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Problem description

• Give an introduction to stochastic processes relevant to degradation modeling.

• Demonstrate the use of such models for maintenance planning.

• Develop a simulation based algorithm for the exploration of the models, with em-
phasis on its theoretical basis.
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Abstract

A model for degradation and maintenance of a single-item system is extensively
studied in this thesis, using a simulation based approach. Stochastic processes are
used as degradation models and the item is maintained according to a condition-
based maintenance program. Necessary background theory on stochastic process
and the field of reliability is presented. This theory is linked directly to different
properties of the model. Amongst other things, the concepts of regenerative and
semi-regenerative processes will be important, both for computational and simu-
lation related purposes. A Monte Carlo based algorithm is developed to simulate
and explore the model. Within this algorithm, bridge sampling for simulation of
stochastic processes play an important role. Numerical experiments with the model
and possible extensions of it, is presented towards the end of the thesis.
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Samandrag

Denne oppg̊ava er ein omfattande simuleringsbasert studie av ein slitasje- og ved-
likehaldsmodell for eit ein-komponent system. Stokastiske prosessar er nytta som
slitasjemodellar og komponenten vert haldt vedlike gjennom eit tilstandsbasert ved-
likehaldsprogram. Oppg̊ava gjennomg̊ar naudsynt teori om b̊ade stokastiske proses-
sar og p̊alitelegheitsanalyse. Denne teorien relaterast deretter til ulike eigenskapar
ved modellen. Mellom anna er konsepta regenerative og semi-regenerative prosessar
viktige, p̊a grunn av følgjene dei har for utrekningsmetodar og av meir simulering-
stekniske årsakar. Vidare gjerast det greie for ein Monte Carlo-basert algoritme for
å simulere og utforske modellen. Ein viktig del av denne algoritmen, er å kunne
simulere ein stokastisk prosess mellom to gjevne observasjonar av prosessen. Mot
slutten av oppg̊ava presenterast ei rekkje numeriske eksperiment med b̊ade modellen
og moglege utvidingar av den.
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1 Introduction

Throughout this text, we will present a model that describes the degradation of a generic
item, along with a maintenance policy. By the term item, we mean a singe-unit system,
performing some desired task, for example a production machine or a pipeline of flowing
gas. This model was originally proposed in [11] and [9]. We will describe both mathemat-
ical properties and possible extensions of the model. By using Monte Carlo simulations
in our numerical exploration of this model, we differ from the original papers, where a
numerical optimization procedure is performed. An important cornerstone of the model,
is that it uses a stochastic process to describe the time evolution of the item’s degrada-
tion. In practice, this requires both the ability to measure the item’s state and to handle
a larger amount of data than we do in classical reliability analysis.

There are reasons to believe that the field of reliability analysis can change rapidly
in the years to come. Amongst these reasons, the ongoing development on analysis of
large data sets, often called big data analysis, is maybe of the most important one. For
a nice and non-formal introduction to this topic, we recommend to read [13], where both
different applications and types of data (and how they arrive) are reviewed. In this
article the author also stresses the need for statisticians to learn and contribute to big
data analysis, as this topic is placed in the intersection between the interests of computer
scientists, business researchers and statisticians. An example of a popular application is
for a business to understand how individual customers behave, and be able to tailor future
advertisement directly to a particular consumer.

Other, and perhaps more important applications can be found in the field of medical
statistics and reliability. Our context will be reliability, but the theory of these two fields
often goes hand in hand. [16] gives an excellent introduction on big data reliability anal-
ysis. Their point of departure is that new technology, such as sensors and smart chips in
systems, can collect an enormous amount for so-called system operating/environmental-
data (SOE-data). By exploiting these data, one should be able to improve on a system’s
performance. The authors presents a wide variety in examples of methods and fields of ap-
plication. Among these methods, degradation modeling and condition based maintenance
are mentioned specifically.

Having been in contact with representatives from the reliability business from both
inside and outside Norway, it is clear that most of the models used on real world problems
today are much simpler, seen from a statistician’s point of view. Instead the applied
models often uses more qualitative information, together with classical reliability analysis,
where estimates often are provided by reliability databases and manufacturers. However,
there is an increasing trend of monitoring systems and an increasing interest of exploiting
SOE-data. [15] is a publication from the large certification and classification society
DNV GL, where both ongoing projects and possible opportunities in connection with
large amount of data collection, is presented. It concerns more applications than just
reliability, but we can note that collection of SOE-data in the oil and gas industry, and
proactive maintenance of wind turbines are among the things listed. Many similar reports
are also available from other large organisations and companies, concerning a wide range
of businesses, also including health care and medical statistics.

All this shows that creation, understanding and implementation of more complex
models in reliability and maintenance optimization is an area where a lot research are
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being done, both in the academic world and the industry. In this text we will only consider
one such model, but the big picture discussed above, should serve as a motivation of this
study. The model that we will explore was actually proposed in 2002, but it might even
be more relevant today.

We will now give an outline of the content in this thesis. Chapter 2 first introduces
continuous state space Markov processes and stationary distributions. Then we give a
quick introduction to Renewal theory, starting with the basics ending with the so-called
Markov-Renewal process. We close this chapter by establishing a link from the Renewal
theory to regenerative and semi-regenerative processes. In chapter 3, we present some
background the maintenance theory and degradation processes. The Gamma-process and
the Inverse Gaussian process are also defined and discussed with the purpose of being used
as degradation models. The original degradation/maintenance-model, along with some
extensions are presented in chapter 4. Here we also discuss properties of this model in
light of the theory from chapter 2 and 3. Chapter 5 explains how a computer program for
simulating the models can be implemented. The derivation of an algorithm for simulating
passage times is a key result, which builds upon so-called bridge sampling algorithm for
the underlying degradation process. Having described the implementation, we run a series
of numerical experiments in chapter 6. The goal of the simulations is to explore how the
systems behaves when we change the parameters or extend the model. Finally chapter 7
provides a discussion on the work being done and suggestions for future work.
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2 Stochastic processes

2.1 Markov processes

Without giving a formal mathematical definition of stochastic processes, we follow [8]
and refer to a stochastic process as a collection of random variables Xt, defined for all
relevant values of t. In our context t is positive, denoting time and can be both discrete
or continuous. All possible values for an individual Xt are called the state space. This
text will be dealing with one-dimensional real stochastic processes, meaning that the state
space at any time is a one-dimensional set X ⊂ R. It is natural to distinguish between
four types of one-dimensional stochastic process, that is

• Discrete time, discrete state space.

• Discrete time, continuous state space.

• Continuous time, discrete state space.

• Continuous time, continuous state space.

Processes covered by us will may both have continuous or discrete time, but always
continuous state space. The reader should therefore be aware that some of the equations
in this section may have discrete versions. At time t, we define Ht to be the history
of the process, meaning the collection of all points (s,Xs), s ≤ t that the process has
passed through on its way up to time t, (t,Xt) included. An important class of stochastic
processes are the Markov processes:

Definition 1. A stochastic process X = {Xt, t ≥ 0} is said to be a Markov process if and
only if (for any s > 0)

E [f (Xt+s) |Ht] = E [f (Xt+s) |Xt],

for any continuous function f .

That is, the distribution of future states only depends on the present state, not the
past. If a stochastic process is a Markov process, it is sometimes just referred to as being
Markovian. Consider now two finite time point s and t, where 0 ≤ s < t. By an increment
of a stochastic process we mean the random varibale Xt − Xs, representing the change
in process from time s to time t. Refering to [1], we say that a stochastic process has
stationary increments if for any set A ⊂ X

P (Xt −Xs ∈ A) = P (Xt−s −X0 ∈ A) ,

which means that the distribution of the increments only depends on the time difference
t − s, not the time points s and t. The increments are said to be independent if for any
collection of finite time points 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn, the random variables Xt1−X0, Xt2−
Xt1 , . . . , Xtn−Xtn−1 are independent. It can be shown that independent increments implies
that a process is Markovian. In what follows we will go through a series of important
concepts and properties regarding Markov processes. These characteristics are mostly a
summary of discussions found in [8] and [10]. It should also be mentioned that we simplify
the content a bit and some of the definitions and results are presented more formally in
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these textbooks. Let X = {Xn, n ≥ 0} be a discrete time Markov process with continuous
state space X , and let ν is a probability distribution defined on the state space X and
denote its density function by ν(x). For any real-valued function f on X , the expectation
of f with respect to is

E ν [f(X)] =

∫
X
f(x)ν(x)dx.

By the transition kernel of the Markov process X, we mean

P (x,A) = P (Xn+1 ∈ A|Xn = x) , ∀x ∈ X and A ⊂ X , (1)

the probability of entering a set of states A at the next point in time, given that the
process currently is in a state x. If there exist a distribution π, satisfying

π(A) =

∫
X
P (x,A)π(x)dx, (2)

we say the π is a stationary distribution of π. The practical interpretation of π is that is
represent the long term probability of being in a set of states A, that is

π(A) = lim
n→∞

P (Xn ∈ A) .

The product π(x)dx in equation should be understood as the probability of being in a
tiny set of size dx in X . Showing the existence of a stationary distribution in general,
can be quite hard, but it is important for us to recognize some circumstances for when
a Markov process X has a unique stationary distribution. To establish this, we will now
follow [10] very closely and start with the most important concept that must be fulfilled
for a chain to have a stationary distribution, namely irreducibility.

Definition 2. A Markov-process is ϕ-irreducible for a probability distribution ϕ on X , if
ϕ(A) > 0 for a set A ⊂ X implies that

P (τA <∞|X0 = x) > 0, ∀x ∈ X ,

where τA = infn{Xn ∈ A}. A Markov process is irreducible if it is ϕ-irreducible for some
probability distribution ϕ. If a chain is ϕ-irreducible, then ϕ is called an irreducibility
distribution for the process.

Defining irreducibility with respect to a probability distribution is just a technical
detail when dealing with continuous state Markov processes. The essential meaning of a
process being irreducible is the possibility of visiting any subset A in X . A chain may
have more than one irreducibility distribution, but it always has a maximum irreducibility
distribution. A distribution ν1 is absolutely continuous with respect to a distribution ν2

if ν2(A) = 0 ⇒ ν1(A) = 0, for any A ⊂ X , and a maximal irreducibility distribution is
such that all other irreducibility distributions are absolute continuous with respect to it.
The next property we will look at is recurrence.

Definition 3. An irreducible Markov process with maximal irreducibility distribution ψ
is recurrent if for any set A ⊂ X with ψ(A) > 0 the conditions

• P (Xn ∈ A infinitely often|X0 = x) > 0 for all x ∈ X
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• P (Xn ∈ A infinitely often|X0 = x) = 1 for ψ − almost all x ∈ X

are both satisfied. An irreducible chain is positive recurrent if it has a stationary probability
distribution. Otherwise it is null-recurrent.

While irreducibility was concerning the possibility of visiting any subset of states in
the state space, recurrence is the property that this will happen over and over again. The
definition introduces the concept of positive recurrence, as a property of irreducible chains
with a stationary distribution. In the discrete state space case, it is usually the other way
around, in the sense that if if all states are recurrent, the chain is both irreducible and
positive recurrent. The theorem below is stated in [10] and conserns the uniqnueess of a
stationary distribution.

Theorem 1. Suppose the Markov process X = {Xn, n ≥ 0} is irreducible and that the
distribution π satisfies equation (2). Then the process is π-irreducible, π is a maximal
irreducibility distribution, π is the unique stationary distribution of the chain, and the
chain is positive recurrent.

Note that theorem 1 does not tells us when process has a stationary distribution, but
states that irreducibility is a requirement for uniqueness. Proving existence in the general
case is beyond the scope of this thesis. However we will conclude in section 2.3, that if
we can show that a process is regenerative, it will have a stationary distribution.

Before we end this section we define an important type of of Markov processes, called
Lévy processes.

Definition 4. A real valued process X = {Xt, t ≥ 0} with X0 = 0 is a Lévy process if

(i) X has independent and stationary increments.

(ii) X is continuous in probability, that is, for a fixed t, limu→t P (|Xt −Xu| > ε) = 0,
∀ε > 0.

We will use Lévy processes as degradation models in later sections. Lévy processes
are contained in a broader class of process, called càdlàg processes. Càdlàg is a french
abbreviation for ”right continuous with left limits”, and a càdlàg process have the property
that

lim
u→t−

Xu <∞ and lim
u→t+

Xu = Xt.

When we use Lévy processes in degradation modeling, we often want them to be
increasing. Increasing Lévy processes actually have their own name and are called subor-
dinators.

2.2 Renewal processes

This section is mainly a summary of theory found in [22], where we only include theory
relevant to us. By a counting process, we mean a stochastic process {Nt, t ≥ 0} counting
the number of events by time t. A typical example of such a process may be the amount
of customers having entered a store at some point during the day. Define Si to be the
time between the (i− 1)st and ith event, known as inter-arrival intervals or sojourns. If
the the sequence {Si, i ≥ 1} of such inter-arrival times are independent and identically
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distributed, we have by definition that Nt is a renewal process. Let FS denote the cumu-
lative distribution function of Si, i ≥ 0. In order to obtain important results on renewal
process, it is appropriate to define Un as the time of the nth renewal, with the convention
that U0 = 0. An illustration is provided in figure 1.

Figure 1: Illustration of sojourns and renewal times. Renewals are marked as crosses on
the time axis.

Besides being an interesting quantity in itself, this is convenient since

Nt ≥ n⇔ Un ≤ t.

That is, we can express the distribution of Nt in terms of the distribution of Un. Moreover
since Un =

∑n
i=1 Si, the distribution of Un is the n-fold convolution of FS, denoted by

F ∗nS . We then have

P (Nt = n) = P (Nt ≥ n)− P (Nt ≥ n+ 1)

= P (Un ≤ t)− P (Un+1 ≤ t)

= F n∗
S (t)− F (n+1)∗

S (t).

Of course this distribution is typically hard to obtain. The function m(t) = E [Nt] is
commonly referred to as the renewal function and it completely determines the renewal
process. By conditioning on the time of the first renewal S1, we have that

m(t) =

∫ ∞
0

E [Nt|S = s]fS(s)ds. (3)

Obviously E [Nt|S = s] = 0 if s > t. On the other hand if s < t, E [Nt|S = s] =
1 + E[Nt−s] = 1 + m(t − s), since one renewal will take place at time s and the process
will then restart from here. Inserting this into (3), we get the so-called renewal equation

m(t) = 1 +

∫ t

0

m(t− s)fS(s)ds. (4)

In other words, by just knowing the distribution of the inter-arrival times {Si, i ≥ 1}, we
may try to solve (4) to determine the renewal process completely. Unfortunately (4) is
also typically hard to solve, but we may often recognize its structure. It is also possible
obtain an explicit expression for m(t) in terms of convolutions of FS. Since Nt is positive
and integer-valued we have

m(t) =
∞∑
n=1

P (Nt ≥ n) =
∞∑
n=1

P (Un ≤ t) =
∞∑
i=n

F n∗(t).
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At time t we can notice that SNt is the time of the first renewal before t and SNt+1 is the
time of the next renewal (see figure 2), giving the double inequality

UNt ≤ t < UNt+1. (5)

Figure 2: Illustration of SNt and SNt+1, the first renewals prior to and after time t. Yt is
then the time to the next renewal.

Dividing with Nt in (5), the left side becomes UNt
Nt

= 1
Nt

∑Nt
i=1 Si → E [S] as t → ∞,

since this is the mean of Nt sojourns. For the right side we similarly have that
UNt+1

Nt
=

UNt+1

Nt+1
· Nt+1

Nt
→ E [S] · 1 = E [S] as t→∞. Thus limt→∞

t
Nt

= E [S], since it is squeezed in
between the left and right side of (5) and we have the following

lim
t→∞

Nt

t
=

1

E [S]
, (6)

which is a classical result in renewal theory. It is also true for the renewal function
m(t) = E [N(t)] that

lim
t→∞

m(t)

t
=

1

E [S]
. (7)

The latter result is often known as the elementary renewal theorem. Although (6) and (7)
looks similar, it is not the case that (7) follows from (6). We now show why (7) is true in
the case of bounded sojourns, meaning that there is some finite real number C > 0 such
that P (Si < C) = 1 and E [Si] < C for any i. To start out, we need a result known as
Wald’s equation, which says that if N is independent of a sequence of independent and
identically distributed random variables S1, S2, ..., with E [N ] and E [Si] = E[S] being
finite, then

E

[
N∑
i=1

Si

]
= E [N ]E [S]. (8)

The proof of this can be found in many standard textbooks, like for example [22]. Now
UNt+1, the time of the next renewal at time t, can be expressed in two ways. As before
we may write UNt+1 =

∑Nt+1
i=1 Si and apply Wald’s equation (8) to obtain E [UNt+1] =

E [Nt + 1]E [S] = (m(t) + 1)E [S]. On the other hand we may define Yt as the time
to the next renewal at time t (see figure 2) and write UNt+1 = t + Yt and thus obtain
E [UNt+1] = t + E [Yt]. Equating the two expressions for E [UNt+1] and solving for m(t)/t
we get

m(t)

t
=

1

E [S]
+

E [Yt]

tE [S]
− 1

t
. (9)

Since E[S] < C <∞ by assumption and E[Yt] < E[S] by construction, the middle term
on the right hand side of (9) must be finite. Letting t→∞ equation (7) follows. It is also
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possible that we earn some kind of reward during each sojourn. These rewards may also
be negative, for example they may be interpreted as costs. Define Ri to be the reward
earned between the (i− 1)st and ith renewal, where it is possible that Ri will depend on
the length of the sojourn Si. Total accumulated rewards Rt =

∑Nt
i=1 Ri are known as a

Renewal-Reward process. Letting E[R] be the mean reward, we then have that

lim
t→∞

Rt

t
=

E [R]

E [S]
(10)

and

lim
t→∞

E [Rt]

t
=

E [R]

E [S]
. (11)

Under the specifications stated above, equation (11) is known as the Renewal-Reward
theorem. Equation (10) is easily derived from the strong law of large numbers and
equation (6). Since, as t → ∞, Rt

Nt
is the mean reward and Nt

t
→ 1

E [S]
, we have

Rt
t

= Rt
Nt
· Nt

t
→ E [R] · 1

E [S]
. As with equation (6) and (7) it is also here the case that

(11) does not follow from (10). To prove the Renewal-Reward theorem in the general case
requires more theory than we want to include here, but we can show that it is correct in
the case of independent and identically distributed rewards, being independent of Nt. In

this case we can use Wald’s identity (8) and have that E [Rt]
t

=
E [
∑Nt
i=1Ri]
t

= E [R]E [Nt]
t

. As
t→∞, we see from equation (7) that equation (11) follows.

Before leaving the topic of Renewal theory, we present a last type of processes called
Markov Renewal processes.

Definition 5. A stochastic process (Y, T ) = {Yn, Tn, n ≥ 0} with state space Y × [0,∞),
with T0 = 0 is called a Markov Renewal process if for any A ⊂ Y and t > 0,

P (Yn+1 ∈ A, Tn+1 − Tn ≤ t|Y0, Y1, ..., Yn = y, T0, T1, ..., Tn)

= P (Yn+1 ∈ A, Tn+1 − Tn ≤ t|Yn = y) .
(12)

Moreover the process (Y, T ) is said to be a homogeneous Markov Renewal process if equa-
tion (12) is independent of n.

More loosely speaking, a Markov Renewal process is a two-dimensional process (Y, T ),
where further evolution given its history only depends on the present state of Y -process.
The Y -process is thus a discrete time Markov process. Note that the next value of Y and
the next increment of the T -process might be dependent. In later sections, we are going
to see what a Markov Renewal process can look like.

2.3 Regenerative and semi-regenerative processes

With the background in the renewal theory from the previous section we will now discuss
regenerative processes and semi-regenerative process. Loosely speaking a regenerative
process is a stochastic process that with probability one will restart itself at some point
in time, while a semi-regenerative process is at process that may restart itself at some
point in time. We will see through its definitions that the regenerative process are as
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closely linked to renewal processes, as the semi-renewal processes are linked to the Markov
Renewal processes. In addition we will discuss the existence of stationary distributions
for such processes. There are many equivalent ways to define a regenerative processes
our definition is inspired by [3]. That is a regenerative process can be defined in terms
of independent and identically distributed inter-arrival times at which the process starts
over again.

Definition 6. A Stochastic process X = {Xt, t ≥ 0} is said to be a regenerative process if
there exists a renewal process with inter-arrival times S1, S2, ..., with supn Sn = ∞, such
that the process {XSn+t, t ≥ 0} is independent of S1, ..., Sn and has the same distribution
as the process {Xt, t ≥ 0}.

To be clear, a regenerative process is a process that evolves for some random amount of
time, before it restarts itself. Possible values of X0 and XSn is called the regeneration set,
since the process will return to this set at the time of regeneration. After regeneration,
the process will evolve according to the same distribution as it did from the start. Then
it is quite intuitive to understand that the process is both irreducible and recurrent. For
example, if we visit a set A during a sojourn, this must also be possible for some sojourn
later, since the distribution of the process is the same in both periods. Moreover, since
supn Sn =∞, we will visit A infinitely many times. Indeed, we have that according to [2],
we have that if a process is regenerative, then it has a stationary distribution. Since the
process is also irreducible, the stationary distribution is unique. It is often the case that
we are not able to find an explicit solution to equation (2) and it therefore convenient to
know if a unique solution exists. Another possible approach to check for uniqueness is
to use analytical techniques from the theory of integral equations, given that we have an
expression for the transition kernel P .

Following [7] we use the following definition for semi-regenerative processes.

Definition 7. A càdlàg {Xt, t ≥ 0} is said to be a semi-regenerative process if there exist
a Markov Renewal process (Y, T ) with supn Tn = ∞, such that the process {XTn+t, t ≥
0} conditioning on (T0, ..., Tn, Y0, ..., Yn = y) have the same distribution as the process
{Xt, t ≥ 0} given Y0 = y. The process (Y, T ) is called the embedded Markov Renewal
process associated with {Xt, t ≥ 0}.

We see that this definition is in terms of càdlàg-processes, so remember that this is
also valid Lévy processes as mentioned in section 2.1. What this definition really tells
us, is that if we can show that a càdlàg process X has an embedded Markov Renewal
process, the process X is a semi-regenerative process. The times T0, T1, T2, ... are called
semi-regeneration times. Semi-regenerative processes is a generalization of regenerative
processes. At the semi-regeneration times, the process either will restart itself or proceed
as before until the next semi-regeneration point. [11] states the following important result
for processes satisfying both definitions 6 and 7.

Theorem 2. Let X = {Xt, t ≥ 0} be a Markov process with state space X which is
both semi-regenerative with semi-regeneration times {Tn, n ≥ 0} and regenerative with
regeneration times {Sn, n ≥ 0}. Let Y = {Yn, n ≥ 0} = {XTn , n ≥ 0} be the embedded
Markov process with stationary distribution π. Furthermore define Φ = {Φt, t ≥ 0}, with
Φ0 = 0 as a positive stochastic process with the properties that
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• Φt = Ψt(Xu, 0 ≤ u ≤ t)

• Φt − Φs = Ψt−s(Xu, s ≤ u ≤ t)

for some function Ψt. If for any t > 0

E [Φt] <∞ and E [ΦS1 ] <∞,

then

lim
t→∞

E [Φt]

t
=

E π[ΦT1 ]

E π[T1]
. (13)

The process Φ is an additive function of the process X, like a reward process and
theorem 2 is a generalization of equation (11). The notation Eπ[f(T1)], means the expec-
tation of some function f over a time T1 given that that Y0 ∼ π. Equivalently we could
have said the expectation of f over a semi-regenerative period. To simplify the notation
we will therefore use the convention that

E π[f(T1)] = E π[f(T )].

What theorem 2 is saying is that the expected long term rate at which the function Φ
accumulates, is equal to the expected accumulation during a semi-regeneration period,
divided by the expected length of the semi-regenration period, given that the state of
the Y -process when the semi-regeneration start, is distributed according to it’s stationary
distribution. We will later see that Φ will represent accumulation of costs due to a
maintenance program for a component. Theorem 2 will later be used extensively in
computations of various estimates.
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3 Maintenance theory and degradation models

3.1 Different types of maintenance

In this text we will not go into the details of maintenance theory, but give a short intro-
duction to the concepts that is most important to us. We will assume that whenever a
maintenance action takes place on an item, the item’s state is reset so that item can be
regarded to be ”good as new” i.e. in perfect condition. In practice, such an action may be
for example a replacement or a repair, but we will not look into these differences. However
we want to distinguish between different reasons for a maintenance action to take place.
[19] introduces the following distinctions between different types of maintenance:

• Preventive maintenance.

• Corrective maintenance.

• Failure-finding maintenance.

Failure-finding maintenance is a special class, that we will not consider in our model
later on. It often consists of testing back-up and security solutions for a system, like
for example a gas detector close to a pipeline system of flowing gas. The difference
between preventive and corrective maintenance is of greater importance in this text and
we will therefore take a closer look at these. Preventive maintenance (PM) is maintenance
performed on an item while it is still functioning. Of course, this is done to prevent the
event of an item failure. Many policies may be adopted to decide when a PM should be
performed. [19] uses the the following classification:

• Age-based maintenance.

• Clock-based maintenance.

• Condition-based maintenance.

• Opportunity maintenance.

Age-based and clock-based maintenace are somehow similar. Using an age-based policy for
PM, the maintenance is performed when the item reaches a certain age, like for example 3
years, while using clock-based policy, the PM is performed a pre-specified calendar times
like for example every third week. Under the condition-based policy, PM is performed
based on measurements of the items condition. We will comment on such measurements
later in this section. Opportunity maintenance is only relevant for systems consisting of
more than one item, and basically means that a PM is performed based on an opportunity
to do so, typically because maintenance is performed on a neighboring component. An
example may be a valve and a filter inside a pipeline. If the system is shut down because
the valve has to maintained, one might want to maintain the filter as well. We will mainly
be concerned with condition-based maintenance in applications later.

Corrective maintenance (CM) is maintenance performed on an item after it has failed.
Maintenance actions are also associated with costs, that we will discuss in details in section
4. For now, we note that if a preventive maintenance regime should make sense, there must
be a possibility to reduce total costs due to maintenance under this regime, compared to a
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regime where we let items run until failure. In connection with condition-based preventive
maintenance, we should remark on how we could keep track on an item’s condition. First
of all this requires at least one measurable variable being correlated with or representing
the item’s state. [19] discusses different possibilities here, including physical variables (like
temperature and pressure) and performance variables (for example quality of produced
items) amongst others. We will assume that the system’s state can be summarized in one
continuous random variable and that the time evolution of this can be a described by a
degradation process (see next section). The next question is how to obtain information
on an item’s state. Typically this can either be done by inspection or by monitoring.
Monitoring means that we have a device providing real time information on the item’s
state, such as a camera or a temperature sensor. This can be done either continuously or
sequentially. Inspection, which will be our approach, means that we gather information on
the item’s state at certain times by examination of the condition variable. Inspections is
typically done at pre-specified times. These time points may be equidistant, for example
8 o’clock every morning, or they may be determined based on the item’s condition at last
inspection.

3.2 Degradation processes

Degradation processes, also sometimes referred to as deterioration processes, are stochastic
processes modeling the state of an item subject to random degradation. For a more
complete introduction and background on this topic, see for example [24]. If we let
X = {Xt, t ≥ 0} be a degradation process, we will use the convention that Xt = 0 means
that the item is in perfect condition. Over time the item will continuously degraded until
it reaches a level L > 0, so that when Xt ≥ L, the item is considered to be in a failed state.
In practice this means that the use of degradation processes, requires a that we are able
to measure the item’s state, and hence its degradation, which can be a challenging task.
However this problem will not be dealt with in this text and we will assume that this is
always possible. For now, we are considering a situation where no kinds of maintenance
is performed. We then define the lifetime of the item as

TL = inf
t
{Xt ≥ L} . (14)

By a lifetime distribution we mean the distribution of TL. A classical approach in
reliability engineering is to consider the lifetime distribution of components that are as-
sumed to be in one of two states: the functioning state or the failed state. Making use
of degradation processes, we are able to study items that might be in a whole range of
different states. A graphical interpretation of the framework presented so far can be seen
in figure 3, where we display a sample path of a typical degradation process and have
labeled the failure level L and the lifetime TL.
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Figure 3: Sample path of a typical degradation process.

For reasons that will become clear later, it should be mentioned that reaching level
L, does not necessarily mean that we will detect the failure when it happens. Therefore
the time spent above L will be referred to as the downtime of the system. Depending
on whether or not the process is below L, we see that we can still apply the classical
two-state approach, although for some processes it can be hard to obtain the lifetime
distribution. If the degradation process X is an increasing process, we can attempt to
find the distribution of TL from

P (TL < t) = P (Xt > L). (15)

Among the desired properties a degradation process should have, it is often preferred
that the process is increasing in the absence of maintenance. The Wiener process is an
example of process that does not have this property. Although it is sometimes used to
model degradation by including a positive drift in the model, it’s negative increments
may be diffucult to interpret physically. Another property often desidered by reliability
engineers is that the process can be expressed as a positive Compound Poisson process
[26]. That is a process

∑Nt
i=1Di, where Nt is a Poisson process and the Di’s are positive

identically distributed random variables, often referred to as jumps. If a degradation
process can be expressed as a positive Compound Poisson process, the degradation at
time t can be interpreted as a series of random shocks causing the degradation. We will
now present two particular degradation processes that has these properties. As we will
see these processes are specified by certain parameters that we will assume to be constant.
The models can be extended by letting these parameters being functions of time, without
too much complication. Another approach used in [26] is the let the parameters be random
variables.
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3.2.1 The Gamma process

The Gamma process is a very common model for degradation and has been found to be
realistic in some applications [19]. [18] is an excellent summary of both properties and
applications of the Gamma process. Before defining the process, we need to introduce the
Gamma distribution (Ga). If a random variable X ∼ Ga(α, β), then X has a probability
density function

fX(x;α, β) =
βα

Γ(α)
xα−1e−βx, x > 0, α > 0, β > 0, (16)

where Γ(a) =
∫∞

0
ua−1e−udu is known as the gamma function. α is called the shape

parameter and β is called the scale parameter. One might also specify the model in terms
of α and β̃ = β−1. The cumulative distribution function is

FX(x;α, β) =
βα

Γ(α)

∫ x

0

tα−1e−tβdt =
1

Γ(α)

∫ βx

0

uα−1e−udu =
γ(α, βx)

Γ(α)
, (17)

where γ(a, b) =
∫ b

0
ua−1eudu is known as the lower incomplete gamma function. From

(16) we can find that

E [X] =
α

β
and Var (X) =

α

β2
. (18)

The Gamma process is then defined as follows

Definition 8. A stochastic process X = {Xt, t ≥ 0} is said to be a Gamma process with
shape parameter α and scale parameter β if

(i) X0 = 0.

(ii) X has independent and stationary increments.

(iii) For every t > s, Xt −Xs ∼ Ga (α(t− s), β).

Since the density of the Gamma distribution has positive support, the Gamma process
is a subordinator. In figure 4 we display the graph of different Gamma density functions
with a sample path of its associated Gamma process below.
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Figure 4: Gamma densities and associated Gamma processes for different choice of pa-
rameters.

[12] argues that the Gamma process can be thought of as a compound Poisson process
with Gamma distributed jumps and an arrival rate which is going to infinity. For the
distribution of the lifetime TL, defined by equation (14), we get from (17) and (15), that

P (TL < t) = 1− γ(αt, βL)

Γ(αt)
. (19)

As pointed out by [18], differentiation of (19) does not give a closed form expression for
the density of TL, but it can be expressed in terms of socalled digamma functions. This
means that in order to do computations on this distribution, a numerical algorithm is
required.

3.2.2 The Inverse Gaussian process

Another degradation model that recently have become more popular is the Inverse Gaus-
sian process [25],[26]. Again we have to introduce the Inverse Gaussian distribution (IG)
before defining this process. [6] and [23] are both books devoted to this distribution. If a
random variable X ∼ IG(µ, η), then X has the probability density function

fX(x;µ, η) =

√
η

2π
x−3/2 exp

(
−η(x− µ)2

2µ2x

)
, x > 0, µ > 0, η > 0. (20)

µ is called the mean parameter and η is called the scale parameter. Other parametrizations
are also possible (see [23]). A nice property with the IG-distribution is the its cumulative
distribution function can be written in terms of the cumulative distribution function
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Φ(x) = (2π)−1/2
∫ x
−∞ e

−t2/2dt, of the standard normal distribution. This is proved in [6]
and the expression is

FX(x;µ, η) = Φ

[√
η

x

(
x

µ
− 1

)]
+ e2 η

µΦ

[
−
√
η

x

(
1 +

x

µ

)]
. (21)

From (20) we can find that

E [X] = µ and Var (X) =
µ3

η
. (22)

The IG-process can now be defined.

Definition 9. A stochastic process X = {Xt, t ≥ 0} is said to be an Inverse Gaussian
process (IG-process) with mean increment µ and scale paramteter η if

(i) X0 = 0.

(ii) Xt has independent and stationary increments.

(iii) For every t > s, Zt − Zs ∼ IG ((t− s)µ, (t− s)2η).

As we can see from this definition and equation (20), the IG-process is also a subordi-
nator. Figure 5 shows graphs of different IG-densities with a sample path of its associated
IG-process below.

Figure 5: IG densities and associated IG-processes for different choice of parameters.

[26] proves that the IG-process can be expressed as a compound Poisson process. More-
over, using (21), we get that the lifetime distribution for an item under this degradation
process is
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P (TL < t) = Φ

[√
η

L

(
t− L

µ

)]
− e2 tη

µ Φ

[
−
√
η

L

(
t+

L

µ

)]
(23)

Since the right hand side of (23) is expressed in terms of the standard normal cumu-
lative distribution function, we are able to obtain an analytic expression for the density
of TL. [26] have two specific remarks to equation (23). Firstly, they show that the distri-
bution of TL can be approximated by a Birnbaum-Saunders distribution, which is one of
the classical lifetime distributions in reliability engineering (see [19]). This partly builds
up under the choice of using the IG-process as a degradation model. The second remark,
is that since we are able to obtain an analytical expression for the density of TL, the IG-
process has an advantage compared to the Gamma process when it comes to estimation.
This is because the lack of a closed form expression for the lifetime distribution in the
Gamma case, makes exact statistical inference analytically intractable.
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4 A complete model for degradation and maintenance

We now present a degradation and maintenance model given in [11] and [9]. At first we
will follow the these papers very closely, before we will discuss possible modifications. The
system in this model consists of just one item, where the item’s state at time t can be
summarized in one random variable Xt.

4.1 The original model

Without any forms of maintenance Xt will be a strictly increasing process, namely the
Gamma process presented in section 3.2.1. It is assumed that the system is in a failed
state when Xt ≥ L, for some fixed level L. When the system is in perfect condition
(good as new), we have Xt = 0. The system is not monitored, so the only way we can
get information about its state Xt is by inspection. These inspections are assumed to
be perfect, in the sense that we observe the system’s state without error in a negliable
amount of time. Failures are also detected only through inspections. Having the observed
the system’s state, one of the following decisions must be made:

• Perform corrective maintenance.

• Perform preventive maintenance.

• Leave the item as it is.

In addition a date for the next inspection must be set. The times at which the system is
inspected will be denoted T1, T2, .... The corrective and preventive maintenance could be
both repairs or replacement. Nevertheless these actions are also assumed to be perfect,
that is, they take no time and resets the item to the ”good as new” state. Letting XT−

n

be the item’s state just before inspection number n, the maintenance decisions are made
using the following rules:

• If XT−
n
≥ L, corrective maintenance is performed.

• If M ≤ XT−
n
< L, for some level M < L, preventive maintenance is performed.

• Otherwise, the item is left as it is.

We use the convetion that at the time of the nth inspection, the item’s state is

XTn =


0 if XT−

n
> L

0 if M ≤ XT−
n
< L

XT−
n

otherwise.
(24)

To determine the time for the next inspection we use the function

m(x) = 1 + max
[
A
(

1− x

B

)
, 0
]
, A > 0, B > 0, (25)

such that
Tn+1 = Tn +m (XTn) . (26)

26



We will comment on the coefficients A and B later. Figure 6 illustrates how equation (25)
and (26) are used to determine the next inspection time. Note that the next inspection
time is dependent only on the system state at the current inspection.

Figure 6: Graph of function m given by (25) and the determination of the next inspection
time given by (26).

The choice of the function m can actually be quite general. According to the model,
any positive and decreasing function m : [0,M) → [mmin,mmax], with mmax = m(0) >
mmin = m(M) > 0 can be used in equation (26). This ensures that the sequence {Tn, n ≥
0} will be increasing and that the time to next inspection will become shorter the more
we approach a maintenance action. We define also the sequence of maintenance times,
S1, S2, ..., where the replacements can be both preventive or corrective. A illustration of
the proposed framework can be seen in figure 7.

Let us now take the following costs into account:

• Ci, the cost of one inspection.

• Cp, the cost of a preventive maintenance action.

• Cc, the cost of a corrective maintenance action.

• Cd, the cost of downtime pr. time unit.

As mentioned in section 3.1 there must be a possible gain by introducing a preventive
maintenance regime. To be absolute certain of this, we will assume Cp < Cc. Let N

(i)
t

be the numbers of inspections performed, N
(p)
t be the numbers of preventive maintenance
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actions taken, N
(c)
t be the number of corrective maintenance actions taken and dt be the

total accumulated downtime in the interval [0, t]. Define the global cost process as

Ct = Ci ·N (i)
t + Cp ·N (p)

t + Cc ·N (c)
t + Cd · dt (27)

Figure 7: Illustration of the of the model. Sample paths of the unobserved degradation
process between inspections is represented by the dashed lines.

Now our benchmark of how well a certain maintenance strategy is functioning will be
the expected global cost rate at an infinite horizon, denoted by EC∞ and defined via (27)
as

EC∞ = lim
t→∞

E [Ct]

t

= lim
t→∞

(
Ci ·

E [N
(i)
t ]

t
+ Cp ·

E [N
(p)
t ]

t
+ Cc ·

E [N
(c)
t ]

t
+ Cd ·

E [dt]

t

)
.

(28)

We want of course EC∞ to be as small as possible. Our decision variables are M , A and
B. That is, we can choose when we want to start carrying out preventive maintenance
actions in the variable M and we can choose how often we want to do inspections in the
variables A and B. [11] argues that the limits occurring in (28) is hard to determine,
since they are functions of the degradation process X before time t. However, we are
now going to explore properties of this model and define convenient processes that can
help us compute (28) efficiently. To start out, notice that S1, S2 − S1, ... are independent
and identically distributed. This follows from the fact that the degradation process X
is a Markov process (which follows from the definition of the Gamma process). We can
therefore identify the global cost process Ct as a renewal-reward process (see section 2.2)
and use equation (11) to establish

EC∞ =
E [CS]

E [S]
, (29)
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where E [f(S)] denotes the expectation of some function f over one sojourn. In other
words, the long term expected cost rate is equal to the expected cost during a renewal
cycle, divided by the expected length of the problem. Now equation 29 is much easier
to compute than equation (28), but with the proposed model we can actually do better.
Define the process Y = {Yn, n ≥ 0} = {XTn , n ≥ 0}, the observations of X at the
inspection dates. Clearly Y is an embedded Markov process, having the state space
[0,M). Two very important properties of the degradation process X will now be stated:

(i) Xt is regenerative, with regeneration times {Sn, n ≥ 0}.

(ii) Xt is semi-regenerative with semi-regeneration times {Tn, n ≥ 0}.

(i) follows more or less from the construction of this model. After each maintenance
action, the item is restored to a ”good as new”-state, or in mathematical terms, at the
times {Sn, n ≥ 0}, we have XSn = 0, and by the Markov property of X, XSn+t must have
the same distribution as Xt, meaning that statement (i) is true (see definition 1, section
2.3). To see that statement (ii) is true, we need to consider the process (Y, T ) and see
why this is a Markov Renewal process, as defined in section 2.2. In other words, we need
equation (12) to be true for the process (Y, T ) defined in this model, stating that the next
observation (Yn+1, Tn+1 − Tn) is only dependent on Yn. From equation (25) we see that
this holds for the time increment, since it can be rearranged to

Tn+1 − Tn = m(XTn) = m(Yn).

Moreover Yn+1|Yn ∼ Ga(α · m(Yn), β) is also dependent on Yn only. Therefore we have
that (Y, T ) is a Markov Renewal process and it then follows from definition 8, section
2.3 that Xt is a Semi-regenerative process with semi-regeneration times {Tn, n ≥ 0} as
stated in (ii). The fact that X is both regenerative and semi-regenerative is important
because of its consequences. First of all, the regenerative property alone implies that X
has a stationary distribution, and since Y is embedded in X, so does Y . Let π denote the
stationary distribution of Y . Since YSn = 0, that is the process returns to the ”good as
new”-state after maintenance, {0} is called a regeneration set for Y and we can assume
the density of π is on the form

π(y) = a · δ(y) + (1− a) · b(y), (30)

where δ(y) is the Dirac delta, b(y) is a probability density function and 0 < a < 1. (30)
basically says that a is the long term probability for the process being in the state 0 and
1 − a is the long term probability of observing the chain in some other state in (0,M),
where the distribution of these are given by b(y). Since we have that X is regenerative,
semi-regenerative and the embedded Markov process Y has a stationary distribution, it
is tempting to invoke theorem 2, section 2.3 to improve on equation (29). We then let
Φt = Ct and check if all the assumptions stated for Φt also hold for Ct. Clearly Ct is
an additive function of the process X, so the two first properties are fulfilled. To see if
E [Ct] <∞, we must check this for all the processes N

(i)
t , N

(p)
t , N

(c)
t and dt in (27). Since

the number of inspections is larger or equal to the number of maintenance actions we have
that N

(p)
t ≤ N

(i)
t and N

(c)
t ≤ N

(i)
t . To see that N

(i)
t has a bound for every finite t, recall

29



that in the general case, the function m that determines the time to the next inspection
has a lower bound mmin. From this we deduce that for any integer k > 0, we may write

t = T1 + (T2 − T1) + ...+ (Tk − Tk−1) + (t− Tk) ≥ mmin · (N (i)
t + 1) > mmin ·N (i)

t .

Therefore N
(i)
t < t

mmin
and we have E [N

(i)
t ] < ∞, E [N

(p)
t ] < ∞ and E [N

(c)
t ] < ∞.

Moreover dt ≤ t, with equality if and only if the item is non-functioning for all t. Therefore
E[Ct] <∞, and we have showed that this condition is satisfied for the global cost function.
Let S be the time of the first maintenance action. It remains to show that E[CS] <∞. In

this case we can tell that E [N
(p)
S ] ≤ 1 and E[N

(c)
S ] ≤ 1, since we at maximal can perform

one maintenance action in each regeneration period. Define τ = infn≥1{Yn = 0}. We then

have that N
(i)
S = τ and that dS ≤ S ≤ m(0) ·τ . Now S can be viewed as a passage time of

the Gamma process, and since the Gamma process is strictly increasing it will sooner or
later reach a point where a maintenance action is taken. Therefore E [S] <∞. Moreover,

we have that S ≥ mmin · τ , so that E [τ ] ≤ E [S]
mmin

< ∞. Thereby E [N
(i)
S ] = E [τ ] < ∞

and E [dS] ≤ E [S] < ∞. We conclude that E [CS] < ∞ and that we therefore can apply
theorem 2, section 2.3 to obtain

EC∞ =
E π[CT ]

E π[T ]
= Ci ·

E π[N
(i)
T ]

E π[T ]
+ Cp ·

E π[N
(p)
T ]

E π[T ]
+ Cc ·

E π[N
(c)
T ]

E π[T ]
+ Cd ·

E π[dT ]

E π[T ]
(31)

Now, the best thing about (31) is that we actually can derive intuitive expressions for
many of the quantities involved. And even more important, we can establish natural
estimators for all of the quantities from the output of a Monte Carlo simulation of the
(Y, T ) process. Moreover, in such simulations, we can express all these quantities in terms
of the first inspection T1, given that we start the process in a value sampled from the
stationary distribution π. We have for example that

E π[N
(i)
T ] = 1,

since we only do one inspection between (Tk−1, Tk], for any k = 1, 2, 3..., and does not
need to be estimated. We also have that

E π[N
(p)
T ] = Pπ(M ≤ XT−

1
< L) and E π[N

(c)
T ] = Pπ(XT−

1
≥ L),

where Pπ(·) means probabilities computed in terms of the stationary distribution π, re-
quiring of course that XT0 ∼ π. Similar, but more complicated, expressions can also be
derived for E π[T ] and E π[dT ], but we will not use them. Instead, the main idea now is
to establish quantities that can estimate all the ingredients in (31), during a Monte Carlo
simulation of (Y, T ). In section 5, we will explain such a simulation algorithm in detail.
For now, we assume that such an algorithm for (Y, T ) is available. Let A be any event,
we then denote by #(A), then numbers of times A have occurred. The estimators we will
use for computing (31) is then

̂
Eπ[N

(p)
T ] =

#(M ≤ XT−
n
< L)

#(inspections)
. (32)

Êπ[N
(c)
T ] =

#(XT−
n
> L)

#(inspections)
. (33)
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Ê π[dT ] =
Total accumlated downtime

#(inspections)
(34)

Ê π[T ] =

∑#(inspections)
n=1 (Tn − Tn−1)

#(inspections)
, (35)

with T0 = 0. These will all converge, due to the law of large numbers. To make sure that
the simulations are started with an initial value Y0 ∼ π, a burn-in period is used.

4.2 Possible extensions

An advantage by taking the Monte Carlo approach for simulation is that we can easily
add extra elements into the model, without having to derive new equations. Many such
extensions can be made, without violating the assumptions of theorem 2 from section 2.3,
so that the estimates (32)-(35) are still valid. We now present two such extended models.

4.2.1 Changing the degradation model

Adapting a new model for the degradation of the item is one of the easiest extensions we
can make. This is also a very nice opportunity to have, since we may find other models
appropriate than the Gamma process. The only thing we have to make sure of is that the
process is a cádlág and that it is regenerative under the inspection/maintenance-program
we have introduced. We have chosen to use the Inverse Gaussian process as an alternative
degradation process in our numerical example, that will be presented later.

4.2.2 Non-perfect inspections

Another possible approach is to introduce non-perfect inspections. In what we have
presented so far, we have been able to obtain the information about the system’s state
at inspection without any kind of error. Different approaches could be used to model
non-perfect inspections, and we use a model inspired by [14]. Here one assumes that a
signal is emitted from the item when the process X reaches the level M . The signal is
detected with probability q and a preventive maintenance action is taken. If the signal is
not detected, the item is left as it is until the next inspection.
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5 Simulation methods

In this section we will construct a Monte Carlo-based algorithm for simulating the model
we presented in section 4. To be more precise we will have to simulate the (Y, T )-process,
as this is the process that will be observed in practice. A problem that then occurs is
how to estimate the accumulated downtime dt of the system, since the actual passage
time of the level L for the degradation process will not be observed. To be clear, we
may for example make two observation Yn−1 < L and Yn > L at the times Tn−1 and Tn
respectively. We then know that there is a passage time TL ∈ (Tn−1, Tn) and the there is a
downtime Tn−TL associated with this failure. To solve this problem, we will construct an
algorithm for drawing from the distribution of these passage times, conditioning on the
observations of the Y -process prior to, and after a failure has occurred. We will see that
we can solve this by a bisection algorithm that is heavily based on a concept called bridge
sampling. Therefore we will start out by introducing bridge samplers and then develop
such samplers for both the Gamma process and the IG-process. After having established
the bridge samplers we will put the pieces together to the algorithm for drawing passage
times. Towards the end of the section, we will put the passage time algorithm into the big
picture, the entire model. A short discussion on the convergence of Monte Carlo algorithm
is also included.

5.1 Bridge Sampling

Let X = {Xt; t ≥ 0} be a Lévy process and consider three time points t` < t < tu. Bridge
sampling is a method to simulate realizations of Xt, that is the bridge point, given that
we know the value of the process at some earlier time t` and at some time later tu. The
way this is done is to first obtain the distribution of Xt −Xt` conditioning on Xtu −Xt` ,
known as the bridge distribution. Having the bridge distribution at hand, we may draw
realizations of the bridge point directly if possible or, as we shall see in in examples, obtain
Xt exploiting the bridge distribution by clever use of transformations. In what follows
define the random variables for the increments of the process

W = Xt −Xt` , Y = Xtu −Xt and Z = Xtu −Xt` (36)

and for the time increments let

τw = t− t` , τy = tu − t and τz = tu − t`.

Obviously Z = W +Y and τz = τw + τy. Figure 8 provides an illustration of the entire
setting.
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Figure 8: Bridge sampling and some of the quantities involved

Conditioning on Z, the distribution of W is

fW |Z(w) =
fW∩Z(w, z)

fZ(z)
=
fZ|W (z)fW (w)

fZ(z)
=
fY (z − w)fW (w)

fZ(z)
(37)

Now given a Lévy process X, equation (37) is an expression for the bridge distribution
using only the known distributions of the increments. Therefore the first step in order
to obtain a bridge sampling algorithm for a process is to compute the right hand side of
this equation. We proceed by deriving such algorithms for both the Gamma process and
the Inverse Gaussian process. It turns that bridge simulations of both these processes
are quite elegant and that the construction the Gamma bridge is much easier than the
Inverse Gaussian bridge, which makes it a very good introductory example.

5.1.1 Gamma bridge sampling

The source of this derivation is [20]. Letting X be the Gamma process, meaning Xt−Xs ∼
Ga(α(t− s), β), equation (37) becomes

fW |Z(w) =
Γ (ατw + ατy)

Γ (ατw) Γ (ατy)
· z−1

(w
z

)ατw−1 (
1− w

z

)ατy−1

(38)

Consider now (for Z given) the transformation P = W
Z

have the distribution

fP (p) = fW |Z(zp) · z =
Γ (ατw + ατy)

Γ (ατw) Γ (ατy)
pατw−1 (1− p)ατy−1 .

That is P has a Beta-distribution P ∼ Be(ατw, ατy). More background on the Beta
distribution can be found in many standard textbooks, for example [4]. Finally we note
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that from the definitions (36) of W and Z that we can write P =
Xt−Xt`
Xtu−Xt`

, giving

Xt = Xt` + P · (Xtu −Xt`) (39)

Assuming that we are able to sample from the Beta-distribution, a summary of the bridge
sampling algorithm is as follows:

Data: t,t`,tu,Xt` , Xtu and α
Result: Xt|Xt` , Xtu

Draw P ∼ Be (α(t− t`), α(tu − t));
Xt ← Xt` + P · (Xtu −Xt`);
return Xt

Algorithm 1: Gamma bridge point

By successively running this algorithm an entire sample path can be simulated. For
example if we generate Xt, from Xt` and Xtu , we can generate two new bridge points
using Xt` and Xt for the first, and Xt and Xtu for the second, and so on. As pointed out
by [20] there is a very nice structure in this algorithm that can be seen from equation
(39). Since P has a Beta distribution we have that P ∈ [0, 1]. The bridge point Xt is
therefore a sum of the lower value Xt` and a proportion of the entire increment Xt` −Xtu

of the process from t` to tu, which is somewhat intuitive taking prior knowledge about
the Gamma process into account. Below, in figure 9, we display some simulated sample
paths that can be compared with the sample paths of figure 4 in section 3.2.1, since the
parameters are the same. All these simulations are done with [t`, tu] = [0, 1] with X0 = 0
and X1 ∼ Ga(α, β).

Figure 9: Bridge sample paths of Gamma processes.

As an experimental verification of the correctness of the Gamma bridge sampling
algorithm, we run six test cases. In each case we use the algorithm with different input
and sample 105 bridge points. From these we in each case create histograms and compare
with the graph of the densities produced by equation (38). The test cases are as follows:

I τx = 0.5, τy = 0.5, α = 1 and z = 1.

II Same as case I, but with α = 2.

III Same as case I, but with α = 0.5.
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IV τx = 0.3, τy = 0.7, α = 1 and z = 1.

V τx = 0.8, τy = 0.2, α = 1 and z = 1.

VI τx = 0.6, τy = 1.4, α = 0.7 and z = 0.5.

Graphical output of the numerical experiment can be seen in figure 10. In all six
cases we see that the simulations and the theoretical bridge densities fits well. All the
three first test cases are sampling bridge points at half way between the end points in
time. This gives symmetric distributions as wee can see from the all the plots on the first
row in figure 10. From this row we can also see that increasing (decreasing) α puts less
(more) mass to the center of the bridge density. In the plot for case IV, we see that the
symmetric get skewed towards small increments between the bridge point and the lower
starting point. This is expected since we have moved the time of sampled bridge points
towards the lower end point in time t`. The opposite effect for the skewness is observed in
the plot for case V, where we have moved the time of sampled bridge points towards the
upper end point in time t`. In the last test case VI, we have narrowed the total increment
Z = Xtu −Xt` = 0.5 and we note that the support of the density is narrowed too. Here
we have also chosen the time of the sampled bridge point a bit closer to t` and we can
observe a similar effect for the skewness as in case IV.

Figure 10: Histogram of simulated Gamma bridge points compared with their theoretical
bridge distribution. The bridge distributions fW |Z(w) is in each case given by equation
(38) and insertion of the parameters I-VI.

5.1.2 Inverse Gaussian bridge sampling

The source of this derivation is [21], but we also differ a bit from this paper. As mentioned
above the construction of a bridge algorithm for the IG-process is more complicated than
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for the Gamma process. We need to start out by presenting a preliminary result on
generation of random variables from transformations with multiple roots, that is derived
as a main result in [17]. Suppose a non-zero (except on a closed set) continuous function
g is such that its derivative g′ exists and that we have a relation between two continuous
random variables Q and S on the form

Q = g(S), (40)

where for a given realization Q = q, (40) have n distinct solutions s1, s2, ..., sn. Moreover
suppose S ∼ fS(s) and that we are interested in generating realizations of S using the
transformation (40). An arising question is then which one of the n roots of (40) should
be chosen. The main result derived in [17] is that given Q = q, the ith root of (40) is a
realization of S with probability

pi(q) =

(
1 +

n∑
k=1,k 6=i

∣∣∣∣ g′(si)g′(sk)

∣∣∣∣ · fS(sk)

fS(si)

)−1

. (41)

In practice we typically derive expressions for the roots s1, s2, ..., sk as a function of q.
Note that in order to make use of (41), we must know the distributions of both S and Q.

Letting Xt, be the IG process, meaning Xt − Xs ∼ IG(µ(t − s), η(t − s)2), equation
(37) becomes

fW |Z(w) =

√
η

2π

(wy
z

)−3/2 τwτy
τz

exp

(
−η

2

(
τ 2
w

w
+
τ 2
y

y
− τ 2

z

z

))
(42)

Define

Q = η

(
τ 2
w

W
+
τ 2
y

Y
− τ 2

z

Z

)
, (43)

which we can recognize from the exponent in (42). Q can also express as

Q =
ητ 2

y

Z
·

(
Y
W
− τy

τw

)2

Y
W
· τ

2
y

τ2w

.

If we now define λ =
ητ2y
Z

, κ = τy
τw

and S = Y
W

we can write Q as a function of S only,
given Z,

Q = λ
(S − κ)2

Sκ2
:= g(S). (44)

Note that S must be strictly positive, from the fact that W and Y are increments of
the strictly increasing Inverse Gaussian process. The Inverse Gaussian bridge sampling
algorithm requires us to sample realizations of S, which can be done using the relation
(44), as long as we can derive the distributions of both Q and S. This is a quadratic
equation in S, where for any realization Q = q we note that if s∗ is a solution of (44),
then κ2

s∗
is the other solution since

g

(
κ2

s∗

)
= λ

(
κ2

s∗
− κ
)2

κ2

s∗
κ2

= λ
s∗
(

1
s∗κ

(κ− s∗)
)2

κ4
= λ

(s∗ − κ)2

s∗κ2
= g(s∗). (45)
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Solving q = g(s) we therefore obtain the roots

s1 = κ

(
1 +

qκ−
√

4λqκ+ q2κ2

2λ

)
and s2 =

κ2

s1

. (46)

The probabilities for choosing either of the roots in (46) can be calculated using
equation (41), since the function g in (44) is clearly is non-zero except on the closed
set s = κ and continuous (recall that s > 0). If we let fS(s) denote the density function
of S, we need in our case to obtain a computable expression

p1 =

(
1 +

∣∣∣∣g(s1)

g(s2)

∣∣∣∣ · ∣∣∣∣fS(s2)

fS(s1)

∣∣∣∣)−1

, (47)

from which we also can compute p2 = 1−p1. A routine computation gives us the ratio
of derivatives as ∣∣∣∣g′(s1)

g′(s2)

∣∣∣∣ =

(
κ

s1

)2

.

Conditioning on Z, we see that S = Y
W

= z−W
W

, so that ds
dw

= − z
w2 . Letting λ and κ

be defined as above, we find distribution of S from (42)

fS(s) = fW |Z(w) ·
∣∣∣∣ dsdw

∣∣∣∣−1

=

√
η

2π

τwτy
τz

(wy
z

)−3/2

e
− η

2

(
τ2w
w

+
τ2y
y
− τ

2
z
z

)
· w

2

z

=

√
ητ 2

y

2πz

1

1 + τy
τw

z

w

( y
w

)−3/2

e
− η

2

(
τ2w
w

+
τ2y
y
− τ

2
z
z

)

=

√
λ

2π

1

1 + κ
(1 + s)s−3/2e−

λ(s−κ)2

2κ2s .

(48)

By (45) we have that the exponential factors will cancel in the ratio we need to compute
p1 and we have that

fS(s2)

fS(s1)
=
s2

1(κ2 + s1)

κ3(1 + s1)
.

Finally, by insertion in (47), the probabilities of picking each of the roots p1 and p2

can be expressed as

p1 =
κ(1 + s1)

(1 + κ)(κ+ s1)
and p2 = 1− p1. (49)

Now, the only thing that is left is to obtain the distribution of Q. The authors of [20]
applies a result called Tweedie’s theorem, which can be found in [23] and adapt this to
our problem. We will however, use the relation (44) and exploit that we have already
obtained the distribution of S, which is a more intuitive way of deriving Q’s distribution.
Since the function g(s) is not one-to-one, we have to take extra care. For a background
on the distribution of transformations of random variables, where transformation is not
one-to-one, see [4]. The main idea is to detect intervals where the transformation is one-
to-one, before applying the standard transformation formula on each such interval and
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in the end obtaining the desired distribution by summing over the results on each such
interval. From equation (44), we can compute

g′(s) =
λ

κ2

(
1− κ2

s2

)
, (50)

and we see that for s > 0, g′(s) = 0 if and only if s = κ. Moreover we see that g′(s) < 0
for s < κ and g′(s) > 0 for s > κ, meaning that g is decreasing on (0, κ) and increasing on
(κ,∞). If we let s1 be the lower root of (43), it is clear that 0 < s1 < κ and κ < s2 <∞
as long as they are distinct. If we define g1(s1) = g(s1) for 0 < s1 < κ and g2(s2) = g(s2)
for κ < s2 < ∞, we have that g1 and g2 are both one-to-one. For the distribution of Q,
we can therefore establish.

fQ(q) = fS(s1)

∣∣∣∣dg−1
1 (q)

dq

∣∣∣∣+ fS(s2)

∣∣∣∣dg−1
2 (q)

dq

∣∣∣∣ . (51)

Furthermore, for i = 1, 2,

dg−1
i (q)

dq
=
dsi
dq

=

(
dq

ds

)−1

s=si

,

which we can compute from (50). Inserting these derivatives in (51) we obtain

fQ(q) =
2∑
i=1

fS(si)

∣∣∣∣dqds
∣∣∣∣−1

s=si

=
2∑
i=1

√
λ

2π

1

1 + κ
s
−3/2
i (1 + si)e

−q/2κ
2

λ

s2
i

s2
i − κ2

=
1√
2π
e−q

κ

1 + κ

2∑
i=1

κ
√
si√

λ(si − κ)︸ ︷︷ ︸
=q−1/2

1 + si
si + κ

=

[
1√
2π
q−1/2e−q/2

]
κ

1 + κ

(
s1 + 1

s1 + κ
+
s2 + 1

s2 + κ

)
.

We can recognize the expression in the square brackets above as the density of chi-squared
distribution with one degree of freedom (χ2

1-distribution). Inserting the relation s2 = κ2

s1
,

the factor outside the square brackets reduces to 1. Therefore we have that

fQ(q) =
1√
2π
q−1/2e−q/2, q ≥ 0. (52)

That is Q ∼ χ2
1. Being able to sample S, we proceed in the same way as for the Gamma

bridge by noting that S = Y
W

= Xtu−Xt
Xt−Xt`

, giving

Xt = Xt` +
Xtu −Xt`

1 + S
. (53)

Note again the structure of (53). Since any realization S = s will be strictly positive,
1

1+s
∈ (0, 1) and we start again with the initial value of the process and add a proportion
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of the total increment of the process from t` to tu. We now present a summary of the
IG-bridge sampling algorithm.

Data: t,t`, tu, Xt` , Xtu and η
Result: Xt|Xt`,Xtu

λ← ητ2y
Xtu−Xt`

;

κ← tu−t
t−t`

;

draw Q ∼ χ2
1;

S ← κ

(
1 +

Qκ−
√

4λQκ+Q2κ2

2λ

)
;

draw U ∼ Uniform[0, 1];

if U > κ(1+S)
(1+κ)(κ+S)

then

S ← κ2

S

end

Xt ← Xt` +
Xtu−Xt`

1+S
return

Algorithm 2: IG bridge sampling

Before examining the output of this algorithm, display some numerical evidence in
figure 11, showing that the samples of S really comes from the distribution obtained in
equation (48). Again we compare simulated realizations with the theoretical distributions
for different values of the parameters κ and λ. We do this because the whole IG-bridge
sampling algorithm relies on the ability to sample from the distribution of S. In our
work with the Gamma process, the parameter P was analogous to S, but we where able
to obtain a well known distribution for P in the Beta distribution, and then assumed
a sampler for the Beta-distribution was available. For the parameter S, the obtained
distribution are rather rare, and assuming an available sampler from it is not realistic.
Hence, we created our own sampler.

Figure 11: Histograms of simulated realizations of S, compared with theoretical distribu-
tions (48) (red lines) for different values of κ and λ.

Parameter values are indicated on each plot. We see that there is a good fit between
the simulated samples and the densities of the theoretical distributions. Figure 12 displays
sample paths of the IG-process simulated with the bridge sampling algorithm. These plots
should be compared with the plots in figure 5 in section 3.2.2, since the parameters are
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the same. Again we have done the simulations on [t`, tu] = [0, 1] with endpoints Xt` = 0
and Xtu ∼ IG(µ, η).

Figure 12: Bridge sample paths of IG processes.

Before leaving the IG-bridge sampling algorithm, we will also in this case set up some
numerical experiments to verify its correctness. We use the same type of setup as with
the Gamma bridge sampling algorithm and simulate 105 bridge points with six different
parameter configurations. Then we compare histograms of the simulated output with the
theoretical distribution, coming from equation (42), in each case. The six test cases are
as follows:

I τx = 0.5, τy = 0.5, η = 1 and z = 1.

II Same as case I, but with η = 0.5.

III Same as case I, but with η = 2.

IV τx = 0.3, τy = 0.7, η = 1 and z = 1.

V τx = 0.8, τy = 0.2, η = 1 and z = 1.

VI τx = 0.6, τy = 1.4, η = 0.7 and z = 0.5.

Figure 13 shows the output of the experiment and we immediately see that the theo-
retical densities fits well to the histograms.
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Figure 13: Histogram of simulated IG bridge points compared with their theoretical bridge
distribution. The bridge distributions fW |Z(w) is in each case given by equation (42) and
insertion of the parameters I-VI.

For the cases I, II and III, we first note that the distributions are symmetric, like we
saw also in the Gamma case (figure 10). For the parameter η, we can see that decreasing
(increasing) the parameter put less (more) mass to the center of the distribution for the
bridge point increment. Moving t towards t` in case IV, we observe that the distribution
becomes skewed towards lower increments. In case V, when we move t towards tu, the
opposite effect can be seen. This also expected and we saw the same effect in the Gamma
experiments. For the last case VI, we have used a smaller total increment z = 0.5 and
we note that the density gets concentrated on values on (0, 0.5). The time t of the bridge
point realization is moved a bit closer to t`, causing the distribution to become left-skewed.
We also note there is a general difference between the Gamma bridge distributions and
the IG bridge distributions, on how they look like. However many of the same effects are
observed when changing parameters in the experiments.

5.1.3 Simulation of passage times using bridge sampling algorithms

Bridge sampling algorithms can also be used to simulate first passage times of stochastic
processes. In our applications, these first passage time will be lifetime TL, as defined
by equation (14), that is the first time at which a stochastic process X = {Xt, t ≥ 0}
with continuous state space passes a certain level L. We will here assume that X is a
subordinator. Suppose again we have observed the process at two time points t` and tu.
Further, if XT` < L and Xtu > L, we know that t` < TL < tu. If the distribution of TL
is hard to obtain or hard to sample from, a bridge sampling algorithm may be applied to
simulate realizations of TL. Let genericBridge be a generic bridge sampling algorithm,
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returning a bridge point Xt, taking input Xt` , Xtu , t, t`, tu and θ, where t` < t < tu and θ
is a generic parameter vector specifying the generic subordinator X. The algorithm then
goes as follows

Data: L, t̃, t`, tu, Xt` , Xtu and θ
Result: T
while |tu − t`| > t̃ do

X̃ ← genericBridge(Xt` , Xtu ,
tu+t`

2
, t`, tu, θ);

if X̃ > L then

Xtu ← X̃;
tu ← tu+t`

2

end
else

Xt` ← X̃;
t` ← tu+t`

2

end

end
T ← tu+t`

2
;

return T
Algorithm 3: Bisection algorithm for passage times.

This algorithm, that we will refer to as bisectionAlgorithm later, is based on the
inequality t` < TL < tu, continuously making the possible range of TL-values narrower as
long as the time distance tu − t` is larger than some threshold t̃, before it returns TL as
the mean of the bounds. It uses a bisection approach, by computing the bridge point X̃
at the time half way between the bounds at each iteration. If X̃ is above L we update the
upper value Xtu and if X̃ < L we update the lower value Xt` , and simulate a new bridge
point from the updated input. Figure 14 illustrates how the algorithm works, where the
range of possible TL-values is marked as a red interval on the time axis.
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Figure 14: Illustration of algorithm 3.

The illustration shows a Gamma process, with α = 1, observed at times t` = 1.5
with Xt` = 2 and tu = 2 with Xtu = 4.5. We can see that in the first iteration Xtu is
updated, before Xt` is updated in the second iteration an so on. As seen from the plots,
the bisection approach ensures very fast convergence and the range of possible T -values
is very limited already in the fifth iteration.

5.2 Simulation of the degradation model

5.2.1 MCMC’s with continuous state space

This is a short summary of some key concepts, stated in [10], regarding convergence for a
Markov Chain Monte Carlo (MCMC) sampler. Typically, MCMC-techniques are used in
order to explore properties of some probability distribution π, that is hard to sample from
with standard methods. The idea of this approach is to construct a discrete time Markov
chain X = {Xn, n ≥ 0}, that has π as its stationary distribution. As a remark, we have
that in our case, the chain already as a part of the model, namely the Y -process, so it
doesn’t need to be constructed. Having established such a chain, one simulates it for a
sufficient amount of time and estimate quantities of interest as sample path averages of X.
By a sufficient amount of time, we mean two things. First the simulation must run long
enough for the chain to converge to its stationary distribution. To ensure this, we define a
sufficiently large burn-in period and discard all samples collected in this period. Secondly
we need to collect enough samples from the stationary distribution, so that we can use
the law of large numbers for these sample path averages. Let f represent a quantity of
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interest and define the sample path average as.

f̄n =
1

n+ 1

n∑
i=0

f(Xn), (54)

We then need to ensure that
fn → E π[f(X)].

For a continuous state Markov chain, the following theorem is stated by [10]:

Theorem 3. Suppose X = {Xn, n ≥ 0} is an irreducible Markov chain with continuous
state space E and stationary distribution π, and let f be a real-valued function on E, such
that E π [|f(X)|] < ∞. Then P

(
f̄n → E π [f(X)] |X0 = x

)
= 1 for π-almost all x, where

f̄n is given by equation (54).

Since we know from earlier discussions that Y satisfies this theorem, we now want to
construct an algorithm for simulating the Y -process and compute averages on the form
(54).

5.2.2 The algorithm

We now present an algorithm for simulating the original model that was presented in
section 4.1. Note that we could get more information out of this simulation, than what
we have chosen to return in this algorithm. Most of the variables involved should be
familiar from earlier sections, but some are new and will now be explained:

• N , number of samples of the Y -process collected after burn-in.

• Y - vector containing the history for the Y -process. That is Y = [Y0, Y1, ..., YN ].

• T - vector of semi-regeneration times. That is T = [T0, T1, ..., TN ].

• ∆T - vector of intervals between semi-regeneration times. That is ∆T = [T1 −
T0, T2 − T1, ..., TN − TN−1] := [∆T1,∆T2, ...,∆TN ].

• k - Number of corrective maintenance actions.

• l - Number of preventive maintenance actions.

A pseudo-code for the algorithm is given below and will be followed by an explanation
of the most important parts of it.
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Data: N ,α,β,A,B,M ,L,Ci,Cp,Cc and Cd

Result: ÊC∞ and/or other desired estimates.
initialize ∆T, T, with T0 = 0 and Y, with Y0 ∼ π.;
k ← 0 ;
l← 0 ;
dt ← 0 ;
for i← 0 to N − 1 do

∆Ti+1 ← m(Yi) ;
Ti+1 ← Ti + ∆Ti ;
draw G ∼ Ga(α ·∆Ti, β) ;
Yi+1 ← Yi +G ;
if Yi+1 ≥ L then

k ← k + 1 ;
t` ← Ti;
tu ← Ti+1;
Xt` ← Yi;
Xtu ← Yi+1;

run bisectionAlgorithm(L, t̃, t`, tu, Xt` , Xtu , α, β), with desired threshold t̃,
to generate TL;
dt ← dt + (Ti+1 − TL);

end
else if Yi+1 ≥M then

l← l + 1;
Yi+1 ← 0;

end

end

Êπ[T ]←
∑N−1
i=1 ∆Ti
N−1

;

̂
Eπ[N

(p)
T ]← l

N−1
;

Êπ[N
(c)
T ]← k

N−1
;

Êπ[dT ]← dt
N−1

;

ÊC∞ ← Ci · 1

Êπ [T ]
+ Cp ·

̂
Eπ [N

(p)
T ]

Êπ [T ]
+ Cc ·

̂
Eπ [N

(c)
T ]

Êπ [T ]
+ Cd · Êπ [dT ]

Êπ [T ]
;

return ÊC∞
Algorithm 4: Algorithm for the original degradation and maintenance model.

This algorithm has a main routine that happens inside the for-loop. To ensure that
the starting value Y0 ∼ π, we must run this routine sequentially in for a burn-in period,
before we start. The main routine starts out by setting a date for the next inspection.
Then the next value of the Y -process is generated and we are ready for inspection. If we
detect a failure, the counter k for corrective maintenance actions is incremented, before
we simulate the time TL for when the failure actually occurred. Having simulated this
time, we have that the simulated downtime because of the failure is (Ti+1 − TL), that is
the failure time subtracted from the inspection time, and add it to the total accumulated
downtime dt. In the end the value of the Y -process is set to 0, in accordance with
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equation (24) in section 4, representing a perfect repair. Similarly, if the outcome of
the inspection is preventive maintenance, l is incremented and the Y -process is reset to
0. After having collected the desired number of samples, one can obtain estimates of
many different quantities in the model. Our choice of returning the expected cost rate,
is mostly because this is the quantity we have described the most in this text. Having
this algorithm as a point of departure, it is easy to implement the extensions we have
discussed and possibly many others. For example can the non-perfect inspection extension
from section 4.2.2 be included by flipping a coin with probabilities q and 1−q in the ”else
if M ≥ L”-condition.

Algorithm 4 will also be the basis for implementation of the extensions we proposed
in the end of section 4.
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6 Numerical experiments

We now present a series of numerical experiments, using the algorithms from last sections.
Implementation of the algorithms is an easy task in standard programming languages
and here we have used the statistical programming environment R. We start out by
repeating an experiment from [11], where we also try to play around a little bit with
the decision variables A, B and M . Then we run a simulation where we replace the
Gamma degradation model with an Inverse Gaussian degradation model. Here we also
try to compare the two processes, with choice of similar parameters and we make an extra
check of the bridge sampler for the IG-process. In the last experiment, we implement the
model with non-perfect inspections and examines some effects from this. Also here we
try to change on A, B and M . The goal of the experiments is mainly to study how the
models behaves and whether or not this behavior makes sense. This will be done both by
computing various estimates and by looking at relevant plots.

6.1 Replicating an old experiment

To verify that the algorithm 4 performs correctly, we replicate an old experiment given
in [11]. We also study some effects of changes in the decision variables.

6.1.1 Reproducing results

In this expeiment, the fixed parameters are as follows:

Ci = 25, Cp = 50, Cc = 100, Cd = 250, α = 1, β = 1, L = 12. (55)

By numerical optimization, optimal values for the decision variables are found in [11] to
be

A = 5.5, B = 9, M = 5.6,

with and long term expected cost rate computed to be

EC∞ = 12.23.

Running algorithm 4, with N = 3 · 105 we are able to reproduce this result with ÊC∞ =
12.23. This is a very strong indicator for that our code performs correctly. It should
be mentioned that using this MCMC approach we need a large number of iterations to
get the desired accuracy and that we obtain fluctuating result for smaller experiments.
However the results are reasonable already for much smaller experiments. Figure 15 shows

a trace plot of ÊC∞ computed in every iteration.
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Figure 15: Trace plot of ÊC∞

We see from this plot that after a little more than 50 000 iterations, the fluctuations
gets smaller. To get an impression of the fluctuations, we may for example for experiments
with 60 000 iterations produce for example 12.23, 12.26, 12.21, 12.28 as estimates for EC∞.
Even though, this is not very accurate numbers, the results are not too bad as they are
all in the neighborhood of 12.23.

6.1.2 A closer look at the density of the stationary distribution

We will now use the same values as in (55) for the fixed parameters, and try different
values for the decision variables A, B and M . The purpose of this experiment is to study
how the density π(y) of the stationary distribution for Y , behaves and try to interpret the
results. The best we can do for examine the behavior of π is to look at histograms from
simulated samples of Y . Recall that according to equation (30), we expect π(y) to be a
linear combination of a Dirac delta at the regeneration set {0} and some other density
having positive support. We will now introduce four experiments, specified by the choices
of decision variables:

I A = 5.5, B = 9, M = 5.6. Remark: same as in section 6.1.1

II A = 0, M = 0. Remark: Gives eqiudistant inter-inspection times.

III A = 5.5, B = 9, M = 11. Remark: M moved closer to L.

IV A = 5.5, B = 0, M = 2. Remark: M moved closer to 0.

Figure 16 displays the graphical output of the four experiments, along with the esti-
mated value of EC∞. Note that the vertical axis is densities, not probabilities.
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Figure 16: Histograms of simulated samples of the process Y .

In all the cases, the column in the origin represents mainly observations of the process
in state 0 (only in case II it is influenced by a small amount of neighboring observations).
We have also included the cumputed estimate â of a, the stationary probability of being
in the regeneration set {0}. â is just the number of observations of the Y -process in 0,
divided by the number of observations. Starting with experiment I, the histogram shows
that the origin dominates and that density on y > 0 seems to increasing towards larger y.
As explained in the previous section, the choices for A, B and M are found to be optimal
in this case. We can provide some more numbers from the experiment to gain insight on
the behavior of π. For case I, we have that

Ci

Êπ[T ]
= 4.37,

Cp ·
̂
Eπ[N

(p)
T ]

Êπ[T ]
= 5.79,

Cc · Êπ[N
(c)
T ]

Êπ[T ]
= 0.61,

Cd · Êπ[dT ]

Êπ[T ]
= 1.44.

This is somewhat the ideal combination of cost distribution given the cost rates, and we
can learn more about comparing the corresponding outputs from the other experiments.
In case II, the numbers are:

Ci

Êπ[T ]
= 25,

Cp ·
̂
Eπ[N

(p)
T ]

Êπ[T ]
= 7.55,

Cc · Êπ[N
(c)
T ]

Êπ[T ]
= 0.02,

Cd · Êπ[dT ]

Êπ[T ]
= 0.02.

Here the expected cost rate is 25, because setting A = 0 leads to sequential inspections
with the time between inspections being 1. This is the shortest inter-inspection time
possible to obtain in this model, when we use the function m, given by (25) in section
4. Then it is also reasonable that this approach leads to a lot of preventive maintenance
actions, which we also can see from the estimate of the expected long term cost rate. The
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costs for corrective maintenance and downtime are in this case negligible. From figure
16 we see that the density for y > 0 looks uniform. A similar response with larger inter-
inspection times could also be constructed by letting B →∞. In that case 1 + A would
be the time between inspections. In other words, a pure time based inspection policy is
contained in the model. This policy performs good if inspections are cheap, but as we
can conclude from case II, the long inspection cost rate dominates and the method is
expensive compared with case I. We proceed with the experiment III, where we have the
estimates

Ci

Êπ[T ]
= 8.90,

Cp ·
̂
Eπ[N

(p)
T ]

Êπ[T ]
= 2.53,

Cc · Êπ[N
(c)
T ]

Êπ[T ]
= 3.21,

Cd · Êπ[dT ]

Êπ[T ]
= 4.01.

Case III performs better than case II, and of course worse than the optimal case I. Com-
pared with case I, we see from the histograms that the density seems to take the same
increasing form as in case I, for y > 0, but it puts more mass to this region. Looking
at the estimates, we see a that the costs are lowered for preventive maintenance actions,
as we should expect when performing such tasks only when the item is about to fail.
The price is paid on all the other areas. The corrective maintenance and downtime costs
have not surprisingly increased and we also note that the cost rate for inspections are
approximately doubled. The last experiment IV, performs pretty good and we see that
the estimated global cost rate is not too far away from case I. Estimates computed here
are

Ci

Êπ[T ]
= 3.85,

Cp ·
̂
Eπ[N

(p)
T ]

Êπ[T ]
= 7.39,

Cc · Êπ[N
(c)
T ]

Êπ[T ]
= 0.47,

Cd · Êπ[dT ]

Êπ[T ]
= 1.21.

In addtion, we here have that Êπ[T ] = 6.49, which is very close to m(0) = 6.5. Letting
M → 0 would actually mean a pure clock-based maintenance policy, which is also con-
tained in our model. From the numbers we see that almost every action is a preventive
maintenance action. From histograms we seems that all mass is in the origin. This means
that almost at any inspection a maintenance action takes place.

Other experiments have also been carried out and all of then leads to results that can
be physically interpreted in the same fashion as we did with case I-IV. This means that
the system behaves and responds in a reasonable way, taking its purpose and the model
into account.

6.2 Simulations with extensions

We also include some examples where we simulate the models with extensions from section
4.2.1 and 4.2.2. Implementing the changes is straight forward, when using algorithm 4 as
a basis. Through these experiments we also try to explore some properties and compare
the results with the original model.
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6.2.1 Using the IG-process as a degradation model

In another experiment in [11] using Gamma degradation with parameters
Ci = 2, Cp = 90, Cc = 100, Cd = 100, α = 1, β = 0.2, L = 60,the optimal

desicion variables are found to be

A = 4.4, B = 45, M = 50.

The computed long term cost rate is found to be EC∞ = 9.48. We can replicate these
results with our simulation framework. However we will now try to use an Inverse Gaussian
degradation process, where we chose the parameters µ and η so that the mean increment
and variance becomes the same as in the Gamma process case. Using the equations (18)
and (22) from section 3, we find that we must have

µ = 5 and η = 5.

We run the algorithm 4, where we substitute the Gamma and Gamma bridge sample

with its Inverse Gaussian equivalents and obtain the estimate ÊC∞ = 9.83. This is a little
bit higher than in the Gamma case, but still it is certainly in the same neighborhood.
Since we have chosen the parameters such that the mean and the variance are equal in
the two degradation models, this is a reasonable result. The processes are however very
different when we look at them as we can see from figure 17. Even though the processes
produce a similar long term cost rate, there could by reason like for example the physics
of the degradation model to prefer one over the other.

Figure 17: Gamma process with α = 1 and β = 0.2 and the IGprocess with µ = 5 and
η = 5

In figure 18 we display histograms of observations of the Y process, in the same way
as in section 6.1.2.
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Figure 18: Histograms of observations of the Y -provess using the Gamma process with
parameters α = 1 and β = 0.2 to the left, and the IG process with µ = 5 and η = 5 to
the right.

We see that even if typical sample paths of the processes looks different, the stationary
distribution π seems to behave more similar. Perhaps we can see a small difference in the
shape of the histograms for y > 0, but the density at the the regeneration set is almost
identical. When working with the IG-process we can also make an extra demonstration
of the correctness of the IG bridge sampler. By letting all parameters be unchanged in
the experiment above, except from letting M = L, we produce a ”run to failure”-regime
experiment with IG-degradation. Collecting samples of the passage times and subtract
this from the last regeneration time, we can compare the empirical cdf of these, with the
theoretical expression given by equation (23). To be precise, we will under the absence of
preventive maintenance collect variables TLn − Sn, for n = 0, 1, ..., where TLn is the first
time after Sn the process passes the level L, and check if they follow the distribution for
the passage time of IG-process. Algorithm 3 is producing the realizations of TLn.
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Figure 19: Comparing the simulated passage times with its theoretical distribution.

There is a very good fit between the theoretical and empirical pdf, so we see that the
IG bridge sampler is working as intended.

6.2.2 Non-perfect inspections

We now run an experiment with non-perfect inspections as proposed in section 4.2.2. That
is, when the process X is beyond M a signal telling us to do preventive maintenance
is emitted, and we detect this signal with probability q as inspection. If the process
reaches L, we will with probability one detect the failure. We use the Gamma process as
degradation model and use same parameter configuration as in section 6.1.1. We run 11
experiments, where we start with q = 1, before we successively subtract 0.1 from q in the
next experiment, ending with q = 0. The first experiment is thus another replication of
section 6.1.1, meaning perfect inspections, while the last experiment is a ”run to failure”-
regime. In each experiment we compute all the estimated cost rates. In figure 20 we show
how the different estimated cost rates changes in each of the simulations as we lower the
detection probability q.
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Figure 20: The estimated cost rates as a function of q. Note that q varies from 1 to 0 on
the vertical axis.

The leftmost points are the same estimates we had in section 6.1.1. As we move
towards smaller q, we see a small change in the beginning before the rates changes increases
as q gets closer to 0. All the cost rates increases, except from the cost rate of preventive
maintenance that decreases to 0 in the end. This is exactly what we would have expected.
Of course the preventive maintenance cost will disappear, when we let the item run until
failure. But we also see clearly the effect that preventive maintenance has on the costs,
as both the correction and downtime costs changes a lot more than the inspection costs.
In the case of q = 1, the optimal decision parameters where found by [11] to be A = 5.5,
B = 9 and M = 5.6, with EC∞ = 12.23. By letting q change, these parameters will no
longer be optimal. If we change the decision variables one at the time, we will in this case
see that the optimum doesn’t change by very much. As an example, we have with q = 0.5,
changed one decision variable at the time to get an impression of how the estimated cost
rate EC∞ changes. For all the parameters, we changed them between 1 and 10, with 1
as the step-length. The result is shown in figure 21.
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Figure 21: Response on the estimated global cost rate, while changing the decision vari-
ables one at the time with q = 0.5.

The red curve shows that A = 5 gives the lowest estimated cost, when B = 9 and
M = 5.6 is fixed. The optimal value with q = 1 was A = 5.5. Along the blue curve we see
that optimum is reached for B = 8, when A = 5.5 and B = 9. Here the original optimum
was B = 9. Finally the along the black curve, which is a bit difficult to determine from the
figure, the lowest computed estimate was at M = 5, with A = 5.5 and B = 9. Optimum
with q = 1 was at M = 5.6. We also not the the estimated cost seems to be much more
sensitive to changes in A than to changes in B or M .
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7 Discussion

7.1 Adequacy of the model

The model we have studied here is constructed and grounded, with respect to both qual-
itative and statistical theory in reliability analysis. Under the assumption that an item’s
state can be summarized through one condition variable, and that we are able to observe
this condition variable, we have seen from the simulations in section 6, that this models
performs reasonable. We were able to explain and many of the observations we did, with
referring to principles and theory at which the model is grounded. In [11], it is done
additional experiments with change in the for example the costs, for example to see the
effect of very cheap inspections. These experiments also provided results with intuitive
explanations. The underlying assumption regarding the item’s state however, is more
dubious and will be addressed in the next section.

7.2 Recommendations for future work on the model

As we have discussed so far, there are a lot of things that could be done to improve on
this model and in this section we will go through a couple of suggestions. An natural
thing to start with is to find estimators for the parameters in the degradation models.
We have not focused on parameter estimation, but the degradation processes discussed
here should be well suited for both an frequentistic or Bayesian estimation framework.
The papers [18] and [26] are both good places to start out in this case. Here we may
also find examples of how to extend the models by letting the parameters be functions
or random variables, which is a possible extension that was mentioned in section 3.2.
[26] discusses in particular how such models may cause the IG-process to become non-
Markovian, which again may cause many of our assumptions to no longer being valid. In
other words, when incorporating new elements to the model, caution should be taken. A
last remark on the degradation modeling is that we may try to use other càdlàg processes
for the deterioration. The choice of using the IG-process was highly motivated the papers
[26] and [25], and the main point of the numerical experiment in section 6.2.1 was to show
that other models can make sense.

To be able to use these models in practice, we also need a way to measure a system’s
state variable. We have assumed that such measurements are always possible, but having
discussed these models with reliability engineers, it is clear that they see this as a weakness
in the model. How and what to measure is a problem that mainly should be addressed
to engineers and other experts in the possible fields of application. [9] mentions erosion
of dikes as an example of when deterioration can be described by a Gamma process.
However it is clear to we can measure time series of a lot of variables that can be assumed
to be correlated with the true condition of a system. Therefore it should be possible to
investigate these correlations and exploit these to obtain a clearer impression of the true
system state. A suggestion for a an approach here is to develop classification algorithms.

Another thing to consider is that if a model like this should be implemented in some
business, the users should have the opportunity to constantly add data to the model.
The way this model is constructed, this is definitely possible. On the other hand if the
amount of data should become very large and occur very rapidly, the need for smart data
handling will become present. This could for example be the case if we where continuously
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monitoring the system and wanted to make real time estimates of some of the quantities.
Different ways that data might flow into a model is explained in [13] and there is a lot of
work being done on how to handle such data streams.

In this text, we only looked at a single-unit system. Many common systems in reliabil-
ity analysis consists of more than one system, and more work could therefore be done on
how to incorporate models like this in a multi-unit system. [5] is an example of how this
could be done, where a similar model to ours is used for a two-component series system.

One can also look more into detailed assumptions in the model. As an example, what
happens if we do not longer have perfect repair. One way to do this can be to say that the
process may not be restored to the ”good as new”-state, but with absolute certainty to
some state below a threshold level. Then the regeneration set would not longer be just one
point. Another way can be to say that the repair will take some random or fixed amout of
time. Then downtime cost would also be associated with preventive maintenance actions.
These two ideas could also be combined, or one could look closer into other details of the
model.

Finally, we remember that in [11] and [9], numerical optimization of the decision
variables was done. Our simulations are build on a more or less plain Monte Carlo
method and optimization with this models would be very computer intensive. There are
most likely ways to improve on the efficiency of the algorithm and develop optimization
procedures. Through many of the numerical experiments, we also observed that to get
very sharp estimates, the simulations had to go on for a very long time. This should also
be possible to improve on.

7.3 Concluding remarks

Based on its construction and the numerical experiment, the proposed model is found to
be adequate in order to represent a degradation and maintenance program. However it
relies upon some strong assumptions, that might not be easy to verify or relate to when
working with a real world problem. On the other have the numerical experiments showed
that we can find reasonable results from simulations. Therefore the framework in this
text might be used to explore what different changes in a maintenance program might
lead to, through simulations.

It is also a kind of model that might become very appropriate as utilization of the
continuously larger amount of the data capturing, becomes more apparent in reliability
analysis. There are however a lot of work to be done in order in order to connect available
measurements to statistical models. Further development of models like this one, must of
course happen in cooperation between engineers and scientists from many different fields,
like statistics, reliability and computer science. Many of the discussed suggestions for
further work will also apply to similar models.
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