NT
J f dΩ

We want to find

F (NJ) =
∫

Ω
NT

J f dΩ +
∫

Γ
NT

J σn dΓ

We will now assume that u = 0 on Γ, hence the last integral is zero.

F (NJ) =
∫

Ω
NT

J f dΩ

NJ =

[

ÑJ̃

0

]

or NJ =

[

0
ÑJ̃

]

depending on whether J is odd or even.

F (NJ) =
ne∑

e=1

F e(NJ)

=
ne∑

e=1

∫

Ωe
NT

J f dΩ

=
ne∑

e=1

∫

Ω̂e
Ŝ

T

J f (x(ξ, η), y(ξ, η)) |J(ξ, η)| dΩ̂

≈
ne∑

e=1

ηκ+1 − ηκ

2

ξι+1 − ξι

2

∑

ηG

∑

ξG

w(ξ)w(η)Ŝ
T

J f (x(ξ, η), y(ξ, η)) |J(ξ, η)|

≈
ne∑

e=1

ηκ+1 − ηκ

2

ξι+1 − ξι

2

∑

ηG

∑

ξG

w(ξ)w(η)Ŝ
T

J f (x, y) |J(ξ, η)|



Appendix D

Impementation details for the
nonlinear solver

D.1 How to calculate t
tGĨ J̃

t
tGĨJ̃ = I(3×3)

∫

tΩ
tÑ Ĩ,i

tσij tÑ J̃ ,j
tdΩ

= I(3×3)
nel∑

e=1

∫

tΩe
tÑ Ĩ,i

tσij tÑ J̃ ,j
tdΩe

= I(3×3)
nel∑

e=1

∫

t
Ω̂e

tÑ Ĩ,i
tσij tÑ J̃ ,j|J |

tdΩ̂e

= I(3×3)
nel∑

e=1




ζα+1 − ζα

2

βκ+1 − βκ

2

ξι+1 − ξι

2

∑

ξG

∑

βG

∑

ζG

w(ξ)w(β)w(ζ)
(

tÑ Ĩ,i
tσij tÑ J̃ ,j

)

|J |





(D.1.1)

D.1.1 Practical Implementation

A matlab script, calcKG has been made for the purpose of calculation KG. It follows an algo-
rithm that is mathematical equivalent to equation (5.2.6) and (D.1.1), and is given below:

for all elements Ωe, e = 1..., nel.
......for Ĩ = 1, 2, ..., lmo.
............for J̃ = 1, 2, ..., Ĩ.
..................Calculate the gauss-sum GS (D.1.2).
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........................Insert GS into KG at:

........................KG(Ix(Ĩ),Jx(J̃)) ← GS

........................KG(Iy(Ĩ),Jy(J̃)) ← GS

........................KG(Iz(Ĩ),Jz(J̃)) ← GS

........................KG(Jx(Ĩ),Ix(J̃)) ← GS

........................KG(Jy(Ĩ),Iy(J̃)) ← GS

........................KG(Jz(Ĩ),Iz(J̃)) ← GS

..................end

............end

......end
end

where Ix(Ĩ), Iy(Ĩ) and Iz(Ĩ) relate through : Ix = 3(Ĩ − 1) + 1, Iy = 3(Ĩ − 1) + 2 and Iz = 3Ĩ.

We have here used the symmetric property of G, GĨJ̃ = GJ̃ Ĩ .

GS =




ζα+1 − ζα

2

βκ+1 − βκ

2

ξι+1 − ξι

2

∑

ξG

∑

βG

∑

ζG

w(ξ)w(β)w(ζ)
(

tÑ Ĩ,i
tσij tÑ J̃ ,j

)

|J |



(D.1.2)

D.2 Calculation of t+∆t
t+∆tF

t
tF =

∫

tΩ
BT tσ tdΩ

=
∫

tΩ
(∇ tN)T tσ tdΩ
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t
0ǫ = 1

2
( t

0ui,j + t
0uj,i) + 1

2
( t

0uk,i
t
0uk,j) (from MIT 5-5, transpacency 5-3).

t
tF =

∫

tΩ
(∇ tN)T tσ tdΩ

=
nel∑

e=1

∫

tΩe
(∇ tN)T tσ tdΩ

=
nel∑

e=1

∫

t
Ω̂e

(∇ tN)T tσ|J | tdΩ̂

=
nel∑

e=1




ζα+1 − ζα

2

βκ+1 − βκ

2

ξι+1 − ξι

2

∑

ξG

∑

βG

∑

ζG

wξwβwζ(∇ tN)T tσ|J |





where tσ is given by (3.1.1)

D.3 Finding nonlinear GL strain, t
0E

Define tN.,i = ∂ tN

∂ txi
(according to standard matrix derivative rules (ref wikipedia(?)).

t
0ǫij =

1

2

(
t
0ui,j + t

0uj,i

)

+
1

2

(
t
0uk,i

t
0uk,j

)

=
1

2

(

( tN.,j)(i,:) + ( tN.,i)(j,:))

)

U +
1

2

(

( tN.,i)(k,:) U
) (

( tN.,j)(k,:) U
)

=
1

2

(

( tN.,j)(i,:) + ( tN.,i)(j,:))

)

U +
1

2
(( tN.,i) U)T (( tN.,j) U)

D.4 Update Control Polygon

Update tΩ to contain the deformation from t+∆tU (k).
Do this by updating the control polygon,

tP =






tP x
Ĩ=1

tP x
Ĩ=2

tP x
Ĩ=3

tP y

Ĩ=1
tP y

Ĩ=2
tP y

Ĩ=3
. . .

tP z
Ĩ=1

tP z
Ĩ=2

tP z
Ĩ=3





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to

t+∆tP =






tP x
Ĩ=1

+ ∆U I=1
tP x

Ĩ=2
+ ∆U I=4

tP y

Ĩ=1
+ ∆U I=2

tP y

Ĩ=2
+ ∆U I=5 . . .

tP z
Ĩ=1

+ ∆U I=3
tP z

Ĩ=2
+ ∆U I=6






or

t+∆tP =






tP x
Ĩ=1

tP x
Ĩ=2

tP y

Ĩ=1
tP y

Ĩ=2
. . .

tP z
Ĩ=1

tP z
Ĩ=2




+






∆U I=1 ∆U I=4

∆U I=2 ∆U I=5 . . .
∆U I=3 ∆U I=6






where ∆U I refere to the I-th coefficient of the vektor ∆U = t+∆tU − tU .
Notation: There is as usual a surjective relation between I and Ĩ. I refere to the basis function
vector, while Ĩ refere to the scalar basisfunction Ñ . Hence:

ÑĨ = Li(ξ)Mj(β)Ok(ζ), Ĩ = (i− 1)mo + (j − 1)o + k

NI =






ÑĨ

0
0




 if I = 1, 4, 7, ...

NI =






0
ÑĨ

0




 if I = 2, 5, 8, ...

NI =






0
0

ÑĨ




 if I = 3, 6, 9, ...



Appendix E

Program Structure

We will here give a brief overview of the program structure of our code. We have programmed
the programs from scratch in Matlab, and we will here briefly display how the most important
programs relate.
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main.m

input file
(Generates

or loads
the geome-
try model)

Nonlinear
Algorithm
neste linje
og neste

calc KM calc KG calc R calc F Update
Control
Polygon

Output (post-processing)

calc stress in
x-,y-

and z-
direciton

Plot
results
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