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Abstract

Projection of age-specific cancer incidence and mortality data play an integral role

in planning and research. A wide range of methods used for these projections has

been developed and put into practice. Many statistical software packages, such as

Nordpred and the iterative Lee-Carter package, for projecting age-specific cancer

incidence and mortality data implicitly assume that data are aggregated to five-year

intervals on the time-scale (periods). However, data aggregation may not always be

appropriate and information may get lost. In the field of spatial statistics, care is

taken in choosing an appropriate spatial scale to analyse the data of interest; how-

ever, less care is taken in choosing an appropriate time-scale in temporal analyses.

In this thesis, the effect of varying temporal scales on the precision and accuracy

of projections for selected female cancer mortality data sets from the World Health

Organisation Mortality Database is investigated. Three temporal scales have been

explored; five-year data aggregation, five-year model-specific aggregation and yearly

data structure with no aggregation. Projections are obtained based on these three

scales using the BAPC R-package, an R-package which implements Bayesian age-

period-cohort (APC) models, where smoothing is applied to each time scale. Also,

the hyperpriors for the precision parameter of the smoothing effects are carefully cho-

sen to make them transferable between the different time aggregation. The models

are estimated using integrated nested Laplace approximations (INLA). Calibration

and sharpness of the projections are jointly assessed based on the absolute error and

the continuous ranked probability score.

The study shows that annual to five-year data aggregation might not be ideal for

projections since clues on yearly trends can not be monitored. However if any form

of aggregation needs to be done, then model-specific aggregation might be useful,

depending on the application.
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Chapter 1

Introduction

Projections of cancer incidence and mortality with regard to the number of cases,

deaths expected and rates relative to a population of interest play a vital role in effec-

tive planning and improving health services while serving as a baseline for assessing

the impact of public health interventions (Bray and Møller, 2006). Cancer projec-

tions made on short term basis allow us to provide reliable estimates of current death

rates based on rates observed in the past and also to identify significant changes in

cancer trends before they are actually observed while long term projections come

in handy when making decisive choices regarding public health interventions (Bray,

2002) like drawing national budgets and developing pragmatic scientific measures for

cancer control and prevention. Projections of cancer data are therefore an essential

part of cancer intervention programmes (Armstrong, 1992).

National health care registers are commonly used in developed countries for stor-

ing data on disease incidence and mortality. Cancer registries, like other disease

registries, gather information on the prevalence of cancer in populations by reg-

istering cases by diagnosis, age and date of diagnosis, date of death, gender etc.

(Carstensen, 2007). To visualise disease or mortality rates by age and time, the

Lexis diagram, named after Wilhelm Lexis (Lexis, 1875), is probably the most com-
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monly used (Carstensen, 2007). As far as mortality data is concerened, the Lexis

diagram shows the number of deaths using the following demographic characteris-

tics; the age of the deceased at the time of death, the time of death (period) and the

time of birth of the deceased (cohort) (Vandeschrick et al., 2001) . The diagram pro-

vides a two-dimensional coordinate system representation, where age is represented

on the vertical axis, while calendar time (period) is represented on the horizontal

axis.

Figure 1: A Lexis diagram representation. Adapted from: http://papp.iussp.

org/sessions/papp101_s02/PAPP101_s02_100_010.html, accessed 29.08.2014

The cohort is the third time-dimension featured on the diagram, which represents a

group of people who were born at the same time and share a common demographic

characteristic. It is represented on the Lexis diagram as a diagnonal band. The lives
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of members of a particular cohort are displayed as a 45◦ diagonal line known as a life

line (Vandeschrick et al., 2001). Figure 1 summarizes how events are represented

on a Lexis diagram. Carrying out descriptive analysis on the diagram may give

an indication on the general behaviour and qualitative opinions about future time

trends can be formed (Riebler and Held, 2015).

Cancer mortality is commonly known to depend on the time scales age, period and

birth cohort (Clayton and Schifflers, 1987a). Berzuini and Clayton (1994) have

however drawn attention to the fact that disease events are not caused by time itself

and that it only serves as a scale on which other causal factors, that are unknown

or difficult to estimate, operate. For instance, the prevalence of chronic conditions

such as hypertension, heart disease and arthritis increase with age (Anderson and

Horvath, 2004).

Rate changes which are consequences of varying ages are known as age effect (Heuer,

1997). Increased cancer incidence with age, for example, resulting from accumulation

of mutated genes (Kennedy et al., 2012) and tissue landscape changes with age

(DeGregori, 2013), is an example of an age effect. Rate changes which occur at a

particular calender time consistently for each age group are known as period effects;

they are often due to new productive improvements in treatment or diagnosis, or a

change in classification of disease at a particular date (Heuer, 1997). For instance,

if a new chemotherapy is introduced for treatment of a certain cancer for all age

groups, the effect it has on cancer mortality at this particular calendar time and

beyond is considered as a period effect. Events which affect different birth cohorts

(generations) are accounted for by cohort effect (Schmid and Held, 2007), e.g., the

varying smoking habits of different generations.

In addition to the strictly descriptive approaches, mathematical alternatives have

been developed and put into practice. For example, the Lee-Carter model, intro-

duced in 1992 by Ronald D. Lee and Lawrence Carter in their article Modelling and

Forecasting US Mortality (Lee and Carter, 1992), is popularly used for mortality
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forecasts both in academic literature and practical applications (Girosi and King,

2007). Even though Lee and Carter developed the method mainly for U.S. mortality

data (1933 − 1987), the approach is broadly applied to all-cause and cause-specific

mortality data from several countries (Girosi and King, 2007). There exists also

the Nordpred Software package, a classical approach (not Bayesian), written by

Harald Fekjær and Bjørn Møller at the Cancer Registry of Norway used to fit an

age-period-cohort regression model to observed data and to predict cancer incidence

trends (Møller et al., 2003). In view of the colinearity that exists between age, pe-

riod, and cohort (cohort = period − age), estimates of the linear effects of period

and cohort cannot be found concurrently; Nordpred therefore estimates a common

linear trend instead (Møller et al., 2002). Here, projected rates are based on the

assumption that trends in the past will continue into the future. There exist various

statistical models for predictions; see for example Bray and Møller (2006) for an

overview.

The age-period-cohort (APC) model is used to analyze rates of diseases of interest in

terms of age, period (which considers a group of individuals at a particular point in

time), and cohort effects (influence that is considered to have an effect on individuals

born around the same time) (Bray et al., 2001). It has its roots in fundamental

generalised linear model theory (McCullagh, 1984) and is well known for analyses

of age-specific cancer incidence or mortality data. The Bayesian age-period-cohort

models, which we employ in this thesis, is used increasingly for cancer incidence and

mortality projections (Besag et al., 1995; Bray, 2002); it takes into consideration

prior knowledge about smoothness on each time scale to decrease the effect of random

variation and has been shown to produce a precision gain in the projections (Bray,

2002). Moreover, unstructured variation can easily be accounted for.

Some statistical software, such as Nordpred (http://www.kreftregisteret.no/

software/nordpred, accessed: 04.11.2014) and the iterative Lee-Carter (ilc) pack-

age (Butt and Haberman, 2009), for projecting age-specific cancer incidence and

mortality rates implicitly assume that age and period groups are provided on same
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interval lengths, often five-year intervals. This practice may lead to loss of informa-

tion; for example Ocaña-Riola (2007) demonstrated that aggregation of count data

over time may give misleading estimates of relative risks and subsequently introduce

a compromise when making decisions. In some cases, yearly data are not readily

available; hence, predictions can only be made using the data that are available. In

spatial statistics, care is taken in choosing an appropriate spatial scale to analyse

data of interest as seen for example in Kang et al. (2014). However, less attention

is given to the choice of appropriate time-scale for temporal analyses.

This thesis seeks to investigate the impact of varying time scales on the quality

of cancer projections based on the Bayesian age-period-cohort model. Using female

lung and oesophagus cancer data in Norway and the United Kingdom, obtained from

the World Health Organisation (WHO) mortality database, the study considers age-

specific projections based on yearly data, five-year data aggregation and five-year

model-specific aggregation, where we maintain the yearly data and aggregate the

random effects. In each case, we exclude and predict observations in the last 10

years and are interested in the extent to which predictions agree with the observed

counts from the data.

Structure of thesis

Chapter 2 begins by introducing some notation that has been used throughout the

work and further reviews two alternative statistical models to the age-period-cohort

(APC) model, namely the Lee-Carter and Power models, which are widely used

for analyses and projections of age-specific cancer incidence or mortality data. In

chapter 3, we present the Bayesian APC model, used in our analysis to obtain age-

specific cancer projections under each of the time scales considered in this thesis.

Chapter 4 discusses the assessment of quality of the predictions. We introduce a

few proper scoring rules that can be used; of particular interest are the absolute
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error and continuous ranked probabilty score which we have applied in this work.

Chapter 5 begins by introducing the choice of data sets used in our analysis and how

the data were obtained. Further, we introduce the different time scales investigated:

five-year data aggregation, five-year model-specific aggregation and method of no

aggegation and evaluate the predictions in each case based on age-specific plots and

proper scoring rules discussed in chapter 4. We give a summary of our findings

in chapter 6. Supplementary plots and some selected R-code are provided in the

appendix.
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Chapter 2

Common models for projection of

age-specific cancer rates

Before discussing in detail the APC model, which forms the basis of this thesis,

this chapter first reviews two alternative models to the APC model that are often

used for cancer projection. The basic assumptions of the Lee-Carter Model and the

Power model (also known as Nordpred model) are introduced and a description of

how predictions are done using these models is outlined.

Throughout this chapter and also for the rest of the thesis, the following notation

will be used:

• nij represents the number of persons at risk in the ith age group (i = 1, . . . , I)

during the jth period (j = 1, . . . , J)

• yij represents the number of cases in the ith age group at the jth period.

• ηij is the linear predictor for individuals in the ith age group during the jth

period.

• λij is the mortality rate for individuals in ith age group during the jth period.
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• θi, ϕj and ψk(k = 1, . . . , K) represents age effects, period effects and co-

hort effects respectively with θ = (θ1, . . . , θI)
>, ϕ = (ϕ1, . . . , ϕJ)>, ψ =

(ψ1, . . . , ψK)>. Cohorts are written as

k = C · (I − i) + j

and the total number of cohorts as K = C · (I − 1) + J . Here the factor C

is defined as the ratio of the width of age group and period intervals (Heuer,

1997).

2.1 Lee-Carter model

The classical Lee-Carter (LC) model originally proposed by Lee and Carter (1992),

was first described as a log linear model for mortality rates with normally distributed

additive error terms. Brouhns et al. (2002) later extended the classical linear model

to a generalized linear model by replacing the additive error term on the logarithm

of the mortality rates with a Poisson random variation for the number of deaths.

It is important to mention that the Poisson distribution is well-suited for mortality

analysis; see, e.g. Brillinger (1986) and Macdonald (1996a,b,c) for further details.

We now consider the Poisson setting of the LC model. It assumes that yij are Poisson

distributed with rate nijλij where

ηij = log(λij) = θi + βiκj

Here, θi describes the average age-specific mortality, βi represents the patterns of

mortality change for ith age group- it indicates the sensitivity of the logarithm of

the mortality rate at age group i to the variations in the time index κj, and κj

represents the time trend; the shape of the βi profile explains which rates decline

speedily and which remain steady over time in response of change in κj. The model
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lacks uniqueness, since one solution can be transformed by a linear combination to

produce another set of solution. Lee and Carter proposed two constraints to curb

this; (
∑
j

κj = 0) and (
∑
i

βi = 1) (Lee and Carter, 1992). Parameters are determined

by maximizing the log-likehood, l(θ,β,κ) based on the Poisson specification of the

model.

Suppose parameter estimates (θ̂i’s, β̂i’s, κ̂j’s) have been found. The time index,

κj, is intrinsically viewed as a stochastic time series. In order to produce mortality

forecasts for some j = J +h beyond the last observed period J , the estimates κ̂j are

extrapolated into κ̃J+h using an appropriate ARIMA (p, d, q) time series model. An

ARIMA (0, 1, 0), also known as the random walk with drift (RWD) model, was used

by Lee and Carter (1992) for their data. They make clear the possibility of using

other ARIMA models for different data sets, but in practice, the RWD has been used

almost exclusively to model κj (Girosi and King, 2007). Then mortality forecasts

for age group i at time point J + h are found by inserting the estimates θ̂i, β̂i and

the predicted values κ̃J+h into the model. Variance of the time index, κj, increases

as projections go far into the future, and is used to estimate the uncertainty of a

forecast.

The model assumes the absence of age×time interactions- that βi is constant over

time for all age groups and for all j, κj is constant over all age groups. Several studies

have however shown that parameters are not constant over time, hence assuming

such, increases the error associated with prediction, particularly for older age groups

(Carter and Prskawetz, 2001). The assumption that the component of age is constant

over time is the major challenge of the Lee-Carter method (Lee and Miller, 2001).

Several modifications of the LC model have been proposed to solve this challenge

of parameterisation; see (Tuljapurkar et al., 2000; Cairns et al., 2006; Carter and

Prskawetz, 2001). Renshaw and Haberman (2006) also proposed an extension of

the model which incorporates a cohort effect. Nevertheless, problems might be

encountered in parameter estimation if a cohort effect is introduced (Yang et al.,

2010). To implement methods that fit a generalised class of Lee-Carter models, the
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iterative Lee-Carter (ilc) package, an R statistical software package (R Core Team,

2013), can be used (Butt and Haberman, 2009). The package assumes same lengths

for age and period intervals, mostly five-year widths.

2.2 Power model

The power model fits a regression model to observed mortality data and is partic-

ularly used for long term prediction of trends in cancer mortality (Møller et al.,

2003). It assumes that the number of cases, yij are Poisson distributed with rate

nijλij. Instead of a log-link, it adopts a power-link function with constant power of

five. Motivation for the power link is that trends in the far future will not behave

exponentially. Consequently in a bid to level off exponential growth, a power link is

suggested (Møller et al., 2003). The model is of the form

λij = (θi + ϕj + ψk +D · j)5

where D is a common drift parameter; an overall trend term, θ, ϕ, and ψ are the

non-linear components of age i, period j and cohort k, respectively. Jürgens et al.

(2014) formulated this commonly used power model within the Bayesian framework,

and further extended the model to allow for a random power parameter instead of

the fixed one proposed by Møller (2004). In the power model, projected rates rely

on the assumption that cohort-specific trends will carry on into the future. Birth

cohort is calculated by subtracting age from calendar period (i.e k = j − i). In

view of this colinearity between age, period and cohort, it is impossible to find

estimates of the linear effect of period and cohort uniquely, but a common linear

term known as the common drift parameter (D) can be estimated (Clayton and

Schifflers, 1987b). However, cohort-specific deviations from D can be estimated and

assumed to continue into the future.
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Predictions are made by projecting forward the drift component, D, in order to

obtain future estimates of cancer incidence (Møller et al., 2003). The age effects

are assumed to be the same as the ones estimated from the existing data and the

future non-linear components of period and cohort are set equal to the last estimated

effect in the range of the data (Rutherford et al., 2012). In the implementation of the

power model, a test is performed after fitting the model to determine if predictions

should be based on the estimate of the time trend, D̂ over the whole period of study

or an estimated trend, D̃, which is based on the most recent ten years (Møller et al.,

2002; Nowatzki et al., 2011). This test seeks to assess the presence of a significant

curvature in the trend over recent periods. The detection of such a significant

change suggests the use of D̃ as estimated trend coefficient in predictions. Møller

et al. (2003) also suggested a gradual reduction in the trend coefficient (either D or

D̃) for future predictions. For instance, instead of adding D to each new period,

Møller et al. (2002) adds D, 0.75D, 0.50, 0.25D and 0.25D to the latest five future

period predictions. The reduction is based on the assumption that long term future

trends will most likely not continue; current trends are of much interest to future

predictions than those observed in the far past and that with time, factors affecting

distant trends will gradually fade out (Møller et al., 2003). The model however

performs poorly when used to predict sparse data (data in which a relatively high

percentage of the entries do not have actual data, such ”NA” or ”empty”) (Jürgens

et al., 2014).

The power model is implemented in the R statistical software package (R Core

Team, 2013), Nordpred, developed by the Cancer Registry of Norway; see (www.

kreftregisteret.no/software/nordpred, accessed: 04.11.2014) (Møller et al.,

2003). Of note, Nordpred usually uses 5-year aggregated data and provides no

uncertainty estimates with predictions.
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Chapter 3

The Bayesian age-period-cohort

model

Age-period-cohort (APC) models are used for description and prediction of time

series of age-specific mortality rates using three different time scales: age, period

and birth cohort. In this chapter, an introduction to the main characteristics of

APC analysis will be given and how it differs from the Lee-Carter and Nordpred

model.

3.1 The APC model

Here we assume that the number of cases yij in age group i and at period j follows

a Poisson distribution with rate nij × λij and that the product of the corresponding

Poisson terms gives the likelihood for the whole data. In the classical APC model

ηij = log(λij) = µ+ θi + ϕj + ψk.
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The birth cohort index, k is directly determined by the age index i and the period

index j. In the case of same interval widths for age group and period, k = (I− i)+ j

and K = (I − 1) + J . However, the definition of k has to be altered slightly if age

group and period are defined on different time scales. For instance, Holford (1983)

considered the case in which period intervals are C times wider than the age group

intervals. In this thesis, we consider such a case where data are originally obtained

with interval width of the age groups 5 times wider than the interval width of the

periods. Suppose age is given in C-year intervals while period is given on yearly

basis then, k = C × (I − i) + j and K = C × (I − 1) + J (Heuer, 1997). Here, the

factor C is defined as the ratio of the width of age group and period intervals.

To ensure identifiability of the intercept, so called sum-to-zero constraints (
∑

i θi =∑
j ϕj =

∑
k ψk = 0) are imposed (Holford, 2005). There is also a second identi-

fiability problem due to the existence of the exact linear relationship between age,

period and cohort effects (cohort can be expressed as a linear combination of the

period and age) (Holford, 2005; Held and Riebler, 2013). Log-linear trends in rates

cannot be accredited to the influences of age, period or cohort exclusively with-

out introducing further assumptions that cannot be verified, due to the existence

of colinearity between the three time scales (Holford, 1998). That is, there exist

linear transformations of θi, ϕj and ψk that leads to same value of ηij, i.e the lin-

ear predictor remains unaltered; see for example (Holford, 2005) and (Schmid and

Held, 2007). Suppose age group interval is not equal to the period interval, then for

transformations of the form

θi 7→ θi+C×γ
(
i− I + 1

2

)
; ϕj 7→ ϕj−γ

(
j − J + 1

2

)
; ψk 7→ ψk+γ

(
k − K + 1

2

)
,

for all i, j and k with γ ∈ R, the linear predictor ηij remains unchanged. This

problem is seen as a distinct shortcoming of the APC model. Potential solutions

to the identifiability problem have however been proposed- see for example Holford

(1998); Clayton and Schifflers (1987b); Osmond and Gardner (1982). Irrespective
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of this identifiability problem, non-linear trends, for instance, change points are

interpretable because the non-identifiability only affects linear trends (Clayton and

Schifflers, 1987b).

In this work, we are interested in predictions, which are only based on the values of

ηij. Hence, the identifiability problem is not an issue of concern in this case since

ηij is identifiable (Holford, 1985; Schmid and Held, 2007). We therefore employ the

APC model without imposing any additional constraints for predictions in this work.

The main difference between the APC model and the Lee-Carter model is the

bilinear effect (βiκj) in the Lee-Carter model whereas the APC model consid-

ers only additive effects. Further, the Lee-Carter model commonly has no co-

hort effect. Softwares that implement the power and Lee-Carter models, Nord-

pred and the iterative Lee-Carter (ilc) package respectively implicitly assume same

widths for age and period intervals, often five-year intervals. The power model,

unlike the APC and Lee-Carter models, assumes a power link instead of a log

link in the Poisson regression. Of note, the Nordpred software package (http:

//www.kreftregisteret.no/software/nordpred, accessed: 04.11.2014) does not

report uncertainty estimates with its predictions.

3.2 Bayesian inference

The Bayesian age-period-cohort (BAPC) model imposes prior information about

smoothness on each of the parameter vectors (θ, ϕ and ψ) and also on hyperpa-

rameters (i.e precision parameters) to avoid overfitting and to improve precision of

the projections (Knorr-Held and Rainer, 2001). It also minimizes random variation

unexplained by age, period and cohort alone by introducing an additional parameter

zij ∼ N (0, δ−1) to explain this random variation (Knorr-Held and Rainer, 2001).

In this formulation, a random walk 2 prior, which is like an autoregressive process

but non-stationary, that smooths effects on each time scale (age, period and cohort)

-15-

http://www.kreftregisteret.no/software/nordpred
http://www.kreftregisteret.no/software/nordpred


is specified, coercing parameter estimates not to differ unreasonably from those in

neighbouring time intervals (Bray et al., 2000). Furthermore, difficulties resulting

from the existence of colinearity in the APC models are avoided if interest lies in

estimable functions (Besag et al., 1995).

Bayesian approaches are commonly used in the projection of mortality rates because

they are not based on strict parametric assumptions for future values of period and

cohort effects. Bray (2002) reviewed certain classical methods for prediction of in-

cidence or mortality data, and provides a comparison to the classical and Bayesian

versions of the APC model, and established that the Bayesian age-period-cohort

model was the only approach to obtain reasonable predictions. Bayesian APC mod-

els have been applied and discussed in several articles; see for example Berzuini

and Clayton (1994); Besag et al. (1995); Lunn et al. (2000); Knorr-Held and Rainer

(2001); Bashir and Estève (2001); Bray et al. (2001); Bray (2002); Schmid and

Held (2007); Riebler and Held (2015). Softwares such as Bayesian analysis soft-

ware Using Gibbs Sampling for Windows (WinBUGS) (Lunn et al., 2000) and

Bayesian Age-Period-Cohort Modeling and Prediction (BAMP) (Schmid and Held,

2007) are widely used softwares which implement the Bayesian approach of the age-

period-cohort model, using Markov chain Monte Carlo (MCMC) algorithms. More

recently, an R-package, BAPC, which uses integrated nested Laplace approximations

(see section 3.2) for predicting future cancer rates and counts based on the Bayesian

age-period-cohort model has been developed (Riebler and Held, 2015).

3.2.1 Smoothing priors for the time effects

We start by introducing Intrinsic Gaussian Markov random fields (IGMRFs). A

vector x = (x1, . . . , xn)> ∈ Rn can be defined as an IGMRF if it has an improper

Gaussian density with a sparse precision matrix which is not of full rank and has

an order defined as the rank deficiency of its precision matrix, Q (Rue and Held,

2005). The precision matrix Q is sparse because it is endowed with the Markov
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properties: Qij = 0 if and only if xi and xj are conditionally independent given

x−ij = (x1, . . . , xi−1, xi+1, . . . , xj−1, xj+1, . . . , xn)>. Thus, a zero-mean IGMRF of

pth order has the form:

π(x) = (2π)−(n−p)/2(|Q|?)1/2 exp

(
−1

2
x>Qx

)
.

Here, Q is a precision matrix assumed to be symmetric positive semi-definite with

rank n−p and |Q|? denotes the generalised determinant ofQ, defined as the product

of the n− p non-zero eigenvalues of Q. An IGMRF can be described by expressing

the precision matrix as Q = κR, with marginal variances given by the diagonal

elements of the generalized inverse matrix Σ? = Q−1. Here, κ represents the random

precision parameter while R is the so-called structure matrix which reflects the

specific neighbourhood structure of the model. It can be represented as a labelled

graph with nodes and edges; hence, the marginal variances of an IGMRF will depend

on both the size and structure of R (Sørbye and Rue, 2014).

In APC models, it appears feasible that neighbouring effects in time are almost iden-

tical, so that Gaussian priors with zero mean are mostly used for pairwise differences

(Besag et al., 1995). For instance, let Q(1) be a precision matrix defined as

Q(1) = κθ



1 −1

−1 2 −1

−1 2 −1

. . .
. . .

. . .

−1 2 −1

−1 2 −1

−1 1



where κθ is the precision parameter, which determines the degree of smoothness and

will be estimated concurrently in the model. Higher precision yields smoother estimates

of the parmeter vector. A prior based on the first-order differences for the age effects
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θ = (θi, . . . , θI)
> is given by

f(θ | κθ) ∝ κ
(I−1)/2
θ exp

(
−κθ

2

I∑
i=2

(θi − θi−1)2
)

= κ
(I−1)/2
θ exp

(
−1

2
θ>Q(1)θ

)
.

Note that unspecified entries in Q(1) are zero. This prior corresponds with the directed

formulation as a random walk of first order (RW1); θi | θi−1, . . . , θ1 ∼ N (θi−1, κ
−1
θ ),

i = 2, . . . , I with a flat prior for θ1 (q(θ1) ∝ constant).

Similarly, a prior based on second-order differences can be written as

f(θ | κθ) ∝ κ
(I−2)/2
θ exp

(
−κθ

2

I∑
i=3

((θi − θi−1)− (θi−1 − θi−2))2
)

= κ
(I−2)/2
θ exp

(
−1

2
θ>Q(2)θ

)
.

here,

Q(2) = κθ



1 −2 1

−2 5 −4 1

1 −4 6 −4 1

1 −4 6 −4 1

. . .
. . .

. . .
. . .

. . .

1 −4 6 −4 1

1 −4 5 −2

1 −2 1


The corresponding directed formulation is a random walk of second order (RW2), θi |

θi−1, . . . , θ1 ∼ N (2θi−1 − θi−2, κ−1θ ), i = 3, . . . , I with independent uniform priors both

for θ1 and θ2. While first order random walk prior penalises deviations from a constant

trend, second order random walk penalises deviations from a linear trend 2θi−1 − θi−2,

i = 3, . . . , I. Both RW1 and RW2 are well known examples of IGMRFs. The RW2 prior is

particularly of interest in this work since it penalises the second order differences which are

identifiable in APC models and also produces smoother estimates of the parameter vector
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Figure 3.1: Simulated random numbers (points) together with posterior means and
quantiles (95 % confidence intervals) using RW1-model (left) and RW2-model (right)
as smoothing priors with fixed precision κ = 1. Shown are RW1 and RW2 smoothing
for two different data sets (top and bottom).

than the RW1 prior. For example, we see in Figure 3.1, where we have used the RW1

and RW2 as smoothing priors for two simulated data sets (see Appendix B:1 for R-code),

that the posterior means and quantiles (95 % credible intervals) of the RW2-model are

smoother than in the case of the RW1 model and that the RW1 smoothing exhibits more

dependence on the data. We prefer smoother estimates in order to reduce the dependence

of projections on a local trend in data. The priors assumed for the age effects are the

same used for the period and cohort parameters with κϕ and κψ denoting their precision

parameters respectively.

A riveting characteristic of the RW1 is that it provides a solution to the implicit identifia-

bility problem present in the APC model by imposing a restriction, not deterministic but

stochastic. Considering all possible transformations of the parameters, the RW1 model

will prefer the one that minimizes the quadratic first differences (i.e θi, ϕj and ψk are

kept as constant as possible) (Knorr-Held and Rainer, 2001). This characteristic makes
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it possible to study the existing trends in the APC model parameters under this implicit

constraint. On the contrary, the identifiability problem remains unsolved in the RW2

model because the linear transformation of parameters neither alters the likelihood nor

the prior (Knorr-Held and Rainer, 2001). In the Bayesian setting, however, it is not of

utmost importance to establish identifiability of the parameters provided that quantities

of interest (in our case, predictions) are identifiable (Besag et al., 1995).

One benefit of the Bayesian procedure is that uncertainty about the precision parameters

(κθ, κϕ and κψ) is integrated in the estimation of the APC model parameters (θi, ϕj and

ψk). To account for further “unstructured” heterogeneity which cannot be explained by

age, period or cohort effects, Knorr-Held and Rainer (2001) proposed the inclusion of an

additional parameter zij to capture this unexplained variation. The extended model will

be

ηij = µ+ θi + ϕj + ψk + zij

Here, a Gaussian distribution zij ∼ N (0, δ−1), with precision parameter δ is used as prior

for the additional heterogeneity.

3.2.2 Hyperpriors

In a full Bayesian analysis, hyperprior distributions must be defined for the precision

parameters (κθ, κϕ, κψ and δ). To avoid complications with improper hyperpriors, weakly

informative but proper gamma distributions, Ga(a, b) are assigned to all the precision

parameters. In the same spirit as Knorr-Held and Rainer (2001), we use a = 1, b = 0.00005

for the precisions of the time effects (age, period and cohort effects) and a = 1, b = 0.005

for δ, precision of the overdispersion, as the overdispersion parameters are expected to

have a slightly larger variation.

It is vital that appropriate hyperpriors are chosen for the precision parameters since this

influences the degree of smoothness of the field and can have a strong influence on the

posterior results (Sørbye and Rue, 2014). However, assigning a specific fixed hyperprior

for the precisions of different IGMRF models (such as RW1, RW2 or spatial models) is
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questionable since the structure matrices for each model differ and therefore the marginal

variances of these models are unequal (Sørbye and Rue, 2014).
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Figure 3.2: The marginal standard deviations for the RW1-model (left) and the

RW2-model (right), computed using n = 100 points (top) and n = 500 points

(bottom), with a fixed precision κ = 1.

Given a fixed precision κ, the marginal standard deviation of the components of a Gaussian

vector x can be written as a function of κ as

σ2κ =
1

κ
exp

(
1

n

n∑
i=1

log
(
Q−1ii

))
, i = 1, . . . , n.

For a fixed precision of one, (Q−1)ii are the diagonal elements of the generalized inverse

matrix Σ? = Q−1 which represents the marginal variances of the Gaussian vector.
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Figure 3.2 shows the marginal standard deviations for all components of the RW1 and

RW2 models using fixed precision κ = 1, each defined on a graph with length n = 100

and also with n = 500 equidistant points. A consequence of the different lengths (n = 100

and n = 500) as well as different structures for the two models is that both the shape

and level of these curves are different. It is evident from Figure 3.2 that the marginal

standard deviation differs for the RW1 and RW2 priors and also for different lengths of

the graph. This should therefore be taken into consideration when specifying hyperpriors

to the precision parameters.

We follow Sørbye and Rue (2014), who recently proposed an approach for assigning hyper-

priors specific for IGMRFs. The technique is to assign priors to scaled precision parameters

based on their marginal standard deviations and hence ensure that the hyperpriors are not

affected by the choice of IGMRF prior and the length of the graph. This ensures reason-

able comparison between different IGMRF-models or same IGMRF-models with different

lengths of the graph. Hence, for each IGMRF x with random precision κ, a reference stan-

dard deviation σref(x) for fixed κ = 1 is calculated as the geometric mean of the marginal

standard deviations. An upper limit, U , for the marginal standard deviation is defined,

indicating how large the marginal standard deviation, σ(xi) is allowed to be, such that

P (σ(xi) > U) ≈ P
(

κ

σ2ref(x)
<

1

U2

)
= α,

where α is a fixed small probability. This means that by asssigning a hyperprior to the

scaled precision κ/σ2ref(x), we establish the same interpretation for different models. Due

to this, we can impose a common upper limit for the standard deviation of different models

and redetermine hyperpriors between different IGMRF models.

If a Gamma distribution, Ga(a, b), is assigned to the precision parameter, κ, the hyperprior

assigned to the scaled precision, κ/σ2ref(x), is given by Ga(a, bσ2ref(x)). Thus, it is easy to

account for different marginal variances of IGMRFs with a common shape parameter a

and an inverse scale parameter adjusted to the model. In our application, where we have
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used a = 1 and b = 0.00005 for example, it implies that

U =

√
b

F−1(α, 1, 1)
=

√
0.00005

F−1(0.05, 1, 1)
= 0.031 for α = 0.05

and defines an upper limit for the marginal standard deviations, such that P(σ(xi) > U) =

0.05.

3.2.3 Model estimation using intergrated nested Laplace ap-

proximations (INLA)

Markov chain Monte Carlo (MCMC) sampling techniques have often been used for infer-

ence with respect to latent Gaussian models. Applying MCMC techniques to such models

has been shown to perform poorly; one of the reasons fueling such poor performance is

that the components of the latent field depend heavily on one another (Rue et al., 2009).

Rue et al. (2009) proposed a new and effective approach known as integrated nested

Laplace approximations (INLA), for full Bayesian inference on the class of latent Gaussian

models. INLA is a deterministic algorithm that employs nested Laplace approximations

for its computations. It has been optimized for inference on the class of latent Gaussian

models, and thus obtains approximations to posterior marginal distributions within very

short computation time unlike long running times of commonly used MCMC sampling

techniques for latent Gaussian models (Rue et al., 2009).

For a wide range of INLA applications, Rue et al. (2009) have shown that the approxi-

mations are of very high quality, yielding more precise posterior estimates than MCMC

methods. For example, it has been demonstrated that INLA performs well in the esti-

mation of stochastic volatility models (Martino et al., 2011) in the analysis of animal

models (Holand et al., 2013), in meta-analysis (Paul et al., 2010), and in space-time mod-

elling (Schrödle and Held, 2011a,b), just to mention a few. The software can be freely

downloaded from www.r-inla.org and run under Linux, Windows and Macintosh via an

R-Interface (R Core Team, 2013).
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When assigning priors in INLA, we can scale them to have a generalized variance of 1 (as

described in the preceding subsection) by specifying “scale.model=TRUE” (Sørbye and

Rue, 2014). See for example, line 18− 24 of Appendix B:3, where the priors for the RW2

variance parameters of the time effects (age, period and cohort) have not been scaled and

hence “scale.model=FALSE”. For a detailed description of the INLA methods, we refer to

Rue et al. (2009).
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Figure 3.3: Simulated random numbers (points) together with posterior means and

quantiles (95% confidence intervals) fitted with RW2-model as smoothing prior and

fixed precision κ = 1. For the top three plots, we have assigned priors to scaled pre-

cision parameters but for bottom three, precision parameters have not been scaled.
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Chapter 4

Assessment of predictions

Forecasts play a vital role in a wide range of diverse disciplines, including meteorology, agri-

culture, finance, medicine and betting in sports - see for example, Pulwarty and Redmond

(1997) and Jones et al. (2000). Even laypersons often rely on forecasts to make decisions;

for instance, making a choice of clothing based on a weather forecast. Projections of

cancer mortality or incidence can have a great impact on public health planning (Bray,

2002); projections give prior knowledge as to how limited resources can be distributed and

how lives can be saved by introducing preventive measures. It also puts researchers in a

better position to earn grants to facilitate research into specific cancer predicted to have

increasing mortality rates. In view of the value of predictions, its accuracy must not be

overlooked.

Forecasts are nowadays often probabilistic, i.e they take the form of a probability distribu-

tion over future happenings (Dawid, 1984) so that their expected accuracy can be assessed

(Keilman et al., 2002). Single-valued or point forecasts can also be used for predictions.

However, probabilistic forecasts are considered to be more effective than single-valued fore-

casts, which provide no uncertainty with the forecasts. In recent times, more attention

has been given to probabilistic forecasts in a wide range of diverse disciplines (Gneiting,

2008).
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Calibration is an important concept when it comes to probabilistic forecasts (Gneiting and

Raftery, 2007). It reflects the statistical closeness between the probabilistic forecasts and

the actual observations (Gneiting and Raftery, 2007). In simple terms, it explains how

reliable a probabilistic forecast is by comparing it with the actual behaviour of the variable

predicted. Ideally, observations can be seen as random realisations of the predictive dis-

tribution. Forecast sharpness is another vital characteristic of the probabilistic forecasts

that cannot be overlooked. It refers to the concentration of the predictive distribution,

reflecting the degree of confidence in the forecast (Gneiting and Raftery, 2007).

To illustrate this characteristic, we consider the prediction interval corresponding to a

predictive distribution. If, for instance, lung cancer rate for females aged 25 − 29 in a

country is projected to surely be within the range 0.002− 0.003 per 100, 000 person years,

it would be considered a very sharp prediction as compared to a rather vague prediction

interval of 0.002 − 0.900 per 100, 000 person years. In as much as a forecaster would

love to make sharp predictions (i.e obtain a narrow prediction interval), the calibration of

the forecast cannot be ignored (i.e the forecast must be statistically consistent with the

true observation). Gneiting and Raftery (2007) therefore hypothesized that, the challenge

of obtaining quality probabilistic forecasts can be seen as the issue of “maximizing the

sharpness of the predictive distributions, subject to calibration”.

Following the frequent use of probabilistic forecasts, methods that measure their quality

have been suggested. In this chapter, we present some of the methods used for assessment

of probability forecasts or predictive distributions. In this work, we follow (Riebler and

Held, 2015), assuming a normal predictive distribution for the forecasts.

4.1 Proper scoring rules

Scoring rules are methods used to evaluate the quality of probabilistic forecasts. They are a

function of the predictive distribution and the value that is observed (Gneiting and Raftery,

2007). A scoring rule is considered to be proper if it is maximized by forecasting the true

distribution. Scoring rules are required to be proper in order to promote truthful and
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cautious forecasting (Gneiting and Katzfuss, 2014). Using proper scoring rules, both the

sharpness and the calibration of predictive distributions can jointly be evaluated (Gneiting

and Raftery, 2007). In what follows, we will present some proper scoring rules. The scores

presented here are negatively oriented, i.e smaller scores suggest that predictions are of

better quality.

4.1.1 Logarithmic score

The logarithmic score proposed by Good (1952) is a proper scoring rule that depends on

the predictive distribution F (.) only through the probabilty mass f(yij) at the actually

observed count, yij in age group i and period j. The logarithmic score is defined as

LS(F, yij) = − log f(yij),

Consider a probabilistic forecast Yij which assumes a normal density N (µij , σ
2
ij), then the

logarithmic score becomes

LS(yij) =
1

2

[
log(σ2ij) + ỹ2ij

]
,

where ỹij = (yij−µij)/σij are standardized observed number of cases with respect to their

predictive distributions and the constant log(2π)/2 has been omitted.

4.1.2 Continuous ranked probability score

This proper scoring rule is specified directly in terms of the cumulative distribution func-

tion (CDF), F (.), of the forecast distribution (Gneiting and Raftery, 2007). It evaluates

the closeness of the predictive distribution and the actual realization. The continuous

ranked probability score (CRPS) is defined as

CRPS(F, yij) = EF {|Y1 − yij |} −
1

2
EF {|Y1 − Y2|},
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where Y1 and Y2 are independent random variables with CDF F with finite first moment

and EF is the expectation operator. Assuming normality of the probabilistic forecast with

density ϕ(.) and CDF Φ(.), the CRPS is obtained as

CRPS(F, yij) = σij

[
ỹij{2Φ(ỹij)− 1}+ 2ϕ(ỹij)−

1√
π

]
The CRPS is a generalised form of the absolute error for the ij-th observation defined

as |yij − µij |. That is, if F is a point forecast, then the CRPS reduces to the absolute

error; hence, it enables a forecaster to make comparison between point and deterministic

forecasts (Gneiting and Raftery, 2007). The absolute error (AE) measures how far the

mean of the predictive distribution is, in absolute value, from the observations and is

mostly used to evaluate the quality of point predictions.

The average CRPS in all age groups and in all predicted periods up to and including the

jth predicted period, is called the cumulative average CRPSj . It can be used to compare

the change in predictive quality from short-term to long-term forecasts (Riebler et al.,

2012). As an overall criterion to assess the quality of different probabilistic prediction

models, the mean CRPS, CRPS = CRPSJ can be used (Gneiting and Raftery, 2007). The

cumulative average of the absolute error, AEj and the corresponding mean AE, AE are

defined analogously.

4.1.3 Dawid-Sebastiani score

In situations where the forecast distribution is complex, it can be problematic to apply

the expectation operator in the CRPS fomula, and can therefore be difficult to compute

the CRPS (Gneiting and Katzfuss, 2014). The proper Dawid-Sebastiani score (DSS) is

a feasible alternative since it depends on the probabilistic forecast only through its first

two central moments, µij and σij (Dawid and Sebastiani, 1999). It is computed by the

equation,

DSS(F, yij) = ỹ2ij + 2 log σij
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For Gaussian predictive distributions, the logarithmic score can be seen as a special case

of the Dawid-Sebastiani score (Dawid and Sebastiani, 1999; Gneiting and Raftery, 2007)

and the Dawid-Sebastiani sccore has (up to a multiplicative constant) the same form as

the logarithmic score (Held et al., 2010; Gneiting and Katzfuss, 2014):

DSS(F, yij) =
1

2

[
log(σ2ij) + ỹ2ij

]
,

In our application, the predictive distribution is assumed to be normal (Riebler and Held,

2015) and thus CRPS can easily be computed. In order to assess the quality of predictions

obtained under the different time scales, the cumulative average CRPSj and AEj have

been computed to compare the change in predictive quality from short-term to long-term

projections (Riebler et al., 2012). The mean CRPS and AE have also been used as an

overall measure (Gneiting and Raftery, 2007) to assess the predictions.
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Chapter 5

Data analysis

Cancer is a leading public health problem in most countries across the world, responsible

for 8.2 million deaths in 2012 (Stewart and Wild, 2014). As a motivation for this thesis,

lung cancer is acknowledged as the most frequent cancer worldwide both in terms of cases

and deaths (Ferlay et al., 2010). In the United Kingdom, over 50% of all new cancer cases

are attributed to breast, lung, prostate and bowel cancers combined; lung cancer is the

second most common of these, the first being breast cancer in women and prostate cancer

in men (cruk.org/cancerstats, accessed: 20.04.2015). The 2012 annual report by the

Cancer Registry of Norway reveals that 50% of cancer deaths can be attributed to cancer

of the lung, colon, rectum, prostate and female breast; lung cancer being responsible for

most cancer deaths both in men and women.

Cancer of the oesophagus is recorded as the sixth most frequent cause of cancer deaths

worldwide (Ferlay et al., 2013), and is responsible for close to 5% of all cancer deaths in the

UK (cruk.org/cancerstats, accessed: 20.04.2015). Cancer deaths caused by oesophagus

cancer is also quite rare in Norway; see Figure 5.1 for age-specific oesophagus cancer death

rates per 100,000 for females in Norway.

Given the health burden imposed by cancer on most population groups, it is crucial for

forecasters to make cancer predictions using appropriate time scales to ensure that quality

projections are obtained for decision making. The purpose of this thesis is to model and
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assess the quality of predicted age-specific cancer rates and counts using three different

time scales. Using lung and oesophagus cancer data in Norway and the United Kingdom,

we consider predictions based on five-year data aggregation, model-specific aggregation

(aggregating the random effects based on five-year intervals) and the case where we use

the yearly data witout an imposed aggregation.
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Figure 5.1: Age-specific lung cancer (top) and oesophagus cancer (bottom) death

rates per 100,000 for females in Norway and the United Kingdom.

The choice of lung and oesophagus cancer data is informed by the curiosity to investigate

how the different time scales influence the quality of prediction of cancers with high mor-

tality rate (lung cancer) and cancers with very low mortality rate (oesophagus cancer),

thereby making the deployment of lung and oesophagus cancer data suitable for the study.

Similarly, by using both densely and sparsely populated countries like the United Kingdom

and Norway respectively, we indirectly and tacitly explore the quality of cancer predictions

under the different time scales, for diverse types of population (for instance, populations

that may neither be densely nor sparsely populated) without necessarily examining data

from these countries in the current study. Consequently, the idea of representativeness
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suggested by the use of lung and oesophagus cancer data from the United Kingdom and

Norway informs the choice of data for the study.

Age-specific mortality rates from 1951 to 2010 are displayed in Figure 5.1. Lung cancer

mortality rates for females with the age 50 and above in Norway shows a steady rise over

the past decades, in contrast to UK which appears to have witnessed a decrease after 1990

and subsequently levels off after year 2000. Rates in females below the age of 50 remain

fairly constant for both UK and Norway. In the United Kingdom, we see fairly constant

oesophagus cancer death rates with slight increases after 1980 for females aged 70 and

above. It is difficult to identify trends in oesophagus cancer rates for females in Norway

due to very low counts. The noise in the data suggests the use of model-based prediction

to project data properly.

In this chapter, we describe how we obtain the data and give an overview of the BAPC-

package, an R-package which implements Bayesian age-period-cohort models (see section

3.2) with focus on predictions (Riebler and Held, 2015). Further, we obtain cancer rate

projections for different time scales based on the Bayesian age-period-cohort model using

the BAPC-package and some modification of it to suit this thesis. The impact of these

varying time scales on the quality of cancer projections will be assessed using proper

scoring rules, here the continuous ranked probability score and absolute error, discussed

in chapter 4.

5.1 Cancer data sets

The principal data source for this thesis was the World Health Organisation (WHO) mor-

tality database (http://www.who.int/healthinfo/statistics/mortality_rawdata/en/,

accessed: 26.02.2015), which contains number of deaths by country, year, sex, age group

and cause of death, dating as far back as 1950. Only data of countries that have been

coded appropriately using the International Classification of Diseases (ICD) are available

in the database. ICD is recognised in epidemiology, health management and medicine

as a benchmark tool used to keep incidence and prevalence of diseases in population
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Cause ICD revision Detailed list

Malignant neoplasm of trachea, bronchus and lung ICD-7 A050
ICD-8 A051
ICD-9 B101

ICD-10 1034
code 1034 was combined from C33, C340, C341, C342, C343, C348 and C349

Malignant neoplasm of oesophagus ICD-7 A045
ICD-8 A046
ICD-9 B090

ICD-10 1028
code 1028 was combined from C150, C151, C153, C154, C155, C158 and C159

Table 5.1: Codes used for the data extraction for the different revisions of the ICD

groups under surveillance (http://www.who.int/classifications/icd/en/, accessed:

20.04.2015). The database contains mortality data recorded in four separate files accord-

ing to different revisions of the ICD (ICD-7, ICD-8, ICD-9, ICD-10). Also contained in the

database is a file which reports population mid-year figures. Each country in the database

is identified uniquely by a country code- country codes and names are recorded in one data

file. A list of countries and the years for which mortality and population data included in

the database is available. The last data file included in the database is a notes document

with notes related to data for some countries.

Data were retrieved for female population estimates (mid-year population figures), female

cancer deaths for oesophaus and combined female cancer deaths for lung, brunchus and

trachea according to the ICD using the appropriate country codes for United Kingdom

(4308), England and Wales (4310), Northern Ireland (4320), Scotland (4330) and Norway

(4220). For the different revisions of the ICD, the codes we used for the data extraction

are tabulated in Table 5.1. Mortality data were available for both countries, by five-year

age groups and yearly intervals. We retrieved data for females between the ages of 25 and

84 for a period spanning 1951− 2010 for both Norway and United Kingdom.

For the year 2000, mortality counts are unavailable for the United Kingdom due to the

fact that ICD-10 was not introduced the same year in the countries of the UK. In view

of this, the sum of mortality counts from England & Wales (ICD-9), Northern Ireland

(ICD-9) and Scotland (ICD-10) is used as suggested by the WHO in the notes document-
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see http://www.who.int/entity/healthinfo/statistics/notes.zip?ua=1 (updated:

03.11.2014, accessed: 26.02.2015).

5.2 Statistical software and package

All statistical analysis in this work were carried out using the R statistical software (R Core

Team, 2013) using the BAPC-package (Riebler and Held, 2015) and some modifications of

it to suit the purposes of this thesis. Some selected R-codes are documented in Appendix

B.

The BAPC-package

The BAPC-package (Riebler and Held, 2015) is an R-package based on the Bayesian APC

model for predicting future cancer rates and counts within a full Bayesian inference set-

ting (see section 3.2). Contrary to some softwares which are mostly used for cancer rate

projections based on the Bayesian version of the age-period-cohort model such as the inde-

pendent software, BAMP (Schmid and Held, 2007) and WinBugs (Lunn et al., 2000) which

employ Markov chain Monte Carlo (MCMC) algorithms, the BAPC-package uses integrated

nested Laplace approximations (INLA) (See subsection 3.2.3) for full Bayesian inference

(Riebler and Held, 2015). Since INLA has been optimized for inference on the class of latent

Gaussian models (Rue et al., 2009), it avoids long running times which are characteristic of

MCMC techniques and its corresponding needed convergence checks (Bray, 2002). Riebler

and Held (2015) obtained probabilistic forecasts based on the Bayesian APC model im-

plemented in the BAPC-package and demonstrated that the forecasts were well calibrated

and the prediction intervals not too wide. The BAPC-package allows very straightforward

model specification and readily generates desired outputs, such as age-standardized and

age-specific projected rates and counts. For a detailed description of the methodological

details of the BAPC-package, we refer to Riebler and Held (2015).
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In this thesis we include all three time effects (age, period and cohort effects) and also

incorporate an overdispersion component (see section 3.2). We include the time effects

as smooth functions based on the RW2 model (see subsection 3.2.1) and hence sum-to-

zero constraints are incorporated automatically (Riebler and Held, 2015). To account for

model-specific aggregation, we make alterations to the standard model specification within

the BAPC-packaage.

5.3 Methods

Based on the Bayesian APC model (see chapter 3), we obtained predictions using three

time scales (data aggregation, model-specific aggregation and yearly data structure). In

each case, we included an overdispersion parameter (Knorr-Held and Rainer, 2001) to

capture the variation unexplained by age, period or cohort effects. The overall model is

of the form

ηij = µ+ θi + ϕj + ψk + zij

Here, ηij , µ, θi, ϕj , ψk, and zij follow the same definition as in chapter 3. We now

describe the different time scales explored. In all cases considered, the age index, i =

1, 2, . . . , 12, remains unaltered and is included in all the models. With the help of age-

specific plots, we compare projected mortality counts and rates under each of the methods

to the true observations. In addition, we make use of proper scoring rules to assess how the

quality of the predictions vary from short-term to long-term forecasts (Riebler and Held,

2015), here the continuous ranked probability score and absolute error have been used. A

motivating basis for this work is Kang et al. (2014), where the impact of varying definitions

of geographical areas on the estimation of individual disease risks was investigated. They

explored several spatial scales that explain geographical variation effectively. Here, the

impact of three temporal scales on the quality of cancer projections based on the Bayesian

APC model is investigated.
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Data aggregation

Each cancer data set is given by the WHO based on yearly intervals (here, 60 years) and

12 five-year age groups. For example, a preview of the first few lines of the lung cancer

mortality counts data extracted for Norway looks like this:

25-29 30-34 35-39 40-44 45-49 50-54 55-59 60-64 65-69 70-74 75-79 80-84

1951 1 0 0 1 4 6 9 7 10 11 6 0
1952 1 0 0 0 4 5 10 12 8 13 10 7
1953 0 0 1 0 1 3 12 9 10 7 4 3
1954 0 0 0 0 3 2 6 4 13 12 8 5
1955 0 2 2 1 3 4 6 17 10 7 10 3

The structure of the data for ”person-years of exposure” is analogous. We begin by con-

sidering cancer projections based on five-year period intervals. This was motivated by the

fact that some software packages such as Nordpred and the iterative Lee-Carter package

implicitly assume same lengths for age and period intervals, mostly five-year widths, thus

requiring that yearly data is artificially aggregated in order to make cancer rate projec-

tions. This practice was also employed by Clements et al. (2005), where they aggregated

the yearly periods to five-year intervals and made predictions based on the Bayesian APC

model. In comparison with predictions obtained by fitting frequentist generalised additive

models (GAMs) based on yearly data structure, Clements et al. (2005) found fault with

the large credible intervals given by the Bayesian APC model. Riebler and Held (2015)

suspected that besides others, data aggregation might have contributed to this unsatisfac-

tory performance of the Bayesian APC model predictions. We investigate retrospective

projections of mortality counts based on the Bayesian APC model implemented in the

BAPC-package using the five-year aggregated data.

For each cancer mortality data set, we aggregate the data by summing the counts within

a period of five-years to obtain same lengths for both age and period intervals (five-year

lengths). We do the same for corresponding person-years data sets. The data for lung

cancer mortality in Norway now looks like this:
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Figure 5.2: Observed number of cases aggregated over five-year intervals (dots)
together with predicted mean rate within 95%-pointwise credible intervals (gold
shaded) and predicted number of cases aggregated over five-year intervals within
95%-pointwise credible intervals (dashed) for all age groups for female lung cancer
mortality in Norway. The vertical line shows where prediction started. The points
represent the sum of counts within the five-year period and is shown at the last time
point in very five-year period. For example, the sum of counts between 1951− 55 is
shown at year 1955.
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25-29 30-34 35-39 40-44 45-49 50-54 55-59 60-64 65-69 70-74 75-79 80-84

1951-55 2 2 3 2 15 20 43 49 51 50 38 18
1956-60 0 1 5 6 17 18 47 47 61 56 38 25
1961-65 1 4 4 7 20 30 39 64 48 60 48 37
1966-70 1 1 1 14 27 49 57 75 85 92 65 49
1971-75 0 0 5 19 32 61 77 99 104 109 100 65
1975-80 0 3 9 12 34 67 125 126 144 147 110 72

Here there are 12 periods, hence the period index runs from j = 1, 2, . . . , 12. The age

group and period intervals have the same lengths; hence, the cohort index is computed

as (I − i) + j (Holford, 1983). For both lung and oesophagus cancer in both countries,

we make projections by excluding the observed number of mortality cases across all age

groups in the respective last 2 periods, representing a 10-year period since data has been

aggregated over five-year intervals. Observed and predicted number of mortality cases

for female lung cancer in Norway within 95%-pointwise credible intervals obtained using

data aggregation are displayed in Figure 5.2. Similar figures for the United Kingdom and

oesophagus cancer are shown in Appendix A.

From the plots, it appears that projections are fairly good in most age groups, especially

for younger age groups and for both cancers. For instance, in Figure 5.2, lung cancer

predictions in age group 30 − 34 and 35 − 39 appears reasonable in comparison with the

aggregated counts (points) plotted on the same graph. However, in age groups 40 − 44,

45− 49 and 50− 54, predictions suggest an increasing trend whereas one would expect a

decrease in the trends given the observed counts. Moreover, the five-year data aggregation

is not informative for yearly dynamics. This does not mean that it does not exist but

then we lose it due to the aggregation, thus it is not possible to obtain clues on yearly

trends using aggregated data. On the contrary, we can aggregate predictions made based

on yearly intervals to obtain five-year interval predictions. It is difficult to compare the

predictions obtained based on five-year data aggregation to the true observations. This

is because the predictions are for five-year intervals while the true obsevations follow a

yearly data structure. Moreover, the aggregated predicted counts hide possible variations

in cancer trends and hence counts in individual years cannot be tracked over time. We now

shift attention to a method of aggregation which is specific to the model and not the data.
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Period Index Period Index Period Index . . . Period Index

1951 1 1956 2 1961 3 . . . 2006 12
1952 1 1957 2 1962 3 . . . 2007 12
1953 1 1958 2 1963 3 . . . 2008 12
1954 1 1959 2 1964 3 . . . 2009 12
1955 1 1960 2 1965 3 . . . 2010 12

Table 5.2: Indexing of cases and person-years according to period partitions

Here, we maintain the yearly data structure and thus we can compare the retrospective

projections with the observed data.

Model-specific aggregation

In this approach, we preserve the yearly data structure and aggregate the random effects

instead. Here, we partition periods into 12 groups and assign the same period index to

neighbouring periods before modelling the random effects. We partition the periods into

five-year intervals and assign to each partition one period index ranging from j = 1, . . . , 12.

The indexing of cases and person-years based on the period partitions is shown in Table

5.2. The cohort index k is computed here as (I − i) + j since we assume same intervals for

age groups and period during model specification (Holford, 1983). Observed and predicted

number of mortality cases for female lung cancer in Norway within 95%-pointwise credible

intervals, obtained using model-specific aggegation are displayed in Figure 5.3. Similar

figures for the United Kingdom and oesophagus cancer are shown in the Appendix.

The figures suggest that the projections seem sensible for most age groups and countries.

Projections are seen as steps due to the fact that the random effects have been aggregated

and thus the predicted rates are fairly constant for periods which were assigned the same

period index. However, projections fairly depict the trend in the data in most age groups.

In comparison to Figure 5.2, it is observed that information is lost during data aggregation

and that, by maintaining the yearly data structure and imposing a model-specific aggre-

gation, clues on yearly trend can be monitored and predictions depict more of this trend

than when the data is aggregated.
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Figure 5.3: Observed number of cases (dots) together with predicted mean rate
within 95%-pointwise credible intervals (gold shaded) and predicted number of cases
within 95%-pointwise credible intervals (dashed) for all age groups for female lung
cancer mortality in Norway obtained using model-specific aggregation (5-year). The
vertical line shows where prediction started.
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No aggregation

Here, we follow Riebler and Held (2015), keeping the yearly data structure and fit the

Bayesian APC model. The cohort index k does not depend only on the age group and

period index as in the two previous formulations, but also on the length of the age group

and period intervals (Holford, 1983). It is computed as 5 · (I − i) + j since the age group

intervals are 5 times wider than the period interval (Heuer, 1997). Riebler and Held (2015)

showed that the predictions obtained with the Bayesian APC model was of better quality

than the generalized Lee-Carter model. We will make comparison of the results obtained

here to the predictions obtained using model-specific aggregation. Observed and predicted

number of mortality cases for female lung cancer in Norway within 95%-pointwise credible

intervals obtained with no aggregation induced is displayed in Figure 5.4. Similar figures

for the United Kingdom and oesophagus cancer are shown in the Appendix. The plots

suggest that the predictions appear sensible for almost all age groups, for both cancers

and both countries. It is observed that the retrospective projections here are smoother

than that of the model-specific aggregation (see Figure 5.3 for example), seen as steps,

and closer to the observed counts. The smoother prediction curves seen in the method of

no aggregation is due to the fact that smoothing has been carried out over a longer period

(60-year period), whereas there are only 12 period effects in the model-specific aggregation.

To assess the change in predictive performance from short-term to long-term projections,

Figure 5.5 shows the cumulative average AEj (dashed) and CRPSj (solid lines). For lung

cancer in the UK and Norway and also for oesophagus cancer in the UK, the curves AEj

and CRPSj of the method with no aggregation (black) lie below those of the model-specific

aggregation (gold) suggesting better predictive quality. For oesophagus cancer in Norway,

we observe similar performance between the two methods. This is attributed to the fact

that oesophagus cancer counts are very low in Norway; hence, the predictions based on

the yearly data structure are very close to that of the model-specific aggregation. This

indicates that predictive quality is almost the same for both methods when counts in the

data are very small. It is also seen from Figure 5.5 that the cumulative average AEj

(dashed) and CRPSj (solid lines) for both methods stay fairly constant for both cancers

in Norway, indicating that predictive quality is preserved if more periods are predicted
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Figure 5.4: Observed number of cases (dots) together with predicted mean rate
within 95%-pointwise credible intervals (gold shaded) and predicted number of cases
within 95%-pointwise credible intervals (dashed) for all age groups for female lung
cancer mortality in Norway obtained without any form of aggregation. The vertical
line shows where prediction started.
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Figure 5.5: Cumulative average of mean absolute errors (dotted) and continuous
ranked probability scores (lines) across age groups for lung cancer (top) and oesoph-
agus cancer (bottom) in Norway and the United Kingdom obtained by the Bayesian
APC model with no aggregation imposed (black) and model-specific aggregation
(gold).

irrespective of whether model-specific aggregation is used or method of no aggregation.

There is a steady rise in the scores observerd for both cancers in the UK, indicating a

decrease in predictive quality over time when the data is large. The cumulative average

AEj mostly lies above that of the CRPS.

Table 5.3 displays the mean CRPS and AE, which can also be seen in Figure 5.5 as the

values at the last time points in the curves. It is observed from the table that the method

with no aggregation always gives better predictions than the model-specific aggregation

with relatively smaller mean scores apart from oesophagus cancer in Norway where scores

are the same in both methods due to low counts observed in the data. Considering lung

cancer in Norway, for instance, the mean CRPS is 70.27 cases for the method with no

aggregation, but 74.54 cases for the model-specific aggregation. In view of the fact that

Norway is sparsely poplulated, the CRPS and AE score differences are smaller compared

to the score difference in the UK. For example, the mean CRPS score for Norway lung

cancer records 6.63 cases (model-specific) against 5.17 cases (method of no aggregation).
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Model-specific No aggregation

AE CRPS AE CRPS

Lung Cancer United Kingdom 99.13 74.54 95.89 70.27
Norway 9.76 6.63 7.40 5.17

Oesophagus Cancer United Kingdom 19.94 14.19 16.45 11.09
Norway 1.29 0.90 1.29 0.91

Table 5.3: Mean absolute error AE and mean continuous ranked probability score
CRPS. Shown are results obtained with the Bayesian APC model using model
specific data aggregation and model with no aggregation imposed. Results for both
lung and oesophagus cancer in the UK and Norway are displayed. Of note, the priors
for the RW2 precision parameters of the time effects under both methods have not
been scaled to have a generalised variance = 1.

Of note, the score differences between both methods are quite small for both cancers

and in both countries, suggesting similar performance between the two methods in our

application based on the scores investigated, with the method of no aggregation having

slightly better predictive quality and smoother predictive mean rate. Of note, scores have

not been computed for the five-year data aggregation method because predictions obtained

here are for five-year intervals while the true observations are on an annual scale and so

it is not clear how to compare them using AE or CRPS.

Prior specification

In the analysis, priors for the RW2 precision parameters of the time effects (age, period

and cohort) were not scaled to have a generalised variance of 1 (see section 3.2). We

will now explore how scaling the priors for the precision parameters of the time effects

influences our results. This is interesting for us since the random effects in the two methods

are of different lengths. Recall from section 3.2 that the marginal standard deviations

for the RW2-model varied for different lengths of the graph. Hence, we will scale the

RW2 priors in each method (method of no aggregation and model-specific aggregation)

to have a similar interpretaion for the precision parameter. To evaluate how scaling the

priors affects our results, we fit the Bayesian age-period-cohort model again under the

two time scales, model-specific aggregation and the method of no aggregation, but this
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time we scale the priors of the RW2 precision parameters of the time effects to have a

generalised variance = 1. Table 5.4 displays the mean CRPS and AE scores obtained by

fitting the models with scaled priors. Scaling the priors had a minor influence on the mean

scores; most mean scores experienced slight changes, with the mean scores under method

of no aggregation still seen to be slightly lower than those for model-specific aggregation,

apart from UK lung cancer, where the latter performs slightly better. Before scaling the

priors (see Table 5.3), the method of no aggregation performed slightly better in UK lung

cancer, considering that the mean AE and CRPS were a bit smaller. However, the random

effects were of different lengths in the two methods and might have influenced this finding.

Scaling the priors to have a similar interpretation for the precision parameters in both

methods (see Table 5.4, we see that model-specific aggregation is seen to perform slightly

better when the data is large, and might be a preferred choice when making predictions

for large data sets.
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Figure 5.6: Absolute difference in cumulative average of mean absolute errors (gold)

and continuous ranked probability scores (black) of model with no aggregation and

model with data specific aggregation across age groups for lung cancer in the United

Kingdom obtained by the Bayesian APC model with scaled priors for the precision

parameters of time effects (dotted) and priors not scaled (lines).

-45-



Model-specific No aggregation

AE CRPS AE CRPS

Lung Cancer United Kingdom 98.91 74.41 103.24 80.12
Norway 9.78 6.65 7.65 5.28

Oesophagus Cancer United Kingdom 20.05 14.32 18.71 13.10
Norway 1.30 0.90 1.29 0.90

Table 5.4: Mean absolute error AE and mean continuous ranked probability score
CRPS. Shown are results obtained with the Bayesian APC model using data ag-
gregation, model specific data aggregation and no aggregation imposed. Results for
both lung and oesophagus cancer in the UK and Norway are displayed. Here, priors
for the RW2 precision parameters of the time effects have been scaled to have a
generalised variance = 1.

Figure 5.6 shows how far (in absolute value) the cumulative average of mean scores for

model-specific aggregation is from that of method with no aggregation. The curves were

obtained by scaling the priors of the RW2 precision parameters and computing the abso-

lute difference in the cumulative average of the mean CRPS obtained for model-specific

aggregation and that of method of no aggregation (dotted). The absolute difference was

computed again when the priors are not scaled (solid lines). The difference in the AE

scores are displayed in gold and that of CRPS in black. The difference in the cumulative

average of the mean scores between the two methods appear to get smaller when the priors

for the RW2 precision parameters of the time effects are scaled since the dotted curves

mostly lies below the solid lines. Scaling the priors of the RW2 precision parameters to

have a generalised variance = 1, reveals the closeness in predictive quality of both methods

since the mean CRPS and AE scores get closer.

Evaluation of random effects

The precision of estimation of random effects for model-specific aggregation and method

with no aggregation are displayed in Figure 5.7 for Norway lung cancer. Of note, the priors

for the precision parameters of the time effects (age, period and cohort) have not been

scaled. The model-specific aggregation seemed to influence the precision of estimation of
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the overdispersion since the standard deviation of the overdispersion effect varies when we

compare no aggregation method to the model-specific aggregation. The box plot of the

standard deviation of the overdispersion effects under model-specific aggregation (5-year)

has a larger length compared to the method with no aggregation (1-year) imposed. This

indicates that we obtain larger variation and smaller precision in the overdispersion when

model-specific aggregation is imposed. Here, the standard deviations of the time effects

(age, period and cohort) are too large and thus not interpretable.

Further, we investigate box plots of the standard deviation of the random effects for the

other cancer data sets and also the effect of scaling the RW2 precision parameters of the

time effects (age, period and cohort). Similar to Figure 5.7, the scale of the standard

deviation of the time effects (age, period and cohort) is very large irrespective of the

data set and the model used, and so cannot be interpreted (results are not shown). We

suspect this may be due to the identifiability problem discussed in section 3.1. Figure

A.11 illustrates this problem- where one observes that there is no clear difference in the

effects of age, period and cohort. The time effects therefore need to be made identifiable

in order to investigate the standard deviation of the time effects (age, period and cohort

effects). Here, we use two-factor models (age and cohort effects) to avoid the issue of

collinearity between the effects of age, period and cohort (Clayton and Schifflers, 1987a).

By fitting the models with only age and cohort effects, while adjusting for overdispersion,

the scale of the standard deviation of the age and cohort effects is now reasonable (see,

for example, Figure A.12 and similar plots in appendix) and thus can be interpreted.

The plots suggest very little differences in the precision of estimation of the age effects

since the standard deviations of the age effects stay almost constant from the method

of no aggregation (1-year) to model-specific aggregation (5-year), whether the priors are

scaled or not. The box plots of the standard deviation of the cohort effects under model-

specific aggregation have a slightly larger length compared to that of the method with no

aggregation imposed. This indicates that we obtain slightly larger variation and smaller

precision in the cohort effects when model-specific aggregation is imposed. The results

also indicate that the frequency of cancer influences the precision of estimation of the

overdispersion effects in the two methods. For oesophagus cancer, which is rare, the

standard deviation of the overdispersion effect experiences slight changes when we move
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Figure 5.7: Box plots of the standard deviation of the random effects for both the
model with no aggregation (1-year) and that of model specific data aggregation
(5-year)

from method of no aggregation to model-specific aggregation. However for lung cancer,

which is more frequent, the box plots of standard deviation of the overdispersion effects

have wider length compared to those of method of no aggregation, indicating a larger

variance and smaller precision.
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Chapter 6

Summary

There is a wide variety of models used for analysis and projection of age-specific cancer

incidence and mortality data. Softwares that implement these models have been devel-

oped and put in routine use. The Bayesian age-period-cohort (APC) model is well known

for analysis and prediction of age-specific cancer incidence and mortality data. Riebler

and Held (2015) developed an easy to use R-package BAPC, which uses intergrated nested

Laplace approximations for complete Bayesian inference and subsequently showed that

uncertainty of predictions obtained based on the Bayesian APC model seemed reasonable

and outperformed the generalised Lee-Carter model. Cancer data are commonly provided

by the World Health Organisation on yearly time-scale and five-year age groups. Some

softwares such as Nordpred (http://www.kreftregisteret.no/software/nordpred ac-

cessed: 04.11.2014) and the iterative Lee-Carter package (Butt and Haberman, 2009)

however require the data to have the same lengths for the time-scale and age group in-

tervals, usually five-year intervals, which may not always be ideal for projections since

information may get lost and projections might be misleading when data are aggregated.

This work is motivated by Kang et al. (2014), where the effect of varying definitions of

geographical areas on the estimation of individual disease risks was investigated. They

explored various spatial scales in effectively explaining geographical variation. Here, the

impact of three temporal scales on the quality of cancer projections based on the Bayesian
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APC model is investigated. Based on retrospective projections, with the help of age-

specific plots and the use of proper scoring rules, the quality of predictions obtained under

each time-scale is assessed. First, we obtained projections by aggregation of yearly to five-

year data. The question arises whether annual aggregation of data to five-year intervals

preserves every information in the data and if it provides unquestionable predictions.

Instead of aggregating the data, we also investigate in this work aggregation of the random

effects where the yearly data is maintained and a five-year model-specific aggregation via

the random effects is carried out. We combined the yearly data structure and the effect

of neighbouring periods by assigning period indexes based on five-year intervals while

preserving the annual data. Finally, we obtained predictions based on yearly data without

any form of aggregation and compared the predictions with the model-specific aggregation

approach. In each of the three methods, we included all time effects (age, period and

cohort) and also adjust for overdispersion (Knorr-Held and Rainer, 2001)

Riebler and Held (2015) suspected that annual data aggregation to five-year intervals and

the exclusion of an overdispersion parameter may have contributed to the imprecise pre-

dictions of the Bayesian age-period-cohort model as shown in Clements et al. (2005). By

obtaining retrospective projections of mortality counts and rates, one-step ahead forecasts

and projected age-standardized rates based on yearly data with an adjustment for overdis-

persion, Riebler and Held (2015) showed that the Bayesian APC model outperformed the

generalized Lee-Carter model and that the prediction intervals were not too wide. The

question therefore arises which aggregation is appropriate in analyses and projection of

age-specific cancer incidence or mortality data and how this influences projections.

In this thesis, we analysed lung and oesophagus cancer data for females in the United

Kingdom and Norway obtained from the World Health Organisation (WHO) mortality

database (http://www.who.int/healthinfo/statistics/mortality_rawdata/en/ ac-

cessed: 26.02.2015). Based on age-specific plots, we found that as expected, clues about

yearly trends are lost when annual data is aggregated to five-year intervals. Retrospective

predictions, however, seemed reasonable in most age groups. For oesophagus cancer, espe-

cially in Norway, the retrospective projections obtained with five-year aggregated data are

close to trends in the data since the counts are very low and hence aggregating the data
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five-year intervals had very little effect on the trends in the yearly data. For Norway and

UK lung cancer, predictions seemed reasonable in some age groups while slight deviations

in trend were observed for other age-groups in comparison with the true observations.

Furthermore, the annual counts are lost by aggregation of yearly to five-year data and

hence it is not clear how to compare the predictions with the true observations based on

the scores used in our application since predictions are on a five-year scale and the true

observations are on yearly intervals.

In contrast with the five-year data aggregation, model-specific aggregation preserved the

yearly data structure. Here, yearly trends can still be monitored since the annual data

has not been lost. Predictions are however seen as steps, with rates staying fairly constant

across periods which were assigned the same period index (five-year intervals). This is

a consequence of the aggregation of random effects since the smoothing effect takes into

account the five-year model-specific aggregation to make the projections. For Norway lung

and oesophagus cancers, projection quality mostly remained constant when moving from

short-term to long-term projections, while minimal decline was observed for both cancers

in the UK where data are larger. Thus when the country is not large or cancer is rare, e.g

oesophagus cancer in Norway, predictive quality is not lost when more years are predicted

using five-year model-specific aggregation.

In comparison with the method with no aggregation, we observed similar predictive quality

between the two methods based on the scores investigated. For oesophagus cancer in the

UK and lung cancer in Norway, the method of no aggregation performed slightly better

than the model-specific aggregation. The reverse was, however, seen for UK lung cancer,

where the model-specific aggregation performed slightly better. Based on retrospective

predictions which we have investigated in this work, we found that the differences between

the two methods were very small. The age-specific plots however favoured the method

with no aggregation, where predictions are smoother than in model-specific aggregation

where predictions appear as steps and predicted rates are fairly constant for each five-year

period predicted.

We reckon that when yearly data is readily available, data aggregation to five-year inter-

vals may not be an ideal practice for projecting age-specific cancer incidence or mortality
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data. Specific to our application, yearly data without any form of aggregation gave the

best predictions. However, if any form of aggregation is desired, it seems beneficial and

more natural to preserve yearly data structure and aggregate the random effects instead,

depending on the application. In future work, it will be interesting to investigate the

impact of data and model-specific aggregation on the quality of cancer projections where

data are more detailed, having information on exact dates of death. We have investigated

aggregation of yearly data (both data and model specific), however having individual char-

acteristics such as exact dates of death, one will want to consider some sort of aggregation

since there will be a lot of zero counts in the data. Future studies have the potential of

revealing interesting and illuminating findings in such a case.
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Appendix A

Additional figures

1960 1970 1980 1990 2000 2010

0

50

100

150

200

Date of diagnosis

R
at

es
 p

er
 1

00
00

0

 27 37
 47

 57

 67

 77

Norway

1960 1970 1980 1990 2000 2010

0

50

100

150

200

250

Date of diagnosis

R
at

es
 p

er
 1

00
00

0

 27 37 47

 57

 67

 77

United Kingdom

1960 1970 1980 1990 2000 2010

0

5

10

15

20

Date of diagnosis

R
at

es
 p

er
 1

00
00

0

 47
 57
 67

 77

Norway

1960 1970 1980 1990 2000 2010

0

10

20

30

40

50

60

Date of diagnosis

R
at

es
 p

er
 1

00
00

0

 27 37 47
 57

 67

 77

United Kingdom

Figure A.1: Age-specific lung cancer (top) and oesophagus cancer (bottom) death

rates per 100000 for females in Norway and the United Kingdom. Shown are rates

obtained based on data aggregated over five-year intervals
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Figure A.2: Observed number of cases aggregated over five-year intervals (dots)

together with predicted mean rate within 95%-pointwise credible intervals (gold

shaded) and predicted number of cases aggregated over five-year intervals within

95%-pointwise credible intervals (dashed) for all age groups for female lung cancer

mortality in the UK. The vertical line shows where prediction started.
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Figure A.3: Observed number of cases aggregated over five-year intervals (dots)

together with predicted mean rate within 95%-pointwise credible intervals (gold

shaded) and predicted number of cases aggregated over five-year intervals within

95%-pointwise credible intervals (dashed) for all age groups for female oesophagus

cancer mortality in the Norway. The vertical line shows where prediction started.
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Figure A.4: Observed number of cases aggregated over five-year intervals (dots)

together with predicted mean rate within 95%-pointwise credible intervals (gold

shaded) and predicted number of cases aggregated over five-year intervals within

95%-pointwise credible intervals (dashed) for all age groups for female oesophagus

cancer mortality in the UK. The vertical line shows where prediction started.
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Figure A.5: Observed number of cases (dots) together with predicted mean rate

within 95%-pointwise credible intervals (gold shaded) and predicted number of cases

within 95%-pointwise credible intervals (dashed) for all age groups for female lung

cancer mortality in the UK obtained using model-specific aggregation. The vertical

line shows where prediction started.
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Figure A.6: Observed number of cases (dots) together with predicted mean rate

within 95%-pointwise credible intervals (gold shaded) and predicted number of cases

within 95%-pointwise credible intervals (dashed) for all age groups for female oesoph-

agus cancer mortality in Norway obtained using model-specific aggregation. The

vertical line shows where prediction started.
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Figure A.7: Observed number of cases (dots) together with predicted mean rate

within 95%-pointwise credible intervals (gold shaded) and predicted number of cases

within 95%-pointwise credible intervals (dashed) for all age groups for female oe-

sophagus cancer mortality in the UK obtained using model-specific aggregation.

The vertical line shows where prediction started.
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Figure A.8: Observed number of cases (dots) together with predicted mean rate

within 95%-pointwise credible intervals (gold shaded) and predicted number of cases

within 95%-pointwise credible intervals (dashed) for all age groups for female lung

cancer mortality in the UK obtained without any form of aggregation. The vertical

line shows where prediction started
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Figure A.9: Observed number of cases (dots) together with predicted mean rate

within 95%-pointwise credible intervals (gold shaded) and predicted number of cases

within 95%-pointwise credible intervals (dashed) for all age groups for female oesoph-

agus cancer mortality in Norway obtained without any form of aggregation. The

vertical line shows where prediction started
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Figure A.10: Observed number of cases (dots) together with predicted mean rate

within 95%-pointwise credible intervals (gold shaded) and predicted number of cases

within 95%-pointwise credible intervals (dashed) for all age groups for female oesoph-

agus cancer mortality in the UK obtained without any form of aggregation. The

vertical line shows where prediction started
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(c) Cohort effects

Figure A.11: Age, period and cohort effects for lung cancer Norway under method

of no aggregation.
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Figure A.12: Box plots of the standard deviation of the random effects (period effects
have been excluded from the models for identifiabililty) for both the model with no
aggregation (1-year) and that of model-specific aggregation (5-year) for Norway
lung cancer data. Shown are results obtained when the priors for the RW2 precision
parameters of the time effects (age and cohort) are scaled to have a marginal variance
= 1 (gold) and when they are not scaled (plain).
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Figure A.13: Box plots of the standard deviation of the random effects (period

effects have been excluded from the models for identifiabililty) for both the model

with no aggregation (1-year) and that of model-specific aggregation (5-year) for UK

lung cancer data. Shown are results obtained when the priors for the RW2 precision

parameters of the time effects (age and cohort) are scaled to have a marginal variance

= 1 (gold) and when they are not scaled (plain).
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Figure A.14: Box plots of the standard deviation of the random effects (period

effects have been excluded from the models for identifiabililty) for both the model

with no aggregation (1-year) and that of model-specific aggregation (5-year) for

Norway oesophagus cancer data. Shown are results obtained when the priors for the

RW2 precision parameters of the time effects (age and cohort) are scaled to have a

marginal variance = 1 (gold) and when they are not scaled (plain).
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Figure A.15: Box plots of the standard deviation of the random effects (period

effects have been excluded from the models for identifiabililty) for both the model

with no aggregation (1-year) and that of model-specific aggregation (5-year) for

UK oesophagus cancer data. Shown are results obtained when the priors for the

RW2 precision parameters of the time effects (age and cohort) are scaled to have a

marginal variance = 1 (gold) and when they are not scaled (plain).
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Appendix B

Selected R-codes

1: Simulation study

The following simulates random numbers and plots them together with posterior means

and quantiles (95 % credible intervals) obtained using RW1-model and RW2-model as

smoothing priors with fixed precision κ = 1. Generates Figure 3.1

1 # load the INLA library

2 library(INLA)

3 # empty vector to store random numbers

4 x = c()

5 x[1] = 0

6 # length of the vector

7 n = 50

8 # simulate the numbers

9 for(i in 2:n){

10 x[i] = x[i-1] + rnorm(1, 0, sd=1)

11 }

12

13 par(mfrow=c(2,2))

14 # smoothing using the RW1

15 y = 1:n

16 data = data.frame(x=x, y=y)

17 # plot the points

18 plot(x, col = "red", xlab = "Index", ylab = "", main = "Random walk 1")

19 # define the model , specify the hyperpriors
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20 formula1 =x~1+f(y, model="rw1", scale.model=TRUE , hyper = list(prec=list

21 (fixed=TRUE , initial=0, prior="loggamma", param=c(1 ,0.00005))))

22 result1 =inla(formula1 , data=data , family="gaussian", control.predictor=list(

compute=T))

23 # add a plot of the mean and 95% credible intervals based on RW1 smoothing

24 matplot(result1$summary.fitted.values [,3:5], add=TRUE , type="l", lty=1, col="blue")

25

26 # smoothing using the RW2

27 plot(x, col="red", xlab ="Index", ylab="", main= "Random walk 2")

28 # define the model , specify the hyperpriors

29 formula2= x~1+f(y, model="rw2", scale.model= TRUE , hyper = list(prec=list

30 (fixed=TRUE , initial=0, prior="loggamma", param=c(1 ,0.00005))))

31 result2= inla(formula2 , data=data , family="gaussian", control.predictor=list(

compute=T))

32 # add a plot of the mean and 95% credible intervals based on RW2 smoothing

33 matplot(result2$summary.fitted.values[ ,3:5], add=TRUE , type="l", lty=1, col="black

")

34

35 # we repeat the same for another simulated data set

36 x = c()

37 x[1] = 0

38 n = 50

39 for(i in 2:n){

40 x[i] = x[i-1] + rnorm(1, 0, sd=0.5)

41 }

42

43 y = 1:n

44 # smoothing using the RW1

45 plot(x, col="red", xlab="Index", ylab="", main= "Random walk 1")

46 data = data.frame(x=x, y=y)

47 formula1= x~1+f(y, model="rw1", scale.model=TRUE , hyper=list(prec=list

48 (fixed=TRUE , initial=0, prior="loggamma", param=c(1 ,0.00005))))

49 result1= inla(formula1 , data=data , family="gaussian", control.predictor=list(

compute=T))

50 matplot(result1$summary.fitted.values[ ,3:5], add=TRUE , type="l", lty=1, col="blue"

)

51

52 # smoothing using the RW2

53 plot(x, col="red", xlab ="Index", ylab="", main= "Random walk 2")

54 formula2 = x~1+f(y, model="rw2", scale.model=TRUE , hyper=list(prec=list

55 (fixed=TRUE , initial=0, prior="loggamma", param=c(1, 0.00005))))

56 result2 =inla(formula2 , data=data , family="gaussian", control.predictor=list(

compute=T))

57 matplot(result2$summary.fitted.values[ ,3:5], add=TRUE , type="l", lty=1, col="black

")
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2: Marginal standard deviation

This generates Figure 3.2, the marginal standard deviations of the RW1-model and the

RW2-model.

1 # load Matrix and MASS libraries

2 library(Matrix)

3 library(MASS)

4

5 # Function that calculates the standard marginal deviationns

6 marginal_std_dev = function(n) {

7 # Define the structure matrix

8 # for Random walk 1

9 RW1 = toeplitz(c(2, -1, rep(0, n-3), -1))

10 RW1[1, 1] = RW1[n, n] = 1

11 RW1[n, 1] = RW1[1, n] = 0

12

13 # for Random walk 2

14 RW2 = toeplitz(c(6, -4, 1, rep(0, n-4), 1))

15 RW2[1, 1] = RW2[n, n] = RW2[n-1, n-3] = 1

16 RW2[n, 1] = RW2[1, n] = 0

17 RW2[1, 3] = RW2[n, n-2]= 1

18 RW2[1, 2] = RW2[2, 1] = RW2[n, n-1] = RW2[n-1, n] = -2

19 RW2[2, 2] = RW2[n-1, n-1] = 5

20 RW2[2, 3] = -4

21

22 # Since structure matrices are not of full rank ,

23 # compute the generalised inverse instead

24 inverse_RW1 = ginv(RW1)

25 inverse_RW2 = ginv(RW2)

26 # Extract diagonal elements in each case (these are the marginal variances)

27 # and take the square root to obtain marginal standard deviations

28 sd_RW1 = sqrt(diag(inverse_RW1))

29 sd_RW2 = sqrt(diag(inverse_RW2))

30 return (list(sd_RW1=sd_RW1 , sd_RW2=sd_RW2))

31 }

32

33 par(mfrow=c(2,2), cex.lab= 1.3, cex.axis =1.3)

-70-



34

35 # compute marginal standard deviation for length n = 100

36 n = 100

37 marginal_std = marginal_std_dev(n)

38 # plot the marginal standard deviation for RW1

39 plot(marginal_std$sd_RW1 , main="RW1", xlab="Index",

40 ylab="Marginal standard deviation", type="l")

41 # plot the marginal standard deviation for RW2

42 plot(marginal_std$sd_RW2 , main= "RW2", xlab="Index",

43 ylab="Marginal standard deviation", type="l")

44

45 # compute marginal standard deviation for length n = 500

46 n = 500

47 marginal_std = marginal_std_dev(n)

48 # plot the marginal standard deviation for RW1

49 plot(marginal_std$sd_RW1 , xlab="Index", ylab="Marginal standard deviation", type="l

")

50 # plot the marginal standard deviation for RW2

51 plot(marginal_std$sd_RW2 , xlab="Index", ylab="Marginal standard deviation", type="l

")

3: BAPC R-code

This code shows how to obtain the retrospective predictions under the three temporal

scales, method of no aggregation, five-year data aggregation and model-specific aggrega-

tion. It describes how to obtain Figure 5.2, 5.3 and 5.4. Plots for UK and oesophagus

cancer are obtained analogously.

1 # load the BAPC and INLA libraries

2 library(BAPC)

3 library(INLA)

4

5 # load annual female lung cancer mortality and population counts for Norway

6 # 60 rows and 12 columns in both data sets

7 FemLC_NW <- read.table ("nw_counts.txt", row.names=1, header=T)

8 FemPY_NW <- read.table ("nw_pop.txt", row.names=1, header=T)

9

10 # generate APCList object based on annual data with no aggregation

11 # we specify the count and population data and also

-71-



12 # the grid factor (C=5), indicating that age -groups are 5 times

13 # wider than period intervals

14 lc_nw <- APCList(FemLC_NW, FemPY_NW, gf=5)

15

16 # obtain retrospective projection for 10 years

17 # based on yearly data with no aggregation

18 lc_nw <- BAPC(lc_nw, predict=list(npredict =10, retro=TRUE), model=list(age=

19 list(model="rw2", prior="loggamma", param=c(1 ,0.00005) , initial=4,

20 scale.model=FALSE), period=list(include=TRUE , model="rw2", prior =

21 "loggamma", param = c(1, 0.00005) , initial=4, scale.model = FALSE),

22 cohort=list(include=TRUE , model="rw2", prior="loggamma", param =

23 c(1, 0.00005) , initial=4, scale.model=FALSE), overdis=list(include=

24 TRUE , model="iid", prior="loggamma", param=c(1, 0.005) , initial =4)))

25

26 # this generates figure 5.4

27 plotBAPC(lc_nw, scale =10^5, type="ageSpecBoth", showdata=T, coladd="darkgoldenrod1"

)

28

29 # analysis based on five year data aggregation

30

31 # load five -year aggregated data for lung cancer mortality and population counts

32 # 12 row and 12 columns in both data sets

33 # each row represents data aggregated over a five -year interval

34 aggFemLC_NW <- read.table("agg_nw_counts.txt", row.names=1, header=T)

35 aggFemPY_NW <- read.table("agg_nw_pop.txt", row.names=1, header=T)

36

37 # generate APCList object based on five -year aggregated data

38 # here the grid factor (C=1)

39 # since age groups and period intervals have the same width

40 agglc_nw<- APCList(aggFemLC_NW, aggFemPY_NW, gf=1)

41

42 # obtain retrospective projection for 10 years

43 # based on five -year aggregated data

44 agglc_nw <- BAPC(agglc_nw, predict=list(npredict=2, retro=TRUE), model=list(age=

45 list(model="rw2", prior="loggamma", param=c(1 ,0.00005) , initial = 4,

46 scale.model=FALSE), period=list(include = TRUE , model="rw2", prior =

47 "loggamma", param = c(1, 0.00005) , initial=4, scale.model = FALSE),

48 cohort = list(include=TRUE , model="rw2", prior = "loggamma", param =

49 c(1 ,0.00005) , initial=4, scale.model=FALSE), overdis=list(include =

50 TRUE , model="iid", prior="loggamma", param=c(1 ,0.005), initial =4)))

51

52 # this generates Figure 5.2

53 plotBAPC(agglc_nw, scale =10^5, type="ageSpecBoth", showdata=T, coladd="

darkgoldenrod1")

54
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55

56 # analysis based on model -specific aggregation

57

58 # change the period index of the BAPC object obtained based on annual data

59 # length =720 is the length of the data

60 # here we partition the periods into 12 groups

61 # each group made up of five -year periods

62 # and assign the same period index to all periods in the same group

63 periodindex(lc_nw) <- rep(1:12, each=5, length =720)

64

65 # based on the new period indexes ,

66 # compute the corresponding cohort index k=(I-i)+j

67 cohortindex(lc_nw)<- (nage(lc_nw)-ageindex(lc_nw))+periodindex(lc_nw)

68

69 # Of note , the age index remains unchanged

70

71 # create new BAPC objects under model -specific aggregation

72 lc_nw_idx <- BAPC(lc_nw, predict=list(npredict =10, retro=TRUE), model=list(age=

73 list(model="rw2", prior="loggamma", param=c(1 ,0.00005) , initial=4,

74 scale.model=FALSE), period=list(include=TRUE , model="rw2", prior=

75 "loggamma", param = c(1, 0.00005) , initial=4, scale.model = FALSE),

76 cohort = list(include=TRUE , model="rw2", prior = "loggamma", param=

77 c(1 ,0.00005) , initial=4, scale.model=FALSE), overdis=list(include=

78 TRUE , model="iid", prior="loggamma", param=c(1 ,0.005), initial =4)))

79

80 # obtain plots. This generates Figure 5.3

81 plotBAPC(lc_nw_idx , scale =10^5, type="ageSpecBoth", showdata=T, coladd="

darkgoldenrod1")

4: Computing Scores

The following shows how we compute the absolute error and continuous ranked probability

mean scores. Subsequently demonstrates how values in Table 5.3 and plots in Figure 5.5

are obtained. Norway lung cancer has been used as an illustration. Scores for UK and

oesophagus cancer are obtained analogously.

1 # In the BAPC object (lc_nw) you find after running BAPC ,

2 # all the predictions can be extracted using agespec.proj(lc_nw)

3
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4 # For method of no aggregation ,

5

6 # extract the mean and standard dev of the predictive distributions

7 pred_lc_nw<- agespec.proj(lc_nw)

8 # mean of the predictive distribution

9 mu_lc_nw<- sapply(pred_lc_nw, function(x){x[51:60 , 2]})

10 # standard dev of the predictive distribution

11 sigma_lc_nw<- sapply(pred_lc_nw, function(x){x[51:60 , 4]})

12

13 # Similarly we extract mean and standard dev

14 # under model -specific aggregation

15 pred_lc_nw_idx <- agespec.proj(lc_nw_idx)

16 # mean of the predictive distribution

17 mu_lc_nw_idx <- sapply(pred_lc_nw_idx , function(x){x[51:60 , 2]})

18 # standard dev of the predictive distribution

19 sigma_lc_nw_idx <- sapply(pred_lc_nw_idx , function(x){x[51:60 , 4]})

20

21 # true observations , which we compare the predictions to

22 # mortality counts data for female lung cancer

23 fem_lc_nw <- as.matrix(FemLC_NW[51:60 , ])

24

25 # function that computes the scores , CRPS and AE

26 compute_score <- function (y, mu, sigma){

27 CRPS= matrix(data=NA, nrow=nrow(y), ncol=ncol(y))

28 AE= matrix(data=NA, nrow=nrow(y), ncol=ncol(y))

29 ybar= matrix(data=NA, nrow=nrow(y), ncol=ncol(y))

30 for(j in 1:nrow(y)){

31 for(i in 1:ncol(y)){

32 AE[j, i] = abs(y[j, i] - mu[j, i])

33 ybar[j, i] = (y[j, i] - mu[j, i]) / sigma[j, i]

34 CRPS[j, i] = sigma[j, i]*(ybar[j, i]*(2*pnorm(ybar[j, i],0,1) -1)

35 + 2*dnorm(ybar[j, i], 0, 1) - (1/sqrt(pi)))

36 }

37 }

38 return(list(CRPS=CRPS , AE=AE))

39 }

40

41 # now compute scores

42 # under method of no aggregation

43 score_lc_nw <- compute_score(fem_lc_nw, mu_lc_nw, sigma_lc_nw)

44

45 # under model -specific aggregation

46 score_lc_nw_idx <- compute_score(fem_lc_nw, mu_lc_nw_idx , sigma_lc_nw_idx)

47

48 # function that computes the cumulative average CRPS and AE
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49 cumulative_average <- function (CRPS , AE){

50 CRPS_j = matrix(data=NA, nrow=nrow(CRPS), ncol =1)

51 AE_j = matrix(data=NA, nrow=nrow(CRPS), ncol =1)

52 CRPS_j[1, ] = mean(CRPS[1, 1:ncol(CRPS)])

53 AE_j[1, ] = mean(AE[1, 1:ncol(AE)])

54 for(j in 2:nrow(CRPS)){

55 CRPS_j[j, 1] = mean(c(CRPS [1:j, ]))

56 AE_j[j ,1] = mean(c(AE[1:j, ]))

57 }

58 return(list(CRPS_j = CRPS_j, AE_j = AE_j))

59 }

60

61 # compute cumulative average under method of no aggregation

62 score_lc_nw_j <- cumulative_average(score_lc_nw$CRPS , score_lc_nw$AE)

63

64 # extract cumulative average CRPS and AE

65 # a plot of these values are seen in Figure 5.5

66 AE_lc_nw_j <- score_lc_nw_j$AE_j

67 CRPS_lc_nw_j <- score_lc_nw_j$CRPS_j

68

69 # the mean CRPS and AE

70 # which correspond to the last time points of the cumulative average

71 meanAE_lc_nw<- AE_lc_nw_j[nrow(AE_lc_nw_j), 1]

72 meanCRPS_lc_nw<- CRPS_lc_nw_j[nrow(CRPS_lc_nw_j), 1]

73

74 # compute cumulative average for model -specific aggregation

75 score_lc_nw_idx_j<- cumulative_average(score_lc_nw_idx$CRPS , score_lc_nw_idx$AE)

76

77 # extract cumulative average CRPS and AE

78 AE_lc_nw_idx_j<- score_lc_nw_idx_j$AE_j

79 CRPS_lc_nw_idx_j<- score_lc_nw_idx_j$CRPS_j

80

81 # the mean CRPS and AE

82 # which correspond to the last time points of the cumulative average

83 meanAE_lc_nw_idx <- AE_lc_nw_idx_j[nrow(AE_lc_nw_idx_j), 1]

84 meanCRPS_lc_nw_idx <- CRPS_lc_nw_idx_j[nrow(CRPS_lc_nw_idx_j), 1]

85

86 # these values are the entries of Table 5.3 and 5.4

87 meanAE_lc_nw

88 meanAE_lc_nw_idx

89 meanCRPS_lc_nw

90 meanCRPS_lc_nw_idx

91

92 # plot the cumulative average of mean AE (dotted) and CRPS (lines)

93 # based on yearly data without aggregation (black)
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94 # and that of five -year model -specific aggregation (gold)

95 # generates Figure 5.5

96 year <- 2001:2010

97 plot(year , CRPS_lc_nw_j, type="s", main ="Norway", ylab = "cumulative

98 average scores", xlab ="Year", xlim=c(2001 ,2010) , ylim=c(0,10), lwd=2)

99 lines (year , CRPS_lc_nw_idx_j, type= "s", lwd=2, col="gold")

100 lines (year , AE_lc_nw_j, type="s", lty=3, lwd=2)

101 lines (year , AE_lc_nw_idx_j, type= "s", lty=3, lwd=2, col="gold")
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